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ABSTRACT

The demand for recommender systems in E-commerce industry has increased
tremendously. Efficient recommender systems are being proposed by different E-business
companies with the intention to give users accurate and most relevant recommendation of
products from huge amount of information. To improve the performance of recommender
systems, various stochastic variants of gradient descent based algorithms have been
reported in the literature. It has been observed that matrix factorization (MF) technique
based on stochastic gradient descent (SGD) algorithm has been widely used by
recommender systems for providing accurate and fast recommendations of products to
users. The performance of MF-based SGD methods for recommender systems is improved
further through computing paradigms which are designed by utilizing the concept of
fractional order gradient in addition to the integer order gradient in standard SGD methods.
It has been noticed that the fractional version of MF-based SGD methods outperformed the
standard counterparts. Therefore, by exploiting the strong mathematical concepts of
fractional calculus, we have developed fractional calculus based three SGD strategies for
fast and efficient matrix factorization of algorithms for recommender systems such as
fractional stochastic gradient descent (F-SGD), momentum fractional stochastic gradient
(mF-SGD) and normalized fractional stochastic gradient descent (NF-SGD). The
performance in terms of estimated accuracy and convergence of standard SGD is improved
in F-SGD. The scalability requirement of recommender systems in terms of rapidly
increasing size of users and items, needs algorithms with fast convergence for providing

efficient and relevant recommendations. The convergence of F-SGD is further accelerated
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through scalable F-SGD, termed as mF-SGD. In mF-SGD a proportion of previous
gradients information is utilized through the addition of a momentum term to F-SGD. Both
F-SGD and mF-SGD outperform matrix factorization based standard SGD counterparts
but suffer from time varying appropriate selection of learning rate parameter. Therefore, a
nonlinear computing paradigm (NF-SGD) based on normalized version of F-SGD is
developed to investigate the adaptive behavior of learning rate for smooth and fast
convergence with novel application to recommender systems. Performance of the proposed
fractional SGD methods is verified through root mean square error (RMSE) against SGD
baselines for Movie-Lens datasets. It is seen that proposed fractional adaptive methods
achieve substantial percentage increase in performance for higher values of fractional order
as compared to baselines.

Apart from improving the performance of recommender systems with regard to fast
recommendations of items to users using MF-based algorithms, another challenge for E-
commerce industry is to promote online businesses and sales by accurately predicting the
list of those items that best match customers’ tastes known as Top-N recommendations.
Deep leamning based auto-encoder models have further improved the performance of
recommender systems by predicting Top-N recommendations. Motivated by the
performance of deep auto-encoders, we propose a novel users rating-trend based
collaborative denoising auto-encoder (UT-CDAE) which helps to predict improved Top-N
recommendations. The suggested UT-CDAE determines user-item correlations by
evaluating the rating-trend (High or Low) of a user towards set of items. The correctness
of the suggested method is verified through different ranking evaluation metrics i.e., (mean

reciprocal rank, mean average precision and normalized discounted gain). Experiments on
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standard Movie-Lens datasets show that UT-CDAE has gained higher average
improvements in performance for chosen ranking-based evaluation metrics, with small

proportions of noise, over state-of-the-art denoising auto-encoder models.
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Chapter 1.  Introduction

1.1 Introduction

In this chapter the need, importance and applications of recommender systems are
briefly discussed. In addition to advantages and limitations of recommender systems,
standard methods employed by recommender systems are also covered. The vital role of
model-based collaborative filtering method for designing innovative, robust, adaptive,
reliable and convergent algorithms with the aim of rating and ranking prediction for
recommender systems is recognized as well. Moreover, the introduction of collaborative
filtering based proposed matrix factorization methods for rating prediction and novel deep

neural network method for Top-N recommendations is also presented.
1.2  Background and Motivation

Nowadays, the need of e-commerce industry has increased rapidly and captured the
businesses’ interests in a short time span. At present, people are becoming habitual of using
e-commerce applications and e-systems as part of digital technology. Variety of available
products pose challenges for businesses to fulfill users’ diverse demands. E-systems
provide ease in users’ taste management and also allow users to explore a variety of options
before taking a decision for a specific product. However, it is somehow difficult to get the

useful data (information) of products for millions of users from enormous amount of



available and emerging data. To solve this problem, automated recommender systems are
used by e-businesses with the intension to give users a precise and relevant

recommendation of products.

Recommender systems (RS) are programs and procedures giving useful suggestions
to users according to their preference for different products [1][2]. An important feature of
recommender systems is to predict user’s interest by analyzing the transactional behavior
of a particular user to give useful recommendations [3]. Recommender system plays a
significant role for the customers as well as for service providers. For customers, it is used
to find interesting items and products, locate appropriate news content [4], discover new
products and to explore new options matched with their interests. On the other hand, for
service providers, recommender systems are used to promote their products, develop
customer trust, obtain more knowledge about customers and enhance sales. The
applications of recommender systems can be categorized into many categories such as e-
commerce/e-shopping, e-government, e-group activities, e-tourism, e-library, e-learning,
e-resource services and e-business [5]. Recommender systems have also been commonly
used in entertainment (e.g. music and movie recommendations), content (e.g.
recommendations for documents, news and e-applications), e-commerce (e.g.
recommendation for items to buy such as camera and books) and services (e.g. travel and

houses for rent service recommendations) [3][5].

Recommender systems employ different methods to provide recommendations.
Frequently used recommendation methods are collaborative filtering (CF), content based

filtering (CB), demographic, knowledge-based, community-based and hybrid
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recommender systems. Widely applied techniques amongst those are CF [6]-{12] and CB
[13][14]. In CB filtering approach, a system learns to recommend the same products to
users that the user preferred in the past [15]. While, in case of CF, recommendation of
items for the specific users are based on those items which are mutually liked by other
users. CF is also referred to as “people-to-people correlation” [16]. CF has scalability,
sparseness and cold start issues whereas CB may provide overspecialized
recommendations [6]. We will deeply elaborate CF-based modelling of the learning

machines for recommender systems in succeeding Sub-Section

1.2.1 Collaborative Filtering in Learning Machines for Recommender

Systems

To predict preferences of users on set of items, CF considers users’ past activities
such as viewing/purchasing history or users’ rating patterns for items. In a CF based
system, an active user for example, Us being the main participant pursues either for a rating
prediction or looks for ranking of items. A CF based recommender system produces
recommendations to user Us by using preference history of like-minded users as a reference
for finding associations among compatible users. Such CF system entirely depends upon
the taste of like-minded users. Usually a CF system includes a set of m users U =
{U,,Up, ..., Uyp} andnitems I ={I;,I,, ..., I,}. The CF system builds a user-
item rating matrix with dimension (m X n). The rating matrix contains preferences of
users for items, where the preference opted by user U; for item J; is represented by 1; ;. To

provide a useful recommendation to user Us for target item I, a CF based method either



determines the appropriate rating for item I, or offers most suitable Top-N items list for
user 5. The graphical interpretation of CF procedure for recommender systems is as

shown in Figure 1.1.
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Fig. 1.1 Graphical view of Collaborative Filtering



Two types of methods are mainly used in CF for generating appropriate and precise
recommendation, such as memory-based CF [15][17] and model-based CF [18][19].
Memory-based methods are also known as neighborhood-based and model-based methods
which are termed as latent factor-based methods. Memory-based methods predict user-item
interactions (ratings) using neighborhoods (item-item and user-user) information whereas,
model-based methods give item recommendations by building a user ratings model. Model
construction in latent factor based methods is performed by different data mining and
machine learning methods such as genetic algorithms [20], memetic algorithm [21], deep
neural networks (DNN) [22], Bayesian classifiers [23], latent factors [24] and matrix
factorization (MF) [25]. The performance of model-based CF methods for rating prediction
particularly matrix factorization [19][26] and ranking of Top-N items specially deep neural
networks [27][28], motivated us to explore research opportunities and design efficient
learning machines for enhancing the performance of MF and DNN-based adaptive
algorithms for recommender systems. Therefore, for solving recommender systems
problem through CF, we propose unique matrix factorization based learning machines for
rating prediction and a novel deep neural network based learning machines for ranking
prediction of items. Moreover, one of the important reasons for conducting the research
using model-based CF methods, is the flexibility of model-based CF for designing
innovative, robust, adaptive, reliable and convergent learning machines for recommender
systems. The overall graphical illustration of CF approach for model-based proposed

algorithms is presented in Fig. 1.2.



1.3  Research Problem/Problem Formulation

Several model-based CF methods (learning machines) are proposed to improve the
performance of recommender systems in terms of speed, correctness, robustness,
adaptability and reliability. The examples of such model-based learning machines include
incremental and scalable CF methods using matrix factorization (MF) for recommender
systems [25][26] and deep neural network (DNN) based CF models using auto-encoders
[27][28]. Due to the increases in size of users, products and data, the e-commerce industry
needs more accurate, adaptive and effective algorithms to fulfill users’ demand by
efficiently recommending related products to users. Therefore, in our research, the goal is
to explore model-based CF machines by using the strong concepts of fractional calculus
for effective MF and exploiting DNN-based new adaptive method for improving the
performance of recommender systems. Following sub-sections includes our research

problem in the context of MF and DNN-based CF.

1.3.1 Matrix Factorization based Collaborative Filtering

Matrix factorization based CF handles high volume of user/item data even when

items are not rated frequently by the users [29]. To improve the convergence rate and
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Fig. 1.2 Graphical representation of model-based Collaborative Filtering methods



correctness of model-based CF, several stochastic gradient descent based matrix

factorization models [26][30] are suggested for recommender systems.

Recently, fractional calculus based SGD adaptive algorithms [31] have become
popular because of the strong mathematical foundations of fractional calculus and their
wide applications in diverse engineering domains such as [32]-[40]. Fractional adaptive
methods outperformed in these fields than their standard counterparts. The designing of
fractional gradient based SGD methods under model-based CF seems to be an encouraging
field to discover and apply in the area of recommender systems for providing fast and
accurate recommendations. Therefore, to enhance convergence rate and accuracy of
recommender systems, our research work aims to investigate, design and use fractional
calculus based SGD methods for efficient matrix factorization of learning machines for

recommender systems .

1.3.2 Deep Learning based Collaborative Filtering

Atpresent, matrix factorization based CF models are already in production to provide
good recommendations, yet they are based on dot product of latent factors learned through
matrix factorization which limit them in capturing subtle interactions of users and items.
Deep learning based methods have further pushed the boundary of model-based CF for
recommender systems research by either acting as a provider of latent features to
conventional collaborative filtering methods [41][42] or fully substituting matrix
factorization based methods [27], [28], [43]. Although deep learning neural models have
been implemented for model-based CF by simply applying them on recommender systems’

data, they still lack the modelling of users’ preference behavior/trend while learning users-



items interactions. For example, many items are given more preference by the users by

assigning higher rating values while some items receive low ratings. This preference

behavior establishes rating trend of different users for various items and this trend needs to

be modelled while learning user-item interactions. In our research, we also investigate the

behavior of a new DNN-based learning machine for modelling the users’ preference trend

by giving weights to different rating-trends of users for top-N recommendations.

1.4

Research Objectives

The objectives of our research are centered in two dimensions.

1.

One of our objectives is to develop fractional calculus based nonlinear learning
machines for model-based CF to exploit properties of stochastic gradient descent
algorithm with novel applications to solve recommender system problem
effectively and efficiently. We achieved our objective by developing the following
fractional calculus based adaptive learning models for model-based CF.

a) Fractional stochastic gradient descent (F-SGD).

b) Momentum fractional stochastic gradient descent (mF-SGD).

¢) Normalized fractional stochastic gradient descent algorithm (NF-SGD).

Our another objective is to develop DNN-based a novel learning machine through
model-based denoising auto-encoder for top-N recommender systems, that models
users’ rating-trend for giving trend based top-N recommendation of items to users.
We achieved our goal by designing the following DNN-based auto-encoder.

a) Fractional stochastic gradient descent (F-SGD).
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1.5 Research Hypothesis

The research hypotheses formulated for the study are:

e The inclusion of fractional calculus notions in standard SGD method for matrix
factorization procedure, may provide better estimated accuracy and fast

convergence speed of related recommendations to users.

e To control the convergence of SGD-based MF methods, fractional adaptive

algorithms may offer more control parameters than other standard algorithms

e The development of a ranking prediction based nonlinear computing model
which is built on users’ rating behavior for observed set of items, may provide
flexibility in terms of regularization and incorporates the features of other well

established techniques for top-N recommendations.

e Rating-trend based setting in proposed deep auto-encodes-based model may
succeed in exploiting the latent representations required to predict the rating
behavior of a user towards items, which authenticates the robustness and

correctness of the model.

1.6  Thesis Outlines

The arrangement of the work presented in this thesis is as follows.
Chapter 1 presents a conceptual outline of the whole thesis, consisting of background and

motivation for problem identification and defining Research Problem along with research
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gaps, statement and definition, clearly defining the Research Objectives and hypothesis.
Further it presents a diagrammatic view of the methodology.

Chapter 2 gives a critical Literature Review explaining background, contemporary
research related to our work supported by reports and articles in terms of techniques and
procedures.

Chapter 3 elaborates the research methodology with matrix factorization technique by
discussing three proposed algorithms using MF and their pseudocodes for showing results
for a given set of parameters.

Chapter 4 includes the three algorithms of F-SGD, mF-SGD, NF-SGD with pseudocode
given in Chapter 3, which are tested for performance on ML-100k and ML-1M datasets
under three Case Studies for example Case-Study-1, Case-Study-II, and Case-Study-III
Chapter 5 explains the research methodology with deep learning scheme by discussing a
suggested algorithm using deep learning and its pseudocode for presenting results for a
given set of parameters. The proposed algorithm is also tested for performance with
standard counterparts on ML-100k and ML-1M datasets.

Chapter 6 concludes the thesis by highlighting the outcomes of our research and how
much of the research objectives are achieved by comparing the results with those of
contemporary research works, justifying marked contribution. Further, it suggests
directions on how the research may be continued in the related field. It also lists down the

publications we have made out of work.
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Chapter 2. Critical Literature Review

2.1 Introduction

This chapter is divided into two main halves. First half of the chapter includes the
basic concept of matrix factorization especially for recommender systems, literature
survey of matrix factorization techniques along with their applications to different fields
including recommender systems. In second half of the chapter, we present deep learning
based auto-encoders for recommender systems, literature survey of auto-encoders for

Top-N recommender systems followed by summary of the chapter at the end of chapter.

2.2 Matrix Factorization for Recommender Systems

The e-commerce industry has widely captured the interest of businesses
nowadays. The businesses are getting complicated and multidimensional due to the
drastic increase in the variety of products and demands of the users. For the selection
of the right product for the right user, recommender systems are incorporated in
different industrial applications to provide most relevant recommendation of items to
the users [2], [44]{48]. One of the main methods for solving recommender system
problem using CF is matrix factorization, which finds latent factors to relate users with
the items of their interest. Matrix factorization being latent factor based method uses
known ratings given by users for set of items to acquire an approximate model. This
approach represents user — item connections by factors expressing the hidden (latent)

features of users and items for a particular system that is priority-wise standing of users



and category-wise standing of items. Weight of factors depends upon the measure of
the liking rated by specific user for a particular item. For the realization of MF as latent
factor based model, there are two important problems faced by MF techniques for the
implementation of recommender systems: (i) rating matrix is partially fiiled by users
for several items (sparse matrix), (ii) size of the data grows exponentially (scalability).
These issues are well addressed by matrix factorization (MF) [25][29]. MF is the most
useful technique for dealing millions of users with billions of ratings. The MF of a given

rating matrix is presented graphically in Fig. 2.1.
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Fig.2.1 Block diagram of basic Matrix factorization for recommender systems

Using MF, numerous methods have been effectively applied for solving RS
problems. Some of the techniques are maximum margin matrix factorization [49],
probabilistic matrix factorization [18], alternating least squares [50], probabilistic latent
semantic analysis [51], singular value decomposition [52] and expectation
maximization for MF [53].

A regularized version of matrnix factorization has been implemented by Simon

Funk using gradient descent learning algorithm [54]. Other novel and efficient
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algorithms like biased matrix factorization and asymmetric factor models have been
presented by Paterek in [30]. An incremental training technique has been suggested in
[25], which includes updating trained parameters based on the new data. To deal with
large scale datasets and to factorize large scale matrices, different algorithms have been
proposed. Alternating least squares (ALS) and stochastic gradient descent (SGD)
algorithms gained much attention during recommender system competitions and are
extensively used for matrix factorization [55][56]. To speed up the process of matrix
factorization, momentum SGD [26] and ALS based coordinate descent methods [57]
were proposed.

