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Abstract

Abstract

Real-Time Operating Systems (RTOS) currently available in industry, for embedded
systems, require multitasking support in the targetted processor. The category of such
operating systems is known as Pre-emptive Multitasking Kernels, But multitasking support
is not provided by all processors. Our aims is to develop multitasking scheduling technique
(Collaborative Multitasking) for the processors or microcontrollors which do not have
built-in multitasking support like support for context switching, for example, 89C51
Microcontroller, 89C52.
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Chaprer | Introduction

1. Introduction

Real-Time Operating Systems {RTOS) currently available in industry, for embedded
systems, require multitasking support in the targetted processor. The category of such
operating systems is known as Pre-emptive Multitasking Kernels. But multitasking
support is not provided by all processors. Our aims is to develop multitasking scheduling
technique (Collaborative Multitasking) for the processors or microcontrollors which do
not have built-in multitasking support (that is, support such as for context switching), for
example, 89CS1 Microcontroller, 89C52.

As described above, most of embedded system processors and micro-controllers do not
have multiprogramming support when used in real time environment, while on the other
hand, there are some software routines (for example, TCP/IP) which need very efficient
level of multiprogramming in order to execute different tasks, for example, TCP protocol,
IP Protocol . So, there i1s need of a multiprogramming scheduler to hold the burden of
such routines in real time environment.

Commonly used Real Time Operating Systems (for example, CMX RTOS, PCOS) use
pre-emptive multitasking as scheduling approach to execute multiple tasks
simnultaneously.

1.1 Preemptive Multitasking

Preemptive multitasking is task in which a computer operating system uses some criteria
to decide how long to allocate to any one task before giving another task a turn to use the
operating system. The act of taking control of the operating system from one task and
giving it to another task is called preempting. A common criterion for preempting is
simply elapsed time (this kind of system is sometimes called time sharing or time
slicing). In some operating systems, some applications can be given higher priority than
other applications, giving the higher priority programs control as soon as they are
initiated and perhaps longer time slices.

Restrictions:
» Multitasking support in hardware or processor is needed
» High processing speed required

n High cost

The micro controllers widely used in embedded systems such as 89C51, 89C52, PIC
Controller, CMX 851, do not have support for pre-emptive multitasking. Our proposed
system is to introduce a new multitasking approach called collaborative multitasking in
order to execute tasks or routines for transport protocols.

Real Time Scheduler for Transport Protocols i




Chapter 1 Irtraduction

The proposed approach is different from conventional multitasking (Preemptive) in way
that it does not require any system resources and support, that is, this approach can be
implemented in tiny micro controllers, which are not basically meant for running multiple
tasks at same time.

1.2 Collaborative Multitasking

In collaborative multitasking, tasks (any user process running on that controller)
collaborate with each other in a way that each task executes a part of its route and then
releases system resources voluntarily. In this system, each task is represented by function
or routine. A task returns after executing a part of it, saves its state and gives control to
other task waiting for resources. This sequence executes in a continuous fashion.

Following is an example of implementation of proposed collaborative multitasking
approach. Here, we want to perform three tasks at same time. First Task is Display task
whose responsibility is control LCD display. Second task is Comm task whose
respongsibility is to receive any data from comport and process it, and the third one is
KeyPad task which scans the keys and gets any activity of key pressing.

Now, these three tasks will collaborate with each other. When Display function will be
called, it will scan all the display memory and will refresh it on the screen in one cycle.
After that it will return back and Comm task will be invoked. In a single cycle, Comm
will scan its COM port, receive any incoming waiting data and process it. Afier that it
will return back and then finally KeyPad task will be invoked. In a cycle, KeyPad will
scan all the keys and will refresh keypad memory indicating any key press event. This
sequence will execute continuously.

main()
{
InitSys( )
While(1)
{
Display( );
Comm{ )
KeyPad();
h
QuitSys( );
}

For each layer of TCP/IP, there will be a separate task. All the layers will work in a
collaborative fashion. The layers will interact with other layers through job queues. In
order to hand over data to other layer, each layer will place the job in queue of next layer.

Real Time Scheduler for Transport Protocols 2
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In a cycle, each layer will process one incoming and one outgoing packet. In total, five
simultaneous collections will be supported.

1.3  Real Time Behavior of the System

Timeliness is one of the most important properties of real-time systems. Formal proofs,
static analysis and scheduling theory which aim to guarantee timeliness in dependable
real-time systems require full knowledge of worst-case execution times, load patterns,
task dependencies, and arrival rates of requests. Such information is seldom available,
and if those techniques are applied they must often be based on estimations that cannot be
guaranteed to be correct.

For example it has become increasingly complex to model a state-of-the-art processor in
order to predict timing characteristics of tasks.

1.4  Aim and Objectives

Scheduler 15 designed keeping in mind following objectives:

Collaborative in nature, that is, no need of any multitasking support.
Portable to any platform C166/167, Intel 8051, PIC Controller, CMX 851
RTOS integration will be supported

Real time system support

Five simultaneous connections will be supported

Modular approach

1.5  Core Operating System of TCP/IP Stack

The core operating system of this TCP/IP stack depends on the processes to regularly
relinquish control of the operating system so other processes have the opportunity to gain
their time slices. The main thread initializes all the layers, distributes the time slices by
calling respective processes.

Each layer works in two directions, that is, it processes data from upper as well as lower
layer, as shown in the figure 1.1,

Real Time Scheduler for Transport Protocols 3
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Application Layer
F r 3
h Y
TCP UpP
» Ly
h 4 h 4 /1 F
1P
/'
¥ h 4 Y
PPP MAC
3
- Y
COM ETHERNET
F 3
Y Y
Modem Network Adapter

Figure L1: Operations performed at different layers
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Each layer has two task queues associated with it, one for each direction:

1.6

Layer up task queue, that contains pointer to the buffer received from upper layer
and is ready to be processed according to the command associated with the buffer
and status of the message flag associated with that direction.

Layer down task queue, that contains pointer to the buffer received from upper
layer, Message flags associated with each process to control sub-processes.

TCP/IP Application Layer APIs

In this section, the expected application layer APIs will be discussed.

1.6.1

Create Socket

This function Searches for a free socket and returns no of the socket and returns -1 if no
socket 1s available.

1.6.2

1.6.3

Free Socket

This function marks a currently occupied socket as free. Calling this function
makes the currently specified socket as free.

It takes one parameter, which is identifier of the socket, which is to be freed and
returns 1 on successfully freeing the socket and returns 0 on failure.

Create TCP Connection

This function makes a currently occupied socket connected with remote host
using TCP services and allows the application to exchange data.

This function takes the socket identifier, which is going to be connected as
parameter.

The function returns ! on successful connection with remote host and returns 0, if
connection fails.

Real Time Scheduler for Transport Protocols J




Chapter | Introduction

The function returns 1 on successful connection with remote host and returns 0, if
connection fails.

1.6.4 Finish TCP Connection
o This function makes a currently occupied socket disconnected with remote host.
o This function takes the socket identifier, which is going to be disconnected as
parameter.
o The function returns 1 on successfully disconnection with remote host and returns
0, if disconnection fails.
1.6.5 Send TCP Data
» This function sends a buffer on a currently connected TCP connection and returns
1 on successful transmission of packet and returns 0 on failure,
» This function takes two parameters:
a. Socket Identifier
b. Buffer number to be transmitted
1.6.6 Receive TCP Data
o ‘This function receives a buffer of data from Currently Active TCP Connection.
o This function halts until a buffer arrives at the socket.
o The function takes socket identifier as parameter and returns the number of buffer
received.
e If connection is dropped some other exception occurs then this function returns
with invalid (-1) buffer number.
Real Time Scheduler for Transport Protocols é
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1.7 Protocols Implementation

The following protocols are implemented as per their RFC given below:

TCP Rfc793

IP Rfc791

ubp Ric768

PPP Rfcl1661

ICMP Rtc792

SMTP RifcB21

POP3 Rfc1939

Real Time Scheduler for Transport Profocols 7
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2. Communication Protocols

The Internet protocol suite is a set of communications protocols that implement the protocol
stack on which the Internet runs, It is sometimes called the TCP/IP protocol suite, after the two
most important protocols in it: the Transmission Control Protocol (TCP) and the Internet
Protocol (IP).

The Internet protocol suite can be described by analogy with the OSI model, which describes the
layers of a protocol stack, not all of which correspond well with internet practice. In a protocol
stack, each layer solves a set of problems involving the transmission of data, and provides a well-
defined service to the higher layers. Higher layers are logically closer to the user and deal with
more abstract data, relying on lower layers to translate data into forms that can eventually be
physically manipulated. [1]

TCP/IP stack is comprised of five layers. Different protocols can be resided at different layers,

1. Application Layer (for example, SMTP, POP3 implemented)

2. Transport Layer (for example, TCP, UDP implemented)

3. Internet Layer (for example, IP, ICMP implemented)

4. Data Link Layer (for example, PPP implemented)

5. Physical Layer (for example, Physical Media, encoding techniques )

2.1  Transmission Control Profocol

Transmission Control Protocol (TCP) is a connection-oriented, reliable-delivery byte-stream
transport layer communication protocol. It is intended for use as a highly reliable host-to-host
protocol between hosts in packet-switched computer communication networks, and in
interconnected systems of such networks. The TCP interfaces on one side 1o user or application
processes and on the other side to a lower level protocol such as Internet Protocol. [2]

Applications send streams of 8-bit bytes to TCP for delivery through the network, and TCP
divides the byte stream into appropriately sized segments (usually delineated by the maximum
transmission unit (MTU) size of the data link layer of the network the computer is attached {o).
TCP then passes the resulting packets to the Internet Protocol, for delivery through an internet to
the TCP module of the entity at the other end. TCP checks to make sure that no packets are lost
by giving each byte a sequence number, which is also used to make sure that the data are
delivered to the entity at the other end in the correct order. The TCP module at the far end sends
back an acknowledgement for bytes which have been successfully received; a timer at the
sending TCP will cause a timeout if an acknowledgement is not received within a reasonable
round-trip time (or RTT), and the (presumably lost) data will then be re-transmitted. The TCP
checks that no bytes are damaged by using a checksum; one is computed at the sender for each

block of data before it is sent, and checked at the receiver. Fgure 2.1 explains TCP header
format.

Real-Time Scheduler for Transport Protocols 8
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2.1.1 TCP Header Format

Bits 0 -3 54-9 'i30-15§zs~31

@ | Source Port | Destination Port |

32 Sequence Number

64 | Acknowledgement Number

96 | Data Offset 1 Réserveé 1 Flags Window

128 [Checksum | Urgent Pointer
160 |Options (optional)
192{Options (cont) ~ {Padding (1032)
% .

224 {Data

Figure 2. 1 'TCP Header

*  Sequence Number: 32 bits
The sequence number of the first data octet in this segment {(except when SYN is
present). If SYN is present the sequence number is the initial sequence number (ISN) and
the first data octet is ISN+1.

¢ Acknowledgment Number: 32 bits
If the ACK control bit is set this field contains the value of the next sequence number the
sender of the segment is expecting to receive. Once a connection is established this is
always sent.

+ Control Bits: 6 bits (from left to right):
URG: Urgent Pointer field significant
ACK: Acknowledgment field significant
PSH: Push Function
RST: Reset the connection
SYN: Synchronize sequence numbers
FIN: No more data from sender

* Window: 16 bits
The number of data octets beginning with the one indicated in the acknowledgment field,
which the sender of this segment is willing to accept.

¢ Checksum: 16 bits _
The checksum field is the 16 bit one's complement of the one's complement sum of all
16-bit words in the header and text, If a segment contains an odd number of header and

Real-Time Scheduler for Transport Pratocols 9




Chapter 2 Communication Protocols

text octets to be check summed, the last octet is padded on the right with zeros to form a
16-bit word for checksum purposes.

o Urgent Pointer: 16 bits
This field communicates the current value of the urgent pointer as a positive offset from
the sequence number in this segment. The urgent pointer points to the sequence number
of the octet following the urgent data. This field is only be interpreted in segments with
the URG control bit set.

o Options: variable
Options may occupy space at the end of the TCP header and are multiple of 8 bits in
length. All options are included in the checksum. An option may begin on any octet
boundary. There are two cases for the format of an option:

Case 1: A single octet of option-kind.
Case 2: An octet of option-kind, an octet of option-length, and the actual option-data
octets,

The option-length counts the two octets of option-kind and option-length as well as the
option-data octets. Note that the list of options may be shorter than the data offset field
might imply. The content of the header beyond the End-of-Option option must be header
padding (i.e., zero). A TCP must implement all options.

Currently defined options include (kind indicated in octal):

Tabie 2. 1 Options in TCP Header

Kind Length  Meaning

0 - End of option list.
i - No-Operation
2 4 Maximum Segment Size

=  Padding: variable
The TCP header padding is used to ensure that the TCP header ends and data begins on a 32
bit boundary. The padding is composed of zeros. [2]

2.1.2 Protocol Operation

TCP connections contain three phases: connection establishment, data transfer and connection
termination. A 3-way handshake is used to establish a connection. A four-way handshake is used
to disconnect, During connection establishment, parameters such as sequence numbers are
mitialized to help ensure ordered delivery and robustness.

Real-Time Scheduler for Transport Protocols 10
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» Connection establishment (3-way handshake)

While it is possible for a pair of end hosts to initiate a connection between them
simultaneously, typically one end opens a socket and listens passively for a connection
from the other. This is commonly referred to as a passive open, and it designates the
server-side of a connection. The client-side of a connection initiates an active open by
sending an initial SYN segment to the server as part of the 3-way handshake. The server-
side should respond to a valid SYN request with a SYN/ACK. Finally, the client-side
should respond to the server with an ACK, completing the 3-way handshake and
connection establishment phase.

& Data transfer
During the data transfer phase, a number of key mechanisms determine TCP's reliability
and robustness, These include using sequence numbers for ordering received TCP
segments and detecting duplicate data, checksums for segment error detection, and
acknowledgements and timers for detecting and adjusting to loss or delay.

During the TCP connection establishment phase, initial sequence numbers (ISNs) are
exchanged between the two TCP speakers. These sequence numbers are used to identify
data in the byte stream, and are numbers that identify (and count) application data bytes.
There are always pair of sequence numbers included in every TCP segment, which are
referred to as the sequence number and the acknowledgement number. A TCP sender
refers {o its own sequence number simply as the sequence number, while the TCP sender
refers to receiver's sequence number as the acknowledgement number. To maintain
reliability, a receiver acknowledges TCP segment data by indicating it has received up to
some location of contiguous bytes in the stream. An enhancement to TCP, called
selective acknowledgement (SACK), allows a TCP receiver to acknowledge out of order
blocks.

Through the use of sequence and acknowledgement numbers, TCP can properly deliver
received segments in the correct byte stream order to a receiving application. Sequence
numbers are 32-bit, unsigned numbers, which wrap to zero on the next byte in the stream
after 232-1. One key to maintaining robustness and security for TCP connections is in the
selection of the ISN.

A 16-bit checksum, consisting of the one's complement of the one's complement sum of
the contents of the TCP segment header and data, is computed by 2 sender, and included
in a segment fransmission. {The one's complement sum is used because the end-around
carry of that method means that it can be computed in any multiple of that length - 16-bit,
32-bit, 64-bit, etc - and the result, once folded, will be the same.) The TCP receiver re-
computes the checksum on the received TCP header and data. The complement was used
(above) so that the receiver does not have to zero the checksum field, after saving the
checksum value elsewhere; instead, the receiver simply computes the one's complement
sum with the checksum, and the result should be -0. If so, the segment is assumed to have
arrived intact and without error.
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Note that the TCP checksum also covers a 96-bit pseudo header containing the Source
Address, the Destination Address, the Protocol, and TCP length. This provides protection
against misrouted segments. The TCP checksum is a quite weak check by modern
standards. Data Link Layers with a high probability of bit error rates may require
additional link error correction/detection capabilities. If TCP were to be redesigned
today, it would most probably have a 32-bit cyclic redundancy check specified as an error
check instead of the current checksum. The weak checksum is partially compensated for
by the common use of a CRC or better integrity check at layer 2, below both TCP and IP,
such as is used in PPP or the Ethernet frame. However, this does not mean that the 16-bit
TCP checksum is redundant: remarkably, surveys of Internet traffic have shown that
software and hardware errors that introduce errors in packets between CRC-protected
hops are common, and that the end-to-end 16-bit TCP checksum catches most of these
simple errors. This is the end-to-end principle at work. Acknowledgements for data sent,
or lack of acknowledgements, are used by senders to implicitly interpret network
conditions between the TCP sender and receiver. Coupled with timers, TCP senders and
receivers can alter the behavior of the flow of data. This is more generally referred to as
flow control, congestion control and/or network congestion avoidance. TCP uses a
number of mechanisms to achieve high performance and avoid congesting the network
(i.c. send data faster than either the network, or the host on the other end, can utilize it).
These mechanisms include the use of a sliding window, the slow-start algorithm, the
congestion avoldance algorithm, the fast retransmit and fast recovery algorithms, and
more. Enhancing TCP to reliably handle loss, minimize errors, manage congestion and go
fast in very high-speed environments are ongoing areas of research and standards
development.

