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Abstract

Abstract

Most data that is inherently discrete needs to be compressed in such a way that it can
be recovered exactly, without any loss. Lossless compression requires that the
reproduced reconstituted bit stream be an exact replica of the original bit stream.
Lossless coding guaranties that the decompressed image is absolutely identical to the
image before compression. This is an important requirement for some application
domains, e.g. medial imaging, where not only high quality is in demand, but unaltered
archiving is a legal requirement. Entropy constrained residual vector quantization
(EC-RVQ) has been shown to be a competitive compression technique. Its design
procedure is an iterative process which typically consists of three steps: encoder
update, decoder update, and entropy coder update.

In this research, an entropy constrained vector quantization is proposed for lossless
compression of image. The method consists of first quantizing the input image using
conditional entropy constrained vector quantizer and then coding the residual images
using entropy coder. Experimental results show perfect reconstruction of gray scale
images.
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Chapter 1 Introduction

1. Introduction

In this age of information, we see an increasing trend toward the use of digital
representation for audio, speech, images, and video. Much of this trend is being fueled by
the exploding use of computers and multimedia computer application. Man’s fascination
for images has existed and has joined his activities ever. Digital image processing is a
rather recent topic if we compare it with human beings’ interest towards visual stimulus.
To acquire a digital image (to digitize it), roughly two processes must be accomplished:
sampling (get measurements of the luminance level, equally distributed along the bi
dimensional space) and quantization (representation of the measured value with an
integer). Digital image processing, however, usually generates huge loads of data, so
transmission and storage needs have motivated efforts to obtain more efficient
compression techniques. Data compression is the mapping of a given set of data into a bit
stream, with the sole goal of diminishing the number of bits needed to represent the data
set, trying to lose the minimum quantity (or nothing) of information.

At the heart of these algorithms is quantization, a field of study that has matured over the
past few decades. In simple term Quantization is the mapping of a large set of possible
inputs into a smaller set of possible outputs. In scalar quantization (SQ), the inputs are
individual numbers. Scalar quantization includes such operations as “‘rounding to the
nearest integer." The possible outputs, in this case the integers, are called quantization
levels or reproduction levels or reconstruction levels. Obviously, quantization is an
irreversible process, since it involves discarding information. if it done wisely, the error
introduced by the process can be held to minimum.

The generalization of this notion (quantization) is called vector quantization, commonly
denoted as VQ, but it involves quantizing blocks of samples together. Blocks of samples,
which we view as vectors, are represented by codevectors stored in a codebook — a
process called encoding. The code book is typically a table stored in a digital memory,
where each table entry represents a different codevector. The Key element in designing a

VQ is determining, how to generate and design codebook for a given input source.

1.1 Overview
Compressing image data by using Vector Quantization (VQ) will measure up to Training
Vectors by way of Codebook. Consequently, a catalog of position with minimum

distortion will achieve. The research presents the Splitting solution to implement the
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Codebook, which improves the image quality by the average Training Vectors, then splits
the average result to Codebook that has minimum distortion. The result from ‘this
presentation will give the better quality of the image than using Random Codebook.

A common approach to lossless image coding is to pre-process the data, in a way that
removes statistical dependencies among the input symbol and code those symbols with
entropy coder. High order entropy coding is a powerful technique for exploiting high
order statistical dependencies. Entropy constrained residual vector quantization (EC-
RVQ) is relatively new method for image compression that combines multistage residual
vector quantization(RVQ) and entropy-constrained optimization.

The method, which we call conditional entroby-constrained residual vector quantization
(CEC-RVQ), employs a high-order entropy conditioning strategy that capture local
information in the neighboring vectors. The complexity of this design is relatively low,
due mainly to the efficiency of the multistage structure of the residual vector quantizer,
but also effectiveness of the searching technique used to locate the eat conditioning
spatial stage region support.

EC-RVQ is a memory less vector quantizer that is designed to minimize the average
distortion subject to constraints on the firs-order entropy of the vector quantizer output.
The advantage of EC-RVQ over the other VQ methods is achieved mainly by exploiting
the statistical dependencies among the VQ stages [10].

The efficiency of the RVQ structure, CEC-RVQ can outperform EC-RVQ in rate-
distortion, performance, encoding complexity, and memory. CEC-RVQ can also achieve
better compression performance than some of the best previously reported finite-state and
predictive VQ techniques of classes. Much of the performance gain due to the strategy of
locating the best conditioning stage symbols given a limit on entropy coder complexity

and memory [5].

1.2 Communication System Model

Consider the block diagram of communication system model shown in figure 1.1. The
basic building blocks of this model are source-user pair, the encode-decoder pair and the
channel. This model is important for two reasons. First, the various elements are suitablé
idealized from their physical components to allow the model to be sufficiently general for

most communication system. Second, if the model is statistically characterizeable, then
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the model proves amenable to productive analysis. We proceed to describe briefly each of

this communication system models.

Encoder
x !
Source | Source Channel ;
; Encoder Encoder 5
Channel

Decoder ©
y ;
User : Source Channel :
] Decoder Decoder ;

Figure 1.1  Block diagram of a communication system model

The function of a communication system is to convey “useful” information from the
source to the user. Often, the user does not require an exact reproduction of the message
produced by the source. For example, distortion, which does not degrade the intelligibility
of speech, does not hinder a speech communication system’s ability to convey the
pertinent information. In general, a fidelity criterion may be associated with each source-
user pair that measures the effect of any distortion of the received message relative to the
actual transmitted message. Ideally, fidelity criteria should measure the effect of
transmission errors on the users ability to use the received message relative to the
usefulness of the source’s intended message. Unfortunately, such fidelity ensures are
unknown for many source-user pairs, or are very complex and difficult to use. Less
descriptive, but more tractable fidelity measure may be defined by assigning functional
values to the various errors that the communication system may make.

1.3 Compression

Image compression maps as shown in figure 1.2, an original image into a bit stream
suitable for communication over or storage in a digital medium. The number of bits
required to represent the coded image should be smaller than that required for original

image so that one can use less storage space or communication time.
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There are two type of compression lossless compression, also called noiseless coding;
data compaction or entropy coding refers to algorithms which allow the original pixel
intensities to be perfectly recovered from compressed representation. Lossy compression

algorithms do not allow that.

Origional ‘
Image Compressed bit
. .. stream
Signal Quantization Loss Less
> Decomposotion g coding : >

(a) A General System for Image Comression

8 X 8 Discrete R Scalar Run length or
Cosine Transform Quantization | Huffman coding

(b) The JPEG System for Image Compression

Wavelet Transform R Vector Loss Less
Quantization coding

(c) The compression System considered in this work

Figure 1.2: Image compression System

1.3.1 Lossy/Lossless Coding

In lossless coding, often referred to as entropy coding, the coded message is perfectly
reconstructed from the coded data. Any source that is inherently digital is subject to
lossless coding. Compression is achieved by exploiting skewed symbol probability sets
and inters symbol dependencies in the source to be coded. The family of entropy coders is
big, and can be categorized into coders where the symbol probabilities need to be known,
or not need to be known, in order to design the coder. Huffman coding [11] and
arithmetic coding [12] are well-known exé.mples belonging to the first group.

In lossy coding, or source coding with a fidelity criterion, the objective is to reconstruct
the signal with as little distortion as possible according to some distortion criterion.Lossy
coding, also referred to as quantization, introduces a new dimension to the coding

problem.
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1.4 Vector Quantization
Scalar quantization is used primarily for analog-to-digital conversion, VQ is used with
sophisticated digital signal processing, where in most cases the input signal already has
some form of digital representation and the desired output is a compressed version of the
original signal. In VQ, the inputs are vectors, rather than scalars.
A vector quantizer Q of dimension k and size.N is a mapping from a vector in k-
dimensional Euclidean space, R* , into a finite set C containing N output or reproduction
points, called code vector or codewords as shown in figure 1.3. Thus,

Q: R¥— C,
Where C=(y1, y2, ...... ,yn) and yi Ry for each i I ={1,2,....,.N} set C is called

codebook.

Source Input Encoder Decoder Reconstruction
Group into First Close _| Table
Vector Code-Vector "| Lookup Unblock
CodeBook index Index CodeBook
-

Figure 1.3. Block diagram of Vector Quantization

1.4.1 VQ is better than scalar Quantization
Scalar quantizer treats each pixel independently and does not use correlation between
neighboring pixels. Where as in vector quantizer, Image (data) divided into vectors
(blocks) as the result correlation among pixels in vectors is exploited. So, Block size
should be appropriate:

. Too large block : correlation is loss

. Too small block : More code vectors

. If no interpixel correlation, then no gain
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1.4.2 Why Entropy coding with Quantization?

Entropy coding is now being used frequently in conjunction with vector quantization for
image coding. Its use is motivated by the fact that the probability distribution of VQ
coded images is generally skewed or non-uniform. While the average bit rate can most
often be reduced by entropy coding the VQ codeword, improvement in rate-distortion
performance is usually attainable by embedding the entropy coding * in the design process
such that both the VQ codebook and entropy coder are optimized jointly.

By generalizing the entropy-constrained scalar quantization design to vector case,
introduced an iterative descent algorithm for the design of entropy-constrained vector
quantization.

Entropy constrained VQ method consist of first quantizing the input image using a high
order entropy-constrained VQ and then coding the image using a first order entropy
coder. The distortion measure used in the entropy constrained optimization is essentially
the first order entropy of image.

Ordinary VQ strives to minimize average distortion subject to a constraint on the number
of codewords. This is equivalent to minimizing average distortion for a given rate, when
rate is measured by the log of the number of codewords. This is suitable optimization
formulation when the system is fixed rate and no subsequent entropy coding take place.
If we intend to entropy code the output of a VQ, then it make more sense to design the
quantizer with the entropy coding in mind, that is to minimize the average distortion
subject to a constraint on the quantization output entropy rather than the number of

codewords.

1.4.3 Major Issues in VQ
* Generation (construction) of codebook
*  concerns what needs to be included in the codebook
* Design of codebook

»  concerns structuring codebook entries to minimize search time
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2. Fundamentals

Everyday, an enormous amount of information is stored, processes and transmitted
digitally. Companies provide business associates, investors and potential customers with
financial data, annual reporfs, and inventory and product information over the internet.
Other entry tracking two of the most basic on-line transaction is routinely performed from
the comfort of one’s own home. Cable television progrgmming on demand is on the verge
of becoming a reality. Digital image and video compression is now essential. Internet
teleconferencing because much of this on-line information is graphical or pictorial in
nature, the storage and communication requirements are immense. Methods of
compressing the data prior to storage and transmission are of significant practical and
commercial interest. High Definition Television (HDTV), satellite communication and
digital storage of movies would not be feasible without a high degree of compression.
Image compression addresses the problem of reducing the amount of data required to
represent a digital image. The underlying basis of the reduction process is the removal; of
redundant data. Mathematical viewpoint, this amount to transforming a 2-d pixel array
into a statistically uncorrelated data set, the transformation is applied prior to storage or
transmission of ‘image_. At some later time, the compressed image is decompressed to
reconstruct the original image or an approximation of it.

Interest in image compression dates more back than 35 years. The initial research an
effort in this field was on the development of analog methods for reducing the video
transmission bandwidth, a process called bandwidth compression. The advent of digital
computer and subsequent development of advanced integrated circuits however caused
interest to shift from analog to digital compression approaches. With relatively recent
adoption of several key intemational images compression standards, the field has
undergone significant growth through the practical application of the theoretic work that
began in the 1940’s, when C.E.Shannon and other first formulated the probabilistic view
of information and its representation, transmission and compression.

Currently, image compression is organized as an “Enabling technology”. In addition to
the area just mentioned, image compression is the natural technology for handling the
increased spatial resolution of today’s imaging sensors and evolving broadcast television
standards. Furthermore, image compression plays a major role in many important and
diverse applications, including televideo conferencing, remote sensing, document and

medical images, facsimile transmission, and the control of remotely piloted vehicles in
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military. in short, an ever expanding number of applications depend on the efficient
manipulation, storage and transmission of binary, gray scale and color images.

2.1 Background

The term data compression refers to the process of reducing the amount of data required
to represent a given quantity of information. a clear distinction must be made between
data and information. they are not synonymous. Infact, data are the means by which
information is conveyed. Such amount of data rriay be used to represent the same amount
of information. Such might be the case, for example, if a long;V\rinded individual and
someone who is short and to the point were to relates the same story. Here, the
information of interest is the story; words are the data used to relate the information. If
the individual use a different number of words to tell the same basic story, to different
versions of the story are created, and at least one includes nonessential data that is it
contain either provide no relevant information or simply restate that which is already
known. It is thus said to be data redundancy.

Data redundancy is a central issue in digital image compression. It is not an abstract
concept but a mathematically quantifiable entity. If n; and n, denote the number of
information carrying units in two data sets that represent the same information, the

relative redundancy RD of the first data set can be defined as

RD=1-1/CR 2.1
Where CR, commonly called as compression ratio, is
CDh = n1/n2 (22)

For the case n2=nl, CR =1 and RD=0, including that the first representation of the
information conations no redundant data, when n2<<nl, CD— and RD —1, imply

significant compression contains no redundant data. Finally, when the case n2>>nl,
CR—0 and RD—-w, indicating that the second data set contain much more data than the
original ‘representation. This is of course, is the normally undesirable case of data
expansion. In general CR and RD lie in the open intervals (0, ) and (-0, 1) respectively.
- A practical compression ratio, such as 10(or 10:1), means that the second or compresses
data set. The corresponding redundancy of 0.9 implies that 90% of the data in the first
data set is redundant.
In digital image compression, three basic redundancies can be identified are exploited:
coding redundancy, inter pixel redundancy and psycho visual redundancy. Data

compression is achieved when one or more of these reduced or eliminates.
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2.1.1 Coding redundancy
We developed the technique for image enhancement by histogram processing on the
assumption that the gray levels of an image are random quantitiesv. We showed that great
deal of information about the appearance on an image could be obtained from histogram
of these gray levels. In this section, we utilize a similar formulation to show hoe the gray
level histogram of an image also can provide a great deal of insight into the construction
of codes to reduce the amount of data used to represent it.
Let us assume, once again in, that a discrete random variable rk in the interval {0,1]
represent the gray levels on ap image and that each rk occurs with probability pr(rk).
Pr(tk) =nk /n, k=0,1,2,...,L-1 (2.3)
Where L is the number of gray levels, nk is the number of times that the k™ gray level

appears in the image and n is the total number of pixels in the image. If the number of bits
used to represent each value of rk is 1(rk), then average number of bits represent each

pixel is

Lavg = 1(tk)pr(rk) 2.4
That is the average length of code words assigned to the various gray-level values is
found by summing the products if the number of bits used to represent each gray level
and the probability that the gray levels occurs. Thus the total number of bit required to
code an MxN and MNLayg.
Representing the gray levelé of an image with a natural m-bit binary code reduces to m
bits, that is, Layg =m when is substituted for 1(rk). Then the constant m may be taken
outside the summation, leaving only the sun of the pr(rk) for 0<k<L-1, which of course
equal 1.
2.1.2 Inter-pixel Redundancy
If the gray levels in image are not equally probable variable length coding can be used to
reduce the coding redundancy that would result from a straight or natural binary encoding
of their pixels. The coding process, however would not alter the level of correlation
between the pixel within the images. In other words, the codes used to represent the gray
levels of each image have nothing to do with the correlation between pixels. This
correlation result from the structural or geometric relationship between the objects in the
image. Autocorrelation coefficient computes along one line of each image.

Y(An)y= A(An) / A(0) (2.5)

where

10
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A(An)=(1/N)-An (2.6)
The scaling factor accounts for the varying number of sum terms that arise for each

integer value of An, delta n must be strictly less then N, the number of pixels on a line.

