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Abstract 

Abstract 

Real-Time Operating Systems (RTOS) currently available in industry, for embedded 

systems, require multitasking support in the targetted processor. The category of such 

operating systems is known as Pre-emptive Multitasking Kernels. But multitasking support 

is not provided by all processors. Our aims is to develop multitasking scheduling technique 

(Collaborative Multitasking) for the processors or microcontrollors which do not have 

built-in multitasking support like support for context switching, for example, 89C51 

Microcontroller, 89C52. 
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Chapter 1 Introduction 

1. Introduction 

Real-Time Operating Systems (RTOS) currently available in industry, for embedded 
systems, require multitasking support in the targetted processor. The category of such 
operating systems is known as Pre-emptive Multitasking Kernels. But multitasking 
support is not provided by all processors. Our aims is to develop multitasking scheduling 
technique (Collaborative Multitasking) for the processors or microcontrollors which do 
not have built-in multitasking support (that is, support such as for context switching), for 
example, 89C5 1 Microcontroller, 89C52. 

As described above, most of embedded system processors and micro-controllers do not 
have multiprogramming support when used in real time environment, while on the other 
hand, there are some software routines (for example, TCPIIP) which need very efficient 
level of multiprogramming in order to execute different tasks, for example, TCP protocol, 
IP Protocol . So, there is need of a multiprogramming scheduler to hold the burden of 
such routines in real time environment. 

Commonly used Real Time Operating Systems (for example, CMX RTOS, PCOS) use 
pre-emptive multitasking as scheduling approach to execute multiple tasks 
simultaneously. 

1.1 Preemptive Multitasking 

Preemptive multitasking is task in which a computer operating system uses some criteria 
to decide how long to allocate to any one task before giving another task a turn to use the 
operating system. The act of taking control of the operating system from one task and 
giving it to another task is called preempting. A common criterion for preempting is 
simply elapsed time (this kind of system is sometimes called time sharing or time 
slicing). In some operating systems, some applications can be given higher priority than 
other applications, giving the higher priority programs control as soon as they are 
initiated and perhaps longer time slices. 

Restrictions: 

Multitasking support in hardware or processor is needed 
High processing speed required 

= High cost 

The micro controllers widely used in embedded systems such as 89C51, 89C52, PIC 
Controller, CMX 851, do not have support for pre-emptive multitasking. Our proposed 
system is to introduce a new multitasking approach called collaborative multitasking in 
order to execute tasks or routines for transport protocols. 

-- 
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Chapter I Introduction 

The proposed approach is different from conventional multitasking (Preemptive) in way 
that it does not require any system resources and support, that is, this approach can be 
implemented in tiny micro controllers, which are not basically meant for running multiple 
tasks at same time. 

1.2 Collaborative Multitasking 

In collaborative multitasking, tasks (any user process running on that controller) 
collaborate with each other in a way that each task executes a part of its route and then 
releases system resources voluntarily. In this system, each task is represented by function 
or routine. A task returns after executing a part of it, saves its state and gives control to 
other task waiting for resources. This sequence executes in a continuous fashion. 

Following is an example of implementation of proposed collaborative multitasking 
approach. Here, we want to perform three tasks at same time. First Task is Display task 
whose responsibility is control LCD display. Second task is Comm task whose 
responsibility is to receive any data from comport and process it, and the third one is 
KeyPad task which scans the keys and gets any activity of key pressing. 

Now, these three tasks will collaborate with each other. When Display function will be 
called, it will scan all the display memory and will refkesh it on the screen in one cycle. 
After that it will return back and Comm task will be invoked. In a single cycle, Cornm 
will scan its COM port, receive any incoming waiting data and process it. After that it 
will return back and then finally KeyPad task will be invoked. In a cycle, KeyPad will 
scan all the keys and will refresh keypad memory indicating any key press event. This 
sequence will execute continuously. 

For each layer of TCPIIP, there will be a separate task. All the layers will work in a 
collaborative fashion. The layers will interact with other layers through job queues. In 
order to hand over data to other layer, each layer will place the job in queue of next layer. 

Real Time Scheduler for Transport Protocols 2 
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In a cycle, each layer will process one incoming and one outgoing packet. In total, five 
simultaneous collections will be supported. 

1.3 Real Time Behavior of the System 

Timeliness is one of the most important properties of real-time systems. Formal proofs, 
static analysis and scheduling theory which aim to guarantee timeliness in dependable 
real-time systems require full knowledge of worst-case execution times, load patterns, 
task dependencies, and arrival rates of requests. Such information is seldom available, 
and if those techniques are applied they must often be based on estimations that cannot be 
guaranteed to be correct. 

For example it has become increasingly complex to model a state-of-the-art processor in 
order to predict timing characteristics of tasks. 

1.4 Aim and Objectives 

Scheduler is designed keeping in mind following objectives: 

Collaborative in nature, that is, no need of any multitasking support. 
rn Portable to any platform C 16611 67, Intel 805 1, PIC Controller, CMX 85 1 
rn RTOS integration will be supported 
rn Real time system support 
rn Five simultaneous connections will be supported 
rn Modular approach 

1.5 Core Operating System of TCPIIP Stack 

The core operating system of this TCPJIP stack depends on the processes to regularly 
relinquish control of the operating system so other processes have the opportunity to gain 
their time slices. The main thread initializes all the layers, distributes the time slices by 
calling respective processes. 

Each layer works in two directions, that is, it processes data from upper as well as lower 
layer, as shown in the figure 1.1. 
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Application Layer 

PPP 

Figure 1.1: Operations performed at different layers 
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Each layer has two task queues associated with it, one for each direction: 

Layer up task queue, that contains pointer to the buffer received from upper layer 
and is ready to be processed according to the command associated with the buffer 
and status of the message flag associated with that direction. 

Layer down task queue, that contains pointer to the buffer received from upper 
layer. Message flags associated with each process to control sub-processes. 

1.6 TCPIIP Application Layer APIs 

In this section, the expected application layer APIs will be discussed. 

1.6.1 Create Socket 

This function Searches for a free socket and returns no of the socket and returns -1 if no 
socket is available. 

1.6.2 Free Socket 

This function marks a currently occupied socket as free. Calling this function 
makes the currently specified socket as free. 

It takes one parameter, which is identifier of the socket, which is to be freed and 
returns 1 on successfully freeing the socket and returns 0 on failure. 

1.6.3 Create TCP Connection 

This function makes a currently occupied socket connected with remote host 
using TCP services and allows the application to exchange data. 

This function takes the socket identifier, which is going to be connected as 
parameter. 

The function returns 1 on successful connection with remote host and returns 0, if 
connection fails. 
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The function returns 1 on successfbl connection with remote host and returns 0, if 
connection fails. 

1.6.4 Finish TCP Connection 

This function makes a currently occupied socket disconnected with remote host. 

This function takes the socket identifier, which is going to be disconnected as 
parameter. 

The function returns 1 on successfully disconnection with remote host and returns 
0, if disconnection fails. 

1.6.5 Send TCP Data 

This function sends a buffer on a currently connected TCP connection and returns 
1 on successful transmission of packet and returns 0 on failure. 

This function takes two parameters: 

a. Socket Identifier 
b. Buffer number to be transmitted 

1.6.6 Receive TCP Data 

This function receives a buffer of data from Currently Active TCP Connection. 

This function halts until a buffer arrives at the socket. 

The function takes socket identifier as parameter and returns the number of buffer 
received. 

If connection is dropped some other exception occurs then this function returns 
with invalid (- 1) buffer number. 
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1.7 Protocols Implementation 

The following protocols are implemented as per their RFC given below: 

TCP Rfc793 

IP Rfc79 1 

UDP Rfc768 

PPP Rfc1661 

ICMP Rfc792 

SMTP Rfc82 1 

POP3 Rfc1939 
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Chapter 2 Communication Protocols 

2. Communication Protocols 

The Internet protocol suite is a set of communications protocols that implement the protocol 
stack on which the Internet runs. It is sometimes called the TCPIIP protocol suite, after the two 
most important protocols in it: the Transmission Control Protocol (TCP) and the Internet 
Protocol (IP). 

The Internet protocol suite can be described by analogy with the OSI model, which describes the 
layers of a protocol stack, not all of which correspond well with internet practice. In a protocol 
stack, each layer solves a set of problems involving the transmission of data, and provides a well- 
defined service to the higher layers. Higher layers are logically closer to the user and deal with 
more abstract data, relying on lower layers to translate data into forms that can eventually be 
physically manipulated. [ l ]  

TCPIIP stack is comprised of five layers. Different protocols can be resided at different layers. 
1. Application Layer (for example, SMTP, POP3 implemented) 
2. Transport Layer (for example, TCP, UDP implemented) 
3. Internet Layer (for example, IP, ICMP implemented) 
4. Data Link Layer (for example, PPP implemented) 
5. Physical Layer (for example, Physical Media, encoding techniques ) 

2.1 Transmission Control Protocol 

Transmission Control Protocol (TCP) is a connection-oriented, reliable-delivery byte-stream 
transport layer communication protocol. It is intended for use as a highly reliable host-to-host 
protocol between hosts in packet-switched computer communication networks, and in 
interconnected systems of such networks. The TCP interfaces on one side to user or application 
processes and on the other side to a lower level protocol such as Internet Protocol. [2] 

Applications send streams of 8-bit bytes to TCP for delivery through the network, and TCP 
divides the byte stream into appropriately sized segments (usually delineated by the maximum 
transmission unit (MTU) size of the data link layer of the network the computer is attached to). 
TCP then passes the resulting packets to the Internet Protocol, for delivery through an internet to 
the TCP module of the entity at the other end. TCP checks to make sure that no packets are lost 
by giving each byte a sequence number, which is also used to make sure that the data are 
delivered to the entity at the other end in the correct order. The TCP module at the far end sends 
back an acknowledgement for bytes which have been successfully received; a timer at the 
sending TCP will cause a timeout if an acknowledgement is not received within a reasonable 
round-trip time (or RTT), and the (presumably lost) data will then be re-transmitted. The TCP 
checks that no bytes are damaged by using a checksum; one is computed at the sender for each 
block of data before it is sent, and checked at the receiver. Fgure 2.1 explains TCP header 
format. 
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TCP Header Format 

132 / Sequence Number ------ 
64 / Acknowledgement Number 

F(DataOffset/ReservedV 
128 Checksum 

160 Options (optional) 

192 [options (cont.) '7 
224 Data 

'_- ' 
Figure 2.1 TCP Header 

Sequence Number: 32 bits 
The sequence number of the first data octet in this segment (except when SYN is 
present). If SYN is present the sequence number is the initial sequence number (ISN) and 
the first data octet is ISN+l. 

Acknowledgment Number: 32 bits 
If the ACK control bit is set this field contains the value of the next sequence number the 
sender of the segment is expecting to receive. Once a connection is established this is 
always sent. 

Control Bits: 6 bits (from left to right): 
URG: Urgent Pointer field significant 
ACK: Acknowledgment field significant 
PSH: Push Function 
RST: Reset the connection 
SYN: Synchronize sequence numbers 
FIN: No more data from sender 

Window: 16 bits 
The number of data octets beginning with the one indicated in the acknowledgment field, 
which the sender of this segment is willing to accept. 

Checksum: 16 bits 
The checksum field is the 16 bit one's complement of the one's complement sum of all 
16-bit words in the header and text. If a segment contains an odd number of header and 
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text octets to be check summed, the last octet is padded on the right with zeros to form a 
1 &bit word for checksum purposes. 

Urgent Pointer: 16 bits 
This field communicates the current value of the urgent pointer as a positive offset fiom 
the sequence number in this segment. The urgent pointer points to the sequence number 
of the octet following the urgent data. This field is only be interpreted in segments with 
the URG control bit set. 

Options: variable 
Options may occupy space at the end of the TCP header and are multiple of 8 bits in 
length. All options are included in the checksum. An option may begin on any octet 
boundary. There are two cases for the format of an option: 

Case 1: A single octet of option-kind. 
Case 2: An octet of option-kind, an octet of option-length, and the actual option-data 
octets. 

The option-length counts the two octets of option-kind and option-length as well as the 
option-data octets. Note that the list of options may be shorter than the data offset field 
might imply. The content of the header beyond the End-of-Option option must be header 
padding (i.e., zero). A TCP must implement all options. 

Currently defined options include (kind indicated in octal): 

Table 2.1 Options in TCP Header 

/ Kind ( Length I Meaning 

0 

I Maximum Segment Size I 
1 

Padding: variable 
The TCP header padding is used to ensure that the TCP header ends and data begins on a 32 
bit boundary. The padding is composed of zeros. [2] 

- 

2.1.2 Protocol Operation 
TCP connections contain three phases: connection establishment, data transfer and connection 
termination. A 3-way handshake is used to establish a connection. A four-way handshake is used 
to disconnect. During connection establishment, parameters such as sequence numbers are 
initialized to help ensure ordered delivery and robustness. 

End of option list. 

- 
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Connection establishment (3-way handshake) 
While it is possible for a pair of end hosts to initiate a connection between them 
simultaneously, typically one end opens a socket and listens passively for a connection 
from the other. This is commonly referred to as a passive open, and it designates the 
sewer-side of a connection. The client-side of a connection initiates an active open by 
sending an initial SYN segment to the server as part of the 3-way handshake. The server- 
side should respond to a valid SYN request with a SYNIACK. Finally, the client-side 
should respond to the server with an ACK, completing the 3-way handshake and 
connection establishment phase. 

Data transfer 
During the data transfer phase, a number of key mechanisms determine TCP's reliability 
and robustness. These include using sequence numbers for ordering received TCP 
segments and detecting duplicate data, checksums for segment error detection, and 
acknowledgements and timers for detecting and adjusting to loss or delay. 

During the TCP connection establishment phase, initial sequence numbers (ISNs) are 
exchanged between the two TCP speakers. These sequence numbers are used to identify 
data in the byte stream, and are numbers that identify (and count) application data bytes. 
There are always pair of sequence numbers included in every TCP segment, which are 
referred to as the sequence number and the acknowledgement number. A TCP sender 
refers to its own sequence number simply as the sequence number, while the TCP sender 
refers to receiver's sequence number as the acknowledgement number. To maintain 
reliability, a receiver acknowledges TCP segment data by indicating it has received up to 
some location of contiguous bytes in the stream. An enhancement to TCP, called 
selective acknowledgement (SACK), allows a TCP receiver to acknowledge out of order 
blocks. 

Through the use of sequence and acknowledgement numbers, TCP can properly deliver 
received segments in the correct byte stream order to a receiving application. Sequence 
numbers are 32-bit, unsigned numbers, which wrap to zero on the next byte in the stream 
after 232-1. One key to maintaining robustness and security for TCP connections is in the 
selection of the ISN. 

A 16-bit checksum, consisting of the one's complement of the one's complement sum of 
the contents of the TCP segment header and data, is computed by a sender, and included 
in a segment transmission. (The one's complement sum is used because the end-around 
carry of that method means that it can be computed in any multiple of that length - 16-bit, 
32-bit, 64-bit, etc - and the result, once folded, will be the same.) The TCP receiver re- 
computes the checksum on the received TCP header and data. The complement was used 
(above) so that the receiver does not have to zero the checksum field, after saving the 
checksum value elsewhere; instead, the receiver simply computes the one's complement 
sum with the checksum, and the result should be -0. If so, the segment is assumed to have 
arrived intact and without error. 
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Note that the TCP checksum also covers a 96-bit pseudo header containing the Source 
Address, the Destination Address, the Protocol, and TCP length. This provides protection 
against misrouted segments. The TCP checksum is a quite weak check by modem 
standards. Data Link Layers with a high probability of bit error rates may require 
additional link error correction/detection capabilities. If TCP were to be redesigned 
today, it would most probably have a 32-bit cyclic redundancy check specified as an error 
check instead of the current checksum. The weak checksum is partially compensated for 
by the common use of a CRC or better integrity check at layer 2, below both TCP and IP, 
such as is used in PPP or the Ethernet frame. However, this does not mean that the 16-bit 
TCP checksum is redundant: remarkably, surveys of Internet traffic have shown that 
software and hardware errors that introduce errors in packets between CRC-protected 
hops are common, and that the end-to-end 16-bit TCP checksum catches most of these 
simple errors. This is the end-to-end principle at work. Acknowledgements for data sent, 
or lack of acknowledgements, are used by senders to implicitly interpret network 
conditions between the TCP sender and receiver. Coupled with timers, TCP senders and 
receivers can alter the behavior of the flow of data. This is more generally referred to as 
flow control, congestion control andlor network congestion avoidance. TCP uses a 
number of mechanisms to achieve high performance and avoid congesting the network 
(i.e. send data faster than either the network, or the host on the other end, can utilize it). 
These mechanisms include the use of a sliding window, the slow-start algorithm, the 
congestion avoidance algorithm, the fast retransmit and fast recovery algorithms, and 
more. Enhancing TCP to reliably handle loss, minimize errors, manage congestion and go 
fast in very high-speed environments are ongoing areas of research and standards 
development. 