¢ TCP window size
The TCP receive window size is the amount of received data {(in bytes) that can be
buffered during a connection. The sending host can send only that amount of data before
it must wait for an acknowledgment and window update from the receiving host. The
Windows TCP/IP stack is designed to self-tune itself in most environments, and uses
larger default window sizes than earlier versions.

*  Window scaling
For more efficient use of high bandwidth networks, a larger TCP window size may be
used. The TCP window size field controls the flow of data and is limited to 2 bytes, or a
window size of 65,535 bytes.
Since the size field cannot be expanded, a scaling factor is used. TCP window scale is an
option used to increase the maximum window size from 65,535 bytes to 1 Gigabyte.
The window scale option is used only during the TCP 3-way handshake. The window
scale value represents the number of bits to left-shift the 16-bit window size field. The
window scale value can be set from 0 (no shift) to 14.

» Connection termination
The connection termination phase uses a four-way handshake, with each side of the
connection terminating independently. When an endpoint wishes to stop its half of the
connection, it transmits a FIN packet, which the other end acknowledges with an ACK.

Real-Time Scheduler for Transport Protocols 12
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2.2

Therefore, a typical teardown requires a pair of FIN and ACK segments from each TCP
end-point.

A connection can be "half-open”, in which case one side has terminated its end, but the
other has not. The side, which has terminated can no longer send any data into the
connection, but the other side can.

TCP ports

TCP uses the notion of port numbers to identify sending and receiving applications. Each
side of a TCP connection has an associated 16-bit unsigned port number assigned to the
sending or receiving application. Ports are categorized into three basic categories: well
known, registered and dynamic/private. The well-known ports are assigned by the
Internet Assigned Numbers Authority (IANA) and are typically used by system-level or
root processes. Well-known applications running as servers and passively listening for
connections, typically use these ports. Some examples include: FTP (21), TELNET (23),
SMTP (25) and HTTP (80). Registered ports are typically used by end user applications
as ephemeral source ports when contacting servers, but they can also identify named
services that have been registered by a third party. Dynamic/private ports can also be
used by end user applications, but are less commonly so. Dynamic/private ports do not
contain any meaning outside of any particular TCP connection. There are 65535 possible
poris officially recognized.

Unreliable Datagram Protocol

The User Datagram Protocol (UDP) is defined to make available a datagram mode of packet-
switched computer communication in the environment of an interconnected set of computer
networks. This protocol assumes that the Internet Protocol is used as the underlying protocol.
This protocol provides a procedure for application programs to send messages to other programs
with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and
duplicate protection are not guaranteed. [3] Fgure 2.2 explains UDP header format.

2.2.1 UDP Header Format

+ | Bits0-15 |  16-31
0 | Source Port Destir_ngi_pg }_’grt
32 Length | Ci}e(_:ifsm_l}__
64 Data

Figure 2. 2 UDP Header

Source Port is an optional field, when meaningful, it indicates the port of the sending
process, and may be assumed to be the port to which a reply should be addressed in the
absence of any other information, If not used, a value of zero 1s inserted.
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e Destination Port has a meaning within the context of particular internet destination
address.

e Length is the length in octets of this user datagram including this header and the data.
{This means the minirmum value of the length is eight.)

o Checksum is the 16-bit one's complement of the one's complement sum of a pseudo
header of information from the IP header, the UDP header, and the data, padded with
zero octets at the end (if necessary) to make a multiple of two octets. The pseudo header
conceptually prefixed to the UDP header contains the source address, the destination
address, the protocol, and the UDP length. This information gives protection against
misrouted datagrams. This checksum procedure is the same as is used in TCP, If the
computed checksum is zero, it is transmitted as all ones (the equivalent in one's
complement arithmetic). An all zero transmitted checksum value means that the
transmitter generated no checksum.

2.2.2 Protocol Operation

The UDP header consists of only 4 header fields of which two are optional. The source and
destination port fields are 16-bit fields that identify the sending and receiving process. Since
UDP is stateless and a UDP sender may not solicit replies, the source port is optional, If not
used, the source port should be set to zero. The port fields are followed by a mandatory length
field indicating the length in bytes of the UDP datagram including the data. The minimum value
is 8 bytes, The remaining header field is a 16-bit checksum field covering the header and data.
The checksum is also optional, but is aimost always used in practice.

Lacking reliability, UDP applications must generally be willing to accept some loss, errors or
duplication. Some applications such as TFTP may add rudimentary reliability mechanisms into
the application layer as needed. Most often, UDP applications do not require reliability
mechanisms and may even be hindered by them. Streaming media, real-time multiplayer games
and voice over IP (VoIP) are examples of applications that often use UDP. If an application
requires a high degree of reliability, a protocol such as the Transmission Control Protocol or
erasure codes may be used instead.

Lacking any congestion avoidance and control mechanisms, network-based mechanisms are
required to minimize potential congestion collapse effects of uncontrolled, high rate UDP traffic
loads. In other words, since UDP senders cannot detect congestion, network-based elements such
as routers using packet queueing and dropping techniques will often be the only tool available to
slow down excessive UDP traffic. The Datagram Congestion Control Protocol (DCCP) is being
designed as a partial solution to this potential problem by adding end host congestion control
behavior to high-rate UDP streams such as streaming media.

While the total amount of UDP traffic found on a typical network is ofien on the order of only a
few percent, numerous key applications use UDP, including the Domain Name System (DNS),
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the simple network management protocol (SNMP), the Dynamic Host Configuration Protocol
{DHCP) and the Routing Information Protoco! (RIP), just to name a few. [3]

2.3 Internet Protocol (IP)

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing
information and some control information that enables packets to be routed. IP is primary
network-layer protocol in the Internet protocol suite. Along with the Transmission Control
Protocol (TCP), 1P represents the heart of the Internet protocols. IP has two primary
responsibilities: providing connectionless, best-effort delivery of datagrams through Internet; and
providing fragmentation and reassembly of datagrams to support data links with different
maximum-transmission unit (MTU) sizes. Fgure 2.3 explains IP header format.

2.3.1 1P Packet Format

Fourteen fields comprise an IP packet. The following discussion describes the IP packet fields
tlustrated in

¢« Version: 4 bits
The Version field indicates the format of the internet header. This document describes
version 4.

» IHIL: 4 bits
Internet Header Length is the length of the internet header in 32 bit words, and thus
points to beginning of the data. Note that the minimum value for a correct header is 5.

¢  Type of Service: 8 bits

The Type of Service provides an indication of the abstract parameters of the quality of
service desired. These parameters are to be used to guide the selection of the actual
service parameters when transmitting a datagram through a particular network. Several
networks offer service precedence, which somehow treats high precedence traffic as more
important than other fraffic (generally by accepting only traffic above a certain
precedence at time of high load). The major choice is a three-way tradeoff between low-
delay, high-reliability, and high-throughput,

Bits 0-2: Precedence.

Bit 3. 0= Normal Delay, 1 = Low Delay.

Bits 4: 0= Normal Throughput, 1 = High Throughput.
Bits 5: 0= Normal Reliability, | = High Reliability.
Bit 6-7: Reserved for Future Use.
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Figare 2. 3 1P Header

Total Length: 16 bifs

Total Length is the length of the datagram, measured in octets, including internet header
and data. This field allows the length of a datagram to be up to 65,535 octets. Such long
datagrams are impractical for most hosts and networks. All hosts must be prepared to
accept datagrams of up to 576 octets (whether they arrive whole or in fragments). Itis
recommended that hosts only send datagrams larger than 576 octets if they have
assurance that the destination is prepared to accept the larger datagrams. The number 576
is selected to allow a reasonable sized data block to be transmitted in addition to the
required header information. For example, this size allows a data block of 512 octets
plus 64 header octets to fit in a datagram. The maximal internet header is 60 octets, and a
typical internet header is 20 octets, allowing a margin for headers of higher level
protocols.

Identification: 16 bits
An identifying value assigned by the sender to aid in assembling the fragments of a
datagram.

Flags: 3 bits
Various control flags are;

Bit : reserved, must be zero
Bit I: (DF) 0 = May Fragment, 1 = Don't Fragment.
Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments.
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*  Fragment Offset: 13 bits
This field indicates where in the datagram this fragment belongs. The fragment offset is
measured in units of 8 octets (64 bits). The first fragment has offset zero.

e Time to Live: 8 bits

This field indicates the maximum time the datagram is allowed to remain in the internet
system. If this field contains the value zero, then the datagram must be destroyed. This
field is modified in internet header processing. The time is measured in units of seconds,
but since every module that processes a datagram must decrease the TTL by at least one
even 1f it process the datagram in less than a second, the TTL must be thought of only as
an upper bound on the time a datagram may exist. The intention is to cause undeliverable
datagrams {o be discarded, and to bound the maximum datagram lifetime.

s Protecol: 8 bits
This field indicates the next level protocol used in the data portion of the internet
datagram.

¢ Header Checksum: 16 bits
Checksum is on the header only. Since some header fields change (for example,, time to
live), this is recomputed and verified at each point that the internet header is processed.
The checksum algorithm is:

The checksum field is the 16 bit one's complement of the one’s complement sum of all
16-bit words in the header. For purposes of computing the checksum, the value of the
checksum field is zero. This is a simple to compute checksum and experimental evidence
indicates it is adequate, but it is provisional and may be replaced by a CRC procedure,
depending on further experience.

*  Options: variable
The options may appear or not in datagrams. They must be implemented by all IP
modules (host and gateways). What is optional is their transmission in any particular
datagram, not their implementation. In some environments the security option may be
required in all datagrams. The option field is variable in length. There may be zero or
more options. There are two cases for the format of an option:

Case 1: A single octet of option-type.
Case 2: An option-type octet, an option-length octet, and the actual option-data octets.

The option-length octet counts the option-type octet and the option-length octet as well as
the option-data octets. The option-type octet is viewed as having 3 fields:

1 bit copied flag,

2 bits option class,

5 bits option number,
The copied flag indicates that this option is copied into all fragments on fragmentation.

0 = not copied

1 = copied

Real-Time Scheduler for Transport Protocols 7
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The option classes are:
0 = control
I = reserved for future use
2 = debugging and measurement
3 = reserved for future use

The following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

0 0 - EndofOption list. This option occupies only
1 octet; it has no length octet.
0 1 - NoOperation. This option occupies only 1

octet; it has no length octet.

0 2 11 Security. Used to carry Security,
Compartmentation, User Group (TCC), and
Handling Restriction Codes compatible with DOD
requirements.

0 3 wvar. Loose Source Routing. Used to route the
internet datagram based on information
supphied by the source.

0 9 wvar, Strict Source Routing. Used to route the
internet datagram based on information
supplied by the source.

0 7 wvar. Record Route. Used to trace the route an
internet datagram takes.

0 8 4  Stream ID. Used to carry the stream identifier.

2 4 wvar. Internet Timestamp.

e Padding: variable
The mnternet header padding is used to ensure that the internet header ends on a 32 bit
boundary. The padding is zero.

2.3.2 1P Addressing

As with any other network-layer protocol, the IP addressing scheme is integral to the process of
routing IP datagrams through an internetwork. Each IP address has specific components and
follows a basic format. These IP addresses can be subdivided and used to create addresses for
subnetworks, as discussed in more detail later in this chapter.

Each host on a TCP/IP network is assigned a unique 32-bit logical address that is divided into
two main parts: the network number and the host number. The network number identifies a
network and must be assigned by the Internet Network Information Center (InterNIC) if the
network is to be part of the Internet. An Internet Service Provider (ISP) can obtain blocks of
network addresses from the InterNIC and can itself assign address space as necessary. The host
number identifies a host on a network and is assigned by the local network administrator.

Real-Time Scheduler for Transport Protocols 18
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e 1P Address Format
The 32-bit IP address is grouped eight bits at a time, separated by dots, and represented in
decimal format (known as dotted decimal notation). Each bit in the octet has a binary
weight (128, 64, 32, 16, 8, 4, 2, 1). The minimum value for an octet is 0, and the
maximum value for an octet is 255. The figure 2.4 illustrates the basic format of an IP
address.

- 32 Bits »

Netwrk Host

b BB e § Bilg v e § BiS et wr BB

Botind ‘
Bagimal
Hotation l

172 . 18 . 122 ¢
Figure 2. 4 IP Addressing
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¢ IP Address Classes
IP addressing supports five different address classes: A, B, C, D, and E. Only classes A,
B, and C are available for commercial use. The left-most (high-order) bits indicate the
network class. Table 2.2 provides reference information about the five IP address classes.

Table 2. 2 Petails of TP Classes

P Purpose High-Order Address No, Bits Max. Hosts
Class Bit{s) Range Network/
Format Host
A N.H.H.H | Few large 0 1.0.0.0t0 7/24 2*-2)
organizations 126.0.0.0
B N.N.H.H | Medium-size 1,0 128.1.0.0 to 14/16 (2¥-2)
organizations 191.254.0.0
C N.N.NH | Relatively 1,1,6 192.0.1.8t0 2248 2*-2)
! smaii 2232552540
organizations _
D N/A Multicast 1,1,1,0 224000 N/A (not for | N/A
Groups t0 239.255.255.255 commercial
(RFC {112) se)
E N/A Experimental |1,1,1,1 2400000 N/A N/A
: 254.255.255.255

Real-Time Scheduler for Transport Protocoels
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2.3.3 Fragmentation and Reassembly

The internet identification field (ID) is used together with the source and destination address,
and the protocol fields, to identify datagram fragments for reassembly. The More Fragments flag
bit (MF} is set if the datagram is not the last fragment. The Fragment Offset field identifies the
fragment location, relative to the beginning of the original unfragmented datagram. Fragments
are counted in units of 8 octets. The fragmentation strategy is designed so than an unfragmented
datagram has all zero fragmentation information (MF = 0, fragment offset = (). If an internet
datagram is fragmented, its data portion must be broken on 8 octet boundaries.

This format allows 2*¥¥13 = 8192 fragments of 8§ octets each for a total of 65,536 octets. Note
that this is consistent with the datagram total length field (of course, the header is counted in the
total length and not in the fragments). When fragmentation occurs, some options are copied, but
others remain with the first fragment only. Every internet module must be able to forward a
datagram of 68 octets without further fragmentation. This is because an internet header may be
up to 60 octets, and the minimum fragment is 8 octets. Every internet destination must be able to
receive a datagram of 576 octets either in one piece or in fragments to be reassembled.

The fields, which may be affected by fragmentation, include:

options field

more fragments flag
fragment offset

internet header length field
total length field

header checksum

If the Don't Fragment flag (DF) bit is set, then internet fragmentation of this datagram is NOT
permitted, although it may be discarded. This can be used to prohibit fragmentation in cases
where the receiving host does not have sufficient resources to reassemble internet fragments.
One example of use of the Don't Fragment feature is to down line load a small host. A small
host could have a bootstrap program that accepts a datagram stores it in memory and then
executes it. The fragmentation and reassembly procedures are most easily described by
examples. The following procedures are example implementations. General notation in the
following pseudo programs: "=<" means "less than or equal”, "#" means “not equal”, "=" means
"equal”, "<-" means "is set to”. Also, "x to y" includes x and excludes y; for example, "4 to 7"
would include 4, 5, and 6 (but not 7).