In literature, different variants of gradient descent (GD) and stochastic gradient
descent (SGD) have been suggested with the aim of increasing performance in terms of
accuracy and convergence speed. In both methods, parameters are updated in an
iterative manner to minimize objective function. In GD, a specific iteration involves
running through all the samples in training set for a single update of a parameter, while
in SGD, a single or a subset of samples from the training set is taken for parameter
update. This makes GD highly computationally complex for large number of training
samples. Thus the suitable choice for many recommender systems involving large
number of training samples is SGD. It has been observed that SGD is simpler and
efficient than ALS [58], yet SGD cannot be easily parallelized to deal large scale data
sets [58]. For the parallelization of SGD, some computationally efficient techniques
have been suggested such as fast parallel SGD (FSGD) [59] and distributed SGD
(DSGD) [60].

Furthermore, to achieve improved performance in terms of estimated accuracy,
adaptability and speed of standard SGD-based MF methods for example [25][26], we

have proposed three MF based algorithms by (1) exploiting strong mathematical
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foundations of fractional calculus as already proved in [37][39][61][62] and (2)
applying those fractional concepts in standard SGD-based MF methods . The standard
SGD-based adaptive methods for recommender systems presented in this section use
integer (first) order gradient during parameters update mechanism. While the suggested
fractional order adaptive schemes use fractional order gradient along with integer order
gradient in their optimization procedure. The proposed F-SGD method exploits power
of fractional order in addition to first order gradients to provide fast and accurate
recommendations but lacks automatic step-size tuning for achieving improved
performance. Automatic adjustment of step-size is introduced in the proposed NF-SGD
method, which considerably improves the performance in terms of convergence speed
and accuracy. Finally, mF-SGD is designed to increase the convergence rate by using
the proportion of previous gradients (integer order and fractional order). In addition to
convergence speed the momentum term in mF-SGD also helps to avoid trapping in

local minima.

2.3  Auto-Encoders for Recommender Systems

Auto-encoder is a feedforward unsupervised DNN architecture, which is trained
to encode input into latent representations (encoding) so that the input is reconstructed
back using those representations (decoding) [63]. Auto-encoder also provides relevant
predictions to users [64]-{66]. Few variants of auto-encoder are proposed to provide
ratings as well as ranking based predictions for top-N recommender systems [65][67].
The auto-encoders solving recommender systems include marginalized auto-encoder,
contractive auto-encoder, sparse auto-encoder, denoising auto-encoder and variational

auto-encoder [65], [67]-[69].
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A simple auto-encoder [27] for recommender system consists of input layer, a
hidden layer and an output layer for encoding a high dimensional partially observed
input vector t € R? (user based or item based) of a rating matrix R € RP*9 to a low
dimensional space (K), which is reconstructed at the output layer (also called decoder
part). where by, € R¥ | is bias of the hidden layer and matrix W; € R?*K represents the
weights of input layer associated with the hidden layer. Similarly,b, € R%, is bias of
the output layer and matrix W, € R¥*? denotes the weights tied to the hidden layer and
the output layer. The network design of a basic auto-encoder is given in Fig. 2.2.

Parameters & = {W,;,W,, by, by} of an auto-encoder are learned (trained)
through back-propagation to solve the reconstruction loss. The loss can be squared-loss
(for regression) or cross-entropy-loss (for binary inputs). For user input vectors the

squared objection function(£) for auto-encoder is given as:

D
1 N
min— " £(¢t,8) + % (W, W, by, bo) @.1)
p u=1
L) = lty — a2 22)

Here, £ is the squared loss function and R represents the regularization term.

Where R contains the squared £, norm of parameters given as:

A
R (W, Wy, v, by, by) = 5(||W1||% + IW2 15 + 1By ll3 +
2.3)

IBoli$)
The projection of the input t to the hidden space H through activation function
is represented as:
H(@) = f(WSt + by) (2.4)
The activation function f(-) can be Sigmoid or Identity as given in [27]. If we

use Sigmoid as mapping function f (+) = Sigmoid, then hidden layer is represented as:
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H(t) = Sigmoid(WSt + by) = s(WSt + by) (2.5)
Reconstruction of the input is done in the output layer (O) by again projecting
the hidden representation to the output layer and applying the activation function g(-) =

Sigmoid at the output layer. The reconstructed input vector is given as:

Reconstructed
Input (output})
- “
N . ‘.__",'l v\ “““ 7 . -
£* )
3
9 W2
o
N e i
w4 -
£
3
g W1
w

User Rating Vector
{Input)}

Fig. 2.2 Network diagram of a basic Auto-encoder recommender systems

t=g(WJH(t) + by) (2.6)

i = Sigmoid(WH (t) + by) = (W, H (L) + by) .7

The considerable contributions of auto-encoders for recommender systems
include, generating predictions at the reconstruction layer and extraction of latent
characteristics at the bottle-neck layer through dimensionality reduction procedure
[65][66]. Recommender systems use auto-encoders to deal specifically with scalability

and sparsity concerns.
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The accuracy of recommendations provided by recommender systems through
auto-encoders is assessed by two procedures i.e. rating prediction, frequently evaluated
in terms of root mean square error (RMSE), and ranking, mostly computed with regard
to normalized discounted gain (NDCG), precision (P) and recall (R), including few
other metrics [70]. Rating prediction deals merely with observed ratings, whereas
ranking deals with ratings for all items in the rating matrix whether specified or missing.
Ranking is a helpful and useful method when the goal is to recommend each user a
short list of N items often termed as Top-N recommendations.

Top-N Recommendations Task

Recently, the demand of items similar to the users’ taste has increased radically. The
challenge now is to accurately and efficiently recognize the list of products that best
match customers’ tastes. Top-N recommender systems have been extensively studied
and widely used in E-commerce industry during the past several years. The job of the
recommender system is said to be a Top-N recommendation task, when the aim of
recommender system is to find a size-N ranked lists of particular items which are the
most pleasing to the user [71][28]. The Top-N recommendation task has also been
expressed as a ranking problem. Inspired by the work done in CDAE [28], we have
proposed DNN based a novel method in this thesis, which is termed as users’ rating-
trend based collaborative denoising auto-encoder (UT-CDAE) for providing Top-N
recommendations. UT-CDAE offers accurate and efficient Top-N recommendations to
users as compared to few standard deep learning methods for Top-N recommender
systems.

In the literature few methods for rating prediction and ranking have been proposed
for recommender systems. Auto-rec is a single hidden layer ratings prediction based

method proposed in [27}, which has two variants i.e. item-based (I-Auto-rec) and user-
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based Auto-rec (U-Auto-rec). The work in [27] concludes that the performance of auto-
encoders (I-Auto-rec) for recommender systems is effected by using different
combination of mapping functions at the hidden and output layers. Moreover, it shows
that deep layered I-Auto-rec reflects slight improvement in performance than shailow
I-Auto-rec. The extension of Auto-rec is termed as Collaborative Filtering Neural
Network (CFN) [72] which exploits de-noising approach and incorporate side
information at the input layer. The de-noising method helps in learning more robust
hidden representations while side information helps to alleviate the cold start and
sparsity problems. Another extended variant of CFN [73] includes the side information
not only at input layer but includes it to all layers. Apart from improving the training
time, inclusion of side information also improves robustness and predictive correctness
of the model.

One of the ranking based denoising versions of auto-encoder for top-N
recommendations is Collaborative Denoising Auto-Encoders (CDAE) [28]. In CDAE,
an additional user oriented node for each user is introduced at the input layer of
denoising auto-encoder. That extra node at the input layer is connected to the hidden
layer with unique weights (weight vector) for all user preference vectors. The
performance of the model is significantly affected using these unique weights. In CDAE
a negative sampling technique is introduced to reduce time complexity without
sacrificing the ranking eminence [65][28].

The type of variational auto-encoder (Muiti-VAE and Multi-DAE) with implicit
feedback for recommender systems is specified in [73]. In this scheme, parameters are
computed using Bayesian inference method. Such inference technique improves the
performance of (Multi-VAE and Multi-DAE) over CDAE [28]. Another form of

collaborative filtering using auto-encoders is Auto-encoder based Collaborative
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Filtering (ACF) [74]. Instead of utilizing the sparse input vectors as given in preference
matrix, ACF decomposes the original sparse input vectors based on the range of integer
ratings e.g. 1-5. The decomposition corresponds to increase the sparseness of input
vectors by decreasing the predictive accuracy. Moreover, ACF does not succeed to
consider non-integer ratings as in [73][28].

Auto-encoders are also responsible for learning latent feature representations
from user/item content characteristics for recommender systems [65]. In this context, a
Bayesian based collaborative deep learning (CDL) [75] model is proposed to combine
stacked denoising (SDAE) auto-encoder with probabilistic matrix factorization (PMF).
Another model similar to that of CDL was proposed before CDL known as relational
stacked denoising auto-encoders for tag recommendation (RSDAE) [76]. The main
difference between CDL and RSDAE is that instead of integrating SDAE with PMF,
RSDAE combines SDAE with relational information matrix. Collaborative variational
auto-encoder (CVAE) [77] is another CDL extension which introduces variational auto-
encoder to replace deep neural part of CDL. CVAE learns probabilistic hidden
representations for data contents [65]. For top-N recommendations, collaborative deep
ranking (CDR) [78] which is a new model-based on pair-wise objective function is
proposed. Previous works in [65][78][79] have shown that pair-wise models are better

fit for producing ranking lists.

2.3 Our Work

In this thesis, we have used fractional calculus based concepts in standard SGD-
based MF methods and developed three fractional order based learning machines for
recommender systems to achieve fast and effective matrix factorization for

recommending appropriate recommendations of items to users. Moreover, to enhance
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and modify the idea of CDAE [28] for top-N recommendations, we proposed an
innovative deep learning based learning machine for recommender systems to explore
and apply users’ rating-trend for collaborative filtering for the purpose of learning more
robust and non-linear representations in the hidden layer of an auto-encoder for

producing ranking based predictions.

24  Summary

The basic concepts and the need of matrix factorization based algorithms
including various MF based learning machines proposed for solving recommender
systems have been discussed in this chapter. Furthermore, the requirements and
perceptions behind the learning machines comprising of different variants of deep auto-
encoders for rating prediction of unobserved ratings as well as ranking prediction for
providing Top-N recommendations of items to users are also presented.

In the next Chapter, proposed methodologies with matrix factorization procedure

for recommender systems are comprehensively discussed.
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Chapter 3.

Novel Learning Machines for Matrix Factorization of

Recommender Systems

This chapter contains fractional calculus based novel learning machines with

matrix factorization procedure for solving the recommender systems problem.

3.1 Introduction

The update rules of standard SGD based MF methods discussed in Chapter 2
are achieved by taking integer order gradient of the objective function only. The integer
order gradient based SGD methods can be further improved by taking fractional order
gradient using the concepts of fractional calculus as has been observed in different areas

of research [80][38][81].

Fractional calculus deals with integrals and derivatives that are of non-integer
order. Fractional order calculus and integer order calculus fields have been established
long ago but the applicability of fractional order calculus has not been explored [82][83]
as much as of the integer order calculus in different fields except Mathematics.
Fractional calculus has been experimented by researchers in several fields of
engineering and technology. For example, neural networks [84]-[86], controllers and
oscillators [87]-{89], signal processing [90][91], system identification [92][93], circuit
analysis [94][95], motion estimation [96], image denoising [97][98][33], chaotic
systems [99], predictive maintenance [100], biomedical science [35], fractional control

[32], economic systems [34], and differential equations [101][102].
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3.2 Fractional order gradient-based methods

Different fractional order-based adaptive methods have been proposed in the
field of signal processing and fractional order control. By applying concepts of
fractional order derivative [103], modified versions of least mean square (LMS)
algorithms are presented. The solution to different communication, control and signal
processing problems such as speech enhancement [104], active noise control [40],
parameter estimation [105][37], nonlinear system identification [106][107] and power
signal modeling [38][61] have been devised by using modified fractional adaptive
schemes. Fractional adaptive algorithms perform significantly better than standard
adaptive strategies for demonstrated applications. These fractional calculus-based
methods considerably improve the performance of adaptive algorithms. Therefore, the
development of fractional order based adaptive algorithms (learning machines) for
recommender systems appears t0 be a promising research space that needs to be

explored for giving accurate recommendations to users.

In fractional adaptive algorithms, selection of fractional order is a bit tricky and
important as well. The range of fractional order used in the proposed fractional order
based algorithms in this thesis is € (0,1). To choose an appropriate fractional order,
suggested methods are evaluated for different values of fractional orders between 0 and
1. It is observed in fractional adaptive algorithms that rate of convergence and steady
state error increases for higher values of fractional order. The behavior of fractional
order for convergence speed and accuracy has been explored further in [62] using the
range of fractional order € (1,1.5). Similar behavior of fractional order in terms of
accuracy and convergence speed is noticed by authors for standard LMS and its variants

in [61][38].
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In this thesis, we design different learning machines which are variants of basic !
SGD to further enhance the convergence speed and accuracy for providing accurate
recommendations. The two proposed fractional order-based SGD methods given in this

chapter are published and one method is submitted in different journals.
The learning machines proposed for solving recommender systems problem are:

1. Fractional stochastic gradient descent (F-SGD).
2. Momentum fractional stochastic gradient descent (mF-SGD).

3. Normalized fractional stochastic gradient descent algorithm (NF-SGD).

3.3 System Model: Recommender System

The objective function of recommender system for suggested fractional order

based SGD leaming machines using matrix factorization is as follows.

Let Z € RP*9 be a partially filled input rating matrix for recommender systems
holding p users and q items. The objective function for resolving recommender system

problem through matrix factorization is

G@b)= mn, > Zu-alb)*= mn > E (3.1)
BeRkxq uden BeRrkxq (ui)en

Where the error between observed and estimated rating is Ey, = (Z,; —
al b;), a and b are the u'" user and i** item column vectors of user features matrix
A (A € R¥P) and the item feature matrix B (B € R**9) respectively, k denotes
number of features for both users and items and Q represents the specific indices for

given ratings.
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The goal of objective function (3.1) is to discover factorized matrices A and B
from sparse matrix Z. The missing rating entries of Z are generated through the dot
product of A and B that is AB”. Factors of a,, for a specific user u, define the amount
of interest of a user for a variety of features of an item whereas, factors of b; for a
particular item i hold the features for that specific item. Liking of user u for item i is

represented by Z,;.

The objective of the proposed methods is to approximate the interest of the user
by reconstructing the rating matrix and recommending those items to the users which
have not been rated by the users previously. Those missing entries by the users make
the rating matrix sparse. The dataset with ratings forms input rating matrix Z € RP*4
which is very sparse in its composition and is decomposed by the proposed algorithms
into user A (A € R**P) and item B (B € R**9) factor matrices. The resulting factor
matrices provide latent factors against features for users and items learned by the
proposed algorithms alternatively using their update equations. The suggested
algorithms are evaluated by reconstructing the rating matrix Z with the help of the
learned latent factors ABT and finding the root mean square error (RMSE) of the
original data matrix with the constructed ones. The reconstructed data matrix is dense
and it also provides the recommendation values for the items that have not been rated

in the original data matrix.

In Sections below, proposed matrix factorization methods of F-SGD, mF-SGD

and NF-SGD are used to find the matrices 4 and B.
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3.4  Fractional SGD (F-SGD)

Motivated by the recent outcomes of fractional calculus based methods,
fractional order stochastic gradient descent is applied to speed up standard SGD, we
call it as F-SGD. Various adaptive algorithms including different variants of stochastic
gradient descent (SGD) have been suggested to improve estimated accuracy and
convergence speed but those methods have not succeeded in enhancing convergence
speed and estimated accuracy as compared to our proposed (F-SGD) technique. The
fractional order variation in standard SGD substantially improves the speed and
accuracy for providing better recommendations. As the implementation of fractional
calculus has not been exploited yet in the field of recommender systems, we explore F-

SGD in RS and investigate its effect for increasing convergence.

3.4.1 Mathematical Formulation
This section describes the development of proposed fractional stochastic
gradient descent (F-SGD) adaptive algorithm along with derivations with respect to

integer order as well as fractional order gradient of the objective function.

The alternative and recursive weight update expressions of standard SGD for

both user and item feature vectors for the n-th iteration are written as:

a,(n+1) = ay(n) - zﬁ ‘—3%1)- 3.2)
bi(n+1) = by(n) — zﬁ %‘3—) 3.3)
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Where u represents the learning rate parameter.

By taking the gradient of objective function (3.1) with respect to user feature

vector a,;, we get

dG(a, b)
T = _ZEuibi (34)

Likewise, by calculating the gradient of (3.1) with respect to item feature

vector b;, we achieve

%6@h) _ g a (3.5)
abi ui%y .