2.1.3 Psycho visual Redundancy

We notice in inter pixel redundancy that the brightness of a region, as perceived by the
eye, depends on factors other than simply the light reflected by the region. For example,
intensity variations can be perceived in an area of constant intensity. Such phenomena
result from the fact that eye does not respond with equal sensitivity to all visual
information. Certain information simply has less relative importance than other
information in normal visual processing. This information is said to be psycho-visually
redundant. It can be eliminated without significantly impairing the quality of image
perception.

The psychovisual redundancies exist should not come as surprise, because human
perception of the information in an image normally does not involve quantitative analysis
of every pixel value of image. In general, an observer searches for distinguishing features
such as edge or textual regions and mentally combines them into recognizable grouping.
The brain then correlates these groupings with prior knowledge I order to complete the
image interpretation process.

Since the elimination of psychovisually redundant data result in a loss of quantitative
information, it is commonly referred to as quantization. This terminology is consistent
with normal usage of the word, which generally means the mapping of a broad range of
input valued to limited number of output value. As it is irreversible operation,

Quantization results in lossy data compression.

2.2 Fidelity Criteria

As noted previously, removal of psycho visually redundant results in a loss of real or
quantitative visual information. Because information of interest may be lost, a repeatable
and reproducible means of quantifying the nature and extent of information loss is highly
desirable. Two general classes of criteria are used as for such an assessment: (1)
Objective fidelity criteria (2) Subjective fidelity criteria.

When the level of information loss can be expresses as a function of the original or input

image and the compresses and subsequently decompresses output image, it is said to be

11
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based on an objective fidelity criteria. A good example is the root mean square error
between an input and output image. Let f{x,y) denote an estimate and approximation of
f(x,y) that result from compressing and subsequently decompressing the input. For any

value of x and y the error e(x,y) between f(x,y) and f{x,y) can be define as.

e(x,y)= Ax.y)- f(x,y) \ 2.7
so that the total error between two images is
‘M1 Nl
r X Axy-fxy)l (2.8)
x=0 y=0

where the images are of the size MxN. The root mean square error,rms, between f(x,y and

f(x,y) then is the square root of squared error averages over the MxN array, or

ems= [(IMN)x T T [fAx.y)- f(xy)]"? (2.9)
M-1 N-1
Y X Axy)
x=0 y=0

SNR s = ~mm-mmmmmmommammmcmmmmcmmec e s e (2.10)

M-1  N-1
Y T [fxy)- ey’
x=0 y=0

a closely related objective fidelity criterion is the men squélre signal-to-noise ratio of the
compresses-decompresses image. If f{x,y) is considered to be the sum of original image
f(x,y) and a noise signal e(x,y), the mean-square signal-to-noise ratio of the output image,
denoted SNR ;.

2.3 Image Compression Models |

In section 2.2 we discusses individually three general techniques for reducing or
compressing the amount of data required-to represent an image. However these three
techniques typically are combined to form practical image compression systems. In this
section we examine overall characteristics of such a system and develop a general model
to represent it.

A compression system consists of two distinct blocks; an encoder and a decoder. An input
image f(x,y) fed into the encoder, which creates a set of symbols from the input data.

After transmission over the channel, the encoded representation is fed to the decoder,

12
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where a reconstructed output image f(x,y) is generated. In general f(x,y) may or may not
be an exact replica of f(x,y). If it is, the system is error free or information preserving; if
not, some level of destination is present in the reconstructed image.

Both the encoder and decoder, figure 2.1; consist of two relatively independent function
or sub blocks. The encoder is made up of a source encoder, which removes input
 redundancies and a channel encoder, which increase the noise immunity of the source
encoder’s output. As would be expected, the decoder includes a channel decoder followed
by a source decoder. If the channel between the encode and decoder is noise free, the
channel encoder and decoder are omitted and the general encoder and decoder become the
source encoder and decoder respectively.

2.3.1 The Source Encoder and Decoder

The source encoder is responsible for reducing or eliminating any coding, inter-pixel or
psycho visual redundancies in the input image. The specific application and associated
fidelity requirements dictate the best encoding approach to use in any given situation.
Normally, the approach can be modeled by a series of three independent operations.

As shown in Figure 2.2(a), In the first stage of the source encoding process, thé mapper
transforms the -input data into a format designed to reduce inter-pixel redundancies in the
input image. This operation generally is reversible and may or may not reduce directly the

amount of data required to represent the image.

13
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f(x, :
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Figure2.1 A General Compression Model

f(x,y) :
Mapper Quantizer of Symbol | chapnel
> encoder
Channel
| Symbol | Inverse |
Decoder mapper F(xy)

Figure 2.2  (a) Source Encoder (b) Source Decoder

An image is represented by a set of transform coefficients. Here, the mapper transforms
the image into an array of coefficient s, making its interpixel redundancies more
accessible for compression in later stages of encoding process.

The second stage or quanﬁzer block reduces the accuracy of the mappers output in
accordance with some pre-established fidelity criterion. This reduces the psycho visual
redundancies of the input image.

In the third and final stage of the source encoding process, the symbol coder creates a
fixed or variable length code to represent the quantizer output and maps the output in
accordance with the code. The term symbol coder distinguishes this coding operation
from the overall source encoding process. In most cases, a variable length code is used to
represent the mapped and quantized data set. It assigns the shortest code words to most
frequently occurring output values and thus reduces coding redundancy. Source encoding
process as three successive operation but all  three operations are not necessarily

included in every compression system.

2.3.2 The Channel Encoder and Decoder
The channel encoder and decoder play an important role in the overall encoding-decoding

process when the channel is noisy or prone to error. They are designed to reduce the
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impact of channel noise bylinteresting a controlled form of redundancy into the source
encoded data. As the output of the source encoder contains little redundancy, it would be
highly sensitive to transmission noise without the addition of this “controlled
redundancy”. One of the most useful channel encoding techniques was devised by R,

W.Hamming.

2.4 Image Compression Techniques

Image compression techniques can be divided into two major families; lossy and loss less.
Lossy image compression concedes a certain loss of accuracy in exchange for greatly
increased compression. Loss less compression consist of those techniques guaranteed to
generate an exact duplicate of the input data stream after a compress/expand cycle. This is
the type of compression used when storing database records, spreadsheets, or word
processing file.

2.4.1 Lossless Coding

If the original signal is digital and can be perfectly reconstructed from the coded signal or
data, then the coding scheme is called noiseless, lossless, entropy coding. Lossless is
often required in some systems e.g in coding binary computer programs for storage or
transmission. |

Entropy coding involves variable rate and variable length mappings of codewords. The
instantaneous rate of an entropy encoder varies about its average entropy and one must be
concerned with buffer overflow and underflow problem in the implementation.

Depending on the memory structure of the source, noiseless source coding typically
achieves in practice a data rate deduction or data compression ratio of about 5:1, and
often achieves only about 2:1. these compression ratios are not not sufficient in many
circumstances to reduce the output rate of discrete amplitude source to values not greater

than a given

24.2 Lossy Coding

If the original data or signal cannot be accurately reconstructed from the coded data or
signal then the technique is called Noisy source coding. Loss can be suitably controlled
using a fidelity criteria or distortion measure. Noisy source coding techniques have more

compression rates then noiseless source coding techniques.
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Shanon Noisy Source Coding Theorem and its converse imbue the distortion rate function
with its operational significance. The distortion D(A) of code book A is less then or equal
to some constant D, then we say the codebook is D-admissible.

The size of a code book is defined by the number of n-dimensional code vectors which

comprise it.
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3. Compression Techniques

One of the important aspects of image storage is its efficient compression. To make this
fact clear let's see an example.
An image, 1024 pixel x 1024 pixel x 24 bit, without compression, would require 3 MB of
storage and 7 minutes for transmission, utilizing a high speed, 64 kb/s, ISDN line. If the
image is compressed at a 10:1 compression ratio, the storage requirement is reduced to |
300 KB and the transmission time drops to under 6 seconds. Seven 1 MB images can be
compressed and transferred to a floppy disk in less time than it takes to send one of the
original files, uncompressed, over an AppleTalk network.
In a distributed environment large image files remain a major bottleneck within systems.
Compression is an important component of the solutions available for creating file sizes
of manageable and transmittable dimensions. Increasing the bandwidth is another method,
but the cost sometimes makes this a less attractive solution.
Platform portability and performance are important in the selection of the
compression/decompression technique to be employed. Compression solutions today are
more portable due to the change from proprietary high end solutions to accepted and
implemented international standards. JPEG is evolving as the industry standard technique
for the compression of continuous tone images.
Two categories of data compression algorithm can be distinguished: lossless and 'lossy’
Lossy techniques cause image quality degradation in each compression/decompression
step. Careful consideration of the human visual perception ensures that the degradation is
often unrecognizable, though this depends on the selected compression ratio. In general,
lossy techniques provide far greater compression ratios than lossless techniques.
Here we'll discuss the roles of the following data compression techniques:
o Lossless coding techniques

o Run length encoding

o Huffman encoding

o Entropy coding (Lempel/Ziv)

o Areacoding

o Lossy coding techniques
o Transform coding (DCT/Wavelets/Gabor)
o Vector quantization

o Segmentation and approximation methods
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o Spline approximation methods (Bilinear Interpolation/Regularisation)

o Fractal coding (texture synthesis, iterated functions system [IFS], recursive
IFS [RIFS])

o Efficiency and quality of different lossy compression techniques

3.1 Lossless coding techniques

Lossless coding guaranties that the decompressed irﬁage is.absolutely identical to the
image before compression. This is an important requirement for some application
domains, e.g. medial imaging, where not only high quality is in demand, but unaltered
archiving is a legal requirement. Lossless techniques can also used for the compression of
other data types where loss of information is not acceptable, e.g. text documents and
program executables.

Some compression methods can be made more effective by adding a 1D or 2D delta
coding to the process of compression. These deltas make more effectively use of run
length encoding, have (statistically) higher maxima in code tables (leading to better
results in Huffman and general entropy coding), and build greater equal value areas
usable for area coding.

Some of these methods can easily be modified to be lossy. Lossy element fits perfectly
into 1D/2D run lengfh search. Also, logarithmic quantization may be inserted to provide
better or more effective results.

3.1.1 Run length encoding

Run length encoding is a very simple method for compression of sequential data. It takes
advantage of the fact that, in many data streams, consecutive single tokens are often
identical. Run length encoding checks the stream for this fact and inserts a special token
each time a chain of more than two equal input tokens are found. This special input
advises the decoder to insert the following token » times into his output stream.

Following is a short example of this method:

Clock Input Coder Decoder
Output Output

1 A

2 B A

3 C B A

4 c @ B

5 c @ @

6 c 1%} @
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7 C 2 2
8 D %5C 2
9 E D Ccccce
10 2 E D
11 2 2 E

In this example, there are 9 tokens going into the coder, but just 7 going out. The
affectivity of run length encoding is a function of the number of equal tokens in a row in
relation to the total number of input tokens. This relation is very high in un-dithered two
tone images of the type used for facsimile. Obviously, affectivity degrades when the input
does not contain too many equal tokens. With a rising density of information, the
likelihood of two following tokens being the same does sink significantly, as there is
always some noise distortion in the input.

Run length coding is easily implemented, either in software or in hardware. It is fast and
very well verifiable, but its compression ability is very limited.

3.1.2 Huffman encoding

This algorithm, developed by D.A. Huffman, is based on the fact that in an input stream
certain tokens occur more often than others. Based on this knowledge, the algorithm
builds up a weighted binary tree according to their rate of occurrence. Each element of
this tree is assigned a new code word, whereat the length of the code word is determined
by its position in the tree. Therefore, the token which is most frequent and becomes the
root of the tree is assigned the shortest code. Each less common element is assigned a
longer code word. The least frequent element is assigned a code word which may have
become twice as long as the input token.

The compression ratio achieved by Huffman encoding uncorrelated data becomes
something like 1:2. On slightly correlated data, as on images, the compression rate may
become much higher, the absolute maximum being defined by the size of a single input
token and the size of the shortest possible output token (max. compression = token
size[bits]/2[bits]). While standard palletized images with a limit of 256 colors may be
compressed by 1:4 if they use only one color, more typical images give results in the
range of 1:1.2 10 1:2.5.

3.1.3 Entropy coding (Lempel/Ziv)

The typical implementation of an entropy coder follows J. Ziv/A. Lempel's approach.
Nowadays, there is a wide range of so called modified Lempel/Ziv coding. These

algorithms all have a common way of working. The coder and the decoder both build up
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an equivalent dictionary of met symbols, each of which represents a whole sequence of
input tokens. If a sequence is repeated after a symbol was found for it, then only the
symbol becomes part of the coded data and the sequence of tokens referenced by the
symbol becomes part of the decoded data later. As the dictionary is build up based on the
data, it is not necessary to put it into the coded data, as it is with the tables in a Huffman
coder. | |

This method becomes very efficient even on virtually random data. The average
compression on text and program data is about 1:2, the ratio on image data comes up to
1:8 on the average GIF image. Here again, a high level of input noise degrades the
efficiency significantly. Entropy coders are a little tricky to implement, as there are
usually a few tables, all growing while the algorithm runs. LZ coding is subject to patents
owned by IBM and Unisys (formerly Sperry).

3.1.4 Area coding

Area coding is an enhanced form of run length coding, reflecting the two dimensional
character of images. This is a significant advance over the other lossless methods. For
coding an image it does not make too much sense to interpret it as a sequential stream, as
it is in fact an array of sequences, building up a two dimensional object. Therefore, as the
two dimensions are independent and of same importance, it is obvious that a coding
scheme aware of this has some advantages. The algorithms for area coding try to find
rectangular regions with the same characteristics. These regions are coded in a descriptive
form as an Element with two points and a certain structure. The whole input image has to
be described in this form to allow lossless decoding afterwards.

The possible performance of this coding method is limited mostly by the very high
complexity of the task of finding largest areas with the same characteristics. Practical
implementations use recursive algorithms for reducing the whole area to equal sized sub
rectangles until a rectangle does fulfill the criteria defined as having the same
characteristic for every pixel.

This type of coding can be highly effective but it bears the problem of a nonlinear
method, which cannot be implemented in hardware. Therefore, the performance in terms

of compression time is not competitive, although the compression ratio is.
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3.2 Lossy coding techniques
In most of applications we have no need in the exact restoration of stored image. This fact
can help to make the storage more effective, and this way we get to lossy compression
methods. Lossy image coding techniques normally have three components:
» image modeling which defines such things as the transformation to be applied to
the image | |
o parameter quantization whereby the data generated by the transformation is
quantized to reduce the amount of information
« encoding, where a code is generated by associating appropriate codewords to the
raw data produced by the quantizer.
Each of these operations is in some part responsible of the compression. Image modeling
is aimed at the exploitation of statistical characteristics of the image (i.e. high correlation,
redundancy). Typical examples are transform coding methods, in which the data is
represented in a different domain (for example, frequency in the case of the Fourier
Transform [FT], the Discrete Cosine Transform [DCT], the Kahrunen-Loewe Transform
[KLT], and so on), where a reduced number of coefficients contains most of the original
information. In many cases this first phase does not result in any loss of information.
The aim of quantization is to reduce the amount of data used to represent the information
within the new domain. Quantization is in most cases not a reversible operation:
therefore, it belongs to the so called lossy' methods.
Encoding is usually error free. It optimizes the representation of the information (helping,
sometimes, to further reduce the bit rate), and may introduce some error detection codes.
In the following sections, a review of the most important coding schemes for lossy
compression is provided. Some methods are described in their canonical form (transform
coding, region based approximations, fractal coding, wavelets, hybrid methods) and some
variations and improvements presented in the scientific literature are reported' and
discussed.
3.2.1 Transform coding (DCT/Wavelets/Gabor)
A general transform coding scheme involves subdividing an NxV image into smaller nxn
blocks and performing a wunitary transform on each sub image. A unitary transform is a
reversible linear transform whose kernel describes a set of complete, orthonormal discrete
basic functions. The goal of the transform is to decorrelate the original signal, and this

decorrelation generally results in the signal energy being redistributed among only a small
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set of transform coefficients. In this way, many coefficients may be discarded after
quantization and prior to encoding. Also, visually lossless compression can often be
achieved by incorporating the HVS contrast sensitivity function in the quantization of the
coefficients.
Transform coding can be generalized into four stages:

e image subdivision '

e image transformation

e coefficient quantization

e Huffman encoding.
For a transform coding scheme, logical modeling is done in two steps: a segmentation
one, in which the image is subdivided in bidimensional vectors (possibly of different
sizes) and a transformation step, in which the chosen transform (e.g. KLT, DCT,
Hadamard) is applied.
Quantization can be performed in several ways. Most classical approaches use 'zonal
coding', consisting in the scalar quantization of the coefficients belonging to a predefined
area (with a fixed bit allocation), and 'threshold coding', consisting in the choice of the
coefficients of each block characterized by an absolute value exceeding a predefined
threshold. Another possibility, that leads to higher compression factors, is to apply a
vector quantization scheme to the transformed coefficients.
The same type of encoding is used for each coding method. In most cases a classical
Huffman code can be used successfully. The JPEG and MPEG standards are examples of

standards based on transform coding.