TCP window size 
The TCP receive window size is the amount of received data (in bytes) that can be 
buffered during a connection. The sending host can send only that amount of data before 
it must wait for an acknowledgment and window update from the receiving host. The 
Windows TCPIIP stack is designed to self-tune itself in most environments, and uses 
larger default window sizes than earlier versions. 

Window scaling 
For more efficient use of high bandwidth networks, a larger TCP window size may be 
used. The TCP window size field controls the flow of data and is limited to 2 bytes, or a 
window size of 65,535 bytes. 
Since the size field cannot be expanded, a scaling factor is used. TCP window scale is an 
option used to increase the maximum window size from 65,535 bytes to 1 Gigabyte. 
The window scale option is used only during the TCP 3-way handshake. The window 
scale value represents the number of bits to left-shift the 16-bit window size field. The 
window scale value can be set from 0 (no shift) to 14. 

Connection termination 
The connection termination phase uses a four-way handshake, with each side of the 
connection terminating independently. When an endpoint wishes to stop its half of the 
connection, it transmits a FIN packet, which the other end acknowledges with an ACK. 

-- 
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Therefore, a typical teardown requires a pair of FIN and ACK segments from each TCP 
end-point . 
A connection can be "half-open", in which case one side has terminated its end, but the 
other has not. The side, which has terminated can no longer send any data into the 
connection, but the other side can. 

TCP ports 
TCP uses the notion of port numbers to identify sending and receiving applications. Each 
side of a TCP connection has an associated 16-bit unsigned port number assigned to the 
sending or receiving application. Ports are categorized into three basic categories: well 
known, registered and dynamiclprivate. The well-known ports are assigned by the 
Internet Assigned Numbers Authority (IANA) and are typically used by system-level or 
root processes. Well-known applications running as servers and passively listening for 
connections, typically use these ports. Some examples include: FTP (21), TELNET (23), 
SMTP (25) and HTTP (80). Registered ports are typically used by end user applications 
as ephemeral source ports when contacting servers, but they can also identify named 
services that have been registered by a third party. Dynamiclprivate ports can also be 
used by end user applications, but are less commonly so. Dynamiclprivate ports do not 
contain any meaning outside of any particular TCP connection. There are 65535 possible 
ports officially recognized. 

2.2 Unreliable Datagram Protocol 

The User Datagram Protocol (UDP) is defined to make available a datagram mode of packet- 
switched computer communication in the environment of an interconnected set of computer 
networks. This protocol assumes that the Internet Protocol is used as the underlying protocol. 
This protocol provides a procedure for application programs to send messages to other programs 
with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and 
duplicate protection are not guaranteed. [3] Fgure 2.2 explains UDP header format. 

2.2.1 UDP Header Format 

I Data 

Figure 2.2 UDP Header 

Source Port is an optional field, when meaningful, it indicates the port of the sending 
process, and may be assumed to be the port to which a reply should be addressed in the 
absence of any other information. If not used, a value of zero is inserted. 
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Destination Port has a meaning within the context of particular internet destination 
address. 

Length is the length in octets of this user datagram including this header and the data. 
(This means the minimum value of the length is eight.) 

Checksum is the 16-bit one's complement of the one's complement sum of a pseudo 
header of information from the IP header, the UDP header, and the data, padded with 
zero octets at the end (if necessary) to make a multiple of two octets. The pseudo header 
conceptually prefixed to the UDP header contains the source address, the destination 
address, the protocol, and the UDP length. This information gives protection against 
misrouted datagrams. This checksum procedure is the same as is used in TCP. If the 
computed checksum is zero, it is transmitted as all ones (the equivalent in one's 
complement arithmetic). An all zero transmitted checksum value means that the 
transmitter generated no checksum. 

2.2.2 Protocol Operation 

The UDP header consists of only 4 header fields of which two are optional. The source and 
destination port fields are 16-bit fields that identify the sending and receiving process. Since 
UDP is stateless and a UDP sender may not solicit replies, the source port is optional. If not 
used, the source port should be set to zero. The port fields are followed by a mandatory length 
field indicating the length in bytes of the UDP datagram including the data. The minimum value 
is 8 bytes. The remaining header field is a 16-bit checksum field covering the header and data. 
The checksum is also optional, but is almost always used in practice. 

Lacking reliability, UDP applications must generally be willing to accept some loss, errors or 
duplication. Some applications such as TFTP may add rudimentary reliability mechanisms into 
the application layer as needed. Most often, UDP applications do not require reliability 
mechanisms and may even be hindered by them. Streaming media, real-time multiplayer games 
and voice over IP (VoIP) are examples of applications that often use UDP. If an application 
requires a high degree of reliability, a protocol such as the Transmission Control Protocol or 
erasure codes may be used instead. 

Lacking any congestion avoidance and control mechanisms, network-based mechanisms are 
required to minimize potential congestion collapse effects of uncontrolled, high rate UDP traffic 
loads. In other words, since UDP senders cannot detect congestion, network-based elements such 
as routers using packet queueing and dropping techniques will often be the only tool available to 
slow down excessive UDP traffic. The Datagram Congestion Control Protocol (DCCP) is being 
designed as a partial solution to this potential problem by adding end host congestion control 
behavior to high-rate UDP streams such as streaming media. 

While the total amount of UDP traffic found on a typical network is often on the order of only a 
few percent, numerous key applications use UDP, including the Domain Name System (DNS), 
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the simple network management protocol (SNMP), the Dynamic Host Configuration Protocol 
(DHCP) and the Routing Information Protocol (RIP), just to name a few. [3] 

2.3 Internet Protocol (IP) 

The Internet Protocol (IP) is a network-layer (Layer 3) protocol that contains addressing 
information and some control information that enables packets to be routed. IP is primary 
network-layer protocol in the Internet protocol suite. Along with the Transmission Control 
Protocol (TCP), IP represents the heart of the Internet protocols. IP has two primary 
responsibilities: providing connectionless, best-effort delivery of datagrams through Internet; and 
providing fragmentation and reassembly of datagrams to support data links with different 
maximum-transmission unit (MTU) sizes. Fgure 2.3 explains IP header format. 

2.3.1 IP Packet Format 

Fourteen fields comprise an IP packet. The following discussion describes the IP packet fields 
illustrated in : 

Version: 4 bits 
The Version field indicates the format of the internet header. This document describes 
version 4. 

IHL: 4 bits 
Internet Header Length is the length of the internet header in 32 bit words, and thus 
points to beginning of the data. Note that the minimum value for a correct header is 5. 

Type of Sewice: 8 bits 
The Type of Service provides an indication of the abstract parameters of the quality of 
service desired. These parameters are to be used to guide the selection of the actual 
service parameters when transmitting a datagram through a particular network. Several 
networks offer service precedence, which somehow treats high precedence traffic as more 
important than other traffic (generally by accepting only traffic above a certain 
precedence at time of high load). The major choice is a three-way tradeoff between low- 
delay, high-reliability, and high-throughput. 

Bits 0-2: Precedence. 
Bit 3: 0 = Normal Delay, 1 = Low Delay. 
Bits 4: 0 = Normal Throughput, 1 = High Throughput. 
Bits 5: 0 = Normal Reliability, 1 = High Reliability. 
Bit 6-7: Reserved for Future Use. 
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I4 32 bits 

I 

ldentifkatio n F@s Fragment offset 

Destination a d d m  

Options (+ padding) 

Data (variatde) 

Figure 2.3 IP Header 

Total Length: 16 bits 
Total Length is the length of the datagram, measured in octets, including internet header 
and data. This field allows the length of a datagram to be up to 65,535 octets. Such long 
datagrams are impractical for most hosts and networks. All hosts must be prepared to 
accept datagrams of up to 576 octets (whether they arrive whole or in fragments). It is 
recommended that hosts only send datagrams larger than 576 octets if they have 
assurance that the destination is prepared to accept the larger datagrams. The number 576 
is selected to allow a reasonable sized data block to be transmitted in addition to the 
required header information. For example, this size allows a data block of 512 octets 
plus 64 header octets to fit in a datagram. The maximal internet header is 60 octets, and a 
typical internet header is 20 octets, allowing a margin for headers of higher level 
protocols. 

Identification: 16 bits 
An identifying value assigned by the sender to aid in assembling the fragments of a 
datagram. 

Flags: 3 bits 
Various control flags are: 

Bit 0: reserved, must be zero 
Bit 1 : (DF) 0 = May Fragment, 1 = Don't Fragment. 
Bit 2: (MF) 0 = Last Fragment, 1 = More Fragments. 

Real-Time Scheduler for Transport Protocols 



Chapter 2 Communication Protocols 

Fragment Offset: 13 bits 
This field indicates where in the datagram this fragment belongs. The fragment offset is 
measured in units of 8 octets (64 bits). The first fragment has offset zero. 

Time to Live: 8 bits 
This field indicates the maximum time the datagram is allowed to remain in the internet 
system. If this field contains the value zero, then the datagram must be destroyed. This 
field is modified in internet header processing. The time is measured in units of seconds, 
but since every module that processes a datagram must decrease the TTL by at least one 
even if it process the datagram in less than a second, the TTL must be thought of only as 
an upper bound on the time a datagram may exist. The intention is to cause undeliverable 
datagrams to be discarded, and to bound the maximum datagram lifetime. 

Protocol: 8 bits 
This field indicates the next level protocol used in the data portion of the internet 
datagram. 

Header Checksum: 16 bits 
Checksum is on the header only. Since some header fields change (for example,, time to 
live), this is recomputed and verified at each point that the internet header is processed. 
The checksum algorithm is: 

The checksum field is the 16 bit one's complement of the one's complement sum of all 
16-bit words in the header. For purposes of computing the checksum, the value of the 
checksum field is zero. This is a simple to compute checksum and experimental evidence 
indicates it is adequate, but it is provisional and may be replaced by a CRC procedure, 
depending on further experience. 

Options: variable 
The options may appear or not in datagrams. They must be implemented by all IP 
modules (host and gateways). What is optional is their transmission in any particular 
datagram, not their implementation. In some environments the security option may be 
required in all datagrams. The option field is variable in length. There may be zero or 
more options. There are two cases for the format of an option: 

Case 1: A single octet of option-type. 
Case 2: An option-type octet, an option-length octet, and the actual option-data octets. 

The option-length octet counts the option-type octet and the option-length octet as well as 
the option-data octets. The option-type octet is viewed as having 3 fields: 

1 bit copied flag, 
2 bits option class, 
5 bits option number. 

The copied flag indicates that this option is copied into all fragments on fragmentation. 
0 = not copied 
1 = copied 
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The option classes are: 
0 = control 
1 = reserved for future use 
2 = debugging and measurement 
3 = reserved for future use 

The following internet options are defined: 

CLASS NUMBER LENGTH DESCRIPTION 
----- ------ ------ ----------- 
0 0 - End of Option list. This option occupies only 

1 octet; it has no length octet. 
0 1 - No Operation. This option occupies only 1 

octet; it has no length octet. 
0 2 1 1 Security. Used to carry Security, 

Compartmentation, User Group (TCC), and 
Handling Restriction Codes compatible with DOD 
requirements. 

0 3 var. Loose Source Routing. Used to route the 
internet datagram based on information 
supplied by the source. 

0 9 var. Strict Source Routing. Used to route the 
internet datagram based on information 
supplied by the source. 

0 7 var. Record Route. Used to trace the route an 
internet datagram takes. 

0 8 4 Stream ID. Used to carry the stream identifier. 
2 4 var. Internet Timestamp. 

Padding: variable 
The internet header padding is used to ensure that the internet header ends on a 32 bit 
boundary. The padding is zero. 

2.3.2 IP Addressing 

As with any other network-layer protocol, the IP addressing scheme is integral to the process of 
routing IP datagrams through an internetwork. Each IP address has specific components and 
follows a basic format. These IP addresses can be subdivided and used to create addresses for 
subnetworks, as discussed in more detail later in this chapter. 
Each host on a TCPIIP network is assigned a unique 32-bit logical address that is divided into 
two main parts: the network number and the host number. The network number identifies a 
network and must be assigned by the Internet Network Information Center (InterNIC) if the 
network is to be part of the Internet. An Internet Service Provider (ISP) can obtain blocks of 
network addresses from the InterNIC and can itself assign address space as necessary. The host 
number identifies a host on a network and is assigned by the local network administrator. 
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IP Address Format 
The 32-bit IP address is grouped eight bits at a time, separated by dots, and represented in 
decimal format (known as dotted decimal notation). Each bit in the octet has a binary 
weight (128, 64, 32, 16, 8, 4, 2, 1). The minimum value for an octet is 0, and the 
maximum value for an octet is 255. The figure 2.4 illustrates the basic format of an IP 
address. 

+- 8  its --, c 8 Bits --, r ~ - -  8 Bits --t t 8 Bils -+ 
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Network 
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Figure 2.4 IP Addressing 
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IP Address Classes 
IP addressing supports five different address classes: A, By C, D, and E. Only classes A, 
By and C are available for commercial use. The left-most (high-order) bits indicate the 
network class. Table 2.2 provides reference information about the five IP address classes. 

Table 2.2 Details of IP Classes 

Format 

Purpose 

Few large 
organizations 

Medium-size 
organizations 

Relatively 
small 
organizations 

Multicast 
Groups 
(RFC 1 1 12) 

Experimental 

High-Order Address No. Bits Max. Hosts 
Network/ 

1.0.0.0 to 
126.0.0.0 

1, 1, 1,o 224.0.0.0 NIA (not for NIA 
to 239.255.255.255 commercial 

use) 

1, 1, 1, 1 240.0.0.0 to NIA NIA 
254.255.255.255 
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2.3.3 Fragmentation and Reassembly 

The internet identification field (ID) is used together with the source and destination address, 
and the protocol fields, to identify datagram fragments for reassembly. The More Fragments flag 
bit (MF) is set if the datagram is not the last fragment. The Fragment Offset field identifies the 
fragment location, relative to the beginning of the original unfiagmented datagram. Fragments 
are counted in units of 8 octets. The fragmentation strategy is designed so than an unfragmented 
datagram has all zero fragmentation information (MF = 0, fragment offset = 0). If an internet 
datagram is fragmented, its data portion must be broken on 8 octet boundaries. 

This format allows 2**13 = 8192 fragments of 8 octets each for a total of 65,536 octets. Note 
that this is consistent with the datagram total length field (of course, the header is counted in the 
total length and not in the fragments). When fragmentation occurs, some options are copied, but 
others remain with the first fragment only. Every internet module must be able to forward a 
datagram of 68 octets without further fragmentation. This is because an internet header may be 
up to 60 octets, and the minimum fragment is 8 octets. Every internet destination must be able to 
receive a datagram of 576 octets either in one piece or in fragments to be reassembled. 
The fields, which may be affected by fragmentation, include: 

options field 
more fragments flag 
fragment offset 
internet header length field 
total length field 
header checksum 

If the Don't Fragment flag (DF) bit is set, then internet fragmentation of this datagram is NOT 
permitted, although it may be discarded. This can be used to prohibit fragmentation in cases 
where the receiving host does not have sufficient resources to reassemble internet fragments. 
One example of use of the Don't Fragment feature is to down line load a small host. A small 
host could have a bootstrap program that accepts a datagram stores it in memory and then 
executes it. The fragmentation and reassembly procedures are most easily described by 
examples. The following procedures are example implementations. General notation in the 
following pseudo programs: "=<" means "less than or equal", "#" means "not equal", "=" means 
"equal'', 'I<-" means "is set to". Also, "x to y" includes x and excludes y; for example, "4 to 7" 
would include 4, 5, and 6 (but not 7). 