At iteration n, the user and item feature weight update equations are evaluated
by putting equations (3.4) and (3.5) in (3.2) and (3.3) respectively:
ay(n+1) = ay(n) + uky;b;(n) (3.6)

bi(n+1) = b;(n) + ukya,(n) (3.7)

The above update equations are derived on the basis of integer order gradient
and are standard SGD updates. The SGD updates can be extended to fractional calculus

based SGD by incorporating fractional order gradient, in addition to the integer order
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gradients. This achieves better convergence rate and estimation accuracy as compared
to the standard SGD.

In the FSGD method, user feature and item feature vectors are updated as:

Wy, 97G(a,b)
a,(n+1) = ay(n) + uybi(n) - 5 ——— (3.8)
2 da,
Hy, 977G (a,b)
bi(n+1) = by(n) + uEy@y(n) = 5F — (3.9)
i

Where u and py, denote the integer and fractional order learning rate parameters

of the F-SGD algorithm respectively and f; is the fractional order such that 0 < f, < 1.
For a function y(t) = t™ the fractional derivative with order f, is declared

generally as in [108]:

o Mm+1n (3.10)
Dy = = E T "

Where, the fractional (f,) order gradient is represented by D/r operator and r
denotes a gamma function, represented as:
3.11)
re) =@ -1)!

Assuming the fractional order gradient of a constant value to be zero.
Calculating the fractional order gradient of (3.1) with respect to the user feature vector

and item feature vector respectively and using (3.10) and (3.11), we obtain:
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8/7G(a, b) 2E b 1 —f (3.12)
—— by ————a r
dalr “tTe-

0"G@b) _ . 1 s (3.13)
—_— =~ - a4, ——————>b: ¥
abF Wb TE=

After applying expressions (3.12) and (3.13) in (3.8) and (3.9) we get the F-

SGD weight update rules for user features and items features vectors as:

au(n+1) = @) + uEubin) + 52y Fu bi(n) (.14
® la,(m)|*F

bi(n+1) = Bi(n) + B, (M) + s Eu () (315
® by

Where the sign @ denotes element-wise multiplication of two vectors, to ignore
complex entries, absolute value of the vectors is taken. Equations (3.14) and (3.15)
represent the F-SGD update relations for user and item feature vectors, respectively.
The pseudo code of the proposed FSGD algorithm for recommender systems, named

as Algorithm 1, is as shown in Table 3.1.
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Table 3.1: Pseudo code of the proposed F-SGD algorithm

Algorithm 1: Pseudo code of proposed F-SGD method for recommender systems

Input : Z € RP*9 : Training set = Rating matrix, 4 : Leamning rate, g, :
Fractional learning rate, Epochs, k: Number of features and f7: Fractional order

Output: Z € RP*9 : updated rating matrix, A € R**P_ B € R**4 : factor user
and item matrices respectively

1) Partition Z into two sets: Train € RP*? and Test € RP*?
2) Initialize A € R**P and B € R¥*? randomly (between 0 and 1).
3) Find indices for non-zero entries of Train

4) Loop until the terminal condition is reached or desired epochs:

5) Iterate over users and items indices (u, i) for non-zero entries of Train
6) Compute Eyy = (Zy: — al, by)

7) Update a,,, the ut® column vector of A according to Eq. (3.14);
8) Update b;, the i*" column of B according to Eq. (3.15);

9 Reconstruct rating matrix using updated A and B,Z = ABT

10) Calculate the RMSE on Test
11) Check terminal condition

12)End

35 Momentum F-SGD (mF-SGD)

Based on this recent development [61] and the suggested learning machine in
the preceding Section 3.4 , we propose a new efficient fractional SGD by adding a
momentum term (mF-SGD) to the standard F-SGD update equation. This variation in
the F-SGD offers improvement in the estimation accuracy and convergence behavior
of the recommender systems. The weights update procedure for mF-SGD includes
percentage of previously calculated gradients in the weight update relation, which

improves the convergence speed of mF-SGD relative to standard F-SGD and mSGD
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for same learning rate parameters. We show that the proposed momentum F-SGD  has
higher convergence speed as compared to its counter-parts and achieves required
estimation accuracy for less number of iterations as compared to the mSGD and F-

SGD.
351 Mathematical Formulation

The F-SGD algorithm presented in Section 3.4 can be extended to a faster
converging algorithm by introducing a momentum term in the update equation of the
F-SGD. We call this proposed algorithm as momentum F-SGD. The gradient
calculation is incorporated using notions of momentum term as it has already been
applied for the standard LMS calculation [109]. The momentum term exhibits the
percentage of prior gradients instead of merely the current gradients, which is added to
the existing weights. Accumulated proportions of preceding gradients help in making

convergence and optimal search process faster and avoid trapping in local minima.

The weight update expression for the proposed momentum F-SGD is given as:

(3.16)
wn+1) = wh)—v(n+1)

Where W are the weights that need to be updated and the term v(n + 1) is known as
velocity term which holds the earlier gradients. The velocity vector is equal in
dimension to the weight vector and can be calculated as:
(3.17)
v(n+1) = av(n) +u g(n)

Where the range of a lying between 0 and 1, determines the percentage of previous

gradients used for the current update of expression, y is learning rate such that u = y fre
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g{(n) shows the gradient (integer order and fractional order gradient) part of the

expression at current iteration and is given as:

W6W)  0FG(W)
9 = 5" F “awr

(3.18)

Using Equations (3.16), (3.17) and (3.18), the updated weight update equations for

proposed momentum FSGD (mF-SGD) for user and item vectors are:

a,(n+1)=a,(n)— vy(n+1) (3.19)

b;(n+1) = b;(n) — vy(n+1) (3.20)

Where v4(n+ 1) and vy(n+ 1) are velocity terms holding previous gradient
proportions of a, and b; respectively:
vi(n+1) = avy(n) + ug.(n) (3.21)
v2(n+ 1) = avy(n) + ug,(n) (3.22)

While v1(0) = v,(0) = 0 and g4 (n) denote the gradient (integer order and fractional
order) of G w.r.t a, and g,(n) represent gradient of G w.r.t b; given in (3.4), (3.12)

and (3.5), (3.13) respectively.

9G(a,b) 3’7 G(a,b)
n) = +

’

_ 1 - (3.23)
g1(n) = Ey;bi(n) + TZ= 5 E,i by(n) ® lay,(n)|*~7

Similarly, g,(n) is computed as:
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dG(a,b) 98/7G(a,b)
n)= +

1 (3.29)
= ; —_ E.a b: 1-fr
.92(71) Eulau(n) + F(Z _ f;) ui u(n) @ I l(n)l
The pseudo code of the proposed mF-SGD algorithm for recommender systems,
termed as Algorithm 2, is as shown in Table 3.2. In case of standard momentum SGD

algorithm, fractional gradient is not used. Thus, only integer gradient terms in

(3.23) and (3.24) are considered.

Table 3.2: Pseudo code of the proposed mF-SGD algorithm

Algorithm 2: Pseudo code of proposed mF-SGD method for recommender systems

Input : Z € RP*9 : Training set = Rating matrix, u : Learning rate, fis,
Fractional learning rate, Epochs, k: Number of features, f7: Fractional order and a:
Proportion of previous gradients

Output: Z € RP*9 : ypdated rating matrix, A € R**P B € R**9 : factor user
and item matrices respectively

1) Partition Z into two sets: Train € RP*9 and Test € RP*4
2) Initialize A € R¥*P and B € R¥*9 randomly (between 0 and 1).
3) Find indices for non-zero entries of Train

4) Loop until the terminal condition is reached or desired epochs:

5) Iterate over users and items indices (u, i) for non-zero entries of Train
6) Compute E; = (Z,; —al b;)

7) Update a,,, the u*® column vector of 4 according to Eq. (3.19);
8) Update b;, the i** column of B according to Eq. (3.20);

9) Reconstruct rating matrix using updated 4 and B,Z = ABT

10) Calculate the RMSE on Test
11 Check terminal condition

12)End
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3.6 Normalized F-SGD (NF-SGD)
A normalized version of F-SGD with time varying learning rate is proposed in
this section, termed as NF-SGD. The proposed method adaptively tunes the learning

rate and provides fast recommendations according to the taste of the users.

3.6.1 Mathematical Formulation

In this Section, matrix factorization based proposed adaptive technique for solving
recommender systems problem given in Section 3.3 is discussed in terms of its update
rules. The derivations of update rules with respect to user factor vectors and item factor

vectors are also given for suggested NF-SGD method.

To explore the adaptive nature of the learning rate in standard SGD and to
improve convergence rate further, weight update relations of standard SGD presented
in equations (3.6) and (3.7) are divided with the norm of input vectors (user factor
vector and item factor vectors) and this method is called as normalized stochastic
gradient descent algorithm (NSGD). The weight update relations for standard NSGD

technique are given as follows:

= SN Y

au(n + 1) - au(n) + ”bl(n)nz [Eulbl(n)] ) (325)
= by(n) + —— [E,;

bi(n+1) = by(n) + T (O [Eua,(m)]. (3.26)

In equation (3.25), learning rate is divided with the magnitude of the item factor vector

while in (3.26), learning rate is divided with the magnitude of the user factor vector.

Similarly, to increase the convergence rate of proposed F-SGD further by adjusting the
learning rate adaptively, weight update relations of F-SGD given in equations (3.14)

and (3.195) are divided with the norm of input vectors (user factor vector and item factor
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vectors) as shown in the update rules of NSGD using equations (3.25) and (3.26). This
suggested method is known as normalized fractional stochastic gradient descent
algorithm i.e., NF-SGD. The pseudo code for the suggested NF-SGD method, called

Algorithm 3, is as shown in Table 3.3.

Table 3.3: Pseudo code of the proposed NF-SGD algorithm

Algorithm 3: Pseudo code of suggested NF-SGD algorithm for recommender
systems

Input : Z € RP*? : Training set = Rating matrix, 4 : Learning rate, yy, :
Fractional learning rate, Epochs, k: Number of features and fr: Fractional order

Output: Z € RP*9 : updated rating matrix, A € R**?, B € R*¥*9 : factor user
and item matrices respectively

1) Partition Z into two sets: Train € RP*9 and Test € RP*4
2) Initialize A € R**P and B € R**9 randomly (between 0 and 1).
3) Find indices for non-zero entries of Train

4) Loop until the terminal condition is reached or desired epochs:

5) Iterate over users and items indices (u, i) for non-zero entries of Train
6) Compute Ey; = (Zy; — aj b;)

7) Update a,,, the u*® column vector of A according to Eq. (3.27);
8) Update b;, the i*® column of B according to Eq. (3.28);

9) Reconstruct rating matrix using updated A and B, Z = AB”

10) Calculate the RMSE on Test
11) Check terminal condition

12) End

The weight update relations for the proposed NF-SGD method are given as

follows:
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— —_# . .
au(n + 1) - au(n) + ”bl(n)nz [Eulbl(n)
(3.27)
1 1‘fr
YA Eyi bi(n) @ la,(mP ],
— —____# .
bi(n+ 1) - bl(n) + “au(n)llzlEul au(n)
(3.28)

1 —=Jjr
+ -5 Eyi ay(n) ® |b;(m)|* ] .

In equation (3.27) learning rate is divided by the magnitude of the item factor vector,
while, learning rate in equation (3.28) is divided by the magnitude of the user factor

vector.

3.7 Summary

Initially, the importance of fractional calculus is discussed in this chapter then
related work done for the development of fractional order based strategies along with
applications has been presented. Moreover, mathematical details of SGD-based
different variations of fractional adaptive algorithms of Fractional SGD, momentum
fractional SGD and normalized fractional SGD have been presented for solving
recommender systems problem using matrix factorization.

The succeeding Chapter presents simulations and analytical results of three
proposed algorithms as compared to baseline methods for different datasets under three

Case Studies.
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Chapter 4.  Simulation and Analytical Results

4.1 Introduction

Each section of chapter 4 represents a case study consisting of two subsections
that is, simulation parameters, results and discussion. Simulation parameters subsection
contains parameters used for simulation of both standard and proposed algorithms.
Results and discussion subsection represents simulation results graphically and

exemplifies the performance of the algorithms using convergence table.

Moreover, this chapter holds simulations by applying the standard and the
proposed algorithms to recommender systems. The performance in terms of
convergence of algorithms is verified using the ML-100k dataset [110] for solving
recommender systems problem. ML-100k dataset comprises of 943 users and 1682
items while the movie ratings rated by the users are equal to 100k. At minimum, 20
movies are rated by each user. The demographic information of the users is also given
in the dataset. The column density and row density of the dataset is calculated using the
input rating matrix which is composed of ratings given by the users against movies. The
row density of the dataset is 106.04, which is an average rating given by a single user
for different items while, the column density is 59.45, which shows the average rating
for a single item by different users. The range of the ratings varies from 1-5. The total
ratings in the dataset divided by the product of total number of users and items gives

the overall density of the dataset, which is 6.30%.

Overall Density of Dataset = Total ratings/(Total Users X Total Items)
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Based on the dataset, partially filled rating matrix of users and items is made,
which is further factorized into users factor matrix and items factor matrix. The hidden
factors present in user and item factor vectors of factorized matrices are computed with
the help of user and item update relations of the given algorithms. The liking of the user
for items is estimated using the methods by rebuilding the rating matrix for the purpose
of recommending unrated items to the users. The unrated entries in the matrix lead to
sparse matrix. The reconstruction of the rating matrix is achieved through the dot
product of the factorized matrices. The RMSE is then computed using the given rating
matrix and the estimated rating matrix. The rebuilt (estimated) matrix is a completely
filled matrix reflecting the recommendations for the items (movies) unrated in the

observed rating matrix. RMSE is given by the following relation:

RMSE; s = |mean Z e2q | - 4.1
(p.9)EQest

To demonstrate the convergence of algorithms in a broader spectrum,
algorithms in case study III are also tested on a bigger dataset i.e. ML-1M (6040 x 3952)

other than ML-100k (943 x 1682).

Performance of the algorithms on both ML-100k and ML-1M datasets is tested
for different values of latent features (k) with different variations in the learning rate
parameters. In case of the proposed fractional adaptive methods, learning rate
parameters of u and y/, are used. Since standard adaptive algorithms have y as learning
parameter and the proposed fractional order based methods have uy, as additional

learning rate parameter, hence we check standard algorithms for different values of u
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and proposed fractional order-based methods for different variations of u and pg,.
Another additional parameter in suggested fractional order based methods which is not
found in standard ones is the fractional order f7. This fractional order plays a significant
role for suggested methods to behave differently as compared to standard counterparts,
hence we also test our proposed algorithms for various values of the fractional order
such that 0 < fr < 1. Each algorithm in case studies I and II is run for 200 iterations,
whereas algorithms in case study III are run for 100 iterations to estimate the data matrix

through which final RMSE value is calculated.

Experiments for each case study are performed on a laptop with (Core-13-4005U
@ 1.70 GHz) Processor and 4.00 GB DDR2 RAM. Simulations are carried out in
Spyder 2.3.8, release 2015 using Python 2.7.13 (64 bit) on Windows 10 Pro Education

(64 bit) operating system.

4.2  Case-Study-I: Standard SGD and proposed FSGD algorithms

This case study compares the performance of standard SGD and suggested F-
SGD methods in terms of convergence speed and estimated accuracy for recommender
systems. In this case study, update rules of standard SGD applied for recommender
systems are given in equations (3.6) and (3.7), whereas the update relations of proposed
F-SGD are specified in equations (3.14) and (3.15). General flow of proposed FSGD
algorithm for Case-Study-I is presented graphically in flow diagram as shown in Fig.
4.1. Simulation parameters and simulation results are discussed in the following two

subsections.
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4.2.1 Simulation Parameters

Our proposed FSGD algorithm is experimented in terms of RMSE with five
values of learning rates ¢ and pp. ie. u = pg = 0.1, 0.05, 0.01, 0.005, 0.001 for
different k = 10, 20, 30. Optimal learning rates u and s, for the FSGD are selected by
going through number of trials for three different fractional orders i.e., fr = 0.25, 0.50,
and 0.75 to achieve best RMSE value after convergence. The FSGD shows
inconsistency in RMSE with 4 = p¢, = 0.1, 0.05, 0.01 and 0.005, but it outperforms at
u = prr=0.001 for three variations of k after convergence. Hence we selected u =
Usr = 0.001 for our simulations. The selection of fractional order in fractional adaptive
strategies is also important. In order to select a suitable value of fractional order, the
proposed strategy is assessed for three different fractional orders of 0.25, 0.50 and 0.75.
It is witnessed that the proposed method (FSGD) is accurate for all fractional orders but
relatively improved results are achieved for higher value of fractional order i.e., f, =
0.75, in all cases of k. Therefore, it is reasonable to take f, = 0.75 for the suggested

method (FSGD). Simulation parameters are summarized in Table 4.1.
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Table 4.1: Simulation parameters

Name Symbol Values Usage
Learning rate u 0.001 Step-size for convergence
Fractional step-size for
Fractional Learning rate Hpr 0.001 P
convergence
0.25, 0.50, .
Fractional order fr g’ 75 A tuning parameter
R ts user/item
Features k 10, 20, 30 epresen' 'u /
characteristics

4.2.2 Results and Discussion

For optimal value of learning rate 4 = pz = 0.001, RMSE of the FSGD is given
in Table 4.2 for various fr and k values. Table 4.2 shows that the FSGD achieves best
RMSE with g = 0.001 and fr = 0.75 for various k. It can be perceived from Table 4.2
that with the increase in values of fr against k variants, RMSE decreases gradually.
For fr = 1, the FSGD becomes standard SGD. Table 4.2 also represents RMSE values
for SGD with (fr = 1) against k latent features. Results in the Table 4.2 clearly show

that FSGD outperforms SGD for given fr variations.

