
Validation of Ontology Based Test Case Generation
for Graphical User Interface

Thesis Report

A THESIS PRESENTED
TO

F a c u l t y o f b a s ic & a p p l ic e d
S c ie n c e s

D e p a r t e m e n t o f c o m p u t e r s c ie n c e & S o f t w a r e E n g in e e r in g

IN p a r t ia l f u l f il l m e n t o f t h e r e q u ir e m e n t f o r t h e
d e g r e e of

M S IN S » m ^ E S (3 N E E R I N G

BY
HAJRANASER

Department of Computer Science & Software Engineering
Faculty of Basic and Applied Sciences
International Islamic Uniyersity, H-10,

Islamabad

(May 2012)

>^j;9SSion lio

H f \ ^

7 -

d a t a £ f 4 i c

FINAL APPROVAL

Subject: E x terna l A pproval O f T he R esearch Thesis “V alidation O f O ntology Based
Test Case G eneration F o r G raph ica l U ser In terface”

It is certified that we have read the thesis submitted by M iss H a jra N aseer; registration
number 307-FBAS/M SSE/F09. It is our assessment that this thesis is o f sufficient
standard for warranting its acceptance by International Islamic University, Islamabad for
the degree o f M S in Softw are Engineering.

E xam ination C om m ittee

E xternal E xam iner
D r M uham m ad Ram zan
Assistant Professor
Department o f Software Engineering,
Foundation University Institute o f
Engineering & M anagement Sciences,
Rawalpindi

In terna l E xam iner
Dr. Zunera JalU
Assistant Professor
Department o f CS & SE,
International Islamic University Islamabad

Supervisor
D r A bdu l R a u f
Assistant Professor
Department o f CS & SE, IIUI
International Islamic University Islamabad

Co-Supervisor
M iss Salm a Im tiaz
Assistant Professor
Department o f CS & SE, IIUI
International Islamic University Islamabad

P F . n T r A t T O N

*_ ^
- . ' X “ Y

~ '' i y '' , ' '^-
This th e s is ls d ed ica ted to

■i- I .

^ - M Y PA R EN TSx

I am m ost in d ebted to my paren ts,

w K ose a ffection has been 'th e sou rce o f en cou r^ em en t,
 ̂ ̂ ̂ i an d j ,fc.̂ It ? V. ^ *■

 ̂ w hose p r a y e r s jh ^ e a l\ ^ ^ s^ een k e y ^ jm y su ccess^

Hajra Naseer
07-FBAS/MSSE/F09

III

i p
A dissertation submitted to'

Denaftntent o f Computer Science A Software Engineering,
r K ̂ 'H i

Faculty o f Basic and Applied Sciences. ^

International Islamic University. Islamabad

/ as a partial fulfillment o f the requirement --

fo r awarding the degree o f

MS in Software Enffineerinu (MSSE)
: ■ ^

r • -**vT7 ^ yr .
t \ i. T\ K • - iP-

- ̂ \ f i ̂ :

. ̂ _CF-
^ ^ -r

; ■ /n -%

IV

DECLARATION

I hereby declare that this Thesis “Validation o f Ontology Based Test Case Generation
for G raphical User Interface’* neither as a whole nor as a part has been copied out from
any source. It is further declared that I have done this research with the accompanied
report entirely on the basis o f my personal efforts, under tiie proficient guidance o f my
supervisor D r Abdul R au f and corSupefvi^M iss Salma Imtiaz.

I f any part o f tiie system is proved^ to b ^ copied out from any_ source or found to be
reproduction o f any project from any^of the training institute or educational institutions, I
shall stand by^the consequences.

No portion o f the research work presented in this thesis report has been-submitted in
support o f any other degree or qualification o f this or any other university ot institute of
learning. “ ̂ ^ .

1 ^ H ajm Naseer
307-FBAS/MSSE/F09

\

t-*

ACKNOWLEDGEMENT

Many thanks to Almighty Allah; The Merciful, The Beneficent and The source of all Knowledge;
and His Holy Prophet Muhammad (S.A.W) whose blessings have enabled me to perceive and
pursuit higher ideas of life, Who Have given me the w iir^e, insight and knowledge to complete
this thesis. v s .

I am also grateful to my parents for their "continued mbral^ support during , my research work. I
would here like to aclmowledge my supervisor Dr Abdul ^ u f and^riiy^co-supervisor Miss Salma
Imtiaz as weH vvfiose precious guidance made me able to complete rny rese^ch aridjivho helped a
lot during thd dbcurilentatibn of this research work.

I would lilce to acknowledge International Islamic University Islamabad iand its teachers as well
for giving us an'insight to looklnto' things in a professional way. Last, but by not the least, I
would like to acknowledge my friends for their moral support.

- V ' > f ̂ ̂ ■
n t \

For errors and inadequacies in this research work, I accept the responsibility. ^
’’ I ^

T u

t ^ ^ ^ H a j r a N a s e e r
307-FBAS/MSSE/F09

'i
i -.

T*r

> ^

t •" “«jS V

II

K

Y ' - ..
* 1 ^ .

VI

THESTS IN BRTEF

THESIS TITLE;

OBJECTIVE:

Validation of Ontology Based Test Case Generation for
Graphical User Interface

To generate test cases for graphical user interface application
based on Ontology meanwhile validating “GUI Testing
Framework”

UNDERTAKEN BY: Hajra Naseer
307-FBAS/MSSE/F09

SITPFRVTSF.n BY!

CO-SUPERVISOR:

START DATE

Student of MS in Software Engineering

Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,
Internationa! Islamic University, Islamabad.

Dr Abdul Rauf
Assistant Professor
Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

Miss Salma Imtiaz
Assistant Professor
Department of Computer Science & Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad.

April 22““, 2011.

rO M PT .FT T O N D A TE; December 28*, 2011.

V I I

Abstract

ARStRACT

Software Testing is an important activity during the Software Development Life Cycle. Much of
an organization’s time and money is spent on it. Test case generation (TCG) is an important
activity during this process. The techniques which are being used for TCG in Command Line
Interface can’t be used in GUI.

TCG for GUI is a least focused area. GUI testing is knowledge intensive in nature. It requires
complete information about the components involved, interaction among them, their sequences,
the context in which they were used etc.

One of the means to formally represent knowledge is through ontology. It represents domain
information as a set of concepts and relationship among them. Through this domain knowledge is
separated from application knowledge and makes it easy to communicate it among people and
systems, makes its reuse possible. Ontology based GUI testing is a new branch of testing. It has
been introduced in last few years and is in its initial stages. The work which has been proposed
has neither been validated before. Ontology has the potential to be used for test case generation.
An experiment has been conducted to validate a framework.

VII I

Table of Contents

TABLE OF CONTENTS
CHAPTER 1; INTRODUCTION.. 1
1.1. INTRODUCTION... 2
1.2. MOTIVATION AND CHALLENGES... 2
L3. BACKGROUND... 3
1.4. PROBLEM DOMAIN... 4
1.5. PROPOSED SOLUTION..4
1.6. THESIS OUTLINE... 7
CHAPTER 2: LITERATURE SURVEY...8
2.1 INTRODUCTION... 9
2.2 SOFTWARE TESTING..9
2.2.1 What Is Test Case Generation..10
2.2.2 Test Case Generation Techniques.. 10
2.2.3 Limitations... 12
2.3..ONTOLOGY..13
2.3.1 Related Work... 13
2.3.2 benefits of Ontology... -16 -
2.4 ONTOLOGY BASED TEST CASE GENERATION.. -16 -
2.5 SUMMARY...-17 -
CHAPTER 3: METHODOLOGY... - 18 -
3.1 INTRODUCTION...-1 9 -
3.2 EXPERIMENTAL DESIGN..............Tr... - 19-
3.3 PROBLEM DEFINITION.. -2 2 -
3.4 RESEARCHQUESTION(S).. -2 2 -
3.5 PROPOSED SOLUTION... -2 4 -
CHAPTER 4: RESULTS..- 35 -
4.1 INTRODUCTION................................T...-3 6 -
4.2 COVERAGE... -3 6 -
4.2. EFFICIENCY.. -3 6 -
4.3. COMPARISON BETWEEN COVERAGE & TEST EFFICIENCY... -37 -
4.4. DISCUSSION.. -3 7 -
CHAPTER 5: CONCLUSION... - 44 -
5.1 CONCLUSION..-4 4 -
5.2 FUTURE WORK.. - 44 -
ABBREVIATIONS.. - 45 -
REFERENCES..-4 6 -