2.4 Point to Point Protocol 

The Point-to-Point Protocol (PPP) originally emerged as an encapsulation protocol for 
transporting IP traffic over point-to-point links. PPP also established a standard for the 
assignment and management of IP addresses, asynchronous (startlstop) and bit-oriented 
synchronous encapsulation, network protocol multiplexing, link configuration, link quality 
testing, error detection, and option negotiation for such capabilities as network layer address 
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negotiation and data-compression negotiation. PPP supports these functions by providing an 
extensible Link Control Protocol (LCP) and a family of Network Control Protocols (NCPs) to 
negotiate optional configuration parameters and facilities. In addition to IP, PPP supports other 
protocols, including Novell's Internetwork Packet Exchange (IPX) and DECnet. PPP contains 
three main components: [4] 
k A method for encapsulating multi-protocol datagrams. 
k A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link 

connection. 
k A family of Network Control Protocols (NCPs) for establishing and configuring different 

network-layer protocols. 

Encapsulation 
The PPP encapsulation provides for multiplexing of different network-layer protocols 
simultaneously over the same link. The PPP encapsulation has been carefully designed 
to retain compatibility with most commonly used supporting hardware. Only 8 
additional octets are necessary to form the encapsulation when used within the default 
HDLC-like framing. In environments where bandwidth is at a premium, the 
encapsulation and framing may be shortened to 2 or 4 octets. To support high-speed 
implementations, the default encapsulation uses only simple fields, only one of which 
needs to be examined for demultiplexing. The default header and information fields fall 
on 32-bit boundaries, and the trailer may be padded to an arbitrary boundary. The PPP 
encapsulation is used to disambiguate multiprotocol datagrams. This encapsulation 
requires framing to indicate the beginning and end of the encapsulation. Methods of 
providing framing are specified in companion documents. A summary of the PPP 
encapsulation is shown below. The fields are transmitted from left to right. 

+----------+-------------+---------+ 
I Protocol 1 Information I Padding I 
18116bitsl * ( * 1 
+----------+-------------+--------- + 

Protocol Field 
The Protocol field is one or two octets, and its value identifies the datagram 
encapsulated in the Information field of the packet. The field is transmitted and received 
most significant octet first. The structure of this field is consistent with the IS0 3309 
extension mechanism for address fields. All Protocols must be odd; the least significant 
bit of the least significant octet must equal " 1 ". Also, all Protocols must be assigned such 
that the least significant bit of the most significant octet equals "0". Frames received, 
which do not comply with these rules, it must be treated as having an unrecognized 
Protocol. Protocol field values in the "O* ***" to "3 * * *" range identify the network-layer 
protocol of specific packets, and values in the "8* * *" to "b* * **" range identify packets 
belonging to the associated Network Control Protocols (NCPs), if any. Protocol field 
values in the "4***" to "7***" range are used for protocols with low volume traffic 
which have no associated NCP. Protocol field values in the "c***" to "f***" range 
identify packets as link-layer Control Protocols (such as LCP). Up-to-date values of the 
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Protocol field are specified in the most recent "Assigned Numbers" RFC [2 ] .  This 
specification reserves the following values: 

Value (in hex) 
000 1 
0003 to OOlf 
007d 
OOcf 
OOff 
8001 to 801f 
807d 
80cf 
80ff 
c02 1 
c023 
c025 
c223 

Protocol Name 
Padding Protocol 
reserved (transparency inefficient) 
reserved (Control Escape) 
reserved (PPP NLPID) 
reserved (compression inefficient) 
unused 
unused 
unused 
unused 
Link Control Protocol 
Password Authentication Protocol 
Link Quality Report 
Challenge Handshake Authentication Protocol 

Information Field 
The Information field is zero or more octets. The Information field contains the 
datagram for the protocol specified in the Protocol field. The maximum length for the 
Information field, including padding, but not including the Protocol field, is termed the 
Maximum Receive Unit (MRU), which defaults to 1500 octets. By negotiation, 
consenting PPP implementations may use other values for the MRU. 

Padding 
On transmission, the Information field MAY be padded with an arbitrary number of 
octets up to the MRU. It is the responsibility of each protocol to distinguish padding 
octets from real information. 

2.4.1 PPP Frame Format 

r~t.lrl Ie~Pgrn. 
Ir lwpx 1 1 1 2 v-e 2or4  

Figure 2 .5  PPP Frame 

The following descriptions summarize the PPP frame fields illustrated in figure 2.5: 

Flag-A single byte that indicates the beginning or end of a fiame. The flag field consists 
of the binary sequence 01 1 1 1 1 10. 
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Address-A single byte that contains the binary sequence 11 11 11 11, the standard 
broadcast address. PPP does not assign individual station addresses. 
Control-A single byte that contains the binary sequence 00000011, which calls for 
transmission of user data in an un-sequenced frame. A connectionless link service similar 
to that of Logical Link Control (LLC) Type 1 is provided. (For more information about 
LLC types and frame types, refer to Chapter 16.) 
Protocol-Two bytes that identify the protocol encapsulated in the information field of 
the frame. The most up-to-date values of the protocol field are specified in the most 
recent Assigned Numbers Request For Comments (RFC). 
Data-Zero or more bytes that contain the datagram for the protocol specified in the 
protocol field. The end of the information field is found by locating the closing flag 
sequence and allowing 2 bytes for the FCS field. The default maximum length 
of the information field is 1,500 bytes. By prior agreement, consenting PPP 
implementations can use other values for the maximum information field length. 
Frame check sequence (FCS)-Normally 16 bits (2 bytes). By prior agreement, 
consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error 
detection. 

2.4.2 Link Control Protocol 

In order to be sufficiently versatile to be portable to a wide variety of environments, PPP 
provides a Link Control Protocol (LCP). The LCP is used to automatically agree upon the I 

I 
encapsulation format options, handle varying limits on sizes of packets, detect a looped-back 
link and other common misconfiguration errors, and terminate the link. Other optional facilities 
provided are authentication of the identity of its peer on the link, and determination when a link I 

is functioning properly and when it is failing. 

2.4.1 Network Control Protocols 

Point-to-Point links tend to exacerbate many problems with the current family of network 
protocols. For instance, assignment and management of IP addresses, which is a problem even 
in LAN environments, is especially difficult over circuit-switched point-to-point links (such as 
dial-up modem servers). These problems are handled by a family of Network Control Protocols 
(NCPs), which each manage the specific needs required by their respective network-layer 
protocols. These NCPs are defined in companion documents. 

2.4.2 General Operation 

To establish communications over a point-to-point link, the originating PPP first sends LCP 
frames to configure and (optionally) test the data link. After the link has been established and 
optional facilities have been negotiated as needed by the LCP, the originating PPP sends NCP 
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frames to choose and configure one or more network layer protocols. When each of the chosen 
network layer protocols has been configured, packets from each network layer protocol can be 
sent over the link. The link will remain configured for communications until explicit LCP or 
NCP frames close the link, or until some external event occurs (for example, an inactivity timer 
expires or a user intervenes). 

2.4.3 Physical Layer Requirements 

PPP is capable of operating across any DTEIDCE interface. Examples include EWTIA-232-C 
(formerly RS-232-C), EINTIA-422 (formerly RS-422), EINTIA-423 (formerly RS-423), and 
International Telecommunication Union Telecommunication Standardization Sector (ITU-T) 
(formerly CCITT) V.35. The only absolute requirement imposed by PPP is the provision of a 
duplex circuit, either dedicated or switched, that can operate in either an asynchronous or 
synchronous bit-serial mode, transparent to PPP link layer frames. PPP does not impose any 
restrictions regarding transmission rate other than those imposed by the particular DTEIDCE 
interface in use. 
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3. Hardware Level Dependencies in Multitasking 

This chapter explains the terminology and concepts needed to understand the project. It includes 
concept of multitasking as in higher processors, and analysis of hardware level dependencies, 
while working under Windows as well as Real-Time Operating System. 

3.1 Scheduling Theory 

To provide efficient, protected multitasking, 80386 processors employ several special data 
structures. It does not, however, use special instructions to control multitasking; instead, it 
interprets ordinary control-transfer instructions differently when they refer to the special data 
structures. The registers and data structures that support multitasking are: 

> Task state segment 
P Task state segment descriptor 
> Task register 
> Task gate descriptor 

With these structures the 80386 can rapidly switch execution from one task to another, saving the 
context of the original task so that the task can be restarted later. In addition to the simple task 
switch, the 80386 offer two other task-management features: [ 5 ]  

Interrupts and exceptions can cause task switches (if needed in the system design). The 
processor not only switches automatically to the task that handles the interrupt or 
exception, but it automatically switches back to the interrupted task when the interrupt or 
exception has been serviced. Interrupt tasks may interrupt lower-priority interrupt tasks to 
any depth. 

With each switch to another task, the 80386 can also switch to another LDT and to 
another page directory. Thus each task can have a different logical-to-linear mapping and 
a different linear-to-physical mapping. This is yet another protection feature, because 
tasks can be isolated and prevented from interfering with one another. 

Task State Segment 

All the information the processor needs in order to manage a task is stored in a special type of 
segment, a task state segment (TSS). The fields of a TSS in 80386 belong to two classes: 

P A dynamic set that the processor updates with each switch from the task. This set includes 
the fields that store: 

The general registers (EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI). 
The segment registers (ES, CS, SS, DS, FS, GS). 
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The flags register (EFLAGS). 
The instruction pointer (EIP). 
The selector of the TSS of the previously executing task (updated only when a return is 
expected). 

> A static set that the processor reads but does not change. This set includes the fields that 
store: 

The selector of the task's LDT. 
The register (PDBR) that contains the base address of the task's page directory (read only 
when paging is enabled). 
Pointers to the stacks for privilege levels 0-2. 
The T-bit (debug trap bit), which causes the processor to raise a debug exception when a 
task switch occurs. 
The I10 map base 

Task state segments may reside anywhere in the linear space. The only case that requires caution 
is when the TSS spans a page boundary and the higher-addressed page is not present. In this 
case, the processor raises an exception if it encounters the not-present page while reading the 
TSS during a task switch. Such an exception can be avoided by either of two strategies: 

By allocating the TSS so that it does not cross a page boundary. 

By ensuring that both pages are either both-present or both not-present at the time of a 
task switch. If both pages are not present, then the page-fault handler must make both 
pages present before restarting the instruction that caused the task switch. 

3.1.2 TSS Descriptor 

The task state segment, like all other segments, is defined by a descriptor. Format of task 
segment is as follows: 

The B-bit in the type field indicates whether the task is busy. A type code of 9 indicates a non- 
busy task; a type code of 11 indicates a busy task. Tasks are not reentrant. The B-bit allows the 
processor to detect an attempt to switch to a task that is already busy. 

The BASE, LIMIT, and DPL fields and the G-bit and P-bit have functions similar to their 
counterparts in data-segment descriptors. The LIMIT field, however, must have a value equal to 
or greater than 103. An attempt to switch to a task whose TSS descriptor has a limit less that 103 
causes an exception. A larger limit is permissible, and a larger limit is required if an I10 
permission map is present. A larger limit may also be convenient for systems software if 
additional data is stored in the same segment as the TSS. 
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A procedure that has access to a TSS descriptor can cause a task switch. In most systems the 
DPL fields of TSS descriptors should be set to zero, so that only trusted software has the right to 
perform task switching. 

Having access to a TSS-descriptor does not give a procedure the right to read or modify a TSS. 
Reading and modification can be accomplished only with another descriptor that redefines the 
TSS as a data segment. An attempt to load a TSS descriptor into any of the segment registers 
(CS, SS, DS, ES, FS, GS) causes an exception. 

TSS descriptors may reside only in the GDT. An attempt to identify a TSS with a selector that 
has TI=1 (indicating the current LDT) results in an exception. 

3.1.3 Task Register 

The task register (TR) identifies the currently executing task by pointing to the TSS. The task 
register has both a "visible" portion (i.e., can be read and changed by instructions) and an 
"invisible" portion (maintained by the processor to correspond to the visible portion; cannot be 
read by any instruction). The selector in the visible portion selects a TSS descriptor in the GDT. 
The processor uses the invisible portion to cache the base and limit values fiom the TSS 
descriptor. Holding the base and limit in a register makes execution of the task more efficient, 
because the processor does not need to repeatedly fetch these values from memory when it 
references the TSS of the current task. 

The instructions LTR and STR are used to modify and read the visible portion of the task 
register. Both instructions take one operand, a 16-bit selector located in memory or in a general 
register. 

LTR (Load task register) loads the visible portion of the task register with the selector operand, 
which must select a TSS descriptor in the GDT. LTR also loads the invisible portion with 
information from the TSS descriptor selected by the operand. LTR is a privileged instruction; it 
may be executed only when CPL is zero. LTR is generally used during system initialization to 
give an initial value to the task register; thereafter, the contents of TR are changed by task switch 
operations. 

STR (Store task register) stores the visible portion of the task register in a general register or 
memory word. STR is not privileged. 

3.1.4 Task Gate Descriptor 

A task gate descriptor provides an indirect, protected reference to a TSS. 

The SELECTOR field of a task gate must refer to a TSS descriptor. The processor does not use 
the value of the RPL in this selector. The DPL field of a task gate controls the right to use the 
descriptor to cause a task switch. A procedure may not select a task gate descriptor unless the 
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maximum of the selector's RPL and the CPL of the procedure is numerically less than or equal to 
the DPL of the descriptor. This constraint prevents un-trusted procedures from causing a task 
switch. 
A procedure that has access to a task gate has the power to cause a task switch, just as a 
procedure that has access to a TSS descriptor. The 80386 has task gates in addition to TSS 
descriptors to satisfy three needs: 

The need for a task to have a single busy bit. Because the busy-bit is stored in the TSS 
descriptor, each task should have only one such descriptor. There may, however, be 
several task gates that select the single TSS descriptor. 

The need to provide selective access to tasks. Task gates fulfill this need, because they 
can reside in LDTs and can have a DPL that is different from the TSS descriptor's DPL. 
A procedure that does not have sufficient privilege to use the TSS descriptor in the GDT 
(which usually has a DPL of 0) can still switch to another task if it has access to a task 
gate for that task in its LDT. With task gates, systems software can limit the right to 
cause task switches to specific tasks. 

The need for an interrupt or exception to cause a task switch. Task gates may also reside 
in the IDT, making it possible for interrupts and exceptions to cause task switching. 
When interrupt or exception vectors to an IDT entry that contains a task gate, the 80386 
switches to the indicated task. Thus, all tasks in the system can benefit from the 
protection afforded by isolation from interrupt tasks. 

Task Switching 

The 80386 switches execution to another task in any of four cases: 

The current task executes a JMP or CALL that refers to a TSS descriptor. 

The current task executes a JMP or CALL that refers to a task gate. 

An interrupt or exception vectors to a task gate in the IDT. 

The current task executes an IRET when the NT flag is set. 

JMP, CALL, IRET, interrupts, and exceptions are all ordinary mechanisms of the 80386 that can 
be used in circumstances that do not require a task switch. Either the type of descriptor 
referenced or the NT (nested task) bit in the flag word distinguishes between the standard 
mechanism and the variant that causes a task switch. 

To cause a task switch, a JMP or CALL instruction can refer either to a TSS descriptor or to a 
task gate. The effect is the same in either case: the 80386 switches to the indicated task. 
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An exception or interrupt causes a task switch when it vectors to a task gate in the IDT. If it 
vectors to an interrupt or trap gate in the IDT, a task switch does not occur. Whether invoked as a 
task or as a procedure of the interrupted task, an interrupt handler always returns control to the 
interrupted procedure in the interrupted task. If the NT flag is set, however, the handler is an 
interrupt task, and the IRET switches back to the interrupted task. 

A task switching operation involves these steps: 

Checking that the current task is allowed to switch to the designated task. Data-access 
privilege rules apply in the case of JMP or CALL instructions. The DPL of the TSS 
descriptor or task gate must be less than or equal to the maximum of CPL and the RPL of 
the gate selector. 
Exceptions, interrupts, and IRETs are permitted to switch tasks regardless of the DPL of 
the target task gate or TSS descriptor. 

Checking that the TSS descriptor of the new task is marked present and has a valid limit. 
Any errors up to this point occur in the context of the outgoing task. Errors can be 
handled in a way that is transparent to applications procedures. 

Saving the state of the current task. The processor finds the base address of the current 
TSS cached in the task register. It copies the registers into the current TSS (EAX, ECX, 
EDX, EBX, ESP, EBP, ESI, EDI, ES, CS, SS, DS, FS, GS, and the flag register). The 
EIP field of the TSS points to the instruction after the one that caused the task switch. 

Loading the task register with the selector of the incoming task's TSS descriptor, marking 
the incoming task's TSS descriptor as busy, and setting the TS (task switched) bit of the 
MSW. The selector is either the operand of a control transfer instruction or is taken from 
a task gate. 