Graphical representation of convergence behavior of SGD and the FSGD in terms
of RMSE and number of iterations is shown in Fig. 4.2, Fig. 4.3 and Fig. 4.4.
Investigation of both algorithms is made using learning rate u = us,. = 0.001 with three
fractional orders (i.e., fr = 0.25, 0.50, 0.75) and different number of features (i.e., k =

10, 20 and 30).

Fig. 4.2 shows RMSE curves for SGD and FSGD for 200 iterations. It is observed
in Fig. 4.2 that minimum RMSE = 0.770 achieved by SGD for k = 10 in 200 iterations
is achieved by FSGD with (u = 0.001, fr =0.75, k = 10) in quite less iterations. It also

shows that the performance of the FSGD degrades with the decrease in the fractional
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order. However, Fig. 4.2 also depicts that even for a minimum fr value ie., (fr =

0.25) FSGD achieved minimum SGD RMSE in fairly fewer iterations.

Table 4.2: RMSE values for different parameters setting

RMSE for jt = 0.001

k=10 k=20 k=30
=
2
& | SGD | FSGD | FSGD | FSGD | SGD | FSGD | FSGD | FSGD | SGD | FSGD | FSGD | FSGD
A fr fr fr _ fr fr fr . fr fr ir
! 015 | 050 | 075 0.25 050 | 0.75 025 | 650 | 073
40 }0.963 0913 | 0913 | 0905 | 0975 (0922 | 0914 | 0906 | 0.980 | 0.935 | 0928 | 0.909
80 | 0884 | OR32 | 0&3 | 0825 | 0894 | 086 | 0800 | 0.776 | 0.897 | 0.825 | 0.801 | 0.771
120 | 0832 { 0781 | 0788 | 0774 | 0823 | 0732 | 0714 | 0688 | 0822 | G7IR | G685 | 0.644
160 | 0796 | 0748 | 0755 | 0742 | 0.756 | 0672 | 0656 | 0632 | 0.742 | 0.631 | 0.600 | 0561
200 | 0770 | 0726 | 0733 | 0720 | 0.703 | 0630 | 0616 | 0596 | 0672 | 0.568 | 0.543 | 0.507
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Fig. 4.2 RMSE of SGD vs FSGD for 200 lterations against k features when k = 10




Similarly, Fig. 4.3 and Fig. 4.4 also depict the same behavior of FSGD as in Fig,
4.2. The only difference 1s the significant reduction in RMSE of FSGD with the increase

in number of features for higher fr values.
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Fig. 4.4 RMSE of SGD vs FSGD for 200 Iterations against k features when k = 30
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By analyzing the results, the superiority of the FSGD algorithm over SGD is seen
clearly for all variants of fractional order. FSGD performs outstandingly better for k =
30 with all fr variations but the best performance of FSGD is achieved with fr =0.75.
It is also witnessed that FSGD achieves convergence quickly for k = 20 as compared
to the SGD but the optimal convergence of FSGD is attained with fr = 0.75. The same
behavior between FSGD and SGD is also observed for k = 10. Moreover, it is observed
that by increasing number of features, RMSE is decreased considerably for both
algorithms. It is also noted that for all variations of k, FSGD achieves the best RMSE
values of SGD in relatively less number of iterations, which clearly demonstrates the

improved behavior of the FSGD.

4.3 Case-Study-1I: F-SGD, mSGD and proposed mF-SGD

algorithms

In this case study fast and convergent behavior of suggested approach of mF-
SGD for recommender systems is compared with two adaptive strategies of F-SGD and
mSGD against different hyper-parameter values. The update rules used in the iterative
update mechanism of F-SGD and mF-SGD are given in (3.14), (3.15) and (3.19), (3.20)
respectively. Overall graphical flow of the suggested mF-SGD for Case-Study-II is
given in Fig. 4.5. Optimal parameter values for simulation and the outcome of
algorithms based on these optimal parameter values are discussed in the two subsequent

subsections.
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4.3.1 Simulation Parameters

For fair comparison of the proposed method (mF-SGD) with F-SGD and mSGD,
the parameters for each method are selected empirically after plotting error curves for
200 iterations and choosing the best parameter values in each case. The error curves
(Figs. 4.6 - 4.13) are obtained by randomly splitting the rating matrix in training and
testing sub-matrices and calculating RMSE for each iterations. Different parameters
required for tuning of each method are given in Table 4.3.

Table 4.3: Tuning parameters for different algorithms

Algorithms
Name Symbol Usage Using
parameters
F-SGD, mfF-
Learning Rate u Step size for integer order | SGD, mSGD
gradient
F-SGD,
Fractional Learning Ky, Step size for fractional order | mF-SGD
rate gradient
F-SGD,
Fractional Order fr Fractional order of the gradient mF-SGD
F-SGD, mF-
Features k Size of user/item feature vector SGD, mSGD

Tuning of optimal learning rate ( , u, )

The learning rate u value of 10 for the given algorithms is empirically chosen
after performing a number of experiments for different set of 0.0001, 0.0005, 0.001,
0.005 and 0.01 learning rate p values, using four different values of a consisting of
[0.3, 0.5, 0.7 and 0.9] and fractional orders (f;.) of 0.25, 0.5, 0.75 and 0.9 against
different (k) features, to accomplish appropriate RMSE value. The values of two

learning rate parameters of [fractional order and integer order] are same for fractional
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order methods, of uy, = u = p. It is observed that a large value of RMSE is obtained
when higher values of p [0.0005, 0.001, 0.005, and 0.01] are used or they did not show
smooth convergence behavior for various (k) values.

Feature dimension (k) Selection

Computational efficiency of the proposed method (mF-SGD) is examined for
variations in latent features (k) of 10, 20 and 30. It is observed that the computational
complexity increases with the increase in number of features because time consumed
by an algorithm primarily depends on the selection of the optimal number of runs and
features (k). Algorithms are examined for 200 iterations to estimate the data matrix and
to obtain the RMSE. It is also found that all the algorithms perform better when more
features for example, 30 features are used. In Figs. 4.6 - 4.9, error curves for k = 10 and
30 are given to show the behavior of the algorithms due to variations in k.

Selecting the momentum term (a)

Two algorithms of mSGD and mF-SGD involve the momentum term a.
Therefore, for both methods, four different values of a 0.3, 0.5, 0.7 and 0.9 are tested.
The proposed mFSGD algorithm is evaluated by considering four different values of
0.3, 0.5, 0.7 and 0.9 against four fractional orders (f,.) of 0.25, 0.5, 0.75, and 0.9 and
learning rates (u) values of 0.0001, 0.0005, 0.001, 0.005 and 0.01. It is seen that faster
convergence of mF-SGD is accomplished with the increase in the value of a of 0.7 but
at the cost of steady state performance which means better steady state is achieved for
lower value of @ and fast convergence is achieved for higher value of a.

Selection of the fractional order (f;)
The proposed method mF-SGD and FSGD are evaluated for four different values

of fractional orders (f.) 0.25, 0.5, 0.75, and 0.9, chosen from the range (0, 1). It is



i

49

noticed that the rate of convergence and the steady state error increases for higher
fractional orders of 0.9. The impact of fractional order on the convergence speed and

accuracy has been explored in [62] using the fractional order in the range of (1, 1.5},
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4.3.2 Results and Discussion

The update rules in the standard SGD based algorithms are based on integer order
gradient of the cost function. It is seen that by incorporating the fractional order
gradient, the performance of mF-SGD is improved with respect to estimation accuracy
and convergence at the cost of a small increase in computational complexity.

For the proposed method (mF-SGD), the convergence behaviour is estimated to
demonstrate its performance. The fitness achieved in terms of RMSE for three methods
(F-SGD, mSGD and mF-SGD) is presented in Tables 4.4 — 4.8 and graphically shown
in Figs. 4.6 - 4.9 for 200 iterations with different number of features (k), fractional
order (f,) values and previous gradient values (@) against selected learning rate of u =
0.0001. It is observed from the Tables 4.4 — 4.8 and the curves in Figs. 4.6 - 4.9 that
(mSGD) and (mF-SGD) exhibit faster convergence than F-SGD. Moreover, the
convergence rate of momentum based methods increase with the increase in the
percentage of previous gradients (@). It is also noticed that in terms of convergence,
the proposed mF-SGD method outperforms other algorithms (mSGD and F-SGD)
against different parameter values.

ML-100K Dataset

It is also demonstrated in Tables 4.6 - 4.8 and depicted in Figs. 4.8 - 4.9 that
RMSE for mF-SGD decreases significantly for large values of f, against different
values of @ and the number of latent features (k). The best RMSE of mF-SGD (0.962)
is achieved with @ = 0.7, f, = 0.9 and for k = 30, which clearly shows its advantage

over other counterparts.
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It is observed that for all the algorithms (mSGD, F-SGD and mF-SGD), RMSE
decreases with an increase in the number of features for different parameter values of
fr and a. It is seen from the Figs. 4.6 - 4.9 that mF-SGD and mSGD outperform F-SGD
in terms of RMSE for various parameter setting.

For comparison purpose, the error curves for the three algorithms for different
values of f, k and a with optimal learning rate 4 = 0.0001 are given in Figs. 4.10,
4.11 and 4.12 respectively. The improved performance of proposed method of mF-SGD
is shown in Figs. 4.10 - 4.12 for different a and f, values. An RMSE convergence of
mF-SGD  against F-SGD and mSGD with p=0.0001,k =10anda =
0.3,0.5,0.7and 09 and f, = 0.9 is presented in Fig. 4.10 (a), (b), (c) and (d)
respectively, the finest convergence can be seen in Fig. 4.10 (c) in which mF-SGD for
a =0.7and f, = 0.9 converge significantly fast and achieved minimum RMSE
(0.973) after 200 iterations. Similarly, it is shown in Fig. 4.11 (a), (b), (c) and (d) that
mF-SGD also accomplished fast convergence for k = 20 with (u = 0.0001 and a =
0.3,0.5,0.7and 0.9) with fractional order (f, =0.9) but mF-SGD optimal
convergence in terms of RMSE (0.963) for k = 20 is achieved at « = 0.7 and f, =
0.9. Likewise, Fig. 4.12 (a), (b), (c) and (d) illustrate the better convergence offered by
mF-SGD over F-SGD and mSGD for k=30 with (u=0.0001anda =
0.3,0.5,0.7and 0.9) using fractional order (f, = 0.9), while the minimum
convergence in terms of RMSE (0.962) for 30 features is achieved for @ = 0.7 and f, =
0.9. In Figs 4.10 (d), 4.11 (d) and 4.12 (d) RMSE curves for the proposed mF-SGD are
early stopped at about 100 iterations to avoid over-fitting.

Furthermore, it is observed that for different features (k = 10, 20, 30), F-SGD

and mSGD achieved the minimum RMSE after about 200 iterations, while mF-SGD
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takes a smaller number of iterations. It is also seen that the momentum based algorithms
have shown improved performance in terms of RMSE for a large k. It is observed that
after 200 iterations, bigger value of @ and a large f leads to a smaller RMSE except
for a = 0.9. It is also observed that for the proposed method of mF-SGD, a large value
of f, with higher value of a speeds up the convergence. In addition, increasing the f,
value leads to a small increase in the accuracy.

ML-1M Dataset

A Comprehensive set of investigations of the algorithms (mF-SGD, mSGD and
F-SGD) are carried out for bigger dataset i.e., ML-1M (1-million), for different values
of a ie. [0.3, 0.5, 0.7 and 0.9}, fractional order (f;) i.e., [0.3, 0.5, 0.75, and 0.9] and
learning rates () i.e., [0.0001, 0.0005, 0.001, 0.005 and 0.01} against 30 features. The
results achieved by mF-SGD, mSGD and F-SGD based on optimal parameters for the
ML-1M dataset are given in the Fig 4.13.

Behavior similar to that for the ML-100k dataset in terms of convergence is
observed for the ML-1M dataset. The optimal learning rate (0.0001) chosen for the
bigger dataset is the same as that for the smaller dataset. It is noticed that all the
compared methods show divergence or increasing trend in terms of RMSE for bigger
values of learning rate p 0.0005, 0.001, 0.005, and 0.01 against different features. The
proposed algorithm performs better for higher values of both the fractional order f;- and
weight a. It is shown that fast convergence of mFSGD is achieved for a large value of
a but with the compromise of steady state performance. The best RMSE value achieved
by the proposed algorithm for the ML-1M dataset is 0.887 for & = 0.7, f, = 0.9 after

150 iterations, whereas, the optimal RMSE values accomplished by
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mSGD and F-SGD after 200 iterations are 0.897 for @ = 0.7 and 0.930 for f, = 0.9
respectively.

However, for @ = 0.9, mF-SGD has fastest initial convergence than mSGD and
F-SGD. For about 55 early iterations mF-SGD remained convergent but it starts
diverging for subsequent iterations. Whereas, mSDG achieved minimum convergence
for a = 0.9, which is attained 30 iterations later than mF-SGD but starts diverging
after around 100 iterations. On the other hand mF-SGD exhibits slow initial convergent
for « = 0.7 and achieved minimum RMSE = 0.887 after 150 iterations and maintains
stable steady state behavior for almost 180 iterations, which is not shown by mSGD for
a=0.9.

Performance comparison with Deep Learning based Matrix Factorization models

Apart from competing methods of mSGD and F-SGD presented in this research,
the effectiveness of the proposed mF-SGD is also proved by comparing it with recent
deep learning based matrix factorization methods using ML-100K and ML-IM
datasets. The performance in terms of RMSE of deep learning-based models is reported
with optimum parameter values. Overview of the deep learning based MF models given
in [111] is as follows.

e ConvMF [111] To improve the prediction accuracy of ratings, a context-aware
recommendation model (ConvMF) is proposed. For achieving high prediction
accuracy, ConvMF integrates CNN with PMF to capture contextual information

of documents as stated in [112].
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o DBPMF |{111]: Deep Bias Probabilistic Matrix Factorization model (DBPMF)
uses CNN to extract hidden user/item characteristics. Moreover, DBPMF also
adds bias into PMF to tract user ratings behavior and item reputation.

¢ DCBPMF [111]: Deep Constrain Bias PMF method is used to further improve
the performance of standard DBPMF by adding constrain to the user specific
and item specific vectors.

The performance comparison between proposed mF-SGD and deep learning
based MF methods for recommender systems [111] is demonstrated in Table 4.9 for
both datasets i.e., ML-100K and ML-1M. It is noticed from the results given in Table
4.9 that mF-SGD achieved improved results than ConvMF, DBPMF and DCBPMF
for both datasets. . The best performance of RMSE = 0.962 is accomplished by mF-
SGD against counterparts for ML-100K is with a = 0.7, f, = 0.7 and k = 30. Whereas,
for ML-1M dataset mF-SGD also has achieved finest RMSE = 0.887 against competing
methods with similar parameters setting i.e., @ = 0.7, f, = 0.9 and k = 30. The
significant performance with regard to deep leaming based MF methods confirms the

usefulness of the proposed mF-SGD for proposing accurate and fast recommendations.

Table 4.9: Performance comparison of mF-SGD with deep learning based MF

methods
DATASETS METHODS RMSE
ConvMF 1.000
DBPMF 0.990
ML-100K
DCBPMF 0.985
mF-SGD 0.962
ConvMF 0.980
DBPMF 0.945
ML-1M
DCBPMF 0.943
mF-SGD 0.887
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44  Case-Study-III: NSGD, F-SGD and proposed NF-SGD

algorithms
In Case-Studies I and 11, the propesed methods have demonstrated improved behavior
than standard adaptive strategies for recommender systems but adaptive nature of
learning rate important for the convergence and stability of adaptive methods has not
been explored in those case studies. Therefore, in this case study a nonlinear computing
paradigm based on normalized version of fractional SGD is presented and compared
with standard adaptive methods to investigate the adaptive behavior of learning rate
with novel application to recommender systems. The update relations of proposed NF-
SGD for fast and precise recommendations are given in (3.27), (3.28) and mathematical
expression representing update rules for standard methods are specified in (3.14),

(3.15), (3.25), (3.26). Flow diagram of Case-Study-IIl (NF-SGD) using matrix
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factorization is graphically given in Fig. 4.14. Simulation parameters for this case study

including simulation results are discussed in succeeding subsections.

