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Preface 

Many of the mathematical modeling of the practical phenomena in science and 

engineering often leads to nonlinear differential equations. There are a lot of methods from the 

wide range of numerical methods to approximate analytical methods [I-171 available in 

literature used for the solution purpose. The important question which arises in this situation is 

that, do the approximate methods enable to predict multiplicity of the solutions of nonlinear 

differential equations'! In other words can we predict the existence of multiple solutions of the 

nonlinear differential equations and further can we obtain all branches of the solutions through 

any analytical method? It is somehow difficult to answer the above question due to the reason 

that, it is our conventional belief that the approximate methods usually converge to one solution 

by one using initial guess. 

The homotopy analysis method has been developed by Liao [18-221 to obtain series 

solution of various nonlinear problems. This method has further gained remarkable 

improvements and achievements by solving different nature of problems [23-431. E. Shivanian 

and S. Abbasbandy provide predictor homotopy analysis method and its relevant several proof 

in the study [44]. In another paper, S. Abbasbandy and E. Shivanian proved a novel application 

of homotopy analysis method [45]. In this paper, the procedure to predict the existence of 

multiplicity of solution and further calculate all branches of the solution is provided. Motivated 

from the above two studies this dissertation is arranged as follows 

Chapter 1 contains some basic definitions related to the homotopy analysis method, 

Adomian polynomial, Cauchy sequence and Lipschitz function. 

In chapter 2,  the predictor homotopy analysis method [44] is explained in detail. The 

proofs of relevant theorem are made parts of this chapter. The essence of the method is 

explained by using nonlinear reaction-diffusion model and obtained two branches of the solution. 

Chapter 3 covers the study related to prediction of multiplicity of the solutions of 

nonlinear boundary value problems [45]. The core idea is implemented on three exactly solvable 

problems namely nonlinear heat transfer equation [46], strongly nonlinear Bratu equation [36, 

401 and nonlinear reaction-diffusion equation [48]. The existence of multiplicity of solution of all 

problems can be proved very conveniently and further all branches of the solutions are 

calculated by using predictor homotopy analysis method within good accuracy. 
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Chapter 1 

Preliminaries 

In this chapter, some important definitions related to the studies in next chapters are provided 

for the better understanding of the readers. 

1.1 Homotopic functions 

Two continuous functions from one topological space to another are called homo-topic if one 

can be continuously deformed into the other, such a deformation is called a homotopy between 

the two functions. More precisely, we have the following definition. 

Let X, Y be two topological spaces, and f ,  g : X 4 Y continuously maps. A homotopy from 

f to g is a continuous function F : X[O, 11 --+ Y satisfying 

F(x,  0) = f(x) and F(x, 1) = g(x), for all x E X. 

If such a homotopy exists, we say that f is homotopic to g, and denote this by f -N g. 

Example 

Let f ,  g : R -+ R be any two continuous, real functions. Then define a function F : R[O, 11 -t R 

by 

F ( x ,  t )  = ( 1  - t ) .  f (x) + t g(x). 



Clearly, F is continuous, being a composite of continuous functions. Moreover, 

F(x,  0) = (1 - 0). f (x) + O.g(x) = f (x) 

and 

F(x ,  1) = (1 - 1). f (x) + l.g(x) = g(x) 

Thus, F is a homotopy between f and g and f = g. 

1.2 Homotopy Analysis Method 

The homotopy analysis method (HAM) is an analytic approximation method for solving highly 

nonlinear equations arising in science, finance and all branches of engineering. It was first 

proposed by Dr. Shijun Liao in 1992 in his Ph.D. dissertation [18]. 

1.3 Motivations 

Perturbation techniques are very famous and old and widely applied to obtain analytic approx- 

imations of nonlinear differential equations. However, these techniques are essentially based on 

smallllarge physical parameters (called perturbation quantity), but unfortunately there exist 

many nonlinear problems with no such kind of small/large physical parameters at all. In addi- 

tion, neither perturbation techniques nor the traditional non-perturbation techniques (such as 

Lyapunov artificial small-parameter method, Adomian decomposition method, delta-expansion 

method and so on) can provide a way to guarantee the convergence of approximation series. 

Therefore, both perturbation techniques and the traditional non-perturbation methods men- 

tioned above remained valid only for weakly nonlinear problems. 

1.4 Advantages of the homotopy analysis method 

Based on a generalized concept of the homotopy in topology, the HAM has the following ad- 

vantages embedded in its framework 



o The HAM is always valid,no matter whether there exist small/large physical parameters 

or not. 

o The HAM provides a convenient way to control and adjust convergence region of the 

approximation series solution. 

o The HAM provides great freedom to choose the base functions, initial guess and linear 

operator for the solutions. 

As a result, the HAM overcomes the restrictions on all other analytic approximation methods 

mentioned above, and is valid for highly nonlinear problems. 

1.5 Adomian Polynomial 

Adomian polynomials decompose a function u(x, t) into a sum of components 

for a nonlinear operator F as 

The Adomian Polynomials A, for the nonlinear term F(u) can be evaluated by using the 

following expression 

One possible set of polynomials is given by 



These polynomials have the property that A,, depends only on uo, u l ,  ..., u,, and that the sum 

of subscripts for the component u, is equal to  n. 

1.6 Calculations of Adomian Polynomials A,, for nonlinear func- 

t ions 

The Adomian polynomials of some important functions are calculated as follows 

1.6.1 Nonlinear Polynomials 

Case 1: F(u) = u2 

The Adomian polynomials can be obtained as follows 

1.6.2 Nonlinear Derivative Functions 

Case 1: F(u) = ( u , ) ~  

The Adomian polynomials can be obtained as follows 

2 A0 = F(u0) = uo,, 

A1 = ulF1(uo) = ~ u ~ , u ~ , ,  

1 2 11 2 A2 = uzF1(uo) + -ulF (uo) = 2uo,u2, + ulZ,  
2! 

1 11, 

A3 = us F1(uo) + ulu2F1'(uo) + -U?F (uo) = 2uo,us, + 2 ~ 1 , ~ 2 , ,  
3! 

1 I l l  

AS = U . ~ F ' ( U ~ )  + U ~ U ~ F I I ( U ~ )  + -U?F (uO) = 2 ~ ~ ~ 3  + 2 ~ 1 ~ , 2 ,  ... . 
3! 



Case 2: F ( u )  = uz 

The Adomian polynomials can be obtained as follows 

Case 3: F ( ~ L )  = uuX = $ L= (u2) 

The Adomian polynomials can be obtained as follows 

1.6.3 Trigonometric Nonlinearity 

Case 1: F(u)  = sin(u) 

The Adomian polynomials can be obtained as follows 

Case 2: F (u) = cos(u) 



The Adomian polynomials can be obtained as follows 

1.6.4 Hperbolic Nonlinearity 

Case 1: F ( u )  = sinh(u) 

The Adomian polynomials can be obtained as follows 

1 
Al = u2 cosh(uo) + -uf sinh(uo) , 

2! 