Loading the incoming task's state from its TSS and resuming execution. The registers 
loaded are the LDT register; the flag register; the general registers EIP, EAX, ECX, 
EDX, EBX, ESP, EBP, ESI, EDI; the segment registers ES, CS, SS, DS, FS, and GS; and 
PDBR. Any errors detected in this step occur in the context of the incoming task. To an 
exception handler, it appears that the first instruction of the new task has not yet 
executed. Note that the state of the outgoing task is always saved when a task switch 
occurs. If execution of that task is resumed, it starts after the instruction that caused the 
task switch. The registers are restored to the values they held when the task stopped 
executing. 

Every task switch sets the TS (task switched) bit in the MSW (machine status word). The TS flag 
is useful to systems sofiware when a coprocessor (such as a numeric coprocessor) is present. The 
TS bit signals that the context of the coprocessor may not correspond to the current 80386 task. 

Exception handlers that field task-switch exceptions in the incoming task should be cautious 
about taking any action that might load the selector that caused the exception. Such an action 
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will probably cause another exception, unless the exception handler first examines the selector 
and fixes any potential problem. 

The privilege level at which execution resumes in the incoming task is neither restricted nor 
affected by the privilege level at which the outgoing task was executing. Because the tasks are 
isolated by their separate address spaces and TSSs and because privilege rules can be used to 
prevent improper access to a TSS, no privilege rules are needed to constrain the relation between 
the CPLs of the tasks. The new task begins executing at the privilege level indicated by the RPL 
of the CS selector value that is loaded from the TSS. 

3.1.6 Task Linking 

The back-link field of the TSS and the NT (nested task) bit of the flag word together allow the 
80386 to automatically return to a task that called another task or was interrupted by another 
task. When a CALL instruction, an interrupt instruction, an external interrupt, or an exception 
causes a switch to a new task, the 80386 automatically fills the back-link of the new TSS with 
the selector of the outgoing task's TSS and, at the same time, sets the NT bit in the new task's 
flag register. The NT flag indicates whether the back-link field is valid. The new task releases 
control by executing an IRET instruction. When interpreting an IRET, the 80386 examine the 
NT flag. If NT is set, the 80386 switches back to the task selected by the back-link field. 

3.1.7 Busy Bit Prevents Loops 

The B-bit (busy bit) of the TSS descriptor ensures the integrity of the back-link. A chain of back- 
links may grow to any length as interrupt tasks interrupt other interrupt tasks or as called tasks 
call other tasks. The busy bit ensures that the CPU can detect any attempt to create a loop. A 
loop would indicate an attempt to reenter a task that is already busy; however, the TSS is not a 
re-enterable resource. 

The processor uses the busy bit as follows: 

When switching to a task, the processor automatically sets the busy bit of the new task. 

When switching from a task, the processor automatically clears the busy bit of the old 
task if that task is not to be placed on the back-link chain (i.e., the instruction causing the 
task switch is JMP or IRET). If the task is placed on the back-link chain, its busy bit 
remains set. 

When switching to a task, the processor signals an exception if the busy bit of the new 
task is already set. 

By these actions, the processor prevents a task from switching to itself or to any task that is on a 
back-link chain, thereby preventing invalid reentry into a task. 
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The busy bit is effective even in multiprocessor configurations, because the processor 
automatically asserts a bus lock when it sets or clears the busy bit. This action ensures that two 
processors do not invoke the same task at the same time. 

3.1.8 Modifying Task Linkages 

Any modification of the linkage order of tasks should be accomplished only by software that can 
be trusted to correctly update the back-link and the busy-bit. Such changes may be needed to 
resume an interrupted task before the task that interrupted it. Trusted software that removes a 
task from the back-link chain must follow one of the following policies: 

First change the back-link field in the TSS of the interrupting task, then clear the busy-bit 
in the TSS descriptor of the task removed from the list. 

Ensure that no interrupts occur between updating the back-link chain and the busy bit. 

3.1.9 Task Address Space 

The LDT selector and PDBR fields of the TSS give software Systems Designers flexibility in 
utilization of segment and page mapping features of the 80386. By appropriate choice of the 
segment and page mappings for each task, tasks may share address spaces, may have address 
spaces that are largely distinct from one another, or may have any degree of sharing between 
these two extremes. 

The ability for tasks to have distinct address spaces is an important aspect of 80386 protections. 
A module in one task cannot interfere with a module in another task if the modules do not have 
access to the same address spaces. The flexible memory management features of the 80386 allow 
systems designers to assign areas of shared address space to those modules of different tasks that 
are designed to cooperate with each other. 

3.1.10 Task Linear-to-Physical Space Mapping 

The choices for arranging the linear-to-physical mappings of tasks fall into two general classes: 

One linear-to-physical mapping shared among all tasks. When paging is not enabled, this 
is the only possibility. Without page tables, all linear addresses map to the same physical 
addresses. 
When paging is enabled, this style of linear-to-physical mapping results from using one 
page directory for all tasks. The linear space utilized may exceed the physical space 
available if the operating system also implements page-level virtual memory. 
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Several partially overlapping linear-to-physical mappings. This style is implemented by 
using a different page directory for each task. Because the PDBR (page directory base 
register) is loaded from the TSS with each task switch, each task may have a different 
page directory. In theory, the linear address spaces of different tasks may map to 
completely distinct physical addresses. If the entries of different page directories point to 
different page tables and the page tables point to different pages of physical memory, 
then the tasks do not share any physical addresses. In practice, some portion of the linear 
address spaces of all tasks must map to the same physical addresses. The task state 
segments must lie in a common space so that the mapping of TSS addresses does not 
change while the processor is reading and updating the TSSs during a task switch. The 
linear space mapped by the GDT should also be mapped to a common physical space; 
otherwise, the purpose of the GDT is defeated. 

3.1.1 1 Task Logical Address Space 

By itself, a common linear-to-physical space mapping does not enable sharing of data among 
tasks. To share data, tasks must also have a common logical-to-linear space mapping; i.e., they 
must also have access to descriptors that point into a shared linear address space. There are three 
ways to create common logical-to-physical address-space mappings: 

Via the GDT. All tasks have access to the descriptors in the GDT. If those descriptors 
point into a linear-address space that is mapped to a common physical-address space for 
all tasks, then the tasks can share data and instructions. 

By sharing LDTs. Two or more tasks can use the same LDT if the LDT selectors in their 
TSSs select the same LDT segment. Those LDT-resident descriptors that point into a 
linear space that is mapped to a common physical space permit the tasks to share physical 
memory. This method of sharing is more selective than sharing by the GDT; the sharing 
can be limited to specific tasks. Other tasks in the system may have different LDTs that 
do not give them access to the shared areas. 

By descriptor aliases in LDTs. It is possible for certain descriptors of different LDTs to 
point to the same linear address space. If that linear address space is mapped to the same 
physical space by the page mapping of the tasks involved, these descriptors permit the 
tasks to share the common space. Such descriptors are commonly called "aliases". This 
method of sharing is even more selective than the prior two; other descriptors in the 
LDTs may point to distinct linear addresses or to linear addresses that are not shared. 

3.2 Hardware Level Dependencies 

Windows, unlike DOS, is a multitasking system, which makes it impossible to allow every 
application to directly change the hardware settings, as one application may fail to 'know' about 
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the changes made to the hardware settings by some other application. To create programs 
working with hardware under Windows one should use API (application programming 
interface). This interface allows using Windows system services from application programs. API 
realization is at that entrusted to the drivers. Windows Driver Developer Kit (DDK) is used to 
create drivers (there is a separate DDK for every Windows 0s) .  Besides API one can use IOCTL 
codes (this method was widely used in DOS), but we shall deal with API functions only. 

3.2.1 Working with hardware under Windows 

API standardizes work with hardware. To get access to hardware the following steps are used: 

Get Handler of the device by calling CreateFile with the device name 
To control the device, call an API function for this device or send IOCTL(input - output 
control), the latter via DeviceIOCtl . 

In Windows all inputloutput ports are presented as files, so work with ports is mainly carried out 
via 110 functions of the file (CreateFile, CloseHandle, ReadFile, ReadFileEx, WriteFile and 
WriteFileEx). These functions organize the main interface for opening and closing the 
connection resource descriptor and carrying out readwrite operations. API also includes a set of 
connection functions, which provide access to connection resources. 

The usage of the 110 file and connection functions allows the application to perform the 
following tasks: 

Getting the serial port descriptor. 
Serial port configuration set and request. 
Reading from or writing into the serial port. 
Control of the given events set, which could occur for this serial port. 

Sending the executive instructions to the driver of the device connected with the specified serial 
port; driver call-in is required for extended functions execution. [6] 

3.2.1.1 Open and Close Port 

Opening a port is actually getting the descriptor of the serial port. Due to API using CreateFile 
function can do it. This function results in the creation of a file with a reserved name. It is 
important when getting access to the corresponding port or device. After the descriptor has been 
obtained the work with the port is carried out the same way it is with files. 
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3.2.1.2 Function SetupComm 

As COM-ports are asynchronous connection devices, buffers for incoming and outgoing data are 
provided to make the work with the ports more effective. It is connected with the fact that the 
data bus baud rates greatly varies fiom the line baud rates, that's why to optimize the work of the 
system it is advisable to read data frondwrite data into the port by batches regardles of when they 
were received. One can also write data into the buffer and only then start the transmission - it is 
useful when the batch transmission is needed regardless of whether the system is busy. To set the 
size of the receiving and transmitting buffers SetupComm function is used. 

Function syntax: 

BOOL SetupComm(HANDLE hFile, DWORD dwInQueue, DWORD dwOutQueue); 

3.2.1.3 Communications Time-outs 

Another major thing affecting the work of read and write operations is time-outs. Time-outs have 
the following effect on read and write operations. If an operation takes longer than the calculated 
time-out period, the operation is finished. ReadFile, WriteFile, GetOverlappedResult, or 
WaitForSingleObject returns no error code. All indicators used to monitor the operation show 
that it finished successfully. The only way to tell that the operation has timed out is that the 
number of bytes actually transferred are lower than the number of bytes requested. So, if 
ReadFile returns TRUE, but fewer bytes were read than requested, the operation has timed out. If 
an overlapped write operation timesout, the overlapped event handle is signaled and 
WaitForSingleObject returns WAIT-OBJECT 0 .  GetOverlappedResult returns TRUE, but 

I 

dwBytesTransferred contains the number of bytes transferred before the time-out. The following I 

code sample shows how to handle this in an overlapped write operation. 

3.2.1.4 PurgeComm 

Before starting your work with the port it is desirable to clear the buffers; sometimes there's also 
need to clear the buffers when working with ports. For these purposes PurgeComm function can 
be used. This function can also stop read and write operations. 

Function syntax: 

BOOL PurgeComm(HANDLE hFile, DWORD dwFlags); 
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3.2.1.5 Work with DCB 

The port setting is carried out with the help of the DCB (Device-Control Block) structure. By 
filling this structure with needed values you can change the connection parameters to those 
needed at the moment. 

To initially create the DCB structure with necessary general settings (baud rates, parity, number 
of bits, number of stop bits and flow control) is carried out by the BuildCommDCB function. 

Function syntax: 

BOOL BuildCommDCB (LPCTSTR IpDef, LPDCB IpDCB); 

3.2.1.6 Read and Write Port 

As work with the ports in Windows is carried out in the same way as work with files, reading 
from and writing into the port are carried out with the help of ReadFile and WriteFile functions 
correspondingly. ReadFile function is used to read the information from the port. 

Function syntax: I 

BOOL ReadFile(HANDLE hFile, LPVOID lpBuffer, DWORD 
nNumberOfBytesToRead, LPDWORD IpNumberOfBytesRead, LPOVERLAPPED 
lpoverlapped); , 

BOOL WriteFile(HANDLE hFile,LPCVOID lpBuffer,DWORD I 

nNumberOfBytesToWrite,LPDWORD lpNumberOfBytesWritten,LPOVERLAPPED 
IpOverlapped); 

3.2.1.7 Event 

Win32 API provides WaitCommEvent function used to wait for events which can occur for the 
specified communications device. At that the set of events checked by this function is contained 
in the events mask connected with the given device. 

Function syntax: 

BOOL WaitCommEvent(HANDLE hFile, LPDWORD IpEvtMask, LPOVERLAPPED 
IpOverlapped). 
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3.2.2 Serial Channels in C166lC167 

Serial communication with other micro-controllers, processors, terminals or external peripheral 
components is provided by two serial interfaces with different functionality, an 
Asynchronous1Synchronous Serial Channel (ASCO) and a High-speed Synchronous Serial 
Channel (SSC). 

The ASCO is upward compatible with the serial ports of the Infineon 8-bit micro-controller 
families and supports full-duplex asynchronous communication at up to 78 1 KBaud/l.03 MBaud 
and half-duplex synchronous communication at up to 3.114.1 MBaud (@ 25/33 MHz CPU 
clock). 

A dedicated baud rate generator allows setting up all standard baud rates without oscillator 
tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. 
In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit 
and terminated by one or two stop bits. For multiprocessor communication, a mechanism to 
distinguish address from data bytes has been included (8-bit data plus wake up bit mode). 
In synchronous mode, the ASCO transmits or receives bytes (8 bits) synchronously to a shift 
clock, which is generated by the ASCO. The ASCO always shifts the LSB first. A loopback 
option is available for testing purposes. A number of optional hardware error detection 
capabilities have been included to increase the reliability of data transfers. A parity bit can 
automatically be generated on transmission or be checked on reception. Framing error detection 
allows recognizing data frames with missing stop bits. An overrun error will be generated, if the 
last character received has not been read out of receive buffer register at the time the reception of 
a new character is complete. 

The SSC supports full-duplex synchronous communication at up to 6.2518.25 Mbaud (@ 25/33 
MHz CPU clock). It may be configured so it interfaces with serially linked peripheral 
components. A dedicated baud rate generator allows setting up all standard baud rates without 
oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are 
provided. The SSC transmits or receives characters of 2 .. . 16 bits length synchronously to a 
shift clock, which can be generated by the SSC (master mode) or by an external master (slave 
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of 
shifting and latching clock edges as well as the clock polarity. A number of optional hardware 
error detection capabilities has been included to increase the reliability of data transfers. 
Transmit and receive error supervise the correct handling of the data buffer. Phase and baud-rate 
error detect incorrect serial data. [7] 
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4. Proposed System 

Software in real-time embedded systems differs fundamentally from its desktop or Internet 
counterparts. Embedded computing is not simply computation on small devices. In most control 
applications, for example, embedded software engages the physical world. It reacts to physical 
and user-interaction events, performs computation on limited and competing resources, and 
produces results that further impact the environment. Of necessity, it acquires some properties of 
the physical world, most particularly, time. [8] 

4.1 Real-Time Programming: Common Practice 

Real-Time systems typically need to perform multiple tasks at the same time. Each invocation of 
task is a finite amount of computation that requires some resources and takes some time to 
perform. Tasks may compete for resources such as CPU, 110 access, or network bandwidth, thus 
a resource manager is needed to allocate resources and schedule task activation. This resource 
management is a major responsibility of real-time operating systems in common embedded 
systems. When two eligible tasks are competing for the resources, the operating system must 
choose to grant resources to one of them, and as a consequence, that task finishes sooner. 

The process of choosing a task to grant resources to, that is, CPU time is called real-time 
scheduling. [8] 

4.1.1 Preemptive Multitasking 

A typical strategy to implement real-time scheduling is called preemptive multitasking. In 
preemptive multitasking, operating system uses some criteria to decide how long to allocate to 
any one task before giving another task a turn to use the operating system. The act of taking 
control of the operating system from one task and giving it to another task is called preempting. 
To perform resource management using preemptive multitasking, the resource manager has to 
perform two duties: 

Context Switching 
Task Scheduling 

When a task is in running state and the time slice has been expired, e.g. timer event, then the 
scheduler is invoked which decides which task deserves to be given next time slice using its 
scheduling algorithm based on priority system. Finally, it performs context switching, replaces 
first task by second task and lets the later task to perform its duty. 