3.2.2 Vector quantization

A vector quantizer can be defined mathematically as a transform operator T from a K-
dimensional Euclidean space R"X to a finite subset X in R"K made up of N vectors. This
subset X becomes the vector'codebook, or, more generally, the codebook.

Clearly, the choice of the set of vectors is of major importance. The level of distortion due
to the transformation T is generally computed as the most significant error (MSE)
between the "real" vector x in R*K and the corresponding vector x’ = T(x) in X. This error
should be such as to minimize the Euclidean distance d. |

An optimum scalar quantizer was proposed by Lloyd and Max. Later on, Linde, Buzo and

Gray resumed and generalized this method, extending it to the case of a vector quantizer.
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The algorithm that they proposed is derived from the KNN cauterization method, and is
performed by iterating the following basic operations: |
« subdivide the training set into N groups (called 'partitions' or "Voronoi regions"),
which are associated with the N codebook letters, according to a minimum
distance criterion;
« the centroids of the Voronoi regions become the updated codebook vectors;
« compute the average distortion: if the percent reduction in the distortion (as
compared with the previous step) is below a certain threshold, then STOP.
Once the codebook has been designed, the coding process simply consists in the
application of the T operator to the vectors of the original image. In practice, each group
of n pixels will be coded as an address in the vector codebook, that is, as a number from 1
to V.
The LBG algorithm for the design of a vector codebook always reaches a local minimum
for the distortion function, but often this solution is not the optimal one. A careful
analysis of the LBG algorithm's behavior allows one to detect two critical points: the
choice of the starting codebook and the uniformity of the Voronoi regions' dimensions.
For this reason some algorithms have been designed that give better performances. With
respect to the initialization of the LBG algorithm, for instance, one can observe that a
random choice of the starting codebook requires a large number of iterations before
reaching an acceptable amount of distortion. Moreover, if the starting point leads to a
local minimum solution, the relative stopping criterion prevents further optimization
steps.
3.2.3 Segmentation and approximation methods
With segmentation and approximation coding methods, the image is modeled as a mosaic
of regions, each one characterized by a sufficient degree of uniformity of its pixels with
respect to a certain feature (e.g. grey level, texture); each region then has some
parameters related to the characterizing feature associated with it.
The operations of finding a suitable segmentation and an optimum set of approximating
parameters are highly correlated, since the segmentation algorithm must take into account
the error produced by the region reconstruction (in order to limit this value within
determined bounds). These two operations constitute the logical modeling for this class of

coding schemes; quantization and encoding are strongly dependent on the statistical
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characteristics of the parameters of this approximation (and, therefore, on the
approximation itself).

Classical examples are polynomial approximation and texture approximation. For
polynomial approximation regions are reconstructed by means of polynomial functions in
(x, v); the task of the encoder is to find the optimum coefficients. In texture
approximatiori, regions are filled by synthesizing a parameterized texture based on some
model (e.g. fractals, statistical methods, Markov Random Fields [MRF]). It must be
pointed out that, while in polynomial approximations the problem of finding optimum
coefficients is quite simple (it is possible to use least squares approximation or similar
exact formulations), for texture based techniques this problem can be very complex.

3.2.4 Spline approximation methods (Bilinear Interpolation/Regularisation)

These methodologies fall in the more general category of image reconstruction or sparse
data interpolation. The basic concept is to interpolate data from a set of points coming
from original pixel data or calculated in order to match some error criteria. The problem
of interpolating a set of sparse data is generally ill posed, so some regularization
algorithm must be adopted in order to obtain a unique solution. The problem is well
documented, and many interpolation algorithms have been proposed.

In order to apply this kind of technique to image coding, a good interpolant must be used
to match visual criteria. Spline interpolation provides a good visual interpolant,
notwithstanding jts requiring a great computational effort. Bilinear interpolation is easier
to implement, while maintaining a very good visual quality. Regularization involves the
minimization of an energy function in order to obtain an interpolant which presents some
smoothness constraints; it can be combined with non-continuities along edges in order to
preserve contour quality during reconstruction. Generally all interpolants computations
require the solution of very large linear equation sets, even if related to very sparse
matrices. This leads to the use of recursive solution such as relaxation (suitable for a large
parallel implementation), or to the use of gradient descent algorithm.

The use of an interpolation algorithm for image coding is more interesting when related to
techniques such as two source decomposition, where the image is modeled as the sum of
two sources; one is the stationary part (it can be considered related to the low frequency
content), the second is the residual content coming from non-stationeries such as edges.
The first of the two sources is coded by means of a prediction scheme that can be one of

the previous described interpolants. The second source (the residual) can be coded trough
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the use of a classical coding method (transform coding, vector or scalar quantization etc).
Moreover two source decomposition is a very effective coding scheme as far as it shows a
low tile effect that affects all block coding techniques when compression factors become
higher.

3.2.5 Fractal coding (texture synthesis, iterated functions system [IFS], recursive
IFS [RIFS]) |

Fractal parameters, including fractal dimension, lacunarity, as well as others described
below, have the potential to provide efficient methods of describing imagery in a highly
compact fashion for both intra- and interframe applications. Fractal methods have been
developed for both noisy and noise free coding methods.

Images of natural scenes are likely candidates because of the fractal structure of the scene
content, but results are reported to be applicable to a variety of binary, monochrome, and
color scenes. ,

In the mid-eighties Dr Michael Barnsley reported the use of "Iterated Function System"
for image compression and synthesis. Using sets of affine transformations developed for a
given image, and a principal result known as the "collage theorem", intraframe
compressions in excess of 10,000:1 and interframe compression in excess of 1,000,000:1
were reported. The collage theorem states that if an image can be covered
(approximately) with compressed affine transformations of itself, then the image can be
(approximately) reconstructed by computing the attractor (in the sense of non linear
dynamic systems) of this set of affine transformations.

This convergence was extremely slow, about 100 hours on a Cray, unless assisted by a
person and was presented as an illustration of a scientific possibility, not as a commercial
reality. In 1987 Barnsley and Sloan formed Iterated Systems Inc. to develop a product
that would function in a commercial environment. By the end of 1988 Iterated Systems
had developed the patented technique called the 'Fractal Transform' which has become
the basis of their current product range. The development allowed a real world image to
be reduced to a set of fractal equations based on the image being processed, rather than a
huge library of pre-calculated, reference, fractal patterns. Image compression algorithms
which are noise free have been reported to be developed from this transform for real time
automatic image compression at ratios between 10:1 and 100:1

Researchers at BellCore have developed a compression method that incorporates a Peano

Scan (the Peano curve is a "space filling" fractal curve) with a fractal based coding
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schema for intraframe compression, so making it possible to archive high picture quality
with bit rates of less than one bit per pixel. A fractal based method was reported earlier by
Walach while the concepts of using a Peano Scan had been used for storage, compression
and display. The BellCore researchers have combined these two fractal concepts into an
efficient implementation which is now being incorporated into a VLSI chip. Compression
results show good quality imagery at a rate of 0.8-1 bit per pixel. The technique may be
implemented in an adaptive fashion since a local estimate of fractal dimension provides
an objective measure of image complexity.
3.3 Efficiency and quality of different lossy compression techniques
The performances of lossy picture coding algorithms is usually evaluated on the basis of
two parameters:

1. the compression factor (or analogously the bit rate) and

2. the distortion produced on the reconstruction.
The first is an objective parameter, while the second strongly depends on the usage of the
coded image. Nevertheless, a rough evaluation of the performances of a method can be
made by considering an objéctive measure of the error, like MSE or SNR.
For the methods described in the previous pages, average compression ratios and SNR

values obtainable are presented in the following table:

Method vQ DCT-5Q DCT-VQ AP SplineTSD Fractals

Bit Rate 0.8-0.4 0.8-0.3 0.3-0.08 0.3-0.1 0.4-0.1 0.8-0.0

(bpp)

SNR (dB) 36-30 36-31 30-25 image 36-32 image
dependent dependent

Comparison of Different Compression Methods

During the last years, some standardization processes based on transform coding, such as
JPEG, have been started. Performances of such a standard are quite gbod if compression
factors are maintained under a given threshold (about 20 times). Over this threshold,
artifacts become visible in the reconstruction and tile effect affects seriously the images
decoded, due to quantization effects of the DCT coefficients.

On the other hand, there are two advantages: first, it is a standard, and second, dedicated
hardware implementations exist. For applications which require higher compression
factors with some minor loss of accuracy when compared with JPEG, different techniques

should be selected such as wavelets coding or spline interpolation, followed by an
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efficient entropy encoder such as Huffman, arithmetic coding or vector quantization.
Some of this coding schemes, are suitable for progressive reconstruction (Pyramidal
Wavelet Coding, Two Source Decomposition, etc). This property can be exploited by
applications such as coding of images in a database, for previewing purposes or for
transmission on a limited bandwidth channel.

3.4 Source Coding

Source codirig, or data compression, is the art of finding efficient digital representations
for a source. In theory the goal is to use as few bits as possible for a digital representation
of the source. Getting more practical, the source and application at hand put many other
constraints on the coder, such as delay and complexity constraints. If the source at hand is
inherently digital, a perfect reconstruction is often required. Considering a real-time
speech coding application, a digital representation will inevitably incur distortion. These
examples split source coding into two main paradigms: lossless and lossy source coding,
3.4.1 Lossy/Lossless Coding

In lossless coding, often referred to as entropy coding, the coded message is perfectly
reconstructed from the coded data. Any source that is inherently digital is subject to
lossless coding. Compression is achieved by exploiting skewed symbol probability sets
and inter symbol dependencies in the source to be coded. The family of enfropy coders is
big, and can be categorized into coders where the symbol probabilities need to be known,
or not need to be known, in order to design the coder. Huffman coding and arithmetic
coding are well-known examples belonging to the first group. The latter group is also
referred to as universal source coding, where Ziv-Lempel coding is a famous example
[31]. Lossless coding can also be used for analog sources when applied in combination
with lossy algorithms. One such example is the family of MPEG audio coders, where the
resulting bits from the lossy coding are fed to an entropy code. For an introduction and an
overview of lossless source coding see [20]. In lossy coding, or source coding with a
fidelity criterion, the objective is to reconstruct the signal with as little distortion as
possible according to some distortion criterion. Lossy coding, also referred to as
quantization, introduces a new dimension to the coding problem. The tole;ation of a
distortion enables tailoring of the coding scheme according to the intended consumer of
the coded signal. Lossy source coding, and in particular vector quantization, is further
treated below. For an introduction to lossy source coding, and for a comprehensive

historical overview see [20].
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3.4.2 Variable Rate

A coding scheme can also be categorized into being of fixed or variable-rate. As the
name suggests, a variable-rate scheme operates with a rate that is varying over time.
Variable-rate schemes can be categorized into source controlled schemes and network
controlled schemes. The rate of a source controlled scheme is continuously adapted
according to the characteristics of the source, while the rate of network controlled
schemes are more slowly changing in order to adapt to varying network conditions. The
family of entropy coders, discussed above, operates with a variable rate in order to adapt
to varying source characteristics. For speech coding, lossy variable-rate schemes,
adapting to source characteristics, have also been proposed, [20].

Multi-rate and embedded coders are designed to operate at varying rates in order to adapt
to varying network conditions. In short, multi-rate coders consist of a battery of coders
designed for different rates. For each transmission the rate is selected by the network.
Embedded or layered coders are also intended for operation at multiple rates, but
designed to enable a change of rate anywhere along the network path, by dropping part of
the bit stream. Traditionally, many source coding algorithms for real-time
communications have operated with a fixed rate, due to network restrictions. Lately, new
networks have opened up the area for variable-rate coding to a higher extent. This has

triggered new research on embedded and multi-rate coding .

3.43 Compression Means

The basic means for reducing the rate in a lossy source coder, are two-fold, and are often
categorized into removal of statistical redundancies and reduction of perceptual
irrelevancies Redundancy removal is a means to reduce the rate of a coder by exploiting
properties of the source to be coded. Many real-world sources show a dependency
between source samples, the source is redundant. Redundancy removal is performed by
distributing reconstruction vectors in accordance with the multi-dimensional source

distribution, and/or by employing de-correlation methods such as linear prediction.
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Figure 3.1 Coding Dimension : An illustration of the dimensions to be exploited to
achieve compression in lossy and lossless source coding.

Irrelevancy is about exploitation of properties of the intended consumer of the coded
source, for example hearing properties [20]. Irrelevancy removal is achieved by
representing the source with a reduced precision, ideally such that the intended consumer
will not perceive the distortion. The key to irrelevancy rémoval is the distortion criterion.
The criterion employed should be chosen such that it correlates well with the perceived
distortion of the intended consumer.

3.4.4 Performance Limits

Theoretical limits for the performance of lossy source coding algorithms have been

much studied. In 1959, Shannon published the classical rate-distortion theory [32]. Rate-
distortion theory bounds the minimum required rate, given a distortion criterion and a
source probability density function, without considering the structure of the code. It has
been proven that the rate-distortion bound is theoretically approachable with many
different code structures, such as block codes [32], although at the cost of infinite block
lengths. Another asymptotic lossy source coding bound is given by high-rate theory

[33]. High-rate theory considers finite blocks of samples under the assumption of high
rate or small quantization errors. In general, this theory requires an asymptotically high
rate, such that the pdf of the source is close to uniform over each decision region. High-
rate theory for scalar coding was introduced in, and the generalization and development

for blocks of samples, i.e. for vector quantization, are much due to.
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Rate-distortion theory could be considered impractical as it does not give any guidelines
for how to design tractable coders, and blocks of infinite length are usually required for
optimal performance. High-rate theory considers finite block lengths, and the point
density gives a hint on how to distribute code’ vectors. Furthermore, coders with rather
low rates have shown to follow the rules of high-rate theory [33]. Thus, high-rate theory

is attractive as a tool for designing practical system.
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4. Vector Quantization - overview

Vector quantization (VQ) has since about 1980 become a popular technique for source
coding of image and speech data. The popularity of VQ is motivated primarily by the
theoretically optimal performance; no other source coding technique at equivalent delay
can achieve better performance than optimal VQ. However, direct use of VQ suffers from
a serious complexity barrier. Many authors have proposed constrained VQ structures to
overcome the complexity, for example multistage VQ [1], tree-structuréd Vo [2-5],
vector sum VQ [6], gain-shape VQ [7], etc. Each of these solutions has disadvantages, in
most cases a reduced performance.

