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Preface

"Fized point theorems deals with the assurance that a mapping T on a set X has one
or more fized points, i.e., the functional eguation z = Tz has one or more solutions. A
large vartety of the problems of analysis and applied mathematics relate to finding solutions of
nonlinear functional equations which can be formulated in terms of finding the fized points of a
nonlinear mappings. In fact, fived point theorems are extremely substantial tools for proving the
eristence and uniqueness of the solutions to various mathematical models (differential, integral
and partial differential equations and variational inequalities etc.) echibiting phenomena arising
in broad spectrum of fields, such as steady state temperature distribution, chemical equations,
neutron transport theory, economic theories, financial analysis, epidemics, biomedical research
and flow of fluids etc. They are also used to study the problems of optimal control related to
these systems. Fized point theorems concerning ordered Banach spaces help us in finding ezact
or approzimate solutions of boundary value problems, for details see Amann [8], Belluce and
Kirk [85], Franklin [66], Karamardian [101], Lakshmikantham [107], Lions [111], Martin [112],
Pathak and Shahzad [129], Robinson [148], Smart [157], Swaminathan [161], Tartar [162] and
Waltman [172] etc:

The Banach fized point theorem is commonly known as Banach contraction principle, which
states that if X is a complete metric space and T a single valued contractive self mapping on
X, then T has a unique fized point in X. This theorem looks simple but plays a fundamental
role in the field of fired point theory and has become even more important because being based
on iteration, it can be easily implemented on a computer.

For single valued self mappings, a general ea;‘istence theory of fized points was constructed
over the period of decades (associated with the names of Brouwer, Browder, Fan, Lofschefz,
Schauder, Tychonoff, and others). Afterwards, Agarwal [4], Edelstein [52, 53], Fisher [61, 62,
63, 64], Jungck [89], Kannan (99], Kirk [105], Lakshmikantham [107], Rhoades [145], .Wang
{176, 177] and many others proved remarkable fixed point theorems. In 1963, Ghaler [68],
generalized the idea of metric space and introduced 2-metric space which was followed by a
number of papers dealing with this generalized space. A plenty of material is available in other

generalized metric spaces, such as, semi metric spaces, Quasi semi metric spaces and D-metric



spaces. Huang and Zhang [78] introduced the concept of cone metric spaces in 2007, by replacing
the set of real numbers with a Banach space. Abbas and Jungck [1], Abbas and Rhoades [9],
Raja and Vaezpour [134], Rezapour and Hamlbarani [141] and Vetro [166] proved fired point
theorems in cone metric spaces.

A multivalued A_.function i a set va‘lued function. In the last thirty years, the theory of
multivalued functions has advanced in a variety of ways. In 1969, The systematic study of
Banach type fized theorems of multivalued mappings had been started with the work of Nadler
[118], who proved that a multivalued contractive mapping of a complete metric space X into
the family of closed bounded subsets of X has a fixred point. He also established that every
(e, A)—uniformly locally contractive mappings of an €— chainable metric space X into the family
of compact subsets of X has a fized point. His findings were followed by Aubin and Siegel [13],
Beg and Azam [30], Hu [76], Hussain and Tarafdar [80], Itoh and Takahashi [85], Kaneko [97],
Massa [113] and Rhoades [14{2] and many others.

In 1965, Zadeh [178] introduced the notion of a fuzzy subset of a (usual) set as a method for
representing uncertainty. Fuzzy set theory was mathematically formulated by the assumption
that classical sets were not appropriate or natural in describing the real life problems. Fuzzy set
theory has greater richness and scope in applications than the ordinary set theory. The field grew
enormously; finding applications in areas as diverse as economics, engineering, information
technology, defencé; medical etc., for mo’re detaiis one can see Dubois and Prade [50], Li and Yen
[110], Nguyen and Walker [120], Pedrycz and Gomide [130] and Zimmermann [180]. After the
discovery of fuzzy sets, a lot of importance has been given in eztending the fundamental concepts
of classical analysis and thus developing the fuzzy fired point theory. Albrycht and Maltoka
[5], Beg [32], Butnariu [88], Heilpern (73], Papageorgiou [123] and Tsiporkova-Hristoskova,
De Bates and Kerre [163, 164, 165] have investigated several properties of fuzzy multivalued
functions and established some basic concepts. This dissertation consists of three chapters.
Each chapter begins with a brief introduction which acts as a summery to the material there in.

Chapter 1 is a survey aimed at clarifying the terminology to be used and recalls basic defin-
itions and facts.

Chapter 2 is devoted to study the results regarding the coincidence and common fized points

of mappings satisfying generalized contractive conditions. Some fized point theorems have been



established in the frame work of cone metric spaces with normality and without normality. As
an application, we prove an existence theorem for the common solutions of two Urysohn integral
equations. Moreover, we initiate the study of rectangular cone metric spaces and prove Banach
contraction principle.

Chapter 8 deals with the multivalued and fuzzy set valued contractive mappings. A the-
orem on common fized points of a sequence of multivalued locally contractive mappings in a
e—chainable metric space is also established. We extend the results bf Edelstein [52] for contrac-
tive and locally contractive mappings to fuzzy contractive and fuzzy locally contractive mappings.
We investigate the eristence of fized points of fuzzy mappings under p—contraction conditions
on a metric space with deo—metric on the family of fuzzy sets. We improve and rectify a
significant fired point theorem for fuzzy mappings due to Vijayaraju and Marudai [169).

Muhammad Arshad

January, 2010

Islamabad, Pakistan."



Chapter 1

Preliminaries

"The aim of this chapter is to present some basic concepts and to explain the terminology used
throughout this dissertation. Some previously known results are given without proof. Section
1.1 is concerned with the introduction of single valued and multivalued contractions. Section
1.2 is devoted to the introductory material on the notions of commuting and compatible single
valued and multivalued mappings. In Section 1.3, we present the concept of cone metric spaces
which is a natural generalization of metric spaces. Section 1.4, introduces the basic concepts

related to fuzzy mappings."

1.1 Contraction mappings

"The contraction mdppings are a special type of uniformly continuous functions defined on a
metric space. Fized point results for such mappings play an tmportant role in analysis and

applied mathematics. "

1.1.1 Definition [1]

"A point z € X is said to be a fized point of the mapping T : X — X if image Tz coincides
with z (i.e., Tz = z). A point x € X 1s said to be common fized point of the pair (S,T) of
self-mappings on X if Sz =Tz =z. A point T € X 1s said to be coincidence point of the pair
(S,T) if Sz = Tz. A point y € X is called a point of coincidence of the pair (S,T) if there
erists a point * € X such that y = Sz =Tz."



1.1.2 Definition

"Let (X,d) be a metric space. A mapping T : X — X is called a contraction (or Banach
contraction) on X, if there is a positive real number 0 < A < 1, such that for all z,y € X,

d(Tz,Ty) < Ad(z,y).
The mapping T is called contractive (Edelstein contractive) if

d(Tz,Ty) < d{z,y) forz #y, z,y € X.

1; is called non-expansive if for all z,y € X,

d(Tz,Ty) < d(z,y).

T is called expansive mapping if
d(Tz,Ty) 2 nd(:z:,:y), for all z,y € X where 7 > 1.

The concept of multivalued mappings has proven to be useful for generalizing in the context

of metric fized point theory (see (13, 15, 28, 30, 44, 47, 76, 80, 91, 93, 97, 98])."

1.1.3 Definition

"Let X be a nonempty set. Then T : X — 2% is called multivalued mapping. A point z € X is
said to be a fized point of T if x € Tz. A point z € X i3 said to be a coincidence point of a
pair of multivalued mappings (T,S) if Tz N Sz # O and z is called a common fized point of
the pair (T,S) if z € TzN Sz. \

Let (X, d) be a metric space and

2X = {A: A is nonempty subset of X};

CB(X)={A:Ais nonempfy closed and bounded subset of X};

C(X) = {A: A is nonempty compact subset of X}.

In order to make the family CB(X) into metric space, we need to have a measure of "dis-



tance” between two sets A and B of CB(X). One such notion of distance is

d(A,B) =inf {d(z,y):z € A, y € B}.

This definition fails to discriminate sufficiently between sets. We would like the distance
between two sets to be zero only if the two sets are the same, both in shape and position. For
this purpose, the following concept is useful (cf., [102])."