IX

LIST OF FIGURES

F ig u r e 1: G U I T e s t in g F r a m e w o r k ... 5

F ig u r e 2; P D C A C y c l e ...9

F ig u r e 3: T h e D e f e c t T e s t in g P r o c e s s ... 10

F ig u r e 4 : A n o n t o l o g y e x p r e s s iv e n e s s Sp e c t r u m .. 14

F ig u r e 5: E x p e r im e n t Se t u p ... - 26 -

F ig u r e 6: L e v e l l G r a p h R e p r e s e n t a t io n o f N o t e p a d A p p l ic a t io n ...- 26 -

F ig u r e 7: L e v e l 2 G r a p h R e p r e s e n t a t io n o f N o t e p a d A p p l ic a t io n .. - 26 -

F ig u r e 8: F il e M e n u E x p a n d e d ...- 27 -

F ig u r e 9 : Ed it M e n u E x p a n d e d ...- 27 -

F ig u r e Id : C l a s s H ie r a r c h y o f N o t e p a d Ap p u c a t io n ... - 28 -

F ig u r e 11: P r o p e r t ie s .. - 29 -

F ig u r e 12: R u l e s A d d e d ... - 30 -

F ig u r e 13: O v e r v ie w o f E v e n t s ... - 30 -

F ig u r e 14: E v e n t s T h a t F a l l U n d e r L e v e l On e o f A p p l ic a t io n- 31 -

F ig u r e 15: E v e n t s Th a t F a l l u n d e r L e v e l Tw o o f A p p l ic a t io n ... - 3 1 -

F ig u r e 16: E v e n t s Th a t F a l l U n d e r L e v e l Th r e e o f A p p l ic a t io n .. - 31 -

F ig u r e 17: E F G E l a b o r a t e d ... - 32 -

F ig u r e 18: F il e M e n u O p t io n s ... - 3 2 -

F ig u r e 19: E d it M e n u o p t io n s ... - 33 -

F ig u r e 20 : Sh o r t c u t o p t io n s■ 33 -

F ig u r e 21: V a l u e P a r t it io n ...■ 34 -

F ig u r e 22: A r c T y p e s ... * 3 4 -

F ig u r e 23: R e s u l t s w it h 5 0 T e s t c a s e s ...- 39 -

F ig u r e 24: R e s u l t s w it h 75 T e s t C a s e s ...- 39 -

F ig u r e 25: R e s u l t s w it h 100 T e s t Ca s e s .. - 40 -

F ig u r e 26: Re s u l t s w it h 130 Te s t Ca s e s .. ■ 40 -

f ig u r e 27 : C o m p a r is o n o f C o v e r a g e .. - 41 -

F ig u r e 28 : C o m p a r is o n o f C o v e r a g e A c c o r d in g t o L e v e l s .. • 41 -

F ig u r e 29 : C o m p a r is o n o f T e s t E f f ic ie n c y ... * 42 -

F ig u r e 30: C o m p a r is o n o f T e s t E f f ic ie n c y A c c o r d in g T o L e v e l s ... - 42 -

F ig u r e 3 1: C o m p a r is o n o f C o v e r a g e & E f f ic ie n c y ... - 43 -

List of Figures

LIST OF TABLES

List of Tables

Ta b l e 1: e x p e r im e n t a l D e s ig n ...* 21 -

Ta b l e 2 : C o m p a r is o n o f C o v e r a g e A c c o r d in g T o Le v e l s ..- 36 -

T a b l e 3: C o m p a r is o n o f T e s t E f f ic ie n c y A c c o r d in g T o L e v e l s- 37 -

Ta b l e 4: C o m p a r is o n o f C o v e r a g e V s T e s t E f f ic ie n c y .. - 37 -

XI

Chapter - 01 Introduction

CHAPTER 1: INTRODUCTION

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 1

1.1. INTRODUCTION

Software Testing is an important activity during SoftwareDevelopment Life Cycle

SDLC. Much o f an organization’s time and money is spent on it. To manage the cost of

manual testing process and increase its reliability automatic testing was a way out. Test

case generation (TCG) is an important activity during this automatic process.

The manual process o f testing has problems associated with it. Resource consumption is

more, it is hard to memorize which states or fiinctions o f the system have been tested and

which are not, reliability o f manually tested system is lesser etc [2]. So there was a need

to automate this process.

The origin o f Ontology is from Metaphysics; the branch o f Philosophy; as a study of

existence. It is currently being used in many disciplines like Artificial Intelligence A I,

Software Engineering SE, biomedical informatics, system engineering, library sciences

and many more. In knowledge representation community agreed upon and highly cited

definition o f ontology is proposed by Gruber in 1993 as “Ontology is formal, explicit

specification o f a shared conceptualization. ^Conceptualization’ refers to an abstract

model o f phenomena in the world by having identified the relevant concepts o f those

phenomena, ' ^ p l i c i f means that the type o f concepts used, and the constraints on their

use are explicitly defined. 'Formal' refers to the fact that the ontology should be machine

readable. 'Shared^ reflects that ontology should capture consensual knowledge accepted

by the communities”. [7].

1.2. MOTIVATION AND CHALLENGES

In automatic testing, Test Case Generation TCG is an activity which is o f great

importance. Automatically generated test cases are time consuming to generate, maintain

& evaluate [2, 14]. The techniques which are being used for TCG in Command Line

Interface C LI can’t be used in Graphical User Interface GUI. GUI applications are

different in nature as they are event driven. There are not only the components o f an

application to be tested but also its graphics, and the user interacts with those through

events. Ultimately testing such applications is knowledge intensive and context

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 2

Chapter - 01 Introduction

dependent as well. The main steps in GUI testing are: to reverse-engineer an Event Flow

Graph EFG from a GUI, generate and execute test cases, and then apply the oracle [18].

Several challenges are pertinent testing a graphical mterface.

1. The number o f possible states in which a system can be is enormous, so the

number o f interactions among the states and their sequences may be large as well

as different. So it is difficult to validate a state when test cases are executed at

each step [3, 14,16].

2. When a change occurs in the sequence o f states then the regression testing

becomes a problem because the two version o f same software are not in

accordance with each other [14, 16].

3. Coverage o f test cases in GUI is also a problem as in CLI it is based on the

amount and type o f code which has been tested. In GUI we can’t determine the

coverage o f test cases only by the part o f code being tested, but also the number

o f possible states in which that code has been tested [3, 14, 16].

4. Number o f events and interaction among them is very huge [3, 5, 14, 15].^

5. “An incorrect GUI state can lead to an unexpected screen, making further

execution o f the test case useless since events in the test case may not match the

corresponding GUI components on the screen” [14, 16]. Due to these challenges

test case generation for GUI testing is least focused area [3].

1.3. BACKGROUND

GUI testing is knowledge intensive in nature. It includes components and operations

which are o f different kinds and complicated as well, there is a complex relationships

among these components and a lot o f abundant testers’ experience is required [10]. While

testing a GUI application one has to keep in mind underline business logic o f the

application, the nature o f the components involved, their properties which can be

observed like color, title etc. for determining whether a test case was pass or fail. All

these activities require knowledge to be managed thus ontology best fits here [19].

Chapter-0 1 Introduction

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 3

GUI testing is context dependent and requires knowledge o f the application under test.

One has to remember the states which have aheady been tested as well their sequence.

Much o f the underlying functionality in a GUI application is un-documented; there are

several paths through which a user can achieve a task [19]. It is o f great importance in

GUI to maintain context o f events; information o f events, their interactions, their

sequences etc. Sequence o f events is also important in TCG which is context dependent.

To maintain this context we need knowledge. Ontology thus makes it possible to manage

this information.

1.4. PROBLEM DOMAIN

Among one o f the reasons why I have focused on ontology to generate test cases for a

GUI is that through this knowledge related to an application domain can be separated

from the business logic. It also provides standard specification o f concepts in a specific

domain. Thus test cases which are generic in nature can be generated for a domain

irrespective o f the application in which they are used ultimately making reuse o f

knowledge possible.