4.1 Definitions

A VQ Q of size N and dimension d is a mapping from a vector in the d-dimensional

Euclidean space R? into a finite reproduction set C = { €1, €2, €3, ,... €N}

Q R C 4.1
The set C , denoted.the codebook, contains N codevectors ¢kk N, , ,...., =12 ,each a
vector in R? . The index k of the codevectors is denoted codeword. The rate R of the
quantizer is defined as logz N d () [bits per sample]. The definition of Q in (2.1)

partitions R%into N disjoint fegions, each with a corresponding codevector ck .

The vector quantizer can be decomposed in two components, the encoder and the

decoder. The encoder £ maps from 4to the index set /= {1,2,...,.N}
E :R'51 A 42

and the decoder ID maps the index set into the reproduction set C , i.e.,

D:15R? 43

With this notation, the quantization operation can be written as a cascade of the encoder

and decoder:

Q(x)=D(E(x)) 4.4
The mean squared error criterion is only one of many possible distortion measures, but it

hasthe advantage of being widely used and is mathematically simple.

MSE=E[x-Q(x)]? 45
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4.2 Optimality conditions

In VQ design, the aim is to find encoder and decoder rules to minimize the chosen
distortion measure. For the squared Euclidean distance measure (with a decoder D(i) =

¢;, it can be readily shown that for a fixed partition Q« of the input space, the codevectors

= { €1, €2 €3, ,... ¢n} should be chosen as the centroid of the vectors in the region,

¢ k= E[x|x k € Q] to minimize the expected distortion is often called the centroid
condition. If instead the set of codevectors is fixed, the partition should be the nearest
neighbor partition.

both the encoder and the deéoder are completely specified by the codebook C , so finding
optimal encoder and decoder rules is equivalent to finding the optimum set of
codevectors { ¢1, €2, €3, ,... CN}

The centroid condition and the nearest neighbor partition are necessary but not sufficient
for a VQ to be optimal in the mean square sense. Sufficient conditions for a globally
optimal VQ have never been presented (except for some special cases), and a quantizer
fulfilling the necessary conditions may be far from optimal. This makes VQ design a
delicate problem. | _

The new definition of the nearest neighbor partition shows that to find the optimum
codevector to a given input vector x, it suffices to find a codevector whose Voronoi

neighbors all have greater distance to the input vector.

4.3 Brief description
4.3.1 Some main advantages:
¢ Exploit dependency that may exist within an input vector.
e Ability to generate non-cﬁbic multi-dimensional parﬁtions of input which provides
better compactioh of the inbut space

e Ability to track high order statistical characteristics of the input

4.3.2 Some main disadvantages:
¢ Encoding complexity and memory requirements increase exponentially with vector
size (under a given rate) and with bit rate

¢ Lack of robustness: sensitivity to channel noise

32



Chapter 4 Vector Quantization

¢ Conventional VQ is severely limited to modest vector and codebook size Different
more robust methods needed
4.3.3 Practical constraints:
¢ Encoding complexity and memory requirements increase exponentially with vector
size (under a given bit- rate) and with bit-rate
e Codebook grows exponentially as a function of vector size N and bit-rate 7.

¢ QOther problem is lack of robustness and sensitivity to channel noise

4.4 Quantization

Quantization is a mature topic that has been studied for many years. Early works in this

area addressed the quantization of 1-D. interestingly; much of this work is relevant in the

context of quantizing images. This simple case is scalar quantization. Here the dynamic

range of the samples is identified and level is assigned to cover the range. A more

advances form of quantization is called vector quantization. It involves extra blocks or

groups of pixels from within the image and quantizing then as separate entities.

Image compression using vector quantization (VQ) is a lossy compression technique. It

is defined as mapping Q of K-dimensional Euclidean space R k into a finite subset Y of
R* Thus,

QR*—-Y (4.6)
where y=(x;; i=1,2,...,N) is the set of reproduction vectors and N is the number of vectors
mY.

A vector quantizer is composed of two parts, encoder and decoder. An encoder will
compare each input vector with every codevector in the codebook and generate index
which represent the minimum distortion codevector from the input vector. A decoder

takes the index’s to locate the codevector in codebook and generate the output vectors.
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Figure 4.1 Block diagram of VQ

A codebook is the set of finite codevector for representing the input vector. The popular
technique in codebook design is the Linde-Buzo-Gray (LBG) algorithm [4]. The whole
image a partitioned into subblocks and all subblocks are used to training this codebook.
4.4.1 Fundamental of Vector Quantization

A quantizer considered so fé.r perform quantization on individual pixels. This quantizer
can be generdlizéd by considering new symbols composed of groups of pixels. The
procedure for extracting vectors from an image typically consists of partitioning the
image into contiguous blocks and then un-wrapping the pixels within the blocks to from
vectors. These extracted vectors are then coded by comparing them to codevectors stored
in codebook. Assume that the input vector extracted from the image is x and the
codebook consist of N codevectors, here i=0,1,.....,N-1, the comparison consist of

computing the distortion d(x,x;) for all i, and choosing as the codevector.
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4.4.2 Vector Quantizer Design

The necessary conditions for optimality provide the basis for iteratively improving a
given vector quantizer if the iteration continues to convergence a good ( hopefully close
to optimal )quantizer can be found the iteration begins with a vector quantizer consisting
of its codebook and the corresponding optimal (NN ) partition and then finds the new
codebook which is optimal for that partition this new codebook and its NN partition are
then a new vector quantizer -with average distortion no greater (and usually less )than the
original quantizer vAlthough each of these steps of optimizing a partition for a codebook
and a codebook for a partition is simple and straightforward the simultaneous satisfaction
of both conditions is not easy to achieve there are no known closed form solutions to the
problem of optimal quantization the repeated application of the improvement step
however yields an iterative algorithm which at least reduces ( or leaves unchanged) the
average distortion at each step in effect we design a sequence of vector quuantizers
which continually improve in performance if the algorithm is effective = We begin with
the problem of obtaining the initial codebook for improvement since this too is a problem
of vector quantizer design in fact if the initial codebook is good enough it may not be
worth the effort to run further improvement algorithms there are a variety of techniques
for generating a codebook that have been developed in cluster analysis (for pattern
recognition )and in vector quantization (for signal compression )We survey several of the
most useful.

4.4.2.1 Random Coding

Perhaps the simplest conceptual approach towards filling a codebook of N code word is to
randomly select the code words according to the source distribution, which can be viewed
as a MonteCarlo codebook design. The obvious variation when designing based on a
training sequence is to simply select the first N training vectors as code words if the data
highly correlated, it will likely produce a better codebook if one takes say every K™
training vector . Tills technique has often been used in the pattern recognition literature
and was used in the original development of the k-means technique. one can be somewhat
more sophisticated and randomly generate a codebook using not the input distribution
but the distribution which solves the optimization problem defining Shannon s distortion
rate function. In fact, the Shannon source coding theorems imply that such a random
selection will on the average yield a good code. Unfortunately the codebook will have no
useful structure and may turn out quite awful. Observe that here random coding means
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only that the codebook is selected at random once selected it is used in the usual
deterministic (nearest neighbor) fashion this is the same sense that random is used in
information theory

4.4.2.2 Pruning

Pruning refers to the idea of starting set and selectively eliminating (pruning) training
vectors as candidate code vectors until a final set of training vectors remains as the
codebook. In one such method a sequence of training vectors is used to populate a
codebook recursively as follows put the first training vector in the codebook. Then
compute the distortion between the next training vector and the first code word. If it is
less than some threshold, continue. If it is greater than the threshold, add the new vector
to the codebook as codeword. With each new training vector, find the nearest neighbor in
the code book. If the resulting distortion in not with in some threshold, add the training
vector to the codebook. Continue in this fashion until the codebook has enough words. A
typical choice of threshold value for the MSE distortion measure is proportional to N"2¥ =
2% where r is the rate of code. This technique is well known in the statistical clustering
literature.

4.42.3 Pairwise Nearest Neighbor Design

A more complicate, but better, means of finding a codebook from a training sequence is
the pairwise nearest neighbor (PNN clustering proposed by Equitz) similar algorithms
have also been used un the clustering literature. This is also a form pruning as it begins
with the entire training sequence of L vectors, and ends with collection of N vectors,
unlike previous design technique, however, the final vector need not to be in the training
sequence. The technique involves more computation than the preceding methods, but it is
faster than the Generalized Lloyd Algorithm which attempts to optimize the codebook.
Sauppose that training sequence has L vectors, each of which is considered to be a
separate cluster containing a single vector. The goal will be to merge vectors together into
groups or clusters until we have the desired number, say N. The codebook will then
contain the centroids of these clusters. In this manner we will have a partition of training
sequence into the correct number of cells and have the optimal codebook for this
partition. The partition might be a nearest, neighbor partition, however. The induced
vector quntizer would then replace this partition by the NN partition. The partition is
contained as follows. First compute the distortion between all pairs of vectors. The two

training vectors having the smallest distortion are combined into a single cluster and
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represented by their centriod. We now have L-1 clusters, one containing two vectors and
the rest containing single vector. at each step clusters may have more than one vector.
Suppose now that we have K clusters with N<K<=L-1 and we wish to merge two of the
clusters o hat a good set of K-1 clusters. This single step merging can be done in an
optima fashion as follows: for every pair of clusters drawn from the full collection of K
clusters, compﬁte the increase in average distortion resulting if the two clusters and their
centroids are replaced by the merged two clusters and corresponding centroids are
replaced by the merged two clusters and the corresponding centroid. This commutation is
much easier than it sounds in the case of squared error. When the best pair of clusters for
merging id found, they are merged to form a codebook with K-1 vectors. Continue in this
way until only N vectors rémain. Thus, for example, each of the K pairs of clusters
consists of two vectors Ri={x; (/);/=1,2,.....,Li} and R={x; (D);=1,2,.....,L;j}. The

contribution of these two clusters to the average distortion if they are not merged is

A=Y d(xi(D), cent(R))+ =Y d(x;(]), cent(R;)) 4.7
while the contribution if they are merged is
A=Y d(xi(l), cent(R; U R)+ =Y d(x;(1), cent(R: U R)) >A;; (4.8)

The pair of clusters Ri, Rj for which A';; . A;; is the smallest is merged. That is two

clusters are merged which thereby cause the least increase in the overall average
distortion. Each merge is optimal but the overall procedure need not be optimal, need not
produce the optimal codebook of the given size.

442.4 Product Codes

In some cases a product codebook may provide a good initial guess. for example if one
wishes to design a codebook for a k dimensional VQ with codebook size 2° for some
integral resolution R, then one can use the product of k scalar quantizers with 2% words

each. Thus if q (x) is scalar quantizer, then Q (xg,....., Xk-1 ) = (q(Xo)s-..--- ,q(Xk-1)),

“the Cartesian product of the scalar quantizers, is vector quantizer. this technique will

not work if R is an integer. In general other product structures can be used e.g. one could
first design a one dimensional quantizer ql from scratch (perhaps using a uniform
quantizer as an initial guess ) one could then use (q (X9 ) q (X;) )as an initial guess to
design a good two dimensional quantizer q2 (Xo,X; ) one could then initiate a three
dimensional VQ design with the product (q1 (xp), qQ2(X; X2)) as an initial guess One could
continue in this way to construct higher Dimensional quantizers until the final size

reached.
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4.4.2.5 Splitting

Linde et al. introduced a technique that resembles the product code initialization in that it
grows large codebook from 'small ones, but differs in that it does not require an integral
number of bits per symbol. The method is called splitting algorithm and it produces
increasingly larger codebooks of a fixed dimension the globally optimal resolution 0
codebook of a training sequence is the centriod of the entire sequence. The one code word
say yp, in this codebook can be “split” into two code words yo and yo+ € where €is a
vector of small Euclidean norm. One choice of ¢ is to make it proportional to the vector
whose ith component is the standard deviation of the ith component of the set of training
vectors. Another choice is to make it proportional to the eigenvector, corresponding to the
largest ejgen value of the covariance matrix of the training set. This new codebook has
two words and can be no worse than the previous codebook since it contains the previous
codebook. The iterative improvement algorithm can be run on this codebook to produce a
good resolution I code. When complete, all of the code words in the new codebook can
be split, for an initial guess for a resolution 2 codebook. One continues in this manner,
using a good resolution r codebook to form an initial resolution r+1 codebook by
splitting. This algorithm provides a complete design technique from scratch on a training
sequence and will late be seen to suggest a vector analog to successive approximation
quantizers.

4.5 The LBG Algorithm ,

The classical method for designing VQ codebooks is the generalized Lloyd algorithm, so
named because it is the vector extension of Lloyd’s scalar quantizer design algorithm. In
the data compression literature, this algorithm is also known as the LBG algorithm,
afgter Linde, Buzo, and Gray, whose landmark paper on VQ popularized this method.
Interestingly, the same design algorithm is known in the pattern recognition literature as
the k-means algorithm. The intended applications associated with the k-means and LBG
algorithms are different, but the algorithms are essentially the same. The first step in the
design algorithm involves obtaining a training set. This is done by collecting a set of
representative images and extracting training vectors that re considered to be typical and
representative of the rectors that will be input to the system. To achieve good
performance over a wide range of images, the training set should be large. As a rule of
thumb, a (least ION training vectors should be used to design a codebook with N code-

vectors.
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The LBG design procedure is a two-step process that can lie illustrated using a simple
example. Assume we wish to design a codebook with three code-vectors. For simplicity,
let us assume the vectors only have two elements, (i.e. a two-dimensional vector). In a
sense, these initial code-vectors represent our best guess of the codebook. Many
techniques have been suggested for obtaining an initial codebook, such as the splitting
aigorithm, the min-max algorithm, and the pair-wise nearest neighbor. (PNN) algorithm.
Perhaps the simplest of them is to randomly take N vectors from the training set and use
them as the initial vectors.
4.5.1 Basicsteps of LBG:
Stepl:
Start with a training set of vectors (get a large quantity of representative vectors: train on
one set, test with others).
Step 2:
Start with an initial codebook of size M (selected from training set); example: randomly
selected vectors from training set.
Step 3:
Vector quantize each training vector using current codebook (clustér training data).
Step 4: |
Use centroid of clusters as the updated codebook

» centroid = mean of cluster for mse and for a stationary and ergodic input since

time/ space averages replace statistical averages

+ centroid = center of mass
step 5:
Repeat from Step 3 until distortion between old and new codebook is smaller than a
selected small threshold
4.52 RemarksonLBG:
LBG guaranteed to converge and finds a locally optimal quantizer for a training set (may
not be locally optimal for the input x).
Final resulting codebook depends on initial choice, algorithm influenced by choice of
initial codebook (cluster centers), and by the choice and geometrical properties of
training data.
Local optimal design for fixed number of levels M. In coding, VQ usually used in

conjunction with entropy coding.
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« Limit the entropy of quantized signal rather than number of quantization levels in
the design process
« Entropy constrained VQ (EC-VQ)
4.5.3 Initialization in LBG
Most important issue since it can significantly affect the performance of designed
codebook. Several codebook initialization methods proposed.
Popular ones: ‘
1. Random selection from training set
2. Binary splitting for LBG codebook design
uses fixed perturbations of the current code vectors (centroids) to create more code

vectors: twice as many at each step.
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5. Lossless using EC-RVQ

Loss less compression of image data require two consecutive steps

s Decorrelation

¢ Coding
In decorrelation step the redundancy resulting from dependency among the pixels or data
values is reduced through the use of various mapping techniques because of mapping
distortions. The extent of decorrelation may be limited in applications where error free
reconstruction is required (its measuring criteria).
In the coding step, the memory less entropy coding is widely used to exploit the statistical
redundancy of the data. Information theory [30] indicates that the coding efficiency can
be improved by using higher order conditional entropy coding.