2.4 Point to Point Protocol

The Poini-to-Point Protocol (PPP) originally emerged as an encapsulation protocol for
transporting 1P traffic over point-to-point links. PPP also established a standard for the
assignment and management of IP addresses, asynchronous (start/stop) and bit-oriented
synchronous encapsulation, network protocol multiplexing, link configuration, link quality
testing, error detection, and option negotiation for such capabilities as network layer address
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negotiation and data-compression negotiation. PPP supports these functions by providing an
extensible Link Control Protocol (I.CP) and a family of Network Control Protocols (NCPs) to
negotiate optional configuration parameters and facilities, In addition to IP, PPP supports other
protocols, including Novell's Internetwork Packet Exchange (IPX) and DECnet. PPP contains
three main components: [4]

» A method for encapsulating multi-protocol datagrams.
> A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link
connection.

> A family of Network Control Protocols (NCPs) for establishing and configuring different
network-layer protocols.

» Encapsulation

The PPP encapsulation provides for multiplexing of different network-layer protocols
simultaneously over the same link. The PPP encapsulation has been carefully designed
to retain compatibility with most commonly used supporting hardware.  Only 8
additional octets are necessary to form the encapsulation when used within the default
HDLC-like framing. In environments where bandwidth is at a premium, the
encapsulation and framing may  be shortened to 2 or 4 octets. To support high-speed
implementations, the default encapsulation uses only simple fields, only one of which
needs to be examined for demultiplexing. The default header and information fields fall
on 32-bit boundaries, and the trailer may be padded to an arbitrary boundary. The PPP
encapsulation i1s used to disambiguate multiprotocol datagrams. This encapsulation
requires framing to indicate the beginning and end of the encapsulation. Methods of
providing framing are specified in companion documents. A summary of the PPP
encapsulation is shown below. The fields are transmitted from left to right.

+ + + +

| Protocol | Information | Padding |

| 8/16 bits] * | * |

+ + + +

» Protocol Field
The Protocol field is one or two octets, and its value identifies the datagram
encapsulated in the Information field of the packet. The field is transmitted and received
most significant octet first. The structure of this field is consistent with the ISO 3309
extension mechanism for address fields. All Protocols must be odd; the least significant
bit of the least significant octet must equal "1". Also, all Protocols must be assigned such
that the least significant bit of the most significant octet equals "0", Frames received,
which do not comply with these rules, it must be treated as having an unrecognized
Protocol. Protocol field values in the "0***" to "3***" range identify the network-layer
protocol of specific packets, and values in the  "8%%*" to "b***" ranpe identify packets
belonging to the associated Network Control Protocols (NCPs), if any. Protocol field
values in the "4%*%" to "7***" range are used for protocols with low volume traffic
which have no associated NCP. Protocol field values in the "¢***" to "PH**" mange
identify packets as link-layer Control Protocols (such as L.CP). Up-to-date values of the
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Protocol field are specified in the most recent "Assigned Numbers"™ RFC {2]. This
specification reserves the following values:

Value (in hex)

0001

0003 1o 001f

007d
00cf
00

8001 to 801f

807d
80cf
8OfF
c021
c023
c025
€223

o Information Ficld
The Information field is zero or more octets. The Information field contains the
datagram for the protocol specified in the Protocol field. The maximum length for the
Information field, including padding, but not including the Protocol field, is termed the
Maximum Receive Unit (MRU), which defaults to 1500 octets. By negotiation,
consenting PPP implementations may use other values for the MRU,

e Padding

Protocol Name

Padding Protocol

reserved (transparency inefficient)
reserved (Control Escape)
reserved (PPP NLPID)

reserved (compression inefficient)
unused

unused

unused

unused

Link Control Protocol

Password Authentication Protocol
Link Quality Report

Challenge Handshake Authentication Protocol

On transmission, the Information field MAY be padded with an arbitrary number of
octets up to the MRU. Itisthe responsibility of each protocol to distinguish padding
octets from real information.

2.4.1 PPP Frame Format

Figidd longih,

B bgtens

1 * 2 Varialie 264
]
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Figure 2. 5 PPP Frame

The foliowing descriptions summarize the PPP frame fields illustrated in figure 2.5:

» Flag—A single byte that indicates the beginning or end of a frame. The flag field consists
of the binary sequence 01111110.
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e Address—A single byte that contains the binary sequence 11111111, the standard
broadcast address. PPP does not assign individual station addresses.

e ControlA single byte that contains the binary sequence 00000011, which calls for
transmission of user data in an un-sequenced frame. A connectionless link service similar
to that of Logical Link Control (LLC) Type | is provided. (For more information about
LEC types and frame types, refer to Chapter 16.)

» Protocol—Two bytes that identify the protocol encapsulated in the information field of
the frame. The most up-to-date values of the protocol field are specified in the most
recent Assigned Numbers Request For Comments (RFC).

e Data—Zero or more bytes that contain the datagram for the protocol specified in the
protocol field. The end of the information field is found by locating the closing flag
sequence and allowing 2 bytes for the FCS field. The default maximum length
of the information field is 1,500 bytes. By prior agreement, consenting PPP
implementations can use other values for the maximum mformation field length.

o Frame check sequence (FCS)—Normally 16 bits (2 bytes). By prior agreement,
consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error
detection.

2.4.2 Link Control Protocol

In order to be sufficiently versatile to be portable to a wide variety of environments, PPP
provides a Link Control Protocol {1.CP). The LCP is used to automatically agree upon the
encapsulation format options, handle varying limits on sizes of packets, detect a looped-back
link and other common misconfiguration errors, and terminate the link. Other optional facilities
provided are authentication of the identity of its peer on the link, and determination when a link
is functioning properly and when it is failing.

2.4.1 Network Control Protocols

Point-to-Point links tend to exacerbate many problems with the current family of network
protocols. For instance, assignment and management of IP addresses, which is a problem even
in LAN environments, is especially difficult over circuit-switched point-to-point links (such as
dial-up modem servers), These problems are handled by a family of Network Control Protocols
{(NCPs), which each manage the specific needs required by their respective network-layer
protocols. These NCPs are defined in  companion documents.

2.4.2 General Operation

To establish communications over a point-to-point link, the originating PPP first sends LCP
frames to configure and (optionally) test the data link. After the link has been established and
optional facilities have been negotiated as needed by the LCP, the originating PPP sends NCP
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frames to choose and configure one or more network layer protocols. When each of the chosen
network layer protocols has been configured, packets from each network layer protocol can be
sent over the link. The link will remain configured for communications until explicit LCP or
NCP frames close the link, or until some external event occurs (for example, an mmactivity timer
expires or a user intervenes).

2.4.3 Physical Layer Requirements

PPP is capable of operating across any DTE/DCE interface. Examples include EIA/TIA-232-C
(formerly RS-232-C), EIA/TIA-422 (formerly RS-422), EIA/TIA-423 (formerly RS-423), and
International Telecommunication Union Telecommunication Standardization Sector (ITU-T)
(formerly CCITT) V.35. The only absolute requirement imposed by PPP is the provision of a
duplex circuit, either dedicated or switched, that can operate in ¢ither an asynchronous or
synchronous bit-serial mode, transparent to PPP link layer frames. PPP does not impose any
restrictions regarding transmission rate other than those imposed by the particular DTE/DCE
interface in use.
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Chapter 3 Hardware Level Dependencies in Multitasking

3. Hardware Level Dependencies in Multitasking

This chapter explains the terminology and concepts needed to understand the project. It includes
concept of multitasking as in higher processors, and analysis of hardware level dependencies,
while working under Windows as well as Real-Time Operating System.

3.1  Scheduling Theory

To provide efficient, protected multitasking, 80386 processors employ several special data
structures. It does not, however, use special instructions to control multitasking; instead, it
interprets ordinary control-transfer instructions differently when they refer to the special data
structures. The registers and data structures that support multitasking are:

» Task state segment

» Task state segment descriptor
» Task register

» Task gate descriptor

With these structures the 80386 can rapidly switch execution from one task to another, saving the
context of the original task so that the task can be restarted later. In addition to the simple task
switch, the 80386 offer two other task-management features: [5]

» Interrupts and exceptions can cause task switches (if needed in the system design). The
proeessor not only switches automatically to the task that handles the interrupt or
exception, but it automatically switches back to the interrupted task when the interrupt or
exception has been serviced. Interrupt tasks may interrupt lower-priority interrupt tasks to
any depth.

e  With each switch to another task, the 80386 can also swiich to another LDT and to
another page directory. Thus each task can have a different logical-to-linear mapping and
a different linear-to-physical mapping. This is vet another protection feature, because
tasks can be  isolated and prevented from interfering with one another.

3.1.1 Task State Segment

All the information the processor needs in order to manage a task is stored in a special type of
segment, 4 task state segment (TSS). The fields of a TSS in 80386 belong to two classes:

» A dynamic set that the processor updates with each switch from the task. This set includes
the fields that store:

o The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ES], EDI).
» The segment registers (ES, C8, 88, DS, FS, GS).
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« The flags register (EFLAGS).

o The instruction pointer (EIP}.

» The selector of the TSS of the previously executing task (updated only when a return is
expected),

» A static set that the processor reads but does not change. This set includes the fields that
store:

o ‘The selector of the task's LDT.

o The register (PDBR) that contains the base address of the task's page directory (read only
when paging is enabled).

» Pointers to the stacks for privilege levels 0-2.

o The T-bit {debug trap bit), which causes the processor to raise a debug exception when a
task switch occurs.

e The VO map base

Task state segments may reside anywhere in the linear space. The only case that requires caution
is when the TSS spans a page boundary and the higher-addressed page is not present. In this
case, the processor raises an exception if it encounters the not-present page while reading the
TSS during a task switch. Such an exception can be avoided by either of two strategies:

o By allocating the TSS so that it does not cross a page boundary.

e By ensuring that both pages are either both-present or both not-present at the time of a
task switch. If both pages are not present, then the page-fault handler must make both
pages present before restarting the instruction that caused the task switch.

3.1.2 TSS Descriptor

The task state segment, Iike all other segments, is defined by a descriptor. Format of task
segment is as follows:

The B-bit in the type field indicates whether the task is busy. A type code of 9 indicates a non-
busy task; a type code of 11 indicates a busy task. Tasks are not reentrant. The B-bit allows the
processor to detect an attempt to switch to a task that is already busy.

The BASE, LIMIT, and DPL fields and the G-bit and P-bit have functions similar to their
counterparts in data-segment descriptors. The LIMIT field, however, must have a value equal to
or greater than 103, An attempt to switch to a task whose TSS descriptor has a limit less that 103
causes an exception. A larger limit is permissible, and a larger limit is required if an 1/O
permission map is present. A larger limit may also be convenient for systems software if
additional data is stored in the same segment as the TSS,
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A procedure that has access to a TSS descriptor can cause a task switch. In most systems the
DPL fields of TSS descriptors should be set to zero, so that only trusted software has the right to
perform task switching.

Having access to a TSS-descriptor does not give a procedure the right to read or modify a TSS.
Reading and modification can be accomplished only with another descriptor that redefines the
TSS as a data segment. An attempt to load a TSS descriptor into any of the segment registers
(CS, 8§, DS, ES, FS, GS) causes an exception.

TSS descriptors may reside only in the GDT. An attempt to identify a TSS with a selector that
has TI=1 (indicating the current LDT) results in an exception.

3.1.3 Task Register

The task register (TR) identifies the currently executing task by pointing to the TSS. The task
register has both a "visible" portion (i.e.,, can be read and changed by instructions) and an
"invistble" portion {maintained by the processor to correspond to the visible portion; cannot be
read by any instruction). The selector in the visible portion selects a TSS descriptor in the GDT.
The processor uses the invisible portion to cache the base and limit values from the TSS
descriptor. Holding the base and limit in a register makes execution of the task more efficient,
because the processor does not need to repeatedly fetch these values from memory when it
references the TSS of the current task.

The instructions LTR and STR are used to modify and read the visible portion of the task
register. Both instructions take one operand, a 16-bit selector located in memory or in a general
register,

L TR (I.oad task register) loads the visible portion of the task register with the selector operand,
which must select a TSS descriptor in the GDT. LTR also loads the invisible portion with
information from the TSS descriptor selected by the operand. LTR is a privileged instruction; it
may be executed only when CPL is zero. LTR is generally used during system inttialization to
give an initial value to the task register; thereafier, the contents of TR are changed by task switch
operations.

STR (Store task register) stores the visible portion of the task register in a general register or

memory word. STR is not privileged.

3.1.4 Task Gate Descriptor

A task gate descriptor provides an indirect, protected reference to a TSS.

The SELECTOR field of a task gate must refer to a TSS descriptor. The processor does not use
the value of the RPL in this selector. The DPL field of a task gate confrols the right to use the
descriptor to cause a task switch. A procedure may not select a task gate descriptor unless the
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maximum of the selector's RPL and the CPL of the procedure is numerically less than or equal to
the DPL of the descriptor. This constraint prevents un-trusted procedures from causing a task
switch.

A procedure that has access to a task gate has the power to cause a task switch, just as a
procedure that has access to a 1TSS descriptor, The 80386 has task gates in addition to TSS
descriptors to satisfy three needs:

« The need for a task to have a single busy bit. Because the busy-bit is stored in the TSS
descriptor, each task should have only one such descriptor. There may, however, be
several task gates that select the single TSS descriptor.

« The need to provide selective access to tasks, Task gates fulfill this need, because they
can reside in LDTs and can have a DPL that is different from the TSS descriptor's DPL.
A procedure that does not  have sufficient privilege to use the TSS descriptor in the GDT
{which usually has a DPL of 0) can still switch to another task if it has access to a task
gate for that task in its LDT. With task gates, systems software can limit the right to
cause task switches to specific tasks.

» The need for an interrupt or exception to cause a task switch. Task gates may also reside
in the IDT, making it possible for interrupts and exceptions to cause task switching,
When interrupt or exception vectors to an IDT entry that contains a task gate, the 80386

switches to the indicated task., Thus, all tasks in the systerm can benefit from the
protection afforded by isolation from interrupt tasks.

3.1.5 Task Switching

The 80386 switches execution o another task in any of four cases:

o The current task executes a JMP or CALL that refers to a TSS descriptor.

o The current task executes a JMP or CALL that refers to a task gate,

o Aninterrupt or exception vectors to a task gate in the IDT.

e The current task executes an IRET when the NT flag is set.
IMP, CALL, IRET, interrupts, and exceptions are all ordinary mechanisms of the 80386 that can
be used in circumstances that do not require a task switch. Either the type of descriptor

referenced or the NT (nested task) bit in the flag word distinguishes between the standard
mechanism and the variant that causes a task swiich.

To cause a task switch, a JMP or CALL instruction can refer either to a TSS descriptor or to a
task gate. The effect is the same in either case: the 80386 switches to the indicated task.
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An exception or interrupt causes a task switch when it vectors to a task gate in the IDT. If it
vectlors to an interrupt or trap gate in the IDT, a task switch does not occur. Whether invoked as a
task or as a procedure of the interrupted task, an interrupt handler always returns control to the
interrupted procedure in the interrupted task. If the NT flag is set, however, the handler is an
mnterrupt task, and the IRET switches back to the interrupted task,

A task switching operation involves these steps:

o Checking that the current task is allowed to switch to the designated task. Data-access
privilege rules apply in the case of JMP or CALL instructions. The DPL of the TSS
descriptor or task gate must be less than or equal to the maximum of CPL and the RPL of
the gate selector.

o Exceptions, interrupts, and IRETs are permitted to switch tasks regardless of the DPL of
the target task gate or TSS descriptor.

o Checking that the TSS descriptor of the new task is marked present and has a valid limit.
Any errors up to this point occur in the context of the outgoing task. Errors can be
handled in a way that is transparent to appHeations procedures.

e Saving the state of the current task. The processor finds the base address of the current
TSS cached in the task register. It copies the registers into the current TSS (EAX, ECX,
EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, S8, DS, FS, GS, and the flag register). The
EIP field of the TSS points to the instruction after the one that caused the task switch.

