Validation of Ontology Based Test Case Generation
for Graphical User Interface

Thesis Report

A THESIS PRESENTED
TO

FACULTY OF BASIC & APPLICED
SCIENCES

DEPARTEMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE
DEGREE OF

MS IN SOFTWARE ENGINEFRING

BY
HAJRANASFER
Y7-FBASVSSE/ P

Department of Computer Science & Software Engineering
Faculty of Basic and Applied Sciences
International Islamic University, H-10,
Islamabad

(May 2012)

St
Agcession No /H-‘%I?

np [mS €
00.(-72,

HAV

Dﬁl!/:&b- - U g

/l%i

/oslfi

w
4

FINAL APPROVAL

Subject: External Approval Of The Research Thesis “Validation Of Ontology Based
Test Case Generation For Graphical User Interface” ‘

It is certified that we have read the thesis submitted by Miss ﬁajra Naseer; registration
number 307-FBAS/MSSE/F09. It is our assessment that this thesis is of sufficient
standard for warranting its acceptance by International Islamic University, Islamabad for
the degree of MS in Software Engineering.

Examination Committee

External Examiner) ‘
Dr Muhammad Ramzan _
NI ~

Assistant Professor

Department of Software Engineering,
Foundation University Institute of
Engineering & Management Sciences,
Rawalpindi

Internal Examiner

Dr. Zunera Jalil

Assistant Professor

Department of CS & SE,

International Islamic University Islamabad

Supervisor

Dr Abdul Rauf

Assistant Professor

Department of CS & SE, IIUI
International Islamic University Islamabad

Co-Supervisor
Miss Salma Imtiaz

Assistant Professor ‘
Department of CS & SE, 11UI
International Islamic University Islamabad

A A

-‘":%5)

- -

DEDICATION

- P A -
. R - o e
L Kroge s -
e R
e o By
= B “5. ;-‘j E . } = e
This thesis’is dedicated to
- L
- . MY PARENTS:, T

Iam most mdebted to my parents,

..
whose aﬂectlon has been'the source of e encouragement
k-
— =P % % # 4
iy & ‘ i and I — % :_',

“whose prayers’ have always been key 10,my success._,

~ Hajra Naseer
07-FBAS/MSSE/F09

AR

o Wﬁnﬂ

, o s
-~ LT L= 4 P
A dissertation submitted to'

iv

wlds

. -.n.{ w,:_& . o

¥ GRS 2 Vo

DECLARATION

I hereby declare that this Thesis “Validation of Ontology Based Test Case Generation
for Graphical User Interface” neither as a whole nor as a part has been copied out from

any source. It is further declared that 1 have done this research with the accompanied

If any part of the system 18- proved to be cop'id}out ﬁ'om any_source or found to be
reproduction of any project ﬁ'om any of the training institute.or educational institutions, I
shall stand by, the consequences =

.f Kol

No- portion of the research work presented in this thesis- report “has Been- submitted in

support of any other degree or qualification gf this or any other umversrty or ‘institute of

learning. "~ | ¥ s S} * .
’ & : -2 - =
_E - . F o R - -
£ £
-~ + ""
T i -
- 1 Ha]ra Niseer
i o Wk ., ot 307-FBAS/MSSE/F09
Ty c i,
[Rl i
AT % "-*-.— £ e -))
= = DU+ e Y
5 fek” } ﬁ‘_ - "ﬁ‘;::v - E E,’ "‘-a. ’.;‘ %f# }
y o € R o . . =
- - ¥ +
- .':' 3
R
P XY
5 .
THE R . *

s

ACKNOWLEDGEMENT

Many thanks to Almighty Allah; The Merciful, The Beneficent and The source of all Know]edge,
and His Holy Prophet Muhammad (S:A.W) whose blessings have enabled me to perceive and
pursuit higher ideas of life, Who Have given:me the couirage, insight and kriowledge to complete
this thesis. ‘F.-'-“ﬂL e B

4 -~

1 am also grateful to. my parents for thelr contirued moral. _support durmg my research work. I

would here like to: acknowledge my supervisor Dr- Abdul Rauf and | my co-supervisor Miss Salma
Imtiaz as well whose precious guidance made me able to complete my research and who helped a

lot during the documentatlon of this research work.

1 would like: to acknowledge International Islamic University Islamabad and.its teachers as well
for glvmg us an“insight to look®into things in a professional way. Last, but by not the least, I

would like to acknowledge my fnends for the1r moral support. .

£ i 3 >
:4 '; & q - f £ P
For err_ors and 1nadequacxes m this research work, I accept the respon51b1hty £

e v F | = e
S O IR S .

T4 aE ' M gF E2 .

£ . + 4 3;‘ - ' s = SiHajra Naseer

- = P - . 307-FBAS/MSSE/F09
R A \
i & = R i ‘%"«q" - ? - *

< M LI =* *
e - e g ¥ -
i& >
Bt
- 4 .
£ e 7 e ah
- 3 -
LY "
- %
bl - -

Vi

V/pzi

b BPL 5 Sl W

THESIS IN BRIEF

Validation of Ontology Based Test Case Generation for
Graphical User Interface

To generate test cases for graphical user interface application
based on Ontology meanwhile validating “GUI Testing
Framework”

Hajra Naseer _
307-FBAS/MSSE/F09

Student of MS in Software Engineering

Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

Dr Abdul Rauf

Assistant Professor

Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

Miss Salma Imtiaz

Assistant Professor

Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

April 22 2011.

December 28%, 2011.

vii

i st
h(r“
R

Abstract

ABSTRACT

Software Testing is an important activity during the Software Development Life Cycle. Much of
an organization’s time and money is spent on it. Test case generation (TCG) is an important
activity during this process. The techniques which are being used for TCG in Command Line
Interface can’t be used in GUL

TCG for GUI is a least focused area. GUI testing is knowledge inténsive in nature. It requires
complete information about the components involved, interaction among them, their sequences,
the context in which they were used etc.

One of the means to formally represent knowledge is through ontology. It represents domain
information as a set of concepts and relationship among them. Through this domain knowledge is
separated from application knowledge and makes it easy to communicate it among people and
systems, makes its reuse possible. Ontology based GUI testing is a new branch of testing. It has
been introduced in last few years and is in its initial stages. The work which has been proposed
has neither been validated before. Ontology has the potential to be used for test case generation.
An experiment has been conducted to validate a framework. R

- A

viii

v {&hw, '

i - e -?,.‘; X B r»*T
Table of Contents
TABLE OF CONTENTS

CHAPTER 1: INTRODUCTIONcvrveeeeeeseeeseeessssssssssisssssnsessessssssassassassassssassssessesasssessnsseassssesessossssssoranss 1
1.1 INTRODUGTION ..o eeeceeeeeeeeeseseeeseesesesesemsssssesosmesasstssssesassasmaseas s ssssossasassntasssseonssssasassissssnssessssaresesnons 2
1.2. MOTIVATION AND CHALLENGESccooreteeeirerseeernreeeceessossos e erriesrasen et s aeaee e araetessare 2
1.3. BACKGROUND ..o teseoseersosasemsssssssssssasssessessesssseassssasessasesssenssnessessessetsesonainssansessnsssssssass 3
1.4. PROBLEM DOMALIN ...ouvuireirirncisisseesesssessssessssasssssasssssssiossassssaseassasens sesmessseness S—— 4
1.5. PROPOSED SOLUTION ...ouieeoeeeeeeeeesisessaessasiasesessessossessisssssassesassassassassastossossnsassasessesessesasossasasssassnes 4
1.6. THESIS OUTLINE ..coocereeeeceertessssctes s sssmessestessassssssssassesessassssssessassssessasaseascnsens 7
CHAPTER 2: LITERATURE SURVEYoviiteerreremsemessssssserisssesssssassessasessmsaseaseasssssosessasesasenassssssnssssins 8
2.1 INTRODUCTION........cvvureererreesemeesemsoracrssstrosssssssssessersssasesssssssessessssassass sesnssssestssasassasessessessesremsossosss 9
2.2 SOFTWARE TESTING w..eoceeeeeeeetscrosasersssssssmessesssssssssessssesssssssssssssansasssssesssssssansanessimtmssantsressssrsassorses 9
221 WHATIS TEST CASE GENERATION.....ccceeceeeeereresinsresraraesssssasaassossstecsessessossatsessananssnassnssasssesessinesonses 10
222 TEST CASE GENERATION TECHNIQUESuveeiiimiersrisrerrsiosssraresssnsssseransessassnssessessorssssnasssesinssmarssssasts 10
223 LIMITATIONS ooceooeeoeeeeeeeeeeeeoseseasesesassaessessoseasessesserstassassasssssbases s s sesssssassssasassassasassssssasensesessrosssas 12
2.3 ONTOLOGY weoereeeeeeeeeseesessesseesesesesastaseosesessoseseresessssstassasasssassessessessessessssassesssssmsansassssssssassssssnrarsssoses 13
23,1 RELATED WORK ..e ouoeeereeeereseresassseosseesesssastasssossossasessasesassessesmssssssssssses sassssasenses sesssseioseronsosasessssses 13
2.3.2 BENEFITS OF ONTOLOGY 1eoververcerrarsarisresrsesssasssssrasassessesseseasensassssasnssessasssssissmsomsotsstensensonssassssssnses -16-
2.4 ONTOLOGY BASED TEST CASE GENERATIONoouuvemreereeeeeseeesnsseremnrmssssserssessasesseressssssessones -16-
2.5 SUMMARY eeeeoesaesuesses oot et eneanesesaoteeon s et b e SA AR A eeR e ReE A SEAsE s e s e et bRt st e R et re -17-
CHAPTER 3: METHODOLOGY ...ooeeeeeeeeseeeeeseeeeeemesoesesssssssssasssssssssesasssssasmssassssssassesassasssassesasesstssesssnces -18-
3.1 INTRODUCTIONoomreriecrrirrrsrerennsd st eseeeereseesesesen s as e et aemsmse s seraeesosasbas b r st et Rt sar e -19-
3.2 EXPERIMENTAL DESIGN . e et es oo st R s Rt ne s -19-
3.3 PROBLEM DEFINITION...... ceeeer et seneeeeeren oo est e orst e sennens -22-
3.4 RESEARCH QUESTION(S).....oeivurreuemsessesssseeraassssssssssssassssasssesssesssscasessssesnessessassassessssssassssossasssssos -22-
3.5 PROPOSED SOLUTIONoeveerememeseeeeeesesosesereseessssorsorsssssssessessssassasssssassassrsnssasssnssssssasassssssnssessees -24-
CHAPTER 4: RESULTS ..o e cveeve e eessseseeeeeeseseasesesesossssasaseasasasssessasssossessessassssssassessassssesssanssasssnssssssses -35-
4.1 INTRODUCTION......oorverureene s ee et eeeeseee e e e eneree e et e et st sttt are e eene s bt ratanen -36-
4.2 COVERAGE ..o et erereeenes ot et st bas s e R SRt ot et et e s s treranmnreateen -36-
4.2. EFFICIENCY . et e s e e e R AR A8 SRR e e s s R R e =36 -
4.3. COMPARISON BETWEEN COVERAGE & TEST EFFICIENCYvcviuversesssmmssessmsassesresecseasess -37-
B 4. DISCUSSION ... eeseeeves s sesersssesessesseaseetasessess e eeomasasenessassassssssasssssasssesassssassasesssassasssnssssasnsnes -37-
CHAPTER 5: CONCLUSIONoen e eeeeeeeeeeeeessessessseseererssessastsssassasssesassassassassassssssssesessessossssssesassassnsesnes -44-
5.1 CONCLUSION........ooeeeveesesseresseseeeseseasesssassseassesessssessessassassaseassssssesassassnssasssmsassresssssssassasasasansassssnres -44-
S2FUTURE WORKooeveeeeeeeeseoseeessesessesemsessastsos s sssessesssssesessssnsensassessassrssesssesanssssasastassasesassesosenees -44.-
ABBREVIATIONS covevo et eeteeeeeeetesemsesessesssassssssesssssssssssssansas sssnssnsassssssessesssssssessasessassassssssssnssssnssrseseas -45-
REFERENCES ...o.vo et eesteeuesasteseaseesessenessesessesssatsnsssatssasassstsssasesssssssssssseossessessssssssssssssesastassassarsasssssonsases -46-