1.1.4 Definition

"Let (X,d) be a metric space. For A,B € CB(X) and € > 0 the sets N(g,A) and Eap are
defined as follows:

N(g,A) ={z € X : d(z,A) <€},

EA,B = {E tAC N(E,B),B - N(E’A)}a

where d(z,A) = inf{d(z,y) : y € A}. The distance function H on CB(X) induced by d is
defined as
H(A,B) =inf E4 B,

which is knoun as Hausdorff metric on X."

1.1.5 Definition [75]

"Let (X,d) be a metric space and a sequence {An} in CB(X) is said to converge to a set A
if limp oo H(An,A) = 0. A sequence {An} in CB(X) is said to be a Cauchy sequence if
H(Ap,Am) — 0 asn, m — 00."

1.1.6 Remark [13]

"The completeness of (X,d) implies that (CB(X), H) is complete.”



1.2 Commuting and Compatible mappings

" Sessa [152] generalized the concept of commuting mappings as follows:"

1.2.1 Definition

"Let (X, d) be a metric space then two mappings f,g: X — X are said to be weakly commuting

if d(fgz,gfz) < d(fz,gz), forallz € X."

1.2.2 Remark

" Definitely, commuting mappings are weakly commuting but the converse is not true in general
(see [152]). Many authors obtained nice fized point theorems utilizing this concept. However,
since elementary functions as similar as fr = 23, gz = 2z° are not weakly commutative.
Jungck [87] introduced a less restrictive concept of compatible mappings. He also pointed out in

[88, 89] the potential of compatible mappings for generalized fizxed point theorems.”

1.2.3 Definition [87]

" Mappings f,g: X — X are said to be compatible if, whenever there is a sequence {zn}Cc X
satisfying lim, o0 fTn = limp—0o 9ZTn = u, then lim, o d(fgZn,9fzn) =0."

1.2.4 Definition [30]

"A single valued mapping f : X — X is compatible with multivalued mapping T : X —
CB(X), if and only if fTz € CB(X) for all z € X and H(fTZn,Tfzs) — 0 whenever z,
is a sequence in X such that Tz, — M € CB(X) and fx, —tec M."

1.2.5 Definition [91]

"A pair (f,T) of self-mappings on X are said to be weakly compatible if they commute at their
coincidence point (i.e. fTz =T fx whenever fz =Tz ).

Junck [87] improved the Banach contraction principle for commuting mappings as follows:"



1.2.6 Theorem [87]

"Let (X,d) be a complete metric space and f,g : X — X be two commuting mappings. If
there ezists a constant a, 0 < a < 1, such that gX C fX, d(gz,gy) < ad(fz, fy), then f and

g have a unique common fized point."

1.3 Cone metric spaces
1.3.1 Definition [78]

"Let E be a real Banach space and P be a subset of E. Then P is called an ordered cone,

whenever

(i) P is non-empty, closed and P # {0};

(i) For alla, b>0 = azx+byc P forallz, y€ E;

(ii) PN (—P) = {0}.

For a given ordered cone P C E, we can define a partial ordering < on E with respect to
Pohyz<yifandonlyif y—z e P. Weshalluritez<yif z<yandz#y, whilez <y
will stands for y — = € intP, where intP denotes the interior of P. The ordered cone P 1is

called normal if there is a number k& > 1 such that for all z, y,€ E,

0<z<y =zl <xlyl. (1.1)

The least number k satisfying (1.1) is called the normal constant of P. For details we refer
[18, 141].

Through this chapter, we always suppose that E is a real Banach space and P is an ordered
cone in E with intP # 0 and < 13 a partial ordering with respect to P. For the sake of stimplicity

we will be calling P to be a cone instead of an ordered cone.”

1.3.2 Definition [78]

"Let X be a nonempty set. Suppose that the mapping d : X x X — E, satisfies:

1. 0 < d(z,y), for all z,y € X and d(z,y) =0 if and only if z=1y;



2. d(z,y) =d(y,z) for all 2,y € X;
3. d(z,y) < d(z,z)+d(z,y), for all z,y,z € X.

Then d is called a cone metric on X, and (X,d) is called a cone metric space.”

1.3.3 Definition [78]

"Let (X,d) be a cone metric space. Let T, be a sequence in X and z € X. If for every
c € X, with 0 < c there is ng € N such that for all n > ng, d(zn, ) < c, then {zn} i3 said to
be convergent, {zn} converges to z and z is the limit of {z,}.We denote this by limpz, = z,
or Tp — T, as 1 — 00."

1.3.4 Definition [78]

"Let (X, d) be a cone metric space. If for every c € X with 0 < c there is ng € N, such that, for
all n,m > ng, d(zn,zm) K ¢, then {z,} is called a Cauchy sequence in X. If every Cauchy
sequence 13 convergent in X, then X s called a complete cone metric space.”

1.3.5 Lemma [78]

“Let (X,d) be a cone metric space. If P is a normal cone with normal constant w, then
zn, € X converges toze X, if and only if d(zn,z) =0 asn — co0."

1.3.6 Definition [78]

"Let (X, d) be a cone metric space. If P is normal cone then x, € E is a Cauchy sequence if
and only if d(zn,Zm) — 0 as n,m — oco."

1.3.7 Lemma [78]

"Let (X,d) be a cone metric space, P be normal cone with normal constant k. Let {x,} and
{yn} be two sequences in X and T, — T, Yo — Y a8 n — o00. Then d(zn,yn) —

d(z,y) asn — oo.”

10



1.4 Fuzzy mappings.
1.4.1 Definition

"Let X be a a nonempty set. A fuzzy set in X is a real valued function with domain X and
values in [0, 1].
IX is the collection of all fuzzy sets in X. If A is a fuzzy set and z € X, then the function

values A(z) is called the grade of membership of = in A."

1.4.2 Definition [3, 73]

"The o -level set of a fuzzy set A in X is denoted by [A], and is defined as
(4], ={z: A(z) > a}ifa € (0,1],

[A]q = closure of the set {z : A(z) > 0},

A={z:A@x) = maxA (y)}."

1.4.3 Definition [3, 73]

"Let X,Y be two arbitrary non-empty sets. A mapping T is called fuzzy mapping if T is a
mapping from X into IY. A fuzzy mapping T is a fuzzy subset on X x Y with membership
function T(z)(y). The function T(x)(y) is the grade of membership of y in T(x). The family
of all mappings from X into IY is denoted by (IY)X. For the sake of convenience, we denote
c; -level set of T(z) by [T'z], instead of [T(z)],.

Heilpern [73] was the first who gave a contraction theorem (see corollary 3.8.16) for fuzzy
mappings which is an analogue of Banach contraction principle for single valued mappings and

Nadler [118] contraction theorem for multivalued mappings."

11



Chapter 2

Fixed points of single valued

mappings

"Since the appearance of celebrated Banach contraction principle in 1932, several generalizations
and improvements of this theorem have been obtained. We refer to Kirk [103], Murthy [117],
Park [127, 128] and Rhoade [142, 145], for a complete survey of this subject. Junck [86]
generalized the Banach contraction principle by introducing a contraction condition for a pair
of commuting mappings. He also pointed out in (88, 89 the significance of commuting mappings
for generalizing fized point theorems. Subsequently, a variety of extensions, generalizations and
applications of this followed e.g., see [6, 40, 47, 71, 79, 82, 95, 114].

Huang and Zhang [78] have introduced the concept of cone metric space, where the set of
real numbers is replaced by an ordered Banach space, and they have established some fized point
theorems for contractive type mappings in a normal cone metric space. Afterwards, some other
authors [1, 2, 45, 46, 81, 82, 92, 93, 132, 133, 134, 141, 166, 171, 175] have studied the fized
point results in cone metric spaces. In [1, 2, 45, 81, 82, 132], the authors have established the
eristence of common fized points of contractive type mappings in the frame work of normal cone
metric space. |

Soon after, Rezapour and Hamlbarani [141] came up with a remarkable modification to the
results of Huang and Zhang [78] and proved that there are no normal cones with normal constant

¢ < 1 and for each k > 1, there are cones with normal constant ¢ > k (We have defined normal

12



cone accordingly, see definition 1.8.1). Also by omitting the assumption of normality, they
obtain generalizations of some results of Huang and Zhang [78]. Afterwards, in [{6, 92, 133]
the authors obtained results on point of coincidence and common fized points in cone metric
spaces without the assumptions of normality. Recently (93, 171, 175] have initiated the idea of
fized point of set valued contractions in normal cone metric spaces.