1 
A3 = u3 cosh(uo) + ulu2 sinh(uo) + -u; C O S ~ ( U O ) ,  ... . 

3! 

1.6.5 Exponential Nonlinearity 

Case 1: F ( u )  = e" 

The Adomian polynomials can be obtained as follows 



1.6.6 Logarithmic Nonlinearity 

Case 1: F(u)  = ln(u), u > 0 

The Adomian polynomials can be obtained as follows 

C a s e 2 :  F ( u ) = I n ( l + u ) ,  - 1 < u < 1  

The Adomian polynomials can be obtained as follows 

1.7 Cauchy Sequence 

Definition 

A sequence is called a Cauchy sequence if the terms of the sequence eventually all become 

arbitrarily close to one another. That is, given E > 0 there exists N such that if m, n > N then 

la,, - a,\ < E .  



1.8 Lipschitz 

1.8.1 Lipschitz Function 

A function f such that 

I f ( . )  - f (y)I  F C ~ X - Y ~  

for all x and y ,  where C is a constant independent of x and y, is called a Lipschitz function. 

For example, any function with a bounded first derivative must be Lipschitz. 

1.8.2 Lipschitz Condition 

A function f (z) satisfies the Lipschitz condition of order P at x = 0 if 

for all lhJ < E ,  where B and /3 are independent of h,  /3 > 0, and alpha is an upper bound for all 

beta for which a finite B exists. 

1.8.3 Lipschitz's Integral 

/ Jo (bx)  = I 

0 
d2-T-G 

where Jo( z )  is the zeroth order Bessel function of the first kind. 

1.8.4 Lipschitz domain 

In mathematics, a Lipschitz domain (or domain with Lipschitz boundary) is a domain in Euclid- 

ean space whose boundary is "sufficiently regular'' in the sense that it can be thought of as 

locally being the graph of a Lipschitz continuous function. The term is named after the German 

mathematician Rudolf Lipschitz. 

Definition 

Let 71 E N, and let R be an open subset of Rn. Let dR denote the boundary of R. Then R 

is said to have Lipschitz boundary, and is called a Lipschitz domain, if, for every point p E 69, 

there exists a radius r > 0 and a map h, : B,(p) + Q such that 



(i) h ,  is a bijection 

(ii) h, and hp - 1 are both Lipschitz continuous functions 

(iii) h, (8G n B,. (p)) = Qo 

( 4  h,(Q n B,. (PI) = Q+, 

where 

&(p) := {X E RnI 112 - pll < r )  

denotes the n-dimensional open ball of radius r about p ,  Q denotes the unit ball B1(0), and 

1.8.5 Applications of Lipschitz domains 

Many of the Sobolev embedding theorems require that the domain of study be a Lipschitz 

domain. Consequently, many partial differential equations and variational problems are defined 

on Lipschitz domains. 

Hillam's T h e o r e m  

If f : [a,, b] -, [a, b] (where [a, b] denotes the closed interval from a to b on the real line) satisfies 

a Lipschitz condition with constant I( ,  i.e., if 

for all 2 ,  y in [a, b] , then the iteration scheme is 

where X = 1 / (K  + I) ,  converges to  a fixed point of f .  



Picard's  Existence T h e o r e m  

If f is a continuous function that satisfies the Lipschitz condition 

in a surrounding of (xo, to) E St c Rn x R = {(x, t )  : )x  - xol < b, J t  - to( < a),  then the 

differential equation 
dx 
- = f (x, t)  x(t0) = xo dt 

has a unique solution x(t) in the interval ( t  - tol < d, where d = rnin(a, b/B), min denotes the 

minimum, B = sup1 f ( t ,  x) 1, and sup denotes the supremum. 

1.9 Hilbert Space 

A vector space H over the field of complex (or real) numbers, together with a complex-valued 

(or real-valued) function (x, y) defined on H x H ,  with the following properties: 

1) (x, rc) if and only if x = 0 

2) ( z , x )  2 0 for all x E H 

3) ( a  + 3 ,  z )  = (x, Y) + (2, z), x, y, z E H 

4) (ax, y) = a(x, y),  x ,  y E H , cu a complex (or real) number 

5) (z, Y) = (Y, rc) , 2, Y E H 

6) if x, E H , n = 1,2,3 ,..., andif  

lim (x, - x,, x, - x,) = 0, 
n,7n-ca 

then there exists an element x E H such that 

lim (x - x,, x - x,) = 0, 
71-00 

the element x is called the limit of the sequence (x,) 



7) H is an infinite-dimensional vector space. 

Definition 

A Hilbert space is a vector space H with an inner product < f,g > such that the norm 

defined by 

Ifr = d 3 5  

turns H into a complete metric space. If the metric defined by the norm is not complete, then 

H is instead known as an inner product space. 

Examples of finite-dimensional Hilbert spaces include 

1. The real numbers Rn with < v, u >, the vector dot product of v and u. 

2. The complex numbers Cn with < v ,u  >, the vector dot product of 21 and the complex 

conjugate of u. 

An example of an infinite-dimensional Hilbert space is L ~ ,  the set of all functions f : R + R 

such that the integral of f over the whole real line is finite. In this case, the inner product is 

A Hilbert space is always a Banach space, but the converse need not hold. 



Chapter 2 

Predict or homot opy analysis 

method: Two points second order 

boundary value problems 

2.1 Introduction 

Prediction of multiplicity of the solutions of nonlinear boundary value problems has always 

been extremely difficult job for the researchers in last five years. After it, calculation of multiple 

solutions analytically is another hard job. To ease these difficulties, predictor homotopy analysis 

method (PHAM) is recently developed to  predict the multiplicity of solutions of two points 

second order boundary value problems by E. Shivanian and S. Abbasbandy [44]. The main 

objective of this chapter is to  completely understand the predictor homotopy analysis method 

and its applications. The proof of the basic theorems behind the predictor homotopy analysis 

method is also studied which are given in [21]. To further illustrate this method, nonlinear 

reaction-diffusion model will be analyzed for the purpose of prediction of multiplicity of its 

solutions and calculating all multiple solutions of it. 

2.2 Description of the method 

Consider a second order two point boundary value problem of the following form 



subject to  the boundary conditions 

Introducing an unknown parameter 6 in the boundary condition so that problem (2.1) and (2.2) 

reduced to  equivalent initial value problem as follows 

where c l v ( J )  + c2v1(<) = c is the forcing condition arising from the original conditions (2.2),  

and f i ( 6 )  and f 2 ( 6 )  satisfy dl  f1 (6 )  + d2 f2 (6 )  = d.  Now we apply usual HAM as follows to  the 

following reduced initial value problem 

2.2.1 Zero-order deformat ion equation 

Let I :  = v(9) be the solution of the problem (2.4) then a set of base functions { w i ( x ) , i  = 

0 ,1 ,2 ,  .. .) can be expressed in term of solution as 

where ai are unknowns to  be calculated. Let v o ( y ,  6 )  satisfies the initial conditions (2.5) be an 

initial guess and let auxiliary parameterh # 0, auxiliary function H ( x )  # 0 and L: a second 

order auxiliary linear operator. For zero-order deformation equation, we take q E [0, 11 as an 

embedding parameter. The zeroth order deformation equation takes the following form 



subject to initial conditions 

where p(y, 6; q )  is the solution of nonlinear boundary value problem to  be calculated and 

Here we have two cases. 