o S
List of Figures
LIST OF FIGURES

FIGURE 1; GUT TESTING FRAMEWORK ...votsterueecsesemeeseesisssiserssssanessnssmessssnsasresstsossssonnanssessansasarssiossssnrasasssssnssns 5
FIGURE 2: PDCA CYCLE ...vvvveverrerieinnencnnnas
FIGURE 3: THE DEFECT TESTING PROCESS
FIGURE 4: AN ONTOLOGY EXPRESSIVENESS SPECTRUMvecomeeniinsnrimeranssersissironsrienenns SETTO—— 14
FIGURE 5: EXPERIMENT SETUP ’
FIGURE 6: LEVEL 1 GRAPH REPRESENTATION OF NOTEPAD APPLICATIONc.ccosmsurerernninnaimsnienssesssonsns -26-
FIGURE 7: LEVEL 2 GRAPH REPRESENTATION OF NOTEPAD APPLICATIONcoruiimientsarcsnersemssmnnrensarneniens -26-
FIGURE 8: FILE MENU EXPANDED....
FIGURE 9: EDIT MENU EXPANDED.......cceeutetresseeseaessisestessesessesssossassas assms sosstsstsessstsssassssessessssasanssensesesasanss
FIGURE 10: CLASS HIERARCHY OF NOTEPAD APPLICATION ...ccccrermeurmmnsrseersererssssmsenscrsesoress ssassssssassssssases -28-

FIGURE 11: PROPERTIES

FIGURE 13: OVERVIEW OF EVENTS.....cceecieeectitieverserensrsessessssssasivssnssessssssssnsassssossonsas vetemeeeeeeeeeeaeresesasbereres -30-
FIGURE 14: EVENTS THAT FALL UNDER LEVEL ONE OF APPLICATION ...c..ccoveiecrecrorasanuesecsmssmssivesdunnminnane -31-
FIGURE 15: EVENTS THAT FALU UNDER LEVEL TWO OF APPLICATIONcovoiminniienensmnssaseasinninenns eeeeenae -31-
FIGURE 16: EVENTS THAT FALL UNDER LEVEL THREE OF APPLICATIONc.cccovcmminneinsrivrmnsemnenneesseseans -31-
FIGURE 17: EFG ELABORATED.....ccciteiieuieeeeeetiereserersserssessasseeascsmsssmsasssenessas smsessrens st s sosossessssasansss snssansesns -32-
FIGURE 18: FILE MENU OPTIONS.....cvuceruesartssssesssssrasssssasssassasascsssssans seassassassessessassssessassisassasensassinsasssessrass -32-
FIGURE 19: EDIT MENU OPTIONSccveruetieteesensressresassssessrasessasesessstossasnssssesacsas s sassssssssssotossossnsssnsssnsnsasans -33-
FIGURE 20: SHORTCUT OPTIONS .

FIGURE 21: VALUE PARTITION

FIGURE 22: ARC TYPES 1euveteeeeeneimesemeeesessrasssssnsstsisesesessassassssessssnsosssas e sassasassas s sosstassenssosseenssssssesassossses
FIGURE 23: RESULTS WITH 50 TEST CASES ..ouvuiivivivriesscsesseseressesssesassesessesessnssassssesssassessssssnissssosssssssssessons
FIGURE 24: RESULTS WITH 75 TEST CASES ...ccooveuee.

FIGURE 25: RESULTS WITH 100 TEST CASES
FIGURE 26: RESULTS WITH 130 TEST CASES

FIGURE 27: COMPARISON OF COVERAGEccorvrureressecsessararesersassmsenes

FIGURE 28: COMPARISON OF COVERAGE ACCORDING TO LEVELScuveerermirseensesesseessssssseessesssessassesseseses -41-
FiGURE 29: COMPARISON OF TEST EFFICTENCY ..ueueetteeiteserassresssaceseesssssassssansmssnosseracsosssssanessssas st saseras -42-
FIGURE 30: COMPARISON OF TEST EFFICIENCY ACCORDING TO LEVELSocceirerviccirecrennerensereninsnsnnnnennns = 42 -
FIGURE 31: COMPARISON OF COVERAGE & EFFICIENCYuvoeimieieiereseeerieesrresesosassessassasaronsssssassesasssassonnes -43-

List of Tables

LIST OF TABLES

TABLE 1: EXPERIMENTAL DESIGNureveeseeeeseeieertessesnanmesmsseessmssssenesstssntsorsassasssssnsssasssnissssanaassasssnsassnessons
TABLE 2: COMPARISON OF COVERAGE ACCORDING TO LEVELS

TABLE 3: COMPARISON OF TEST EFFICIENCY ACCORDING TO LEVELScovvmiuiermerensmsrmscsssnsesunsnssssssnncass -37-
TABLE 4: COMPARISON OF COVERAGE VS TEST EFFICIENCYovecrcmuressenssnsesersasasanes barerseriesnstasaramasmrane -37-

xi

Chapter — 01 Introduction

CHAPTER 1: INTRODUCTION

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 1

wl

»,

Chapter—-01 Introduction

1.1. INTRODUCTION

Software Testing is an important activity during Software®Development Life Cycle
SDLC. Much of an organization’s time and money is spent on it. To manage the cost of
manual testing process and increase its reliability automatic testing was a way out. Test

case generation (TCG) is an important activity during this automatic process.

The manual process of testing has problems associated with it. Resource consumption is
more, it is hard to memorize which states or functions of the system have been tested and
which are not, reliability of manually tested system is lesser etc [2]. So there was a need

to automate this process.

The origin of Ontology is from Metaphysics; the branch of Philosophy; as a study of
existence. It is currently being used in many disciplines like Artificial Intelligence Al,
Software Engineering SE, biomedical informatics, system erigineering, library sciences
and many more. In knowledge representation community agreed upon and highly cited
definition of ontology is proposed by Gruber in 1993 as “Ontology is fgﬁ’;dl}e)(plicit
specification of a shared conceptualization. ‘Conceptualization’ refers to an abstract
model of phenomena in the world by having identified the relevant concepts of those
phenomena. ‘Explicit’ means that the type of concepts used, and the constraints on their
use are explicitly defined. ‘Formal’ refers to the fact that the ontology should be machine
readable. ‘Shared reflects that ontology should capture consensual knowledge accepted

by the communities™. [7].
1.2. MOTIVATION AND CHALLENGES

In automatic testing, Test Case Generation TCG is an activity which is of great
importance. Automatically generated test cases are time consuming to generate, maintain
& evaluate [2, 14]. The techniques which are being used for TCG in Command Line
Interface CLI can’t be used in Graphical User Interface GUI. GUI applications are
different in nature as they are event driven. There are not only the components of an
application to be tested but also its graphics, and the user interacts with those through

events. Ultimately testing such applications is knowledge intensive and context
:

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 2

g

Chapter —01 Introduction

dependent as well. The main steps in GUI testing are: to reverse-engineer an Event Flow

Graph EFG from a GUI, generate and execute test cases, and then apply the oracle [18].