It is but natural that applications evolve with the passage o f time; new components are

added or the existing ones are modified. Test cases break if there is even a slightest

change in the GUI thus regression testing becomes a problem. Test cases generated for

an application adds in our knowledge base i.e. ontology. For newer versions; test ^ e

generated reusing the existing ontology. The problem of re-testing an application is thus

solved. Knowledge created in this whole process can be managed and reused in future.

1.5. PROPOSED SOLUTION

Even though ontology has been an active area o f research since the last decade, there has

not been any ontology reported in the literature which deals with the software

engineering field. The authors o f [20] have developed ontology for general process of

web based application testing. Ontology oriented GUI testing is a new area o f research in

software testing [10].

Chapter-0 1 Introduction

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 4

Chapter-0 1 Introduction

There is initial level work with regard to generating test cases for GUI using ontology. A

framework titled as “GUI Testing Framework” has been proposed by the authors o f [5]

but they have not validated it. Figure 1 shows this framework. The authors state that in

the process o f defect identification o f GUI’s; due to their event driven nature longer test

sequence is better than shorter sequences. The approach is based on EFG and

incorporates ontology for this purpose. Ontology can be used to represent concepts and

relations and as the number o f concepts keep on increasing with the passage o f time, so

the proposed ontology for this work must also be evolving ultimately.

To the best o f our knowledge the authors Han Li, Feng Chen et al have first introduced in

their paper [10] the concept o f GUI testing based on ontology. They mentioned the

elements required for developmg GUI ontology and also gave their definition. These

elements are concepts, instances, relations and property. In GUI testing there is a great

role o f tester experience as in what sequence they interact with GUI components. So they

have contributed in maintaining this through developing ontology.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 5

I will be using ontology to generate test cases for a GUI application. For this purpose we

will use EFG.

EFG [17] is a model developed for GUI o f a particular application. It represents all

possible sequences o f events which a user can execute while interacting with a graphical

application. It represents dynamic behavior o f a GUI. Nodes correspond to events and

edges correspond to event sequences or a relationship o f flow o f events. They are cyclic

in nature such that an event may be executed multiple times in a single session with an

application.

EIG is based on the events and interaction among them [15]. Reverse engineering

techniques are used to obtain EIG but some limitations are associated with it. It does not

contain any state-based relationships. Secondly its coverage requires a large number of

test cases. EFG or EIG are used for test coverage and not for test case generation. They

can be used for TCG but this has not been done.

The approach I have proposed for test case generation for GUI is different from the

current prevailing techniques. Currently test cases generated for GUIs are based on

modeling techniques, planning techniques [14, 16] adapted from AI, user interactions

with the application is saved in the form o f widgets and later on they might be compM’ed

for testing. There is no such work in which test cases for GUI are generated based on

ontology.

An experiment has been conducted to validate the proposed framework. At first an

application will be developed. Initially test cases will be generated based on the

application and later on ontology will be developed (tool based) depending on these

generated test cases. For testing the application multiple times or in regression testing

then test cases should be generated automatically based on ontology. To measure the

coverage o f the test cases it will be done on the event count. Validation o f the generated

test cases will be the last step carried out.

Chapter-0 1 Introduction

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 6

Version 2 o f Web Ontology Language (OWL) 0W L2 will be used for the ontology

development. It supports classes, instances, properties and data values which are stored in

semantic web document. An open source software Protege ™ version 4.1 will be used to

construct domain models and knowledge-based applications with ontologies. It is an open

source software and provides two ways for modeling ontologies i.e. (1) Frame-based

modeling. (2) Modeling ontology using OWL.

1.6. THESIS OUTLINE

In Chapter 2 deals with the literature survey conducted for the thesis. Chapter 3 focuses

on the research methodology. I have given a detail description o f the procedure and tool

used for ontology development as well as test case generation. Chapter 4 deals with the

results. I have mentioned the graphical representation o f our results as well. At last we'

concluded our work and gave an insight to the future work in chapter 5.

Chapter - 01 Introduction

Validation of Ontology Based te s t Case Generation for Graphical User Interface Page 7

Chapter-0 2 Literature Survey

CHAPTER 2: LITERATURE SURVEY

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 8

Chapter - 02 Literature Survey

2.1 INTRODUCTION
This chapter outlines describes the process o f software testing, what is test case

generation. It also presents an overview o f various software test case generation

techniques. It also describes what ontology is and what benefits it offers?

2.2 SOFTWARE TESTING
Software testing is an activity in which the developed software application/system is

executed with the intention to find defects in it. Wikipedia defines this activity as

“Software testing is an investigation conducted to provide stakeholders with information

about the quality o f the product or service under test. Software testing can also provide an

objective, independent view of the software to allow the business to appreciate and

understand the risks o f software implementation. Test techniques include, blit are not

limited to, the process o f executing a program or application with the intent o f fmding

software bugs (errors or other defects).” [22]

Four phases are included in software testing process. These are Plan, Do, Check and Act;

which is known as PDCA Cycle [24]. Testing process includes the following steps: test

plan (strategy, plan, testbed), test development (procedures, test scenarios, test cases, test

datasets, test scripts), test execution (execution and reporting o f error(s) found), test

reporting (metrics, effort), test result analysis (defect reporting), defect retesting (known

as resolution testing), regression testing and test closure (lessons learned, results, logs,

documents^ [22].

UKtTxilt not actioa D«£ne ̂ j«ctrv«, d*i<nb«
i k N « x tp h n ‘, ^ ^ P L A N f o i policies

r
X pjwedo:# & c^rcicioa'

i*d g a ^ 1 w

Ci«ck di* profnrs and \ V t Esscuct ditconditios. ,
Tramin; IcaJlik; WOjk

■ C H E C ^ c X y / Accerdiif toj»oc«<hin

.. ' r - f . , .

Figure 2: PDCA Cycle

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 9

Chapter-0 2 Literature Survey

Test
"casesT

Desip test =
cases

h

Tesî
data”

h

Test
results

1 1

Test
repons

Prepare tesf
data.

Rim prograDi^ Conijwre results A
mthtest daia;"^^ ^ test cases ^

FIGURE 3: The Defect Testing Process

The above figure shows defect testing process [23].

2.2.1 What Is Test Case Generation

Test cases can be defined as “A test case is a description o f a test, independent o f the way

a given system is designed” [2]. We can generate test cases directly fi-om the system

requirements or fi’om use cases. The benefit of using system specifications and design for

this process is that test cases can be created early in SDLC and are available for use even

before the actual system is developed [2].

2.2.2 Test Case Generation Techniques

Techniques which are being used for Test Case Generation in Graphical User Interface

are as follows:

Capture/Replay technique/tool [3]. In the first mode they capture the mouse

coordinates o f user actions in the form o f test case. In the second mode these recorded

test cases are replayed automatically. There is a problem associated with it that the test

cases break when there is a slight change in the GUI.

Planning technique [14, 16] adapted fi-om AI. It is based on states mainly initial and

final; called as “GUI tasks”; for the generation o f test cases. The motivation o f this

approach lies in the fact that the users o f an application are more concerned with the goal

they want to achieve by interacting with the software. It is easier to design test cases

keeping in mind these goals rather to specify sequences o f GUI actions [16]. List of

operators represent events. The sequences o f events; also called as plans; become test

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 10

cases for the GUI. The authors proposed a tool for test case generation called as PATHS

(Planning Assisted Tester for grapHical user interface Systems).

Genetic Algorithms Test cases for GUI can also by created by mimicking usage o f the

application by a novice user [4, 16]. It assumes that the novice user takes on longer path

when interacting with a GUI application as compared to an expert user. This approach is

dependent on expert’s input in a way that s/he h ^ to generate the initial sequence o f GUI

events manually. Genetic techniques are later on used for modifying and extending the

sequence and generating longer sequences [16].

Directed G raph Models In order to reduce manual work, several new systematic

techniques based on graph models o f the GUI have recently been developed. They are

based on EFG and Event Interaction Graph EIG [4].

Network Centrality M easures is adapted from network analysis-based approach for

GUI testing [17]. This is a new area o f research in GUI testing. The authors state that

their approach is able to identify both the events and their sequences in the GUI which

are o f the most importance. The authors have stated that a comparative study needs to be

done to compare the performance o f various network measures with existing techniques

for ranking GUI events so that the input EFG becomes more enriched with more

information that can lead to more interesting results.