Case  1 When q = 0, Eq. (2.7) becomes 

i.e. the initial guess is the solution of the equation. 

Case  2 When q = 1, Eq. (2.7) becomes 

which is exactly the same as the original equation (2.1), provided that 

Expanding p(y, 6; q )  in a Taylor series as a function of q, we have 



where 

It is established in the frame of homotopy analysis method when the linear operator L, the initial 

approximation ,uo(y, 6), the auxiliary parameter ti # 0, and the auxiliary function H(y) # 0 are 

chosen properly, the series solution (2.11) is convergent for q = 1, and thus 

will be solution of nonlinear problem (2.4) and (2.5). 

2.2.2 High-order deformat ion equation 

We define the vector -ifn = {vo(y), vl(y), ..., vn(y)), differentiate Eq. (2.7) nL times w.r.t. 'q ' ,  

and dividing it by m!, the mth-order deformation equation will take the form 

subject to the conditions 

v ( d  = 0, v'(r1) = 0, 

where 

and 

- 1 dm-'Af [C;I:" vn (9, 6)qn] 1 am-lN [ d y ,  6; 911 RvL($TrL-13 Y, 6) = - m - l !  dqm-1 m -  l! aqm- l 

(2.17) 

We can use computer software like Mathematica or Maple to solve mth order approximate Eq. 

(2.14) subject to  the conditions (2.15) . Accordingly, the mth order approximate solution of 

the problem (2.4) and (2.5) is given by 



2.2.3 Forecasting the multiplicity of solution 

The rule of multiplicity of solutions is a method to determine the number of solutions admitted 

by the boundary value problem. For this purpose, it is required to calculate the value of 6 as 

a function of ti. The forcing condition clv(<) + c2z1'(<) = c plays a vital role in the existence of 

unique or multiple solutions. We can apply it as follows: 

Consider the mth order approximation (2.18) and put it in the forcing condition (2.3) to derive 

the following expression 

According to HAM, Eq. (2.18) converges at y = < only in that range of ti, without changing 

d and variating ti. This shows that a horizontal range appears implicitly in the plot of 6 as 

function of ti in Vm((, 6, ti). The number of these horizontal plateaus, where 6(h) becomes 

constant, gives us multiplicity of the solutions. We can say that the number of horizontal 

plateaus in the plot of S(h) are directly connected to the existences and number of multiple 

solutions. Let us now discuss the importance of ti-curve in relation to Taylor's series. 

2.3 Theorem 2.1 

Suppose the specifics values for 6 and ti, obtained from rule of multiplicity of solutions, as long 

as in the series (2.18), i.e. 
K 

Vk(y76,n) = CVk(y76) 
I;= 1 



K goes to infinity, the Vk ( y ,  6, ti) tends to exact solution of the problems (2.1) and (2.2), i.e. 

4~). 

Proof Let 

+m 

taking ux(y,  5) as common, we obtain 
k=l 

(2.20) implies 

be the convergent series. From the Eq. (2.14), we have 

+a 

multiplying with in the the brackets 

as 1 is a linear operator, so it will multiply term by term as follows 
k = l  



which gives, sinceti # 0, H(y, 6) # 0, 

and 

this implies that 

But we also have 
+oo +w k 

using the Eqs. (2.20 - 2.22), we have 

so the Adomian polynomial in this case while setting q = 0 

Commonly, @(y, 6; q) does not satisfy the original nonlinear Eq. (2.1). So, Let 

be the residual error as 



So, from above, the Maclaurin's series of the residual error ~ ( y ,  6; q)  about q  is given as 

for q = 1, 

hence, we obtain the exact solution of the original equation when q  = 1 .  Thus the series 

converges to the original Eq. (2 .1 ) .  Which is required to prove. 

2.4 Theorem 2.2 

Suppose that f (ti) be a continuous function onto interval [c, d] and all derivatives of g : [c, d] t R 

exist and have a common P so that 

max g ( k ) ( z )  5 P 
xdc,dI I I for all k. 

Furthermore, assume that F,(y, a)  be the Taylor polynomial of degree m for g(y) about some 

a E (a, b ) ,  say a = f (ti), then VE > 0 and ,L? E (c, d )  there exist N E N and interval (a, b) so 

that 

V t i ~ ( a , b )  and m L N : l g ( D ) - F , , ( P , f ( h ) ) l < ~  

Proof Let y E [c, d] be the point at which we want to calculate the error. We assume that 

7 > a and let 



then for y E (c ,  d ) ,  there exists s t (y)  and 

Now, assume a function of the form 

Y - Y  
m+l 

Y = Y - ( -  7 - a  s ( a ) ,  

then 

V ( Q ! )  = V ( y )  = 0.  

From the differentiability of s ( y )  and ( ~ ) ~ + l ,  we get V ( y )  is differentiable on any subinterd  

of (c,  d). Then there exists q, E (a,  y )  such that 

which results 

Since y # q, , then 

~ ( a )  = 
( y  - 
(rn + I)! ~(~+')(17,) .  

From Eq. (2.24), we get 

Since we have chosen y  as an arbitrary, then 

VY E [ ~ , d ] ,  [ ~ d ]  : g ( y ) - F m ( y , ~ )  = 
(Y - g('"l+l) 

(m  + l )!  (vJ, Tly E ( Q ~ Y ) .  (2.25) 

Suppose that P E (c, d) and t: > 0 ,  let a E (c,,B) then there exists N such that 



then from Eqs. (2.23) and (2.25), we get 

Thus, we have proved 

Since f (ti) is continuous function onto interval [c, d] then there exists interval (a ,  b) such that 

f { ( a ,  b ) )  = ( c ,  p ) .  Hence (2.26) can be rewritten as 

and the proof is completed. 

2.5 Theorem 2.3 
m 

Suppose that f ( t i )  be a continuous function onto interval [c', d'] and Fm(y,  y )  = c k ( y ) ( ~ -  y)k 
k=O 

be the Taylor polynomial of degree m for g ( y )  about some y E (d,  d ' ) ,  say a = f ( f i ) .  Moreover, 

assume that 

Then for E > 0 and ,8 E [c, dl ,  there exist N E N and interval ( a ,  b)  so that 

Proof From the statement (2.27), it implies that there exist 0 < 4 < 1 such that 

We are to  prove the statement (2.28),  for this we will show that for a fixed /3 E [ d ,  d'], 



is convergent first we prove that {F ,n (P ,~) )g=O is Cauchy sequence in the Hilbert space R. 

lves us So, (2.29) g' 

now, for every m,n E N, m > n > q, we have 

Thus, we have 

lim 1 1  Fm(P, Y) - Fn(P ,  Y) I I =  0 n,m+w 

and hence {F,,(P. y))z==O is convergent. Or we can say that F,,(P, y)  is the Taylor polynomial 

of g(y) at Y = P . 
Thus 'd E > 0, there exists N E W such that 

from (c', d') we arbitrarily choose y ,  so for each E > 0 there exist N E W and interval (a, b) so 

that 

Qfi E ( % b )  and m > N : Ig(P) - F m ( P ,  f(ft))I < E 

This proves the theorem. 