¢ Loading the task register with the selector of the incoming task's TSS descriptor, marking
the incoming task's TSS descriptor as busy, and setting the TS (task switched) bit of the
MSW. The selector is either the operand of a control transfer instruction or is taken from
atask gate.

o Loading the incoming task's state from its TSS and resuming execution. The registers
loaded are the LDT register; the flag register; the general registers EIP, EAX, ECX,
EDX., EBX, ESP, EBP, ESI, EDI; the segment registers ES, CS, SS, DS, FS, and GS; and
PDBR. Any errors detected in this step occur in the context of the incoming task. To an
exception handler, it appears that the first instruction of the new task has not yet
executed. Note that the state of the outgoing task is always saved when a task switch
occurs. If execution of that task is resumed, it starts after the instruction that caused the
task switch. The registers are restored to the values they held when the task stopped
executing.

Every task switch sets the TS (task switched) bit in the MSW (machine status word). The TS flag
is useful to systems software when a coprocessor {such as a numeric coprocessor) is present. The
TS bit signals that the context of the coprocessor may not correspond to the current 80386 task.

Exception handlers that field task-switch exceptions in the incoming task should be cautious
about taking any action that might load the selector that caused the exception. Such an action
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will probably cause another exception, unless the exception handler first examines the selector
and fixes any potential problem.

The privilege level at which execution resumes in the incoming task is neither restricted nor
affected by the privilege level at which the outgoing task was executing. Because the tasks are
isolated by their separate address spaces and TSSs and because privilege rules can be used to
prevent improper access {0 a TSS, no privilege rules are needed to constrain the relation between
the CPLs of the tasks. The new task begins executing at the privilege level indicated by the RPL
of the CS selector value that is loaded from the TSS.

3.1.6 Task Linking

‘The back-link field of the TSS and the NT (nested task) bit of the flag word together allow the
80386 to automatically return to a task that called another task or was interrupted by another
task. When a CALL instruction, an interrupt instruction, an external interrupt, or an exception
causes a switch to a new task, the 80386 automatically fills the back-link of the new TSS with
the selector of the outgoing task’s TSS and, at the same time, sets the NT bit in the new task's
flag register. The NT flag indicates whether the back-link field is valid. The new task releases
control by executing an IRET instruction. When interpreting an IRET, the 80386 examine the
NT flag. If NT is set, the 80386 switches back to the task selected by the back-link field.

3.1.7 Busy Bit Prevents Loops

The B-bit (busy bit) of the TSS descriptor ensures the integrity of the back-link. A chain of back-
links may grow to any length as interrupt tasks interrupt other interrupt tasks or as called tasks
call other tasks. The busy bit ensures that the CPU can detect any attempt to create a loop. A
loop would indicate an attempt to reenter a task that is already busy; however, the TSS isnot a
re-enterable resource.

The processor uses the busy bit as follows:
e  When switching to a task, the processor automatically sets the busy bit of the new task.
e When switching from a task, the processor automatically clears the busy bit of the old
task if that task is not to be placed on the back-link chain (i.e., the instruction causing the
task switch is JMP or IRET). If the task is placed on the back-link chain, its busy bit

remaing set.

e When switching to a task, the processor signals an exception if the busy bit of the new
task is already set.

By these actions, the processor prevents a task from switching to itself or to any task that ison a
back-link chain, thereby preventing invalid reentry into a task.
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The busy bit is effective even in multiprocessor configurations, because the processor
automatically asserts a bus lock when it sets or clears the busy bit. This action ensures that two
processors do not invoke the same task at the same time.

3.1.8 Modifying Task Linkages

Any modification of the linkage order of tasks should be accomplished only by software that can
be trusted to correctly update the back-link and the busy-bit. Such changes may be needed to
resume an interrupted task before the task that interrupted it, Trusted software that removes a
task from the back-link chain must follow one of the following policies:

e First change the back-link field in the TSS of the interrupting task, then clear the busy-bit
in the TSS descriptor of the task removed from the list.

e Ensure that no interrupts occur between updating the back-link chain and the busy bit.

3.1.9 Task Address Space

The LDT selector and PDBR fields of the TSS give software Systems Designers flexibility in
utilization of segment and page mapping features of the 80386. By appropriate choice of the
segment and page mappings for each task, tasks may share address spaces, may have address
spaces that are largely distinct from one another, or may have any degree of sharing between
these two extremes.

The ability for tasks to have distinct address spaces is an important aspect of 80386 protections,
A module in one task cannot interfere with a module 1n another task if the modules do not have
access to the same address spaces. The flexible memory management features of the 80386 allow
systems designers to assign areas of shared address space to those modules of different tasks that
are designed to cooperate with each other.

3.1.10 Task Linear-to-Physical Space Mapping

The choices for arranging the linear-to-physical mappings of tasks fall into two general classes:

e One linear-to-physical mapping shared among all tasks. When paging is not enabled, this
is the only possibility, Without page tables, all linear addresses map to the same physical
addresses.

o When paging is enabled, this style of linear-to-physical mapping results from using one
page directory for all tasks. The linear space utilized may exceed the physical space
available if the operating system also implements page-level virtual memory.
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o Several partially overlapping linear-to-physical mappings. This style is implemented by
using a different page directory for each task. Because the PDBR (page directory base
register) is loaded from the TSS with each task switch, each task may have a different
page directory. In theory, the linear address spaces of different tasks may map to
completely distinct physical addresses. If the entries of different page directories point to
different page tables and the page tables point to different pages of physical memory,
then the tasks do not share any physical addresses. In practice, some portion of the linear
address spaces of all tasks must map to the same physical addresses. The task state
segments must lie in a common space so that the mapping of TSS addresses does not
change while the processor is reading and updating the TSSs during a task switch. The
linear space mapped by the GDT should also be mapped to a common physical space;
otherwise, the purpose of the GDT is defeated.

3.1.11 Task Logical Address Space

By itself, a common linear-to-physical space mapping does not enable sharing of data among
tasks. To share data, tasks must alse have a common logical-to-linear space mapping; i.e., they
must also have access to descriptors that point into a shared linear address space. There are three
ways to create common logical-to-physical address-space mappings:

o Via the GDT. All tasks have access to the descriptors in the GDT. If those descriptors
point into a linear-address space that is mapped to a common physical-address space for
all tasks, then the tasks can share data and instructions.

e By sharing LDTs. Two or more tasks can use the same LDT if the LDT selectors in their
18Ss select the same LDT segment. Those LDT-resident descriptors that point into a
linear space that is mapped to a common physical space permit the tasks to share physical
memory. This method of sharing is more selective than sharing by the GDT; the sharing
can be limited to specific tasks, Other tasks in the system may have different LDTs that
do not give them access to the shared areas.

» By descriptor aliases in LDTs. It is possible for certain descriptors of different LDTs to
point to the same linear address space. If that linear address space is mapped to the same
physical space by the page mapping of the tasks involved, these descriptors permit the
tasks to share the common space. Such descriptors are commonly called "aliases". This
method of sharing is even more selective than the prior two; other descriptors in the
LDTs may point to distinct linear addresses or to linear addresses that are not shared.

3.2 Hardware Level Dependencies

Windows, unlike DOS, 15 a multitasking system, which makes it impossible to allow every
application to directly change the hardware settings, as one application may fail to 'know’ about
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the changes made to the hardware settings by some other application. To create programs
working with hardware under Windows one should use API (application programming
interface). This interface allows using Windows systemn services from application programs. API
realization is at that entrusted to the drivers. Windows Driver Developer Kit (DDK) is used to
create drivers (there is a separate DDK for every Windows OS). Besides API one can use IOCTL
codes (this method was widely used in DOS), but we shall deal with API functions only.

3.2.1 Working with hardware under Windows
API standardizes work with hardware. To get access to hardware the following steps are used:

« (et Handler of the device by calling CreateFile with the device name
» To control the device, call an API function for this device or send IOCTL{input - output
control), the latter via DevicelOCtl ,

In Windows all input/output ports are presented as files, so work with ports is mainly carried out
via I/O functions of the file (CreateFile, CloseHandle, ReadFile, ReadFileEx, WriteFile and
WriteFileElx). These functions organize the main interface for opening and closing the
connection resource descriptor and carrying out read/write operations. API also includes a set of
connection functions, which provide access to connection resources.

The usage of the 1/O file and connection functions allows the application to perform the
following tasks:

Getting the serial port descriptor.

Serial port configuration set and request.

Reading from or writing into the serial port.

Control of the given events set, which could occur for this serial port,

Sending the executive instructions to the driver of the device connected with the specified serial
port; driver call-in is required for extended functions execution. [6]

3.2.1.1 Open and Close Port

Opening a port is actually getting the descriptor of the serial port. Due to API using CreateFile
function can do it. This function results in the creation of a file with a reserved name. It is
important when getting access to the corresponding port or device, After the descriptor has been
obtained the work with the port is carried out the same way it is with files.
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3.2.1.2 Function SetupComm

As COM-ports are asynchronous connection devices, buffers for incoming and outgoing data are
provided to make the work with the ports more effective. It is connected with the fact that the
data bus baud rates greatly varies from the line baud rates, that's why to optimize the work of the
system it is advisable to read data from/write data into the port by batches regardles of when they
were received. One can also write data into the buffer and only then start the transmission - it is
useful when the batch transmission is needed regardless of whether the system is busy. To set the
size of the receiving and transmitting buffers SetupComm function is used.

Function syntax:

BOOL SetupComm(HANDLE hFile, DWORD dwInQueue, DWORD dwOutQueue);

3.2.1.3 Commaunications Time-outs

Another major thing affecting the work of read and write operations is time-outs. Time-outs have
the following effect on read and write operations. If an operation takes longer than the calculated
time-out period, the operation is finished. ReadFile, WriteFile, GetOverlappedResult, or
WaitForSingleObject returns no error code. All indicators used to monitor the operation show
that it finished successfully. The only way to tell that the operation has timed out is that the
number of bytes actually transferred are lower than the number of bytes requested. So, if
ReadFile returns TRUE, but fewer bytes were read than requested, the operation has timed out. If
an overlapped write operation timesout, the overlapped event handle is signaled and
WaitForSingleObject returns WAIT OBJECT 0. GetOverlappedResult returns TRUE, but
dwBytesTransferred contains the number of bytes transferred before the time-out. The following
code sample shows how to handle this in an overlapped write operation.

3.2.14 PurgeComm

Before starting your work with the port it is desirable to clear the buffers; sometimes there's also
need to clear the buffers when working with ports. For these purposes PurgeComm function can
be used. This function can also stop read and write operations.

Function synfax:

BOOL PurgeComm(HANDLE hFile, DWORD dwFlags);
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3.2.1.5 Work with DCB

The port setting is carried out with the help of the DCB (Device-Control Block) structure. By
filling this structure with needed values you can change the connection parameters to those
needed at the moment.

To inttially create the DCB structure with necessary general settings (baud rates, parity, number
of bits, number of stop bits and flow control) is carried out by the BuildCommDCB function.

Function syntax:

BOOL BuildCommDCB (I.LPCTSTR IpDef, LPDCB 1pDCB);,

3.2.1.6 Read and Write Port

As work with the ports in Windows is carried out in the same way as work with files, reading
from and writing into the port are carried out with the help of ReadFile and WriteFile functions
correspondingly. ReadFile function is used to read the information from the port.

Function syntax:

BOOIL, ReadFile(HANDLE hFile, LPVOID lpBuffer, DWORD
nNumberOfBytesToRead, LPDWORD IpNumberOfBytesRead, LPOVERLAPPED
IpOverlapped);

BOOL WriteFile(HANDLE hFile, LPCVOID lpBuffer, DWORD
nNumberOQ{BytesToWrite, LPDWORD IpNumberQOfBytesWritten, LPOVERLAPPED
IpOverlapped);

3.2.1.7 Event

Win32 API provides WaitCommEvent fimction used to wait for events which can occur for the
specified communications device. At that the set of events checked by this function is contained
in the events mask connected with the given device.

Function syntax:

BOOL WaitCommEvent(HANDLE hFile, LPDWORD IpEvtMask, LPOVERLAPPED
1pOverlapped).
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3.2.2 Serial Channels in C166/C167

Serial communication with other micro-controllers, processors, terminals or external peripheral
components is provided by two serial interfaces with different functionality, an
Asynchronous/Synchronous Serial Channel (ASC0) and a High-Speed Synchronous Serial
Channel (SSC).

The ASCO is upward compatible with the serial ports of the Infineon 8-bit micro-controller
families and supports full-duplex asynchronous communication at up to 781 KBaud/1.03 MBaud
and half-duplex synchronous communication at up to 3.1/4.1 MBaud (@ 25/33 MHz CPU
clock).

A dedicated baud rate generator allows setting up all standard baud rates without osciliator
tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided.
In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit
and terminated by one or two stop bits. For multiprocessor communication, a mechanism to
distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

[n synchronous mode, the ASCO transmits or receives bytes (8 bits) synchronously to a shift
clock, which is generated by the ASCO. The ASCO always shifts the LSB first. A loopback
option is available for testing purposes. A number of optional hardware error detection
capabilities have been included to increase the reliability of data transfers. A parity bit can
automatically be generated on transmission or be checked on reception. Framing error detection
allows recognizing data frames with missing stop bits. An overrun error will be generated, if the
last character received has not been read out of receive buffer register at the time the reception of
a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25/8.25 Mbaud (@ 25/33
MHz CPU clock). It may be configured so it interfaces with serially linked peripheral
components. A dedicated baud rate generator allows setting up all standard baud rates without
oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are
provided. The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a
shift clock, which can be generated by the SSC (master mode) or by an external master {slave
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of
shifting and latching clock edges as well as the clock polarity. A number of optional hardware
error detection capabilities has been included to increase the reliability of data transfers.
‘Transmit and receive error supervise the correct handling of the data buffer. Phase and baud-rate
error detect incorrect serial data. [7]
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4.  Proposed System

Software in real-time embedded systems differs fundamentally from its desktop or Internet
counterparts. Embedded computing is not simply computation on small devices. In most conirol
applications, for example, embedded software engages the physical world. It reacts to physical
and user-interaction events, performs computation on limited and competing resources, and
produces resuits that further impact the environment. Of necessity, it acquires some properties of
the physical world, most particularly, time, {§]

4.1 Real-Time Programming: Common Practice

Real-Time systems typically need to perform multiple tasks at the same time. Each invocation of
task is a finite amount of computation that requires some resources and takes some time to
perform. Tasks may compete for resources such as CPU, I/O access, or network bandwidth, thus
a resource manager is needed to allocate resources and schedule task activation. This resource
management is a major responsibility of real-time operating systems in common embedded
systems. When two eligible tasks are competing for the resources, the operating system must
choose to grant resources to one of them, and as a consequence, that task finishes sooner.

The process of choosing a task to grant resources to, that is, CPU time is called real-time
scheduling. {§]

4.1.1 Preemptive Multitasking

A typical strategy to implement real-time scheduling is called preemptive multitasking. In
preemptive multitasking, operating system uses some criteria to decide how long to allocate to
any one task before giving another task a turn to use the operating system. The act of taking
control of the operating system from one task and giving it to another task is called preempting.
To perform resource management using preemptive multitasking, the resource manager has to
perform two duties:

»  Context Switching
=  Task Scheduling

When a task Is in running state and the time slice has been expired, ¢.g. timer event, then the
scheduler is invoked which decides which task deserves to be given next time slice using its
scheduling algorithm based on priority system. Finally, it performs context switching, replaces
first task by second task and lets the later task to perform its duty.

Real Time Scheduler for Transport Protocols 37



Chapter 4 Proposed System

E TSR 2 I

I TASK 3 %

Figure 4.1: Real Time Scheduling

4.1.2 Limitations in Preemptive Multitasking

Preemptive multitasking is implemented on a processor or a micro-controller, which has built in
support for context switching and a periodic task trigger on which event scheduler has to be
invoked. A common criterion is simply elapsed time, that is, the timer implemented in hardware
is programmed to be invoked on expiration of a time slice. The timer generates an interrupt,
which initiates an interrupt service routine. In interrupt service routine, scheduling is performed,
and it is decided which task is to be granted processor next. The state of currently executing task
is saved and the context of the next task is loaded into the CPU. After ISR, the CPU starts
executing the newly loaded task. So, to perform task switching, the CPU must have spare context
registers, called ‘Register Banks’.