Event Flow G raph (EFG) [17] is a specific model o f the GUI for a particular

application, representing all possible sequences o f events that a user can execute on that

GUI. It represents dynamic behavior o f a GUI. Nodes correspond to events and edges

correspond to event sequences or event-flow relationship between two events. They are

cyclic in nature such that an event may be executed more than one times during a session

with an application.

Event interaction G raph (EIG) which is based on the events and interaction among

them [15]. Reverse engineering techniques are used to obtain EIG but some limitations

are associated with it. It does not contain any state-based relationships. Secondly its

Chapter - 02 Literature Survey

Vahdation of Ontology Based Test Case Generation for Graphical User Interface Page 11

coverage requires a large number o f test cases. EFG or EIG are used for test coverage and

not for test case generation. They can be used for TCG but this has not been done.

Ethar Alaska, A tif Memon, et al gave the concept o f using EFG and network analysis

technique for test case generation specific to graphical applications [17]. They have used

betweennesis centrality score to rank events and not for generating test case. Generating

test cases and later on prioritizing them using the results obtained from ranking o f events

has to be done.

2.2.3 Limitations

Some o f the limitations associated with the aheady prevailing techniques are as follows.

1. Number o f possible states involved in GUI application is large and interactions

among them is very complex, so validation is difficult [3, 14, 16].

2. Regression testing is problematic due to "change in sequence o f states. Test cases

break when there is even a slighter change in GUI interface o f an application. [14,

16].

3. Number o f events and interaction among them is very huge [3, 5, 14, and 15].

4. Coverage o f test cases is difficult [3, 14, and 16].

5. More GUI testing experience is required [10]

6. Semiautomatic GUI ontology construction and the extraction o f test case generation

rules [10]

7. Test case generation and prioritization has to be done using the ranking o f events

obtained from EFG [17].

8. Complete specification o f ontology needs to be provided. Also extensive

experimentation is required to verify the results [5].

Chapter - 02 Literature Survey

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 12

2.3 ONTOLOGY

Ontology is the mean for capturing domain knowledge in a generic way that provides a

commonly agreed understanding o f a domain [5]. “An ontology defines a common

vocabulary for researchers who need to share information in a domain. It includes

machine-interpretable definitions o f basic concepts in the domain and relations among

them.” [6]

Wikipedia defines ontology as “In computer science and information science,

an ontology formally represents knowledge as a set o f concepts within a domain, and the

relationships between those concepts. It can be used to reason about the entities within

that domain and may be used to describe the domain” [8].

Ontology is a complex multi-disciplinary field. It uses the concepts fi-om information

orgmiization, natural language processing, information extraction, artificial intelligence,

knowledge representation and acquisition etc [7].

Ontologies are commonly used on the World Wide Web (WWW). These ontologies

range from large taxonomic categorization e.g. Yahoo! to categorizations o f products for

sale and their features e.g. Amazon.com [6].

2.3.1 Related Work

Ontologies can be classified according to their expressiveness. There are several levels of

expressiveness [26,28]:

• Controlled Vocabulary lists the terms

• Treasures gives relationships between different terms

• Informal Taxonomy describes explicit hierarchy without strict inheritance.

• Formal Taxonomy entails strict inheritance.

• Frames which is based on properties that are inherited by subclasses and

instances.

• Value Restrictions is based on restricted/fixed property values e.g. data types.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 13

Chapter- 0 2 Literature Suh/ey

Chapter - 02 Literature Survey

• General Logic Constraints logical or mathematical formulas may be used to

constraint values from other properties.

• First-Order Logic Constraints are very expressive ontologies which allow first

order logic constraints between terms and more detailed relationships among

them. e.g. disjoint classes, disjoint coverings, inverse relationships, part-whole

relationships, etc.

Following figures shows the '"Ontology Expressiveness Spectrum'' [26]

. c ' .C-

A A A A A " A A - ' AW V V w w - W W W
• WordNet ® DMQZ • Cyc

• Controlled • Yahoo! • OW L
Vocabuiary Dlctionarv’ t liDfiS) Oiitalogjes

• DublinCwt* - ^msvsc
Ontologies

Liglit-weiglu (>£iir»|«igies J l e a v y - w ’c lg h i

Figure 4; An Ontology Expressiveness Spectrum

Constructing ontologies can be achieved in two ways; domain dependent or generic [27].

Classes in ontology can be constructed in many ways [6] i.e. Top Down: from

generalization to specification, M iddle Out: from the most important concepts to

generalization and specialization, and Bottom Up: from specification to generalization

Ontologies are commonly used on the World Wide Web (WWW). The concept of

“Semantic Web'' has gained popularity in the last few years. TTie term has been

introduced by Tim Bemers-Lee, the inventor o f WWW. A semantic web is an extension

o f World Wide Web (WWW) which provides much more automated services by

Validation of Ontology Based Test Case Generation for Graphical User Interface Page 14

presenting information in a machine readable form. Ontologies provide common and

shared domain concepts which are a key ingredients o f semantic web [6, 7, 26].

Harvey Siy and Yan Wu in their paper [9] proposed ontology for experiments that belong

to software engineering filed which can be used to validate experimental designs. The

ontology is based on the experiments that are documented in the empirical software

engineering body o f literature.

Authors o f [28] have proposed a novel approach to generate ontologies for the generation

o f fault injection test cases and failure detection. Dependability assessment increases our

confidence in a system to be obtained, even though this does not assure correct operation

under all circumstances. Ontology has been created for every element o f Service Oriented

Architecture (SOA) which is fiirther used to trigger test cases.

Automatically generating ontologies in Semantic Web is an active area o f research.

Authors o f [29] have proposed an approach which creates and renews the ontology

automatically which are related with the keywords provided by the user.

The authors Chang-Shing Lee et al in their paper have used the concept o f ftizzy ontology

for Chinese news summarization. “The fuzzy ontology is an extension o f the domain

ontology that is more suitable to describe the domain knowledge for solving the

uncertainty reasoning problems.” [30].

Ontology has been used in the field o f requirement engineering. The authors Leonid Kof

et al. have used ontology for requirement validation [31]. They first constructed

application model ontology and then they checked its consistency with message sequence

charts those who were relevant to the domain. Then a comparison is made among the

models attained from requirements document and generic domain ontology. Through this

comparison analyst can uncover information missing from the requirements documents.

The authors o f [32] have used ontology for automatic speech recognition and its

generation when an agent based application is to be used by a user. The authors o f [33]

have used ontology for testing robustness o f web services. They have proposed a novel

Chapter- 0 2 Literature Survey

Validation of Ontology Based Test Case Generation for Graphical User Interface Page -15 -

rJ-

approach to generate test data for robustness using OWL-S (Web Ontology Language for

Services).

2.3.2 Benefits of Ontology

Ontology has a main advantage that it aids in common shared understanding of

knowledge among the people and software systems [5, 6, 7] and effectively

communicates this knowledge [5, 7]. It also provides ease o f maintenance and updation.

Through its use sep^ation o f domain and application knowledge is possible [6] and

domain knowledge can be re-used [5, 6, 7]. It improves information organization,

management & understanding [7].

Some o f the advantages offered by ontology are mentioned as under.

• Shared understanding o f knowledge among people & s/w systems [5, 6, 7, 30].

• Effective communication [5, 7].

• Reuse o f domain knowledge [5, 6, 7].

• Ease o f maintenance and updation.

• Improves information organization, management & understanding [7].

• Systems interoperability [7].

• Separation o f domain and application knowledge [6].

• Explicit stated domain assumptions [6].

2.4 ONTOLOGY BASED TEST CASE GENERATION

To the best o f our knowledge Han Li, Feng Chen et al. in their paper titled “An

Ontology-based Approach for GUI Testing” [10] first ever introduced the new branch of

testing i.e. ontology-based GUI testing. They have taken the knowledge intensive features

o f GUI testing into account. There are some short comings in their work. More

experience is required regarding graphical testing so that a complete set o f rules for test

case generation can be achieved which is explicit in nature as well. Abdul Rauf, Sajid

Anwar, et al. In their paper titled “Ontology Driven Semantic Annotation Based GUI

Testing” gave the concept o f using semantic annotation for GUI testing [5]. They

Chapter - 02 Literature Survey

Validation of Ontology Based Test Case Generation for Graphical User Interface Page -16 -

^ ‘S* .'P O ^

presented an approach to automate the test case generation process for GUI testing. It is

based on semantic annotation and ontology and used the concepts from GetFoIlows

algorithm as well. They also claimed that their proposed ontology could be used to group

events based on functionality and hence reduces the manual effort required to do so.