5.1 Definitions
Some definition concerning with conditional constrain model.

5.1.1 Definition of Probability
Let S=(s1, . . . , Sn) a finite-length sequence with |S| = n over A = {al, . . . ,am}. Also let
|S|a; the frequency of a; in S. lThen we define P(a;) =|Sla; / n as the PROBABILITY of
a; (in S). |
From the definition, we can directly conclude that P(a;) is always contained in the interval
(0,1) for any symbol, whereas the sum over all such probabilities is always >.P(ai) = 1.
5.1.2 Definition of Model
Let A an alphabet. A MODEL M is a function
M:A4-[0,1):a,—»PMai),
which maps a probability Pyfa;) to each symbol a; €4 [19].
5.1.3 Definition of Entropy
Let S a sequence over alphabet A = {ay, ....an}. The ENTROPY H\(S) of the seqience S
under model M is defined as | '

Hm(S) =3 P(a)) Id (1/Pu(a;)) where i=lyviwvenym

5.1)

The unit of the entropy is [bits/symbol] because the formula only refers to probabilities as relative

[requencies rather than absolute ones.
Considering a model as perfect, one obtains the correct probability distribution leading to
the natural form of the entropy:

H(S) =X P(a) ld (1/P(a)) (a€A) 5.2)
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A natural measure of how much information is contained in a given sequence of data is
called the ENTROPY.[19] This kind of entropy is depended on thé input data only and no
subject to interpretation. However the interested reader might wish to know that most of
the literature about Arithmetic Coding.
5.2 Entropy
It is well-known that the minimum bit rate required for représenting' a souice is
' determined by the entropy of the source. Two commonly used digital source models in
image coding are the statistically independent source and the Markov source, which can
be measured by memory-less entropy and high-order conditional entropy, respectively.
5.2.1 Memory-less Entropy
For an independent source, the entropy is given by

H(X) = -YP(x)log; P(x) (5.3)
Where the unit of H ( X ) is bit/pixel. The entropy H ( X ) establishes a lower bound on

the average bit rate for a memoryless source, and gives a measure of the amount of

information carried by random variable X. However, for most of the image sources,
there always exists some kind of statistical dependency among the neighboring pixels,
even if the source has been decorrelated. This kind of redundancy cannot be reduced
simply by applying memoryless enﬁopy coding,

5.2.2 High-Order Entropy
In high-order block entropy coding, a block of pixels can be combined and coded by a

single code. For an L-dimensional vector X, a measure of the average number of bits that
would be required to encode each block of L-fuple is defined as

Hi(x) A Hy Xi,......X1) = -SPk) log: P(x) .4)
where X is a random vector with possible values x obeying probability P ( x ). The

summation is over all the P possible L-tuples for each pixel with K-bit quantization.

Conditional éod'mg is another form of high-ordér entropy coding in which one assumes
that L-1 components from L-dimensional vectbr X, 1e,x1,x 2, ..., xi1 , have already
been received by the receiver. Component x; then can be coded more efficiently by

utilizing this conditional information. Conditional entropy be written as:

H(XL|X1, ...... ,X[_,.]) == -ZP(X) log; P(xL|x1, ...... ,xL.l), (5.5)
and can be shown to have the following property:
HX X, ... X)) SHXpafXy,...... Xr2) <H@X X)) <HX)) A HX) -~ ¢5.6)
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Thus, the higher the order of conditional probability, the lower the resulting entropy. Note
that Equation (6) is satisfied with the equality if and only if the pixels are statistically
independent.

5.3 Codebook Design

In the Image data compression process VQ type, Codebook is an essential part of the
image quality, because the image quality is the result of the comparison between Training
Vectors with Codebook. Compressing image data by using Vector Quantization (VQ)
[26]-[28], will compare Training Vectors with Codebook. The result is an index of
position with minimum distortion. The implementing Random Codebook will reduce the
image quality.

The Random Codebook and Split Codebook [9]. Split Codebook is obtained from the
average of the Training Vectors, and then split the average into 2 vectors. And then one
vector is added by the average value from itself. While the other one in subtracted as
shown in figure 2, observe the average distortion which is the result of the comparison
between the Training Vectors and each of the two vectors whether it is equal, less than, or
more than the decision value. If it is more than the decision value, each vector will be
split into two. Otherwise, stop, and follow the VQ process. Split Codebook is the average
amount of Training Vectors population. The result is reducing scatter data better than
random codebook. Where as Searching for the best Codebook from studying the training
set, Linde-Buzo-Gray’s Algorithm (LBG) is the famous algoritht for Codebook and M-
Search algorithm leading to- approximately 60 vectors Lagrangian calculation per input
vector [1].to reduce the complexity, non exhaustive stage searching algorithm are usually
used, leading to good balance between complexity and encoding accuracy. In particular,
the dynamic M-search algorithm {29], which is shown to generally perform better than
conventional M-search algorithm, is used to search CEC-RVQ [1].

5.4 VQ using Entropy Constrained

By generalizing the entropy-constrained scalar quantization design to the vector case,
introduce the interactive descent algorithm for the design of entropy constrained vector
quantizer (EC-VQ)[7]. Chou applied EC-VQ to image coding and showed that the
entropy constrained optimization yield a significant performance gain, more recently, the

entropy-constrained optimization was applied to residual VQ, which also known as
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multistage VQ. [21][22]. This form of VQ, which is called entropy constrained residual
VQ(EC-RVQ) [23]-[25], consist of cascade of VQ stages, where each stage operates on
the input/output difference of previous stage. The individual stage symbols are entropy
coded based on model using probabilities that are conditioned on previous stage output
symbols.

For the number of reasons stemming from the memory and computationally efficient
structure of RVQ, EC-RVQ can outperform EC-VQ and usually achieves image
compression results competitive with those of JPEG and sub band coding [23], [24].

Like EC-VQ, EC-RVQ is a memory less vector quantizer. This is because the EC-RVQ
design algorithm [23]-[25], minimizes the distortion subject to constraints on the first
order or zero order entropy of vector quantizer input.

However better rate distortion performance can generally be achieved by incorporating
memory into the vector quantizer.

The extend, EC-RVQ to a vector quantizer that exploit the memory by using higher order
conditional entropy codes. Unlike EC-VQ, which conditions on the output of the previous
stages, the higher order conditional EC-RVQ introduce here [7], takes advantage of the
information available in previously coded vectors by conditional over the spatial stage
region of support. While conditional EC-VQ is' severely impaired by the exponential
dependence of memory and complexity on the number of conditioning symbols and the
VQ codebook size, CEC-RVQ is not as sensitive.

Entropy constrained residual vector quantization (EC-RVQ) has been shown to be a
competitive compression technique. Its design procedure is an iterative process which
typically consists of three steps: encoder update, decoder update, and entropy coder
update. a new algorithm for the EC-RVQ was designed [11]. The main features of this
algorithm are: (i) In the encoder update step, we propose a variation of the exhaustive
search encoder that significantly speeds up encoding at no expense in terms of the rate-
distortion performance. ( ii ) In the decoder update step, a new method that
simultaneously updates the codebooks of all stages. The method is to form and solve a
certain least square problem and we show that both tasks can be done very efficiently. ( iii
) The Lagrangian of rate-distortion decreases at every step and thus this guarantees the
convergence of the algorithm.

The well known generalized BFOS algorithm used to prune the tree to find the best stage

order subject to a limit on the number of conditional probabilities, used as a measure of
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performance [1]). The PNN algorithm was shown to be successful in reducing the size of
stage statistical model by one order of magnitude.

Residual VQ has been implied not only for data as well as video compression. A |
correspondence builds on the asymptotic closed-loop approach to predictive vector
quantizer design , and extends it to the design of predictive multistage vector quantizer
for low bit rate video coding. The design approach resolves longstanding shortcomings, in
particular, design stability and empty-cell problems. Simulation results show substantial
gains over traditional design approaches [10].

5.5 Existing Frame Work

The hybrid technique of quantization and entropy coding of the residual signal has been
shown to yield good compression performance. This is due to the fact that quantization
often produces a structure where high order statistical dependences can be exploited.
Moreover the output alphabet of the quantizer can be made smaller than that of the
original signal; the complexity of high order statistical modeling is reduced. This is
especially the case when structurally constrained quantizers are employed. In particular,
the structure of the multisfage residual vector quantization (RVQ) used to be very
successful in providing more accurate estimates of the statistical modeling. Multistage
RVQ produces multi resolution approximation of the input signal, and allows high order

statistical conditioning to be performed between the stage sub-signals.
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Figure 5.1. High level structure of P-Stage EC-RVQ encoder

As shown in figurel, CEC-RVQ employee a quantize the input signal, where the output
of the stage RVQ is then fed to statistical-model-driven entropy coder(EC). The high
order stage statistical model is represented by a finite state machine(FSM) where the state
transaction are based on previously coded symbols. The quantized signal is rounded to the
nearest integer, and the residual signal, formed by subtracting the rounded quantized
signal from the original one, is then coded using first order entropy coder.
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Empirical work has shown that using higher order entropy coding does not lead to
significant reduction in output entropy of the residual signal.

5.5.1 Uniqueness of Existing Framework

There are two important ideas, unique to this frame work, hat exemplify the novelty of
this lossless approach.

First, since the overall system is lossless it is potentially better to employee entropy of the
residual signal as a distortion measure in the design of the CEC-RVQ. Using conventional
distortion measures such as équare error measure does not lead to minimization of the
residual entropy. To elaborate, let x be the input and x" be the output of the CEC-RVQ.
The new distortion measure used in the design of the CEC-RVQ is d(x,x") = -log>[pr(I(x-
x"))] , where I(a) is the integer closest to the real a. The distortion is essentially the self-
information of the integer converted residual signal, and is used as estimate of the length
of the codeword that would be used encode the symbol I(x-x"). I other words CEC-RVQ
designed to minimized such a distortion measure also minimize the entropy of the
residual signal.

The second idea is that only entropy is measure of performance. Since the distortion
measure is the entropy, the CEC-RVQ design algorithm produces an operational entropy-

entropy curve where each point represents a pair of entropies.
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6. Entropy Coding

The state of the art in data compression is arithmetic coding, not the better known
Huffman method. Arithmetic coding gives greater compression, is faster for adaptive

models, and clearly separates the model from the channel encoding.

Arithmetic coding is superior in most respects to the better-known Huffman method. It
represents information at least as compactly-sometimes considerably more so. Its
performance is optimal without the need for blocking of input data. It encourages a

clear separation between the model for representing data and the encoding of information
with respect to that model. It accommodates adaptive models easily and is
computationally efficient. Yet many authors and practitioners seem unaware of the
technique. Indeed there is a widespread belief that Huffman coding cannot be improved
upon.

We aim to rectify this situation by presenting an accessible implementation of arithmetic
coding and by detailing its performance characteristics. We start by briefly reviewing
basic concepts of data compression and introducing the model-based approach that
underlies most modern techniques. We then outline the idea of arithmetic coding using a
simple example, before presenting programs for both encoding and decoding. In these
programs the model occupies a separate module so that different models can easily be
used. Next we discuss the. construction of fixed and adaptive models and detail the
compression efficiency and execution time of the programs, including the effect of
different arithmetic word lengths on compression efficiency. Finally, we outline a few
applications where arithmetic coding is appropriate.

6.1 Data Compression

To many, data compression conjures up an assortment of ad hoc techniques such as
conversion of spaces in text to tabs, creation of special codes for common words, or run-
length coding of picture data (e.g., see [14]). This contrasts with the more modern model-
based paradigm for coding, where, from an input string of symbols and a model, an
encoded string is produced that is (usually) a compressed version of the input. The
decoder, which must have access to the same model, regenerates the exact input string
from the encoded string. Inpﬁt symbols are drawn from some well-defined set such as the
ASCII or binary alphabets; the encoded string is a plain sequence of bits. The model is a

way of calculating, in any given context, the distribution of probabilities for the next input
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symbol. It must be possible for the decoder to produce exactly the same probability
distribution in the same context. Compression is achieved by transmitting the more
probable symbols in fewer bits than the less probable ones.

For example, the model may assign a predetermined probability to each symbol in the
ASCII alphabet. No context is involved. These probabilities can be determined by
counting frequencies in representative samples of text to be transmitted. Such a fixed
model is communicated in advance to both eacoder and decoder, after which it is used for
many messages.

Alternatively, the probabilities that an adaptive model assigns may change as each
symbol is transmitted, based on the symbol frequencies seen so far in the message. There
is no need for a representative sample of text, because each message is treated as an
independent unit, starting from scratch. The encoder’s model changes with each symbol
transmitted, and the decoder’s changes with each symbol received, in sympathy.

More complex models can provide more accurate probabilistic predictions and hence
achieve greater compression. For example, several characters of previous context could
condition the next-symbol probability. Such methods have enabled mixed-case English
text to be encoded in around 2.2 bits/character with two quite different kinds of model.
Techniques that do not separate modeling from coding so distinctly, like that of Ziv and
Lempel , do not seem to show such great potential for compression, although they may be
appropriate when the aim is zaw speed rather than compression performance[17].

The effectiveness of any model can be measured by the entropy of the message with
respect to it, usually expressed in bits/symbol. Shannon’s fundamental theorem of coding
states that, given messages randomly generated from a model, it is impossible to encode
them into less bits (on average) than the entropy of that model [16].

A message can be coded with respect to a model using either Huffman or arithmetic
coding. The former method is frequently advocated as the best possible technique for
reducing the encoded data rate. It is not. Given that each symbol in the alphabet must
translate into an integral number of bits in the encoding, Huffman coding indeed achieves
“minimum redundancy.” In other words, it performs optimally if all symbol probabilities
are integral powers of %. But this is not normally the case in practice; indeed, Huffman
coding can take up to one extra bit per symbol. The worst case is realized by a source

in which one symbol has probability approaching unity. Symbols emanating from such a

source convey negligible information on average, but require at least one bit to transmit
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[15]. Arithmetic coding dispenses with the restriction that each symbol must translate into
an integral number of bits, thereby coding more efficiently. It actually achieves the
theoretical entropy bound to compression efficiency for any source, including the one just
mentioned.

In general, sophisticated models expose the deficiencies of Huffman coding more starkly
than simple ones. This is because they more often predict symbols with probabilities close
to one, the worst case for Huffman coding. For example, the techniques mentioned above
that code English text in 2.2 bits/ character both use arithmetic coding as the final

step, and performance would be impacted severely if Huffman coding were substituted.
6.2 The Idea of Arithmetic Coding

In arithmetic coding, a message is represented by an interval of real numbers between 0
and 1. As the message becomes longer, the interval needed to represent it becomes
smaller, and the number of bits needed to specify that interval grows. Successive symbols
of the message reduce the size of the interval in accordance with the symbol probabilities
generated by the model. The. more likely symbols reduce the range by less than the
unlikely symbols and hence add fewer bits to the message, detail practical

implementation can be reference [14][18].

Before anything is transmitted, the range for the message is the entire. interval [0, 1),
denoting the half-open interval 0< x < 1. As each symbol is processed, the range is
narrowed to that portiom of it allocated to the symbol. For example, suppose the alphabet

is (a, e, 1, O, u, !), and a fixed model is used with probabilities shown in Table L.