Several challenges are pertinent testing a graphical interface.

1. The number of possible states in which a system can be is enormous, so the
number of interactions among the states and their sequences may be large as well
as different. So it is difficult to validate a state when test cases are executed at
each step [3, 14, 16].

2. When a change occurs in the sequence of states then the regression testing
becomes a problem because the two version of same software are not in
accordance with each other [14, 16].

3. Coverage of test cases in GUI is also a problem as in CLI it is based on the
amount and type of code which has been tested. In GUI we can’t determine the
coverage of test cases only by the part of code being tested, but also the number
of possible states in which that code has been tested [3, 14, 16].

4, Number of evénts and interaction among them is very huge [3, 5,14, 15]..

“An incorrect GUI state can lead to an unexpected screen, making further
execution of the test case useless since events in the test case may not match the
corresponding GUI components on the screen” [14, 16]. Due to these challenges

test case generation for GUI testing is least focused area [3].
1.3. BACKGROUND

GUI testing is knowledge intensive in nature. It includes components and operations
which are of different kinds and complicated as well, there is a complex relationships
among these components and a lot of abundant testers’ experience is required [10]. While
testing a GUI application one has to keep in mind underline business logic of the
application, the nature of the components involved, their properﬁefs' which can be
observed like color, title etc. for determining whether a test case was pass or fail. All

these activities require knowledge to be managed thus ontology best fits here [19].

P - * ~ 5 . « -

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 3

Chapter — 01 Introduction

GUI testing is context dependent and requires knowledge of the application under test.
One has to remember the states which have already been tested as well their sequence.
Much of the underlying functionality in a GUI application is un-documented; there are
several paths through which a user can achieve a task [19]. It is of great importance in
GUI to maintain context of events; information of events, their interactions, their
sequences etc. Sequence of events is also important in TCG which is context dependent.
To maintain this context we need knowledge. Ontology thus makes it possible to manage

this information.

1.4. PROBLEM DOMAIN

Among one of the reasons why I have focused on ontology to generate test cases for a
GUI is that through this knowledge related to an application domain can be separated
from the business logic. Tt also provides standard specification of concepts in a specific
domain. Thus test cases which are generic in nature can be generated for a domain
irrespective of the application in which they are used ultimately making“reuse of

knowledge possible.

It is but natural that applications evolve with the passage of time; new components are
added or the existing ones are modified. Test cases break if there is even a slightest
change in the GUI thus regression testing becomes a problem. Test cases generated for
an application adds in our knowledge base i.e. ontology. For newer versions; test are
generated reusing the existing ontology. The problem of re-testing an application is thus

solved. Knowledge created in this whole process can be managed and reused in future.

1.5. PROPOSED SOLUTION

Even though ontology has been an active area of research since the last decade, there has
not béen any ontology reported in the literature which deals with the software
engineering field. The authors of [20] have developed ontology for general process of
web based application testing. Ontology oriented GUI testing is a new area of research in

software testing [10].

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 4

Chapter - 01 Introduction

There is initial level work with regard to generating test cases for GUI using ontology. A
framework titled as “GUI Testing Framework” has been proposed by the authors of [5]
but they have not validated it. Figure 1 shows this framework. The authors state that in
the process of defect identification of GUI’s; due to their event driven nature longer test
sequence is better than shorter sequences. The approach is based on EFG and
incorporates ontology for this purpose. Ontology can be used to represent concepts and
relations and as the number of concepts keep on increasing with the passage of time, so

the proposed ontology for this work must also be evolving ultimately.

To the best of our knowledge the authors Han Li, Feng Chen et al have first introduced in
their paper [10] the concept of GUI testing based on ontology. They mentioned the
elements required for developing GUI ontology and also gave their definition. These
elements are concepts, instances, relations and property. In GUI testing there is a great
role of tester experience as in what sequence they interact with GUI components. So they

have contributed in maintaining this through developing ontology.

| G Testmy
| Fromewed:

g S Pt tiavedk bt Ao Gucomne o O3 wan

Figure 1: GUI Testing Framework

e

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 5

Chapter — 01 Introduction

I will be using ontology to generate test cases for a GUI application. For this purpose we
will use EFG.

EFG [17] is a model developed for GUI of a particular application. It represents all
possible sequences of events which a user can execute while interacting with a graphical
application. It represents dynamic behavior of a GUL Nodes correspond to events and
edges correspond to event sequences or a relationship of flow of events. They are cyclic
in nature such that an event may be executed multiple times in a single session with an

application.

EIG is based on the events and interaction among them [15]. Reverse engineering
techniques are used to obtain EIG but some limitations are associated with it. It does not
contain any state-based relationships. Secondly its coverage requires a largé number of
test cases. EFG or EIG are used for test coverage and not for test case generation. They

can be used for TCG but this has not been donef

]

The approach I have proposed for test case generation for GUI is different from the
current prevailing techniques. Currently test cases generated for GUIs are based on
modeling techniques, planning techniques [14, 16] adapted from Al, user interactions
with the application is saved in the form of widgets and later on they might be compared
for testing. There is no such work in which test cases for GUI are generated based on

ontology.

An experiment has been conducted to validate the proposed framework. At first an
application will be developed. Initially test cases will be generated based on the
application and later on ontology will be developed (tool based) depending on these
generated test cases. For testing the application multiple times or in regression testing
then test cases should be generated- automatically based on ontology. To measure the
coverage of the test cases it will be done on the event count. Validation of the generated
test cases will be the last step carried out.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 6

Chapter—01 Introduction

Version 2 of Web Ontology Language (OWL) OWL2 will be used for the ontology
development. It supports classes, instances, properties and data values which are stored in
semantic web document. An open source software Protégé ™ version 4.1 will be used to
construct domain models and knowledge-based applications with ontologies. It is an open
source software and provides two ways for modeling ontologies i.e. (1) Frame-based

modeling. (2) Modeling ontology using OWL.

1.6. THESIS OUTLINE

In Chapter 2 deals with the literature survey conducted for the thesis. Chapter 3 focuses
on the research methodology. I have given a detail description of the procedure and tool
used for ontology development as well as test case generation. Chapter 4 deals with the
results. I have mentioned the graphical representation of our results as well. At last we”

concluded our work and gave an insight to the future work in chapter 5.

¥ . _ N L. - . - - =
gtV

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 7

Chapter — 02 Literature Survey

CHAPTER 2: LITERATURE SURVEY

o

>

B - 4. - - IR s = ~ = - - i .- et 3
~ Validation of Ontology Based Test Case Generation for Graphical User Interface Page 8

Chapter — 02 Literature Survey

2.1 INTRODUCTION

This chapter outlines and describes the process of software testing, what is test case
generation. It also presents an overview of various software test case generation

techniques. It also describes what ontology is and what benefits it offers?

2.2 SOFTWARE TESTING

Software testing is an activity in which the developed software application/system is
executed with the intention to find defects in it. Wikipedia defines this activity as
“Software testing is an investigation conducted to provide stakeholders with information
about the quality of the product or service under test. Software testing can also provide an
objective, independent view of the software to allow the business to appreciate and
understand the risks of software implementation. Test techniques include, but are not
limited to, the process of executing a program or application with the intent of finding

software bugs (errors or other defects).” [22]

iy PeRiea

Four phases are included in software testing process. These are Plan, Do, Check and Act;
which is known as PDCA Cycle [24]. Testing process includes the following steps: fest
plan (strategy, plan, testbed), fest development (procedures, test scenarios, test cases, test
datasets, test scripts), fest execution (execution and reporting of error(s) found), test
reporting (metrics, effort), test result analysis (defect reporting), defect retesting (known
as resolution testing), regression testing and test closure (lessons learned, results, logs,

documents) [22].

. . Y b e L A A

© 3f Reculk not achieved take zction m&c ; B
¢k Next plane, ACT

De::ﬁ:ne objective, dezsribe

NPLAN ‘goal bolicies nesded. Decermize
Prosedive & rozdition’

" Execute dre condition. Petform,
‘Tramning & learning work

procedure-

Figure 2: PDCA Cycle

“ - - Ty - - . .
Validation of Ontology Based Test Case Generation for Graphical User Interface Page 9

Rl

Chapter - 02 Literature Survey

_ . Test) . st Iy Test Iy] Test fo
|—’» ! Saiesr * |" an’ ‘L I" reuls sepors
[A % 1
“Designtest* N o f Préparetest \ o f 7 Rumprogram: Y o f Compare results,)
cases S data) with test data = ?, - T test cases

FIGURE 3: The Defect Testing Process

The above figure shows defect testing process [23].
2.2.1 What Is Test Case Generation

Test cases can be defined as “A test case is a description of a test, independent of the way
a given system is designed” [2]. We can generate test cases directly from the system
requirements or from use cases. The benefit of using system specifications and design for
this process is that test cases can be created early in SDLC and are available for use even

before the actual system is developed [2].

2.2.2 Test Case Generation Techniques

Techniques which are being used for Test Case Generation in Graphical User Interface

are as follows:

Capture/Replay technique/tool [3]. In the first mode they capture the mouse
coordinates of user actions in the form of test case. In the second mode these recorded
test cases are replayed automatically. There is a problem associated with it that the test

cases break when there is a slight change in the GUI.