High level processors, such as, Intel 8086, Intel 8088, Intel 80386, Intel 80486, Pentium and
Pentium Pro support preemption. There are number of micro-controllers that provide built in
hardware support for context switching and periodic task trigger, for example Siemens C166,
Siemens C167

A Behedular Scheduler Schaedular
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Figore 4.2: Preemptive Multitasking
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4.1.3 Collaborative Multitasking Approach

As explained earlier, the multitasking performed by context switching requires very particular
hardware support, which is not available in tiny micro-controllers such as Intel 80C51, 80C52

‘This article gives a programming model to implement multitasking in real-time tasks, for
example, running a TCP/IP based application. Collaborative multitasking model gives the idea to
address fundamental issues of running preemptive multitasking kernel on tiny micro-controllers.

4.1.3.1 Tasks Collaberation

In collaborative multitasking, tasks (any user process running on that controller) collaborate with
each other in a way that each task executes a part of its route, saves its state locally and then
releases system resources voluntarily.

In this system, each task is represented by function or routine. In this idea, no task is forced to
preempt resources from it. A task returns afler executing a part of it, saves its state and gives
control to other task waiting for resources. The sequence executes in a continuous fashion,

Figure 4.3: Coliaborative Multitasking

For example, we have three tasks. First Task is Display task whose responsibility is control LCD
display. Second task is Comm task whose responsibility is to receive any data from comport and
process it, and the third one is KeyPad task which scans the keys and gets any activity of key
pressing,

Now these three tasks will collaborate with each other. When Display function will be called, it
will scan all the display memory and will refresh it on the screen in one cycle. After that it will
return back and Comm task will be invoked. In a single cycle, Comm will scan its comport,
recetve any incoming waiting data and process it. After that it will return back and then finally
KeyPad task will be invoked. In a cycle, KeyPad will scan all the keys and will refresh keypad
memory indicating any key press event. This sequence will execute continuously.

main {)
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InitSys { };

While (1)

{
Display ( );
Comm{ ),
KeyPad ( );

}

QuitSys { );
h

The sharing of resources among the tasks is not based on time slices, but sharing is done on work
basis or number of instructions. Every task divides its whole its whole work into sub-tasks.
Whenever a task is given control of CPU, it executes one of its sub-tasks and returns the control.
In next allocation of CPU, it executes next sub-task.

For example, we have an embedded system which has to execute three tasks: Task1, Task2 and
Task? simultancously. Task! is further divided into three subtasks: subtaskl, subtask2 and
subtask3. Task] completes, as each subtask executes ones.

While (1)
{
Taskl ()
Task2 ();
Task3 ();

h

Taskl ()

{

static int nStat=0);

switch (nStat)

{
case 0: Subtask1(); nStat=1; break;
case 1: Subtask2(); nStat=2; break;
case 2: Subtask3(); nStat=0; break;

}
}
The scheduler is designed such that every task executes its one sub-task in its turn, and returns
back so that next task can be executed. In above example, task] completes in three iterations. In
this way, all the tasks are executed simultaneously because of their collaboration with each other.

4.1.3.2 Queues for Inter-process Communication

Inter-process communication is always an important issue when designing scheduler for real-
time embedded systems. In collaborative multitasking programming model, every task has its
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incoming and outgoing FIFO, and also there is a shared buffer pool. Whenever a task wants to
send data to another task, it acquires a free buffer from buffer pool, copies the data in buffer, and
puts the index of buffer in incoming FIFO of their task. Every task polls its incoming FIFO, and
processes the data, if present.

BUFFER POOL

Lo

~3

BUEFER
HANDLER

L RN REE R ]

TASK 2 TASK 8

TS Y 7

Figure 4.4: Inter-process Communication

4.3.1.3 Task Priorities

Task priority is very important concept in multitasking system. The priority represents the
relative importance of a task at run time. When three tasks are running at a time, then the process
of determining which task deserves CPU more is called priority.

For example, we have task three that is more important than Taskl and Task2, Then its priority
can be implemented, as its iterations can be increased relative to other tasks.

While ()

(

Task1 (4);
Task2 (1),
Task3 (2);

1/O0Task (1):
3

void Task] (int nPriority)
{

int nlteragion=(},
While (nlteration<nPriority)}

{

Jfexecute subtasks
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nlteration+;

}
i

The priority of a task can be determined at run-time and it can be set according to the situation.

4.1.4 Example

In this section, we describe the design and development of real-time scheduler for transport
protocols, such as TCP/IP. The TCP/IP protocol stack is implemented such that each layer is
represcnted by a task.

INIT_STACK,
WHILE (nQUIT)
f

kb
APP_TASK;
TCP_TASK;
UDP TASK;
IP TASK;
PPP TASK;
COM_TASK;
}

The main thread initializes all the layers, distributes the time slices by calling respective
processes. Fach layer works in two directions, that is, it processes data from upper as well as
lower layer. A separate buffer bank is reserved for data to be processed, in the form of two-
dimensional array. Each buffer has following associated attributes:

o Name of the buffer (Free, Temporary, PPP Down, PPP Up, IP Down, IP Up, UDP Up,
UDP Down, TCP Up, TCP Down, Application Down, COM Up)

o Command (No command, dial, ping, valid IP frame)

Message flags associated with each process control sub-processes. Each layer has two Data
Queues associated with it, one for each direction: Layer up Job Queue, that contains pointer to
the buffer received from upper layer and is ready to be processed according to the command
associated with the buffer and status of the message flag associated with that direction, and
Layer-down Job Queue, for data received from down layer. These Job Queues are responsible for
inter-process communication.

Whenever an application wants to perform a TCP/IP related task, it gets a buffer from buffer
bank, adds data to buffer associates a command with buffer which indicates what has to be done
with the data in buffer, and passes buffer reference to the Layer Down Job Queue of the lower
layer.
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On turn of task associated with the next layer, the incoming job queue is checked, and the buffer
is processed according to the command, flags are set and the buffer reference is added to Layer
Down Job Queue of the next layer. Next layer behaves in same way, until data reaches COM
layer, and is written to COM port.

It is not necessary for a task to complete its job in single iteration. So, each task has to maintain
its state, so that it can continue from the same point in next iteration. For that, each layer
performs part of its task, saves its state in buffer, and keeps the track of previous work with the
help of flags associated with each task.

The system behaves in same way for opposite direction and use Layer up Data Queues and UP
message flags.
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5 System Analysis and Design

In this chapter, the system under discussion is analyzed.

5.1 Objectory
The methodology that is used for Object Oriented Analysis and Design is Objectory or
Object Oriented Software Engineering approach (Jacobson Method).

The Object Oriented Software Engineering has following four models:

® The Requirements Model
e The Analysis Model
» The Design Model

e The Implementations Model

52 UML

The UML is a new standard for the modeling notations using diagrams of different types.
The UML allows people to develop several different types of visual diagrams that represent

various aspects of the system. The following are seven types of diagrams that are in UML:

*» Use Case Diagram

*» Sequence Diagram

«  Collaboration Diagram

» (Class Diagram

» State Transition Diagram
*  Component Diagram

= Deployment Diagram
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5.3 Actors, Use Cases and Sequence Diagrams

5.3.1 Use case Model

The Use case Model uses actors and use cases. These concepts are simply an aid to defining
what exists outside the system (Actors} and what should be performed by the system (Use
case).

In Use case model the actors are identified, Use cases are identified and a use case model is

consiructed.

5.3.2 Identifying Actors

In our project, there are three actors as shown in Figure 5.1:
o Terminal Application, that uses the system to communicate on Internet,
¢ Internet Service Provider Server, that provides dial up connection.

¢ Internet Application, that exchanges data with terminal application.

ISP Server
+-———»pi Real Time Scheduler for
Transport Protocols
Terminal application Internet
Application
Figure 5.1 Actors
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5.3.3 Identifying Use cases

Following are the use cases that could be initiated by the terminal application as in Table 5.1.

Table 8.1 Client Use cases

Connect to Internet Service { Terminal Application, ISP Server

: Provider
Ping Internet Service Terminal Application, ISP Server

Provider
3 Establish TCP Connection

4 Exchange TCP Data

Terminal Application, Internet Application

Terminal Application, Internet Application

LT T~ P S

5 End TCP Connection Terminal Application, Internet Application

The Priorities identifies the sequence of the Design and implementation of the use cases.
Each use case will be analyzed, designed, coded and implemented in a single iteration and

the use cases having greater priorities will be implemented first.
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5.3.4 Use Case Diagram

Figure 5.2 gives Use Case diagram for the system.

Real Time Scheduler for Transport
Protocols

Connect {o

\

ISP Server

Ping ISP

Establish TCP

Connection

T
Exchange TCP
3

Terminal es>>

Application

internet
Application

Tata

End TCP

Cannecfion

Figure 5.2 UseCase Dlagram
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5.3.4.1 Connect to ISP

Actor:
Terminal Application,
ISP Server
Overview:

Terminal Application requests to dial Internet Service Provider: providing telephone
number, user name and password. The system processes the request and as soon as it gets
positive response from Internet Service Provider, the connection establishes.

Pre-Condition:
No pre-condition.
Post-Condition:

Terminal Application connects to Internet,

Success Scenario:

I. Terminal Application requests to dial
Internet Service Provider, providing
telephone number, user name and
password.

9. ISP server sends LCP response.

14. ISP Server sends PAP acknowledge-
ment and IPCP configuration request
for IP Layer configuration.

2.

3.

N

10.
1.

12.
13.
15.

16.
17.

The request reaches application layer, which
forwards the request to PPP layer.

PPP layer transfers the command for dialing to
COM layer, set its fimer and starts waiting for
connection,

COM layer writes haze command for dialing to
modem.

COM Layer gives response of dial to PPP layer.
The PPP layer confirms that the connection with
remote PC has been established by searching
‘CD’ or ‘CONNECT” string in the response,

PPP layer makes LCP configuration, i.e. baud
rate, parity, etc. and transmits LCP configuration
request t0 COM Layer.

PPP starts waiting for LCP response.

COM layer writes received data to modem.

If PPP receives LCP Configuration Acknowl-
edgement, It transmits PAP configuration request
for user authentication to COM Layer.

PPP starts waiting for PAP response.

COM layer writes received data to modem.

PPP transmits IPCP configuration request for
user authentication to COM Layer and
connection establishes.

PPP starts waiting for PAP response.

COM layer writes received data to modem.
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Failure Scenario:
6a. No response reached and PPP declares timeout.
- The request is discarded.
-- Terminal Application is asked to initiate the request again
6b. PPP layer receives negative response.
-- The request is discarded.
-- Terminal Application is asked to initiate the request again.

5.34.2 Ping ISP

Actor:
Terminal Application,
ISP Server
Overview:
Terminal application requests to ping ISP. The system sends the request through com
port and reply is received.
Pre-Condition:
Terminal application must be connected to internet.
Post-Condition:
Ping reply is received.
Success Scenario:

Actor Action System Response
1. Terminal application requests to ping | 2. The COM Layer hands over the request to
ISP, providing IP address of ISP. IP layer.

3. At1P layer. ICMP request is generated,
which is handed over to COM layer.
COM layer writes request to modem.
COM layer hands over reply to IP layer.
Terminal application is informed about
5. Server sends ping reply. ICMP Reply by application layer.

Nk

5.3.4.3 Establish TCP Connection

Actor:

Terminal Application, Internet Application

Overview:

Terminal Application requests for TCP connection with some internet application. After
negotiation, the connection establishes.

Pre-Condition:

Terminal Application must be connected to ISP.
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Post-Condition:
TCP connection is established.
Success Scenario:

Actor Action

System Response

name server,

6. Internet application sends reply.

1. Terminal application requests for TCP
connection providing IP address or
the name of destination, in case of

2. Application layer creates TCP, binds the local

and remote port to connection, and also bind
TCP connection to local IP address.

. TCP Layer makes the TCP header and starts

waiting for acknowledgement of the

synchronization request.

. IP Layer makes IP header and TCP Checksum.
. COM layer writes data to modem.
. The packet is checked for validity at PPP, IP

and TCP layers. If SYN+ACK is received, then
connection is established.

. TCP layer sends ACK to the Internet

Application.

. The Application Layer informs terminal

application.

Failure Scenario;
Ta. IFNACK 1is received

-- Notify terminal application that connection cannot be established.

7b. If Time Out occurs.

Notify terminal application that connection cannot be established.

5.3.4.4 Exchange TCP Data

Actor:

Terminal Application, Internet Application
Overview:

After TCP connection is established, the terminal application sends and receives data from

Internet application.

Pre-Condition:

TCP Connection must be present.
Post-Condition:

The applications exchange TCP Data.
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Success Scenario:

Actor Action System Response

1. Terminal application requests for | 2. Application layer hands over the request to
sending data to the internet TCP layer.
application. 3. TCP Layer makes the TCP header and adds
sequence number, which is acknowledgement
of the previous data packet sent.
. IP Layer makes IP header and TCP Checksum.
. PPP layer makes PPP frame.
. COM layer writes data to modem.
The packet is checked for validity at PPP, IP
7. Internet application sends reply, and TCP layers. If ACK and Data are received,
then send ACK for the highest packet received.

00 Oy L i

Failure Scenario:
8a.lf no ACK is received after 15 seconds.
-« Resend the request.

5.3.45 End TCP Connection

Actor:

Terminal Application, Internet Application

Overview:

After sending and receiving of TCP data is completed, the TCP connection is gracefully
closed.

Pre-Condition: TCP Connection must be present.

Post-Condition: The TCP connection ends up.

Success Scenario:

Actor Action System Response
1. Terminal application requests for | 2. Application layer hands over the request to
ending up the TCP connection. TCP layer.

3. TCP Layer creates FIN request.

4. IP Layer makes IP frame.

5. PPP layer makes PPP frame,

6. COM layer writes data to modem.

7. Internct application sends reply. 8. The packet is checked for validity at PPP, IP
and TCP layers. If FIN ACK is received, then
TCP layer makes ACK.

9. IP Layer makes IP frame.

10. PPP layer makes PPP frame.

11. COM layer writes data 1o modem.

12, The connection is closed gracefully.
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5.3.5 Sequence Diagram
The sequence diagrams for above defined Use Cases are:
5.3.5.1 Connect to ISP
Tesminal App. TCP/UDP ICMP/ PPP Layer Com Layer
erning .
Application Layer Layer 1P fayer
ISP Server
Connect 8P Iyial
" {onnect Renly
LCP Con-Reg p. Reguest. .,
< LCP Con-Req 4 Request
LCP Con-Ack/Ref Repl
LCP Con-Ack/Rej
< Reply ...
PAP Con-R:
LCP S i Request
_ PAP Con-Ack/Nak Reply
IPCP Con-Req
PAP < Request
IPCP (‘ﬂanf‘q » R_eqwsj‘_»
IPCP Ack+Req » Reply......p
IPCP Rej
e — &% ---Rephy ..
IPCP ~R
...«.«.,..___....ﬁ(in....?? ..... pi---Bequest__
Optional
<« IPCPNAK Reply
IPCE Con-Reqg e BECUESE iy
pPPP < PCPE Ack Epplu
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5.3.5.2 Ping ISP

— App. TCP/UDP ICMP/ PPP Layer Com Layer
ErRHNE
Application Layer Layer 1P layer
: ISP Server
Ping (1P Address) Ping
J L Ping Fcho ».. Request
< Ping Reply «—Reply
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5.3.5.3 Establish TCP Connection

L A TCP/UDP ICMP/ PPP Layer Com Layer
chHRma
Application Layer Layer P layer et
Application
Establisk TCP Connect
Connection SYN IP Frame Connection
g I PPP Frame Request ]
Fimeout = 20
PPP Frame
1P Frame Reply
SYN+ACK 7€
!
ACK 1P Frame
] % PPP Frame Reply
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5.3.34 Exchange TCP Data

- Permingl App. TCPAIDP 1ICMP/ PPP Layer Com Layer
Apptication  Layer Layer 1P layer
internet
. TCP Data Apptication
Data Requesi ‘Requm_l_'.l PSH + ACK 1P Frame
» TCP Data
L ™ PPP Frame a _
Retransmit
after more
thar 15 PPP Frame TCP Data
seconds and 1P Frame P .
legs than 25 ACK I -
seconds, i Received ™
ACI‘( is not
received. ACK 1P Frame
TCP Data
L1 o~ PPP Frame e
PPP Frame TCP Diata
IP Frame
PSH +ACK | f *
) Data [
_ Data Received 1% :
ACK
™ IP Frame TCP Data
™ PPP Frame
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5.3.5.8 End TCP Connection
Terminal App. TCP/UDP 1ICMP/ PPP Layer Com Layer
Application  Layer Layer IP layer
Intcr:?et )
Fad connection End TCP FIN +PSH + Application
™ ACK IP Frame
|l PPP Frame Request .
PPP Frame
1P Frame Reply
FIN ACK <
|
ACK 1P Frame
* PPP Frame Reply
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6. System Design

In this section, we describe the design and development of real-time scheduler for transport
protocols, such as TCP/IP. The TCP/IP protocol stack is implemented such that each layer is
represented by a task.