-- - 
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Figure 4.1: Real Time Scheduling 

4.1.2 Limitations in Preemptive Multitasking 

Preemptive multitasking is implemented on a processor or a micro-controller, which has built in 
support for context switching and a periodic task trigger on which event scheduler has to be 
invoked. A common criterion is simply elapsed time, that is, the timer implemented in hardware 
is programmed to be invoked on expiration of a time slice. The timer generates an interrupt, 
which initiates an interrupt service routine. In interrupt service routine, scheduling is performed, 
and it is decided which task is to be granted processor next. The state of currently executing task 
is saved and the context of the next task is loaded into the CPU. After ISR, the CPU starts 
executing the newly loaded task. So, to perform task switching, the CPU must have spare context 
registers, called 'Register Banks'. 
High level processors, such as, Intel 8086, Intel 8088, Intel 80386, Intel 80486, Pentium and 
Pentium Pro support preemption. There are number of micro-controllers that provide built in 
hardware support for context switching and periodic task trigger, for example Siemens C166, 
Siemens C167 
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Figure 4.2: Preemptive Multitasking 
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4.1.3 Collaborative Multitasking Approach 

As explained earlier, the multitasking performed by context switching requires very particular 
hardware support, which is not available in tiny micro-controllers such as Intel 80C5 1, 80C52 

This article gives a programming model to implement multitasking in real-time tasks, for 
example, running a TCPAP based application. Collaborative multitasking model gives the idea to 
address fundamental issues of running preemptive multitasking kernel on tiny micro-controllers. 

4.1.3.1 Tasks Collaboration 

In collaborative multitasking, tasks (any user process running on that controller) collaborate with 
each other in a way that each task executes a part of its route, saves its state locally and then 
releases system resources voluntarily. 
In this system, each task is represented by function or routine. In this idea, no task is forced to 
preempt resources from it. A task returns after executing a part of it, saves its state and gives 
control to other task waiting for resources. The sequence executes in a continuous fashion. 

Figure 4.3: Collaborative Multitasking 

For example, we have three tasks. First Task is Display task whose responsibility is control LCD 
display. Second task is Comm task whose responsibility is to receive any data from comport and 
process it, and the third one is KeyPad task which scans the keys and gets any activity of key 
pressing. 

Now these three tasks will collaborate with each other. When Display function will be called, it 
will scan all the display memory and will refresh it on the screen in one cycle. After that it will 
return back and Comm task will be invoked. In a single cycle, Comm will scan its comport, 
receive any incoming waiting data and process it. After that it will return back and then finally 
KeyPad task will be invoked. In a cycle, KeyPad will scan all the keys and will refresh keypad 
memory indicating any key press event. This sequence will execute continuously. 
main () 
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{ 
InitSys ( ); 

While (1) 
{ 

Display ( ); 
Comm ( ); 
Keypad ( ); 

1 
QuitSys ( ); 

} 

The sharing of resources among the tasks is not based on time slices, but sharing is done on work 
basis or number of instructions. Every task divides its whole its whole work into sub-tasks. 
Whenever a task is given control of CPU, it executes one of its sub-tasks and returns the control. 
In next allocation of CPU, it executes next sub-task. 
For example, we have an embedded system which has to execute three tasks: Taskl, Task2 and 
Task3 simultaneously. Taskl is further divided into three subtasks: subtaskl, subtask2 and 
subtask3. Taskl completes, as each subtask executes ones. 

While (1) 
{ 

Taskl 0; 
Task2 (); 
Task3 (); 

1 

Taskl () 
{ 
static int nStat=O; 
switch (nStat) 
{ 
case 0: Subtasklo; nStat=l ; break; 
case 1 : Subtask2(); nStat=2; break; 
case 2: Subtask30; nStat=O; break; 

} 
The scheduler is designed such that every task executes its one sub-task in its turn, and returns 
back so that next task can be executed. In above example, task1 completes in three iterations. In 
this way, all the tasks are executed simultaneously because of their collaboration with each other. 

4.1.3.2 Queues for Inter-process Communication 

Inter-process communication is always an important issue when designing scheduler for real- 
time embedded systems. In collaborative multitasking programming model, every task has its 
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incoming and outgoing FIFO, and also there is a shared buffer pool. Whenever a task wants to 
send data to another task, it acquires a free buffer from buffer pool, copies the data in buffer, and 
puts the index of buffer in incoming 
processes the data, if present. 

FIFO of their task. Every task polls its incoming FIFO, and 

BUFFER W O L  

Acquiring 
Buffer / 

TASK 3 

Figure 4.4: Inter-process Communication 

4.3.1.3 Task Priorities 

Task priority is very important concept in multitasking system. The priority represents the 
relative importance of a task at run time. When three tasks are running at a time, then the process 
of determining which task deserves CPU more is called priority. 
For example, we have task three that is more important than Taskl and Task2 Then its priority 
can be implemented, as its iterations can be increased relative to other tasks. 

While () 
{ 
Taskl (4); 
Task2 (1); 
Task3 (2); 

void Taskl (int nPriority) 
{ 

int nIteration=O; 
While (nIteration<nPriority) 
{ 
//execute subtasks 
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The priority of a task can be determined at run-time and it can be set according to the situation. 

4.1.4 Example 

In this section, we describe the design and development of real-time scheduler for transport 
protocols, such as TCPIIP. The TCPIIP protocol stack is implemented such that each layer is 
represented by a task. 

INIT STACK; 
WH~LE (nQUIT) 
{ 
APP TASK; 
TCP-TASK; 
U D ~ T A S K ;  
IP TASK; 
pi?-TASK; 
COM-TASK; 
1 

The main thread initializes all the layers, distributes the time slices by calling respective 
processes. Each layer works in two directions, that is, it processes data from upper as well as 
lower layer. A separate buffer bank is reserved for data to be processed, in the form of two- 
dimensional array. Each buffer has following associated attributes: 

Name of the buffer (Free, Temporary, PPP Down, PPP Up, IP Down, IP Up, UDP Up, 
UDP Down, TCP Up, TCP Down, Application Down, COM Up) 

Command (No command, dial, ping, valid IP frame) 

Message flags associated with each process control sub-processes. Each layer has two Data 
Queues associated with it, one for each direction: Layer up Job Queue, that contains pointer to 
the buffer received from upper layer and is ready to be processed according to the command 
associated with the buffer and status of the message flag associated with that direction, and 
Layer-down Job Queue, for data received fiom down layer. These Job Queues are responsible for 
inter-process communication. 

Whenever an application wants to perform a TCPIIP related task, it gets a buffer from buffer 
bank, adds data to buffer associates a command with buffer which indicates what has to be done 
with the data in buffer, and passes buffer reference to the Layer Down Job Queue of the lower 
layer. 
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On turn of task associated with the next layer, the incoming job queue is checked, and the buffer 
is processed according to the command, flags are set and the buffer reference is added to Layer 
Down Job Queue of the next layer. Next layer behaves in same way, until data reaches COM 
layer, and is written to COM port. 

It is not necessary for a task to complete its job in single iteration. So, each task has to maintain 
its state, so that it can continue from the same point in next iteration. For that, each layer 
performs part of its task, saves its state in buffer, and keeps the track of previous work with the 
help of flags associated with each task. 

The system behaves in same way for opposite direction and use Layer up Data Queues and UP 
message flags. 
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5 System Analysis and Design 

In this chapter, the system under discussion is analyzed. 

5.1 Objectory 

The methodology that is used for Object Oriented Analysis and Design is Objectory or 

Object Oriented Software Engineering approach (Jacobson Method). 

The Object Oriented Software Engineering has following four models: 

The Requirements Model 

The Analysis Model 

The Design Model 

The Implementations Model 

5.2 UML 

The UML is a new standard for the modeling notations using diagrams of different types. 

The UML allows people to develop several different types of visual diagrams that represent 

various aspects of the system. The following are seven types of diagrams that are in UML: 

Use Case Diagram 

Sequence Diagram 

Collaboration Diagram 

Class Diagram 

State Transition Diagram 

Component Diagram 

Deployment Diagram 
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5.3 Actors, Use Cases and Sequence Diagrams 

5.3.1 Use case Model 

The Use case Model uses actors and use cases. These concepts are simply an aid to defining 

what exists outside the system (Actors) and what should be performed by the system (Use 

case). 

In Use case model the actors are identified, Use cases are identified and a use case model is 

constructed. 

5.3.2 Identifying Actors 

In our project, there are three actors as shown in Figure 5.1 : 

Terminal Application, that uses the system to communicate on Internet. 

Internet Service Provider Server, that provides dial up connection. 

Internet Application, that exchanges data with terminal application. 

Real Time Scheduler for 
Transport Protocols 

Terminal application 

Figure 5.1 Actors 

'12 Internet 
Application A 
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5.3.3 Identifying Use cases 

Following are the use cases that could be initiated by the terminal application as in Table 5.1. 

Table 5.1 Client Use cases 

Connect to Internet Service Terminal Application, ISP Server 
Provider 
Ping Internet Service 2 Terminal Application, ISP Server 
Provider 
Establish TCP Connection 3 Terminal Application, Internet Application 

I I 

Exchange TCP Data 4 Terminal Application, Internet Application 
I I 

End TCP Connection 1 5  I Terminal Application, Internet Application 

The Priorities identifies the sequence of the Design and implementation of the use cases. 

Each use case will be analyzed, designed, coded and implemented in a single iteration and 

the use cases having greater priorities will be implemented first. 
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5.3.4 Use Case Diagram 

Figure 5.2 gives Use Case diagram for the system. 

Real Time Scheduler for Transport 
Protocols 

\ Establish TCP 

\ 

Figure 5.2 UseCase Diagram 

ISP Server 

Application 

- - - - 
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5.3.4.1 Connect to ISP 

Actor: 
Terminal Application, 
ISP Server 

Overview: 
Terminal Application requests to dial Internet Service Provider: providing telephone 
number, user name and password. The system processes the request and as soon as it gets 
positive response from Internet Service Provider, the connection establishes. 

Pre-Condition: 
No pre-condition. 

Post-Condition: 
Terminal Application connects to Internet. 

Success Scenario: 
1. Terminal Application requests to dial 

Internet Service Provider, providing 
telephone number, user name and 
password. 

9. ISP server sends LCP response. 

14. ISP Server sends PAP acknowledge- 
ment and IPCP configuration request 
for IP Layer configuration. 

The request reaches application layer, which 
forwards the request to PPP layer. 
PPP layer transfers the command for dialing to 
COM layer, set its timer and starts waiting for 
connection. 
COM layer writes haze command for dialing to 
modem. 
COM Layer gives response of dial to PPP layer. 
The PPP layer confirms that the connection with 
remote PC has been established by searching 
'CD' or 'CONNECT' string in the response. 
PPP layer makes LCP c ~ ~ g u r a t i o n ,  i.e. baud 
rate, parity, etc. and transmits LCP configuration 
request to COM Layer. 
PPP starts waiting for LCP response. 
COM layer writes received data to modem. 
If PPP receives LCP Configuration Acknowl- 
edgement, It transmits PAP configuration request 
for user authentication to COM Layer. 
PPP starts waiting for PAP response. 
COM layer writes received data to modem. 
PPP transmits IPCP configuration request for 
user authentication to COM Layer and 
connection establishes. 
PPP starts waiting for PAP response. 

17. COM laver writes received data to modem. 
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Failure Scenario: 
6a. No response reached and PPP declares timeout. 

-- The request is discarded. 
-- Terminal Application is asked to initiate the request again 

6b. PPP layer receives negative response. 
-- The request is discarded. 
-- Terminal Application is asked to initiate the request again. 

5.3.4.2 Ping ISP 

Actor: 
Terminal Application, 
ISP Server 

Overview: 
Terminal application requests to ping ISP. The system sends the request through corn 
port and reply is received. 

Pre-Condition: 
Terminal application must be connected to internet. 

Post-Condition: 
Ping reply is received. 

Success Scenario: 
Actor Action 
1. Terminal application requests to ping 

ISP, providing IP address of ISP. 

5. Server sends ping reply. 

Svstem Res~onse 
2. The COM Layer hands over the request to 

IP layer. 
3. At IP layer. ICMP request is generated, 

which is handed over to COM layer. 
4. COM layer writes request to modem. 
6. COM layer hands over reply to IP layer. 
7. Terminal application is informed about 

ICMP Reply by application layer. 

5.3.4.3 Establish TCP Connection 

Actor: 
Terminal Application, Internet Application 
Overview: 
Terminal Application requests for TCP connection with some internet application. After 
negotiation, the connection establishes. 
Pre-Condition: 
Terminal Application must be connected to ISP. 
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Post-Condition: 
TCP connection is established. 
Success Scenario: 

Actor Action 
1. Terminal application requests for TCP 

connection providing IP address or 
the name of destination, in case of 
name server. 

6. Internet application sends reply. 

System Response 
2. Application layer creates TCP, binds the local 

and remote port to connection, and also bind 
TCP connection to local IP address. 

3. TCP Layer makes the TCP header and starts 
waiting for acknowledgement of the 
synchronization request. 

4. IP Layer makes IP header and TCP Checksum. 
5. COM layer writes data to modem. 
7. The packet is checked for validity at PPP, IP 

and TCP layers. If SYN+ACK is received, then 
connection is established. 

8. TCP layer sends ACK to the Internet 
~ ~ ~ l i c & o n .  

9. The Application Layer informs terminal 
application. 

Failure Scenario: 
7a. If NACK is received 

-- Notify terminal application that connection cannot be established. 
7b. If Time Out occurs. 
Notify terminal application that connection cannot be established. 

5.3.4.4 Exchange TCP Data 

Actor: 
Terminal Application, Internet Application 
Overview: 
After TCP connection is established, the terminal application sends and receives data from 
Internet application. 
Pre-Condition: 
TCP Connection must be present. 
Post-Condition: 
The applications exchange TCP Data. 
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Succe is Scenario: 
Actor Action 
1. Terminal application requests for 

sending data to the internet 
application. 

1 7. Internet application sends reply. 

--- - - - - - - - - 

System Response 
2. Application layer hands over the request to 

TCP layer. 
3. TCP Layer makes the TCP header and adds 

sequence number, which is acknowledgement 
of the previous data packet sent. 

4. IP Layer makes IP header and TCP Checksum. 
5. PPP layer makes PPP frame. 
6. COM layer writes data to modem. 
8. The packet is checked for validity at PPP, IP 

and TCP layers. If ACK and Data are received, 
then send ACK for the highest packet received. 

Failure Scenario: 
8a.If no ACK is received after 15 seconds. 

-- Resend the request. 

5.3.4.5 End TCP Connection 

Actor: 
Terminal Application, Internet Application 
Overview: 
After sending and receiving of TCP data is completed, the TCP connection is gracefully 
closed. 
Pre-Condition: TCP Connection must be present. 
Post-Condition: The TCP connection ends up. 
Success Scenario: 

Actor Action 
1. Terminal application requests for 

ending up the TCP connection. 

7. Internet application sends reply. 

System Response 
2. Application layer hands over the request to 

TCP layer. 
3. TCP Layer creates FIN request. 
4. IP Layer makes IP frame. 
5. PPP layer makes PPP frame. 
6. COM layer writes data to modem. 
8. The packet is checked for validity at PPP, IP 

and TCP layers. If FIN ACK is received, then 
TCP layer makes ACK. 

9. IP Layer makes IP frame. 
10. PPP layer makes PPP frame. 
1 1. COM layer writes data to modem. 
12. The connection is closed gracefully. 
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5.3.5 Sequence Diagram 

The sequence diagrams for above defined Use Cases are: 

5.3.5.1 Connect to ISP 
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5.3.5.2 Ping ISP 
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5.3.5.3 Establish TCP Connection 
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Connect 

7 

Terminal 
Application 

Layer 

I 
SYN 

'I 

Layer IP layer 

ACK 

1 

IP Frame 

L 

IP Frame 

2 

IP Frame 

I 1 Connection 

PPP Frame 
I Request 

PPP Frame L 

T 

I PPP Frame 
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5.3.5.4 Exchange TCP Data 
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5.3.5.5 End TCP Connection 
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6. System Design 

In this section, we describe the design and development of real-time scheduler for transport 
protocols, such as TCPIIP. The TCPIIP protocol stack is implemented such that each layer is 
represented by a task. 

6.1 Data Structure of TCP/IP Stack 

The main thread can be represented as: 

INIT-STACK; 
WHILE (nQUIT) 
{ 

APP TASK; 
TCP-TASK; 
UDP-TASK; 
IPTASK; 
PPP-TASK; 
COM-TASK; 

1 

It initializes all the layers, distributes the time slices by calling respective processes. Each 
layer works in two directions, that is, it processes data from upper as well as lower layer. 