2.6 Analysis of Convergence 

2.7 Theorem 2.4 

Let 0 < /3 < 1 and the solution components v O ( y ,  S ) ,  v l ( y ,  6 ) ,  v 2 ( y ,  6 ) ,  ... obtained by (2.14) 

satisfy the following condition 

+w 

then the series solution vt ( y ,  6 )  is convergent. 
t=O 

Proof Let us assume a sequence { S ~ ) ; S  of the following form, 

So = , ~ ~ ( y ,  6 )  
\ 

s1 = v o ( y , 6 )  + v 1 ( y , 6 )  

'92 = v ~ ( ~ , 6 )  f v l ( ~ 7 6 )  + v 2 ( ~ , 6 )  

Su = V O ( Y ,  6 )  + v ~ ( Y ,  6 )  + ... + v U ( y ,  6 )  , 

> .  

We would like t,o show that { S u ) ~ ~  is a Cauchy sequence in the Hilbert space R. So let us 

assume that 



but 0 < p < 1,  so we have 

lim I( S, -Sv ( I = O  
U,V'W 

Thus, {Su)zz is a Cauchy sequence in the Hilbert space R which means the series solution 

(2.18) is convergent. hence proved. 

2.8 Theorem 2.5 
t o o  

Assume that the series solution ~ v t ( y ,  6) defined in (2.18), is convergent to the solution v ( y ) .  
t =O 

If the truncated series 
I< 

is used as an approximation to the solution v ( y )  of the problem (2.4) - (2 .5) ,  then the maximum 

absolute truncated error is estimated as, 

Proof From the expression (2.30), we have 

for rn > Ii'. 
As rn + m then S,  -+ v ( y )  and pm-K + 0. SO, 

The above two theorems 2.3 and 2.4 show that horizontal plateaus occur in ti-curve where the 



series solution (2.18) converges which means VK(y, 6, li) is convergent. Hence proof is complete. 

2.9 Theorem 2.6 

Consider the boundary value problem (2.1) - (2.2) and suppose that the conditions of the 

convergence theorem hold for the initial value problem (2.4) - (2.5) and more, the conditions 

of the Theorem 2.4 hold for the series 

if the number of M horizontal plateaus occur in the plane of (li, 6) where the Eq.(2.19) is plotted 

implicitly, then the problem (2.1) - (2.2) admits the number of K multiple solutions in terms 

of the basis functions (2.6). 

Proof Let M in the plane (ti, 6) be number of horizontal plateaus such as 

where (hi, Ji) , i = 1,2,  .. ., M are proper ordered pair which chosen from (ti, 6). We conclude 
t o o  

from theorem 2.4 and by uniqueness of the Taylor's series that all the series C u k ( y , 6 , ( 4 ) ) ,  
k=O 

i = 1,2,  ..., M converge. Assume that 



We would like to prove that the above series are the solutions of the problem (2.1) - (2.2). For 

this, we assume that 
+w 

% ( Y )  = a k ( y , b i ( h ) )  
k=O 

by high order-deformation equation (3.14) - (3.16), we obtain 

= { lim & ( h ) ) )  = C{O) = 0  
3+oo 

C is Lipschitz in the above equations because C = % also 
8~ 

I/ C ( a  - b) lI=Il Ca - Cb II= ( ( d y ,  a , a l )  - d y ,  b,bf)ll 

As we know that tii # 0 and H ( y )  # 0  are non-zero, then 

thus 



Consider the residual of the original equation (2.1) as 

Now,we are to prove that %(y, Si(&); p) = 0, this implies 

but we also know that @(y, bi(tii); 1) = si(z).  The Taylor's series of %(y, Si(k);p) takes the 

form 

which results 

hence the proof is completed. 

2.10 Nonlinear reaction-diffusion model 
I 

To illustrate the method, we here consider the problem of nonlinear reaction diffusion model as 

follows 

v''21•‹.75 - 0.64 = 0, 

with boundary condit-ions 

v'(0) = 0, v(1) = 1. 

where the primes denote differentiation w.r.t. 'x', where 0 5 x 5 1 and 21 is the dimensionless 

concentration of the reactant. The above problem (2.31) and (2.32) can be reduced to  an initial 



value problem to  introduce 6 as follows: 

v"v0.75 - 0.64 = 0 

subject to the conditions 

vl(0)=O and v(O)=6, 

with additional forcing condition 

v(1) = 1. 

In which 6 is an unknown parameter to be determined. Now, we apply HAM on (2.33) and 

(2.34) as follows. For this, choose the set of base functions 

We choose H ( z )  = 1 as auxiliary function, vo(z) = 6 as initial guess satisfy the above conditions, 

arid choose auxiliary linear operator G as second order operator as follows 

which satisfy the property 

C[c1 + czx] = 0. 

The mth-order deformation equation for M 1 1 becomes 

From (2.17) and (2.37),we have 



when m = 1 and j = 0, we have 

~o(-ii'o, x, 6) = v&+o(x>, 

where 

u0 (x) = [vo (x)] 0.75 

Which now has becomes the original equation (2.41) as 

and u,(x) is found by another additional Adomian polynomial as follows 

Fig.2.1 : Graph of S as a function of ti 



which for different values of n = 0,1,2, ... implies that 

0.09375[v1 (x)I2 0.75~2 (x) 
u2(x) = - 

[VO ( x ) I ~ . ~ ~  
+ 

[vO (x)]O.25 ' 

The conditions for the higher-order deformation equation (2.41) becomes v,(O) = 0, vk(0) = 

0.Starting from vo(x, 6) = 6 we, successively, can find the functions v,(x, 6) for m = 1,2,3,  ... The 

mth-order approximate HAM solution can be expressed a s  

Thus, when v(1) = 1, Eq. (2.19) takes the following form 

By using symbolic software Mathematica, we computed upto M = 25th order approximate 

solution. The solution is later used in forcing condition (2.45) and drew the graph of 6 as a 

function of ti a shown in figure (2.1). It is seen that two horizontal lines namely 6 = 0.1836 

in h-range[l.3,0.4] and 6 = 0.5330 in h-range [1.7,0.3] occur. Thus there exist two solutions 

for the problem (2.31) and (2.32). It is concluded that Predictor Homotopy analysis method 

provides convenient way to calculate dual solutions satisfying the exact dual solutions of the 

original problem. 

2.11 Conclusion 

In this paper we have shown how to predict the existence of unique or multiple solutions of 

the problems. For this, a new parameter 6 is introduced to the problem. An additional forcing 

condition and ti play vital role in the prediction of multiplicity. In the plot of 6 as function 

of h existence of multiple solutions can be calculated corresponding to the horizontal ranges 

appearing in the graph. 