In this chapter, we continue these investigations and ezplore the fized point and common
fized point results in cone metric spaces. In section 2.1, we deal with the normal cone metric
s'paces and prove the existence of common fized points of a pair of self mappings satisfying a
contractive type condition. Some theorems on points of coincidence along with common fized
points of three single valued self mappings in a normal cone metric space have also been estab-
lished. Section 2.2 and 2.8 deal with cone metric spaces which may not be normal. In section
2.2, we establish similar results by omilting the assumption of normality. In section 2.3, we are
concerned with the points of coincidence and common fized points for three self mappings sat-
isfying @— contractive conditions. In section 2.4, we introduce the concept of cone rectangular

metric space and prove Banach contraction principle in this setting."”

2.1 Fixed points in normal cone metric spaces

Results of this section will appear in [22, 24].

"In this section, Theorem 2.1.1 proves the etistence of common fized points for a pair of
mappings satisfying a generalized contractive condition in a complete normal cone metric space.
The theorem thus establishes and extends the results of Abbas and Rhoades (2] and Haung and
Zhang [78].

By providing theorem 2.1.12, we state some corollaries as a generalization of certain results
in [1]. Theorem 2.1.16 involves a generalized contraction condition along with a condition of
weak compatibility to prove the ezistence of coincidence and common fired points of three self

mappings in complete normal cone metric space.”

13



2.1.1 Theorem

Suppose (X, d) be a cone metric space having completeness. Let P be a normal cone with

normal constant x, the mappings 5,T : X — X satisfy:
d(Sz,Ty) < A d(z, y) + B d(z,Sz) + Cd(y, Ty) + D d(z,Ty) + E d(y, Sz) (2.1)

for all z,y € X where A, B,C, D, E are non negative real numbers with A+ B+ C+D<+E <
1, B=Cor D=E. Then S and T have a unique common fixed point.
Proof

Let zg be an arbitrary point in X and define

Tokt1l = STk

Tk42 = T$2k+1, k=0,1,2,....

Then,

d(Szok, Txok41)

d(Zok+1, T2k+2)

IA

Ad(zok, Tok+1) + Bd(zak, STok) + Cd(x2kt1, TT2k41)

+Dd(z2k, TT2x+1) + Ed(Tok+1, ST2k)

IA

[A + Bld(zak, Tok+1) + Cd(Tak+1, Takt2) + Dd(Z2k, Tak+2)

[A + B + Dld(zak, T2k+1) + [C + D]d(z2k+1, T2k+2)-

IA

It implies that,

[1 = C — D)d(zak+1, Zak+2) < [A+ B + D)d(zak, T2k+1)-

That is,

A+B+D
d(T2k+1, T2k42) [T_——C_’TD—] d(T2k) Tok+1)-

14



Similarly,

d(Tok+2, T2k+3)
A

|

1

~-B—-E

d(Szor+2, TTok41)

+C+E
} d(Zok41, Tokt2)-

Now by induction, we obtain for each £ =0,1,2,...

A+ B+ D]
d(Tak+1, Tok+2) < [T:—C——_D— d(z2k, Zok+1)
A+B+D|[A+C+E
< [I—C—D_[l—B—E]d(zzk—l’ Tok)
< A+B+D}[A+C+E][A+B+D d(z )
= 1-C-D||1-B-E||{1-C-D 2k—2; T2k-1
A+B+D] ([A+C+E][A+B+D]\*
= "'S[I—C—D]([I—B—E][I—C—D]> d(o, z1)
and
A+C+E
d(Zgk+2, Tak+3) < [m] A(Z2k+1, T2k+2)
A+C+E][A+B+D]\*
e[t 22 s
Let ,
p_[A+B+D] . _[A+C+E
~\1-Cc-D|’ ~ " (1-B-E]’
Incase B=C
po_ [ATB+D][A+B+E]_[A+B+D][A+B+F] .
~{1-B-D||1-B-E| |1-B~E||1-B-D
and if D = FE , then,
A+B+D|[A+C+D
FG—[I—C—D][I—B—D]<1'

15



Now, for p < q we have,

A

AZ2p+1, Tag+1) < d(Tapr1, Top+2) + AT2pi2, Topea) + d(Tap+3; Tapra)

+... + d(T2q, T2g+1)

q-1 q
[FZ(FG)" + (FG)"] d(zg, 71)

i=p i=p+1

A

F(FG)P (FGy+
= [1—FG+ 1—FG]d(”°”’1)

(+6) | 1555 | o2

IA

Similarly, we obtain

dlezg, 220 < (14 F) | {290 ] dan, ),

d(z2p, Toq) S (1 4+ F) [ (FG)? ] d(zo, z1)

and

d(x2p+1, :L‘zq) <1+G) I:I;(_Fgg} d(zg, 7).

Hence, for 0 < n < m there exists p > 0 such that p <n < m and

d(:cm,zn)SMa.x{(l-i-G) [F (F G)] 1+ F) [f—f%]}d(xo,zl).

Since, P is a normal cone with normal constant &, therefore,

(@, zm) | < 5 [Ma.x {(1 +G) [F (F G)"} (1+F) [ Arey. c;)g] }] ld(zo, 1))

Thus,

{14228 [} 0w 5

Therefore, d(zn,Zm) — 0 as n,m — oo. Hence { z,} is a Cauchy sequence. Since X is

complete, there exists u € X such that z, — u.
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Now,

d(u, Su)

IA

d(u, Ton) + d(zan, Su)

IA

d(‘u,, .’an) + d(T.’l:zn_.h Su)

IA

d(u, T2n) + Ad(u, T2n-1) + Bd(u, Su) + Cd(zan—1, TTon-1)
+Dd(u, Tzon-1) + Ed(zon—1,Su)

IA

d(u, Tan) + Ad(u, Ton—1) + Bd(u, Su) + Cd(z2n—1, T2n)
+Dd(u, Ton) + Ed(zon-1,u) + Ed(u, Su)

IA

(1 + D) d(u,z2n) + (A + E)d(w, Tan—1) + Cd(z2n~1, 2n)

+(B + E)d(u, Su).
It further implies that

d(u, Su) = (B + E)d(u,Su) < (1+ D)d(u,z2q) + (A + E)d(u, Ton—1)
+Cd(.’l:2n._1, Zon).

That is,
1+D A+E
d(‘u., S'u.) < [T—_B-:—E] d('u,, .’Ezn) + [m] d(u, xzn_.]_)
C
+ [m] d(T2n-1, T2n)-
I-ience,

ldu, Sl < [ 25 | Nt 22l + 0 | 222 el el

C
8 [ | Mo )

- Letting n — oo, we have |d(u,Su)|| = 0. It implies that d(u,Su) = 0 and hence u = Su.
Similarly, by using
d(u, Tu) < d(u, T2nt1) + d(Tont1, Tu),
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we can show that « = Tu. It implies that u is a common fixed point of S,T. Next, we show
that S and T have unique common fixed point. For this suppose that, there exists another
point «* in X such that u* = Su* = Tu*.

Now,

d(u,u*) = d(Su,Tu*)

IA

Ad(u,v*) + Bd(u, Su) + Cd(u*, Tu*) + Dd(u, Tu*) + Ed(u*, Su)

IA

Ad(u,u*) + Bd(u,u) + Cd(u*,u*) + Dd(u,v*) + Ed(u, u")
< (A+ D+ E)d(u,u").

It implies that

which completes the proof of the theorem.

2.1.2 Corollary(2]

"Let (X,d) be a complete cone metric space, P be a normal cone with normal constant k.

Suppose the mappings §,T : X — X satisfy:
d(Sz,Ty) < a d(z,y) + B[d(z, Sz) + d(y, Ty)] + 7 [d(z, Ty) + d(y, Sz)]

for oll z,y € X, where, a, B, v are non negative real numbers with a + 28 + 2y < 1. Then

S and T have a unique common fized point.”