A separate buffer bank is reserved for data to be processed, in the form of two-dimensional 
array. Each buffer has following associated attributes: 

6.1.1 Buffers 

A two-dimensional array of unsigned char of 80(Max. No. of Buffers) by 2000 (Size of 
Buffers). Each Buffer has its associated following attributes: 

1. Buffer Name 

FREE not occupied. 
TEMPORARY Occupied but not to any specific to layer 
COM Up Physical layer 
PPP Down PPP layer down1 
PPP Up PPP layer up2 
IP DOWN IP layer down1 
IP UP IP layer up2 

I Down: Means process of received data by the lower layer to upper layer 
2 Up: Means process of data to be sent by the upper layer is passed to upper layer 
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UDP Down Udp layer down1 
UDP Up Udp layer up2 
TCP Down Tcp layer down1 
TCP Up Tcp layer up2 
APP Down Application layer down' 

Buffer Commands 

FREE: No command 
TMP: Temporary Command 
CONNECTTCP: Not Used 
DIAL: Checked by PPP layer fc ,r dialing t o Internet by Appli catio lyer 
PING: Checked by IP and PPP layer for (ICMP) Ping Message to another host on 
Network. Set by Application layer for IP layer. Set by IP layer for PPP layer 
IPFRAME: Set by IP, MAC and PPP layer for PPP layer as valid IP frame 
PPPFRAME: Checked by PPP layer as valid PPP frame. Set by Physical and PPP layer 
for PPP layer as valid PPP frame 
COMFRAME: Set by PPP layer for Physical layer as valid Physical frame 
UDPFRAME: Checked by IP and PPP layer as valid UDP frame Set by Application layer 
Set by UDP layer for Application layer 
TCPFRAME: Checked by IP and PPP layer as valid TCP frame Set by Application layer 
Set by TCP layer for Application layer 
CONNECT TCP: Checked by TCP layer for establishment of connection 
Set by Application layer 
APPFRAME: Checked by TCP layer as a valid Application Frame. Set by Application 
layer 
TCPTRNSD: Set by PPPIMAC layer when a TCP frame has been transed. 
TCPFRAMEN: Checked by IP and PPP layer as valid TCP frame Set by Application 

I , 
layer. Set by TCP layer for Application layer. TCP frame is not re-transmitted in case of 
this command. 
FINTCP: Checked by TCP layer to set Control Bits. Set by Application layer 
UDPFRAMEN: Checked by IP and PPP layer as valid UDP frame. Set by Application 
layer. Set by UDP layer for Application layer 
TCPFRAMER: Checked by IP and PPP layer as valid TCP frame Retransmission. Set by 
TCP layer. 

Offset 
Current Pointer 
Timers 
Counters 
Connection (used for TCP) 
Frame Sequence Number 
Remote Ip higher word 
Remote Ip lower word 

Real- Time Scheduler for Transport Protocols 58 



Chapter 6 System Design 

6.1.2 Task Queues 

Message flags associated with each process control sub-processes. Each layer has two 
TASK QUEUEs (fifos) associated with it, one for each direction: Layer up TASK 
QUEUE, that contains pointer to the buffer received fiom upper layer and is ready to be 
processed according to the command associated with the buffer and status of the message 
flag associated with that direction, and Layer down TASK QUEUE, for data received 
from down layer. These TASK QUEUEs are responsible for inter-process 
communication. Each TASK QUEUE has its associated following attributes: 

1. Name: 

FREE: Not occupied 
TMP: Occupied but not to any specific to layer 
TCPTra: Trans frames Fifo associated with TCP Connection 
TCPRec: Receive frames Fifo associated with TCP Connection 
TCPApp: Application frames Fifo associated with TCP Connection 
UDPApp: Application frames Fifo associated with UDP Connection 
TCPUp : Tcp layer up2 
TCPDown: Tcp layer down' 
UDPUp: Udp layer up2 
UDPDown: Udp layer down1 
IPUp: IP layer up2 
IPDown: IP layer down1 
MACUP: Mac layer up2 
PPPUp: PPP layer up2 
COMUp: Physical layer up2 
PPPDown: PPP layer down1 
IPFragr: Used for IP Fragmentation Reassembly (Temp) 
IPFragt: Used for IP Fragmentation Reassembly 
APPSYSCALL: Used for the TCP/IP System Calls 
MAILAPP: Used for the Mail Application System Calls 

2. Head 
3. Tail 
4. Count 
5. Size 
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6.2 Working of TCPDP Stack 

The stack works as follows: 

Scenario 1: 

Buffer Command: Dial 

APPTASK: 
1. Gets unused buffer from buffer bank. 
2. Adds dial up information to buffer. 
3. Sets buffer name=PPP Up, comrnand=DIAL 
4. Adds buffer pointer to PPP up TASK QUEUE. 

PPP-TASK: 
1. Extracts buffer from its PPP up TASK QUEUE. 
2. Sets UP message flag to start dial sub-process in next time slice and exits. 
3. DIALUP: 

a. Sets buffer name= COM Up 
b. Adds the buffer to COM up TASK QUEUE. 
c. Resets UP message flag= 'Wait for PPP connection' 

COM-TASK: 
1. Extracts buffer from its COM up TASK QUEUE. 
2. Sets message flag to 'Write Com' to start write comport sub-process in next time slice 

and exits 
3. WRITE-COM: 

a. Writes data to modem 
b. Sets UP message flag ='Extract data from UP TASK QUEUE' 

COM-TASK: (Data IN) 
1. Gets unused buffer from buffer bank. 
2. Reads COM data into the buffer 
3. Sets buffer name=PPP Down. 
4. Adds buffer pointer to PPP down TASK QUEUE. 

PPP TASK: 
1. Extracts buffer from its PPP down TASK QUEUE. 
2. If CD or CONNECT found in buffer: 

a. Sets 'Connection' flag. 
b. Sets frame type to LCP. 
c. If LCP ACK is received, sets frame type to PAP. 
d. Sets DOWN message flag= Process PPP frame in next time slice and exits. 

Else 'Discard buffer and exit.' 

- - - - - - - 
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3. If PAP ACK is received: 
a. Sets 'Connection Established' flag. 
b. Initialize UP and DOWN message flags and return. 

4. PROCESS-PPP-FRAME: 
a. Checks frame type, and processes frame accordingly. 
b. Resets UP message flag= 'Wait for <Frame Type> connection' 
c. Adds buffer to COM up TASK QUEUE. 

Scenario 2: 

Buffer Command: Ping 

APP TASK: 
I- Gets unused buffer from buffer bank. 
2. Creates connection, binds the connection to local' IP address. 
3. Gets the remote IP to ping the buffer. 
4. Sets buffer name=IP Up, command=PING 
5. Adds buffer pointer to IP up TASK QUEUE. 

IP - TASK: 
1. Extracts buffer from its IP up TASK QUEUE. 
2. Sets UP message flag to start ping IP sub-process in next time slice and exits. 
3. PING-IP: 

a. Makes ICMP and IP header. 
b. Adds the buffer in PPP up TASK QUEUE. 
c. Initialize UP message flag. 

PPP-TASK: 
1. Extracts buffer from its PPP up TASK QUEUE. 
2. Sets UP message flag to start ping PPP sub-process in next time slice and exits. 
3. PING-PPP: 

a. Sets buffername=COMUp 
b. Adds the buffer to COM up TASK QUEUE. 
c. Resets UP message flag= 'Wait for PPP connection 

COM-TASK: 
I .  Extracts buffer from its COM up TASK QUEUE. 
2. Sets message flag to 'Wrjte Com' to start write comport sub-process in next time slice 

and exits 
3. WRITE COM: 

a. writes data to modem 
b. Sets UP message flag ='Extract data from UP TASK QUEUE' 

COM-TASK: (Data IN) 
1. Gets unused buffer from buffer bank. 

Real-Time Scheduler for Transport Protocols 61 



Chapter 6 System Design 

2. Reads COM data into the buffer 
3. Sets buffer name=PPP Down. 
4. Adds buffer pointer to PPP down TASK QUEUE. 

PPP - TASK (Data IN) 
1. Extracts buffer from its PPP down TASK QUEUE. 
2. If Protocol type= OX2 1 : 

a. Sets buffer name= IP Down. 
b. Adds buffer pointer to IP Down TASK QUEUE. 

IP - TASK (Data IN) 
1. Extracts buffer from its IP Down TASK QUEUE. 
2. If Protocol type= OX01 for IP Layer, its ICMP frame. 

a. If frame type= 0, discards and returns. 
b. If frame type= 8, PING Reply is acknowledged. 

Scenario 3: 

Buffer Command: TCP Connection (SYNCHRONIZATION) 

APP-TASK: (Connection UP) 
Creates TCP Connection. 
Gets unused buffer from buffer bank. 
Sets buffer name= TEMPORARY, buffer offset= 100 
Associate the buffer to newly created connection. 
Sets window size= 1024. 
Binds TCP Connection to local IP address. 
Sets command= CONNECT TCP, buffer name = TCP Up. 
Adds buffer to TCP up TASK QUEUE. 

TCP-TASK: (Connection UP) 
1. Extracts buffer from its TCP up TASK QUEUE. 
2. Sets UP message flag to start CONN-TCP sub-process in next time slice and exits. 
3. CONN-TCP: 

a. Makes TCP header. 
b. Adds the buffer pointer in IP up TASK QUEUE. 
c. Sets buffer name =IP Up, command = TCPFRAMEN 
d. Sets UP message flag='Wait for SYN acknowledgement' to start 

WAIT - SYNC sub-process in the next time slice. 

IP - TASK: (Connection UP) 
1. Extracts buffer from its IP up TASK QUEUE. 
2. Sets UP message flag to start TCPFRAME - IP sub-process in next time slice and 

exits. 
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3. TCPFRAME-IP: 
a. Makes IP header. 
b. Makes TCP checksum. 
c. Sets buffer name =PPP Up 
d. Adds buffer pointer to PPP Up TASK QUEUE. 

PPP TASK: (Connection UP) 
1 Extracts buffer from its PPP up TASK QUEUE. 
2. Sets UP message flag to start TCPFRAME-PPP sub-process in next time slice and 

exits. 
3. TCPFRAME-PPP: 

a. Sets protocol byte=OX21 for IP frarne. 
b. Sets CRC. 
c. Makes PPP Frame with lower byte padding. 
d. Sets buffer name = COM Up, command = TCP FRAME (For re- 

acknowledgement purpose) 
e. Resets UP message flag= 'Extract data from UP TASK QUEUE'. 
f. Adds the buffer to COM up TASK QUEUE. 

COM - TASK: (Connection UP) 
1. Extracts buffer from its COM up TASK QUEUE. 
2. Sets message flag to 'Write Com' to start write comport sub-process in nex 

and exits 
3. WRITE COM: 

a. writes data to modem 
b. Sets UP message flag ='Extract data from UP TASK QUEUE' 

COM-TASK: (Connection Down) 
1. Gets unused buffer from buffer bank. 
2. Reads COM data into the buffer 
3. Sets buffer name=PPP Down. 
4. Adds buffer pointer to PPP down TASK QUEUE. 

PPP - TASK (Connection Down) 
1. Extracts buffer from its PPP down TASK QUEUE. 
2. If Protocol type= OX21 : 

a. Sets buffer name= IP Down. 
b. Adds buffer pointer to IP Down TASK QUEUE. 

IP - TASK (Connection Down) 
1. Extracts buffer from its IP Down TASK QUEUE. 
2. If Protocol type= OX06 for IP Layer, its TCP frame. 

a. Sets remote IP, frame sequence number. 
b. Sets buffer name= TCP Down, command = IP FRAME 
c. Adds buffer pointer to TCP down TASK QUEUE. 

:t time slice 
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TCP TASK: (Connection Down) 
1. Extracts buffer from its TCP Down TASK QUEUE. 
2. Functions acknowledgement / any request from remote TCP. 
3. Checks overflow of frame sequence number and local acknowledgement number. 
4. Sets TCP Acknowledgement counter. 
5. WAIT SYNC: 

a. 'Waits for TCP Acknowledgement counter to be 12. 
b. If TCP Acknowledgement counter NOT EQUAL to 12 in 20 seconds 

timestamp, buffer is freed. 

Scenario 4: 

Buffer Command: TCP Connection (PUSH) 

APP-TASK: (Connection UP) 
If TCP connection exists: 
1. Gets unused buffer from buffer bank. 
2. Sets offset=100, command=APP FRAME, connection= existing connection. 
3. Sets buffer name = TCP UP. 
4. Adds buffer pointer to TCP up TASK QUEUE. 

TCP-TASK: (Connection UP) 
1. Extracts buffer from its TCP up TASK QUEUE. 
2. Sets UP message flag to start APP-FRAME sub-process in next time slice and exits. 
3. APP-FRAME: 

a. Makes TCP header. 
b. Adds the buffer pointer in IP up TASK QUEUE. 
c. Sets buffer name =IP Up, command = TCP FRAME 
d. Sets UP message flag=Extract data from UP Task Queue' to start 

GetUpFrameTCP sub-process in the next time slice. 

IP - TASK: (Connection UP) 
1. Extracts buffer from its IP up TASK QUEUE. 
2. Sets UP message flag to start TCPFRAME-IP sub-process in next time slice and 

exits. 
3. TCPFRAME-IP: 

a. Makes IP header. 
b. Makes TCP checksum. 
c. Sets buffer name =PPP Up 
d. Adds buffer pointer to PPP Up TASK QUEUE. 

PPP TASK: (Connection UP) 
1 Extracts buffer from its PPP up TASK QUEUE. 
2. Sets UP message flag to start TCPFRAME-PPP sub-process in next time slice and 

exits. 
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3. TCPFRAME - PPP: 
a. Sets protocol byte=OX21 for IP frame. 
b. Sets CRC. 
c. Makes PPP Frame with lower byte padding. 

4. If command = TCP FRAME: 
a. Removes PPP and IP headers to set offset and current pointer. 
b. Adds buffer of changed offset and pointer to connection trans c-traTask 

Queue. 
c. Sets buffer name = TCP UP, command = TCPTRNSD. 
d. Reset timer of buffer. 

5. If command = TCPFRAMER: 
a. Removes PPP and IP headers to set offset and current pointer. 
b. Sets buffer name = TCP UP, command = TCPTRNSD. 
c. Reset timer of buffer. 

COM TASK: (Connection UP) 
4.- Extracts buffer from its COM up TASK QUEUE. 
5. Sets message flag to 'Write Com' to start write comport sub-process in next time slice 

and exits 
6. WRITE COM: 

a. writes data to modem 
b. Sets UP message flag ='Extract data from UP TASK QUEUE' 

COM - TASK: (Connection Down) 
1. Gets unused buffer from buffer bank. 
2. Reads COM data into the buffer 
3.  Sets buffer name=PPP Down. 
4. Adds buffer pointer to PPP down TASK QUEUE. 

PPP - TASK (Connection Down) 
1. Extracts buffer from its PPP down TASK QUEUE. 
2. If Protocol type= OX2 1 : 

a. Sets buffer name= IP Down. 
b. Adds buffer pointer to IP Down TASK QUEUE. 

IP - TASK (Connection Down) 
1. Extracts buffer from its IP Down TASK QUEUE. 
2. If Protocol type= OX06 for IP Layer, its TCP frame. 

a. Sets remote IP, fiame sequence number. 
b. Sets buffer name= TCP Down, command = IP FRAME 
c. Adds buffer pointer to TCP down TASK QUEUE. 

TCP-TASK: (Connection Down) 
1. Extracts buffer from its TCP Down TASK QUEUE. 
2. If two buffers are not unused: returns. 
3. If time elapsed after reception of frame exceeds 20 seconds: 
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a. Rejects buffer. 
b. Sets connection timer = 4.5 seconds for auto acknowledgement purpose. 

Else verifies length. 
4. If SYN + ACK received: 

a. Sets remote acknowledgement number. 
b. Initiates local sequence number. 
c. Sends acknowledgement. 
d. Frees received buffer and returns. 

5. If RST received: Frees received buffer and returns. 
6. If type is (NORMAL OR ACK): Check overflow of frame sequence number. 
7. If FIN received: 

a. Make TCP header. 
b. Add buffer pointer to IP Don TASK QUEUE. 

8. If out of sequence packets received: 
a. Place packets in c-RecvTask Queue. 
b. If skipped packets received in 20 seconds: 

i. Stack packets. 
ii. Send ACK of highest packet. 

Else: 
i. Clear c RecvTask Queue. 

ii. Use AUTO-REACK. 
9. If TCP connection exists, port = 80, timer > 5 seconds: 

a. Sends acknowledgement. 
b. Resets connection timer. 