An annotation can be defined as meta tag. It can be used to specify additional information

to the code being used. They do not have direct influence on the program semantics, but

affect the semantics o f the program which is being executed. Semantics refer to the study

o f meanings, usually in language. Semantic annotation is a fundamental knowledge

which is being used for the development o f intelligent contents and also in their usage.

Lunitations o f the paper are that complete specification o f ontology needs to be provided.

Secondly extensive experimentation is required to verify the results.

2.5 SUMMARY

Ontology based test case generation is a new branch o f testing and is in its initial stages.

Han Li, Feng Chen et al. have first introduced in their paper [10] the concept o f GUI

testing based on ontology. Later on the authors have presented a framework incorporating

ontology into test case generation for graphical user interface applications.

Chapter - 02 Literature Survey

Validation of Ontology Based Test Case Generation for Graphical User Interface Page -17 -

Chapter- 0 3 Methodology

CHAPTER 3: METHODOLOGY

Validation of Ontology Based Test Case Generation for Graphical User Interface Page -18 -

4.̂ ' ■fr’-.-.v ^ -1
fi:? I— H

< ' \ **
Chapter- 0 3 | ' * >V ' M ethodology

? ‘.' 1 " . *■

3.1 INTRODUCTION \
Ontology based test case generation for graphical user interface applications is a new

branch o f testing. Very little work has been done in this arear' Authors o f [5] proposed a
; ̂ '■ 1. - ̂-t

framework to generate test cases for a GUI enabled application based on ontology. I have

validated their proposed framework using experimentation as a mechanism.

We have constructed ontology for File and Edit menus o f Notepad application. Options

New, Open, Save, SaveAs and Exit are covered under File menu. In Edit menu options

Undo, Cut, Copy, Paste, Delete, Select All and Time/Date are covered. Protege ™ version

4.1 has been used to construct domain models with ontologies. It is an open source

software and provides two ways for modeling ontologies i.e.*(l) Frame-based modeling.
%

(2) Modeling ontology using OWL. OWL stands for Web Ontology Language and

supports classes, instances, properties and data values stored in semantic web document.

0W L2 has been used for the ontology development in our scenario. Ontology had been
1

constructed and later on added information o f properties and rules to this. Event flow

graph o f the application is extracted and later on test cases were generated using this.

3.2 EXPERIMENTAL DESIGN
!: ,

The motivation behind using experiment as a validation tool is that we can create a
i 1controlled environment in which an application can be tested. Secondly experiments are

suitable for validation o f applications or techniques. We will start the experiment by

falsifying the null hypothesis.

Hypothesis

1. The proposed ontology is able to group all number o f events with respect to

testing.

2. The proposed ontology is able to generate tek cases that can detect maximum

faults in the application. j ̂ I

3. The proposed ontology is extendable to support fiiture development.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page -19 -

Null Hypothesis: i

1. The proposed ontology is not able to group all number o f events with respect to

testing.

2. The proposed ontology is not able to generate test cases that can detect maximum

faults in the application. ̂ ^

3. The proposed ontology is not extendable to support future development.

Treatm ent: The framework to generate test cases through ontology.

Experim ent O peration: The experiment has been executed in following steps.

1. Ontology for File menu and Edit menu o f Notepad application was created.

1) Generated rules for the ontology. | |

2) Event Flow Graph o f the respective ontology was created.
r

3) Test cases were generated based on the EFG. i

4) The results o f the execution were analyzed using performance measures coverage
I

and efficiency used for evaluation. ̂ |

Experim ent objects: The test case generation will act as an experiment object.
f I .

Experim ent subjects: Students o f undergrad level will be the subjects to perform this

experiment. [^

Experim ental Design: One-Shot Case Study i ^

Experim ental Steps:

1) Problem identification. 2) Formulate hypothesis. 3) Ontology Development. 4) Test

Case Generation. 5) Ontology development based on already generated test cases. 6)

Execution o f the application. 7) Verify the results by applying it on unknown

applications. ^

Independent Variable: Framework for Automatic Generation o f GUI tests by [5] will be
' . I

independent variable during ontology based test case generation.

Dependent Variable: The dependent variables in our experiment are the number of
I

events being grouped, the number o f test cases being generated, whether the interaction

supported among the events will be one way or will it also work beyond it. Metrics used

to detect these attributes are coverage and test efficiency.
I I'

Control V ariable: Educational experience o f | students and background.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 20 -

Chapter - 03 Methodology

Chapter-0 3 Methodology

Random V ariable: Cultural background, ethnicity etc.

In ternal Validity: Students have some attributes associated which vary from one person

to another like their skills, background, educational experience, performance etc. The
i

selection o f students will be from the same domain having same education experience

and background. This will increase our confidence on results attained because they will
I

not vary due to educational experience be due the individual skills or fatigue etc but will

be based on the technique used. If we pick students fromi different educational level and

experience then our results can vary. |
____ ^ 3

External Validity: The experiment will be recursive: We will conduct it multiple times
i t 3

on a number o f applications, with larger number o f subjects so that we can generalize the
i *

results gathered from our experiment. Repeating the experiment at different sessions
t

ensures that the results are due to our technique used rather due to the fatigue of

continuous being involved in it. i

Table I: Experimental Design |r

Steps Procedure \ Aim

Step
1

ONTOLOGY CONSTRUCTION Three weeks of
instruction on ontology
construction and rule

development |

Students may get an idea what an ontology is,

how we construct it, how can we apply rules to

it etc.

Step
2

TEST CASE GENERATION AND
EVENT FLOW GRAPH

One week of instruction
on test case gOTCTation
and event flow gr^h.

f
I

Students may get an idea how test cases are

generated for an application, what are different

terms used in this process, etc. They may also
get an idea about wiiat is event flow graph, how

f,
can we construct it for an application etc.

Step

3

FRAMWORK TO GENERATE

ONTOLOGY BASED TEST CASE

GENERATION FOR GUI

One week of instruction
on how to generate test
cases for a GUI

1
application based on

ontology. ^

To influence the dependant variable i.e.
Coverage and Test Efficiency

Step
4

ONTOLOGY BASED TEST CASE

GENERATION FOR NOTEPAD

APPLL^CTION

Measure the degree of change on the dependant
variable. E.g. how many events can be grouped
based on ontolo^, how many test cases can be

generated using ontology

VaUdatlon of Ontology Based Test Case Generation for Graphical User Interface Page • 21 -

i I

3.3 PROBLEM DEFINITION ’ ,
i I

GUI based applications provide interfaces to their users which are complex in nature and

the user interacts with those through events. .The number o f events involved and the
 ̂ i

interaction among them is very large. Regression testing is also difficult for a graphical

application; test cases break when there is a slighter change in sequence o f states.

GUI testing is a complex task and knowledge intensive as well. Complicated & different
/ I

kinds o f components are involved in a GUI application and there is a complex

relationship among those components. A lot o f abundant testers’ experience is required to

accomplish this task. |

GUI applications have most o f the components in common like text boxes, menus,

buttons etc. By making a general ontology for these test cases we can achieve its
f ̂ i

reusability independent o f the application knowledge. Test cases for a GUI are specific to
^ < j'

the application for which they have been generated. OuTj aim o f research is to generate

ontology o f graphical user interface test cases v/hich are not application specific arid can
f- i

be reused no matter what the application is.

3.4 RESEARCH QUESTION(S) \
t I

Q l. How does the proposed ontology provide automation for grouping events?
I ^

Ontology has been created keeping in mind the grouping o f events. We created class
f

hierarchy o f events according to their levels. For example events which correspond to

level one o f Notepad application are FileMenuClicked, EditMenuClicked,
I -i | .

MaximizeButtonClicked etc. At level two we have events FileMenuExpanded,
L ^

EditMenuExpanded, WindowMaximized respectively. Events o f the application are

grouped according to the levels in which they fall. This provides ease in generating test
t I

cases; when there is need o f specific ones then only those test cases will be generated

which correspond to desired level and not all.