Chapter 3 

Prediction of multiplicity of 

solutions of nonlinear boundary 

value problems 

Computing the solution of nonlinear boundary value problems analytically have been a difficult 

job for the researchers. Since the last two decades homotopy analysis method is being considered 

to be the best tool for this purpose as compared to other tools [3,4]. This is due to  its many 

advantages and freedom embedded in the solution procedure of HAM. Till to date many types 

of boundary value problems in science and engineering namely viscous flow of non-newtonian 

fluids [23], the KdV-type equation [26,47], nonlinear heat transfer [46,49], problem related to  

shallow water equations have been solved successfully by employing this method [30]. 

On the other hands, researchers have used many numerical methods time to  time which 

are quite useful for this purpose. Few of them are Euler method, RungeKutta  explicit and 

implicit methods, different multistep methods, Taylor series method, Hybrid methods, family 

of finite difference methods [I, 21 and spectral methods [29,30] etc.. Many other methods are 

also there to give approximate solutions analytically like for example perturbation methods 

[3,6], the artificial small parameter method [4], the &expansion method [5] ,  the Adomian 

decomposition method [7], the variation iteration method [8] and so on. These methods do 

not give us a convenient way to  control and adjust the convergence region and rate of given 



approximate solution which are guaranteed in the framework of homotopy analysis method 

through an auxiliary parameter called convergence control parameter ti. 

By using above cited analytical methods, it is observed that the prediction or forecasting of 

multiplicity or solutions of the nonlinear boundary value problems is very much difficult task 

by using these above cited analytical methods. Since we assume that approximate method 

usually converge to one solution by one initial guess is the exactly means the convergence. 

The convergence control parameter ti embedded in homotopy analysis method has found a key 

role in forecasting the multiplicity of the solutions of nonlinear problems investigated in [44]. 

Moreover, homotopy analysis method provides a convenient way to further control the multiple 

solutions (if exists) of the problems will be revisited in this chapter. 

3.1 Description of the method 

Let us consider the following nonlinear differential equation 

subject to the boundary condition 

where N is nonlinear operator, 23 is boundary operator and I? is boundary of the domain* R. 

The key step of the procedure is that the boundary value problems (3 .1 )  and (3 .2 )  be replaced 

by an equivalent problem in such a way that the condition (3 .2 )  must involves an unknown 

parameter like 6 as follows 

= 0 ,  and v ( P ) = y  y ~ r  ( 3  3 )  

where 21 ( p )  = 7 is the forcing condition, which comes from condition ( 3 . 2 ) .  Now applying the 

HAM on the problem (3.1) subject to the boundary conditions (3 .3 )  



3.1.1 Zero-order deformat ion equation 

We assume that all the solutions v = v ( y )  of problem (3.4) can be expressed by the set of base 

functions {wj ( 3 )  , j = 0,1,2,  ...I such that 

where a,, are unknown coefficients to  be determined. We let vo ( y ,  S )  be an initial guess of v ( y )  

that satisfies conditions (3.5). The general zero-order deformation equation takes the following 

form 

(1 - q)L[p(y ,  6; 9) - vo(y, 6)1 = &H(Y)N [v (y ,6 ;  dl (3.7) 

where ti # 0 be the convergence-controller parameter, H ( x )  # 0 be an auxiliary function, and L 

be an auxiliary linear operator and p ( Y ,  6; g )  is to  be determined. Here q ~ [ O ,  11 as an embedding 

parameter, in which two cases occur: 

Case  1 When q = 0, (3.7) leads us to 

which implies 

p(r, 6 ;  0 )  = V O ( Y ,  6) .  

Case 2 When q = 1, (3.7) takes the form 



which is the same nonlinear boundary value problem given in Eq. (3.1) such that p(y ,  6; 1)  = 

~ ( y ,  6 ) .  Now expanding ~ ( y ,  6; q )  in a Taylor series to the embedding parameter q  as follows 

where 

It is well known in frame of HAM, after choosing auxiliary linear operator L, suitable initial 

guess vo(y ,  d),  auxiliary parameter ti # 0  , and auxiliary function H ( y )  # 0 ,  the series given in 

Eq. (3.11) converges for q  = 1. Hence 

is one of solutions of (3.4) and (3.5). 

3.1.2 High-order deformation equation 

After properly choosing the initial guess function vo(y ,  6 ) ,  the linear operator L and auxiliary 

function H ( y ) ,  we can calculate v,,,(y, 6 )  in Eq. (3.13) with the help of the high-order deforma- 

tion equations as follows. Note importantly that the value of convergence control parameter ti 

will be chosen later. We first define the vector ??,, = { v o ( y ) , v l ( y ) ,  ..., v m ( y ) )  then differentiat- 

ing Eq. (3.7) m-times with respect to  q, divide it by m! and setting q  = 0 ,  with (3.8). We get 

mth-order deformation equation in the following form 

with boundary conditions 



where 

and 

The rnth-order deformation Eq. (3.14) with boundary condition (3.15) can easily be solved 

with the aid of any computer symbolic software like Mathematica or Maple. After starting 

from vo (y ,  6), we can calculate the functions v,, ( y ,  6 )  for m = 1,2 ,3 ,  ... from Eqs. (3.14) and 

(3.15) successively. Thus, the mth-order approximate solution of the problems (3.4) and (3.5) 

has the following form 

3.1.3 Forecasting the multiple solutions 

The rule of multiplicity is a procedure to know the number of solutions admitted by the bound- 

ary value problem (3.1).  Uptill now we have chosen the initial guess vo (y ,  G),the linear operator 

C and auxiliary function H ( y )  # 0 properly such that the series solutions (3.18) converges. But 

still we are to find out 6 and k in the series (3.18). The existence of unique or multiple solution 

depends on whether the forcing condition ( v  ( P )  = y) as given in Eq. (3.3) admits unique or 

multiple solutions for formally introduced parameter G.This stage is called rule of multiplicity 

of solutions. In simple words the criterion is order to  know the existence of unique or multiple 

solutions of the boundary value problem is called rule of multiplicity of solutions. The rule of 

so called multiplicity of solutions is applied as follows: Consider the mth-order approximate 

solution (3.18) and set (3.3) in it to derive the following equation 



It is noted that the above Eq. (3.19) has two unknown parameters namely b and convergence 

controlling auxiliary parameter h in (3.18) the series solution (2.18).Since it is clear from the 

frame of HAM that the series solution (3.18) is convergent for y = /3 for the values of ti only 

in that range of LHowever b will not change with the value of h. Thus, implicitly, we get the 

unique or multiplicity of the solutions when a unique or multiple horizontal plateaus occur in 

the plot of 6 as function of ti in the convergence range of the series v(P). Now we are going to 

test or check the multiplicity of solutions by applying HAM on three different cases as given 

below. 