2.1.3 Example

Let X ={1,2,3}, E=R? and P = {(z,y) € E| 7,9y > 0} C R% Defined: X x X — R? as

follows:
(0,0) ifz=1y

(%,5) ifz#yand z,y € X — {2}
(1,7) ifz#yandz,y€X-—{3}
($,4) fz#yandz,ye X -{1}.

d(:l:, y) =

18



Define the mappings S,T : X — X as follows:

S(z) =1 for each z € X,

1 if 2
T(z) = if x #
3 fx=2.

Note that
d(S(3),TR) = (3,5).

Now,

o d(3,2) + B1d(3,5(3)) +d(2, T(2))] +7[d(3, T(2)) +d(2, 53))]
= a,4)+ BB, +d2,3)] +v[d(3,3) +d(2,1)

= o70+8|C5)+ G| +v0+ D]

_ (4a+9ﬂ+7'7
= (———

< (igil_%@_ﬂ()_v_’ 5o + 108 + 107>

< (5(a.+??ﬂ+2’y)
< (g,s)=d(5(3),T(z) as a+28+2y< L

,4a+9ﬂ+7'y)

,5(a+2ﬁ+2'y))

It follows that the mappings S and T do not satisfy the conditions of Corollary 2.1.2. For

~j ot

b

all the conditions of Theorems 2.1.1 are satisfied.
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2.1.4 Corollary

Let (X,d) be a complete cone metric space, P be a normal cone with normal constant x.

Suppose the mapping T : X — X satisfies:

d(Tz,Ty) < a d(z,y) + B [d(z,Tz) +d(y, Ty)] + v [d(z, Ty) + d(y,Tz)]

for all ,y € X where a, B, 7 are non negative real numbers with a +2 842y < 1. Then T
has a unique fixed point.

Proof

Set S=T, in Corollary 2.1.2.

2.1.5 Corollary [2]

"Let (X,d) be a complete cone metric space, P be a normal cone with normal constant k.

Suppose that the mapping T : X — X satisfies:
d(Tz,Ty) < Ad(z, y) + B d(z,Tx) + Cd(y,Ty) + D d(z,Ty) + E d(y,Tx) (2.2)

forall z,y € X, where, A, B,C, D, E are non negative real numbers with A+ B+C+D+E < 1.
Then T has a unique fized point."

Proof

Set S = T, in Theorem 2.1.1.

2.1.6 Corollary [2]

"Let (X, d) be a complete cone metric space, P be a normal cone with normal constant k. Suppose

the mapping T : X — X satisfies:
d(Tz,Ty) < a d(z, y) + B [d(z,Tz) + d(y, Ty)|

forall z,y € X, where a,8 > 0 with o +2 8 < 1. Then T has a unique fized point.”
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2.1.7 Corollary [2, 78]

"Let (X,d) be a complete cone metric space, P be a normal cone with normal constant .

Suppose the mapping T : X — X satisfies:
d(Tz,Ty) < a d(z, y)
for all z,y € X where 0 < a < 1. Then T has a unique fized point.”

2.1.8 Corollary [78]
"Let (X,d) be a complete cone metric space, P be a normal cone with normal constant .
Suppose the mapping T : X — X satisfies:

d(Tz,Ty) < B |d(z, Tz) + d(y, Ty)]

forall z,y € X where 0 < B < % Then T has a unique fized point. "

2.1.9 Corollary [78]

"Let (X,d) be a complete cone metric space, P be a normal cone with normal constant k.

Suppose the mapping T : X — X satisfies:
d(Tz, Ty) < v [d(z,Ty) + d(y, Tz)]
for all z,y € X, where, 0 <y < §. Then T has a unique fized point. "

2.1.10 Example

Let X = {1,2,3}, E=R?and P = {(z,y) € E | 7,y > 0} C R%. Defined: X x X — R? as

follows:
‘ (0,0) ifz=y

$,2) ifz#yandz,yeX {2}
(1,% ifz#yand z,y € X - {3}
3,}) ifz#yandz,yeX—{1}.

d(z,y) =
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Define a mapping T': X — X as follows:

3 if 2
T(z) = e
1l ifz=2.

Note that
d(T(3),T(2) = d3,1) = (5, 2).

Now,

@ d(3,2) + Bd(3,T(3)) + d(2,T(2))] + 7 [d(3, T(2)) + d(2, T(3))]
= ad(3,2)+8[d3,3) +d(2,1)] +7[d3,1) +d(2,3)]

42
= oG +slo+mp]+v]G D+ Gy
_ 15y a B 15y
- ( A+ 4+2+_2§)
_ (7a+14ﬁ+15'y 7a+14ﬁ+15’y)
N ! 28
75a+15ﬁ+15'y Ba+158 + 15y
’ 28
75 a+2[3+2’y) 15 (a+28+2y)
< 2

15 15 4 2
(—2-5, 36) < (7, 7) =d(T(3),T(2)) as a+28+2y< 1.

Therefore, Corollaries (2.1.2, 2.1.4-2.1.8) are not applicable to obtain fixed point of T

In order to apply common fixed point result (i.e.,Theorem 2.1.1), define a constant mapping
§:X — X by Sz =3. Then,

andfor A=B=D=E=0,C=

ﬂlh
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we have

A d(z,y) + B d(z, Sz) + Cd(y,Ty) + D d(z,Ty) + E d(y,Sz) = (%, %) ify=2.
It follows that S and T satisfy all the conditions of Theorem?2.1.1 and we obtain T'(3) = 3.
"Now, we obtain points of coincidence and common fized points for three self mappings

satisfying generalized contractive type condition in a complete normal cone metric space."

2.1.11 Lemma

Let X be a non-empty set and the mappings S, T, f : X -— X have a unique point of coincidence
vin X. If (S, f) and (T, f)are weakly compatible, then S,T and f have a unique common fixed
point.

Proof

Let v be the point of coincidence of S, T and f. Then, v = fu = Su = T'u for some u € X. By
weakly compatibility of (S, f) and (T, f), we have

Sv=Sfu=fSu=fvand Tv=TFfu= fTu= fu.

It implies that Sv = Tw = fv = w (say). Thus, w is a point of coincidence of S,T and f.
Therefore, v = w by uniqueness. Hence, v is the unique common fixed point of S,T and f.

"Here by providing the next result, we state the following generalization of some recent
results. "

2.1.12 Theorem

Let (X, d) be a cone metric space, P be a normal cone with normal constant x. Suppose the

mappings T', f : X — X satisfy:

d(Tz,Ty) £ ald(fz,Ty) + d(fy, Tz)] + vd(fz, fy)

for all z,y € X, where o, € [0,1) with 20 + v < 1. Also, suppose that 7(X) C f(X) and

f(X) is a complete subspace of X. Then, T and f have a unique point of coincidence. Moreover,
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if (T, f) are weakly compatible, then T and f have a unique common fixed point.

2.1.13 Corollary

Let (X, d) be a cone metric space, P be a normal cone with normal constant k. Suppose the

rhappings 7, f : X — X satisfy:

d(Tz,Ty) < ad(fz, Ty) + Bd(fy, Tz) + vd(fz, fy) (2.3)

for all z,y € X, where o, 8, € [0,1) with @+ 3+~ < 1. Also, suppose that T(X) € f(X) and
f{X) is a complete subspace of X. Then T and f have a unique point of coincidence. Moreover,
if (T, f) are weakly compatible, then T and f have a unique common fixed point.

Proof

In (2.3) interchanging the roles of z and y and adding the resultant inequality to (2.3), we

obtain

(T, 7y) < 252 la(fa,79) + dfy, 7o) +vd(f2, fu).

Now, by using Theorem 2.1.12, we obtain the required result.

2.1.14 Corollary[1]

"Let (X, d) be a cone metric space, P be a normal cone with normal constant k and the mappings
T, f: X — X satisfy:
d(Tz,Ty) < v d(fz, fy),

for all z,y € X, where 0 < v < 1. If T(X) C f(X) and f(X) is a complete subspace of X,
then T and f have a unique point of coincidence. Moreover, if (T, f) are weakly compatible,

then T and f have a unique common fized point.”