Chapter - 03 Methodology

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 22 -

Chapter - 03 Methodology

Q2. How does the proposed ontology detect sufficient number o f faults?
!•

While adding rules to the ontology we experienced a problem. Generating rules which

involve interaction o f events up till level 3 is manageable. As we keep on increasing the

number o f events in interaction rules become complex. I ‘have mentioned two examples
%

each having four or five events interacting with each other:

Following is among one o f the rules created for ''SaveChcmgesDialogBox

i
((hasFileContents only NonEmpty) and ^(isFileSaved only UntitledFile)) and

((hasSelectedMenu only New) or (hasShortcutKey only Ctrl+N))
I I ■
* PAs we can see four events are involved in the interaction i.e.
f

• Whether the contents o f file are empty or not?

Whether the file has already been saved or is it a new one?

Which menu was selected to reach this event?

Does the event have any shortcut key associated to navigate among events to reach

this level? \

Similar is the case with rule belonging to event “OpenDialogBox"’ at Level 2

((hasFileContents only NonEmpty) and (isFileSaved only UntitledFile)) and

((hasSelectedMenu only Open) or (hasShortcutKey only Ctrl+O))) and (previoiisMenu

only Don'tSave) I

As we can see five events are involved in the interaction i.e.

Whether the contents o f file are empty or not?

Whether the file has already been saved or is it a new one?

 ̂ f
Which menu was selected to j reach this event?

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 23 -

i

Chapter - 03 Methodology

Does the event have any shortcut key associated to navigate among events to reach

this level?
I

What menu was selected at previous level?

Q3. How can the ontology be extended for the modiflec version of the^application?

Components which are used in any graphical application are universal e.g. text boxes,
i

menus, buttons etc. The test cases are created based on the interaction among the events

and not on their sequence. We can write '"file contents are not empty AND file is not
I; I

saved" as 'file is not saved AND file contents are not empty". Both the sentences have

same meaning keeping in view only the events. There are only two events involved; one

is about the file contents and the other is about existence o f file.
* *

Following is an example which illustrates the rule stated above means both are same.

((hasFileContents only NonEmpty) and (isFileSaved only UntitledFile))

= >

f

((isFileSaved only UntitledFile) and (hasFileContents only NonEmpty))

. . Sf

General ontology o f test cases can be reused independent o f the application for which it

was created. The shortcomings which are in an'old ontology are inherited in the new one

e.g. creating rules in which more than five events are involved etc.
I

3.5 PROPOSED SOLUTION '
. ISeveral techniques for GUI test case generation exist. Most o f them are based on events

and interaction among them like state-based techniques] use finite state automata; and
E ■« i;

directed graph models use event flow graph for this process.

An experiment has been conducted to validate the fi-amework. Figure 2 shows the layout

in which we carried out the steps o f our experiment. Firs t̂ o f all we developed ontology

for a simple GUI application i.e. Notepad using Protege 4.1. Later on we added rules to
i-

die ontology and then created test cases fi'om this ontology. As a last step we analyzed
» li;

the results obtained ‘ from | the experiment.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 24 -

‘-4^
i

Chapter - 03 Methodology

Figure 3 shows the graphical representation o f notepad application and also the levels of

events. User can create entities their class hierarchy. Figure 4 shows the class

hierarchy o f notepad application. The hierarchy is a treejlike structure and Thing is the

root class/super class o f all the classes. Next we add object and data properties to the
A i

entities. Figure 5 shows the properties tab expanded. T^ere are certain characteristics

associated to properties like functional, inverse functional, transitive etc. User has to

specify these for the added properties. Then we add rules to the ontology. Figure 6 shows

the procedure for adding rules to an event. i
r I

Protege provides several functionalities to its users like creating new ontology, exporting

already existing ontology, merging two ontologies etc. 'It also creates an EFG of the

ontology. Figure 7 shows the EFG o f “NoAction” event which has been expanded on the
i I

basis o f certain criteria e.g. has individual, has subclass, hasFileContents and many

more which have been elaborated in Figure 8.
-I s ̂

We generated multiple set o f test cases from our ontologyj which start from fifty and goes

on till one hundred and thirty i.e. 50, 75, 100 and 130. To calculate the performance I
 ̂ i “

have used the metrics o f coverage and test efficiency. The formulas for these metrics are

mentioned below. j

I f
Coverage = Total number o f covered paths j

Total number o f test cases [

Efficiency = 1 - Total number o f covered paths

Total number o f test cases

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 25

chapter - 03 Methodology

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 26 -

Chapter-0 3 Methodology

■ # O ptfiThtD ttktdFJ
■'it

#N«w j j^Opiny

^ Op*ri»NfMNst*pad
F I* ,

I 0 Opcn&iaioeBox '9 ^ S » '* A s 6 8

♦ Op«i_ODB C>ne«L0!>8 # Sw«Bu»ft_SA£6
\

K
\

Can««6uttoti::$<k

j # Fli»NMf«un<(W»V
' nitgMeftagt'

. r

Conffm3>«eAs,

t Y w lC S A iJB ♦ Mo_CSAOB

Figure 8: File Menu Expanded j

f
Figure 9: Edit Menu Expanded

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 27 -

Chapter-0 3 Methodology

Figure 10: Class Hierarchy o f Notepad Application

Validation of Ontology Based Test Case Generation for Grap lical User Interface Page - 28 -

Chapter-0 3

t:

Methodology

n> EJ vW RtMJg Todi .neMcigr Mmto* Hefe:^:^

tfroprtK fcOMftqwrtM Ontfrif̂ ĈFUCTKXS jfoî
' 'O m O S a B B B ^ ^ S a S B S S a B B ^ B

•- t-iy

- i^u P l{«C o n te n ts

'wjfMSfltcttdMtmi
^ *ha«ShortcutK«y

'̂ tFll«Ssv*d
' «iisShortcutK*y<»
I *pr«vi«usS«i«edon

Founa 13 uses of n a ^a ^o te j'

'̂ 0*mWCene*pt _ -
t , fOwnainCcncBfa E^iirtva!*ntTo fwS^leCSsniefite sobi* c6r£Bnts\^!iBPartoon

IK'-. „ _ - 1_ ^
▼ r̂ KaAcaon ______ ,

}~ SNoActicn Eiju ivittfaT® ({r.asFlecirt6Tt5 sn?? E) *n^ (bFfcSavea enly US)) »ntf (Undo

•• f soAcOcn EquivalsntTo ((hasfleContents «niy E) w d (BF8eS3’/e3 only US)) « id (C^ers''
&difnKaiik<il*ftfTAj/haiFia£nntBQtuutbLFX.Xfi<l/kf-lf>S?w»c<

o
■I
tttsfiaCttiliAi’

N a Q }

tM «ru^p1 ie t»

; l l C»nttnttV a]uiPvm «n i ' ^

.

r. FunctoK

htMUdcM;
T̂fwebt

3S)6i*e’

3lteto*e'
t'HBW t

loweffiBfWMncreWiRwwBBJSWtmang .<,9e«hf«nces

Figure 11: Properties

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 29 -

i:**' V-./;

Chapter - 03 Methodology

n a 'ea t v iew - Htw c rwr "^Tocti "; Fefadcf V in b w Help

'Ot»dP>epertCT f.D rtiPtcpertCT
C teset

f cit»N*itKitT jjftiMs*' [>*Mii»e«»

IM
▼ -•Thing

DemainConê
|\ .T -# E v # n b

' ▼-•Uveil
'-'•Cios*Butt«nCllcic<

• EditM tnuCltcked j{

p#Mulml2«ButxbnCir>
r-#Mlnimiz«Bû nCi|

I | -iP N o A « tl« h I
'■ .d O p «n N «w N o ttp a < f

T “ # L e v * l2
I V-eop«hDiate9Bdx
' (7-9 S a v * A « D ia le s B 6 x

I *’*05av«ChingtsDiti
| - ^ C a n e c i

I h ^ O o n t S a v *

r i T >

TS2I:

• ((h a s F iM o R tc n tt eniy' E| «n''d {i«F II* S a v«d
only U S]) and (Undo o r (h a t s H o ^ u t K t y ^
onlyC trH -Z))'. '

#((H asFI!«C O R ta nt« only E) and (isFiicSavad O D O
p 'o niy US)j and (O pan or (hasShortcutKay
■̂"^only C W * 0)) ̂y j < - =