6.1  Data Structure of TCP/IP Stack

The main thread can be represented as:

INIT _STACK;
WHILE (aQUIT)

{
APP_TASK;

UDP TASK;
IP_TASK;
PPP_TASK;
COM_TASK;

It initializes all the layers, distributes the time slices by calling respective processes. Each
layer works in two directions, that is, it processes data from upper as well as lower layer.

A separate buffer bank is reserved for data to be processed, in the form of two-dimensional
array. Each buffer has following associated attributes:

6.1.1 Buffers

A two-dimensional array of unsigned char of 80(Max. No. of Buffers) by 2000 (Size of
Buffers). Each Buffer has its associated following attributes:

1. Buffer Name

FREE not occupied.

TEMPORARY Occupied but not to any specific to layer
COM Up Physical layer

PPP Down PPP layer down’

PPP Up PPP layer up?

IP DOWN IP layer down'

IPUP IP layer up’

i Down: Means process of received data by the lower layer to upper layer
© Up: Means process of data to be sent by the upper layer is passed to upper layer
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UDP Down Udp layer down
UDP Up Udp layer up
TCP Down Tep layer down*
TCP Up Tep layer up’
APP Down Application layer down'
2. Buffer Commands

SR NS e w

O

FREE: No command

TMP: Temporary Command

CONNECTTCP: Not Used

DIAL: Checked by PPP layer for dialing to Internet by Application layer

PING: Checked by IP and PPP layer for (ICMP) Ping Message to another host on
Network. Set by Application layer for [P layer. Set by IP layer for PPP layer

IPFRAME: Set by IP, MAC and PPP layer for PPP layer as valid IP frame

PPPFRAME: Checked by PPP layer as valid PPP frame. Set by Physical and PPP layer
for PPP layer as valid PPP frame

COMFRAME: Set by PPP layer for Physical layer as valid Physical frame

UDPFRAME: Checked by IP and PPP layer as valid UDP frame Set by Application layer
Set by UDP layer for Application layer

TCPFRAME: Checked by IP and PPP layer as valid TCP frame Set by Application layer
Set by TCP layer for Application layer

CONNECT TCP: Checked by TCP layer for establishment of connection

Set by Application layer

APPFRAME: Checked by TCP layer as a valid Application Frame. Set by Application
layer

TCPTRNSD: Sect by PPP/MAC layer when a TCP frame has been transed.
TCPFRAMEN: Checked by IP and PPP layer as valid TCP frame Set by Application
layer. Set by TCP layer for Application layer. TCP frame is not re-transmitted in case of
this command.

FINTCP: Checked by TCP layer to set Control Bits. Set by Application layer
UDPFRAMEN: Checked by IP and PPP layer as valid UDP frame. Set by Application
layer. Set by UDP layer for Application layer

TCPFRAMER: Checked by IP and PPP layer as valid TCP frame Retransmission. Set by
TCP layer.

Offset

Current Pointer

Timers

Counters

Connection (used for TCP)
Frame Sequence Number
Remote Ip higher word
Remote Ip lower word
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6.1.2 Task Queues

Message flags associated with each process control sub-processes. Each layer has two
TASK QUEUESs (fifos) associated with it, one for each direction: Layer up TASK
QUEUE, that contains pointer to the buffer received from upper layer and is ready to be
processed .according to the command associated with the buffer and status of the message
flag associated with that direction, and Layer down TASK QUEUE, for data received
from down layer. These TASK QUEUEs are responsible for inter-process
communication, Each TASK QUEUE has its associated following attributes:

i. Name:

FREE: Not occupied

TMP: Occupied but not to any specific to layer

TCPTra: Trans frames Fifo associated with TCP Connection
TCPRec: Receive frames Fifo associated with TCP Connection
TCPApp: Application frames Fifo associated with TCP Connection
UDPApp: Application frames Fifo associated with UDP Connection
TCPUp : Tep layer up?

TCPDown: Tcp layer down'

UDPUp: Udp layer up’

UDPDown: Udp layer down'

1PUp: IP layer upz

IPDown: IP layer down!'

MACUP: Mac layer u2p2

PPPUp: PPP layer up

COMUp: Physical layer up”

PPPDown: PPP layer down'

IPFragr: Used for IP Fragmentation Reassembly (Temp)

IPFragt: Used for IP Fragmentation Reassembly

APPSYSCALL: Used for the TCP/IP System Calls

MAILAPP: Used for the Mail Application System Calls

2. Head
3. Tail
4. Count
5. Size
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6.2 Working of TCP/IP Stack

The stack works as follows:
Scenario 1:
Buffer Command: Dial

APP_TASK:
1. Gets unused buffer from butfer bank.
2. Adds dial up information to buffer.
3. Sets buffer name=PPP Up, command=DIAL
4. Adds buffer pointer to PPP up TASK QUEUE.

PPP_TASK:
1. Extracts buffer from its PPP up TASK QUEUE.

2. Sets UP message flag to start dial sub~process in next time slice and exits.
3. DIALUP:

a. Sets buffer name= COM Up
b. Adds the buffer to COM up TASK QUEUE.
¢. Resets UP message flag= ‘Watt for PPP connection’

COM_TASK:
1. Extracts buffer from its COM up TASK QUEUE.

2. Sets message flag to “Write Com’ to start write comport sub-process in next time slice
and exits

3. WRITE_COM:
a. Writes data to modem
b. Sets UP message flag =‘Extract data from UP TASK QUEUE’

COM TASK: (Data IN)
1. Gets unused buffer from buffer bank.
2. Reads COM data into the buffer
3. Sets buffer name=PPP Down.
4. Adds buffer pointer to PPP down TASK QUEUE.

PPP TASK:
1. Extracts buffer from its PPP down TASK QUEUE.
2. I CD or CONNECT found in buffer:
a. Sets ‘Connection’ flag.
b. Sets frame type to LCP.
c. IfLCP ACK is received, sets frame type to PAP.

d. Sets DOWN message {lag= Process PPP frame in next time slice and exits.
Eise ‘Discard buffer and exit.’
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3. If PAP ACK isreceived:
a. Sets ‘Connection Established’ flag.
b. Initialize UP and DOWN message flags and return.
4, PROCESS PPP_FRAME:
a. Checks frame type, and processes frame accordingly.
b. Resets UP message flag= ‘Wait for <Frame Type> connection’
¢. Adds buffer to COM up TASK QUEUE.

Scenario 2:

Buffer Command: Ping

APP _TASK:

Gets unused buffer from buffer bank.

Creates connection, binds the connection to local IP address.
Gets the remote IP to ping the buffer,

Sets buffer name=IP Up, command=PING

Adds buffer pointer to IP up TASK QUEUE.

A

IP_ TASK:
1. Extracts buffer from its IP up TASK QUEUE.
2. Sets UP message flag to start ping IP sub-process in next time slice and exits.
3. PING_IP:
a. Makes ICMP and IP header.
b. Adds the buffer in PPP up TASK QUEUE.
¢. Initialize UP message flag.

PPP_TASK:
. Extracts buffer from its PPP up TASK QUEUE.
Sets UP message flag to start ping PPP sub-process in next time slice and exits.
PING_PPP:
a. Sets buffer name= COM Up
b. Adds the buffer to COM up TASK QUEUE.
c. Resets UP message flag= ‘Wait for PPP connection

LN S

COM_TASK:
1. Extracts buffer from its COM up TASK QUEUE.
2. Sets message flag to ‘Write Com’ to start write comport sub-process in next time slice
and exits
3. WRITE COM:
a. Writes data to modem
b. Sets UP message flag = Extract data from UP TASK QUEUE’

COM_TASK: (Data IN}
i. Gets vnused buffer from buffer bank.
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2. Reads COM data into the buffer
3. Sets buffer name=PPP Down,
4. Adds buffer pointer to PPP down TASK QUEUE,

PPP_TASK (Data IN)
. Extracts buffer from its PPP down TASK QUEUE.
2. If Protocol type= 0X21:
a. Sets buffer name= [P Down.
b. Adds buffer pointer to IP Down TASK QUEUE.

IP_TASK (Data IN)
1. Extracts buffer from its IP Down TASK QUEUE.
2. I Protocol type= 0X01 for IP Layer, its ICMP frame.
a. If frame type= 0, discards and retums.
b. If frame type= 8, PING Reply is acknowledged.

Scenario 3:

Buffer Command: TCP Connection (SYNCHRONIZATION)

APP_TASK: {Connection UP)
1. Creates TCP Connection.
Gets unused buffer from buffer bank.
Sets buffer name= TEMPORARY, buffer offset=100
Associate the buffer to newly created connection,
Sets window size= 1024,
Binds TCP Connection to local IP address.
Sets command= CONNECT TCP, buffer name = TCP Up.
Adds buffer to TCP up TASK QUEUE.

90 =1 OV LA W 1

TCP_TASK: {(Connection UP)
. Extracts buffer from its TCP up TASK QUEUE.

2. Sets UP message flag to start CONN_TCP sub-process in next time slice and exits.
3. CONN_TCP:

Makes TCP header.
Adds the buffer pointer in [P up TASK QUEUE,
Sets buffer name =[P Up, command = TCPFRAMEN

Sets UP message flag="Wait for SYN acknowledgement’ to start
WAIT _SYNC sub-process in the next time slice,

o otp

IP_TASK: (Connection UP)
1. Extracts buffer from its IP up TASK QUEUE.

2. Sets UP message flag to start TCPFRAME IP sub-process in next time slice and
eXifs.
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3. TCPFRAME IP:

Makes IP header,

Makes TCP checksum.

Sets buffer name =PPP Up

Adds buffer pointer to PPP Up TASK QUEUE.

B0 oo

1. Extracts buffer from its PPP up TASK QUEUE.
2. Sets UP message flag to start TCPFRAME_PPP sub-process in next time slice and
exits.
3. TCPFRAME PPP:
a. Sets protocol byte=0X21 for IP frame.
b. Sets CRC.
c. Makes PPP Frame with lower byte padding.
d. Sets buffer name = COM Up, command = TCP FRAME (For re-
acknowledgement purpose)
Resets UP message flag= ‘Extract data from UP TASK QUEUE’.
f. Adds the buffer to COM up TASK QUEUE.

&

COM_TASK: (Connection UP)
1. Extracts buffer from its COM up TASK QUEUE.
2. Sets message flag to “Write Com’ to start write comport sub-process in next time slice
and exits
3. WRITE COM:
a. Writes data to modem
b. Sets UP message flag = Extract data from UP TASK QUEUE’

COM_TASK: (Connection Down)
1. Gets unused buffer from buffer bank,
2. Reads COM data into the buffer
3. Sets buffer name=PPP Down.
4. Adds buffer pointer to PPP down TASK QUEUE,

1. Extracts buffer from its PPP down TASK QUEUE,
2. If Protocol type= 0X21:
a. Sets buffer name= IP Down.
b. Adds buffer pointer to IP Down TASK QUEUE.

IP_TASK (Connection Down)
. Extracts buffer from its IP Down TASK QUEUE.
2. H Protocol type= 0X06 for IP Layer, its TCP frame,
a. Sets remote IP, frame sequence number,
b. Sets buffer name= TCP Down, command = [P FRAME
¢. Adds buffer pointer to TCP down TASK QUEUE.
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TCP_TASK: (Connection Down)
Extracts buffer from its TCP Down TASK QUEUE.
Functions acknowledgement / any request from remote TCP.
Checks overflow of frame sequence number and local acknowledgement number.
Sets TCP Acknowledgement counter.
WAIT_SYNC:
a. Waits for TCP Acknowledgement counter to be 12,
b. If TCP Acknowledgement counter NOT EQUAL to 12 in 20 seconds
timestamp, buffer is freed.

halboadbeadi b dbe

Scenario 4:

Buffer Command: TCP Connection (PUSH)

APP TASK: {Connection UP)
If TCP connection exists:
1. Gets unused buffer from buffer bank.
2. Sets offset=100, command=APP FRAME, connection= existing connection.
3. Sets buffer name = TCP UP.
4. Adds buffer pointer to TCP up TASK QUEUE.

1. Extracts buffer from its TCP up TASK QUEUE.

2. Sets UP message flag to start APP_FRAME sub-process in next time slice and exits.
3. APP_FRAME:

Makes TCP header.

Adds the buffer pointer in IP up TASK QUEUE.

Sets buffer name =IP Up, command = TCP FRAME

Sets UP message flag=Extract data from UP Task Queue’ to start
GetUpFrameTCP sub-process in the next time slice.

oo

iP_TASK: {Connection UP)
1. Extracts buffer from its IP up TASK QUEUE,
2. Sets UP message flag to start TCPFRAME P sub-process in next time slice and
exits.

3. TCPFRAME IP:
a. Makes IP header.
b. Makes TCP checksum.
¢. Sets buffer name =PPP Up
d. Adds buffer pointer to PPP Up TASK QUEUE.

PPP_TASK: (Connection UP)
1. Extracts buffer from its PPP up TASK QUEUE.

2. Sets UP message flag to start TCPFRAME PPP sub-process in next time slice and
exits.
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3. TCPFRAME PPP;
a. Sets protocol byte=0X21 for IP frame.
b. Sets CRC.
¢. Makes PPP Frame with lower byte padding.
4. If command = TCP FRAME:
a. Removes PPP and IP headers to set offset and current pointer.
b. Adds buffer of changed offset and pointer to connection trans c_traTask
Queue.
¢. Sets buffer name = TCP UP, command = TCPTRNSD.
d. Reset timer of buffer,
5. Hcommand = TCPFRAMER:
a. Removes PPP and IP headers to set offset and current pointer.
b. Sets buffer name = TCP UP, command = TCPTRNSD.
¢. Reset timer of buffer.

COM_TASK: (Connection UP)
4. Extracts buffer from its COM up TASK QUEUE.
5. Sets message flag to “Write Com’ to start write comport sub-process in next time slice
and exits
6. WRITE COM:
a. Writes data to modem

b. Sets UP message flag = Extract data from UP TASK QUEUE’

COM_TASK: (Connection Down)
1. Gets unused buffer from buffer bank.
2. Reads COM data into the buffer
3. Sets buffer name=PPP Down,
4. Adds buffer pointer to PPP down TASK QUEUE.

PPP_TASK (Connection Down)
1. Extracts buffer from its PPP down TASK QUEUE.
2. H Protocol type= 0X21:
a. Sets buffer name= IP Down.
b. Adds buffer pointer to IP Down TASK QUEUE.

IP_TASK {Connection Down)
1. Extracts buffer from its IP Down TASK QUEUE.
2. I Protocol type= 0X06 for IP Layer, its TCP frame.
a. Sets remote IP, frame sequence number.
b. Sets buffer name= TCP Down, command = I[P FRAME
¢. Adds buffer pointer to TCP down TASK QUEUE.