Planning technique [14, 16] adapted from Al It is based on states mainly initial and
final; called as “GUI tasks”; for the generation of test cases. The motivation of this
approach lies in the fact that the users of an application are more concerned with the goal
they want to achieve by interacting with the software. It is easier to design test cases
keeping in mind these goals rather to specify sequences of GUI actions [16]. List of

operators represent events. The sequences of events; also called as plans; become test

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 10

g |

Chapter — 02 Literature Survey

cases for the GUL The authors proposed a tool for test case generation called as PATHS

(Planning Assisted Tester for grapHical user interface Systems).

Genetic Algorithms Test cases for GUI can also by created by mimicking usage of the
application by a novice user [4, 16]. It assumes that the novice user takes on longer path
when interacting with a GUI application as compared to an expert user. wThis approach is
dependent on expert’s input in a way that s’he has to generate the initial sequence of GUI
events manually. Genetic techniques are later on used for modifying and extending the

sequence and generating longer sequences [16].

Directed Graph Models In order to reduce manual work, several new systematic
techniques based on graph models of the GUI have recently been developed. They are
based on EFG and Event Interaction Graph EIG [4].

Network Centrality Measures is adapted from network analysis-based approach for
GUI testing [17]. This is a new area of research in GUI testing. The authors state that
their approach is able to identify both the events and their sequences in the GUI which
are of the most importance. The authors have stated that a comparative study needs to be
done to compare the performance of various network measures with existing techniques
for ranking GUI events so that the input EFG becomes more enriched with more

information that can lead to more interesting results.

Event Flow Graph (EFG) [17] is a specific model of the GUI for a particular
application, representing all possible sequences of events that a user can execute on that
GUI. It represents dynamic behavior of a GUI. Nodes correspond to events and edges
correspond to event sequences or event-flow relationship between two events. They are
cyclic in nature such that an event may be executed more than one times during a session

with an application.

Event Interaction Graph (EIG) which is based on the events and interaction among
them [15]. Reverse engineering techniques are used to obtain EIG but some limitations

are associated with it. It does not contain any state-based relationships. Secondly its

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 11

wg o

i

Chapter — 02 Literature Survey

coverage requires a large number of test cases. EFG or EIG are used for test coverage and

not for test case generation. They can be used for TCG but this has not been done.

Ethar Alaska, Atif Memon, et al gave the concept of using EFG and network analysis
technique for test case generation specific to graphical applications [17]. They have used
betweenness centrality score to rank events and not for generating test case. Generating
test cases and later on prioritizing them using the results obtained from ranking of events

has to be done.
2.2.3 Limitations
Some of the limitations associated with the already prevailing techniques are as follows.

1. Number of possible states involved in GUI application is large and interactions

among them is very complex, so validation is difficult [3, 14, 16].

2. Regression testing is problematic due to ‘change in sequence of states. Test cases
break when there is even a slighter change in GUI interface of an application. [14,
16].

3. Number of events and interaction among them is very huge [3, 5, 14, and 15].
4. Coverage of test cases is difficult [3, 14, and 16].
5. More GUI testing experience is required [10]

6. Semiautomatic GUI ontology construction and the extraction of test case generation
rules [10]

7. Test case generation and prioritization has to be done using the ranking of events
obtained from EFG [17].

8. Complete specification of ontology needs to be provided. Also extensive

experimentation is required to verify the results [5].

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 12

rakrs AN

=

Chapter - 02 Literature Survey

2.3 ONTOLOGY

Ontology is the mean for capturing domain knowledge in a generic way that provides a
commonly agreed understanding of a domain [5]. “An ontology defines a common
vocabulary for researchers who need to share information in a domgin. It includes
machine-interpretable definitions of basic concepts in the domain and _;elations among
them.” [6] .

Wikipedia defines ontology as “Incomputer science and information science,
an ontology formally represents knowledge as a set of concepts within a domain, and the
relationships between those concepts. It can be used to reason about the entities within

that domain and may be used to describe the domain” [8].

Ontology is a complex multi-disciplinary field. It uses the concepts from information
organization, natural language processing, information extraction, artificial intelligence,

knowledge representation and acquisition etc [7].

Ontologies are commonly used on the World Wide Web (WWW). These ontologies
range from large taxonomic categorization e.g. Yahoo! to categorizations of products for

sale and their features ¢.g. Amazon.com [6].

2.3.1 Related Work

Ontologies can be classified according to their expressiveness. There are several levels of
expressiveness [26, 28]:

o Controlled Vocabulary lists the terms

e Treasures gives relationships between different terms

o Informal Taxonomy describes explicit hierarchy without sfrict inheritance.

e Formal Taxonomy entails strict inheritance.

e Frames which is based on properties that are inherited by subclasses and

instances.

Value Restrictions is based on restricted/fixed property values e.g. data types.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 13

Chapter — 02 Literature Survey

e General Logic Constraints logical or mathematical formulas may be used to
constraint values from other properties.

o First-Order Logic Constraints are very expressive ontologies which allow first
order logic constraints between terms and more detailed relationships among
them. e.g. disjoint classes, disjoint coverings, inverse relationships, part-whole

relationships. etc.

Following figures shows the “Ontology Expressiveness Spectrum’” [26]

A
é‘Q .
-~ & o &
o A S &S
AN &E Ry &
5 2 . & & & X
o X ™ < é‘\ & &
& < & ,"Q“ N . oé , S
Na & & o =
& > & A & o &
S & » & \E \" AV X
¥ S &9 & & ¢ ol &
& & o & & & & &
B\ Y i T & N4 <©

® WordNet @ DMOZ

o Cve
®Controlled @ Yahoo! ’ oOWL
Vocabulary Dictionary & RDFS) Ontologies
@ Dublin Core .9 Ontologics
UNSPSC
Light-weight oatnlogies - sHeavv-weighe

‘ontolagies

Figure 4. An Ontology Expressiveness Spectrum

Constructing ontologies can be achieved in two ways; domain dependent or generic [27].
Classes in ontology can be constructed in many ways [6] i.e. Top Down: from
generalization to specification, Middle Out: from the most important concepts to
generalization and specialization, and Bottom Up: from specification to generalization

Ontologies are commonly used on the World Wide Web (WWW). The concept of
“Semantic Web” has gained popularity in the last few years. The term has been
introduced by Tim Berners-Lee, the inventor of WWW. A semantic web is an extension

of World Wide Web (WWW) which provides much more automated services by

L

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 14

Chapter—02 Literature Survey

presenting information in a machine readable form. Ontologies provide common and

shared domain concepts which are a key ingredients of semantic web [6, 7, 26].

Harvey Siy and Yan Wu in their paper [9] proposed ontology for experiments that belong
to software engineering filed which can be used to validate experimental designs. The
ontology is based on the experiments that are documented in the empirical software

engineering body of literature.

Authors of [28] have proposed a novel approach to generate ontologies for the gerfieration
of fault injection test cases and failure detection. Dependability assessment increases our
confidence in a system to be obtained, even though this does not assure correct operation
under all circumstances. Ontology has been created for every element of Service Oriented

Architecture (SOA) which is further used to trigger test cases.

Automatically generating ontologies in Semantic Web is an active area of research.
Authors of [29] have proposed an approach which creates and renews the ontology

automatically which are related with the keywords provided by the user.

The authors Chang-Shing Lee et al in their paper have used the concept of fuzzy ontology
for Chinese news summarization. “The fuzzy ontology is an extension of the domain
ontology that is more suitable to describe the domain knowledge for solving the

uncertainty reasoning problems.” [30].

Ontology has been used in the field of requirement engineering. The authors Leonid Kof
et al. have used ontology for requirement validation [31]. They first constructed
application model ontology and then they checked its consistency with message sequence
charts those who were relevant to the domain. Then a comparison is made among the
models attained from requirements document and generic domain ontology. Thréugh this

comparison analyst can uncover information missing from the requirements documents.

The authors of [32] have used ontology for automatic speech recognition and its
generation when an agent based application is to be used by a user. The authors of [33]

have used ontology for testing robustness of web services. They have proposed a novel

Validation of Ontology Based Test Case Generation for Graphical User Interface Page-15-

Chapter — 02 Literature Survey

approach to generate test data for robustness using OWL-S (Web Ontology Language for

Services).

2.3.2 Benefits of Ontology

Ontology has a main advantage that it aids in common shared understanding of
knowledge among the people and software systems [5, 6, 7] and effectively
communicates this knowledge [5, 7]. It also provides ease of maintenance and updation.
Through its use separation of domain and application knowledge is possible [6] and
domain knowledge can be re-used [5, 6, 7). It improves information organization,

management & understanding [7].

Some of the advantages offered by ontology are mentioned as under.

. Shared understanding of knowledge among people & s/w systems [5, 6, 7, 30].
] Effective communication [5, 7].

. Reuse of domain knowledge [5, 6, 7].

. Ease of maintenance and updation.

. Improves information organization, management & understanding [7].

. Systems interoperability [7].

. Separation of domain and application knowledge [6].