Else: Retransmission required. 

Scenario 5: 

Buffer Command: UDP Transmission 

IP - TASK: (Transmission UP) 
1. Extracts buffer from its IP up TASK QUEUE. 
2. As command = UDP FRAME, set message flag to start UDP-FRAME-IP in the next 

time slice and exit. 
3. UDP - FRAME-IP: 

a. Makes IP header. 
b. Makes UDP checksum. 
c. Sets buffer name =PPP Up 
d. Adds buffer pointer to PPP Up TASK QUEUE. 

PPP TASK: (Transmission UP) 
1. Extracts buffer from its PPP up TASK QUEUE. 
2. As command = UDP FRAME, Sets UP message flag to start UDP-FRAME sub- 

process in next time slice and exits. 
3. UDP - FRAME: 

a. Sets protocol byte=OX21 for IP frame. 
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b. Sets CRC. 
c. Makes PPP Frame with lower byte padding. 
d. Set name= COM UP, command = UDP FRAME. 
e. Sets UP message flag ='Extract data from UP TASK QUEUE' 

COM TASK: (Transmission UP) 
1 .- Extracts buffer from its COM up TASK QUEUE. 
2. Sets message flag to 'Write Com' to start write comport sub-process in next time slice 
and exits 
3. WRITE-COM: 

a. Writes data to modem 
b. Sets UP message flag ='Extract data from UP TASK QUEUE' 

COM TASK: (Transmission Down) 
1, Gets unused buffer from buffer bank. 
2. Reads COM data into the buffer 
3. Sets buffer name=PPP Down. 
4. Adds buffer pointer to PPP down TASK QUEUE. 

PPP TASK (Transmission Down) 
1. Extracts buffer from its PPP down TASK QUEUE. 
2. If Protocol type= OX2 1 : 

c. Sets buffer name= IP Down. 
d. Adds buffer pointer to IP Down TASK QUEUE. 

IP - TASK: (Transmission Down) 
1. Extracts buffer from its IP Down TASK QUEUE. 
2. If Protocol type is of UDP frame. 

Sets buffer name= UDP Down, command = IP FRAME 
3. Adds buffer pointer to UDP down TASK QUEUE. 

UDP TASK: (Transmission Down) 
1: Extracts buffer from its UDP up TASK QUEUE. 
2. Sets valid connection by checking local port number. Else verifies the length. 
3. Adds the buffer in application task queue of the connection. 
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7. Implementation 

The TCP IP Scheduler is designed in C++ and the mail application is designed in Visual 
C++. The scheduler is implemented as follows: 

7.1 Main Loop 

The main loop of TCP IP Scheduler is as follows: 

inits - tcpip(); //Initializes FIFOs and message flags. 

while(1) { 

if(g - nQuit==l) return; if(exitth==l) break; 

Sleep(l0); 

if(exitth==l ) break; 

comqroc();if(exitth==l) break; 

pppqroc(); if(exitth==l) break; 

ipgroc(); if(exitth==l) break; 

tcpqroc(); if(exitth==l) break; 

udpqroc(); if(exitth==l) break; 

appqroc(); if(exitth==l) break; 

udpqroc(); if(exitth==l) break; 

tcpqroc(); if(exitth==l) break; 

ipgroc(); if(exitth==l) break; 

pppqroc(); if(exitth==l) break; 

appqroc(); if(exitth-1) break; 

cnt++; 

} 

For each layer of TCPIIP stack, a separate procedure is defined. All these procedures are 

called in a sequence. 
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7.2 Initialize TCPIP 

void inits-tcpip(); 
void init - corn() 
{ 

cumcorn=- 1 ; 
curdcorn=- 1 ; 

msgucom=M GETUFRM-COM; 
~ S ~ ~ C O ~ = M ~ G E T D F R M - C O M ;  

I 

7.3 COM Procedure 

void comqroc() 
{ 

switch(msgucom) 
{ 

case M-GETUFRM-COM : getufrm-corn(); break; 
case M-WRITE-COM : write-corn(); break; 

I 

switch(msgdcom) 
{ 

case M - GETDFRM-COM : getdfrm-corn(); break; 
1 

1 

7.4 PPP Procedure 

void pppgroc() 
{ 
/I process upper frames 
switch(msgufrm) 
{ 
case M-GETUFRM-PP : getufrmqpo; break; /I get upper frame 
case MDIAL-PP : dial(); break; /I dialing request - dial number 
case M-WTCON-PP : wtcon(); break; /I wait for modem connection after dial 
case M WTACKPAP PP : wt-ackpap(); break; I/ wait for PAP acknowledgement 
case M-WTACKIPCP PP : wt-ackipcp(); break; // wait for IPCP acknowledgement 
case M~TCPFRM-PP - : tcpfrm(); break; // Process TCP Frame 
case M-UDPFRM-PP : udpfim(); break; // Process IP Frame 
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case M - PING-PP : pingqp(); break; /I transparently trans request 

// process lower frames 
switch(msgdfrm) 
{ 
case M G E T D F R W P  
case M~CNFDFRM-PP 
case M-PROCDFRM-PP 
1 
} 

: getdfmjp();  break; / /  get lower frame 
: cnfdfnnqp(); break; // confirm frame 
: procdfrmqp(); break; // process frame and ACK 

7.5 IP Procedure 

void ipgroc() 
{ 

// process upper frames 

{ 
case M GETUFRWIP: getufrm-ip(); break;// get fiame 
case M-TCPFRM-IP : tcpfrm_ip(); break; I/ its frame from tcp 
case M-UDPFM-IP : udpfrm-ip(); break; // its frame from udp 
case M-PING-IP - : ping-ip(); break; I/ its ping command 

} 
I/ process lower frames 
switch(msgd-ip) 
{ 

case M - GETDFRMIP : getdfrm_ip(); break; // get fiame 

// Check fragmentation 
ck-frag 0; 

} 

7.6 TCP Procedure 

void tcpgroc() 
{ 

// process upper frames 
switch(msgu-tcp) 
{ 
case M-GETUFRM-TCP: getufrm-tcp();break; /I Process the out going TCP frame 
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case M CONNTCP : conn-tcp(); break; // Connect TCP 
case MIAPPFRM : appfi-m(); break; I/ its application frame 
case M-WTSYNC : wt-sync(); break; // wait for sync 
case M-FINTCP : fintcp(); break; // finish TCP connection 
1 
// process lower frames 
switch(msgdtcp) 
{ 
case M-GETDFRM-TCP: getdfkm_tcp();break;// Process the incoming fi-arne 
1 
recfifos-tcp();//Rearrange Data 
clear tfrms(); 
a-reack(); //Re-ACK 

1 

7.7 UDP Procedure 

void udpgroc() 
{ 

g e t u f ~ u d p ( ) ;  
getdfrm_udp(); 

// Initialize UDP fifos 
1 

7.8 Application Layer Procedure 

switch (syscall) 
{ 
case SYSCALL-DIAL: Dial-PPP(); break; 
case SYSCALL-DISCONNDIAL: Disconn_PPP(); break; 
1 
else 
{ 

switch (S OCK-Cmnd[syscall]) 
{ 
case SYSCALL CONNTCP : Create-TCP-Conn(syscal1); break; 
case SYSCALL-DISCONNTCP: Finish-TCP-Conn(syscal1);break; 
case SYSCALL-SENDTCP: Send TCP-Data(syscal1);break; 
case SYSCALL~RCVTCP: Rev-~CP-~ata(s~sca11);break; 
case SYSCALL-CONNUDP :break; 
default break; 
1 > I  
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8. Testing and Conclusion 

Testing of a program is used to check whether it produces the same results as are expected 

form it and how does it handles in the situation where an exception of error occurs. Testing 

has following types: 

8.1 System testing 

System Testing is to test the system as a whole to validate that it meets its specification and 

the objectives of its users. System Testing focuses on testing the system as an entity. 

Generally, it is the responsibility of a group, which is separate from the system development 

team. 

It is generally good practice for system testing to be an independent activity as the testers are 

not themselves stakeholders in the system development. If developers are involved at this 

stage, they may be reluctant to design tests, which reveal problems in the developed system, 

as this is an implicit criticism of the quality of their work. 

8.2 Development testing 

> Hardware and software components should be tested as they are developed and as 

sub-systems are created. These testing activities include: 

Unit testing. 

Module testing 

Sub-system testing 

> However, these tests cannot cover: 

Interactions between components or sub-systems where the interaction causes 

the system to behave in an unexpected way 

The emergent properties of the system 

As part of the development process, each component that has been developed should be 
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tested either by its developer or by a separate testing group. The objective of this testing 

process is to find defects in that component. These defects should then be removed before the 

component is delivered for integration. 

However, these tests can only be based on the component specification (if it exists) along 

with knowledge about the structure of the component. There may be component errors which 

are not discovered because these relate to the interaction of the component with other 

components in the system. The emergent properties of a system are those properties, which 

apply to the system as a whole rather than to particular components in the system. While 

some assessment can be made, e.g. of individual component reliability, unit and module 

testing be used to assess the overall reliability or performance of the whole system. 

8.3 Integration testing 

The major activity in the integration process is integration testing where the developer of the 

system carries out a series of tests as the system is put together from its components. 

Integration testing should be concerned with tests, which cannot be executed on individual 

system components or sub-systems. Interface testing is concerned with designing tests which 

will validate the interactions between components and property testing is concerned with 

testing the emergent system properties such as reliability, performance etc. As these do not 

emerge until the system exists as a single entity, it is clearly impossible to test them earlier in 

the process. 

8.3.1 Integration test planning 

A separate group should always be responsible for test planning for two reasons: 

1. It means that test planning can be carried out at the same time as system development 

2. It removes a potential conflict of interest from the development team - is their 

responsibility to develop software or to test (and potentially find faults with) that software. 

Developers may, consciously or unconsciously; design tests, which they know, avoid 
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problems in the system. For large, complex systems, integration test planning may involve 

hardware and software engineers and human factors specialists. 

8.3.2 Test planning activities 

Wherever possible (and this is really not easy) the integration test planning team should 

identify individual system increments, which can be tested and should design tests for these 

increments. These decisions may be made using the delivery schedules for the different sub- 

systems (it makes sense to stagger delivery - getting everything on the same day is an 

integration nightmare) but schedule changes may mean that increments aren't available when 

required. 

Testing tools such as tools to compare test outputs, tools to automatically run tests from files 

of test data, simulators for hardware which is not available may have to be developed before 

system testing is possible. The development of these tools goes on in parallel with systems 

development and often represents a significant fraction of the overall system development 

costs. 

8.4 Stress testing 

Stress testing is particularly important for large, multi-user systems where the load on the 

system varies dramatically from time to time. In essence, you estimate the maximum load 

that the system is likely to have to handle then test it with more than that load. What should 

happen is graceful failure where the level of service offered to all users is reduced. What 

often happens is catastrophic failure where the system moves from working reasonably for 

all users to a complete loss of service. 

Building up the load on the system is not just a test of system performance. Because there is 

so much stress on the system, defects, which can be corrected automatically in other 

situations, come to light during stress testing. For example, say a screen is not properly 

updated but the normal use calls for this screen to be replaced quite quickly in normal use. 
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The error may never be discovered. Stress testing slows the system down and may reveal this 

kind of defect. 

This is not too important but stress testing can also reveal defects, which are caused by built- 

in timing assumptions in real-time systems. 

8.5 Acceptance testing 

Acceptance testing may take place after a system has been installed but often it takes place at 

the developer's premises using customer-supplied data. The customer observes the system 

tests to check if the system meets the specified requirements. 

It's important to understand that the decision on whether or not to accept a system does not 

necessarily depend on the system meeting every requirement and successfully executing 

every test supplied by the customer. The customer needs the system (presumably) so they 

may be willing to accept an imperfect system for installation. The problems identified are 

noted and the contractor may have to agree to fix these problems in the first new release after 

the system has been delivered. 

There may also be disagreement between the customer and the contractor at this stage about 

what requirements actually mean. The customer may have one interpretation of the 

requirements and the contractor a different interpretation. Therefore, when there is a problem 

with an acceptance test, some negotiation is necessary to decide whether the customer or the 

developer has the right interpretation. Often, the result will be that some system changes have 

to be made and the customer has to pay for some or all of the costs of these changes. 

8.6 Performance testing 

It may be possible to use data for stress testing for performance testing as critical 

performance problems are most likely to occur when the system is heavily loaded. 

The major problem with performance testing is that there are rarely explicit performance 

requirements, which are specified in a measurable way. Furthermore, there may be serious 
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conflicts between e.g. security and performance requirements and the only way to fix the 

performance problems might be to weaken system security. 

The perceived performance of a system is important (if it is an interactive system) whereby 

the performance is as much to do with expectations as it is with actual figures. If users use a 

system with a specific performance level, they will expect a new system to at least match that 

level, even if it offers much greater functionality. This has to be taken into account when 

setting performance criteria. 

8.7 Reliability testing 

The problem with reliability is that it isn't an absolute but depends on the context of use of 

the system. Two different patterns of system use can result in different perceived system 

reliability. 

For this reason, it is very important to get the operational profile right i.e. the predicted 

pattern of inputs which will be presented to the system. This is possible for some classes of 

system (where reliability testing is very mature) such as telephone switches where the actual 

usage of an existing system can be logged and used as the basis of an operational profile. 

It is much harder to predict an operational profile when a completely new system or process 

is introduced - no one really knows how users will adapt to the change and what inputs will 

be generated. 

Reliability testing must take into account the seriousness of system errors. For example, an 

error in an air traffic control system where a display was pink rather than red is much less 

serious than error in the same system where the height of the aircraft was wrongly computed. 

8.8 Security testing 

This is an unusual form of testing because it can't really be planned in the same way. While 

it is possible to pre-conceive some simple security tests, effective security testing can only 

really be interactive and, arguably, can only be carried out once the system is in use. 
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Interactive testing is necessary because security problems may not have a single cause. A 

user may detect a potential weakness in the system and then exploit this in some other way to 

gain access to protected parts of the system. It is almost impossible to anticipate this in 

advance 

The argument that security testing cannot be effective until the system is in use comes from 

the fact that many security problems are due to the way in which a system is used such as 

insecure passwords, use of over-general permission vectors, etc. These can't really be tested 

in a pre-production version of the system. 

8.9 Testing for Real-Time Scheduler for Transport Protocols 

Dial ISP- Successful Connection 

Input 
User name: sbc10060077 
Password: **** 
Phone Number: 13 1 1 1333 
Output 
ISP Connected Successfully. 

Dial ISP- No LCP Reply 

Input 
User name: sbc 10060077 
Password: * * * * 
Phone Number: 13 11 1333 
Output 
LCP Timeout 
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Dial ISP- No PAP Reply 

Input 
User name: sbc10060077 
Password: * * * * 
Phone Number: 13 1 1 1333 
Output 
PAP Timeout 

Send Email- Successful Connection 

Input 
To: samiasherwani@hotmail.com 

I SMTP Server: 210.56.8.10 
Output 
Email Sent Successfullv. 

Send Email- Server not running 

Input 
To: sarniashenvani@hotmail.com / SMTPServer:210.56.8.11 
Output 
Unable to connect to server. 

Send Email- Invalid Email Address 

Input 
To: samia 
SMTP Server: 2 10.56.8.10 
Output 
No user 
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Receive Email- Successful Connection 

Input 
User Name: samia07@isb.comsats.net.pk 
Password: * * * * 
SMTP Server: 210.56.8.10 
Output 
Emails Received 

Receive Email- Server not running 

Input 
User Name: samia07@isb.comsats.net.pk 
Password: * * * * 
SMTP Server: 210.56.8.1 1 
Output 
Unable to connect to server. 

Receive Email- Incorrect Username or password 

Input 
User Name: samial23 @isb.comsats.net.pk 
Password: * * * * 
SMTP Server: 210.56.8.10 
Output 
Unable to connect to server. 

Debugging using Cross Compiler 

Input 
The TCPIP Scheduler was compiled using the Keil's Cross Compiler. 
Output 
Compilation Successful, Debugging Successful 
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8.10 Conclusion 

Collaborative Multitasking is proposed for the processors or micro-controllers, which do not 

have built-in multitasking support. The TCPIIP stack developed by the use of this technique 

is tested with SMTPPOP application and also compiled on Keil's cross compiler for 

embedded system support. The results are positive. As the whole stack works in one thread, 

so it does not require multitasking support in target processor. Hence the research is 

successful. 
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A. User Manual - Real Time Scheduler for Transport Protocols 

Al .  Data Tracing View 

This screen shows the current activities at different layers of TCPIIP stack. 