Recommender Systems

Matrix Factarization

Problem Statement

—

NSGD & F-8GD

Standard Strategies

NF-SGD

S

me_dStrmL_'_

v

from Dataset
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Fig. 4.14 Graphical flow of MF based NF-SGD for recommender systems
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4.4.1 Simulation Parameters

For fractional gradient based algorithms, the learning rates corresponding to
integer order and fractional order terms are taken at ; = py = u . To achieve fast and
stable convergence in terms of RMSE the optimal learning rate of u = 10~ for NSGD
and NF-SGD and ¢ = 0.0005 for F-SGD is selected after executing several trials for
various learning rate parameter values of 0.01, 0.005, 0.001, 0.0005 and 0.0001, with
various fractional order (f,.) values of 0.3, 0.5, 0.6 and 0.9 and for three values of
features (k) of 10, 20 and 30. It is noticed that all the three algorithms show divergent
behavior for learning rates 0.01 and 0.005 whereas they show comparatively fast and
smooth convergence for u = 0.0005 and 0.001. For NSGD and NF-SGD algorithms,
fastest and stable convergence is presented for u = 0.001, whereas, F-SGD shows fast
and stable convergence for u = 0.0005. Hence, we select these values of u for our
experiments. Learning rate tuning of NSGD, NF-SGD and F-SGD is demonstrated in
Fig. 4.15 (a), (b) and (c) respectively against y = [0.01, 0.005, 0.001, 0.0005 and

0.0001], k =20 and f, =0.5.

Choice of fractional order plays a significant role in the convergence of fractional
adaptive schemes. To decide an optimal fractional order of our proposed method of NF-
SGD, RMSE is calculated for different fractional order (f;-) values of 0.3, 0.6, and 0.9
for 200 iterations and learning curves are given Fig. 4.16 (a) and (b) for k = 10 and 30
respectively, with optimal learning rate ¢ = [0.001]. It is observed that for both
variations of k, fast convergence rate and increased estimated accuracy are achieved

for higher value of fractional order i.e., f, =0.9.



WS Gl iy
mpaliy- A R R
—— RS 1 20

- f— wsODw wewh

mmem HSGD s AN

63

M5

44
Hf GO 0 B
35 . ——— HE-SGD s v B T,
: . [ NF.HCD i 0G0
B0 o N eee e o b WSRO D,

wil N N L g s - NS e e o
I
=
X iv
13
100
oA " - 035 - - - - C e e e
5 L 150 i Q A0 100 180 o]
lterations Herations
(2) (b)
=l £
46—
e FBGD g — o],
sl . o |— e s
—— FSGDp=10.01%;
e FfliThage % eNH
a0 v
w s
o
=
[1 - 20)
LT T N Ry
|
" ,
: |
'
S . J
[ 50 100 150 N
lteralions
(c)

Fig. 4.15 Leaming rate tuning for NSGD, F-SGD and NF-8GD with k¥ = 20

Another imponiant parameter that affects the convergence behavior of the

recommender system is k, number of features of a latent vector. In this work, NSGD,

F-8GD and NF-SGD are evaluated for three variants of hidden features of 10, 20 and

30. To approximate the rating matrix, given methods are observed for 200 epochs. It is

noticed that these methods provide better RMSE for greater number of features of & =

30, However, more features correspond to an increase in computational complexity.
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The common perception is that the optimum performance achieved by adaptive
algorithms 1s different for different datasets. No single model always produces the finest
outcomes for all datasets. So, one must select the fitness function and values of hyper-
parameters such as fractional order (f;), learning rate (4, iy,) and number of features
(k) according to the dataset. The simulation parameters used by the standard algorithms
of F-SGD and NSGD and the propesed one (NF-SGD) for the achievement of best
performance in terms of fast convergence are noted and summarized in Table 4.10.
These summarized results may help the researchers to use these parameters settings for
their matrix factorization-based models for recommender systems using ML-100K and

ML-1M datasets.
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Fig. 4.16 Fractional order tuning for proposed NF-SGD with & = 10 and k = 30

4.4.2 Results and Discussion

The performance of NSGD, F-SGD and proposed NF-SGD is evaluated through
RMSE values achieved at different iterations using optimal values of learning rate of

u = 0001 for NF-SGD and NSGD, while g = 0.0005 for F-8GD, and results are



(]

70

presented in Table 4.11 and 4.12 for ML-100k and ML-1M datasets respectively in case
of all three variations of k. Fast convergence of NF-SGD than NSGD and F-SGD is

evidently observed from Table 4.11 and 4.12 for different f; variations.
Discussion (ML-100K)

The comparison of initial convergence rates of NSGD, F-SGD and the proposed
NF-SGD for ML-100K dataset for 100 iterations with various parameter values (f. and
k) is given in Table 4.11. It is perceived from Table 4.11 that the suggested NF-SGD
achieves much faster initial convergence than other methods for higher values of
fractional orders (f;) and features (k). After 100 iterations, RMSE attained by NF-SGD
and F-SGD for y = 0.001, k = 30 and £, = 0.9 are (0.956) and (0.974) respectively,

while RMSE obtained by NSGD for = 0.0005, k = 30 and £, = 0.9 is (0.976).

Learning curves of RMSE for 100 iterations using best initial value of the learning
rate i.e., 4 = 0.001 for normalized methods (NSGD and NF-SGD) and optimal value of
learning rate i.e., 4 = 0.0005 for F-SGD are represented in Figs. 4.17, 4.18 and 4.19.
Learning curves in Figs. 4.17, 4.18 and 4.19 are given for three f; i.e., [0.3, 0.6 and 0.9]
and two k i.e., [10 and 30] variations. The substantial performance of the NF-SGD in
terms of convergence is clearly seen in Figs 4.17, 4.18 and 4.19 for different parameter
values. The convergence comparison for f. = 0.3 between proposed NF-SGD and
standard baselines i.e., (F-SGD and NSGD) for k =10 and k = 30 is given in Fig. 4.17
(a) and (b) respectively. It is seen that NF-SGD performs better in terms of convergence
than F-SGD and NSGD for k values and achieves minimum RMSE (0.989) for f. = 0.3
with k = 30. Convergence of NF-SGD is also compared with standard counterparts for
fr=0.6 and f, = 0.9 in Figs. 4.18 and 4.19 respectively. Moreover, considerably faster

NF-SGD convergence for f, = 0.6 than f, = 0.3 over counterparts is also seen in Fig.
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4.18 (a) and (b) for k variations. NF-SGD obtained minimum RMSE (0.981) for f, =
0.6 with k = 30. The fastest convergence of NF-SGD is observed in Fig. 4.19 (a) and
(b) for f.. = 0.9 with k variants than in Figs. 4.17 and 4.18 with f, = 0.3 and f, = 0.6
respectively. The proposed NF-SGD method accomplishes minimum RMSE (0.976)
for k =30 and f,. = 0.9.

Analysis (ML-100K)

It is analyzed from the learning curves given in the Figs. 4.17, 4.18 and 4.19, that
RMSE attained by the F-SGD and NSGD at different iterations is achieved by the NF-
SGD in reasonably fewer iterations for different k variations. RMSE achieved by F-
SGD for different f,. variations is obtained by proposed NF-SGD in slighty less
iterations except for f, = 0.9 for k = 20 and 30 where F-SGD achieves RMSE slightly
better than NF-SGD. It is also noticed that with an increase in k, a slight increase in
accuracy is achieved. It is seen that the proposed NF-SGD is accurate for all fractional
order f; values between 0 and 1. Moreover, faster convergence is achieved by NF-SGD
with the increase in f; value. The best convergence for NSGD is seen for u = 0.001 and
k = 30. Whereas, the fast convergence of F-SGD is observed for u = 0.0005, k = 30
and f, = 0.9. The paramount difference in convergence by the proposed NF-SGD with
i = 0.001, k = 30 and for all f,. variations, is noticed as compared to the best

convergence of F-SGD and NSGD and is given in Fig. 4.20.
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Table 4.10: Simulation parameters

Optimal values used by
Values used | methods to achieve Min RMSE
Parameters Symbol .
for tuning
F-SGD | NSGD [ NF-SGD
0.0001,
Learning rate u 0.0005,0.001, | 0.001 0.0005 0.001
0.005, 0.01
0.0001.
Fractional Learning rate |  fif, 0.0005, 0.001, | 0.001 0.0005 0.001
0.005, 0.01
Fractional order fr 0.3,0.6,09 0.9 0.9
Features k 10, 20, 30 30 30 30
Discussion (ML-1M) To validate the performance (RMSE) of the proposed

scheme, NF-SGD is further analyzed for bigger dataset i.e., ML-1M, and the
comparison of proposed NF-SGD with standard F-SGD and NSGD for ML-1M dataset
is given in Figs. 4.21, 4.22, 4.23 and 4.24. The performance evaluation of proposed
algorithm with standard counterparts for £, = 0.3 and k (10 and 30) variations is
presented in Fig. 4.21 (a) and (b). Similarly, an assessment in terms of RMSE of the
NF-SGD for f, = 0.6 is shown in Fig. 4.22 (a) and (b), while the respective performance
curves in case of f, = 0.9 are specified in Figures 4.23a and 4.23b. The identical
convergence behavior of the proposed NF-SGD is noticed for ML-1M as compared to
F-SGD and NSGD in case of ML-100k dataset. It is observed that convergence of NF-
SGD is faster than counterparts i.e., F-SGD and NSGD, and by increasing the f; value
NF-SGD provides faster convergence. It is also seen that NF-SGD outperform other
methods in terms of convergence for all k variations, while relatively better RMSE is

achieved for bigger k values for 100 runs.
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The performance of suggested NF-SGD and other counterparts is also assessed
for initial convergence rates for ML-1M dataset and results for changes in fitness for
first 100 iterations are shown in Table 4.12 for various f, and k values. It is observed
from the results that initial convergence of proposed NF-SGD is much rapid than
standard adaptive methods and convergence rate increases with the increase in
fractional order f, value. The RMSE attained by NF-SGD with u = 0.001, k = 30 and
fr = 0.9 after 100 runs is (0.886). Whereas, F-SGD accomplished RMSE of (0.887)
with u = 0.0005, k = 30 and f, = 0.9 after 100 runs. However, the best RMSE value
after convergence achieved by NSGD after 100 iterations with u = 0.001, k = 30 is

(0.920).
Analysis (ML-1M)

It is explored that all methods discussed in Case-Study-IIl are accurate and
convergent using ML-1M dataset, but comparatively superior convergence is achieved
by proposed NF-SGD for higher values of fractional order (f) and more number of
features (k). Furthermore, it is perceived that NF-SGD achieves better steady state
performance for lower fractional order (f;.) values. It is also seen that proposed NF-
SGD remains stable for all fractional order (f,.) values and a slight difference in
accuracy is noticed amongst different fractional order variations. To recognise
convergence behaviour of NF-SGD and to differentiate the performance in terms of fast
convergence among three methods i.e., (NSGD, F-SGD and NF-SGD) with optimal
learning rates, all fractional orders and maximum number of features i.e., k = 30 for

ML-1M dataset, the accomplished results by the methods are presented in the Fig. 4.24.
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Performance comparison of recent Matrix Factorization based methods:

To prove the worth of the proposed technique, we have also compared the
performance of NF-SGD with few recent matrix factorization-based approaches apart from
other contending approaches of NSGD and FSGD for ML-100K and ML-1M datasets.
Results of each matrix factorization-based method are stated with best hyper-parameter

settings. Brief overview of the baselines presented in [111] and [113] is as follows:

e OLR|111]: OLR is an Online Low-rank approximation method which optimizes
the loss function directly [114] by learning a rank-k matrix factorization through

online gradient descent.

¢ ConvMF {111] ConvMF 1is a context-aware recommendation model which
combines CNN into PMF to capture contextual information of documents to

improve ratings prediction accuracy [112].

e SOCF_II [111]: SOCF _II is a second-order Sparse OCF method that adds an
absolute term to objective function to deal with user-item ratings for online

collaborative filtering [115].

¢ DBPMF [111]: Deep Bias Probabilistic Matrix Factorization model is suggested by
applying the CNN to extract latent user/item features and adding the bias into

probabilistic MF to track user rating behavior and item popularity.

e DCBPMF [111]: Deep Constrain Bias PMF model is proposed to improve the
performance of DBPMF model further by constraining the user-specific and item-

specific vectors.
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* RDMC[113]: RDMC is a Robust Discrete Matrix Completion method that predicts
from the collection of user specified discrete values by introducing a new discrete

constraint to the matrix completion model [116].

e ODMC [113]: ODMC is an Optimal Discrete Matrix Completion method which
automatically learns optimal thresholds and also ensures an exact low-rank structure

of the target matrix. [117].

e BMF-D [113]: Discrete Basic Matrix Factorization model is achieved from the
basic matrix factorization model (BMF) that permits gradient based techniques to

jointly learn both the matrix factorization model and a discretization operator.

e DMF-D [113]: Discrete Deep Matrix Factorization model is attained from the deep
matrix factorization model (DMF) [118][119] that provides deep learning based
approaches an opportunity to learn mutually both the matrix factorization model

and a discretization operator.

Table 4.13 demonstrates a comparison between performance (RMSE) of the
proposed NF-SGD model with MF based models for recommender systems presented in
[111] for ML-100K and ML-1M datasets. It is perceived from Table 4.13 that the proposed
NF-SGD achieves significant difference in RMSE when compared to other MF based
counterparts. It is also noticed from Tables 4.11 and 4.12 that NF-SGD outperforms MF
techniques given in case study III for all k and f, variations. NF-SGD achieves best
performance of RMSE = 0.956 and 0.886 with k = 30 and f, = 0.9 for ML-100K and ML-

1M respectively.

To validate the efficacy of the proposed model, performance (RMSE) of NF-SGD is

further evaluated with other discrete matrix factorization-based models of RDMC,
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ODMC, BMF-D and DMF-D [113] for recommender systems. The performance
comparison in terms of RMSE values is presented in Table 4.14. It is observed from the
results that NF-SGD accomplished more improvement than RDMC, ODMC and BMF-D
models for all k and f,. values and achieves finest performance of RMSE = 0.956 with k =
30 and £, = 0.9 for ML-100K dataset. Whereas, the performance of NF-SGD is comparable
with DMF-D for k = 30 and f, = 0.9 on ML-100K.

Table 4.13: Performance comparison of NF-SGD with MF methods for ML-100K and
ML-1M datasets

DATASETS METHODS RMSE
OLR 1.048

ConvMF 1.000

SOCF_li 0.995

ML-100K DBPMF 0.990
DCBPMF 0.985

NF-SGD 0.956

OLR 1.038

ConvMF 0.980

SOCF_II 0.969

ML-1M DBPMF 0.945
DCBPMF 0.943

NF-SGD 0.886

As presented in Table 4.14, NF-SGD achieves substantial increase in performance as
compared to the existing methods for ML-1M dataset as well. Our proposed NF-SGD
outperforms RDMC, ODMC and BMF-D for different f, and k variations. The supreme
performance of RMSE = 0.886 of NF-SGD is accomplished with k = 30 and f,. = 0.9 for
ML-1M dataset. For ML-1M dataset, a slight increase in performance of NF-SGD
compared to DMF-D is observed for all k variations with f,. = 0.6 but NF-SGD outperforms
DMF-D by large margin with f, = 0.9. Such considerable behavior confirms the

effectiveness of NF-SGD for providing accurate recommendations.
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Table 4.14: Performance comparison of NF-SGD with discrete MF methods for ML-
100K and ML-1M datasets

DATASETS METHODS RMSE
RDMC 0.971

ODMC 0.968

ML-100K BMF-D 0.968
DMF-D 0.941

NF-SGD 0.956

RDMC 0.987

obmcC 0.937

ML-IM BMF-D 0.921
DMF-D 0.898

NF-SGD 0.886

45 Summary

In this chapter, three Case-Studies have been presented to compare the performance
in terms of RMSE of proposed fractional order based learning machines with
standard SGD based strategies for recommender systems. It is shown that proposed
FSGD improves accuracy and convergence of recommender systems. However,
proposed mF-SGD further improves the convergence speed of FSGD through
utilizing gradients previous information. As adaptive nature of learning rate is not
explored in FSGD and mF-SGD. Therefore, NF-SGD is proposed to examine the

adaptive nature of learning rate for smooth convergence in FSGD.