Table I. Example Fixed Model for Alphabets {a,e,i,o,u,!}

Symbol - Probability Range
a 0.2 [0, 0.2)
e 0.3 [0.2,0.5)
i 0.1 [0.5, 0.6)
0 0.2 [0.6, 0.8)
u 0.1 [0.8, 0.9)
! 0.1 [0.9, 1.0)
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Imagine transmitting the message eaii!. Initially, both encoder and decoder know that the
range is [0, 1). After seeing the first symbol, e, the encoder narrows it to [0.2, 04, the
range the model allocates to this symbol. The second symbol, a, will narrow this new
range to the first one-fifth of it, since a has been allocated [0, 0.2). This produces
[0.2,0.26), since the previous range was 0.3 units long and one-fifth of that is 0.06. The
next symbol, i, is allocated [0.5, 0.6), which when applied to [0.2, 0.26) gives the smaller

range [0.23, 0.236). Proceeding in this way, the encoded message builds up as follows:

Initially [0,1)
After seeing e [0.2, 0.5)
a [0.2,0.26)

i [0.23,0236)
i [0.233,0.2336)
! [0.23354, 0.2336)

Figure 1 shows another representation of the en coding process. The vertical bars with
ticks represent the symbol probabilities stipulated by the model. After the first symbol has
been processed, the model is scaled into the range [0.2, 0.5), as shown in Figure la. The
second symbol scales it again into the range [0.2, 0.26). But the picture cannot be
continued in this way without a magnifying glass! Consequently, Figure 1b shows the
ranges expanded to full height at every stage and marked with a scale that gives the
endpoints as numbers. ‘
Suppose all the decoder knows about the message is the final range, [0.23354, 0.2336). It
can immediately deduce that the first character was e! since the range lies entirely within
the space the model of Table I allocates for e. Now it can simulate the operation of the
encAoder:

Initially [0,1)

After seeing e [0.2, 0.5)
This makes it clear that the second character is a, since this will produce the range

After seeinga [0.2, 0.26)
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which entirely encloses the given range [0.23354, 0.2336). Proceeding like this, the
decoder can identify the whole message. It is not really necessary for the decoder to know
both ends of the range produced by the encoder.

Instead, a single number within the range--for example, 0.23355-will suffice. (Other
numbers, like 0.23354, 0.23357, or even 0.23354321, would do just as well.) However,
the decoder will face the problem of detecting the end of the message, to determine when
to stop decoding. After all, the single number 0.0 could represent any of a, aa, aaa, aaaa,
..... To resolve the ambiguity, we ensure that each message ends with a special EOF
symbol known to both encoder and decoder. For the alphabet of Table I, will be used to
terminate messages, and only to terminate messages. When the decoder sees this symbol,

it stops decoding.

After seeing Nothing e a
1 7 :
—
u
0
i
e i I
3
a
0 _

Figure 6.1.a Representation of Arithmetic coding process

Relative to the fixed model of Table I, the entropy of the five-symbol message eaii! Is

-log 0.3 -log 0.2-1log0.1-1log0.1-1log0.1
' = -log 0.00006 ~ 4.22
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(using base 10, since the above encoding was per formed in decimal). This explains why
it takes five decimal digits to encode the message. In fact, the size of the final range is
0.2336 - 0.23354 = 0.00006, and the entropy is the negative logarithm of this figure. Of
course, we normally work in binary, transmitting binary digits and measuring entropy in

bits. Moreover, as noted earlier, more sophisticated models give much better performance

in general.
Nothing e a i i
1 0.26
7] !
] 11
(]
_ ' - -
e e e
a a a A
0 0.2 0.2 0.23 0.233 0.23354

Figure 6.1.b  Representation of arithmetic coding
Process with the interval scaled up at each stage

6.3 Models for Arithmetic Coding

The program in [coding]must be used with a model that provides a pair of translation
tables index-to-char[] and char-to-index[], and a cumulative frequency array cum-freq [],

The requirements on the latter are that

e cum-freq[i - 1] > cum-freq[i];1 |

e an attempt is never made to encode a symbol i for which cum-freq[i - 1] = cum-
freq[i]; and |

e cum- freq [0] <Max- frequency.

Provided these conditions are satisfied, the values in the array need bear no relationship to

the actual cumulative symbol frequencies in messages. Encoding and decoding will still
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work correctly, although encodings will occupy less space if the frequencies are accurate.
(Recall our successfully encoding eaii! according to the model of Table I, which does not

actually reflect the frequencies in the message.)

6.3.1 Fixed Model

The simplest kind of model is one in which symbol frequencies are fixed. The fixed
model has symbol frequencies that approximate; however, bytes that did not occur in that
sample have been given frequency counts of one in case they do occur in messages to be
encoded. Frequencies have been normalized to total. The initialization procedure simply
computes a cumulative version of these frequencies, having first initialized the translation
tables. Execution speed would be improved if these tables were used to reorder symbols
and frequencies so that the most frequent came first.

An exact model is one where the symbol frequencies in the message are exactly as
prescribed by the model. For example, the fixed model is close to an exact model for the
particular excerpt of the Brown Corpus from which it was taken. To be truly exact,
however, symbols that did not occur in the excerpt would be assigned counts of zero,
rather than one (sacrificing the capability of transmitting messages containing those
symbols). Moreover, the frequency counts would not be scaled to a predetermined
cumulative frequency. [14]

The exact model can be calculated and transmitted before the message is sent. Under
quite general conditions, this will not give better overall compression than adaptive
coding (which is described next).

6.3.2 Adaptive Model

An adaptive model represents the changing symbol frequencies seen so far in a message.
Initially all counts might be the same (reflecting no initial information), but they are
updated, as each symbol is seen, to approximate the observed frequencies. Provided both
encoder and decoder use the same initial values (e.g., equal counts) and the same
updating algorithm, their models will remain in step. The encoder receives the next
symbol, encodes it, and updates its model. The decoder identifies it according to its
current model and then updates its model. Updating the model is quite expensive because
of the need to maintain cumulative totals.

Entropy coding is now being used frequently in conjunction with vector quantization(VQ)

for image coding. Its use is motivated by the fact that probability distribution of VQ
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Chapter 7 Methodology and Framework

7. Methodology and Framework

It’s about that how the system is designed as well as what possibly can be the module of
this system. A detailed description is given about the general design of the system and
then the system shown in parts and the respective detail about those parts are also given.
Framework called conditional entropy constrained using vector quantization (CEC-VQ).

Our quantizer design absolutely supports by Entropy.

7.1 High level structure of single stage EC-VQ

‘Channel
I X E.
X e Y T T
“Vector  © First Order Entropy.
Quantiz - Coder(encoder) -

Figure 7.1 High level structure of Framework

The system shown in figure 1 is the general diagram of the system. The first portion of is
the encoder. The input to the system is an image from which the input vectors X are
created. The input X is given to the vector quantizer. The output of the vector quantizer is
a quantized output ¥ and indexes 1. The quantized output ¥ is used to calculate the error
vectors E, i.e by subtracting the quantized output ¥ from the original input X The error
vectors E; and the indexes I are given to the first order entropy coder i.e is the arithmetic

coders (encoder). The outputs of the arithmetic coder (encoder) are the compressed
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indexes L. and the compressed error vector E; are combined by multiplexer and passed
onto the channel.

From the channel this combined compressed indexes I and compressed error vectors E
are separated by the de-multiplexer These separated inputs are given to the first order
entropy coders i.e. arithmetic coders (decoders). The output of the arithmetic decoders are
the decompressed indexes I and decompressed error vectors Eq The decompressed
indexes I are given as input to the decoder which performs a table look-up t6 get the
input vectors X The input vectors obtained X and the error vectors E4 are combined to get

the original input image.

7.1.1 System Encoder

_Channe}

. First Order Entropy
Coder(encoder) -

Figure 7.2. System Encoder- CEC-VQ

Description

The input to the system is an input image on the basis of which input vectors X are
created by the process of blocking in which we pick blocks of size 4 x 4 from the image.
The input vectors are then passed to the vector quantizer where the best code words are
selected on the basis of minimum entropy from the code book present at the vector
quantizer with respect to each input vector and thus indexes I of the best code words and
the cjuantized output ¥ are obtained. The Quanﬁzed output Y is used to calculate the error
vectors E, i.e by subtracting the quantized output ¥ from the original input X. The
indexes I and the error vectors E; are passed onto the first order entropy coder i.e. the
arithmetic coder (encoder) from where we get the output i.e compressed indexes I, and
the compressed error vectors E; which are then combined using the multiplexer to be
passed onto the channel.

7.1.2 System Decoder
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| Channel

Figure 7.3. System decoder- CEC-VQ

Description

The compressed output of the encoder is then given to the decoder fro further processing.
The combined compressed output of encoder i.e compressed indexes I, and the
compressed error vectors E are separated using de-multiplexer. The compressed indexes
I. and the compressed error vectors E. are then again passed onto the first order entropy
coders i.e arithmetic coder (decoder). The output is decompressed indexes I and
decompressed error vectors Eg. The Ij is then given to the decoding process i.e getting the
input vectors X by mapping the indexes Iy to the codewords of the codebook, where
codebook is the same as present on the vector quantizer encoder Then the decompressed
error vectors E4 and the input vector X are combined to get the resultant image which is

same as the input image.

7.2 Major Components of System
System consist of major components as:

¢ Vector Quantizer

¢ Entropy Coder

¢ Multiplexer-Demultiplexer

e Decoding '
7.2.1  Design of Vector Quantizer
Here, we discuss the task of how to design a VQ, or how to populate the codebook, which
can be performed according to several different principles. Three usable codebook
principles are trained codebeok, random codebook, and lattice codebook. The basic goal
for any design approach is to choose the codebook, C, and the partitioning, such that the

statistical average is small or even minimized.
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Firstly, we generate the codebook on the basis of Mean Square Error (MSE) as distortion
measure, initial codebook. ‘The next step is to improve this MSE based Codebook
iteratively, on the basis of Entropy. It forms the codebooks using the generalized Lloyd
algorithm(GLA). It run the GLA for codebooks of size 2*n, n = 0,1,2,... until the final

size is reached. The performance of a VQ is often given as the distortion.

7.2.1.1 Measuring Criteria
The distortion is usually quantized as the statistical average distortion between a random

input vector, X, and the reproduction vector,Y.
M

MSE = D =E[d(X,Y)] =Z Isi FX) dX,Y) dX. e (7.1)
=1
Where the distortion measure d is as non-negative cost-function and fx(X) is the

probability density function (pdf) of the source. In practice, the statistical average

distortion is often evaluated as the time average over some set of vectors.

D = — AWETS ¢ Y.)

““\‘ -y
(7.2)
N n=1

The new distortion measure used in the design of the CEC-RVQ is Entropy

Entropy = dXY) = Jogy{pr—(IX-Y)) ]
(7.3)
To elaborate, let X be the input and Y be the output of the CEC-RVQ. The new distortion
measure used in the design of the CEC-RVQ is d(X,Y), where I(a) is the integer closest to
the real a.The GLA continues to until the change in distortion is less than threshold.

7.2.1.2 Encoding using Entropy Constrained

We have a to find the best code word from codebook corresponds to Test image 'being
compressing. For this find the difference of each test image vector with all the code words
and then find their entropies. Search the difference in the stored errors, if difference
matches with any of the stored error take its probability to calculate entropy otherwise
assign a huge value to entropy. Choose the codeword, having the least entropy as the best

codeword.
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7.2.2  Specification of Entropy Coder

In our system, first order entropy coder is Fixed-Model Arithmetic Coder. More complex
models can provide more accurate probabilistic predictions and hence achieve greater
compression. The effectiveness of any model can be measured by the entropy of the
message with respect to it, usually expressed in bits/symbol. Shannon’s fundamental
theorem of coding states that, given messages randomly generated from a model, it is
impossible to encode them into less bits (on average) than the entropy of that model.

The simplest kind of model is one in which symbol frequencies are fixed. The fixed
model has symbol frequencies that approximate. An exact model is one where the symbol

frequencies in the message are exactly as prescribed by the model.

7.2.3  Multiplexer-Demultiplexer

First order entropy coder generates encoded Indices and error of image being compressed.
Multiplexer combine theses output and send it to channel, at other receiver side
demultiplex separate this merged information. This process take 1 index and its

corresponding error then next index and its correspondence till end of indices.

724  Decoding Process
In decoding process, we have to decode the encoded or quantized vectors, for this purpose
we need the codebook, indices and errors. We got the form of image same as that the

original image provided to the encoding process.
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8. Implementation

Our System Implementation consist of the following main modules, The output of one
module serves as an input to other module

1 Preparing a Training set

2 Blocking code

3 CEC-VQ Process

4. Entropy coding (Arithmetic Coder)

5 Decoding

6 Unblocking

7. Verifying the Perfect Reconstruction
First of all a training set is created using sample images in Matlab. The set is then
converted into blocks of different size depending on requirements.
The Blocked training set is then handed over to CEC-VQ module, a module code written
in C. firstly, EC-VQ module generates a code book using training set by enforcing
conditional entropy constrains. Secondly, generate indices and residual of Test Image,
called encoding.
8.1 Preparing a Training set
We have used two training sets for compression .One training set contains 4-images and
other has 8-images.
8.1.1 Scaling of images
We are using gay scale 512 x 512 and 8-bpp raw images. We have to scale many of the
images to 512 x 512 .For this we have used the Matlab function like imresize () and
perform bicubic interpolation.
8.1.2 Concatenating the images
For Training set we have concatenate a set of raw images using the ‘cat’ command in at
Linux Terminal. Cat imagel image2 image 3 ......... image8 > TrainingSet.

8.2 Blocking code

it is a program written in Cm whose only purpose is to convert the input into blocks. The
blocks of 4x4 or 8x8 of training set and test image has created. One block is called 1
vector. Blocking is a fundamental step, where ever we applying vector quantization
technique.

SYNOPSIS
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Block - i inputfile -o outputfile -r rows -1 column -h blockheight -w blockwidth
DESCRIPTION
Block takes a raw image inputfile and creats outputfile which is a list of vectors where
each vector is a block from inputfile. The inputfile has dimensions rows and columns, and
- the block has dimensions blockheight and blockwidth .If no outputfile is named, then the
name of the outputﬁle defaults to inputfile.TS.