(ha sS o ia etad M «nu ontyO ptio nO pan) and (-T -S & 0
. ^{pravfousSelection only OpanDialogBox)

• ((h a iF)la C o n ta n ts o n ^ S) and Os^HaSavad
only US)) and (^a sS alaetad M an u only
N < ^ o r (hasShortcutKay only CtrtfM))

Sk»»«ll9n̂
•U vah^

a1*

_TousetherftftMner^ek Re>soiw ->Start re»soner . ^Show M erences

Figure 12: Rules Added
[c

Figure 13; Overview o f Events
- fc . .. :

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 30 -

Chapter-0 3 Methodology

Validation of Ontology Based Test Case Generation for Graphical User Interface Page • 31 -

•A- -

Chapter - 03 Methodology

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 32 -

Chapter - 03 Methodology

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 33 -

Chapter - 03 Methodology

S>B «n0ru« i

{ S — rm M ridjal ' " 1

—

— hatfleCar*«n(E4i*i<o* dM»

fly-: toS€led^4«nijrft><i*Tt d a n a i) X ,

— ha*9«rtatf:«y(EqiM Ht dM t il>

lwtShortcuV%«)tS(£clacs «!}

i S - kfteSnedEE^M crt d o t* i /) \
: ' 4

r - : — lsShartc)iKnOi(Si.tetes 4l)
“i r ^

j ;

i 55 — - w i l e r t e i » ̂ ;

Figure 22: Arc Types
I

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 34 -

Chapter - 04 Results

CHAPTER 4:'RESULTS

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 35 -

Chapter-0 4 Results

4.1 INTRODUCTION ji

Set o f test cases in our experiment has been created keeping in view that different types
 ̂ V ?

of events are covered each corresponding to' different level o f the application. E.g.

FileMenuClicked or MaximizeButtonClicked are the events associated to the initial level
- i =

I ^
of the application where as SaveAsClicked or SaveChangesDialogBox are the events

which belong to level 3 o f the application. i j

4.2 COVERAGE

First o f all we calculated coverage for 50 test cases. The' ̂value obtained with this set of
i. i

test cases was 0.71; results shown in Figure 23. With 75 test cases coverage was 0.79,

and with test data o f 100 cases 0.85 was the coverage attained. Figur^ 24 and Figure 25
f i

shows these results respectively. With 130 test cases coverage was 0.9 which is shown in
f. i

Figure 26. Figure 27 shows the combined version o f coverage with different set o f test

cases. Later on a comparison has been drawn ̂ for coverage at each level o f application;

shown in Figure 28.

Table 2: Comparison of Coverage According to Levels
. • 1 . . .4 . a.

Number of Test Cases

j Coverage

Level 1 i Level 2
«<

Level 3

50 0.19 [0.23
« ■!'

0.29

75 0.21 1 0127
■i

0.31

100 0.23 0!29
i

0.33

130 0.25 0.3
1.

0.35

Table 2: Comparison of Coverage According To Levels

4.2. EFFICIENCY | i

First o f all we calculated test efficiency for 50 test cases. The value obtained with this set
r

of test cases is 0.26; results shown in Figure 23. With 75 test cases efficiency was 0.20

and with test data o f 100 cases 0.17 was the test efficiency attained; Figure 24 and Figure

25 show these results respectively. With 130 test cases test efTiciency was 0.09 shown in

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 36 -

Chapter-0 4 Results

Figure 26. Figure 29 shows the combined version o f efficiency with different set o f test
 ̂ I

cases. Later on a comparison has been draWn for test efficiency at each level of

application that is shown in Figure 30.

I
Table 3: Comparison of Test Efliciency According to Levels

Number of Test Cases

1 Efficiency

Level 1 ^ Level 2i. Level 3

50 0.13 0.07 0.06

75 0.10 r4
0.06

i
0.04

100 0.09 F 0.05
i' .

0.03

130 0.06 1 0.02if .
0.01

Table 3: Comparison of Test Efficiency According To Levels

f . 1:
4.3. COMPARISON BETWEEN COVERAGE & TEST EFFICIENCY

A comparison has been made between coverage and test efficiency for a range of test

cases. Table 4 shows the results o f the comparison' which are graphically been

represented in Figure 31.

Table 4: Comparison of Coverage Vs Test Efficiency*
Number of Test Cases Coverage | Test Efficiency

50 0.71 i j; 0.26

75 jO.79 ^ 0.20

100 ^0.85 I 0.17

130 i0-90 i 0.09

Table 4: Comparison of Coverage Vs Test Efficiency

4.4. DISCUSSION

To accomplish a certain task user has to follow specific] sequence o f events associated
1 i

with the application. Exhaustively testing any application’ is not possible. Assume that if
f I

we generate test cases for level two o f the application they will always cover test cases
i

which are for specific to level one. Hence a tester can skip generating test cases for level
i i

one. Similar is the case with level two test cases. Test cases generated for level three will
I i.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 37 -

Chapter - 04 Results

always cover test cases o f level one as well as o f level two. Two scenarios have been

mentioned for accomplishing a task.

Scenario 1: Save An Empty Notepad File
I I

Steps: Open notepad application then Click File menu / ClW+iS. Click Save button

Scenario 2: Save a notepad file with some text in it. Then delete a portion from the

contents * |

Steps: Open notepad application and type some text^ Click File menu / Ctrl+S. Save As

dialog box will appear. Specify name fo r file and clicl^^Save button. Select some text.

Click Edit menu then click Cut or hit Ctrl+Z

Two scenarios have been mentioned here as an example which explain different tasks a

user wants to achieve. In scenario 1 a user wants to save an empty notepad file then s/he

has to follow certain steps. At first user has to open notepad application. It will open an
t

untitled file for him/her. Then he must click the File menu or must hit the combination

key Ctrl+S. Later on user must click the Save button. Since the file is to be saved for the

first time, SaveAs dialog box will appear. Similarly in scenario 2 a user wants to save a
|[

file having some text typed in it and then cut some o f the contents. To do so s/he must

open notepad application, type some text in the file, save the file and later on select the

text which s/he want to remove. The click cut option in edit menu.

It can be observed from the above two scenarios that some o f the events are in common
I (:

I.e . opening notepad application, clicking file menu andjthen saving file. The user has

followed these steps. Assume that we want to‘ create a test case for SaveAs dialog box.

Then it will cover the events specific to level one o f the ajjplication i.e. opening notepad

application, clicking a menu etc.

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 38 -

Chapter-0 4 Results

1
0 .9
O.S
0 .7
0.6
0 .5
0 .4
O.i
0.2
O.l

0

SOTest Cases

C’overage Efficieucv
i

■ C’overay, ̂
31 FHiriciirv

Figure 23: Results with 50 Test Cases

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 39 -

I

chapter-0 4 Results

1
0.9
0.8
0.7
0.6
0.5
0.4
O.i
0,2
O.l

0

lOOTest Cases

■Covefiljie
l! llF tH rionrv

C’over-iire Efficieucv' r
i-

Figure 25: Results with 100 Test Cases

1
0..9
0.8
0.7
O.C
0.5
0,4
0.3
U.2
0.1

0

130Test Cases
1

I t
f i
I I
i I

I 1
y r ..
I . 1
I ■ I i
fe .

CoTorÂ c EflicicucT

[Cowr A{Te
I ElGcieucv

Figure 26: Results with 130 Test Cases

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 40

Chapter - 04 Results

Com parison ofTest Coverage

I
0.9
OS
0.7
0.6
0.5
0.4
O.-J
0.2
O.l

0
50TCs 75TCs lOOTCs HOTCs

Figure 27: Comparison of Coverage

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 41 -

chapter - 04 Results

Com parison of Test EfficiencA"
0.5

0.25

0.2 -

0.15 4

0.1]
0.05

0

1 Effi<ieucv

50TCs 75TCs lOOTCs HOTCs

{■ *'■ Figure 29: Comparison of Test Efficiency

0.14
0.12

O.t
0.08

0.06
O.tM-
0.02

0

Elficiency According To Levels

ji i t t

For 50 For 75 For 100 For HO

1

L«^l 2
Level i

Figure 30: Comparison o f Test Efficiency According To Levels
I -

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 42 -

chapter-0 4 Results

Overall Comparison

I
0..9
O.S
0.7
0.6
0.5
0.4
O.-J
0.2
O.t

0

i Cover .1 go

50TCs 75TCs lOOTCs IJOTC's
t

Figure 31: Comparison o f Coverage & Efficiency

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 43 -

Chapter - 05 Conclusion

CHAPTER 5: CONCLUSION

5.1 CONCLUSION . |

In this research work a new approach for generating test cases for an application having
Lgraphical user interface has been presented. The technique is focused on using ontology

i I.
as a field. An experiment has been conducted on an application i.e. “Notepad” to make

f I
the case simple. We generated multiple set o f test cases using ontology so that we can

gain maximum results. Since this approach is a noverone, more experimentation is
I

required. Test cases for complex GUI application need toibe made so that this technique
t

can be improved. I

5.2 FUTURE WORK

Managing rules is problematic when it exceeds four events involved in an interaction. In

future work we will provide a solution to this problem.