2.1.15 Corollary[i]

"Let (X, d) be a cone metric space, P be a normal cone with normal constant k and the mappings
T, f: X — X satisfy:
d(Tz,Ty) < ald(fz,Ty) +d(fy, Tz))
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forall z,y € X, where 0 € a < %— Also, suppose that T(X) C f(X) and f(X) is a complete
subspace of X. Then, T and f have a unique point of coincidence. Moreovér, if (T,f) are
y;eakly compatible,mthen T and f have a unique common fized point. "

Here, we further improve Theorem 2.1.12 as follows:

" For convenience, firstly, we define a notion of S-T-sequence with initial point zg € X.

Let (X, d) be a cone metric space, S, T, f be self-mappings in X and zo € X. Choose
a point T in X such that fz; = Szo. This can be done since S(X) C f(X). Successively,
choose a point 9 in X such that fzo = Txy. Continuing this process having chosen z1, ..., Ty,

we choose Togy) and Toksg in X such that

froey1 = Sz,

fzogrz = Txzopq1, k=0,1,2,..
The sequence {fzy} is called a S-T-sequence with initial point zo."

2.1.16 Theorem

Let (X, d) be a cone metric space, P be a normal cone with normal constant k. Suppose the

mappings S, T, f : X — X satisfy:
d(Sz, Ty) < ad(fz, Ty) + Bd(fy, Sz) + vd(fz, fy) (24)
for all z,y € X, where a, 3,7 are non negative real numbers with
a+pf+y<l

ES(X)UT(X)C f(X)and f(X) is a complete subspace of X, then S, T and f have a unique
point of coincidence. Moreover, if (S, f) and (T, f) are weakly compatible, then S,T and f
have a unique common fixed point.

Proof

Let zg be an arbitrary point in X and {fz.} be a S-T-sequence with initial point z.
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Then,

d(fTaks1, fToks2) = d(Szok,TTokt1)

IA

ad(fzak, TTak+1) + Bd(fTart1, STak) + vd(fZak, fTak+1)

< [e+1d(fro, froks1) + cd(fTarsr, fTorse)-

It implies that
1 — ald(fzak+1, frante) < [+ 7] d(fzok, Froks1)-

That is,

o+

d(fzok+1, franse) < [1—_—3] d(fTok, fTok+1)-

Similarly,

d(Szok42, TT2k+1)

d(fTok+2, frok+3)

ad(fTokre, TZokv1) + Bd(frant1, STans2) + Yd(Fr2ks2, fT2k41)

IA

IA

ad(fzarv2, fTar+2) + Bd(froks1, fronss) + vd(fTokr2, fTok+1)
(B +Yd(fZak+1, fTak+2) + Bd(fToks2, fToks3)-

IA

Hence, /

d(fzak+2, fTok+3) < [—f—;%] d(FTak+1, [Tak+2)-

Now by induction, we obtain

Ao, foust) < | S52] difon, fonen)
< [ e s
< [r 5] (] amm s
< <[] (] ) o
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and

d(fzoks2, fTorss) <

A
™
B

] d(fZok+1, fTok+42)

( [?%] [%;%] ) . d(fzo, fz1),

IN

for each £ > 0. Let

Then, Ax < 1. Now, for p < q we have

d(fzapt1, fTag1) < d(fTops1s fTaps2) + d(fZopra, fTap43)

+d(fTop43, fTopss) + - . .+ d(fT2q, fT2441)

q—1 . q i

< PYowi+ Y (w] d(fzo, f21)

L i=p i=p+1

— - 1 — =

< [A(AMT_ A(:mq ., (Ap>v+1[1_ Aff#)q "l]dgzo, fz1)

I 1
< [P B igz0, g2
< a+ ){*(*“) ]d(fz,fxo

d(fIO) le)1

d(f$2p,f:1:2q+1) < (1 + A) { (A/J') ]

d(frap, fr2g) < (14 N) [ Qp? ] d(fzo, fo1),

and
A(Ap)?

d(fTapt1, freg) < (14 p) [ ] d(fzo, fz1).

Hence for 0 < n < m, there exists p < n < m such that p — co as n — oo and

d(fzn, fom) < Maz{(1+ )[A(’\") ] (1+2) [ (A ]}d(fxo, fz1).
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Since P is a normal cone with normal constant &, we have

(s faml < Moz {1 ) [$28] oy [ 2F [Hacsao, o

Thus, if m,n — oo, then

Maz{(l-}-p,) [’\(’\“):} 1+ )[(’\“) ]}—»0,

and so d(fzn, fTm) — 0. Hence, {fz,} is a Cauchy sequence. Since f(X) is complete, there
exist u,v € X such that fz, — v= fu. Since

d(fu, Su) < d(fu, fe2n) + d(f2n, Su)
d(v, fTon) + d(TTon—1, Su)
< d(v, fz2a) + ad(fu, Tz20-1)
+B{d(fzan-1, fu) + d(fu, Su)} +vd(fu, fzan-1)-

IA

It implies that

IN

d(fu, Su) [d(v, fz2n) + ad(v, fz2n) + Bd( fT2n-1,v) + vd(v, fran-1)]

1
ey
5 0+ @) o, fom) + B F3n-1,) + 30, S ).

IA

Hence,

ld{fu, Sulf < 7= ll(l +a) d(v, fzan) + (B +7) d(v, fzan-1)| -

If n — oo, then we obtain ||d(fu, Su)|| = 0. Hence, fu = Swu. Similarly, by using the inequality

d(fu,Tu) < d(fu, fzons1) + d(fT2ni1, Tu),

we can show that fu = Tu. This implies that v is a common point of coincidence of S,T and f,
that is
v=fu=Su="Tu.
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H67 78

Now, we show that f,S and T have unique point of coincidence. For this, assume that there

exists another point ¥* in X such that v* = fu* = Su* = Tu” for some 1* in X. Now,

d{v,v*)

d(Su, Tu")
ad(fu, Tu®) + Bd(fu*, Su) + vd(fu, fu’)

(a+ B +7)d(v,v*).

IA

IN

Hence, v =v*. If (S, f) and (T, f) are weakly compatible, then
Sv=Sfu=fSu= fvand Tv=Tfu= fTu= fu.

It implies that Sv = Tv = fv = w (say). Hence, w is a point of coincidence of S, T and f, and

s0 v = w by uniqueness. Thus, v is the unique common fixed point of S, T and f.

2.1.17 Example

Let X = {1,2,3},E = R? and P = {(z,y) € E : z,y > 0}. Define d: X x X — E as follows:
(0,0) ifr=y

(%,5) ifx#yand z,y€ X — {2}

(1,7) fzx#yandz,ye X - {3}
3,4) ifz#yandz,yeX—{1}.

d(z,y) =

Define the mappings T, f : X — X as follows:

1 if 2
T(z) = ks and fzr=z.
3 ifz=2
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Then, d(T'(3),T(2)) = (=5,-,5). Now, for 2a + v < 1 we have

ald(f(3), T() + d(F(2), T@))] +1d(1(3), £(2)
= ald@,T() +d(2 TE)] +7d(3,2)
= 23,4 +ald3,3)+d2, 1)

= a0+ 0N+ = (CF 70t ay)
< Y ga b ay) = (AT 4 (20 4 )

7 7
< (5.9 <25 = dT(3), T(2)).

It follows that the mappings T and f do not satisfy the conditions of Theorem 2.1.12. Hence,
Theorem 2.1.12 and its corollaries 2.1.13, 2.1.14 and 2.1.15 are not applicable here. Now, define
the mapping §: X — X by Sz =1 for all z € X. Then,

(0,0) ify#2

d(Sz,Ty) = s _
(?75) "‘f y= 2

ad(fz,Ty) + Ba(fu, 52) +1d(f, f3) = (25)

fy=2 a=v=0and 8= % It follows that all conditions of Theorems 2.1.16 are satisfied

fora=v=0, 8= % and one can obtain the unique common fixed point 1 for S,T and f.

2.2 Coincidence and common fixed point results in non-normal
cone metric spaces
Results given in this section have been published in [11, 18].
"This section deals with the results in cone metric spaces without the assumption of nor-

mality. In [141] Rezapour and Hamlbarani, established that there are non-normal cones.