The training _data now has four images, so there are 4 x 512=2048 rows and 512
columns:

Block_i training data —r 1536-1512 —h 4-w 4-o training _data; I8
The output is a file called training _data. TS where TS is for training set . Now the
training data are ready to use.
Main portion of the blocking code is

blocks_per_col = rows/blockheight;
blocks_per_row = cols/blockwidth;

num_cols = blocks_per_row*blockwidth;
num_rows = blocks_per_col*blockheight;
num_blocks = blocks_per_col*blocks_per_row;
num_pixels = rows*cols;

vector_length = blockheight*blockwidth;

/* allocate memory for the raw image and the block image */
if (!(raster_image = (DATA *) calloc(num_pixels, sizeof(DATA))) ||
I(blocked_image = (DATA **) calloc(num_blocks, sizeof(DATA *)))) {
fprintf(stderr,"%s: %s\n",programname, NOMEMORY);
exit(10);
} .
/* allocate memory for the block image elements */
for(i=0; i<num_blocks; i++) {
if (!(blocked_image[i] = (DATA *) calloc(vector_length,sizeof(DATA)))) {
fprintf(stderr,"%s: %s\n",programname NOMEMORY);
“exit(11);
}
}

/* read contents of inputfile into raster_image array */
clearerr(inputfile);
if (fread(raster_image,sizeof(DATA),num_pixels,inputfile)!=num_pixels ||
feof(inputfile) || ferror(inputfile) ) {
fprintf(stderr,"%s: %s: %s\n",programname,inputname,NOREAD);
exit(12);
}
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/* create the block vectors and write them to the output file */
for(i=0; i<num_blocks; i++) {
for(j=0; j<vector_length; j++) {
k = (i%blocks_per_row)*blockwidth + (j%blockwidth) +
( (i/blocks_per_row)*blockheight + (j/blockwidth) ) * cols;
blocked_image[i][j] = raster_image(k];

}
if (fwrite(blocked_imagef[i], sizeof(DATA), vector_length, outputfile)
I=vector_length) {
fprintf(stderr,"%s: %s: %s\n",programname,outputname, NOWRITE);
exit(13);
}
}

fclose(inputfile);
fclose(outputfile);
exit(0);

8.3 CEC-VQ Process

The main process CEC-VQ consists of two sub-major process.
o Code Book Generation
¢ Encoding using entropy constrains

8.3.1 Codebook Generation

Codebook generation process is the most important step in the design of entropy
constrained vector quantizer. ‘

We have to first generate the codebook on the basis of Mean Square Error (MSE) as
distortion measure, initial codebook. The next step is to ixﬁprove this MSE based
Codebook iteratively, on the basis of Entropy. The codebook is updated in 4 to 6
iterations depending upon the size of the codebook used and the training set, the main
program for codebook generation is

SYNOPISIS ‘ _ _

Stdvq -t trainingset — codebook —d dimension —f codebooksize -h threshold —a addoffset
~s speedup -W

DISCRIPTION

it forms the codebooks using the generalized Lloyd algorithm(GLA). It run the GLA for
codebooks of size 2”n n = 0,1,2,... until the final size is reached. The final size can be
any integer value. Each increase in the size of the codebook is done by splitting
codewords from the next smallest codebook, (perturbed versions of the old codewords).
The GLA continues to until the change in distortion is less than threshold .The GLA will
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abort if there are cells, which cannot be filed. If there are empty cells, the Lloyd iteration
tries to split the most populous cells only ,(individual cell distortion is not considered ).
To speed up the Lloyd algorithm we have used partial distortion for speedup. It first
generates the codebook using Mean square as a distortion measure and then update the
codebook on the basis of entropy. There is one flag (-W). If the flag is not specified, then
only. the final codebook is written . If the flag is specified, then all intermediary

codebooks are written as well .Each codebook has the following format:

TYPE SIZE DESCRIPTION
Long 1 number of codewords (size)
Integer 1 vector dimension (dimension)

Double size* dimension codewords

CALLS
e Lloyd (),
¢ splitcodewords()
e entropyCB.c
¢ writecodebook()

Use the “stdvq™ program to make a codebook with 512 codewords using the vector
dimension 16.
Stdvq —t trainingset .TS -c codebook -d 16 512 -
This will output a codebook called “codebook” with 512 codewords of dimension 4.
Important Functions:

8.3.1.1 Generating codebook on MSE basis:

for(i = 1; i < codebooksize;)
{ /* run the GLA for codebook of size i */
if ( (distortion = method(codebook,i)) < 0) {
exit(13);
}
/* if distortion is zero, no need to continue.
note that Iloyd can and will change codebooksize in such a case */
if (distortion == Q) break;
/* display the distortion of the training set to the codebook of size 1 */
printf("%s %-7d: %f\n",DISTORTION,i,distortion);
fflush(stdout);
/* write the codebook of size i if requested */
if(write_all_codebooks) if(!writecodebook(codebook,i)) exit(14);
/* find the number of new codewords that need to be made (j-i) */
if (G = 2*i) > codebooksize) j = codebooksize;
/* split the codewords */
splitcodewords(codebook,i,j,0);
/* increment the codebook size */
1=j;
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}

/* it may be that distortion is 0, so we can exit early */
if (distortion ==0) {

printf("%s %-7d: %f\n",DISTORTION,i,distortion);
fflush(stdout);
if(!writecodebook(codebook,codebooksize)) exit(15);

}
Lloyd0(codebook, size)

SYNOPSIS

lloydO(codebook, size)

DESCRIPTION ,

lloyd0 performs the generalized Lloyd algorithm for the given codebook with size
codewords. Lloyd exits with a codebook if the percent change in distortion from one pass
to the next is less than threshold .If there are any empty cells, Lloyd will try to split the
most populous cells. Lloyd will attempt to spilt cells up to size times unless the distortion
is zero. If the distribution is zero, then those codewords are returned and the global
variable codebook size is modified since large codebooks can no longer be made .This
ensures that the zero distortion codebook is returned to the user, but allows that the
program terminate normally .If the write_all_éodebooks option is not selected that the
program will terminate.

RETURN VALUE

lloyd returns a positive number ,i.e the distortion ,if a codebook is found .A negative
number is returned if there is not enough memory for temporary storage and
computations or if a codebook cannot be found .There are two possibilities for the latter
case: there are empty cells which could not be filled after size attempts, or there are
permanently empty cells ,zero distortion, and the write_all_codebooks option was not
selected.

PARAMETERS

s codebook contains the code words

e size is the current number of words in the codebook.
CALLS
splitcodewords()

Selection of bestcodewords
We found the distortion by MSE and the codeword giving minimum distortion will be

selected as a best codeword.

64



Chapter 8 Implementation

/* read in vector and find the closest codeword */
while (fread(tempvector, sizeof(DATA), dimension, trainingfile) ==
dimension && !feof(trainingfile) && !ferror(trainingfile) ) {
bestdistortion = HUGE; /* keep convention that ties go to lower index */
bestcodeword = 0;
for (i =0; i < size; i++){ /* find the best codeword */
tempdistortion = 0.0;
for (j = 0; j < dimension; j++) {
temp = ( (double) tempvector[j]) - codebook[i]{jl;
tempdistortion += temp*temp;
if (tempdistortion > bestdistortion) j = dimension,;

}

if (tempdistortion < bestdistortion) {
bestdistortion = tempdistortion;
bestcodeword = i;

/* if the bestdistortion is 0.0, the best codeword is found */
if (bestdistortion == 0.0) i=size;
}
fwrite(&bestcodeword,sizeof(long),1,best);
count[bestcodeword]++;
for (j = 0; j < dimension; j++){
centroid[bestcodeword][j] += (double) tempvector[j];
) _

distortion += bestdistortion;
} /* all training vectors have been encoded */

fclose(best);
/* normalize the distortion */
numbervectors = 0;
for (i = 0; i < size; i++) {
numbervectors += count[i];
) A
if(numbervectors == 0) {
fprintf(stderr,"%s: %s: %s\n",programname,trainingname, NOTFOUND);
~ return(-1.0); ’
)
distortion /= (double) numbervectors;
if(distortion < 0) {
fprintf(stderr,"%s: %s: %s\n",programname,OVERFLOWED,ABORT _STDVQ);
return(-1.0);
}

/* if distortion = 0.0 or if change in distortion < threshold AND
if there aren't any empty cells, exit */
if ( (emptycells = 0) &&
((distortion == 0.0) ||
( (olddistortion - distortion)/distortion < threshold)) ) {

65



gy

Chapter 8 Implementation

/* if distortion is 0, let the program exit gracefully */
if(distortion == 0 && size < codebooksize) {
fprintf(stderr,"%s %d\n",STOP,size);
size = codebooksize;

return(distortion);
}
/* Find the number of empty cells */
emptycells = 0;
for (1 =0; i <size; i++) {
if (count[i] == 0) ++emptycells;
}
/* no empty cells, find new centroids and reinitialize for next pass */
if (emptycells == 0) {
for (i=0; i <size; i++) {
for (j =0; j < dimension; j++) {
codebook[i]{j] = centroid [i]fj] / (double) count[i];
centroid[i][j] = 0.0;

count[i] = 0;

}

olddistortion = distortion;

}

" /* consolidate the nonempty codewords at the beginning of the

array with the most populous cells first. */
for(n = 0; n < size - emptycells; n++) {
i=0;
bestcodeword = 0;
for (i =0; i <size; i++) {
if (count[i] >j) {
j = count[i];
bestcodeword = i;
}
H*i*/
for (j = 0; j <dimension; j++) { /* find centroid */
codebook[n][j] = centroid[bestcodeword](j] /
(double) count[bestcodeword];
centroid[bestcodeword][j] = 0.0; -
YA
count[bestcodeword] = 0;
}*n*/
/* split the required number of codewords */
splitcodewords(codebook, size-emptycells, size, pass)

8.3.1.2 Generation of code book on Entropy base:
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This function is called from stdvqg.c. it takes MSE-based codebook generated through the

lloydo iteration. The size is the final size of the codebook. Main steps followed are given

as:

o It calculate and store the probability of error. The error is actually the difference

between the MSE based codebook’s best index for the given vector.

/*Read the vector 1 by 1 from the training file*/
while (fread(tempvector, sizeof(DATA), dimension, trainingfile) =

dimension && !feof(trainingfile) && !ferror(trainingfile) ){
al++;
fread(&best,sizeof(long),1,bestM);
for(j=0;j<dimension;j++){
errorj = (int)(( (double) tempvector[j]) - codebook[best][j]);
if(errorj<min)
min=errorj;
if(errorj>max)
max=errorj;
a=searche(first,errorj,0);
if(a==0)
push(&first,errorj);
}
}

now we have to find the best codeword on the basis of entropy. For this find the
difference of each vector with all the code words and then find their entropies.

To find the entropy search the difference in the stored errors. If difference matches
with any of the stored error take its probability to calculate entropy otherwise assigns
a huge value to entropy.

Choose the codeword, having the least entropy as the best codeword.

while (fread(tempvector, sizeof{DATA), dimension, trainingfile) ==

dimension && !eof(trainingfile) & & !ferror(trainingfile) ){
bestentropy=HUGE;
for(i=0;i<size;i++){
entropy=0.0;
for(j=0;j<dimension;j++){
errorj=(int)(( (double) tempvector[j]) - codebook[i][j]);
a=searche(first,errorj,1);
if(a=0){
entropy+=10000;

}
else{
prob=(double)(a)/(double)(512*512*4);
entropy -=(log(proby/M_LN2);
}
N

67



Chapter 8 ‘ Implementation

entropy=entropy/(double)dimension;

if(entropy<bestentropy){
bestcodeword=i;
bestentropy=entropy;

}
M*i*/
fwrite(&bestcodeword,sizeof(long), 1 ,best2);
count[bestcodeword]++;
for (j = 0; j < dimension; j++){
centroid[bestcodeword][j] += (double) tempvector[j];

}
distortion += bestentropy;

}/*while*/
o now update the codebook
for (i = 0; i <size; i+t+) {
for (j = 0; j < dimension; j++ ) {
if(count[i]!=0){
codebook(i][j] = centroid [i][j] / (double) count(i];
)

M
count[i] = 0;
H*i¥/
¢ now for the next improvement iteration of the codebook we have to update the stored

errors and probabilities using the updated entropy based codebook and best indices
selected earlier on the basis of entropy.

¢ Continue the iteration to update codebook until percent change in distortion is less
than threshold.

if ( ((distortion == 0.0) || ( (olddistortion - distortion)/distortion < 0.0001))){
fprintf(stderr,"%s %d\n",STOP size);
fclose(bestM);
return(distortion);

}
¢ write the final entropy-based codebook

if('writecodebook(codebook,codebooksize)) exit(15);
Splitcodewords() : .

It is called by Lloyd0 function. Takes a codebook and creates oldsize-newsize new
codewords from the codewords. The old codewords are not modified.

Perturb()

Perturb(codebook([i], codebook[i+oldsize], scale);

It is called by splitcodeword function. Perturb takes old codeword and changes it slightly

to form newcodeword. Oldcodeword is not altered in the process. Scale is available to
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change so that a split many times if necessary and still have each resulting new codeword
be different. *

Write codebook()

It is called stdvq.c. write codebook to a file of a given size. If it fails it return FALSE,
otherwise TRUE is returned.

83.2 Encoding usmg entropy constraints
to encode the test image, the image first be arranged into vectors using the “block”

program. Then the “vq” program is used to encode the test image.
SYNOPSIS
Vge — codebook -1 inputfile —o outputfile —s sppedup -D
DESCRIPTION
vqe encodes the inputfile using the codeword from the codebook that yield the lowest
entropy, reproduction file is placed in outfile.
CALL
Fullsearch()
Fullsearch(codebook, count, cell distortion)
This function is called to perform encoding on the basis of entropy. The main steps are as
follows: | '

e We have already stored the errors and their probabilities of the training set computes
from the final codebook.

o Now we have to find the best codeword on the basis of entropy. For this find the
difference of each test image vector with all the code words and then find their
entropies.

¢ To find the entropy search the difference in the stored errors. If difference matches
w1th any of the stored error take its probablhty to calculate entropy otherwise assigns
a huge value to entropy

¢ Choose the codeword, having the léast entropy as the best codeword.

while (fread(tempvector, sizeof(DATA), dimension, inputfile) =
dimension && !feof(inputfile) && !ferror(inputfile) ){
bestentropy=HUGE;
for(i=0;i<codebooksize;i++){
entropy=0.0;
for(j=0;j<dimension;j++){
errorj=(int)(( (double) tempvector[j]) - codebook[i][j]);
a=searche(first,errorj,1);
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if(a==0){
entropy+=10000;
}

else{
prob=(double)(a)/(double)(512*512*4),
entropy -=(log(prob)/M_LN2);

}

2

entropy=entropy/(double)dimension;

if(entropy<bestentropy){
bestcodeword=i;
bestentropy=entropy;

}
H*i¥/
}/*end while*/
e store the best indices and their probabilities on the way.

e Also we had stored the errors and their probabilities. These errors are found by
calculating the difference between the quantized test image vector and the original

test image vector.

8.4 Entropy Coding

Best indices and errors stored during encoding process are now compresses using
arithmetic coder. we have used fixed-model arithmetic coder which are provided with the
probabilities of errors and indices.

For detail see chapter 6.
8.5 Decoding

In decoding process, we have to decode the encoded or quantized vectors, for this purpose
we need the codebook, indices and errors. We got the form of image same as that the test
image provided to the encoding process. The image is now ready to perform the
unblocking operation.

while(fread(&de,sizeof(int), 1 ,inputfile}=1){

fread(err,sizeof(int),dimension,errorfile);

for (i = 0; i < dimension; i++) {
tempvector[i] = (DATA)((int)codebook[de][i]+(int)err[i]);
/* write the data to the output file */
if (fwrite(tempvector,sizeof(DATA),dimension,outputfile) != dimension) {
fprintf(stderr,"%s: %s: %s\n",programname,outputname, NOWRITE);
return(-1.0);

}xi/

}/*end while*/
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8.6  Unblocking

finally, the unblock program is used to arrange the encoded/decoded vectors into a
decoded image. It is the revese process of blocking.
It’s a revese process of Blocking in same manner.

Unblock —i lena.TS.encoded —r 512 -512 —h 2 —w 2 —o lena final

8.7 Verifying the Perfection Reconstuction

To verify that we hae obtained perfect reconstruction we have calculated MSE, SNR and
PSNR. Some portion of the code is given as:

/* get the headers and see if they match */
filel=fopen(filenamel,"r"),
if (file1=NULL) {
fprintf(stderr, "rawmse: can not open file '%s"\n", filenamel);
exit(1);

}
file2=fopen(filename2, "r");
if (file2==NULL) {
fprintf(stderr, "rawmse: can not open file '%s"\n", filename2);
exit(1);
}
framesize=width*height;
datal=(unsigned char *)malloc(framesize);
data2=(unsigned char *)malloc(framesize);
if (datal==NULL || data2==NULL) {
fprintf(stderr, "rawmse: can not allocate memory\n");
exit(1);

}

/* read data */

if (fread(datal, framesize, 1, filel)!=1) {
fprintf(stderr, "rawmse: can not read data from file '%s"\n", filename1l);
exit(1);

}
if (fread(data2, framesize, 1, file2)!=1) {
fprintf(stderr, "rawmse: can not read data from file '%s"\n", filename?2);
exit(1);
} .
if (fread(data2, framesize, 1, file2)!=1) {
fprintf(stderr, "rawmse: can not read data from file '%s"\n", filename?2),
exit(1);
}

void calc_err(unsigned char *datal, unsigned char *data2,
long framesize, double *err, double *energy)
{
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long i;
double er, en;
for (er=0, en=0, i=0; i<framesize; i++) {
er=(i*er+square(datal[i]-data2[i]))/(i+1);
en=(1*en+square(datal[i]))/(i+1);
}
*err=er,
*energy=en;
return;
}
8.8 Display Voronoi Regions

SYNOPSIS
voronoi_fs —¢ codebook —o output —r rows —1 columns-

DESCRIPTION
Voronoi_fs takes a full search codebook that has two dimensions and creates an output

image that shows the edges of the coronoi regions. The codeword are scaled to fit 90% of
the region defined by the user as row by columns. Some portion of the code is given as:

/* read the codebook */
for(i = 0; i < codebooksize; i++) {
if (!(codebook[i] = (double *) calloc(dimension,sizeof(double)))) {
fprintf(stderr,"%s: %s\n",programname, NOMEMORY);
exit(13); '
}
if (fread((char *) codebook[i],sizeof(double),dimension,codebookfile)
I= dimension || feof(codebookfile) || ferror(codebookfile) ) {
fprintf(stderr,"%s: %s: %s\n",psogramname,codebookname, NOREAD);
exit(14);
}
H*i*/
fclose(codebookfile);
/* normalize the tree data to the rows by cols range */
normalize_codebook(codebook);
/* encode the image */
if(!voronoi_diagram(codebook)) {
exit(15);
}
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9. Results and Analysis

We have designed a loss less image compression system using vector quantization which
is of course a lossy compression technique. Our architecture is an extension of CEC-RVQ
to CEC-VQ by converting it into single stage. Practically, goal of work was to obtain the
perfect reconstruction of image. Decompressed image should be same as that of original -
one. We have obtained 100% lossless image compression. Testing in our system done by
different images and codebook of different size e.g., 256, 128, 64, 32 etc.