TCP_TASK: {Connection Down)
1. Extracts buffer from its TCP Down TASK QUEUE.
2. If two buffers are not unused: returns.
3. If time elapsed afier reception of frame exceeds 20 seconds:
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a. Rejects buffer.
b. Sets connection timer = 4.5 seconds for auto acknowledgement purpose.
Else verifies length.
4. I SYN+ ACK received:
a. Sets remote acknowledgement number.
b. Initiates local sequence number.
¢. Sends acknowledgement.
d. Frees received buffer and returns.
5. I RST received: Frees recetved buffer and returns.
If type is (NORMAL OR ACK): Check overflow of frame sequence number.
7. K FIN received:
a. Make TCP header.
b, Add butfer pointer to IP Don TASK QUEUE.
8. I out of sequence packets received:
a. Place packets in ¢_RecvTask Queue.
b. If skipped packets received in 20 seconds:
i. Stack packets.
it. Send ACK of highest packet.
Else:
i. Clear ¢_RecvTask Queue.
il. Use AUTO_REACK.
9. If TCP connection exists, port = 80, timer > 5 seconds:
a. Sends acknowledgement.
b. Resets connection timer,
Else: Retransmission required.

o

Scenario 5:

Buffer Command: UDP Transmission

IP TASK: (Transmission UP)
. Extracts buffer from its IP up TASK QUEUE.
2. As command = UDP FRAME, set message flag to start UDP_FRAME 1P in the next
time slice and exit.

3. UDP_FRAME IP:
a. Makes IP header.
b. Makes UDP checksum.
¢.  Sets buffer name =PPP Up
d. Adds butfer pointer to PPP Up TASK QUEUE.

PPP_TASK: (Transmission UP)
1. Extracts buffer from its PPP up TASK QUEUE.
2. As command = UDP FRAME, Sets UP message flag to start UDP_FRAME sub-
process in next time shice and exits.
3. UDP _FRAME:
a. Sets protocol byte=0X21 for IP frame.
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Sets CRC,

Makes PPP Frame with lower byte padding.

Set name= COM UP, command = UDP FRAME.

Sets UP message flag =‘Extract data from UP TASK QUEUE’

ooow

COM_TASK: (Transmission UP)
1. Extracts buffer from its COM up TASK QUEUE.
2. Sets message flag to “Write Com’ to start write comport sub-process in next time slice
and exits
3. WRITE_COM:
a. Writes data to modem
b. Sets UP message flag = Extract data from UP TASK QUEUE’

COM_TASK: (Transmission Down)
1. Gets unused buffer from buffer bank.
2. Reads COM data into the buffer
3. Sets buffer name=PPP Down.
4. Adds buffer pointer to PPP down TASK QUEUE.

PPP TASK (Transmission Down)
1. Extracts buffer from its PPP down TASK QUEUE.
2. I Protocol type= 0X21;
¢. Sets buffer name= IP Down.
d. Adds buffer pointer to IP Down TASK QUEUE.

IP_TASK: (Transmission Down)
1. Extracts buffer from its IP Down TASK QUEUE,
2. I Protocol type is of UDP frame.
Sets buffer name= UDP Down, command = [P FRAME
3. Adds buffer pointer to UDP down TASK QUEUE.

UDP_TASK: (Transmission Down)
1. Extracts buffer from its UDP up TASK QUEUE.
2. Sets valid connection by checking local port number. Else verifies the length.
3. Adds the buffer in application task queue of the connection.
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7. Implementation

The TCP IP Scheduler is designed in C++ and the mail application is designed in Visual
C++. The scheduler is implemented as follows: '

7.1 Main Loop
‘The main loop of TCP IP Scheduler is as follows:
inits_tepip(); //Initializes FIFOs and message flags.
while(1) {
if{g_nQuit==1) return; if{exitth==1) break;
Sleep(10);
if(exitth==1) break;
com_proc();if(exitth==1) break;
ppp_proc(); if(exitth===1) break;
ip proc(); if(exitth==1) break;
tcp proc(); if{exitth==1) break;
udp proc(); if(exitth==1) break;
app_proc(); if{exitth==1) break;
udp _proc(); if{exitth==1) break;
tep_proc(); if{exitth==1) break;
ip proc(); if{exitth==1) break;
ppp_proc(); if(exitth==1) break;
app_proc(); if{exitth==1) break;
oenttt]
H
For each layer of TCP/IP stack, a separate procedure is defined. All these procedures are

called in a sequence.
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7.2 Initialize TCPIP

void inif_com()

{
CHrucom=—-1;
curdcom=-1;
msgucom=M _ GETUFRM_COM,;
msgdcom=M_GETDFRM_COM;
}

7.3 COM Procedure

void com_proc()

{
switch{msgucom)
{
case M_GETUFRM_COM : getufrm_com(); break;
case M_WRITE_COM : write_com(); break;
}
switch(msgdcom)
£
%
case M_GETDFRM_COM : getdfrm_com(); break;
3
}

7.4  PPP Procedure

void ppp_proc()
{

/f process upper frames

switch{msgufrm)

{

case M GETUFRM_PP : getufim_pp(); break; // get upper frame

case M_DIAL PP : dial(); break; // dialing request - dial number

case M WTCON_PP : wicon(); break; // wait for modem connection after dial
case M WTACKPAP PP : wt_ackpap(); break; // wait for PAP acknowledgement

case M_WTACKIPCP_PP :wt_ackipep(); break; // wait for IPCP acknowledgement
case M_TCPFRM_PP tepfrm();  break; // Process TCP Frame

case M UDPFRM PP ;udpfrm();  break; // Process IP Frame
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case M_PING_PP :ping pp(); break; // transparently trans request

}

/! process lower frames
switch(msgdfrm)

{

case M_GETDFRM_PP : getdfrm_pp(); break; // get lower frame

case M_CNFDFRM_PP : enfdfrm_pp(); break; // confirm frame

case M_PROCDFRM PP : procdfim_pp(); break; // process frame and ACK
}

}

7.5 1P Procedure
void ip_proc()

{
{/ process upper frames
switch(msgu_ip)
{
case M_GETUFRM_IP: getufrmy ip(); break;// get frame
case M_TCPFRM_IP : tepfrm_ip(); break; // its frame from tcp
case M_UDPFRM_IP: udpfrm_ip(); break; // its frame from udp
case M_PING IP  :ping ip(); break;  //its ping command
}
/1 process lower frames
switch(msgd ip)
{
case M_GETDFRM_IP : getdfrm_ip(); break; // get frame
}
// Check fragmentation
¢k frag(}:
}

7.6 TCP Procedure

{

{{ process upper frames

switch(msgu_tep)

{

case M_GETUFRM_TCP: getufrm_tep();break;  // Process the out going TCP frame
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case M_CONNTCP :conn_tep(); break; // Connect TCP

case M_APPFRM  : appfrm(); break; // its application frame
case M WTSYNC  : wt_sync(); break; /f wait for sync

case M_FINTCP - fintep(); break; // finish TCP connection
}

/{ process lower frames

switch{msgd tcp)

{

case M_GETDFRM_TCP: getdfrm_tcp();break;// Process the incoming frame
}

recfifos_tep();/Rearrange Data

clear tfrms();

a_reack(); /Re-ACK

7.7 UDP Procedure

void udp proc()

{
getufrm udp();
getdfrm_udp();

/f initiglize UDP fifos

7.8  Application Layer Procedure

switch (syscall}
{
case SYSCALL_DIAL: Dial PPP(); break;
case SYSCALL DISCONNDIAL: Disconn PPP(}; break;
}
else
{

switch (SOCK_Cmndsyscall])

{
case SYSCALIL_CONNTCP : Create_TCP_Conn{syscall); break;
case SYSCALL DISCONNTCP: Finish TCP_Conn{syscall);break;
case SYSCALL SENDTCP: Send TCP_Data(syscall);break;
case SYSCALL RCVTCP: Rev_TCP_Data(syscall);break;
case SYSCALL_CONNUDP :break;
default break;

3
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8.  Testing and Conclusion

Testing of a program is used to check whether it produces the same results as are expected
form it and how does it handles in the situation where an exception of error occurs, Testing

has following types:

8.1 System testing

System Testing is to test the system as a whole to validate that it meets its specification and
the objectives of its users. System Testing focuses on testing the system as an entity.
Generally, it is the responsibility of a group, which is separate from the system development
team.

It is generally good practice for system testing to be an independent activity as the testers are
not themselves stakeholders in the system development. If developers are involved at this
stage, they may be reluctant to design tests, which reveal problems in the developed system,

as this is an implicit criticism of the quality of their work.

8.2 Development testing

» Hardware and software components should be tested as they are developed and as
sub-systems are created. These testing activities include:
» Unit testing.
» Module testing
» Sub-system testing
#» However, these i¢sts cannot cover:
» [Interactions between components or sub-systems where the interaction causes
the system to behave in an unexpected way
» The emergent properties of the system

As part of the development process, each component that has been developed should be
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tested either by its developer or by a separate testing group. The objective of this testing
process is to find defects in that component. These defects should then be removed before the
component is delivered for integration.

However, these tests can only be based on the component specification (if it exists) along
with knowledge about the structure of the component. There may be component errors which
are not discovered because these relate to the interaction of the component with other
components in the system. The emergent properties of a system are those properties, which
apply to the system as a whole rather than to particular components in the system. While
some assessment can be made, e.g. of individual component reliability, unit and module

testing be used to assess the overall reliability or performance of the whole system.

8.3 Integration testing

The major activity in the integration process is integration testing where the developer of the
system carries out a series of tests as the system is put together from its components.

Integration testing should be concerned with tests, which cannot be executed on individual
system components or sub-systems, Interface testing is concerned with designing tests which
will validate the interactions between components and property testing is concerned with
testing the emergent system properties such as reliability, performance etc, As these do not
emerge until the system exists as a single entity, it is clearly impossible to test them earlier in

the process.

8.3.1 Integration test planning

A separate group should always be responsible for test planning for two reasons:

1. It means that test planning can be carried out at the same time as system development

2. It removes a potential conflict of interest from the development team - is their
respensibility to develop software or to test {and potentially find faults with) that software.

Developers may, consciously or unconsciously; design tests, which they know, avoid
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problems in the system. For large, complex systems, integration test planning may involve

hardware and software engineers and buman factors specialists.

8.3.2 Test planning acfivities

Wherever possible (and this is really not easy) the integration test planning teamn should
identify individual system increments, which can be tested and should design tests for these
increments. These decisions may be made using the delivery schedules for the different sub-
systems (it makes sense to stagger delivery - getting everything on the same day is an
integration nightmare) but schedule changes may mean that increments aren’t available when
required.

Testing tools such as tools to compare test outputs, tools to automatically run tests from files
of test data, simulators for hardware which is not available may have to be developed before
system testing is possible. The development of these tools goes on in parallel with systems
development and often represents a significant fraction of the overall system development

COsis,

8.4  Stress testing

Stress testing is particularly important for large, multi-user systems where the load on the
system varies dramatically from time to time. In essence, you estimate the maximum load
that the system is likely to have to handle then test it with more than that load. What should
happen is graceful failure where the level of service offered to all users is reduced. What
often happens is catastrophic failure where the system moves from working reasonably for
all users to a complete loss of service.

Building up the load on the system is not just a test of system performance. Because there is
so much stress on the system, defects, which can be corrected automatically in other
situations, come to light during stress testing. For example, say a screen is not properly

updated but the normal use calls for this screen to be replaced quite quickly in normal use.
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The error may never be discovered. Stress testing slows the system down and may reveal this
kind of defect.
This is not too important but stress testing can also reveal defects, which are caused by built-

in timing assumptions in real-time systems.

8.5 Acceptance testing

Acceptance testing may take place after a system has been installed but often it takes place at
the developer’s premises using customer-supplied data. The customer observes the system
tests to check if the system meets the specified requirements.

It’s important to understand that the decision on whether or not to accept a system does not
necessarily depend on the system meeting every requirement and successfully executing
every test supplied by the customer. The customer needs the system (presumably) so they
may be willing to accept an imperfect system for installation. The problems identified are
noted and the contractor may have to agree to fix these problems in the first new release after
the system has been delivered.

There may also be disagreement between the customer and the contractor at this stage about
what requirements actually mean. The customer may have one interpretation of the
requirements and the contractor a different interpretation. Therefore, when there is a problem
with an acceptance test, some negotiation is necessary to decide whether the customer or the
developer has the right interpretation. Often, the result will be that some system changes have

to be made and the customer has to pay for some or all of the costs of these changes.

8.6 Performance testing

It may be possible to use data for stress testing for performance testing as critical
performance problems are most likely to occur when the system is heavily loaded.

The major problem with performance testing is that there are rarely explicit performance

requirements, which are specified in a measurable way. Furthermore, there may be serious
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conflicts between e.g. security and performance requirements and the only way to fix the
performance problems might be to weaken system security., _

The perceived performance of a system is important (if it is an interactive system) whereby
the performance is as much to do with expectations as it is with actual figures. If users use a
system with a specific performance level, they will expect a new system to at least match that
level, even if it offers much greater functionality. This has to be taken into account when

setting performance criteria.

8.7 Reliability testing

The problem with reliability is that it isn’t an absolute but depends on the context of use of
the system. Two different patterns of system use can result in different perceived system
reliability.

For this reason, it is very important to get the operational profile right i.e. the predicted
pattern of inputs which will be presented to the system. This is possible for some classes of
system (where reliability testing is very mature) such as telephone switches where the actual
usage of an existing system can be logged and used as the basis of an operational profile.

It is much harder to predict an operational profile when a completely new system or process
is introduced - no one really knows how users will adapt to the change and what inputs will
be generated.

Reliability testing must take into account the seriousness of system errors. For example, an
error 1n an air traffic control system where a display was pink rather than red is much less

serious than error in the same system where the height of the aircraft was wrongly computed.

8.8  Security testing
This is an unusual form of testing because it can’t really be planned in the same way. While
it is possible to pre-conceive some simple security tests, effective security testing can only

really be interactive and, arguably, can only be carried out once the system is in use,
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Interactive testing is necessary because security problems may not have a single cause. A
user may detect a potential weakness in the system and then exploit this in some other way to
gain access to protected parts of the system. It is almost impossible fo anticipate this in
advance

The argument that security testing cannot be effective until the system is in use comes from
the fact that many security problems are due to the way in which a system is used such as
insecure passwords, use of over-general permission vectors, etc. These can’t really be tested

in a pre~production version of the system.

8.9  Testing for Real-Time Scheduler for Transport Protocols

o Dial ISP- Sanccessful Connection

Input

User name: she 10060077
Password; ¥¥*¥*
Phone Number: 13111333

Qutput

ISP Connected Successfully.

e Dial ISP- No LCP Reply

Input

User name: sbc10060077
Password; *#%%
Phone Number: 13111333

Outpat

LCP Timeout
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o Dial ISP- No PAP Reply

Input

User name: sbc10060077
Password: ¥***
Phone Number: 13111333

Quiput

PAP Timeout

e  Send Email- Successful Connection

Input

To: samiasherwani@hotmail.com
SMTP Server: 210.56.8.10

Output

Email Sent Successfully.

o Send Email- Server not running

Input

To: samiasherwani{@hotmail.com
SMTP Server: 210.56.8.11

Ouiput

Unable to connect to server.,

o Send Email- Invalid Email Address

Input

To: samia
SMTP Server: 210.56.8.10

Output

No user
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e Receive Email- Successful Connection

Input

User Name: samia07@isb.comsats.net.pk
Password: ****
SMTP Server: 210.56.8.10

QOutput

Fmails Recelved

» Receive Email- Server not running

input

User Name: samia07@isb.comsats.net.pk
Password: **¥*
SMTP Server: 210.56.8.11

Output

{Inable o connect to server.

» Receive Email- Incorrect Username or password

Input

User Name: samial 23@isb.comsats.net.pk
Password: ****

SMTP Server; 210.56.8.10

Output

Unable to connect to server.

e Debugging using Cross Compiler

Input

The TCPIP Scheduler was compiled using the Keil’s Cross Compiler.

Quiput

Compilation Successful, Debugging Successful
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8.16 Conclusion

Collaborative Multitasking is proposed for the processors or micro-controllers, which do not
have built-in multitasking support. The TCP/IP stack developed by the use of this technique
is tested with SMTP/POP application and also compiled on Keil’s cross compiler for
embedded system support. The results are positive. As the whole stack works in one thread,
so it does not require multitasking support in target processor. Hence the research is

successiil,
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A. User Manual — Real Time Scheduler for Transport Protocols

Al. Data Tracing View

This screen shows the current activities at different layers of TCP/IP stack.
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A2, Simaulation View

o Internet Dialup Screen

The main screen of simulation view provides the facility to connect to an ISP by the use of ‘Dial
option’ (CTRIL +D), and to change ISP and email server information by the use of ‘Setup

Option” (CTRLAS).