Let (X,d) be a complete cone metric space, P be a normal cone with normal constant «.
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Suppose that the mappings T , f: X — X satisfy:

d(Tz,Ty) < Ad(fz, fy)+ B d(fz,Tz) + Cd(fy, Ty)
+D d(fz,Ty) + E d(fy, Tx), (2.5)

for all z, y € X where A, B,C, D, E are non-negative real numbers.
Huang and Zhang [78] proved that T has a unique fized point if
(a) f =1, where I is the identity mapping on X (see [72, 140, 142])
and

(b) one of the following is satisfied:
(i) B=C=D=FE=0 with A<1([78], theorem 1),
(i) A=D=E =0 with B=C < 3([78], theorem 3),
(ii) A=B=C =0 with D= E < ([78], theorem 4).

Abbas and Jungck [1] proved that f and T have a unigue point of coincidence and unique
common fized point if one of the following is satisfied:

(i) B=C=D=E=0 with A<1 ([1], theorem 2.1),
(i) A=D=E =0 with B=C < 1([1], theorem 2.3),
(i) A=B =C =0 with D=E < ([1], theorem 2.4).

Rezapour and Hamlbarani [141] generalized some results of (78] by omitting the assumption

of normality on X.' We have the following improvement/generalization of these results.”

2.2.1 Theorem

Let (X, d) be a cone metric space. Suppose the mappings T, f: X — X satisfy:

d(Tz,Ty) < Ad(fz, fy)+ B [d(fz,Tz) + d(fy, Ty)]
+C [d(fz, Ty) +d(fy, Tx)] (26)
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for all z,y € X where A, B, C are non-negative real numbers with

A+2B+2C< 1.

If
T(X) S f(X)
and f(X) or T(X) is a complete subspace of X, then T and f have a unique point of coincidence.
Proof

Let zg be an arbitrary point in X. Choose a point z; in X such that fz; = Tzp. This can
be done since T'(X) C f(X). Similarly, choose a point z3 in X, such that fz = T'z;.Continuing

this process and having chosen z, in X, we obtain z,41 in X such that
[z =Tz, k=0,1,2, ...
Then

d(fzk+1, fTrea) = d(Tzk, TTet1)

A d(fzk, fxre1) + B [d(fze, Tze) + d(fTrs1, TTh41))
+C [d(fzk, TTi1) + A(f T4, TTk)]

[A+ B] d(fzk, fris1) + B d(fTrs1, fTrs2)

+C d(fzk, fTrr2)

[A+ B+ C] d(fzk, fzi+1) + [B + C) d(fTks1, fTrs2)-

A

IA

N

It implies that

(1 - B = Cld(fzrs1, fTr+2) <[A+ B+ C) d(fzk, fThs1)-

That is

d(fTk+1, forea) < [?—i—-g—j-—g] d(fzx, fTrs1)-
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Moreover,

A+B+C1?
A(fTrs1, fThea) < [m] a(fzk—1, fzk)
A+ B+ O]
< Lr2rv-
< s [FEEEE dino, fo).
. A+ B
Putting y, = frp and A= [-—1——:—_'_-?—;'_—00—} .
We have,
d(Yn, Yn+1) < A"d(y0,91).

Forn>m

IA

d(ym ym) d(ym yn—l) + d(yn—la yn—2) +...+ d(ym+17 y‘m)

(AT A2 2™ d(yo, 1)
,\m
< 75y, ).

A

Let 0 < c be given. Choose § > 0 such that
c+{z€eZ:|z| <é}CP

Also choose a natural number Ny such that

m

Zdlo ) € (s €2 ol <8}, forall m2 Ny

Then

m

T)%_jd(ymyl) <c, forallm > Ny,

Thus,

m

A
n>m = dyn, ym) < Ty dlvo, 1) K ¢,

which implies that { y,} is a Cauchy sequence. We assume that f(X) is complete, then there
exist u,v € X such that y, = v = fu.
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Choose a natural number N3 such that for all » > Ny

e <[4, < [
and
d(yn,v) < [ﬁl—}_gc;q_)]

Now, inequality (2.6) implies that

d(fu,Tu)

IN

d(fu, yn) + d(yn, Tu)

d(v,yn) + d(Tzn-1,Tu)

d(v,Yn) + Ad(fu, fon-1) + Bld(fu, Tw) + d(fTn-1, TZn-1)]
+Cld(fu, Ton-1) + d(fzn—1, Tu)]

d(v,yn) + Ad(v, yn-1) + Bld(fu, Tu) + d(yn-1, ¥n)]
+Cd(v,yn) + d(yn-1,v) + d(fu, Tu)]

(14 C)d(v, yn) + (A+C)d(v, yn—1) + Bd(yn-1, ¥n)

+(B + C) d(fu, Tu)

IA

IN

IA

IA

Consequently,

dfTe) < || don + [T Eag | e van)

B
+ {*1—_'—3'—:—0,'] d(_yn-ly Yn).
It further implies that

c ¢ ¢
d(fu,Tu)<<§+§+§—c.

Thus,
d(fu, Tu) < -%, for all m > 1.

So, £ —d(fu,Tu) € P, for all m > 1. Since £ — 0 (as m — oo) and P is closed, —d(fu,Tu) €
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P. But PN (—P) = {0}. Therefore, d(fu, Tu) = 0. Hence v = fu = Tu. Next we show that f
and T have unique point of coincidence. For this, assume that there exists another point v* in

X such that v»* = fu* = Tu* for some u* in X. Now

d(v,v*)

d(Tu,Tu*)

AN

Ad(fu, fu*)+ Bld(fu, Tu) + d(fu*, Tu*)]
+Cld(fu, Tu*) + d(fu*, Tu)]

Ad(v,v*) + Cld(v, v*) + d(v*, v)]

(A +20) d{v,v*),

IA

IA

hence v = v*.

On the other hand, if we assume that T'(X) is complete, then the Cauchy sequence

Yn = fon=T2n1

converges to v € TX. But TX C fX which allows us to obtain u € fX such that v = fu.

The rest of the proof is similar to previous case.

2.2.2 Theorem.

If in addition to the hypotheses of Theorem 2.2.1 the mappings T, f : X — X are weakly
compatible, then T and f have a unique common fixed point.

Proof
As in the proof of Theorem 2.2.1, there is a unique point of coincidence v of f and T'. Now

T, f are weakly compatible, therefore
Tv=Tfu= fTu= fu.

It implies that Tw = fv = w (say). Then w is a point of coincidence of T and f , therefore

v = w by uniqueness. Thus, v is a unique common fixed point of T and f.
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2.2.3 Theorerh

Let (X, d) be a cone metric space. Suppose that the mappings T, f: X — X satisfy (2.5), for
all z,y € X where A, B,C,D and F are non-negative real numbers with

A+B+C+D+E<L

T(X)c f(X)

and f(X) or T(X) is a complete subspace of X, then T" and f have a unique point of coincidence.
Moreover, if T, f are weakly compatible, then T and f have a unique common fixed point.

Proof
By hypothesis for all z,y € X, we get,

d(Ty, Tz) < A d(fy, fz)+ B d(fy,Ty) + Cd(fz,Tx) + D d(fy, Tz) + Ed(fz, Ty).
It follows that,

arz,T) < Adfz f)+ (252 e Ta) + dlfu TV

N <D tE ) ld(fz, Ty) + Bd(fy, Tz)].

The required result follows from Theorems 2.2.1 and 2.2.2.

2.2.4 Example

Let X =R ,E = R?,
d(:l:,y)=(‘$-yl,ﬂl$—y|), 6>0

P= {(I,y)32,920},
T (z) =22° + 4z + 3 and fz = 3z° + 6z + 4.

Then
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TX = fX =[1,00)
and all the conditions of Theorem 2:2.1 are satisfied for

Ae [%,1), B=c=0.

as we obtain 1 € X as a unique point of coincidence

1= f(~1) = T(~1).

2.2.5 Remark

(i) Note that in Example 2.2.4
Tf(-1)=T(1)=9and fT(-1)= f(1)=13.

Thus T and f are not weakly compatible. It follows that except the weak compatibility of T’
and f, all other hypotheses of Theorem 2.2.2 are satisfied but

1# f(1) #T(1).

It shows that the weak compatibility for T and f in Theorem 2.2.2 is an essential condition.
(i) In example 2.2.4 if we assume T (z) = 2z% + 4z + land f(z) = 322+ 6z + 2, then T and

f become weakly compatible and all conditions of Theorems 2.2.1, 2.2.2 and 2.2.3 are satisfied

to obtain a unique point of coincidence and a unique common fixed point —1 = f(—1) = T'(-1).