. Explicit stated domain assumptions [6].
2.4 ONTOLOGY BASED TEST CASE GENERATION

To the best of our knowledge Han Li, Feng Chen et al. in their paper titled “An
Ontology-based Approach for GUI Testing” [10] first ever introduced the new branch of
testing i.e. ontology-based GUI testing. They have taken the knowledge intensive features
of GUI testing .into account. There are some short comings in their work. More
experience is required regarding graphical testing so that a complete set of rules for test
case generation can be achieved which is explicit in nature as well. Abdul Rauf, Sajid
Anwar, et al. In their paper titled “Ontology Driven Semantic Annotation Based GUI

Testing” gave the concept of using semantic annotation for GUI testing [5]. They

Validation of Ontology Based Test Case Generation for Graphical User Interface Page-16-

Chapter — 02 Literature Survey

presented an approach to automate the test case generation process for GUI testing. It is
based on semantic annotation and ontology and used the concepts from GetFollows
algorithm as well. They also claimed that their proposed ontology could be used to group

events based on functionality and hence reduces the manual effort required to do so.

An annotation can be defined as meta tag. It can be used to specify additional information
to the code being used. They do not have direct influence on the program semantics, but
affect the semantics of the program which is being executed. Semantics refer to the study
of meanings, usually in language. Semantic annotation is a fundamental knowledge

which is being used for the development of intelligent contents and also in their usage.

Limitations of the paper are that complete specification of ontology needs to be provided.

Secondly extensive experimentation is required to verify the results.
2.5 SUMMARY

Ontology based test case generation is a new branch of testing and is in its initial stages.
Han Li, Feng Chen et al. have first introduced in their paper [10] the concept of GUI
testing based on ontology. Later on the authors have presented a framework incorporating

ontology into test case generation for graphical user interface applications.

O S —

Validation of Ontology Based Test Case Generation for Graphical User Interface Page-17 -

Chapter —03 Methodology
CHAPTER 3: METHODOLOGY
\

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 18 -

RS ';‘

R

Chapter —03 |4 * s O £ Methodology

Ty

3.1INTRODUCTION

Ontology based test case generation for graphical user. iingefi;fg_ce applications is a new

branch of testing. Very little work has been done in this §r¢dffAuthors of [5] proposed a
. N

framework to generate test cases for a GUI enabled application based on ontology. I have

validated their proposed framework using eXperirﬁentaition as a mechanism.

We have constructed ontology for File and Edit menus of Notepad application. Options
New, Open, Save, SaveAs and Exit are covered undejf File ménu. In Edit menu options
Undo, Cut, Copy, Paste, Delete, Select All and T ime/Date are covered. Protégé ™ version
4.1 has been used to consﬁ%ct domain modejls with ontologies. It is an open source
software and provides two ways for\modeling ontoloéies i.e.'(1) Frame-based modeling.
(2) Modeling ontology using OWL. OWL Etands for Web Ontology Language and
supports classes, instances, propertiés and data values stored in semantic web document.
OWL2 has been used for the ontology development in‘our scenario. Ontology had been
constructed and later on added information of prope}ties and rules to this. Event flow

= 4
graph of the application is extracted and later on test cases were generated using this.

32 EXPERIMENTAL DESIGN

N g 3
The motivation behind using experiment as a validation tool is that we can create a

controlled environment in which an applicatiog can bie tested. Secondly experiments are

suitable for validation of applications or techniques. We will start the experiment by

3 1
falsifying the null hypothesis. E
Hypothesis (
1. The proposed ontology is able to g'ro{ip all number of events with respect to
testing.
2. The proposed ontology is able to generate test cases that can detect maximum
faults in the application. : i i
3. The proposed ontology is extendable o support future development.
]
” ;

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 19 -

“
[

by

]

4

Chapter—03 Methodology

Null Hypothesis: i
1. The proposed ontology is not able to group ail number of events with respect to
testing.
2. The proposed ontology is not able to generate test cases that can detect maximum
faults in the application. ; =
3. The proposed ontology is not extendable to support future development.
Treatment: The framework to generate test cases through ontology.
Experiment Operation: The experiment has béen executed in following steps.
1. Ontology for File menu and Edit menu of Notéi)ad application was created.
1) Generated rules for the ontology. : é
2) Event Flow Graph of the respective ontology was created.
3) Test cases were generated based on the EFG. 1
4) The results of the execution were analy%ed usi{lg performance measures coverage

4
and efficiency used for evaluation.

%
3
d

Experiment objects: The test case generation Will act as an experiment object.
Experiment subjects: Students of undergrad f]cvcl viili be the subjects to perform this
experiment. P
Experimental Design: One-Shot Case Study ¢
Experimental Steps:

1) Problem identification. 2) Formulate hypotile'sis. 3) Ontology Development. 4) Test
Case Generation. 5) Ontology development based on already generated test cases. 6)
Execution of the application. 7) Verify the results by applying it on unknown
applications. ;

Independent Variable: Framework for Automatic Generation of GUI tests by [5] will be
independent variable during ontology based tcst; case gieneration.

Dependent Variable: The dependent vaﬁablés in our €xperiment are the number of
events being grouped, the number of test case; being gencréted, whether the interaction
supported among the events will be one way ori'l will it also work beyond it. Metrics used
to detect these attributes are coverage and test e;fﬁciency. ;

Control Variable: Educational experience of jstudents and background.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 20 -
3

LA
[T

"-’m\#

Chapter— 03 Methodology

i

Random Variable: Cultural background, ethnicity etc].

Internal Validity: Students have some attributes as‘séciat_éd which vary from one person
to another like their skills, background, educational experience, performance etc. The
selection of students will be from the same domain "‘havi'ng same education experience
and background. This will increase our confidénce on results attained because they will
not vary due to educational experiencé be due the individual skills or fatigue etc but will
be based on the technique used. If we pick students from: different educational level and
experience then our results can vary. ' i

External Validity: The experiment will be rec;ursive: Wg will conduct it multiple times
on a number of applications, with larger number of Sllbj ects so that we can generalize the

results gathered from our experiment. Repeatmg the experiment at different sessions

ensures that the results are due to our techmque used rather due to the fatigue of
! o

continuous being involved in it.

Table I: Expenmental Desngni

s

5

i
%
i

Steps | Procedure

Y

Aim

Step | ONTOLOGY CONSTRUCTION
1

Three weeks of
instruction on sbntoldéy
construction a%d rule
developmenl E

Students may get an idea what an ontology is,
how we construct it, how can we apply rules to

it etc.

E

Step | TEST CASE GENERATION AND
2 EVENT FLOW GRAPH

One week of mstructlon
on test case generauon

and event flow graph
F

b

f

StEden‘rs nﬁay get an idea how test cases are
generated for an application, what are different
tex#ms used in this process, etc. They may also
gethan idea about what is event flow graph, how

[
can we construct it for an application etc.

Step | FRAMWORK TO GENERATE
3 ONTOLOGY BASED TEST CASE
GENERATION FOR GUT

One weck of instmction:
on how to gen;rate test
cases for ; GUI
application bffsed on

b
ontology. B

To influence the dependant variable ic.
Cgvmge and Test Efficiency

Step | ONTOLOGY BASED TEST CASE
4 | GENERATION FOR NOTEPAD

APPLIACTION

Measure the degree of change on the dependant
varlable E.g. how many events can be grouped
ba‘s_ed on ontology, how many test cases can be

generated using ontology

&

- e]
Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 21 -

Chapter—03 Methodology

3.3 PROBLEM DEFINITION f
i

GUI based applications provide interfaces to their users which are complex in nature and

the user interacts with those through events. .The number of events involved and the
. § 1

interaction among them is very large. Regression testing is also difficult for a graphical

application; test cases break when there is a slighter ch,ang“e" in sequence of states.

GUI testing is a complex task and knowledge mtenswe as well. Complicated & different
F

kinds of components are involved in a GUI appllcatlon and there is a complex

relationship among those components. A lot of abundant testers’ experience is required to

accomplish this task.

GUI applications have most of the components inicOtr;mon like text boxes, menus,
buttons etc. By making a general ontology ifor these iest cases we can achieve its
reusability independent of the application knowledge Test cases for a GUI are specific to
the application for which they have been generated Our ‘aim of research is to generate
ontology of graphical user interface test cases whlch are not application specific and can

be reused no matter what the application is.

3.4 RESEARCH QUESTION(S)
i

Q1. How does the proposed ontology provide automaﬁgn for grouping events?

Ontology has been created keeping in mind thc groupn}g of events. We created class
hierarchy of events according to their levels. For example events which correspond to
level one of Notepad application aré FlleMeInghcked, EditMenuClicked,

: i 3 :
MaximizeButtonClicked etc. At level two. we havie events FileMenuExpanded,

. EditMenuExpanded, WindowMaximized rcspiectlvely Events of the application are

grouped according to the levels in which they fall This prov1des ease in generating test
cases; when there is need of specific ones then only those test cases will be generated

which correspond to desired level and not all. |

1

i
iv

EaeE

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 22 -

eprrron

O,

-

o

& 3?’"%’

o

Chapter — 03 Methodology

Q2. How does the proposed ontology detect sufficient n!flmber of faults?

B
While adding rules to the ontology we experienced a problem. Generating rules which
involve interaction of events up till level 3 is manageable.: As we keep on increasing the
number of events in interaction rules become complex. I'have mentioned two examples

v v .
each having four or five events interacting with each other:

Following is among one of the rules created for “SaveChaﬁgesDiangBox

((hasFileContents only NonEmpty) and E(is;Filé‘Sa‘t/;;,d only UntitledFile)) and
((hasSelectedMenu only New) or (hasShortcutKey only Cgﬂ-i-N))
2 -
As we can see four events are involved in the it{teraction ie.
b *
e Whether the contents of file are empty or nd? §

e Whether the file has already been saved or i§ it a new (‘)ixie‘?

e Which mefiu was selected to reach this event?

e Does the event have any shortcut key associated to Iisivigate among events to reach

this level? E
1 P

Similar is the case with rule belonging to event ‘i“OpenDialogBox” at Level 2

((hasFileContents only NonEmpty) and (?si?‘ileSaved only UntitledFile)) and
((hasSelectedMenu only Open) or (hasShortcutKey onlyi Ctrl+0))) and (previousMenu

only Don'tSave) |
b

As we can see five events are involved in the interaction i.é.