3.2 Nonlinear Heat transfer problem 

3.2.1 Equation and exact solutions 

Let us consider a straight fin of uniform cross-section area A and length L. At temperature 

T, the surface of fin is placed in a convective environment at temperature Ta. It is further 

assumed that the local heat transfer coefficient h exhibit a power-law-type dependence along 

fin on the local temperature difference between the fin and the ambient fluid as 

where the exponent n depends on the heat transfer mode, T be the local temperature on the 

fin surface and a be dimensional constant. The value of n varies in the range between -4 and 

5. For one dimensional steady state heat conduction equation in dimensionless form is 

and 

can be written as 



.c can be calculated from fin tip, Tb be temperature of fin base, and $ be convective-conductive 

parameter of fin and is defined as 

In the above expression k be the conductivity of the fin, P be the periphery of fin cross-section 

and hbthe heat transfer coefficient a t  fin base. It is assumed that fin tip is insulated and the 

boundary conditions of the problem (3.23) are 

We can show that for -1 5 n < 5 ,  the Eqs.(3.23) and (3.24) admits unit solution, for -2 < n < 

-1 it has both unit and dual solutions, but only dual solutions for -4 < n 5 -2. Therefore 

for our purpose we assume n = -3 so that Eq. (3.23) is transformed as 

after using the transformation = y, we get 

Now, Eq. (3.25) takes the form 

which is separable type first-order ordinary differential equation, which may be written in the 

following form 

ydy - q2F2d6 '  = 0. 

Applying the integral operation, we get 

/ ydy - +2 / P 2 d e  = 0, 



we obtain 

dB by using transformation = y,we get 

where c is constant of integration. Now Eq. (3.27) after using the first boundary dondition 

(3.241, retrieves as 

,$2(e(o))-1 = c, 

where 8(0) = 6 is the temperature on fin tip at x = 0. The value of constant c is obtained as 

Thus 

which is again a separable equation. After separating the variables again, we have 

Taking the square root on both sides , we get 

After replacing 6 by r, we get 
d7 

dx = 

and taking the integration of above expression by using Mathematica, we get 



Fig1 : Graph of 6 as a functions of $. 

The expression of the parameter 6 can be obtained after using the boundary condition e(1) = 1 

from (3.30) as given below 

In Fig. 1, 6 as a function of $ has been plotted from Eq. (3.31). In this figure, we can see that 

there exist two 6 against $ for 0 5 1C, 5 $,, = 0.591611. So we can say that dual solutions 

occur. i.e. these values of 6 = 0.348961 and 6 = 0.830017 have been used to draw the exact 

dual solutions of Eqs. (3.25) subject to the boundary condition (3.25) as shown in Fig. A, 



for $) = 0.5, we get 6 = 0.348961 and 6 = 0.830017 as mentioned by points A and B in Fig.1 

respectively. 

3.2.2 Forecasting the dual solutions by using HAM 

The boundary value problem Eq. (3.25) subject to  the boundary condition (3.24) and forcing 

condition for .11, = 0.5 are 

with additional forcing condition O(1) = 1, where 6 is the temperature of the fin tip that we 

will determine later on. So, we apply HAM on the problems (3.32) and (3.33) as follows. we 

first assume a set of base functions 

After choosing the initial guess OO(x) = x2 + b satisfying the boundary conditions (3.33). Let 

H ( z )  = 1 and C be a second order operator defined as 

0.0 0.2 0.4 0.6 0.8 1.0 

X 

Fig. A : Exact dual functions of heat transfer Eq.(3.25) subject to conditions (3.24) 



which satisfies 

&[c1 + C ~ X ]  = 0. 

The mth.-order deformation Eq. (3.14) after two subsequent integrations for M 2 1 takes the 

following form 

+ 
8, ( x ,  (5) = xm8,-l ( x ,  6 )  + ti R,( 9 ,-I, 7 ,  S ) d ~ d s  + ci + ~ 2 2 ,  (3.37) 

where from Eqs. (3.17) and (3.32) implies that 

For rrL = I ,  i = 0 and j = 0 ,  we have 

After dividing the above equation by ( 8 0 ( ~ ) ) ~ ,  we have 

which is almost the same as original equation. The m.th-order boundary conditions are used to 

calculate the integration constants cl and c2 are as follows 

and thus eland c2 become zero. In this way, we get the functions O,(O,S) from Eq. (3.37) for 

771 = 1,2 ,3 ,  . . . to get m.th-order approximate solution. 

e, ( x ,  a ,  ti) = C en, (5 .6) .  



After using additional forcing condition 8,,(1) = 1, Eq. (3.19) becomes 

8(1) O M ( l ,  6, ti) = 1. (3.41) 

The mth-order solution (M = 35) has been calculated by using symbolic software Mathernatica. 

The obtained solution is used in Eq. (3.41) and drawn the parameter are of 6 as a function of 

convergence-controller parameter ti as shown in Fig. 2. The admissible range of ti is noted as 

[-1.1. -0.11. It is seen that two Ghorizontal ranges namely 6 = 0.3489 in the ti-range [0.95,0.3] 

and 6 = 0.8300 in the h-range [0.45,0.25] has been plotted in Fig. 2. Thus, the HAM provides 

dual solutions satisfying the exact solutions completely. 

Fig2 : graph of 6 as a function of ti 

3.2.3 Two branches of solution 

The rule of multiplicity is a procedure to determine the number of solutions admitted by the 

boundary value problem. As pointed by points A and B in Fig. 1, we now are going to  



determine the dual solution for 6 = 0.3489 and 6 = 0.8300 explicitly and then we will compare 

it with the exact solutions (3.30) Both the lower branch and upper branch of solutions are 

determined simultaneously with various 6 and ti only by Eq. (3.40) as shown in Fig. 2. 

X 

Fig.3 : Convergence of approximate lower solutions towards the exact one: @ ( x )  - dot- 

dashed, 0 5 ( x )  - dashed and O l o ( x )  - dotted; and the exact lower solution - solid line 

The approximate HAM solutions given by Eq. (3.40) on various values of m i.e. O3 (x, 0.3489, -0.6) 

- dotdashed line, O5 (x, 0.3489, -0.6)- dashed line and @lo ( x ,  0.3489, -0.6) - dotted line where 

6 = 0.3489 and h = -0.6 are compared to the exact lower branch solution B(x)  as shown with 

solid line in Fig.3,and given by Eq. (3.30) for 6 = 0.348961 and ,J, = 0.5 as plotted by point 

A of Fig. 1. Similarly, in Fig. 4, the approximate HAM solutions given by Eq.(3.40) on var- 

ious values of m i.e. 0 3 ( x ,  0.8300, -0.4)- dotdashed line, 0 5 ( x ,  0.8300, -0.4)- dashed line and 

Olo(x ,  0.8300, -0.4) - dotted line where 6 = 0.8300 and ti = 0.4 are compared to the exact 

upper branch solution O(x) as shown with solid line given by Eq. (3.30) for 6 = 0.830017 and 

,rC, = 0.5 as shown b y  point B of Fig. 1. 



Fig.4 : Convergence of approximate upper solutions towards the exact one: 03(x)  - dot- 

dashed, O5 (x) - dashed and Olo(x) - dotted; and the exact upper solution - solid line 

We need not to use more than one auxiliary linear operator, one initial approximation guess, 

and one auxiliary function used for convergence to  dual solution. As we increase the order M 

the approximate solutions 0~ (2) approaches the exact solution. 