The subsequent Chapter provides the research methodology with deep learning
based strategy for providing Top-N recommendations. The performance of suggested

learning machine is also verified through ML-100k and ML-1M datasets.
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Chapter 5. Deep Learning Machines for Top-N

Recommender Systems

To promote online businesses and sales, e-commerce industry focuses on fulfilling
users’ demands by giving them top set of recommendations which are ranked through
different ranking measures. Deep learning based auto-encoder models have further shown
improved performance in terms of giving Top-N recommendations. Therefore, in this
chapter first deep learning based state-of-the-art auto-encoder models are presented for
providing Top-N recommendations, then a users’ rating-trend based denoising auto-

encoder for Top-N recommendations is proposed.

This chapter primarily includes introduction to deep learning based recommendation
models, then deep learning based standard auto-encoder models for recommender systems
are presented. Lastly, the proposed users’ rating-trend based denoising auto-encoder model
is presented and the performance comparison of the suggested learning machine is made
with standard deep learning based methods through simulations to prove the performance

of proposed method for Top-N recommendations.

5.1 Deep Learning Approach
The objective of deep learning is to learn multiple levels of abstractions and
representations from data. Different deep learning based neural designs have worked

significantly for supervised as well as unsupervised problems [120]. Deep learning based
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recommendation models are mainly divided into two sub types [65] (1) Neural blocks
based recommendation (2) Deep hybrid models based recommendation.

There are around nine important neural blocks based recommendation models also
known as deep learning based models, that is, Auto-encoder (AE) [42][121]{77]{74][122],
Restricted Boltzmann Machine (RBM) [123]-[127], Recurrent Neural Network (RNNs)
[128]-{132], Multilayer Perceptron (MLP) [133]-{137], Convolutional Neural Network
(CNNs) [112], [138]-[141], Neural Autoregressive Distribution Estimation (NADE)
[142]-[144], Deep Reinforcement Learning (DRL) [145]-[149], Adversarial Networks
(AN) [150]{153] and Attention Models (AM) [154]-[158]. The applicability of the neural
blocks based recommendation models is determined by the method employed in the
recommendation model.

Deep hybrid models are the combination of two or more deep learning based neural
models [137], [159]-{161]. The objective of deep hybrid models is to utilize the
characterlistics of two or more models in a single but more powerful neural model. Different
combinations of nine deep learning models are possible to make an influential deep hybrid

model [162]-{167] but all mixtures of deep learning models have not been explored yet.

5.1.1 Notations

We denote matrices with upper-case bold letters (e.g.,M) and vectors are
represented by a lower case bold italic letters(e.g.,m). The x* row of a matrix M is
denoted by M, and (x,y)*" entry of a matrix is represented by M xy Whereas xt" element
of a vector m is symbolized by m,. We treat u as user index and i as item index throughout

this chapter.
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In this chapter, users and items sets are denoted by ¢ = {1, ...,p} and Q = {1, ..., q}
respectively. A set of observed user-item pairs is denoted by Z = {u, 1,z,;} where z,,
represents a non-zero rating (for implicit feedback setting, z,; = 1) of a user u for item i.
An unobserved set of user-item is given by Z. The user-item pairs dataset comprises of
some information taken from a subset Sy, of Z is known as augmented dataset [28]
represented by Z . Such augmented dataset is used to avoid trivial solution by optimizing
point-wise objective function for implicit feedback setting where all observed ‘likes’ are
treated as *1”. For a specific user u, the set of ratings in training data is designated as Z,,
while a set of unobserved ratings of a user u is represented by Z,. The items which are to
be suggested to a user u are the ones present in Z,,. Therefore, a subset of items from Z,
are suggested by a recommender system to a user for top-N recommendations. Due to a
large number of users and items in rating matrix, we take a subset of unobserved
preferences of a user u termed as S, from unobserved ratings set of a user Z,, and calculate
gradients for the items in S, C Z, though back-propagation rather than calculating
gradients on all outputs. The S,,,, set is also described as set of negative items in [28]. In
this chapter we are actually using implicit feedback setting {0,1} instead of numerical
feedback setting that lies in the range of {1,5}.

Before going into the details of proposed deep learning based denoising auto-encoder
model for Top-N recommendations, mathematical description of deep learning based
standard denoising auto-encoder models for recommender systems are presented in the

next section.
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5.2  Auto-encoders

Auto-encoders are applied to recommender systems for two purposes [65] (1) For
learning non-linear feature representations in the bottle-neck layer (2) For filling the rating
entries in the rating matrix straight in the output layer (reconstruction layer). Neurons in
the input layer of auto-encoders are exactly same in number to the reconstruction layer
neurons. Different variants of auto-encoders include denoising auto-encoder [156][43],
variational auto-encoder [168][169], marginalized auto-encoder [121] and contractive
auto-encoder [170]. The architecture including mathematical details of a basic auto-
encoder is already discussed in Chapter 2.

Furthermore, two variations of a basic auto-encoder such as denoising auto-encoder

and collaborative denoising auto-encoder are described in the following two subsections.

5.2.1 Denoising Auto-encoder (DAE)

One of the variations of a basic auto-encoder is the denoising auto-encoder (DAE)
[171]. In simple auto-encoder, network is trained to reconstruct input t at the output layer
t, by exploiting the information learned in the hidden layer. Whereas, DAE is trained to
reconstruct ¢ from partially corrupted form of the input £. Denoising property of DAE,
makes it more robust than basic variant since it also has ability to deal with corrupted forms
of data [172]. For recommender systems, this models sparse input as a corrupted input and
reconstructing the clean output helps in learning latent space of data at the hidden layer
(bottle-neck layer). The network of DAE is graphically shown in Fig 5.1.

In DAE, input t is initially corrupted to get a partially corrupted form £ by using the

concept of stochastic mapping  ~ q(&{t) [171). The corrupted form of the input is
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randomly drawn fiom a conditional distribution p(Z|t). The standard input corruption

options are additive Gaussian noise p(£]t) = N(t,Y) (where covariance matrix is not

dependent on t} and mask-out commuption (where every dimension of ¢ is randomly

overwritten by 0 with a probability of q) [28][173].

PE=0)=gq (5.1)

e=P(E=1/(1-q)t)=1—-g (5.2)

For the sake of making corruption unbiased, non-corrupted entries are set by a factor

of 1/(1 — q) which is a function of the original input value.

Reconstructed
Input {output})

......

Maisy User Rating
Vector {Input)

Fig. 5.1 Network diagram of standard DAE for top-N recommender systems

5.2.2 Collaborative Denoising Auto-encoder (CDAE)

The DAE is extended in [28] to a more improved form of collaborative filtering by

introducing a user oriented node in the input layer of the denoising auto-encoder, known
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as collaborative denoising auto-encoder (CDAE). The idea of CDAE is to recover
correlations among user and items through a corrupted version of given binary feedback.
The difference between DAE and CDAE lies in the additional encoding vector v, € R¥
(user oriented) at the input layer for a user. CDAE proved to be an improved model than
DAE for top-N recommendations. The network design of CDAE is given in Fig 5.2.

The hidden layer of CDAE with Sigmoid mapping function is represented as:

H(t) = Sigmoid(WTE + v, + by) = o(W]E+
(5.3)
v, +by)
Where, by € R¥_ is the bias of hidden layer and mawrix W; € R**¥ denotes weights of

input layer connected with hidden layer.

Recenstructed
Input {output)

Noisy User Rating
Vector {Inpur}

Fig. 5.2 Network design of CDAE for top-N recommender systems
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Where v, € R¥ is the randomly generated Gaussian noise.The representation of
output layer using sigmoid activation function for CDAE is similar to the AE, which is
denoted as:

t = Sigmoid(WyH (t) + by) = a(WSH(t) + by) (5.4
Where, b, € R, denotes bias of the output layer and matrix W, € R¥*¢ represents
weights linked between hidden layer and output layer.

The average reconstruction loss turn out to be expected average loss [28][173] using
the condition p(£|t). Therefore, loss function of CDAE for the training of parameters
® = {W,;,W,,v,, by, by} is denoted as:

p
1 "
mdingz E, e [£(8, D] + R (W, Wy, vy, by, b) (5.5)

u=1

Here, Epqp [L(2, t)] represents expected average squared loss and R is the
regularization term that includes squared £, norm of the training parameters represented

as:

A
R (W1, Wo, vy, by, bo) =S (W13 + IW- 115 +
(5.6)

2113 + l1bsclI3 + lboll2)

As it is already proved in [28] that performance of CDAE in terms of mean average
precision improves after adding one unique user oriented weight vector to the encoding

layer. But that randomly generated specific vector is added to encoding layer for all input
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user vectors irrespective of users rating behavior. This provides an opportunity to use
weight vectors according to users’ rating-trend Therefore, in the next section a novel user’s
rating-trend based model is proposed. In our proposed design one user oriented weight
vector is added to input layer for low rating-trend of a user as evidenced in [28] and two

weight vectors are added for high rating-trend of a user.

5.3  User’s Rating-Trend based Collaborative Filtering

Apart from modelling user vectors as corrupted inputs, an important aspect is to
encode the rating trend of users. To learn latent features of users, a user who has a behavior
of giving higher ratings should be learned. Similarly, for users having low rating trend
should also be learned. This will help to generalize the recommendations for those items
which don’t have any recommendation for a user. In our proposed model, this rating-trend
of users is incorporated using two additional nodes vectors in a basic DAE architecture.
One of the node vectors encodes low-valued ratings and other encodes high-valued ratings.
For a user with low-valued rating trend, low-trend user node is activated while for high-
valued rating trend, high trend user node along with low-valued user node is activated.
These user’s rating trend encoding nodes can also be visualized as weight vectors encoding
rating-trend of users. Users with high valued ratings are given more weights while learning

their latent features.
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Brief discussion on User’s Rating-trend:

The rating-trend of a user actually exhibits the rating patterns of a user to indicate the
preference of a user for a set of items. Rating patterns can be categorized into low and high
rating patterns. If a user is habitual of giving high ratings for the items of his interest, then
this habit of a user reflects the high rating-trend of a user for a set of items. Whereas, rating-
trend of a user is said to be low, if a user frequently gives low ratings for the items. In order
to calculate the actual rating-trend of a user, a threshold value is required to check whether
the accumulative rating-trend of a user is greater or lesser than the threshold value (e.g.
Threshold value = 30% of the total items set). The value of threshold plays a role in
determining the overall performance of the proposed method. Lower threshold values
improve the proposed model by activating both user oriented nodes of the UT-CDAE.
However, the overall performance trend will remain same for different input corruption
levels. The proposed UT-CDAE captures the rating-trend of a user by counting the ratings
(number of 1’s against numerical ratings 4 and 5) rated by a user in a rating matrix for a
set of items through a binary feedback as given in Table 5.1. If the number of 1’s are less
than the decided threshold value then rating-trend of a user is said to be low otherwise
rating-trend of a user is known as high rating-trend. The benefit of modelling rating-trend
for Top-N recommendations is to recommend an unrated set of items to the user by
approximating the dominating preference behavior (ratings) of a user for a rated set of
items. The process of computation of user’s rating-trend for a set of items through an

intuitive example is given in Table 5.1.
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Table 5.1: User’s rating-trend calculation from binary feedback

ITEMS Valw = Threshold Value (30% of Iltems Set = 3)
bl (st s Lt |t {ts | 1o | ko If 1’s count greate‘r than Valy, = High Trend
otherwise Low Trend
- U1 1 0 0 1(1 High rating-trend
g U [ 1 0 0 1 Low rating-trend
Us 1 1 0 0O Low rating-trend
Us | O 0 01 1|0 Low rating-trend
Us 1|10(1 0 1 1 High rating-trend

By exploiting the concept of CDAE, we propose an additional value-added strategy
for collaborative filtering by using the rating-trend of users. We call such variation as user’s
rating-trend based collaborative denoising auto-encoder (UT-CDAE). This idea of
encoding user's rating trends in UT-CDAE has outperformed other denoising based
methods (DAE and CDAE) while predicting top-N recommendations as given in
simulations and results section of this chapter. The network architecture and mathematical

details of proposed UT-CDAE are presented in the next sub-section.:

5.3.1 User’s Rating-Trend based CDAE (UT-CDAE)

The network of the proposed learning machine is as follows:

Network Design/Architecture: The UT-CDAE network comprises of encoding and
decoding layers. The encoding layer maps the data inputs from the input layer to the hidden
layer. Decoding layer maps the encoded representation of data from hidden to output layer.
An illustration of the network of UT-CDAE is presented in Fig 5.3.

The input layer of UT-CDAE consists of iln + 2 nodes, where iln denotes input layer

nodes representing a user’s preference for set of items. Each node in iln represents an item
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i Z,,. The left and the right most nodes in the input layer excluding the iln nodes are
distinct for each user and termed as “user rating-trend nodes”. We call the left most node
as High-Trend-User-Node (HTUN) and the right most node is known as Low-Trend-
User-Node (LTUN). Weights connected to both nodes, i.e, (HTUN and LTUN}) are

different and uniquely linked to preferences of each user(u € @).

Reconstructed
Input {output}

Decoding
[
i el

Encodins

High Trend . Low Trend
User Node User Node
Noisy User Rating
Vactor {Input)

Fig. 5.3 Network architecture of proposed UT-CDAE for top-N recommender systems

The training set formed for the observed user-item interactions Z consists of p user
vectors {ty, 85, t5,.., 8}, where &, = {tyy, tyz tug, . tygn} denotes a sparse, iln
dimensional user’s (u) preference based binary vector that merely contains the observed
non-zero entries for items in the items set @, the value t,,; depends upon rating values of a
user ¥ for an item {. If a user does not like an item { then ¢,,; = 0, otherwise £,; = 1.

The hidden layer is composed of K nodes which are fully connected and smaller in

dimension than the input layer. In addition to the K nodes, there is an additional bias node
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present in the hidden layer, which is fully connected to the output layer and acts as an
offset. The weight matrix between the input layer nodes iln and the hidden layer nodes K
is represented by W; € RU™*K  We represent the weight vectors of HTUN and LTUN
associated with hidden layer nodes respectively as vp,,, € R¥ and v, € RX.

The output layer represents reconstructions of the input ¢,, with iln nodes. The output
layer is densely connected with the hidden layer nodes through a weight matrix represented
as W, € R K - As the dimension of both the input and output layers is iln, therefore, the
weight vector associated with the bias node in hidden layer is denoted by b, € R{™. The
input ¢, applied at the input layer of UT-CDAE is a corrupted version of the original input
t,. The corruptions are incorporated randomly in the input vector using masking noise €
as given in equation (5.2).

Problem formulation: Given u € § user vectors, the average reconstruction error
w.rt user’s rating-trend is minimized through learning of parameters @ =

W,, W,, Ve, Ve, by, Bo ). Hence, the expected average loss for UT-CDAE is given as:
!

p
1 -
mqgngz Ep (g, 16) [£(tw 8] + Ryr—cpar (5.7
u=1

We use cross-entropy loss as reconstruction loss because cross-entropy loss is
appropriate for binary inputs. The reconstruction through cross-entropy loss (£) is
computed as:

L(ty,t,) = —t," log(t,) — (1 -t,)" log(1 - £,) (5-8)

Where, Ryr_cpag is the regularization term involved in average reconstruction loss

of UT-CDAE represented as:
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Rur—cpar = YR, (Wi, Wy, vy, by, bp) +
(5.9)
(1 =y)R, (W, W, U4yt Vi byr, bg)

To handle the complexity of the proposed method, the regularization terms R, and
R, in the expected average loss for higher and lower rating trend of a user are based on the
trend value denoted by y. For a higher rating-trend of a user, y = 0 otherwise y = 1. We

compute squared !, norm of the parameters in the regularization terms as follows:

A
R.() = ?l(llwlllﬁ + W22 + 12013 + byl + llbo 1) (5-10)

A 5.11
Ro) = 2 WAl + IWIE + 9l + ol + sl + B3 1)

Here parameters ® = {W,;, W,, Vy,,,r, Ve, b3, bo} are updated through stochastic
gradient descent. The stepwise pseudocode of the proposed method is given in Algorithm
5.1.

The learning of UT-CDAE involves projection of the input £, to hidden layer to
discover the hidden representations. For a high user’s rating-trend for observed items (y =
0) i.e. (number of binary 1’s representing numerical ratings of 4 and 5 in a user vector are
more in number), H (t) is computed as:

H(E) = F(WTE, + Vhyr + Viue + by) (5.12)

However, if there is a low rating-trend of a user, then y is equal to 1 and H(¢t) is
evaluated as follows:

H(t) = f(WTE, + vy, + by) (5.13)
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For reconstruction of the input, the hidden representation 3 (¢) is again mapped to
the output layer (0) to reconstruct the clean input without corruption. After applying
Sigmoid as activation function at the output layer, reconstructed value for the i*® node is
solved as:

ty = g(WiH(6) + b)) (5.14)

t,; = Sigmoid(WJH (t) + b)) = a(WJH (£} + b)) (5.15)

The overall graphical flow of the proposed UT-CDAE is given in Fig 5.4.