» Whether the contents of file are empty or not? !
]

e Whether the file has already been saved or is it a new ofne?
E» .

e Which menu was selected to reach this event?

Validation of Ontology Based Test Case Generation for Graphical User Interface Page-23-

i

i

Chapter — 03 1 Methodology

e Does the event have any shortcut key associated to névigate among events to reach

this level?
E
e What menu was selected at previous level? .
Q3. How can the ontology be extended for the modified version of the application?

Components which are used in any graphical application" are universal e.g. text boxes,
menus, buttons etc. The test cases are created bascd on the interaction amorig the events
and not on their sequence. We can write “ﬁle contents are not empty AND file is not
saved’ as “file is not saved AND file contentsibare not emplfy”. Both the sentences have
same meaning keeping in view only the events. There areionly two events involved; one
is about the file contents and the other is about £x1stence of file.

Following is an example which illustrates the rule stated above means both are same.

((hasFileContents only NonEmpty) and (isFileSaved only }JntitledFilc))

' :
((isFileSaved only UntitledFile) and (hasFileCofntents only]vNonEmpty))
3 i

General ontology of test cases can be reused iridependent: of the application for which it

E

was created. The shortcomings which are in an"old ontology are inherited in the new one
£ .

¢.g. creating rules in which more than five events are involved etc.
, :

35 PROPOSED SOLUTION ot

Several techniques for GUI test case generation exist. Mo‘st of them are based on events
b
and interaction among them like state-based techmques use finite state automata; and

directed graph models use event flow graph for thls process

An experiment has been conducted to validate the framcxafork. Figure 2 shows the layout
in which we carried out the steps of our experiment. Firsi of all we developed ontology
for a simple GUI application i.e. Notepad usin_é Protégé ;1 Later on we added rules to
the ontology and then created test cases from this ontology. As a last step we analyzed

the results obtained ¥ from 3 the experiment.

b e e}
Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 24 -

w v

\

!

Chapter — 03 i Methodology

Figure 3 shows the graphical representation of notepad appllcatlon and also the levels of
events. User can create entities and their class hxerarchy Figure 4 shows the class
hierarchy of notepad application. The hierarchy is a treehlkc structure and Thing is the
root class/super class of all the classes. Next we add object and data properties to the
entities. Figure 5 shows the properties tab expanded There are certain characteristics
associated to properties like functional, inverse ﬁlnctloqal, transitive etc. User has to
specify these for the added properties. Then we add rules %o the ontology. Figure 6 shows

the procedure for adding rules to an event. §
.

Protégé provides several functionalities to its ufSers like creating new ontology, exporting
already existing ontology, merging two ontofogies etc. 4It also creates an EFG of the
ontology. Figure 7 shows the EFG of “NoActxan” event which has been expanded on the
basis of certain criteria e.g. has individual, has subclais, hasFileContents and many

more which have been elaborated in Figure 8. [g
We generated multiple set of test cases from our ontologyi which start from fifty and goes
on till one hundred and thirty i.e. 50, 75, 100 and 130. To calculate the performance 1

have used the metrics of coverage and test efﬁcxency 'Ihe formulas for these metrics are

mentioned below. [:
2 }
Coverage = _Total number of covered paths | 2

Total number of test cases

|

Efficiency = _1 - Total number of covered paths

Total number of test cases

o e v

;-

L3 3

Validation of Ontology Based Test Case Generation for Grappical User Interface Page - 25 -

OS2

Asv."* g T3

Chapter — 03 ’ Methodology

t
ey
UIOR RERIRRN.

/” Result‘ S
Analysis \ »

Test Case
Generation

|

Rule Construction

Ontology Development -\\

3 4 i
Figure 5: Experiment Setup i

T emmienuciorea . | Tickod

{f_.ﬂk@!@u?igeﬂ;;ln [gummmc I F.mmm

Figure 6: Leve! 1 Graph Representation of Notc%ad Application
3

|

e | e oo

[, ® tinicesutont - . @ Closetunoncic -
4 ndked ¢ ' < ted

- < N ~lA
' @ Notepod2ppliose

[O T

Figure 7: Level 2 Graph Representfition of Note%)ad Application
3 3
i
L i « F

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 26 -

Chapter — 03

Methodology

T

& OpensNeidiotepad
Fite

AN

-IL“‘Opm_O_DBi__i [.EJMLODB] '.sngsumn SADB l

“@ CanceButioi A

/.‘“i

: . QpenTheDesbedf = .

. Hkﬁo&omﬁ'ﬁt
“ pigMessage

A2

2 : / :
- -~ s,

“pB-

~

[[8 vescseos_]

[®necsa0s, |

S Lo

;

i

Q.Sammwmu

-8 Ext.CSADB

) eSpceﬁhd
&
Fxgure 8 File Menu Expanded1

¢
1 : »
@smé‘&%“’ ‘ {;
do, i [1 [®cow] L“'”" J [O ene J o5
. -
N |
ot © CoplesTheScled @ PostesTheSeledt # SeleasWnoleF
' 5 edTextatinsedil.: * edTE TS .. v eTaxt
i [
Figure 9: Edit Meniu Expanded jj
| =
Validation of Ontology Based Test Case Generation for Graphlcal User Interface Page-27-

3

N
N
{
i

Chapter - 03

Methodology

-&DomainConcept Exormeencizons L |
& Events - :
1’1 *-GLevelt serewineer & A
* { | |~€closeButtonclicked '
» -€EEnMonuctlckod 3 I ittt I
q51. @ FlleMenuClicked ¥ =1 . i
t(mixmmsumncuexeg f e il wee0
: © MinimizeButtonclicked’ S E 1
{-€NoAction B o R+ l‘
43 7 | ~GopenNewNotepadFile: 213
1 O -:5‘V4MVQ!2 E {1 1 bmver chraes €5 4
d° F 1} =GopenbiaiogBox ¥ %R
; O saveAsDialogBox: : b H ajowt weren it
% V-esavocmnsesomegaox i
- .1 F4cancel ’ Y
; ~&Don'tSave _
' - optienopen >, :
T CET .. Touse the ressoner cick Re: tort regsoner ¥ Stow
Py :

Validation of Ontology Based Test Case Generation for Graphical User Interface

s;

o
2
i
3 §

Figure 10: Class Hierarchy of Notepad A;;plication
4

Page - 28 -

TH Tl

Chapter — 03

_.1 . R

PR P oS

Methodology

v--mmsmmww
QisFI[eSwod
. T #isShorteutieyot.
%-*previoussmcﬁon

1 ?—Goomhconcem
it} 1 @DomanConcept vaafmm nasFﬁecm;ts sotne ContentsvanePartton:

- &_. -

-

] : @ NoAction EquivalentTo ((has‘ieCormL only E) and (isFieSaved only US)) and (Openy ¢

]— #NoAction EquivalentTe ((rstnecmem onify E} and (5FieSaved only US)) and {Undo:¢ - ;

xu

Hamsmhmmeuswlpsw Anke LISH :M.Hnmﬂ

¥
Figure 11: Properties

¢

. &

B

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 29 -

Chapter - 03 Methodology

. T SO T

‘m "'n'rb‘{uul l.

e T — -
1 B
] (Claw Mersrny TR Haranty (GRTe B} ‘{s&%v& Y s arevier Dueisees | T
R Tt Te ey e pee— P

B | [ce=D

1: ;- @Thing R '.(mnrnacom hty
omainConcept o oaly UB)) and: (undo or (ansnortctm(oy
FEvents . eniyCriZ))’

‘rf [

80T 1
3| r-etaven _ @((hasFileContents only E) and (lsF{iesavoa i‘?% Jil
[I »—-.closoautzoncncki Hls & only US)) and (Dpen or {(hasShortcutiey :

@EditMenucClicked ol B m;cm,, : ey ' =
. —da
i I i E_@:;“T?";ﬂ;?z'il 0(husolcetodnmu onNOpﬁonOpm) and ("%
MazimizeButtoncl revisusSelection onty OpenDiaiogBox) _

i o . (ontents only £) and (lsl-'uos:vod <=
“;fé’épcns'e'kﬂotopad"i ’ on!yusn and’ ((hassotectodmonu ony =

Pl v-@Level2 il |._New) or (hasshortcutKey aniy CtrisN))

H i -G openbialogBox ‘

. , }—osavmotalogaox Al

|

i -G 5aveChangesDiale
--—.cmcel
{ &QOOnxS;vo

| ,:
. Figure 13: Overview of Events

e 3
Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 30 -

i g

R

Chapter - 03 3 Methodology

(o [¢ frems] Comen] () (o)) on)

&

Figure 14: Events That Fall Undér Level One 6f Application

™

- @ savecnmqewla‘

o~ ‘ogBox
Ranse g st \ N
PV N
l @ Sava cmno I .Dmtsa:e “ QCmceI‘ 1[© OptonOpsn J
¥
f

-

Figure 16: Events That Fall Undel!r Level Three of Application

ti = L B3

Validation of Ontology Based Test Case Generatic}_n for Graphical User Interface Page - 31 -

(]

et

. TE

Chapter — 03 1

Methodology

e

k :
Figure 18: File Menu Options
¥

E
l

[0

|

Validation of Ontology Based Test Case Generation for Graphical User Interface

H
£
i

Page - 32 -

',
R W

Methodology

S

Chapter — 03

L.‘”‘”. 1|.C“‘ H‘COPY H meiﬂ @ Doiete_ “QM, i[snﬁemg,]

‘ {0

.{-—) !‘.‘ | qu { ;L IA.S é :ﬁ ‘;A
- 4 9 9 :

£ ‘: ,‘ \;ii V\ \ l \ ! 17

I*aowz ! [@cm«u} [“Qcm‘c] I"C"‘*V’"l] oou] § Ocmm | [or |

Figure 19: Edit Menu options

/

' OComtmwm_r(

< {EFS ‘1\-\&&4?