Fig.5 : Comparison of approximate dual ~ o l u t i o n s ( 0 ~ ~ ( x ,  0.8300, -0.4) - black bold dots 

and 035 (x, 0.3489, -0.6) - black bold dots) with the exact dual solutions - solid line 



In Fig. 5 comparison of approximate dual HAM solutions OM(x) of order M = 35 is shown by 

dotted lines with the exact dual solutions plotted with solid lines. We finally come to conclude 

that the HAM provides dual solutions which exactly match the exact solutions. 

3.3 Strongly nonlinear Bratu equation 

3.3.1 Equation and the exact solutions 

The famous Bratu problem subject to the boundary conditions are as follows 

and 

v(0) = 21(1) = 0. 

The exact solution of the above problem using reduction of order is as follows 

a2 
v(z) - log 

2X cosh2 [- (z + b)]  1 
We Introduce the boundary conditions to calculate two arbitrary constants a, b such that from 

condition (3.43), we have b = -4 and a is 

let us consider that 

4a = a, 

so expression (3.45) takes the following form 

X = 8 a  a cosh-' [a] 

and solution (3.44) becomes 



cash a 
v ( x )  = 2 log 

cosh[a(l --2x)] 

Where a satisfies 
4 

cosh a = - 6" 

0.0 0.2 0.4 0.6 0.8 1..0 

X 

Fig. B : Exact dual functions of Bratu Eq. (3.42) given by Eq. (3.46) 

This is the major task we need t o  accomplish. Actually we are to  converge the approximate 

dual solutions using HAM to the Upper and Lower Branches of the exact dual solutions as given 

in the graph above. The dependence of a: as function of X is shown in Fig. 6. I t  is noted that 

there is no solution for X > A,,,, only one solution for the case X = A,,, and dual solutions 

for X < A,,,. Let us consider the value of X = 3 for discussion. We noted that two points C 

and D namely a = 0.84338 and a = 1.64414 exist against X = 3 ,  here two solutions exist for 

X = 3. Differentiating (3.46) w.r.t. ' x '  and setting x = 0 ,  we get 

v1 (0 )  = 4 a  tanh cr (3.48) 

In Fig. 7 we have plotted u l ( 0 )  as function of a from Eq. (3.48). Thus we have dual solutions 

as pointed (E, G) i.e. v l ( 0 )  = 2.3196 for the first solution and v l ( 0 )  = 6.1034 for the second 

solution. 



R 

Fig.6 : Graph of cr a s  function of X 

Fig.7 : graph of vl(0) as function of a given in expression (3.48) 
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3.3.2 Forecasting the dual solutions by using HAM 

Assuming X = 3, we can reduce two-point boundary value problem given in Eqs. (3.42) and 

(3.43) to an initial value problem as follows 

with an additional forcing condition 

21(1) = 0. 

We can transform the above problems (3.49 - 3.51) equivalently to new ones by assuming 

taking log on both sides, we get 

4.) = - k [ f  (41. 

Taking the derivative of above expression w.r.t. 'x', we get 

again differentiating above expression w.r.t. 'x', we get 

From Eq. (3.52) 

f I(.) = -v'(x)e-v'x' 

so, boundary conditions (3.50) now takes the following form 



with additional forcing condition by Eq. (3.52) is 

f (1) = 1. (3.55) 

Now, We apply HAM on the problems (3.53) - (3.55) to determine the parameter y. For this, 

we first take the set of base functions 

and choose the auxiliary function H(x) = 1, fo(x) = yx + 1 as initial guess of solution f (x), 

and C to be second order linear operator of the form 

which satisfies 

C[cl + C ~ X ]  = 0. 

After two consecutive integrations for M 2 1 by using equation (3.14), we arrive a t  

where 

For 7 n  = 1 and j = 0, we have 

which is almost the same as original equation (3.53). After using the mth-order boundary 

conditions 

fm(o) = 0, fk(o> = 0, (3.61) 



the values of unknown constants cl and cz become zero. Finally, the mth-order approximate 

solution can be obtained from 

Applying the forcing condition f (1) = 1, Eq. (3.19) becomes 

M = 40th order solution have been computed using Mathematica. Expression (3.40) a t  M = 40, 

in which y as a function of convergence-controller parameter fi in the brange [2,0] has been 

plotted in Fig. 8. We can identify two y-plateaus i.e. y = -6.1034 or 6 = (6.1034) in the 

h-range [-0.6, -0.41 and y = -2.3196 or (6 = 2.3196) in the fi-range (-0.8, -0.31. Here exist 

two solutions for X = 3 i.e. vl(x) = 6 = -y = 2.3196 for the first solution and vl(z) = 6 = 

-7 = 6.1034 for the second solution as shown in Figs. 6 and 7. Thus, we finally conclude that 

the HAM provides dual solutions satisfying the exact results. 

3.3.3 Two branches of solution 

To determine the dual solutions for 6 = 2.3196 and 6 = 6.1034 explicitly as mentioned with 

point pairs C and D of Fig. 6. The mth-order approximate solution by HAM by Eqs. (3.52) 

and (3.62) is given as  

VM(X, 6,fi) = -log[Fn!(x, 7, fill. (3.64) 

Both the lower branch and upper branch of solutions are determined simultaneously with various 

6 and ti only by Eq. (3.64).Here again, we need not to use more than one auxiliary linear 

operator, one initial approximation guess, and one auxiliary function used to  convergence to 

dual solutions. 



iI 

Fig.8 : The graph of y as function of ti 

In Fig. 9 the approximate HAM solutions given by Eq. (3.64) on various values of m i.e. 

V5(x, 2.3196, -0.5)- dotdashed line, Vs(x, 2.3196, -0.5)- dashed line and Ko(x ,  2.3196, -0.5)- 

dotted line where 6 = 2.3196 and ti = -0.5 are compared to the exact lower branch solution 

v(z)  shown by solid line given by Eq. (3.46) for a = 0.84338 as mentioned by point C in Fig. 

6. 

Fig.9 : Convergence of approximate lower solutions towards the exact one: V5(x) - dot- 

dashed, Vs(z) - dashed and Vlo(x) - dotted; and the exact lower solution - solid line 



0.0 0.2 0.4 0.6 0.8 1.0 

X 

Fig.10 : Convergence of approximate upper solutions towards the exact one: Vl7(x) - dot- 

dashed, V20(x) - dashed and V22(2) - dotted; and the exact upper solution - solid line 

Similarly, in Fig. 10 the approximate HAM solutions on different values of m i.e. VI7(x, 6.1034, 

- 0.5) - dotdashed line, V20(x, 6.1034, -0.5) - dashed line and V22(x, 6.1034, -0.5) - dotted 

line where 6 = 6.1034 and fi. = -0.5 are compared to the exact upper branch solution v(x) 

shown by solid line given by Eq. (3.46) for a = 1.64414 as mentioned by point D in Fig. 6. It 

is observed that as we increase the order M the approximate solutions ObI(x) approaches the 

exact solution. 