L ]
Algorithm 5.1: Pseudo code of proposed UT-CDAE algorithm for top-N recommender systems

Input: Comrupted User Preference Vectors
Output: Clean User preference vectors
1) Initialize parameters randomly
2) Setepoch=1
3) While epoch < epochs do
4) for allu € §2 do

5) Add noise to input user vector £,~p(%,|t,) through Equation 5.9

6) Calculate rating-trend ¥ fora User u

7 If High user rating-trend i.e. {y =0)

$) Compute H (t) from Equation 5.12

9) Else (y = 1)

10) Compute H (t) from Equation 5.13

I Take negative samples S, © Z,,

12) foralli € Z, US,,, do

13) Update parameters & = {Wy, Wy, vy, Vg, ba, bp} through back-
propagation

14) end for

15)  end for

16) epoch = epoch +1

17) end while
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A Comprehensive study including simulation results for performance comparison of
proposed UT-CDAE with standard DAE and CDAE in terms of different evaluation

metrics 18 given in the following section.

o N

L Top-N Recommendations }

Deep Learning based Auto-encoders I

Problem y

v

Generate Implicit Feed-back from ratings
matnx

l;d-

Calculate Users rating-trend using threshold
value. Add comuption to users input veclors

\

For High trend. Apply
UT-CDAE (HTUN+LTUN) using Eq (5.12)
Otherwise: Apply
UT-CDAE (LTUN) using Eq (5 13)

MAP, MRR, NDCG@10,

Generate Improved Top-N
P&@5, P@10. R@5, R@10

recommendation

Results

Update Parameters
b= (W), Wo, Ppu, Vi, By B}
Using Adam

Herative learning mechanism

Fig. 5.4 The graphical flow of proposed UT-CDAE for Top-N Recommender systems
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5.4 Simulations and Results

To compare the performance of proposed UT-CDAE with DAE and CDAE in detail,
this section presents three subsections i.e., simulation details, mathematical description of

evaluation metrics and discussion on results.

5.4.1 Simulation Details

In this sub-section we split ratings into 80% training set and 20% test set. We
randomly choose the training examples from the dataset and treat the remaining examples
as test data. We convert explicit numerical feedback (on a scale of 1-5, 1 for lowest and 5
for the highest rating) into binary implicit feedback and follow the convention that we don’t
keep the numerical ratings less than 4 and assign them a binary value ‘0’ but we keep
numerical ratings greater than and equal to 4 and assign a binary value of ‘1’ as already
done in [28].

To prove the effectiveness of our proposed method, we consider two datasets from
MovieLens for the evaluation of methods in our experimentations. ML-100K and ML-1M
are considered standard datasets for assessing the performance of recommender systems.
The range of numerical ratings for both ML-100K and ML-1M is from 1 to 5. Minimum
number of ratings per user for each dataset are 20. The particulars of both MovieLens
datasets are summarized in Table 5.2.

Table 5.2: Datasets Particulars

Density (%)
Dataset Ratings (R) Users(U) Items (I) Min(R/U)
R/ (U*I) * 100
ML-1M IM 6040 3706 447 20

ML-100K 100K 943 1682 6.30 20
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We use grid search for tuning and selection of best hyper-parameters on the training
datasets for all methods. We performed 5 fold cross validation for 100 epochs and report
the average results for all algorithms. Algorithms are assessed for different values of
learning rates [0.1, 0.01, and 0.001] and the best results for suitable learning rates are
reported for each method. Standard value of regularization parameter reg_ratel (0.01) is
taken for the three methods (DAE, CDAE and UT-CDAE). Another regularization
parameter is used only by the proposed method named as reg_rate2 and UT-CDAE is
evaluated by using various values of (reg_rate2 =0.1, 0.3, 0.5, 0.7, 0.9). We use masking
noise € to corrupt input vectors and performance of methods is tested against different
corruption levels. These levels are called input corruption ratio (ICR = 0.2, 0.5, 0.8). The
values of ICR depicts proportion of corruption (where each entry of input is randomly
overwritten by 0 with a probability of ICR) in the input. Here ICR = 0.8 indicates that 80
percent of total inputs are randomly overwritten by 0. Simulations are performed using a
single hidden layer for the network with (K=50) latent dimensions. We use SGD as
optimizer with a mini-batch size of 100 for ML-100K and 500 for ML-1M to learn the
parameters for all the algorithms including the proposed one. During the learning of
algorithms, Adam [174] is selected for the learning rate to adapt automatically.

Results in Tables and Figs for DAE, CDAE and UT-CDAE are presented based on
the optimal learning rate hyper-parameter value LR = 0.01 which is set to adapt
automatically, with three input corruption ratio variations ICR = (0.2, 0.5, 0.8) and
(reg_ratel=0.01). Values of reg rate2 used exclusively for the proposed method are
(reg_rate2= 0.9 for ICR= 0.2 and 0.5 and reg_rate2=0.7 for ICR = 0.8). The optimum

hyper-parameters selection and settings are summarized in Table 5.3.
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Optimal | Optimal | Optimal
Tuning Parameter
Hyper-Parameter | Notation Values Values Values
Values
UT-CDAE| CDAE DAE
Learning Rate 7] 0.1, 0.01, 0.001 0.01 0.01 0.01
Regularization
Ay 0.01 0.01 0.01 0.01
Ratel
Regularization 0.01,0.1,0.3,
A, 0.7,0.9 - -
Rate2 0.5,0.7,0.9
Masking Masking  Masking = Masking
Noise Type € ) ) ) )
Noise Noise Noise Noise
Latent Dimensions K 50 50 50 50

Simulations are performed in Spyder 3.3.2 release 2015 by means of Python 3.5 (64

bit) on Windows 10 Pro Education 2018 operating system (64 bit). Experimentations are

completed on laptop with these specifications. (Core-17-5600U @ 2.60 GHz) Processor

and DDR2 16 GB Ram. We implemented all methods in python using tensorflow.

5.4.2 Evaluation Metrics for Top-N Recommendations

In top-N items ranking approach, a set of top-N ranked items are selected as

recommendations to a user. A set of items that is recommended to the user is denoted by

W(N), which is equal in size to the recommended list of N items. Suppose H e the set of
all possible relevant items for a user, then for any list of top-N recommendations, following
ranking based metrics at N are defined as follows [1]:

Precision (P@N): Precision is the percentage of recommended items that are also
relevant out of all possible recommended items for a user u in the top-N recommendation

set.
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Y(K)nH

PN =1Temnr

x 100 (5.16)

Recall (R@N): Recall is the percentage of relevant items that are also recommended

out of all possible relevant items for a user u in the top-N recommendations set.

Y(N)nH

R@N = |[————
i

| x 100 (5.17)

MAP: The ranking metric MAP is meant to evaluate the fraction of relevant items
from recommendation set for a user. Different equally spaced sizes of recommendation
sets are considered for MAP for p users and the mean of precision is taken for all sets with

different sizes.
1 P
MAP = 5 Z(AP@Hits)u (5.18)
u=1

AP is the average precision of relevant items of a user u for all hits from a

recommendation set.

Hits

1
AP@Hits m Z P(t).relv(t) (5.19)

Here, relv(t) indicates whether the relevance of t* item is true(relv(t) = 1) or

false(relv(t) = 0).
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NDCG: The Normalized cumulative discounted gain is the ratio of discounted
cumulative gain to the ideal value of discounted cumulative gain (IDCG). The IDCG is
computed by repetitive computations for DCG by arranging all the items in the test set in

an ideal order after normalization.

DCG

NDCG = —
bce IDCG (5.20)

p Sy
1 fur (5.21)
DCG = - Z Z _Ju
P 4 Lulogy(w; +1)
u=1i=1
Here, The set of items rated by user u, which is concealed from recommender system
before estimation is denoted by S,, and the relevance of item i for a user u is relv,;. The
utility of user u towards item i is represented by f,,; and w; is the rank of item { in the test
setS,,.
Where,
fui =27 —1 (5.22)

Here, the relevance of item i for user is relv,;.

NDCG@N: It is also possible to evaluate the DCG over a recommendation set of

length W(N) which is given as:

1 r w(N) f
DCG = - Z Z _Jui (5.23)
pLu _loga(w; + 1)
u=1 leSy,w;=1
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MRR: The mean reciprocal rank is also known as average reciprocal hit rate
(ARHR). It is defined as the average reciprocal hit rate over all p users. The range of mean
reciprocal rank lies between (0, 1).

P_LARHR(u)

MRR = (5.24)

The average reciprocal hit rate (ARHR) is another evaluation metric, which is used
for implicit feedback setting of datasets, where rating of a user u for an item i (7;;) lies in
(0, 1). In such implicit feedback setting 7,,; = 1 shows a “Hit” which means a user rated an
item and 7,; = 0 means that a user has not rated an item. While, missing values are treated

as “0”. Thus, ARHR is defined as the role of item i € S,, to its utility.

Su
’r' .
ARHR(u) = f (5.25)

i=1

Here, r,; is the rating of a rating of a user u for an item i and w; is the rank of item

[ in the test set S,,. Therefore, % denotes the collect utility of an item based on its rank.
i

5.4.3 Results Description

For ML-100K dataset, performance comparison of all three methods for various
values of ICR (0.2, 0.5, 0.8) in terms of different evaluation metrics is shown in Table 5.4
and Figs. 5.5 to 5.9. For all evaluation metrics listed in Table 5.4, Figs. 5.5 to 5.9 show that
our proposed method outperforms DAE and CDAE for ICR values 0.2 and 0.5. However,
for ICR = 0.8, the proposed UT-CDAE has better performance that DAE but comparable

with that of CDAE.
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Primarily we assess performance of UT-CDAE in terms of MRR, MAP and NDCG

measures and results are presented in Table 5.4, Figs. 5.5 and 5.6. It is observed that for

corruption levels (TCR = 0.2, and 0.5), UT-CDAE consistently shows superior performance

than other techniques (CDAE, DAE) from 15 to 100 epochs. For ICR = 0.8, performance

of UT-CDAE is comparable with CDAE but UT-CDAE outperforms DAE. A small

increase in scores for ICR = 0.8 is achieved by UT-CDAE after 100 epochs than CDAE.

Such difference in results is due to the ¢xtra regularization of the proposed objective

function, which is based on user’s rating-trend.

Table 5.4; Performance Comparison of Methods w.r.t Input Corruption Ratios for
ML-100K Dataset

Corruption Ratio = 0.2

Corruption Ratio=0.5

Corrupiion Ratio =0.8

METRICS : :
UTCDAE | CDAEi DAE ;:UTCDAE CDAE | DAE | UTCDAE ] CDAE | DAE
. P@L0 0.2034 0.1809%0‘1807’; 02065 | 0.1945 0.1911 | 02159 02106 | 0.2071
R@W | 0223 | 01955 01950 | 02315 | 02177 | 02058 | 02365 | 02388 | 02237
| r@s " 02480 | 02211 | 02165 02509 | 02335 . 02315 | 02654 , 0.2569 | 0.2501
m;@s f 01426 | 0.0247 0.12_2:1,}T 0.1473 Toussa 01324 | oas3t | 01551 | 0.0304
MAP 0.2003 | 0.1763 01732 0.2073 l01939: 01878 | 02182  0.2159 | 02030
MRR 0.4849 | 0.4540 | 04418 | 04925 | 04714 | 04633 | 05193 50.5067 o.4ssoi'
i NDCG 0.5078 {04842 | 04799 | 05144 | 04999 04952 | 05263 05224 | 0.5096
NDCG@5 | 02841 | 02548 02484 | 02895 | 02706 | 02655 | 0307 | 0.2991 | 0.2868
ENDCGé-;) : 02795 | 02497 | 02460 - 02868 | 02693 102618 | 03007 ' 02955 i 0.2833;

The algorithms’ performance is further verified with reference to NDCG@S5 and

NDCG@ 10 for same ICR variations and the outcomes are as shown in Fig, 5.7. It can be
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seen in Fig. 5.7 that the relative improvement in performance of proposed UT-CDAE for
ICR = 0.2 and 0.5 is far better than other methods. This enhancement in performance is
due to the flexibility in architecture of the proposed method. UT-CDAE attains similar
performance as that of CDAE for ICR= 0.8 after 100 epochs but it performs significantly
better than DAE with the same settings.

Precision curves for the competing methods are shown as P@5 and P@10 in Fig. 5.8
for same ICR settings. It is observed in Fig. 5.8 (a)-(f) that after 10 epochs, our proposed
UT-CDAE achieves outstanding performance when compared to that of CDAE and DAE
for P@5 and P@10 with two ICR variations (0.2, 0.5). Noticeable increase in precision
score of UT-CDAE at P@S5 for ICR = 0.5 is seen when compared to other methods. This
boost in performance is achieved because of the users’ rating-trend based decision of
adding weight vectors to the users input vectors. It can also be seen that with ICR = 0.8,
our proposed method attains better final score in terms of P@5 and P@ 10 after 100 epochs
but its performance is comparable to CDAE for all epochs. It also outperforms DAE for all

epochs with ICR =0.8.
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Fig. 5.9 presents recall (R@S5 and R@10) results for DAE, CDAE and our UT-CDAE
method. It is clearly depicted in Fig. 5.9 (a)-(f) that DAE shows worst performance than
CDAE and UT-CDAE in terms of R@5 and R@10 for all epochs with all ICR variations.
This is due to lack of user oriented weight vectors for each user. Moreover, Fig. 5.9 portrays
that our proposed method performs significantly better than counterparts for ICR = 0.2 and
0.5. It is also observed that for ICR = 0.8, R@5 scores for UT-CDAE and CDAE are
comparable but CDAE score for R@10 exceeds UT-CDAE after 30 epochs.

In Fig. 5.10, relative comparison of the proposed UT-CDAE with other two variants
is made using bar-chart for ML-100K dataset. Fig. 5.10 (a) shows the scores based on P@5
for DAE, CDAE and suggested UT-CDAE methods for different values of input corruption
ratio (ICR = 0.2, 0.5 and 0 .8). It is observed that UT-CDAE performs significantly well
with precision (0.2509) for ICR = 0.5 than other methods. UT-CDAE shows appreciable
performance (0.2480) for ICR =0.2. However, UT-CDAE exhibits similar precision scores
(0.2654) as CDAE (0.2569) and DAE (0.2501) with ICR = 0.8.

P@10 scores of DAE, CDAE and proposed UT-CDAE are presented in Fig. 5.10 (b)
against ICR variations. The precision value (0.2034) achieved by UT-CDAE as compared
to other counterparts for ICR = 0.2 is much better than ICR = 0.5 and 0.8. It is also seen
that for ICR = 0.5, UT-CDAE leads both CDAE and DAE with score (0.2065) but CDAE
and DAE perform in a similar fashion. For ICR=0.8, there is a slight improvement in
performance of proposed method (0.2159) than CDAE (0.2106) whereas CDAE performs
slightly better than DAE.

A similar performance trend in terms of R@5 of the proposed method is observed as

that of P@10 for ICR = (0.2 and 0.5 than other methods as shown in Fig. 5.10 (c). The
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comparable behavior in recall score of UT-CDAE and CDAE is noticed for ICR = 0.8,
where CDAE performs slightly better than proposed UT-CDAE with recall scores of
(0.1551) and (0.1531) respectively but both CDAE and UT-CDAE show improved
performance than DAE with recall score of (0.1394). A comparison between UT-CDAE
concerning recall score for top-10 recommendations (R@10) with other methods is
represented in Fig. 5.10 (d). The bars graphs for UT-CDAE with ICR = 0.2 and 0.5 depict
superior performance of proposed scheme than other methods with recall scores of (0.2238)
and (0.2315) respectively. For ICR = 0.8, proposed strategy (0.2365) slightly lags behind
CDAE (0.2388) and both methods lead DAE for R@10.

Bar graphs for NDCG@5 and NDCG@10 in Fig. 5.10 (e) and (f) show improved
performance of the proposed method than CDAE and DAE. For ICR 0.2 and 0.5, UT-
CDAE NDCG values show improvement with good margins than other competing
methods.