ETTON [”ocm][‘Qowc H’ﬂﬂﬂ]

,[’-‘vcmz | [Fe aws] [Facmv. Eacmon

v
Figure 20: Shortc';ut Options f

f

i i

f i

[§ .

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 33 -

oo od

Methodology

Chapter—03

¥,

dsting -

4 AkoadyE
Fie

Figure 22: Ari: Types gl
L L

¥
5 e
4
P
. - = ~ sf =
Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 34 -

Chapter — 04 Results

=
]

P
CHAPTER 4: RESULTS

i o

1A
-y b

LA add

Validation of Ontology Based Test Case Generation for Graphical User Interface ~ Page - 35-

LAY T

e A S
Chapter - 04 Results

41 INTRODUCTION

Set of test cases in our experiment has been created keepmg in view that different types
of events are covered each corresponding to different level of the application. E.g.
FileMenuClicked or MaximizeButtonClicked are the eveéts associated to the initial level
of the application where as SaveAsClicked o‘r SaveCha:pgesDialogBox are the events

which belong to level 3 of the application. ¢ !
;!

4.2 COVERAGE

First of all we calculated coverage for 50 test g:ases. The;value obtained with this set of
test cases was 0.71; results shown in Figure 23. With 75 test cases coverage was 0.79,

and with test data of 100 cases 0.85 was the cgverage atéamed Figure 24 and Figure 25
shows these results respectwely With 130 testfcases coverage was 0.9 which is shown in
Figure 26. Figure 27 shows the combined verglon of coéerage with different set of test

cases. Later on a comparison has been drawn ifor coverage at each level of application;
3 e _

shown in Figure 28. ’ ;
) Table 2: Comparison of Coverage Aecor(_ling to Levels
] " Coverage
Number of Test Cases Level 1 ; | LeVel 2 Level 3
50 0.19 { , 0 23 0.29
75 0.21 I 0'27 0.31
; 100 | 0.23 | [0‘29 ' 0.33
BT P | 033
]
Table 2: Comparison of Coverage According To Levels
4.2. EFFICIENCY ; 3

First of all we calculated test efficiency for 50 test cases. The value obtained with this set
of test cases is 0.26; results shown in Figure 23 With 75 test cases efficiency was 0.20
and with test data of 100 cases 0.17 was the test cfﬁcncncy attained; Figure 24 and Figure

25 show these results respectively. With 130 test cases test efficiency was 0.09 shown in

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 36 -

L O |

’ i3 aaty =2
S A 3
e g

Chapter— 04 i ¥ Results

Figure 26. Figure 29 shows the combined version of fﬂieiency with different set of test

cases. Later on a comparison has been drawn for test efficiency at each level of
A T op

application that is shown in Figure 30.
B

Tabie 3: Comparisen of Test Efffeiency Acc‘erding to Levels
- 1 Efﬁcigtlcy
Number of Test Cases Level 1 3 Levfl 2 Level 3
50 0.13 , 0.27 ' 0.06
75 | 0.10 f | 0.96 0.04
100 0.09 d 0.05 0.03
130 006 t | o 02' 00l

Table 3: Comparison of Tcst Efﬁmency Accor;lmg To Levels
]
4.3. COMPARISON BETWEEN COVERAGE & TEST EFFICIENCY

A comparison has been made between coverage and test eﬂ' iciency for a range of test
f
cases. Table 4 shows the results of the comparlson: which are graphically been

represented in Figure 31.

Table 4: Companson of Coverage Vs Test Eff' clency
Number of Test Cases Coverage g Test Efﬁmency
50 0.71 i: 0.26
75 ! 0.79 g, 0.20
100 O 85 5 0.17
30 io 90 f 0.09

) Table a4 Companson of Coverage Vs Test Efﬁcnency
4.4. DISCUSSION l

To accomplish a certain task user has to follow speclﬁc sequence- of events associated
with the application. Exhaustively testing any appllcatlonils not possible. Assume that if
we generate test cases for level two of the appllcatlon they will always cover test cases
which are for specific to level one. Hence a tester can skip generating test cases for level

i:
one. Similar is the case with level two test easeg_"s. Test cases generated for level three will
| 1

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 37 -

Chapter - 04 ¢ Results

always cover test cases of level one as well as of level two. Two scenarios have been

mentioned for accomplishing a task.

Scenario 1: Save An Empty Notepad File f
Steps: Open notepad application then Click File menu / C;:-I+S. Click Save button

Scenario 2: Save a notepad file with some text in it. Then delete a portion from the

contents !
Steps: Open notepad application and type some text Clzck File menu / Ctrl+S. SaveAs
dialog box will appear. Specify name for ﬁle and clzck Save button. Select some text.
Click Edit menu then click Cut or hit Ctrl+Z }) :

Two scenarios have been mentioned here as an example which explain different tasks a
user wants to achieve. In scenario 1 a user waﬁts to save an empty notepad file then s/he
has to follow certain steps. At first user has to open notepad appltcatlon It will open an

untitled file for him/her. Then he must click thc File meflu or must hit the combination

B

key Ctrl+S. Later on usef must click the Save button Smgze the file is to be saved for the
first time, SaveAs dialog box will appear. Slm1larly in scenario 2 a user wants to save a
file having some text typed in it and then cut some of the contents. To do so s/he must
open notepad application, type some text in thgé: file, save;‘_E the file and later on select the

i
text which s/he want to remove. The click cut option in edit menu.

It can be observed from the above two scenarios that.somie of the events are in common
i.e. opening notepad application, clicking file E‘menu and‘fthcn saving file. The user has
followed these steps. Assume that we want toi create a teist case for SaveAs dialog box.
Then it will cover the events specific to level one of the ai)plication i.e. opening notepad

application, clicking a menu etc.

5 ;
i ;’
z:

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 38 -
i P

T : g f
iAo roo nBTH ii

* 2 \‘t
Chapter—04 i s Results
50Test Cases” i
1 2
0.9 I
0.8 - £
0.7 r— i
0.6 : ’ .
0.5 E ™
¥ g
gi ¢ #Coverage
(}:2 l % -] ﬁlﬁrﬁcnc‘y
0.1
0 —
Coverage Cfficiency é
¢ :
- i
Figure 23: Results with 50 Test Cai‘.es
F
- & < ;‘ - i‘
) 75Test Cases’ | N
. l 1 ; -
0.9 f 3
0.8 o L
0.7 +——0 LI R
0.6 - L u
0.5 - b i
’ t i
gf i i B Coverage
N 2
0.2 i ! L] . Elliciency
0.1 ! A
0 i i
Coverage

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 39 -

S

=

f M

%
wP G
A
.‘&()
A MO,

Chapter — 04 . Results
100 Test Cases : ;
0 ; : :
“a 0.7 l ‘ |
e 0.6 ’
i 0.5 - M T ?
0.4 L " o
03 . i ECoverage
0.2 % . i o Fiticieney
O'(l} i i
' : | §
Coverage Eli'ﬁciency’ o
1 &
¥ ;
Figure 25: Results with 100 Test C;'ses
+
. k & .
130Test Cases !
3 "“"-’i * [| i : -v -
- 0.9 b g
0.8 +—r !
0.7 E &
0.6 | : L
0.5 l i §:
g'; l E g & Coverage
012 l ¢ ¥ - mFiliciency
0.1 i - 3)
0 L |
y —
Coverage Efficicncy ié
. L t
Figure 26: Results with 130 Test Cases
3 ,
L]

Validation of Ontology Based Test Case Generation for G_rap}ivical User Interface Page - 40-"

T

2e, ,{

Chapter — 04

Results

Comparison of Test Coverage
| i
0.9 %
0.8 ——
0.7 | pm }
0.6] E_
0.5 »' - =
o4 i—-
0.3 -+ —fF - i~ HCoverage
0.2 g
0.1 i
& T T i -
S0TCs 75TCs 100TCs 130TCs
i
Figure 27: Comparisfm of Coverage
{

I

;

<
-

Coverage According To‘; Levels

=]

[

3
Iy

M

=

: = : ¢
5P L2 02 LE

(VAR TR YR B R 1

fen]

g

mLevel |
g level?