9.1 Experimental Techniques

Experimental results are used to study the effects of lossless compression. The techniques

we used are as:
9.1.1 MSE(Mean Square Error)

1 N-1N-1 " 2
MSE = ——- X0, N-X3G,j
@ AT CRRR(Y) E— o
9.1.2 SNR (Signal to Noise Ratio)
o2
SNR =10-log,, ——
10 MSE 9.2)
9.1.3 PSNR (Peak signal-to-Noise Ratio)
255

9.3)

PSNR =10-Io
Zio MSE

To test that the system is lossless our results should be as given

Experiment result
Techniques
MSE 0
SNR Infdb
PSNR Inf db

Table 1. MSE, SNR, PSNR of CEC-VQ for the image LENA

We have tested the system and it is found that perfect reconstruction is obtained as the

above mentioned results.
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9.2 Testing Measures

We gave different test images and examined the reconstructed images for black box
testing. Favorite test image which we have used during research development was
“Lena”. For rest of experiments we used different images like Barbara, Elaine, Aya,
Tiffany, etc.

For white box testing we used codebooks of different sizes such as 256, 128, 64, 32,16
etc. we carried out most of our work using the codebook size of 256. Different
compression ratio and bit-rates (in bpp) are obtained by changing the size of codebook.
We have made the codebook using different number of images in Training Set. We have
tested the system using training set containing for 4-Images and then employed the
training set containing 8-images.

Bit Rate:

Bit-rate (in bpp) = size of compressed image in bits / Number of Pixel in original image
Compression Ratio:

Compression ratio = Original size of image / Compressed image size

9.3 Experimental Results

Specification
Code book size = 256k, 128k, 64k, 32k, 16k
Training set = 4-images, 8-images
Test image = “Lena”

Code book size 256k | 128k | 64k |32k | 16k
bit rate 4 images 4.92514.995|5.084 | 5.17 | 534
(bpp) T-Set
8 images 4913 | 4956 | 5.084 | 5.17 | 5.34
T-Set

Table 2. Bit rate (bpp) of LENA (Compressed image )
using 4 and 8 training set of image.
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Figure9.1 Bit rate of LENA (Compressed image )
using 16, 32,64, 128, 256 size of codebook

Different test images were tested successfully for their perfect reconstruction. Some of
the images tested so far includes Ano, Aben, Barbara, Elaine, girll, girlb.
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Figure 9.2 Training Set-4 images
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Figure 9.3

Training Set-8 images
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Figure 9.4 Lena-Original Image
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@

orizinal image!

Figure 9.5 Lena-reconstructed image

9.4 Future Work and Conclusion

In previous chapter of this dissertation we presented a thorough study of what is lossless
image compression and how we have used it in our implementation. The method we
presented here has shown a good compression of gray scale images. However it would be
unreasonable to suggest that no further improvement can be made in our method i.e

lossless image compression using entropy constrained vector quantization.

e Expending the training set with different size of block, 8x8, 12x12, 16x16 etc.
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» Using different test images rather we were reserved on grayscale of head and
shoulder images. The work can be further enhanced by including medical, tele-
images.

e The codebook generation process in our work is a bit, it could be more efficient.
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Abstract - Lossless coding guaranties that the decompressed image is absolutely identical to the image before
compression. This is an important requirement for some application domains, e.g. medial imaging, where not only
high quality is in demand, but unaltered archiving is a legal requirement. In this paper, an entropy constrained vector
quantization is proposed for lossless compression of image. The method consists of first quantizing the input image
using conditional entropy constrained vector quantizer and then coding the residual images using entropy coder.
Experimental results show that the new method outperforms standard entropy constrained vector quantization to
achieve lossless compression while also requiring lower encoding complexity and memory requirements.

Keywords: Lossless Compression, Vector Quantization, Entropy-Constrained.

INTRODUCTION ¢ Transform based coding, in which images are
transformed into the frequency or wavelet domain
Most data that is inherently discrete needs to prior to modeling and coding.
be compressed in such a way that it can be recovered ¢ Dictionary based schemes, in which strings of
cxactly, without any loss. The design of a data symbols are replaced with shorter (more probable)
compression systcm consists of two distinct stages: the codes,
modeling and the coding. In the modeling part the e Ad hoc schemes (such as run length encoding).

structure is selected which determine way the events are
lo be conditioned, and then relative frequencies of the [ ,ogsless coding techniques
conditioned events are gathered.
The coding is easily implemented on all sources,
stationary or no t and the complexity of the model has
no effect on the coding unit (Langdon and Rissanen,
1982). Lossless compression requires that the
reproduced reconstituted bit stream be an exact replica
of the original bit stream. Examples include text,
experimental results, statistical database and images.
The useful algorithms recognize redundancy and
inefficiencies in the encoding and are most effective
when designed for the statistical properties of the bit
stream.

Lossless compression schemes can be crudely
classified as follows:

e Predictive schemes with statistical modeling, in
which differences between pixels and their
sutround are computed and their context modeled
prior to coding,

Run length encoding
Huffman encoding

Entropy coding (Lempel/Ziv)
Area coding

Run length coding is easily implemented, either in
software or in hardware. It is fast and very well
verifiable, but its compression ability is very limited.
The basic idea in Huffman encoding is to assign short
codewords to those input blocks with high probabilities
and long codewords to those with low probabilities.
The compression ratio achieved by Huffman encoding
uncorrefated data becomes something like 1:2. On
slightly correlated data, as on images, the compression
rate may become much higher, the absolute maximum
being defined by the size of a single input token and the
size of the shortest possible output token (max.
compression=token size[bits]/2[bits]). While standard

Corresponding Author: M.sikandar H. Khiyal, Department of Computer Science, International Islamic University,
Islamabad, Pakistan, Tel: 92 51 9257951
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palletized images with a limit of 256 colors may be
compressed by 1:4

There is a wide range of so called modified
Lempel/Ziv coding. These algorithms all have a
common way of working. The coder and the decoder
both build up an equivalent dictionary of Meta symbols,
each of which represents a whole sequence of input
tokens. If a sequence is repeated after a symbol was
found for it, then only the symbol becomes part of the
coded data and the sequence of tokens referenced by
the symbol becomes part of the decoded data later. As
the dictionary is build up based on the data, it is not
necessary to put it into the coded data, as it is with the
tables in a Huffman coder. This method becomes very
efficient even on virtually random data.

Huffman vs. Entropy coding: A Huffman encoder
takes a block of input characters with fixed length and
produces a block of output bits of variable length. 1t is a
fixed-to-variable length code. Lempel-Ziv, on the other
hand. is a variable-to-fixed length code. The design of
the Huffman code is optimal (for a fixed block length)
assuming that the source statistics are known a priori.
The Lempel-Ziv code is not designed for any particular
source but for a large class of sources. Surprisingly, for
any fixed stationary source, the Lempel-Ziv algorithm
performs just as well as if it was designed for that
source. Mainly for this reason, the Lempel-Ziv code is
the most widely used technique for lossiess file

.compression.

Area coding is an enhanced form of run length
coding, reflecting the two dimensional character of
images. This is a significant advance over the other
lossless methods.

Vector Quantization with Lossless: Vector
quantization is a lossy process so, why this lossy
compression technique used to achieve lossless? it's a
fact that quantization often produce a structure where
high order statistical dependencies can be exploited.
Moreover the output of quantizer can be made smaller
than that of the original signal; the complexity of high
order statistical modeling is reduced. This is especially
the case when' structurally constrained quantizers are
employed(Yu et al., 1994). Entropy coding is now
being used frequently in conjunction with vector
quantization for image coding. Its use is motivated by
the fact that the probability distribution of VQ coded
images is generally skewed or non-uniform. While the
average bit rate can most often be reduced by entropy
coding the VQ codewords, improvement in the rate
distortion performance is usually attainable by
embedding the entropy coding in the design process

1

such that both the VQ codebook and entropy coder are
optimized jointly (Kossentini and Wilson, 1996).

MOTIVATION

The advantage of residual VQ over other VQ

methods (Faouzi and Mark, 1995), is achieved mainly
by exploiting the statistical dependencies among the
VQ stages. The hybrid technique of quantization and
entropy coding of the residual signal has been shown to
give up good compression performance.
RVQ, at subsequent siages, input residuals are
quantized and output residuals are computed, leading to
successive refinement in the accuracy of the overall
representation. Each stage VQ index or symbol is then
mapped into a variable-length codeword based on
probabilities that are conditioned on previous stage
output.

This method outperforms standard-constrained
residual vector quantization while also requiring lower
encoding complexity and memory requirements.
Entropy constrained residual vector quantization (EC-
RVQ) has been shown to be a competitive compression
technique. Its design procedure is an iterative process
which typically consists of three steps: encoder update,
decoder update, and entropy coder updatc.

An adaptive arithmetic coder was used to
encode the output of stage RVQ’s and the residual
images, the comparison ratios were slightly larger.
Even better compression performance may be attained
by using larger vector sizes and exploiting any
statistical dependencies bctween the multistage images
and the residual one. The entropy is used as a measure
so that the comparison was fair. Preliminary
experimental results are encouraging further study.

Like EC-VQ, EC-RVQ is memoryless vector
quantizer. This is because the EC-RVQ design
algorithm minimizes the distortion subject to a
constraint on the first order or zero order conditional
entropy of the vector quantizer output (Kossentini and
Wilson, 1996).

PROPOSED FRAMEWORK

We have designed a lossless image
compression CEC-VQ architecture, based on a single
stage vector quantizer and entropy coder.

The advantage of high-order entropy coding
over the normally used first-order entropy coding has
been revealed in Shannon’s information theory. The
high-order entropy of a source can be effectively
exploited by using either the joint probability of (L + 1)
symbols or the conditional probability of the current
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symbol with the knowledge of its L previous symbols
(Lei et al., 1993).

In particular, the structure of vector quantizer used in
(Kossentini et al., 1995) has been shown to be very
successful in providing more accurate estimates of

le
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Fig 1: Proposed Lossless CEC-VQ coder
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the statistical dependencies of the original signal while
also reducing drastically the complexity of high order
statistical modeling in multistage RVQ.

As shown in Figure |, we employ a CEC-VQ to
quantize the input signal, where the output of VQ is
then fed into a Entropy Coder(EC).The quantized signal
is rounded to the nearest integer, and the residual
signal, form by subtracting the rounded quantized
signal from the original one, is then coded using a
entropy coder. Empirical work has shown that using
higher order entropy coding does not lead to significant
reduction in output entropy of the residual signal
(Faouzi and Mark, 1995). Conventional distortion
measures does not lead to minimization of the residual
entropy, the overall system is lossless, its better to use
the entropy of the residual signal as a distortion
measure in the design of CEC-VQ. We used Entropy as
measure of distortion.

The distortion measures used in the design of
CEC-RVQ is, d(x,y) = -log:[pr(I(x-y))], where I(a) is
the integer closest to the real a (Faouzi and Mark,
1995). VQ designed to minimize such a distortion
measure also minimize the entropy of the residual
signal.

The second idea is that only entropy is a

measure of performance(Faouzi and Mark, 1995).
In figure 1,As illustrated, the encoding component
consist of a single stage VQ, producing the output
indices 1. Associated with a fixed number of vector
codebook. Initially, vector quantizer generates a
codebook that have MSE distortion measure. This
codebook has provided for next step of generation
progression to minimize the entropy.

Our model based upon a single stage quantizer
so it has reduced the complexity of entropy coder that
construct by multiple stage in RVQ. Thus, the
complexity and memory of the entropy coder grow
exponentially with the number of conditioning symbols

B EC Mux |—p

and the output alphabet sizes of the stage VQs
(Kossentini et al., 1994).

RESULTS

CEC-VQ was examined carefully in the
context of image coding. Several images of size
512x512 were taken from the USC database to design
the CEC-RVQ codebook. We implemented an image
codec where 4x4 blocks of residuals are used as vector.
For this, we used a set of 4 and 8, head and shoulder
gray level images.

Table : Results of Measuring Techniques
Measuring techniques

Required result

MSE 0
SNR Inf'db
PSNR Int'db

Fig 2(a): Original Image

Fig 2(b): Reconstructed image

Table 1 shows the different objective measures
calculated to prove the validity of our results. After
compressing the input image and then decompressing
the output image, the fidelity criteria were extracted
using the MSE, SNR, and PSNR.

Obviously, the values in the above table
indicate a perfect reconstruction, as shown in fig. (b) of
the original image fig. 2(a)
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Different images were tested successfully for
their perfect reconstruction. Some of the images tested
so far includes Ano, Aben, Barbara, Elaine, girll, girlb.
Perhaps even more significant is the fact that
improvement in bit rate can be achieved without the
enormous storage and complexity requirements that
accompany higher-order conditional EC-VQ, finite
state VQ and other predictive schemes of this type
(Kossentini and Wilson, 1996). Experimental Resulted
Bit rate validate it in this research.

Table 2. Bit rate (bpp) ot LENA (Compressed image ) using 4 and 8§
training set of image.
Code book size

Bit rate (bpp) 256 k 128 k 64k 32k 16 k
4 images 4.925 4.995 5.084 317 534
T-set
§ images 4913 4956 5.084 347 5.34
T-set

Table 2 shows the reduced bit rate that was
achieved after the compression of 8-bit gray scale
images of Lena. In Table 2, we can clearly justify that
in a training set of 8 or 4 images, the compression is
exactly the same. It is only when the size of the
codebook increases then a fractional difference is
introduced.

‘The work proposed by (Faouzi and Mark,
1995) was further built upon thus leading to an entirely
new framework. They used high order entropy; whereas
we have introduced lossless compression using entropy
constrained VQ. This method is more efficient and has
a lower complexity as compared to the work done by
the afore-mentioned authors.

CONCLUSIONS

The goal of our work was to obtain perfect
reconstruction of an image. Here, the decompressed
image should be a replica of the original. We have
obtained 100% lossless image compression. Our system
was tested on different images using codebooks of
different sizes such as 256, 128, 64, 32 etc.

The codebook generation was a time
consuming process. There is room for improvement in
the sense that it could be made more efficient. This
framework has experimented on 8-bit gray level
images. Enhancements can be made for 16-bit and
colored images.

In this work, we only consider 4x4 vectors;
relatively large vector size provides an information
theoretic benefit while still requiring manageable
complexity and memory and the block sizes can be
increased.
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