X 

Fig.11 : Comparison of approximate dual s o l u t i ~ n s ( V ~ ~ ( x ,  2.3196, -0.5) - black bold dots 

and VS0(x, 6.1034, -0.5) - black bold dots) with the exact dual solutions - solid line 



In Fig. 11, the comparison of dual solutions obtained by homotopy analysis method of order 

M = 20 and M = 30 and the exact solution is presented. In this figure; solid line represents the 

exact solution and dot represent the solutions calculated by HAM. Hence, we finally conclude 

that the HAM provides us dual solutions in a convenient way accurately. 

3.4 Nonlinear reaction-diffusion model 

3.4.1 Equation and the exact solutions 

Let us consider here a special case of that problem of nonlinear reaction-diffusion model which 

is already discussed in previous chapter, when the model has -0.75 for reaction-order and 0.8 

for Thiele modulus, as follows 

v11v0.75 - 0.64 = 0 ,  (3.65) 

with boundary conditions 

v l ( 0 )  = 0,  v(1) = 1 

The primes denote differentiation w.r.t. 'x', where 0 <_ x < 1 and v is the dimensionless 

concentration of the reactant. Eqs. (3.65) and (3.66) satisfy the following solutions for different 

values of v ( z ) ,  the upper solution takes the form 

in which the lower solution takes the form 

the above two solutions are plotted in Fig.C. as given below. From the lower and upper branch 

solution from Eqs. (3.67) and (3.68) respectively, one can find 



and 

0.0 0.2 0.4 0.6 0.8 1.0 
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Fig.C : The graph of Exact dual functions of diffusion reaction 

3.4.2 Forecasting the dual solutions by using HAM 

Consider the following problem 

v'1v0.75 - 0.64 = 0 

subject to the boundary conditions 

with additional forcing condition 

Z ) ( l )  = 1. 



Where 6 is an embedded parameter to be determined. Now, we apply HAM on (3.71) and 

(3.72) as follows. For this we first take a set of base functions 

We choose auxiliary function H ( x )  = 1, initial guess vo(x )  = 6, and choose linear operator C 

of second order as follows 
d2io(x, 7 ;  P) 

C[io(x, 7;  P I ]  = a x 2  , (3.75) 

which satisfies the property 

C[cl + c2x] = 0. 

The mth-order deformation equation becomes, M 2 1 

In which 
77,- 1 

&(dm,-1, x ,  6) = x vk-,-j ( x ) u j ( x )  - 0.64(1- x,), (3.78) 
J=o 

which is different from the traditional problem. When m = 1 and j = 0,  we have 

RO($O, x, 6) = v i ( x ) ~ o ( x ) ,  

where 

u0 ( x )  = [vO ( T ) ] " ~ ~ .  

Which now has becomes the original equation (3.65) 

Ro = v11210.75 - 0.64, 

and u,(x) is found by another additional Adomian polynomial as follows 



which for different values of n = O,1,2, ... implies that 

0.75vl(x) 
u1(x)  = [vo ( x ) ] ~ . ~ ~  ' 

u2 ( x )  = - 
0.09375[v1 (x)I2 + 0.75~2 ( x )  

[ ~ 0 ( ~ ) 1 ' . ~ ~  [vO (x)]0.25 ' 

With initial conditions, the high-order deformation equation (3.77) 

(3.80) 

(3.81) 

(3.82) 

becomes 

(3.83) 

starting from uO (x, 6)  = 6. We, successively, can find the functions v,,(x, 6 )  for m. = 1,2 ,3 ,  . .. 
and mth-order approximate solution 

-2.0 -1.5 -1.0 -0.5 0.0 

il 

Fig.12 : The graph of 6 as function of ti by using 25th order HAM solution 



Thus, when v(1) = 1, Eq. (3.84) takes the following form 

v(1) FZ VM(X, 6, ti) = 1. (3.85) 

We compute the solutions upto 25th-order of approximation by using symbolic software Math- 

ematica. Then using Eq. (3.85), 6 as function of ti is drawn in Fig. 12 for the ti-range [-2,0]. 

Two &plateaus namely 6 = 0.1836 in ti-range[l.3,0.4] and b = 0.5330 in ti-range [1.7,0.3] can 

be seen in the Figure, which clearly exhibits the reasons for the existence of dual solutions. 

3.4.3 Two branches of solution 

In Fig. 13, the approximate HAM solutions given by Eq. (2.84) on various values of r n  i.e. 

V3(x, 0.1836, -0.8)- dotdashed line,, V5(x, 0.1836, -0.8)- dashed line and V7(x, 0.1836, -0.8) - 

dotted line where b = 0.1836 and ti = -0.8 are compared to the exact lower branch solution 

v(x) shown by solid line given by Eq. (2.67). 

0.0 0.2 0.4 0.6 0.8 1.0 

X 

Fig.13 : Convergence of approximate lower solutions towards the exact one: %(x) - dot- 

dashed, V5(x) - dashed and V7(x) - dotted; and the exact lower solution - solid line 

Similarly, in Fig. 14 the approximate HAM solutions on different values of m i.e. h ( x ,  0.5330, -1) 

= 0.5330 - dotdashed line, Vl(x, 0.5330, -1)- dashed line and %(x, 0.5330, -1) - dotted line 

where 6 = 0.5330 and ti = -1are compared to  the exact upper branch solution v(x) shown by 

solid line given by Eq. (3.68). As we increase the order M the approximate solutions OM(x) 



approaches the exact solution. In Fig. 15 comparison of approximate dual HAM solutions 

VM(x) of order M = 15 with the exact solutions presented. 

0.0 0.2 0.4 0.6 0.8 1.0 

X 

Fig.14 : Convergence of approximate upper solutions towards the exact one: Vo(x) - dot- 

dashed, Vl (x) - dashed and V2(x) - dotted; and the exact upper solution - solid line 

The dotted line shows the approximate, while the solid line gives exact dual solutions as shown 

in Fig. 15. We finally conclude that the HAM provides dual solutions satisfying the exact 

solutions exactly. 

Fig.15 : Comparison of approximate dual  solution^(^^ (x, 0.1836, -0.8) - black bold dots 

and Vl5(z, 0.5330, -1) - black bold dots) with the exact dual solutions - solid line 



3.5 Conclusions 

Without loss of generality it really is a very difficult task to forecast the multiplicity of solu- 

tions for a given nonlinear boundary value problem. So, perhaps for the first time, the rule 

of multiplicity of solutions have introduced for this purpose. We successfully revisited the ap- 

plicability of this procedure by its applications to different important boundary value problems 

from the field of science and engineering which admit multiple solutions. Here the dual solu- 

tions of nonlinear equations such as nonlinear heat transfer equation, strongly nonlinear Bratu 

equation and nonlinear reaction-diffusion model in porous catalysts have been predicted and 

calculated by using homtopy analysis method. It is importantly mentioned that, we need not 

to use more than one initial guess, one auxiliary function, one auxiliary linear operator to find 

all the branches of the solutions. 
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