For all of the above discussed evaluation metrics, UT-CDAE has improved
performance for ICR values of 0.2 and 0.5 as compared to other methods and comparable
performance for ICR=0.8 to CDAE. This is because higher values of ICR randomly
overwrites large number of input vector values with zeros, thus making low valued rating-
trend dominant while learning latent features at the encoding node. This approximates UT-
CDAE to CDAE and hence only one weight vector at the input layer is activated. This also
validates our proposed method for modeling user rating-trend using two weight vectors

Vpyue and vy, nodes.
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Investigation through latent dimensions:

To observe the effect of latent features on the performance of the proposed method,
the best performance of UT-CDAE with ICR = 0.8 is also tested for number of hidden
dimensions (K). The performance of UT-CDAE in terms of MAP, MRR and NDCG with
variations in latent dimensions is given in Fig. 5.11. It is witnessed from the Fig. 5.11 (a)-
(c), that with increase in number of latent dimensions up to K = 50, performance of
proposed method increases with K. When K is further increased beyond 50, performance
of UT-CDAE starts declining. The cause of decrease beyond K = 50 is over-fitting. It is
realized that proposed method performs much better for lesser number of latent
dimensions. It is realized that the proposed method shows increasing trend in performance
up to 50 latent dimensions and decreasing trend in performance afterwards. The percentage
increase in performance of the UT-CDAE in terms of MAP, MRR and NDCG over CDAE
and DAE against 50 latent dimensions with ICR = 0.8 using ML-100K dataset are, 1.07%,
2.49%, 0.75% and 7.49%, 6.41%, 3.28% respectively.

ML-1M Data Set: To further validate the performance of the UT-CDAE, we also
evaluate it on ML-1M dataset in comparison with other methods.

Performance comparison of the three methods on ML-1M dataset is presented in
Table 5.5. With reference to evaluation metrics i.e. MAP, MRR and NDCG, it is seen in
Figs. 5.12 and 5.13 that for ICR = 0.2 UT-CDAE performs significantly better than
counterparts. While, for ICR = 0.5 and 0.8, performance of UT-CDAE is comparable to
CDAE. In addition to NDCG, performance of UT-CDAE in connection with NDCG@5
and NDCG@10 for ICR values against CDAE and DAE is presented in Fig. 5.14. The

difference in performance of UT-CDAE than CDAE with regard to NDCG@S5 and
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NDCG@10 with ICR = 0.2 is substantial than with ICR = 0.8. However, UT-CDAE shows
similar performance to that of CDAE for ICR =0.5.

Fig. 5.15 represents performance of proposed UT-CDAE in terms of precision (P@5
and P@10). It is observed in Fig. 5.15 (a)-(b) and (e)-(f) that UT-CDAE achieves improved
results than CDAE with ICR 0.2 and 0.8 but comparable results in Fig. 5.15 (¢)-(d) to
CDAE with ICR = 0.5. On the other hand, UT-CDAE performs significantly better than
DAE for all ICR values. A similar behavior of the three methods can be seem for recall
(R@$5 and R@10) in Fig. 5.16 (a)-(f).

The bar charts in Fig. 5.17 (a)-(f) demonstrate the overall comparison of UT-CDAE,
CDAE and DAE for various evaluation metrics against different ICR values on ML-1M
dataset. It is perceived from Fig. 5.17 (a) that UT-CDAE shows better performance in terms
of P@S5 than other counterparts and the best score attained by UT-CDAE with ICR = 0.8
is (0.2712). Whereas, CDAE exhibits comparable and a bit improved behavior with score
(0.2597) than UT-CDAE only with ICR = 0.5. The behavior of UT-CDAE regarding
P@10 in Fig. 5.17 (b) is similar to that of P@5 in Fig. 5.17 (a) against CDAE and DAE.
The maximum score attained by UT-CDAE is (0.2264) with ICR = 0.8. UT-CDAE only
lags behind CDAE for ICR = 0.5 and it outperforms DAE for all ICR values.

The comparison of methods using bar charts for recall (R@5, R@10) and normalized
discounted gain (NDCG@5, NDCG@10) scores with different ICR values are given in
Fig. 5.17 (c)-(f). The comparative trend in performance of UT-CDAE in terms of recall
and normalized discounted gain against CDAE and DAE is same as that of precision scores
given in Fig. 5.17 (a)-(b). Fig. 5.17 (c) represents best R@5 score (0.1079) achieved by

UT-CDAE and the improved R@10 score (0.1715) attained by UT-CDAE is presented in
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Fig. 5.17 (d). However, finest scores in terms of NDCG@S5 and NDCG@10 accomplished

by UT-CDAE are (0.2970) and (0.2807), which are respectively given in Fig. 5.17 (¢) and
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Comparison of methods using ML-1M dataset through NDCG against ICR
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Table 5.5: Performance comparison of methods w.r.¢ input corruption ratios for ML-1M

. dataset
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Performance comparison of deep learning based methods:

To prove the usefulness of the proposed method, we have also compared the

performance of UT-CDAE with few recent deep learning based methods apart from other

competing methods of DAE and CDAE, for ML-1M dataset. The results of each deep

learning based method are reported with best hyper-parameter settings. Brief introduction

of the deep learning based baselines is as follows:

L]

Caser [175][176]: Caser is proposed to model Users’ sequential patterns and

general preferences. Caser is meant to generalize some standard approaches in a

combined framework. Sequential patterns and skip behaviors are captured by Caser

through vertical and horizontal convolutional filters. Caser optimize its network

through cross-entropy.



125

e NCF [22]: The user and item preferences for Top-N recommendations are learned
through Neural Collaborative Filtering (NCF) method. The development of NCF is
accomplished by integrating matrix factorization and multi-layer perceptron
(MLP).

e ECAE [22]: Enhanced Collaborative Auto-encoder (ECAE) is suggested to learn
robust information for recommendation from produced soft targets (data) using
knowledge distillation method. In ECAE, states generated from generation and
retraining networks are combined to build an integrated framework. Using such
unified network the soft targets can be tuned by propagating the training errors of

retraining network to reduce noise for retaining useful information.

The proposed UT-CDAE outperforms deep learning based method Caser [175][176]
in terms of different evaluation metrics i.e. (P@10, R@10, P@5, R@5, MAP and MRR)
and results are presented in right most column of Table 5.5. To demonstrate the
effectiveness of the proposed work, performance of the UT-CDAE is further matched with
other two deep learning based methods (NCF and ECAE) [22] with regard to
NDCG@10. NDCG@]10 scores are given in Table 5.6. It is observed that UT-CDAE
achieved significant improvement in terms of NDCG@10 against both methods. This

behavior confirms the effectiveness of UT-CDAE for providing TOP-N recommendations.
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5.4.4 In-Depth Analysis

To improve the interpretability of the proposed model, the in-depth analysis of results
achieved by UT-CDAE is also presented through the following different performance
measures.

Scalability and Robustness: To demonstrate the effectiveness of our proposed UT-
CDAE model, we simulate our model with two MovieLens datasets i.e. ML-100K and ML-
1M and found that UT-CDAE outperforms denoising variants i.e. CDAE and DAE for both
datasets. Since ML-1M is much bigger dataset than ML-100K, which proves that suggested
UT-CDAE is a scalable model which has the ability to show improved performance even
for MovieLens larger dataset i.e. ML-10M as that of CDAE [28].

Furthermore, to validate the robustness of proposed UT-CDAE, the evaluation of
suggested model is performed in terms of various performance measures such as P@10,
R@10, P@5, R@5, MAP, MRR, NDCG, NDCG@5 and NDCG@10. The significant
performance of UT-CDAE in comparison with CDAE and DAE for all metrics confirms
that UT-CDAE is robust and its capability of modelling rating-trend improves the Top-N
recommendations to the users.

Average Improvements of UT-CDAE relative to ML-100K and M1-1M datasets:

The higher average improvements in performance of UT-CDAE are observed with
ICR =0.2. Hence, average results for ICR = 0.2 are of greater importance and are discussed
below.

ML-100K: The average improvements of UT-CDAE in terms of P@10 and R@10
over CDAE and DAE are 12.44%, 14.48% and 12.56%, 14.77 respectively. Whereas, the

percentage increase in performance with respect to P@5 and R@5 against CDAE and DAE
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are 12.17%, 14.35% and 14.55%, 16.60% respectively. Apart from precision and recall,
the average increase in performance of UT-CDAE relative to MAP, MRR and NDCG as
compared to CDAE and DAE are 13.61%, 6.59%, 4.87%, and 15.65%, 9.76%, 5.81%
respectively. The percentage rise in performance of proposed method in terms of
normalized discounted gain NDCG@5 and NDCG@10 in contrast to CDAE and DAE are
respectively given as 11.50%, 12.09% and 14.37%, 13.78%.

ML-1M: A noticeable increase in average performance is achieved by UT-CDAE
for ML-1M dataset with ICR = 0.2 than for ICR = 0.5 and 0.8 over CDAE and DAE in
connection with evaluation metrics presented in the Table 5.5 for ML-1M dataset. It is
observed that the average improvements obtained by UT-CDAE for ML-1M dataset are
similar to that of ML-100K dataset. The considerable average improvements accomplished
by UT-CDAE with ICR = 0.2 in comparison with CDAE for P@10, R@10, P@5, R@5,
MAP, MRR, NDCG, NDCG@5 and NDCG@ 10 are respectively given as 8.06%, 10.55%,
8.42%, 10.73%, 10.40%, 7.37%, 3.88%, 8.97% and 8.97%. Moreover, it is observed that
the percentage increase in performance of UT-CDAE than DAE relative to evaluation
metrics such as P@10, R@10, P@5, R@S5S, MAP, MRR, NDCG, NDCG@5 and
NDCG@10 with ICR = 0.2 is substantial than CDAE and the average increase in
performance for these metrics against DAE are respectively given as 11.04%, 13.79%,
11.64%, 13.75%, 12.97%, 9.65%, 4.95%, 12.15% and 11.88%.

Analysis with respect to ICR variations: For all of the above discussed evaluation
metrics, UT-CDAE has improved performance for ICR values 0f 0.2 and 0.5 as compared
to other methods and comparable performance for ICR=0.8 to CDAE. This is because

higher values of ICR randomly overwrites large number of input vector values with zeros,
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thus making low valued rating-trend dominant while learning latent features at the
encoding node. This approximates UT-CDAE to CDAE and hence only one weight vector
at the input layer is activated. This also validates our proposed method for modeling user
rating-trend using two weight vectors v, and v, nodes.

Table 5.6: Performance Comparison of Methods with respect to NDCG@10 Scores
achieved with ML-1M dataset

METHODS NDCG@10 SCORES
NCF 0.1991
ECAE 0.2063
UT-CDAE (ICR =0.2) 0.2732
UT-CDAE (ICR =0.5) 0.2657
UT-CDAE (ICR =0.8) 0.2807

5.5 Summary

In this chapter, we have proposed a novel variant of de-noising auto-encoder for
top-N recommender systems. We call it users rating-trend based denoising auto-encoder
(UT-CDAE). Furthermore, this chapter also includes basic denoising auto-encoder (DAE)
and collaborative denoising auto-encoder (CDAE) to compare the performance of the
suggested method in terms of various ranking evaluation metrics. The evaluation of the
proposed UT-CDAE is accomplished through precision, recall, mean reciprocal rank,
normalized discounted gain and mean average precision as ranking based evaluation

measures for top-N recommendations.
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Chapter 6.

Conclusion and Future Work

This chapter presents conclusions deduced from the suggested matrix factorization
and deep learning based models discussed in the previous chapters. Apart from
conclusions, the chapter also includes guidelines for scholars interested in doing future
research by applying proposed methods or different variations of suggested methods in

different engineering fields.

6.1 Conclusions

Conclusions inferred from the proposed work are as follows:

e A detailed investigation is made in this research work for developing fractional
gradient based novel learning machines for recommender systems by exploiting
strong mathematical foundations of fractional calculus.

® A deep learning based new learning machine is proposed in this thesis, which
presents a novel architecture of denoising auto-encoders by exploiting users’ rating-
trend in providing precise Top-N recommendations of items to users.

e The work presented in this research regarding proposed fractional learning
machines and proposed user’s trend based deep learning machine is an innovation

towards the development of novel, precise, convergent, robust and a non-linear
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computing paradigm with novel application to solve recommender system problem
effectively.

The fractional order based SGD leaming machines of fractional SGD (FSGD),
momentum fractional SGD (mF-SGD) and normalized fractional SGD (NF-SGD)
are proposed for efficient matrix factorization of recommender systems.

The convergence speed and accuracy of recommendations are improved using
FSGD, however convergence rate of FSGD is further improved in mF-SGD by
incorporating the proportion of previous gradients efficiently. Moreover, to
investigate the adaptive behavior of learning rate in FSGD for smoother
convergence, NF-SGD is developed.

The accuracy of the proposed fractional order based learning models is verified by
applying it to standard recommender system datasets of MovieLens-100k and
MovieLens-1M. The effectiveness of the proposed methods is established through
comparisons with standard stochastic gradient descent variants.

The quantitative evaluation of the proposed fractional gradient-based learning
machines is performed through RMSE and it is observed that proposed learning
machines have outperformed for RMSE with all variations of fractional orders,
while higher value of fractional order yields better results.

The percentage improvement achieved by F-SGD over SGD is 24.55% for ML-
100K. Whereas, mF-SGD has achieved 16.05% and 0.41% better performance as
compared to F-SGD and mSGD respectively for ML-100K dataset. Furthermore,
for ML-1M dataset mF-SGD also has gained improved average performance of

1.11% and 4.62% as compared to standard SGD counterparts.
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The average improvements in performance for ML-100K in terms of RMSE
accomplished by NF-SGD over NSGD and F-SGD are respectively given as 2.05%
and 1.85%. While, for ML-1M dataset suggested NF-SGD obtained 3.7% and
0.11% better performance as compared to NSGD and F-SGD respectively.

The results obtained through variations of standard SGD methods and proposed
fractional learning machines improve by increasing number of features k, however,
the proposed fractional variants provide better results than standard ones for
different k variations.

It is concluded to compute recommendations with large number of features as
increasing the number of features increases accuracy at the cost of increase in
computational complexity. This is because running time mainly depends upon
number of features k and optimum number of runs (epochs).

A new learning machine termed as users’ rating-trend based denoising auto-
encoder (UT-CDAE) is suggested in this thesis by exploiting the strength of deep
learning for ranking based top-N predictions for a user.

The trend based addition of weights provides an opportunity for UT-CDAE to learn
more robust and non-linear latent representations, which helps to produce improved
ranking based predictions at the output layer.

The proposed learning machine has outperformed other de-noising auto-encoder
based methods (DAE and CDAE) for relatively lower values of ICR (0.2 and 0.5).
Low ICR values help in retaining a discernible proportion of users’ rating trend in
the data set and hence provide valuable information to UT-CDAE to model users’

rating behavior. The greatest average improvements in performance of proposed
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learning machine (UT-CDAE) as compared to the baselines (CDAE and DAE) are
observed with smallest proportion of input noise such as ICR = 0.2.

For ML-100K dataset, the percentage increase in performance of the proposed
learning machine as compared to baselines with respect to MAP, MRR and NDCG
are 13.61%, 6.59%, 4.87%, and 15.65%, 9.76%, 5.81% respectively. Moreover, the
significant average improvements achieved by suggested learning machine for ML-
IM dataset with ICR = 0.2 in comparison with standard counter parts for MAP,
MRR and NDCG are respectively given as 10.40%, 7.37%, 3.88% and 12.97%,
9.65%, 4.95%.

Comparison of the proposed learning model with DAE and CDAE in terms of
various evaluation metrics show improved performance and robustness of the UT-
CDAE for proposing top-N recommendation to the users.

The proposed learning model not only provides additional flexibility in terms of
regularization but also incorporates the features of other well established techniques

which helps to predict improved top-N recommendations.

Future Work

The useful guidelines for future research for interested scholars in this area are as

follows:

One may explore in developing fractional gradient based novel adaptive strategies
using new fractional derivatives for improved performance in recommender

systems [177][178][179][180][181].



Moreover, global search methodologies based on fractional swarming and
evolutionary computing paradigms [182][183][184] looks promising to be
exploited for solving complex recommender systems problems arising in different
industrial applications such as [3][5].

One future direction is to implement our proposed fractional order based MF
models for recommender systems with both explicit and implicit feedback [185]
for rating prediction and item ranking tasks.

The possible and direct extension of the proposed UT-CDAE is to stack the model
as already done in the stacked denoising auto-encoder [172].

Another encouraging direction is to apply and explore other neural architectures
like GAN, RNN and CNN in the context of users rating-trend based collaborative
filtering.

Attention models (Pre deep learning) being an interesting future research direction
are not only able to improve performance but also provide greater interpretability
and explainability of results to users [65].

Moreover, we can explore Deep Multi-task Learning as a promising direction for
future research for traditional recommender systems [186] because we can avoid
overfitting by learning several tasks at a time with Deep Multi-task Learning.
Moreover, sparsity problem in recommender systems can be alleviated by using

Deep Multi-task Learning through implicit data augmentation.
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