~~fnternet Diajup--

8- Dial
{ - Compose Message
238 - Betep

[D}Dial  [C]Comp [S}Setup

I DataTracing View | Sinutation view J/isg “

Reaty
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¢ Setup Option

Using the setup option, the ISP and e-mail server settings can be altered.

2y8 - P8P Zetiings
E - Mail Ssttings

{8 Back [S]ISP  [F]Email
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o ISP Settings

Here information such as ISP Phone Number, User name and Password is provided.

fle Edt View Help

'3 ' g
--1 8F Bettings- -
y>Phene Ro) 13111334

Ares Code:

Country Code:

User Name: sholB3%12§
pagswrg: AEXETETRE N

[8] Bave [£] Cancel
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» Mail Settings

Here information such as SMTP/POP Server IP address, POP User name and Password is
provided.

--E-Mail Setiings--
SNTH Server Name: 210,58 8.1%

SMTP Part Ro: 25

P2POPY Server Maee: 210.56.1. 10

POP3 Pezt Ne: 118

| MAPE Szrver Kame: |
| MAP4 Port Ne: 143

User MName: samiaf?

?asswrd: EETEATEEAER

[§] Save {£]fancel

Tiata Trasina View | Sviation View § 1 Vi
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» Dial Option

The ‘Dial option” (CTRL +D) present on the Internet Dialup screen is used to connect the
application to an ISP using Real Time Scheduler for TCP/IP.

iniernel Biainp- o .
D - Dial
{ - fompose Message
§ - Selup
(D] Disl {C]Comp [S]Setup

D Trag ¥
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o Email Menu

As soon as the application connects to the ISP, the Email menu displays on the screen. With the
help of this menu, email messages can be composed and the emails can be retrieved,

1. Compose message option is used to compose and send an email.

2. Message index displays the list of messages present in inbox.

3. Mail settings option is used to change default email settings.

4. Disconnect option is used to exit.

- Nsin Menu- -
P>C - Conposs Message
1 G- Message Index
E - Meil Setiings
N - Dfsconnect

PCiComp |G Myl dx [5] Setup

[ Bala Trecrg View 114

Ready
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Appendix A User Manual

» Compose Message

This option is used to send an email.

--{empoge fness&ge-—
To: samiaB?@ sh. comsats. net. pk
R

Subiect: Yesl message

>3-~ Hessage Yexl --
Helbo, . . This is » tes! message

sending Mait Dsta
{5 8ead  [ClCancel [F]Ful Scr

Uiata Trating View } Simalat

Hea:
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o  Message Index

This option is used fo retrieve incoming email messages,

=

-~ Message Index--

Connecting with Server
i¥]V¥iew §BjHack |NjNxtPg [P]PrvPg

Data Trating Vet

Rasds
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A3. lLog View

It shows the activities related to Task Queues in the scheduler.

nukisar oAp Aree bwd

e 1w Zoew Bul

Bhgsey oA Tnse BUC

rsder 7 OER Ares W

ot 4 o2 Skee bl

wr

Ay ir Ires hunp

nitr A g frap bl

P

I TN i3 feee bul
aEAAT 3 XE dvae BaE

gy % e fraw hal

T amar{OieF TCRER: atr LEReaie{D, Ry

L C-E I Tl ol s .4 aey titoaix{l, 2is

[ ia¥ VBRER; .u-k_!'x faxixiz, I1;

£ fIT<F_UhPIN: 2eT_titoNield, ¢

£ _manklieF PR st I0SEEN4,;

I_:mmiﬁ'}-l" _}?Eﬂ; mmiamms,z.;;

£l <F_BECUP: sen_thlominle, 21

e TN pREIRY st thtoeis{t,. 3

HEETTE RIS L dek Frlodieel, 2y:
1 DwsTratingew | Sindatonview: - Lagh
gpam’mmwm,w i - -

2 . i
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Appendix B Development Environment
B. Development Environment
B-1. Hardware Specification
1. Pentium 4 Processor
2. 56K External Serial Modem
3.  Telephone line and a valid ISP Connection
B-2. Software Specification
1. Windows 2000/Xp for Simulation Environment
2. Cand Assembly for layer implementation
3. C++ for interface application
4. MFC for simulation GUI
5. Keil’s C compiler for embedded system support
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Abstract: Real-Tiume Operating Systems {(RTOS) ocurrently available in industry, for embedded systems,
require multifasking support in the targeted processor. The category of such operating systems is kaown as
Pre-emptive Multitasking Kerels. However multitasking support is not provided by all processors. We have
developed multitasking scheduling technique (Collaborative Multitasking} for the processom or
microcontroflers which de not have built-in multitasking support such as support for context switching, for

example, 89C51 Microcontroller and 89C352.

Key words: Collaborative multitasking, context switching, embeddad systems, microcontroliers, real time
operating systern, real time scheduling, TCPIP suite

INTRODUCTION

In the modern age, the intelligence of computing
power has been infegrated mto every device and gadget,
resulting 1 embedded systems. An embedded system
refers to a deviee with computer logie on a chip inside it,
typically counsists of a single-board microcomputer with
software 1 ROM designed to perform a dedicated
function. Such systems are structured in a different
marmer a8 compared to high performance desktop
systems. Their designing issues mchude: Low cost,
precictability, responsiveness (Seo eof of., 1998) and
temporal scouracy (Kopetz and Octsenretter, 1987).

Embedded systems nommally exist as part of a bigger
systern and are constructed with the least powerfd
orocessors thal can meet the basic functional and
performance requirements so that the manufacturing cost
of the equipment can be lowered. As disoussad by
Agarwal and Bhatn (2004), dus to absence of general
features and extremely tight design constraints, vnlike in
conventional  systems;, the developers of embedded
systerns have to work with complex algorithms to manage
resources in the most optimized manner.

Scheduting 13 a mechanism that determines which job
has to be executed from the pool of jobs in system on the
basis of the scheduling algorithm implemented, Whenever
multiple tasks share common processing resources, they
require their states to be stored at the time of process
switching, so that these can be restored afterwards. The
state includes all the registers that the process may be
using, especially the program cowster, plus any other

operating system specific data that may be necessary,
Often, all the dats that is necessary for state is stored in
one dafe stuctire, called process confrol block.
According to Nacul and Givargis {2005}, in order to
support multitasking on a system, an opesating system
tayer is meeded, which it is not commonly available in
esbedded systems due fo lack of sufficient memory.
Fxamples are PIC (Huang, 2005} by Microchip and 8651
{Calcutt et al., 1998) by Philips. These microcomirollers are
cheap enough to give cost offective devices. If these
micro-controllers are being planned to be utilized for
handling complex multitasking scenarios, it i3 only
possible if handled programmatically within embedded
software design.

REAL-TIME SCHEDULER: COMMON
PRACTICE

Ponald Gillies defined real-time system as foliows:

o A real-fisme system is one in which the correciness of
the computations not only depends upon the logical
cogrectness of the computation but also upon the
time at which the result is produced,

Realtime systems perform a number of tasks at g
time. The Resource Manager allocates processor fime to
each task according fo the schedule in such a way that
the tasks appear to be parallel. The process of choosing
a task to grant resources to, that is, Central Processing
Unit #me is called Real-Time Scheduling as defined by
Liu and Lee {2003},
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International Islamic University, Islamabad, Pakistars Tal: {92) 03345046538
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Preemptive multitasking: A typical strategy o implement
real-time scheduling is called preemptve multitasking, In
oreemplive multitasking, operating system uses some
oriterfa to decide how long to allovate to any one task
before giving another task a tum fo we the operating
svstemn. The act of taking control of the operating system
from one task and giving it to another task is called
preempting.

To perform resource managomernt Using proempiive
multitaskmg, the resource manager has to perform two
cluties:

o Context Switching
e Task Scheduling

When a task 1s in runmng state ancd the time slice has
been expired such as timer evest, the scheduler is mvoked
whieh decides which task deserves to be given next time
slice using is scheduling algorithm based on priority
system. Fnally, it performs comtext switching, replaces
first task by second task and lets the later task to perform
is duty. Figure 1 explains the scenanio,

Limitations i preempiive multitasking: Preempiive
multitasking is implemented on a processor or a Micro-
comfroller, which has bwlt in support for context
switching and a periodic task trigger on which event
scheduler has to be mwoked. A common criterion is
simply elapsed ime: the fimer implemented i hardware is
prograsuned to be Invoked o expiration of a fime slice,
The timer generates an interrupt, which initiates an
interrupt sesvice rowtine. In imterrupt service routine,
scheduling is performed and it 15 decided which task 18 to
be granted processor next The state of currently
executing task 1s saved and the context of the next task is
toaded into the CPU. After 18R, the CPU starts executing
the newly loaded task. Bo. 1o perform iask switching, the
CPU must have spare context registers, called ‘Register
Banks® as shown in Fig. 2,

Cordext
Fask 3 switehing
Tak2 | | cPu
Reginter benk M
Fask 3
Schoduler

Fig. I: Real time scheduling

N Schedder  Sohedulse  Scheduler
/ + 4 3

Tonk }

=~

Frmcation

sk 7

~

Haseartion

sk 3

v

Faasution

N
5 60

L3 Zo 35 49 3
“Thne {me)

Fig. 2: Preemptive multitasking

High fevel processors, such ag, Intel 8086, Intel R088,
intel BO386, Intel 80486, Pentium and Pentiur Pro support
pre-emption. There are number of micro-controllers that
provide built in hardware support for contest switching
and periodic task trigger, for example C166 and C167 by
Siemens (2000).

COLLABORATIVE MULTITASKING
APPROACH

As explained earlier, the multitasking performed by
contexi switching requires very particudar hardware
suppert, which is not avaiiable In tiny micro-controflers
such as Tntel BOCS] and 80CS2.

This article gives a programming model to implement
multiasking m reaitime tasks, for example, numing a
TCPAP based application. Collaborative muititasking
model gives the ides to address fundamental issues of
runaing preemptive multitasking kernel on tiny micro-
coniroilers.

Tasks collaboration: In collaborative multitasking, tasks
{any user process nming on that coniroller) coliaborats
with each other in 2 way that each task executes a part of
its route, saves its state locally and then releases system
resources voluntarily.

In this system, cach task is represented by fumction
or rodine, In this ides, no task is forced to preempt
resources from it A task returns after executing & part of
i, saves its state and gives conirol to other task waiting
for resources as shown in Fig. 3. The sequence executes
1 a continuous fashion.

For example, we have three tasks. First Task is
Display task whose responsibility is controt LCD display.
Second task is Comm tesk whose responsibility is fo
receive any data from comport and process it and the third
one is KeyPad task which scans the keys and gets any
activity of key pressing. Now these three tasks will
collaborate with each other. When Display fimaotion will
be called, it will scan al the display memory and will
refresh it on the screen in ome cycle, After that it wili
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Thak 1
cru ( k2 Pt cips
) / device
G /
Tak 3

Fig. 3: Collaborative mulhitasking

return back and Cormrm task will be fnvoked. In a single
ovele, Coram will scan its comport, receive any ncarsing
watting data and process it

After that it will retirn back and then finally KeyPad
task will be invoked. In a cyele, KeyPad will scan ali the
keys and will refresh keypad memory indicating any key
press event. This sequence will execute continmiously.

mran £}
{ Init3ys { )
While (13
{ Display ()
Comm { ),
KeyPad ( 3,
}
QustSys { %
;

The shanng of resources among the tsks is not
hased on time slices, but sharing is done on work basis or
number of instructions. Every task divides its whole work
mito sub-tasks. Whenever a task s given control of CPU,
it executes one of its sub-tasks and retums the control. In
next allocation of CPL, it executes next sub-task.

For example, we have an embedded system which has
to execute three tasks: Task 1, Task 2 and Task 3
sunultaneowsly. Task 1 15 fmther divided into twee
subtasks: subtask 1, subtask 2 and subtask 3. Task 1
completes, as each subtagk executes ones.

While {1}

3 Task? ()
TaskZ (¥,
Task3 ()

}

Taskl ()

H static mt nStat=0,
switch {(nStat)
{ case O Subtaski(), nStat=1; break;
case b Subtask2(); nSta=2; break;
case 2 Subltask3(); nStai=0; break;
}

Buaffor pool
Pk 1 “Falie 2

s

Fig. 4; Inter-process communication

The scheduler is designed such that every sk
executes #s one sub<ask in i#s turn and refums back so
that next task can be executed. In above example, Task 1
completes in three iterations. In this way, all the tasks are
executed simultaneously because of their collaboration
with each cther.

Queues for inter-process communication: Inter-process
communication is always an important issue when
designing scheduler for resl-time embeddad systems. Inn
collaborative multitasking programming model, every
task has its incoming and outgoing FIFO and also there is
a shared buffer pool. Whenever & task wants to send
data to another task, it acquires a free buffer from buffer
pool, copies the data in buffer and puts the index of buffer
in incoming FIFO of their task. Every task polis its
incoming FIFO and processes the data, if present, as
shown in Fig. 4

Task priorities: Task pricrity is very important concept
i multitasking system. The priority represents the relative
mnportance of a task at run time. When three tasks are
running af a time, then the process of determining which
task deserves CP1J more is called priority.

For example, we have Task 3 that is more important
than Task i and Task 2. Then i3 priority can be
implemented, as its iterations can be inereased relative to
other tasks.

While (

{

Taskl (4);

Task2 (1%

Task3 (2},

¥OTask (1),

H

void Task] {nt nPriosity)
{
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i i teration=(;
While (nlteration<nPriority)

i
3

fexecute subtasks

nHerationt-+;

t

i

The prionity of a task can be determined at run-time and i
can be set according to the sitvation,

Lxample: Here, we deseribe the design and development
of real-time scheduler for tramsport protocols, such as
TCPAP. The TCPAP protocol stack is implemented such
that each layer is represented by a task.

INIT_STACK;
WHILE (QUIT)
{

APP_TASK;
TCP_TASK;
UDP_TASK,
P TASK;
COM_TASK,
H

The main thread initializes all the layers, distributes
the time slices by calling respective processes. Bach laver
works in two directions, that is, # processes data from
upper as well as lower layer. A separate buffer bank is
reserved for data 1o be processed, m the form of awo-
dimmensional array. Bach buffer has following associated
atiributes;

¢ Name of the buffer (Free, Temporary, PPP Down, PPP
Up, 1P Down, [P Up, UDP Up, UDP Down, TCP Up,
‘TCP Down, Applicationt Down, COM Up)

o Command (No command, dial, ping, valid IP frame,

et}

Message flags associated with each process control
sub-processes.  Hach layer has two Data Queues
assoctated with i, one for each direction: Layer up Job
(Queue, that contains pointer to the buffer received
from upper layer and s ready to be processed
according to the command associated with the buffer and
status  of the message flag associated with that
direction and Layer down Job Queue, for data received
from down layer. These fob Queues are responsible for
nter-process commurtcation,

Whenever an application wans to perform a TCPAP
related task, it gets a buffer from buffer bank, adds data
to buffer, associates 2 command with buffer which

indicates what has to be done with the data in buffer and
passes buffer reference to the Layer Up Job Quene of the
fower layer. .

On turn of task associeted with the next layer, the
meoming job queue is checked and the buffer i
processed according to the command, flags are set and
the nffer reference is added to Layer Up Job Queus of
the next layer. Next layer behaves in same way, unti data
reaches COM layer and is written to COM port.

Tt is not necessary for a task © complete its iob in
single Heration. So, each fask has to maintam ifs state, so
that it can continue from the same point in next iteration.
For that, each layer performs part of its task, saves its
state in buffer and keeps the track of previcus work with
the help of flags associated with each task.

CONCIASIONS

This TCPAP stack iz tested with SMTP/POP3
application and alsc compiled on Keid Cross compiler for
embedded system support. As the whole stack works in
one thread, so it does ot roquire multitasking support in
target processor. Henoe the research is successful.
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