BAnalyse TCP Layer Data 

BAnalyse UDP Layer Data 

BAnalyse IP Layer Data 

BAnalyse PPP Layer Data 

BAnalyse COM Layer Data IP Layer Data Trace I 

BAuto ScrollTCP Layer Data 
I 

BAuto Scroll UDP Layer Datr 

BAJO Scfol P Layer Data I 
0 Wnte 2010712002 13 61 74 26 66 64 74 31 33 31 31 3l 33 33 34 00 
1 Wnte 201071200213 7EFF7D23M217DZ17D227D207D347D227D267D207D207DM7D207D257D26ZEFD7D20 
2 Wnte 2010712002 13 . 
3 Wnte 20/07/200213. 7EFFmCO23M03W)19@736263313030333931323608783379WJi66M38DBlF7E 
4 
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Internet Dialup Screen 

The main screen of simulation view provides the facility to connect to an ISP by the use of 'Dial 
option' (CTRL +D), and to change ISP and email server information by the use of 'Setup 
Option' (CTRL+S). 

I - - I n t e r n e t  D i a l u p - -  

C - Compose M e s s a g e  

[ C] Comp [ S] S e t  up 
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Setup Option 

Using the setup option, the ISP and e-mail server settings can be altered. 

I - -  S e t u p  - -  
>)S - I S P  S e t t i n g s  

E - Mai l  S e t t  i n g s  

[B] B a c k  [ E l  Emai I 

Real -Time Scheduler for Transport Protocols 84 



Appendix A User Manual 

ISP Settings 

Here information such as ISP Phone Number, User name and Password is provided. 

le I jd l  Uew Yelp 

- - I S P  S e t t i n g s - -  
) P h o n e  No: 1 3 1 1 1 3 3 4  

A r e a  Code:  
Count  r y Code:  
U s e r  Name: s b c 1 0 0 3 9 1 2 6  
P a s s w o r d :  * * * * * * * *  

[ S] S a v e  [ C] C a n c e l  
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Mail Settings 

Here information such as SMTPIPOP Server IP address, POP User name and Password is 
provided. 

- - E - M a i l  S e t t i n g s - -  
SMTP S e r v e r  Name: 2 1 0 .  5 6 .  8 .  1 0  
SMTP P o r t  No: 2 5  

>>POP3 S e r v e r  Name: 2 1 0 .  5 6 . 1 .  1 0  
POP3 P o r t  No: 1 1 0  
I MAP4 S e r v e r  Name: 
l  MAP4 P o r t  No: 1 4 3  
U s e r  Name: sami a 0 7  

[ S] S a v e  I C] C a n c e l  
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Dial Option 

The 'Dial option' (CTRL +D) present on the Internet Dialup screen is used to connect the 
application to an ISP using Real Time Scheduler for TCPIIP. 

- - I n t e r n e t  D i a l u p -  
ID - D i a l  

C - C o m p o s e  M e s s a g e  
S  - Set u p  

: Dl Di a l  [ C ]  Comp [ S] Set  u p  

. . . . . . . . . . . . . . . . . . . . . . .  -. ... - . . . . . . . . . . - -  

Ready 
. . . . .  .-.- ... .-.-. * ---- 
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Email Menu 

As soon as the application connects to the ISP, the Email menu displays on the screen. With the 
help of this menu, email messages can be composed and the emails can be retrieved. 

1. Compose message option is used to compose and send an email. 
2. Message index displays the list of messages present in inbox. 
3. Mail settings option is used to change default email settings. 
4. Disconnect option is used to exit. 

- - Mai n Menu- - 
> C  - Compose M e s s a g e  

G - M e s s a g e  I  n d e x  
E - Mai I S e t  t i  n g s  
N - D i s c o n n e c t  

[ C ]  Comp [ G I  Mgl d x  [ S j S e t u p  
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Compose Message 

This option is used to send an email. 

- - Compose message-  - 
To: sami a 0 7 @  sb. comsat  s. n e t .  pk 
CC: 
Subj e c t  : T e s t  m e s s a g e  

> > - -  M e s s a g e  T e x t  - -  
Hel l o . .  . T h i  s  i s  a  l e s t  message 

s e n d i n g  M a i l  D a t a  
[ S] Send [ C ]  C a n c e l  [ F ]  F u l  Scr  
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Message Index 

This option is used to retrieve incoming email messages. 

- - M e s s a g e  I n d e x -  - 

t h S e r v e r  
l a c k  [ N j N x t P g  
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A3. Log View 

It shows the activities related to Task Queues in the scheduler. 
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Appendix B Development Environment 

B. Development Environment 

B-1. Hardware Specification 

1. Pentium 4 Processor 

2. 56 K External Serial Modem 

3. Telephone line and a valid ISP Connection 

B-2. Software Specification 

1. Windows 2000lXp for Simulation Environment 

2. C and Assembly for layer implementation 

3. C++ for interface application 

4. MFC for simulation GUI 

5. Keil's C compiler for embedded system support 
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Abstract: Real-Time Operating Systems (RTOS) currently available in industry, for embedded systems, 
require multitasking support in the targeted processor. The category of such operating systems is known as 
Pre-emptive Multitasking Kernels. However multitaslang support is not provided by all processors. We have 
developed multitasking scheduling technique (Collaborative Multitasking) for the processors or 
microcontrollers which do not have built-in multitasking support such as support for context switching, for 
example, 89C51 Microcontroller and 89C52. 
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INTRODUCTION 

In the modem age, the intelligence of computmg 
power has been integrated into every device and gadget, 
resulting in embedded systems. An embedded system 
refers to a device with computer logic on a chip inside it, 
typically consists of a single-board microcomputer with 
software in ROM designed to perfom a dedicated 
function. Such systems are structured in a different 
manner as compared to high performance desktop 
systems. Their designing issues include: Low cost, 
predictability, responsiveness (Seo et al., 1998) and 
temporal accuracy (Kopetz and Octsenreiter, 1 987). 

Embedded systems normally exist as part of a bigger 
system and are constructed with the least powerful 
processors that can meet the basic functional and 
performance requirements so that the manufacturing cost 
of the equipment can be lowered. As discussed by 
Agarwal and Bhatt (2004), due to absence of general 
features and extremely tight design constraints, unlike in 
conventional systems; the developers of embedded 
systems have to work with complex algorithms to manage 
resources in the most optimized manner. 

Scheduling is a mechanism that determines which job 
has to be executed from the pool of jobs in system on the 
basis of the scheduling algorithm implemented. Whenever 
multiple tasks share common processing resources, they 
require their states to be stored at the time of process 
switching, so that these can be restored afterwards. The 
state includes all the registers that the process may be 
using, especially the program counter, plus any other 

opera- system specific data that may be necessq. 
Often, all the data that is necessary for state is stored in 
one data structure, called process control block. 
According to Nacul and Givargis (2005), in order to 
support multitasking on a system, an operating system 
layer is needed, which it is not commonly available in 
embedded systems due to lack of sufficient memory. 
Examples are PIC (Huang, 2005) by Microchip and 8051 
(Calcutt et al., 1998) by Philips. These microcontrollers are 
cheap enough to give cost effective devices. If these 
micro-controllers are being planned to be utilized for 
handling complex multitaslang scenarios, it is only 
possible if handled programmatically within embedded 
software design. 

REAL-TIME SCHEDULER: COMMON 
PRACTICE 

Donald Gillies defied real-time system as follows: 

A real-time system is one in which the correctness of 
the computations not only depends upon the logical 
correctness of the computation but also upon the 
time at which the result is produced. 

Real-time systems perform a number of tasks at a 
time. The Resource Manager allocates processor time to 
each task according to the schedule in such a way that 
the tasks appear to be parallel. The process of choosing 
a task to grant resources to, that is, Central Processing 
Unit time is called Real-Time Scheduhg as defined by 
Liu and Lee (2003). 
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Preemptive multitasking: A typical strategy to implement 
real-time scheduling is called preemptive multitasking. In 
preemptive multitasking, operating system uses some 
criteria to decide how long to allocate to any one task 
before giving another task a turn to use the opera- 
system. The act of takmg control of the operating system 
from one task and giving it to another task is called 
preempting. 

To perform resource management using preemptive 
multitasking, the resource manager has to perform two 
duties: 

Context Switching 
Task Scheduling 

When a task is in running state and the time slice has 
been expired such as timer event, the scheduler is invoked 
which decides whlch task deserves to be given next time 
slice using its scheduling algorithm based on priority 
system. Finally, it perfoms context switching, replaces 
first task by second task and lets the later task to perform 
its duty. Figure 1 explains the scenario. 

Limitations in preemptive multitasking: Preemptive 
multitasking is implemented on a processor or a micro- 
controller, which has built in support for context 
switching and a periodic task trigger on which event 
scheduler has to be invoked. A common criterion is 
simply elapsed time: the timer implemented in hardware is 
programmed to be invoked on expiration of a time slice. 
The timer generates an interrupt, which initiates an 
interrupt service routine. In interrupt service routine, 
scheduling is performed and it is decided which task is to 
be granted processor next. The state of currently 
executing task is saved and the context of the next task is 
loaded into the CPU. After ISR, the CPU starts executing 
the newly loaded task. So, to perform task switching, the 
CPU must have spare context registers, called 'Register 
Banks' as shown in Fig. 2. 

Teslr 1 

T&2 

Tank 3 

Schedula 

Fig. 1 : Real time scheduling 
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High level processors, such as, Intel 8086, Intel 8088, 
Intel 80386, Intel 80486, Pentium and Pentium Pro support 
pre-emption There are number of micrc+controllers that 
provide built in hardware support for context switching 
and periodic task trigger, for example C166 and C167 by 
Siemens (2000). 

Tmkl 

Emootirm 

COLLABORATIVE MLTLTITASKING 
APPROACH 

As explained earlier, the multitaskmg performed by 
context switching requires very particular hardware 
support, which is not available in tiny micro-controllers 
such as Intel 80C51 and 80C52. 

This article gives a programming model to implement 
multitaskmg in real-time tasks, for example, running a 
TCPm based application Collaborative multitasking 
model gives the idea to address fundamental issues of 
running preemptive multitasking kernel on tiny micro- 
controllers. 

1.j 2.0 3.5- 4.0 53 do 
+IlUm (m) 

Fig. 2: Preemptive multitasking 

\ .  

Tasks collaboration: In collaborative multitasking, tasks 
(any user process running on that controller) collaborate 
with each other in a way that each task executes a part of 
its route, saves its state locally and then releases system 
resources voluntarily. 

In this system, each task is represented by function 
or routine. In this idea, no task is forced to preempt 
resources from it. A task returns after executing a part of 
it, saves its state and gives control to other task waitmg 
for resources as shown in Fig. 3. The sequence executes 
in a continuous fashion. 

For example, we have three tasks. First Task is 
Display task whose responsibility is control LCD display. 
Second task is Cornm task whose responsibility is to 
receive any data Eom comport and process it and the third 
one is Keypad task which scans the keys and gets any 
activity of key pressing. Now these three tasks will 
collaborate with each other. When Display function will 
be called, it will scan all the display memoly and will 
rekesh it on the screen in one cycle. After that it will 

w 2  

d r y -  
Exoautiw 

. 

'ILlr3 

ExoDlmon 
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Fig. 3: Collaborative multitasking 

return back and Comm task will be invoked. In a single 
cycle, Comm will scan its comport, receive any incoming 
waiting data and process it. 

After that it will return back and then finally KeyPad 
task will be invoked. In a cycle, KeyPad will scan all the 
keys and will refresh keypad memory indicating any key 
press event. This sequence will execute continuously. 

main (j 
{ InitSys ( ); 

Whlle (1 ) 
{ Display ( ); 

Comm ( ); 
KeyPad ( ); 

1 
QuitSys ( ); 

1 

The sharing of resources among the tasks is not 
based on time slices, but sharing is done on work basis or 
number of instructions. Every task divides its whole work 
into sub-tasks. Whenever a task is given control of CPU, 
it executes one of its sub-tasks and returns the control. In 
next allocation of CPU, it executes next sub-task. 

For example, we have an embedded system which has 
to execute three tasks: Task 1, Task 2 and Task 3 
simultaneously. Task 1 is f ~ e r  divided into three 
subtasks: subtask 1, subtask 2 and subtask 3. Task 1 
completes, as each subtask executes ones. 

While (1) 
I Task1 (); 

Task2 (1; 
Task3 (); 

1 
Taskl () 
{ static int nStat=O, 

switch (nStat) 
{ case 0: Subtaskl(j; nStat=l ; break; 
case 1 : Subtask2(); nStat=2; break; 
case 2: Subtask3(); nStat=O; break; 
1 

1 

Fig. 4: Inter-process communication 

The scheduler is designed such that every task 
executes its one sub-task in its turn and returns back so 
that next task can be executed. In above example, Task 1 
completes in three iterations. In this way, all the tasks are 
executed simultaneously because of their collaboration 
with each other. 

Queues for inter-process communication: Inter-process 
communication is always an important issue when 
designing scheduler for real-time embedded systems. In 
collaborative multitasking programming model, every 
task has its incoming and outgoing FIFO and also there is 
a shared buffer pool. Whenever a task wants to send 
data to another task, it acquires a free buffer from buffer 
pool, copies the data in buffer and puts the index of buffer 
in incoming FIFO of their task. Every task polls its 
incoming FIFO and processes the data, if present, as 
shown in Fig. 4. 

Task priorities: Task priority is very important concept 
in multitasking system. The priority represents the relative 
importance of a task at run time. When three tasks are 
running at a time, then the process of determining which 
task deserves CPU more is called priority. 

For example, we have Task 3 that is more important 
than Task 1 and Task 2. Then its priority can be 
implemented, as its iterations can be increased relative to 
other tasks. 

While () 
I 
Taskl (4); 
Task2 (1); 
Task3 (2); 
IfOTask (1); 

3 
void Taskl (int d'riority) 

I 
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int nIteration=O; 
Whle (nIteration<nPriority) 

i 
//execute subtasks 
nIteratioItt+; 
1 
1 
The priority of a task can be determined at run-time and it 
can be set according to the situation. 

indicates what has to be done with the data in buffer and 
passes buffer reference to the Layer Up Job Queue of the 
lower layer. 

On turn of task associated with the next layer, the 
incoming job queue is checked and the buffer is 
processed accordmg to the command, flags are set and 
the buffer reference is added to Layer Up Job Queue of 
the next layer. Next layer behaves in same way, until data 
reaches COM layer and is written to COM port. 

It is not necessary for a task to complete its job in 
Example: Here, we describe the design and development single iteration. So, each task has to maintain its state, so 
of real-time scheduler for transport protocols, such as 

that it can continue from the same point in next iteration. 
TCPJIP. The TCPLP protocol stack is implemented such 

For that, each layer performs part of its task, saves its 
that each layer is represented by a task. 

state in buffer and keeps the track of previous work with 

DJIT-STACK; 
WHILE (nQUIT) 

I 
APPTA SK; 
TCP-TASK; 
UDP-TASK; 
IP-TASK; 
PPPTASK; 
COMTASK; 
1 

The main thread initializes all the layers, distributes 
the time slices by calling respective processes. Each layer 
works in two directions, that is, it processes data from 
upper as well as lower layer. A separate buffer bank is 
reserved for data to be processed, in the form of two- 
dimensional array. Each buffer has following associated 
attributes : 

Name of the buffer (Free, Temporary, PPP Down, PPP 
Up, IP Down, IP Up, UDP Up, UDP Down, TCP Up, 
TCP Down, Application Down, COM Up) 

Command (No command, dial, ping, valid IP frame, 
etc) 

Message flags associated with each process control 
sub-processes. Each layer has two Data Queues 
associated with it, one for each direction: Layer up Job 
Queue, that contains pointer to the buffer received 
from upper layer and is ready to be processed 
according to the command associated with the buffer and 
status of the message flag associated with that 
direction and Layer down Job Queue, for data received 
from down layer. These Job Queues are responsible for 
inter-process commu~llcation. 

Whenever an application wants to perform a TCP/IP 
related task, it gets a buffer from buffer bank, adds data 
to buffer. associates a command with buffer which 

the help of flags associated with each task 

CONCLUSIONS 

This TCPiIF' stack is tested with SMTP/POP3 
application and also compiled on Keil Cross compiler for 
embedded system support. As the whole stack works in 
one thread, so it does not require multitasking support in 
target processor. Hence the research is successful. 
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