ELevel 3

i

|

For30 for7s For100 for 130

|

. i
Figure 28: Comparison of Covet:rage According to Levels

¥
K

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 41 -

e

3
Chapter - 04 g Results
. . 3
Comparison of Test Efficiency

0.3 g

0.25 == : :

C

0.2 - :

0.15 mal 1

1 | - @ Eficiency
0.0% -.,__r;._
0 —

7 H g

£
50TCs 75TCs 100TCs 130TCs
3 :

F
) [
Figure 29: Comparison I;)f Test Efficiency
t .
f I
i i
LS oL e - D P N Ez = 3 -.
Efficiency According To Levels
.14 ' ' i gj
o.12 +H} l
0.1 - l d I
- | i
0.08 i #Level 1
0.06 ; 5 Level 2
0.0+ i mik mil T mlewl3
0.02 e —
g
0 : ‘ ' '
For50 For75 For 100 For 130
Figure 30: Comparison of Test Efffciency Accmi"ding To Levels
1 By .
*
v :
1 1

Validation of Ontology Based Test Case Generation for G}raphical User Interface Page-42-

3

el

Chapter—04 Results

Overall Comparison

k.
i I(.mor.\go

% mEfficiency

T Fa
S0TCs 75TCs 100TCs 130TCs

|

2

cesesooo
[B N PR R T TR -0 -
|
|

Figure 31: Comparison of Coverage & Efficiency
& &.

¥

L

Validation of Ontology Based Test Case Generation for Graphical User Interface Page-43-

o

Rt Wl

LA ’ A i

Chapter — 05) Conclusion

i—

&

4

CHAPTER 5: CONCLI‘ISION
ST

i i
i |)
5.1 CONCLUSION :

In this research work a new approach for gene{ating test éases for an application having
graphical user interface has been presented. The téchniquié is focused on using ontology
as a field. Ari experiment has been conducted ;on an appﬁcation i.e. “Notepad” to make
the case simple. We generated multiple set off test cases ilsing' ontology so that we can
gain maximum results. Since this approach {s a novel‘one, more experimentation is
required. Test cases for complex GUI applicatiéon need toj_be made so that this technique

can be improved. [

5.2 FUTURE WORK f

Managing rules is problematic when it exceeds four events involved in an interaction. In

future work we will provide a solution to this p{fbblem;

TN ORI TEMETITAG Y (TR A P
v

[Z RS

.
e i

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 44 -

sz

K Abbreviations
ABBREVIATIONS |

Al Artificial Intelligence f .
CLI Command Line Interface ¢ i
EFG Event Flow Graph i ﬁl
EIG Event Interaction Graph
GUI Graphical User Interface
MBST Model Based Software Testing
SDLC Software Development Life Cycle
SE Software Engineering f
TCG Test Case Generation E

;

|

5

]

[

b

Validation of Ontology Based Test Case Generatio}a for Grapﬁjcal User Interface Page - 45 -

n

e ?“-’h‘

(1]
(2]
(3]

(4]

(5]

[6]
(7

(8]

(9]

[10]

[t1]

(12]

[13]

References

REFERENCES

Jeff Tian; “Software Quality Engineering. :YT esting, Qujality Assurance and Quantifiable
Improvement”, TEEE Computer Society, 2005 : e

M. Prasanna, S.N. Sivanandam, R.Venkatésan, R. Sund:armjan; “A4 Survey On Automatic
Test Case Generation”, Academic Open Internet Jqurna:], vol. 15, 2005.

Atif M. Memon; “Employing user profiles to test a nev;v version of a GUI component in
its context of use”, Springer, Software Qual$ity Journal, vol. 14, pp. 359-377, 2006.

Xun Yuan, Atif M. Memnion; “Generating Evem‘ Sequence-Based Test Cases Using GUI
Runtime State Feedback”, IEEE Transactlons On Software Engineering, vol. 36 (1),
2010. :

Abdul Rauf, Sa_]ld Anwar Muhammad Ramzan, Shaﬁzq ur Rehman, Arshad Ali Shahid;
“Ontology Driven Semantic Annotation Based GUI *Testzng’ , IEEE, 6th International
Conference on Emerging Technologies (ICET), pp- 26 1§-264 2010.

Natalya F. Noy and Deborah L. McGumness “Ontology Development 101: A Guide to
Creating Your First Ontology”, E

Ding, Y., Foo, S; “Ontology research and development, Part 1 - A review of onfology
generation”, Journal of Information Smence% vol. 28 (2; pp. 123-136, 2002.

http://en.wikipedia.org/wiki/Ontology (conliputer sc:ence)

Harvey Siy, Yan Wu; “4n Ontology to SupportiEmpmcal Studies in Software .
Engineering”, IEEE, International Conference on‘ Computing, Engineering and
Information (ICC) pp- 12-15, 2009. , ;

Han Li, Feng Chen, Hongji Yang, He Guo William Cheng—Chung Chu and Yuansheng
Yang; “An Ontology-based Approach for GUI Testmg” IEEE International Computer
Software and Applications Conference (COMPSAC), 2009

Gordon Fraser, Angelo Gargantini; “An Evaluatzon of Specification Based Test
Generation Techniques using Model Checkers” IEEE, Testmg Academic and Industrial
Conference - Practice and Research Techméues (TAIC-PART), pp- 72-81, 20009.

Kenneth Kelley; “Adutomated Test Case Géneration ﬁ'c;m Correct and Complete System
Requirements Models”, IEEE, 2009. ; |

http://protegewiki.stanford.edu/index. php/Protege_Ontology_Library

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 46 -

http://en.wikipedia.org/wiki/Ontologv

s

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

References

Atif M. Memon, Martha E. Pollack, Mary Lou Soﬁla; “Hierarchical GUI Test Case
Generation Using Automated Planning”, IEEE Transz;ctions On Software Engineering,
vol. 27 (2), pp. 144-155, 2001, ‘ |

Xun Yuan, Atif M. Memon; “Iterative execunon feedback model-directed GUI testing”,
ELSEVIER, Information and Software Technology, vol. 52, pp. 559-575, 2010.

Atif M. Memon, Martha E. Pollack, Mary Lou Soffa; “Plan Generation for GUI
Testing”, American Association for AI'tlﬁClal lntelhgengce, 1999.

Ethar Elsaka, Walaa Eldin Moustafa, Bao Nguyen, ‘Atnf Memon; “Using Methods &
Measures from Network Analysis for GUI T estzng’ IEEE Third International Conference
on Software Testing, Verification, and Valldatlon Workshops, pp. 240-246, 2010.

Atif M. Memon, Jayme Strecker; “Accoun:ting Jor Deszct Characteristics in Evaluations

of Testing Techniques”, ACM Transactions on Embedded Computing Systems, Vol. 9
(4), 2010. E’

Paul Gerrard; “Testing GUI Applications”™, EuroSTAR}pp 24-28, 1997.

Qingning Huo, Hong Zhu; “Developing E4 Soﬁ‘ware‘Tesnng Ontology in UML for A
Software Growth Environment of Web-Baséd Applzcatzons ,

Xun Yuan, Myra B. Cohen, Atif M Men-%on “GUI Interactzon Testing: Incorporating
Event Context” IEEE Transactions on Software Engn!aeermg, IEEE Computer Society,
Los Alamitos, CA, USA, 2010.
http://en.wikipedia.org/wiki/Software_testing

Software Engineering 6th Edition, Ian Somfnemlle, 2000

Pravin M. Kamde, V. D. Nandavadekar, R. G. Pawar,?“Value of Test Cases in Software
Testing” IEEE, 2006. |

Craig Linn; “4 Metric Framework for Quantzﬁzm% Semantic Reliability in Shared
Ontology Enwronments”, Proceedings of the IEEE/WIC/ACM International Conference
on Web Intelligence (WI’04), IEEE, 2004. t

Jos de Bruijn; “Using Ontologies. Enabling Knowlédge Sharing and Reuse on the
Semantic Web", DERT Technical Report DERI-2003-10-29, October 2003.

Latifar Khan and Feng Luo’ “Ontologjfz Construcf‘zon for Information Selection”,
Proceedings of the 14th IEEE Intematlonal Conférence on Tools with Artificial
Intelligence (ICTAI’02), IEEE, 2002. t :

Nik Looker, Binka Gwynne, Jie Xu, MalcoIm Munro; “:4n Ontology-Based Approach for
Determmmg the Dependabzlzty af Servzce-Orzented Archztectures” Proceedings of the

Validation of Ontology Based Test Case Generation for Graphlcal User Interface Page - 47 -

b

[29]

[30]

[31]

[32]

(33}

References

10th IEEE International Workshop on Object-Oriented ﬁéal-Time Dependable Systems
(WORDS’05), IEEE, 2005. ¢
Joon Shim, Hongchul Lee; “Adutomatic Ontology Ge?zeraﬁqn’ Using Extended. Searchf
Keywords”, 4th International Conference on Next Generation Web Services Practices,
-IEEE, 2008. P 7
Chang-Shing Lee, Zhi-Wei Jian, and Lm-Kal Huan'g, FA Fuzzy Ontology and Itsﬂ
Application to News Summarization”, IEEE TRANS:iCTIONS ON SYSTEMS, MAN
AND CYBERNETICS—PART B: CYBERNETICS VOL 35 NO. 5, OCTOBER 2005
Leonid Kof, Ricardo Gacitua, Mark Rounceﬂeld and Pete Sawyer; “Ontology and Model
Alignment as a Means for Requzremelgzts Valtdatzon IEEE Fourth International
Conference on Semantic Computing, 2010. I g'

Dario Bianchi and Agostino Poggi, “Ontology Based Automatic Speech Recognition and
Generation for Human-Agent Inreractzon” Proceedmgs of the 13th IEEE International
Workshops on Enabling Technologies: Infrastructure fqr Collaborative Enterprises (WET
ICE’04), IEEE, 2004. E

Luo Xu, Qiulu Yuan, Ji Wu, Chao Liy; “Ontology—based Web Service Robustness Test
Generation”, IEEE, 2009. ’

| P

Validation of Ontology Based Test Case Generation for Grapl}vica] User Interface Page - 48 -