Our next example demonstrates the crucial role of the condition T(X) C f(X) in our

results.

2.2.6 Example

Let X = R*(the set of all non-negative real numbers), E = R?

d(z,y) = (|z ~yl,elz — 9]},
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T (z) = €* and fz = =1,

Then,
TX =(0,00) & [e,00) = fX,

d(Tz, Ty)

(le: _ eyl , lez+1 _ey+1|)

—_ %(Iez+1 - ey+ll , [ez+2 _ ey+2]).

= d(fz, fy).

It follows that all the assumptions of Theorem 2.2.1 except TX C fX are satisfied for A =
%, B =C =0, but T and f do not have a point of coincidence in X.

" The next theorem involves a contraction condition stronger than that of Theorems 2.2.1,2.2.2,
2.2.8 and proves the ezxistence of unique points of coincidence and unique common fizred points
for three self mapping S, T, f on X. First we prove that, under certain conditions every

§-T-sequence with initial point o € X is a Cauchy sequence.”

2.2.7 Proposition

Let (X, d) be a cone metric space and P be a cone. Let S,T,f : X — X be such that
S(X)UT(X) C f(X). Assume that the following conditions hold:

(i) d(Sz,Ty) < ad(fz, Sz) + Bd(fy, Ty) + v d(fz, fy), for all z,y € X, with z # y, where

o, 3, are non negative real numbers with a + g+ < 1;
(i) d(Sz,Tz) < d(fz,Sz) +d(fz,Tz), for all z € X, whenever Sz # T'z.

Then every S-T-sequence with initial point zp € X is a Cauchy sequence.
Proof
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Let zp be an arbitrary point in X and {fz,} be a S-T-sequence with initial point zy. First,
we assume that fz, # fzn41 for all n € N. It implies that =, # Zp4+1 for all n. Then,

d(fTort1, fTaks2) d(Szok, TTok+1)

N

a d(fzok, Stax) + B d(fToks1, Txak+1) + Yd(fTok, fTok+1)

[@+7) d(fzok, fTae+1) + BA(fTar+1, fT2k+2)-

Y/AN

It implies that
1 - Bld(fzak+1, fraksa) € [a+7] d(fzok, fTaks1),

50,

d(fTok1, froes2) < [%;—g] d(fzok, froks1).

Similarly, from

d(Stok+2, TT2k+1)

d(fzoks2, fTak+a)

N

a d(fTok+2, STokt2) + BA(frak+1, TZak+1) + 7 d(fTak+2, FZ2k+1)

N

a d(frok+2, frak+s) + Bd(fTaksr, froksa) + v d(fTar42, fTar+1)

N

1B+ d(fxoks1, fTars2) + ad(fTaks2, fT2ks3),

we obtain
B+~

d(fTak+2, fTok+3) < [-1—:-&] d(fzars1, fToxs2)-

Now, by induction, for each & =0, 1,2,..., we deduce

d(fTok+1, fTaks2) < L(;i—g d(fzok, frak+1)
< ?1—37 [ﬁ 7] d(fz2k-1, fw2x)
< c;i—g [ffl] [c1x+'y} d(fzok—2, fr2e-1)
c <l ) e
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a+ a] d(fzak+1, fraria)

(2 [5) e

_ja+q _ {8+~
=[153) =

Then Ap < 1. Now, for p < ¢, we have

d(fZak+2, frakss) < [

Let

d(fTaps1, fTog+1) S d(fTop+1, [Topta) + A(fTopra, fropes) + d(fTap+3, fTapsa)

4+ d(frog, frags1)

q—-1 q
[AZ(Au)i+ > (A#)‘] d(fxo, fz1)

N

i=p i=p+1

e

d(f:'l:o, le)

N

<m

N

T
(/\ )

d(fl'o,fh)
d(f“’oy le)

N

In analogous way, we deduce

2om

d(fz2p1 fI2q+1) < (1 +’\) ( p) d(f va ) < (f:tO:le)

(m

Ao, fz2q><<1+x>  d(fz0, f fay) < 2Y " iz, 1)

and

(A ) 2(#)

d(fzopr1, fag) < (1+ u)).

d(f 01 1) < — d(f:l: 7f1:1)'

Hence, for0 <n<m
2 (Ap)?

(fsz m)< )\“

40



where p is the integer part of §. Fix 0 « ¢ and choose I(0,6) = {z € E : ||z|| < 6} such that
c+I(0,8) C IntP. Since

. 2(dup)P _
Al o d(fzo, fz1) = 0,
there exists ng € N be such that
2(Mu)?
T d(fzo, fz1) € I(0,4)

for all p > ng. The choice of I(0,d) assures

2(Au)?
c— EL_-%-); d(fzg, fz1) € IntP,
S0,
2 ()P
1-Ap

d(fZO) le) e

Consequently, for all n,m € N, with 2ny9 < n < m, we have

d(fznr fIm) << C,

and hence {fz,} is a Cauchy sequence. Now, we suppose that fz,, = fzm1 for some m € N.

If z,, = T4y and m = 2k, by (ii) we have

d(fzae+1, fToks2) = d(SzTok, TTogtr)

< d(fzok, Szax) + d(fTak+1, TT2k41)

d(fTaks1, fTor+2),

which implies fzorr1 = fZokt+2. If Tm # Tm+1, We use (3) to obtain frogy; = fzagro. Similarly,
we deduce that fZokio = fZoky3 and so fz, = fzm for every n > m. Hence, {fz,} is a Cauchy

sequence.
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2.2.8 Theorem

Let (X, d) be a cone metric space and P be a cone. Let S,7,f : X — X be such that
S(X)UT(X) C f(X). Assume that the following conditions hold:

(i) d(Sz,Ty) < od(fz,Sz) + Bd(fy, Ty) + v d(fz, fy), for all z,y € X, with = # y, where

a, B, are non negative real numbers with o+ 4+ v < 1;

(i) d(Sz,Tz) < d(fz,Sz)+d(fz,Tz), for all z € X, whenever Sz # Tz.

If f(X) or S(X)UT(X) is a complete subspace of X, then S, T and f have a unique point
of coincidence. Moreover, if (S, f ) and (T, f) are weakly compatible, then S,T and f have a
unique common fixed point.

Proof

Let zo be an arbitrary point in X. By Proposition 2.2.7, every S-T'sequence {fz,} with
initial point zp is a Cauchy sequence. If f(X) is a complete subspace of X, there exist u,v € X
such that fz, — v = fu (this holds also if S(X)UT(X) is complete with v € §(X) U T(X)).
From

d(fua S‘U.) < d(f'U:, fz‘Z'n.) + d(fIZﬂa SU)
< d(v, fz2n) +d(TTan-1, Su)
< d(‘U, fzzn) +a d(f'U-, S’U) + ﬂ d(f:z?'n—-la TxZ‘n.—-l) + ’Yd(f’ll., fIZn—-l),

we obtain )
d(fu,Su) € I—:I—E[d(v, fzan) + Bd(fxon-1, Fran)+vd(v, fran-1)].

F1x 0 < c and choose ng € N be such that

d(v, fzan) < ke, d(fzon-1, fTon) K ke,  d(v, fTan1) K ke
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for all n > ng, where k = (1 — a)/(1 + B8 + ). Consequently, d(fu,Su) <« c and hence,
d(fu, Su) < ¢/m for every m € N. From

Cc
o d(fu, Su) € IntP,

being P closed, as n — oo, we deduce —d(fu, Su) € P and so d(fu, Su) = 0. This implies that
fu = Su. Similarly, by using the inequality,

d(fu,Tu) < d(fu, fT2n41) + d(fTon41Tu),
we can show that fu = Tu. It implies that v is a point of coincidence of S, T and f, that is
v= fu= Su="Tu.