Validation of Ontology Based Test Case Generation for Graphical User Interfece Page - 44 -

• d f -

Abbreviations

ABBREVIATIONS

AI Artificial Intelligence

CLI Command Line Interface

EFG Event Flow Graph

BIG Event Interaction Graph

GUT Graphical User Interface

MBST Model Based Software Testing

SDLC Software Development Life Cycle

SE Software Engineering

TCG Test Case Generation

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 45 -

References

REFERENCES

[1] Jeff T'lan; ^^Sojhvare Quality Engineering.'Testing, Quality Assurance and Qucaitifiable

/mjTjrovemew/”, IEEE Computer Society, 2005 |

[2] M. Prasanna, S.N. Sivanandam, R.Venkatesan, R.Sundarrajan; Survey On Automatic

Test Case Generation", Academic Open Internet Joum^, vol. 15, 2005.

[3] Atif M. Memon; '̂'Employing user profiles to test a new version o f a GUI component in
f

 ̂ its context o f use". Springer, Software Quality Journal, vol. 14, pp. 359-377, 2006.

[4] Xun Yuan, Atif M. Merribn; ‘"'‘Generating Event Sequence-Based Test Cases Using GUI
t t

Runtime State FeedbaclC\ IEEE Transactions On Software Engineering, vol. 36 (1),

2010 .

[5] Abdul Rauf, Sajid Anwar, Muhammad Ramzan, Shafiq ur Rehman, Arshad Ali Shahid;
\ i- .

'’'‘Ontology Driven Semantic Annotation Based GUI Testing', IEEE, 6th International
r: i

Conference on Emerging Technologies (ICET), pp. 261-264, 2010.
t *

[6] Natalya F. Noy and Deborah L. McGuinness; “Ontology Development 101: A Guide to

Creating Your First Ontology", | |

[7] Ding, Y., Foo, S; “Ontology research and development, Part 1 - A review o f ontology

generation”. Journal of Information Science, vol. 28 (2), pp. 123-136, 2002.
k i

[8] http://en.wikipedia.org/wiki/Ontologv Ccomputer science~^

[9] Harvey Siy, Yan Wu; “An Ontology to Support^Empirical Studies in Software
 ̂ I

Engineering', IEEE, International Conference on Computing, Engineering and

Information (ICC), pp. 12-15,2009.

[10] Han Li, Feng Chen, Hongji Yang, He Gud, William Cheng-Chung Chu and Yuansheng
 ̂ iYang; “An Ontology-based Approach for GUI Testing', IEEE International Computer
I i

Software and Applications Conference (COMPSAC), 2009.
i[11] Gordon Fraser, Angelo Gargantini; “An Evaluation o f Specification Based Test

y S
Generation Techniques using Model Checkers”, IEEE,|Testing: Academic and Industrial

Conference - Practice and Research Techniques (TAIC-PART), pp. 72-81, 2009.

[12] Kenneth Kelley; “Automated Test Case Generation from Correct and Complete System

Requirements Models”, IEEE, 2009.

[13] httD://Drotegewiki.stanford.edu/index.php/Protege Ontologv Librarv

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 46 -

http://en.wikipedia.org/wiki/Ontologv

[14] Atif M. Memon, Martha E. Pollack, Mary Lou Soffa; ‘"‘̂ Hierarchical GUI Test Case

Generation Using Automated Planning', IEEE Transactions On Software Engineering,

vol. 27 (2), pp. 144-155, 2001.

[15] Xun Yuan, Atif M. Memon; "'Iterative exe'cution-feedback model-directed GUI testing',
V. i .

ELSEVIER, Information and Software Technology, vol. 52, pp. 559-575, 2010.
i

[16] Atif M. Memon, Martha E. Pollack, Mary Lou Soffa; '‘Plan Generation for GUI
ITesting', American Association for Artificial Intelligence, 1999.

[17] Ethar Elsaka, Walaa Eldin Moustafa, Bao Nguyen, Atif Memon; “'Using Methods &
t i

Measures from Network Analysis for GUI Testing', IEEE, Third International Conference
I

on Software Testing, Verification, and Validation Workshops, pp. 240-246,2010.
f

[18] Atif M. Memon, Jayme Strecker; “Accounting for Defect Characteristics in Evaluations

o f Testing Techniques", ACM Transactions on Embedded Computing Systems, Vol. 9

(4), 2010. * I

[19] Paul Gerrard; '"''Testing GUI Applications", EuroSTAR,‘ipp. 24-28, 1997.

[20] Qingning Huo, Hong Zhu; Developing A Software ̂ Testing Ontology in UML for A
i fSoftware Growth Environment o f Web-Based Applications",
L i

[21] Xun Yuan, Myra B. Cohen, Atif M Memon; “GC/7 Interaction Testing: Incorporating
‘ (lEvent Contexf IEEE Transactions on Software Engineering, IEEE Computer Society,

Los Alamitos, CA, USA, 2010. j

[22] http://en.wikipedia.org/wiki/Software_testing |

[23] Software Engineering 6th Edition, Ian Sommerville; 2000.
I f

[24] Pravin M. Kamde, V. D. Nandavadekar, R. G. Vswaru'^Value o f Test Cases in Software
t i:

IEEE, 2006. I

[25] Craig Linn; Metric Framework for Quantifying Semantic Reliability in Shared
■ I I '

Ontology Environments'', Proceedings of the lEEE/WIC/ACM International Conference

on Web Intelligence (WI’04), IEEE, 2004.

[26] Jos de Bruijn; “Using Ontologies. Enab ing Knowledge Sharing and Reuse on the

Semantic Web”, DERI Technical Report DERI-2003-ld-29, October 2003.
f S'

[27] Latiftir Khan and Feng Luo’ ''^Ontology Construction for Information Selection",

Proceedings of the 14th IEEE International Conference on Tools with Artificial

Intelligence GCTAr02), IEEE, 2002. \ |

[28] Nik Looker, Binka Gwynne, Jie Xu, Malcolm Munro; “An Ontology-Based Approach for

Determining the Dependability o f Service-Oriented Architectures", Proceedings of the
■ ■ . (s

I References

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 47 -

f. V
10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems

(WORDS’05), IEEE, 2005. | ^

[29] Joon Shim, Hongchul Lee; "^Automatic Ontology Generation’ Using Extended^Search!^

Keywords", 4th International Conference bn Next Generation Web Services Practices,

.IEEE, 2008. i
- 0 ,[30] Chang-Shing Lee, Zhi-Wei Jian, and Lin-Kai Huarig; “A Fuzzy Ontology and Jts^'

r d
Application to News Summarization'', IEEE TRANSACTIONS ON SYSTEMS, MAN,

AND CYBERNETICS—PART B: CYBERNETICS, VOL. 35, NO. 5, OCTOBER 2005
i

[31] Leonid Kof, Ricardo Gacitua, Mark Rouncefield, and Pete Sawyer; ^'Ontology and Model

Alignment as a Means for Requirements Validation^', IEEE Fourth International

Conference on Semantic Computing, 2010. |

[32] Dario Bianchi and Agostino Poggi, “Ontology Based Automatic Speech Recognition and
 ̂ IGeneration for Human-Agent Interaction", Proceedings of the 13th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET

ICE’04), IEEE, 2004. |

[33] Luo Xu, Qiulu Yuan, Ji Wu, Chao Liu; ‘‘'^Ontology-bc^ed Web Service Robustness test

Generation", IEEE, 2009. ^

References

Validation of Ontology Based Test Case Generation for Graphical User Interface Page - 48 -