Now, we show that S,T and f have a unique point of coincidence. For this, assume that there

exists another point v* in X such that v* = fu* = Su* = Tu*, for some u* in X. From

d(v,v*) d(Su,Tu")

V/N

ad(fu, Su) + Bd(fu*, Tu") + vd(fu, fu®)
< ad(v,v) + Bd(v*,v*) + vd(v, v*)

7d(v,v"),

N

we deduce v = v*. Moreover, if (S, f) and (T, f) are weakly compatible, then

“Sv=8Sfu=fSu=frvand Ty=Tfu= fTu= fv,

which implies Sv = Tv = fv = w (say). Then w is a point of coincidence of S,T and f
therefore, v = w, by uniqueness. Thus, v is a unique common fixed point of S,T and f. From

Theorem 2.2.8, if we choose S = T, we deduce the following theorem.
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2.2.9 Theorem
Let (X, d) be a cone metric space, P be a cone and T, f : X — X be such that T(X) C f(X).

Assume that the following inequality holds:

d(Tz,Ty) < ad(fz,Tz) + Bd(fy, Ty) + v d(fz, fy) (2.7

for all z,y € X, where a,8,7 € [0,1) with a+ B+ < 1. If f(X) or T(X) is a complete
subspace of X, then T and f have a unique point of coincidence. Moreover, if (T, f) are weakly
compatible, then T and f have a unique common fixed point.

Theorem 2.2.9 generalizes Theorem 1 of [166].

2.2.10 Remark

In Theorem 2.2.9, the condition 2.7 can be replaced by

d(Tz,Ty) < ald(fz,Tx) + d(fy, Ty)] + v d(f=, fy) (2.8)

for all z,y € X, where o, € [0,1) with 2a +v < 1. (2.8) = (2.7) is obvious. (2.7) == (2.8).
If in (2.7) interchanging the roles of z and y and adding the resultant inequality to (2.7), we
obtain

228 {a(fz, T2) + d(fu, T + 7 d(fz, )

d(Tz,Ty) <

From Theorem 2.2.9, we deduce the followings corollaries.

2.2.11 Corollary

Let (X,d) be a cone metric space, P be a cone and the mappings T, f: X — X satisfy:

d(Tz,Ty) < v d(fz, fy)

for all z,y € X where, 0 < v < 1. If T(X) C f(X) and f(X) is a complete subspace of X,

then T and f have a unique point of coincidence. Moreover if (T, f ) are weakly compatible,
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then T and f have a unique common fixed point.
Corollary 2.2.11 generalizes Theorem 2.1 of [1], Theorem 1 of [78] and Theorem 2.3 of [141].

2.2.12 Corollary

Let (X, d) be a cone metric space, P be a cone and the mappings T, f: X — X satisfy:
d(Tz,Ty) < ald(fz,Tz) + d(fy, Ty)]

for all z,y € X, where 0 S a < . If T(X) € f(X) and f(X) is a complete subspace of X,
then T and f have a unique point of coincidence. Moreover, if (T, f) are weakly compatible,
then T and f have a unique common fixed point.

Corollary 2.2.12 generalizes Theorem 2.3 of [1], Theorem 3 of [78] and Theorem 2.6 of [141].
2.2.13 Example
Let X = {a,b,c}, E=R? and P = {(z,y) € E | 7,y > 0}. Define d : X x X — E as follows:
(0,0) fz=y
(3,5) ifz#yandz,yeX—{b}

(1,7) ifr#yandz,yeX-{c}
(3,4) fz#yandz,yeX—{a}

d(z,y) =

Define mappings f,T : X — X as follows:

f (z) ==,
T(z)={c ifz#£b,
a ifz=0"
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2.2.15 Theorem

Consider the Urysohn integral equations

b
zm=[Kmmumw+w»

b
zm=/Km@dmw+wx

where t € [a,b] C R, z,9,h € X.
Assume that K, K3 : [, b] X [a,b] x R® — R™ are such that

(i) Fy, G € X, for each z € X, where

Fz(t) = /b Kl(tr 311(3))d3!

Galt) = / ’ Ka(t,5,2())ds V¢ € [a,B], (2.9)

‘(ii) there exist 3,7, > 0, such that
(IF=(t) — Gy (t) + 9(t) — h(8)], p |Fz(t) — Gy(t) + g(t) — h(£)])

< a(lFa(t) +g(¢) — z(@), pIF=(8) + 9(t) — z()])
+B(IGy(t) + A(t) — y(t)], pIGy(t) + A(t) ~ y(2)])
+y(l=(t) — y(0)] ,pl=(t) — y(®)]),

where a+ fB+v < 1, forevery z,y € X withz#yand t € [a;b].

(iii) whenever F; + g # Gz + h

sup (|Fz(t) — Gz(t) +9(t) — h(t), p|Fz(t) — G=(t) + g(t) — h(2)])

t€la,b]
< tzﬁp (1Fe(t) + g(t) — z()], p | F=(t) + 9(t) — =(t)])
+t21[1p (IGz(t) + A(t) — ()], p|G=(t) + h(t) — z(t)l)
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for every z € X. Then, the system of integral equations (2.9) have a unique common

solution.

Proof
Define §,T: X — X by S(z) = F; + g, T(z) = Gz + h. It is easily seen that

(IS =Tl »P IS - Tloo) < a(IS(z) ~ 2l , P I1S(z) ~ zll )
+BUIT®) ~ ¥lloo P IT @) ~ ¥lloo)

+Y(lz - Yl Plz — ¥loo) »

for every z,y € X, with z # y and if S{(z) # T(z).

(IS = Tleo P18 - Tleo) < ([I5(2) — 2o P 15(2) — zll0)
+(IT(2) = 2l , P IT(z) — 2ll0)

. for every =,y € X, with z # y and if S(z) # T(z)
d(5(z), T(z)) < d(S(x), z) + d(T(z), z)

for every z € X. By Theorem 2.2.8, if f is the identity map on X, the Urysohn integral

equations (2.9) have a unique common solution.

2.3 Weakly p—pairs and common fixed points in cone metric

spaces

Results given in this section will appear in [167].

"In this section Theorem 2.4.4, establishes the existence of unique point of coincidence
of three self mapping S, T, f : X — X satisfying a p- contraction condition with S(X) U
T(X) C f(X). Moreover, if (S, f) and (T, f) are weakly compatible then S,T and f have a
unique common fized point. Our results in this section improve and generalize some results in

[1, 78, 184, 141, 166]."
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which is a contradiction and so z = d(fzTax, fTor+1). Therefore,

d(fTaks1, frars2) < @(d(fzok, fTk41)), for alln €N.

Similarly, we obtain

d(froks2, frak+s) < ©(d(fTak+1, fraks)), for allneN.
We deduce that
d(fz‘m f2n+1) < ‘P(d(fzﬂ—la fzﬂ))y for alln e N1

and consequently,

d(fZn, fEns1) < @(d(fz0, fz1)), for allme N, (2.10)

Fix 0 < c. We choose a positive real number § such that (¢ — ¢(c))/2 + I(0, ) C IntP, where
I{0,8) = {y € E: ||yl| < 6}. By (iii) of Definition 2.3.1, there exists a natural number N such
that ¢™(d( fzo, fz1)) € I(0,9), for all m > N. Then

™ (d(fz0, fz1)) € (c—¥(c))/2,

for all m > N. Consequently, d(fZm, fTm41) € (c—©(c))/2, for all m > N. Fix m > N. Now

we prove

d(fZam+1, fTanta) K € (2.11)

for all n > m. Note that (2.11) holds when n = m. Assume that (2.11) holds for some

n =k > m. Then we have

d(fzam+1, frars2) K ¢

and

d(from+2, frokss) = d(TTam+1, STaks2) < @(2),
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for some

z € M(Zok42, Tam+1) = {d(fToks2, fTok43), A fTams1, fTame2), A fTor+2, fTom+1)}-

It implies that
d( f(zam+2), f(z2k43)) < @(c)

and consequently,

d(fzom+1, fT2k+4) < A(fTame1, f(Tamez) + A(fTams2, fTok+3) + A(FTok+3, fTokta)

c— lc) = o) _
2

€

+plc) + c.

Therefore, (2.11) holds when n = k + 1. By induction, we deduce (2.11) holds for all n > m.
This is sufficient to conclude that {fz,} is a Cauchy sequence.

2.3.3 Theorem

Let (X, d) be a cone metric space and P be a cone. Let S,T,f : X — X be such that
S(X)UT(X) C f(X). Assume that there exists a p—map such that

d(Sz,Ty) < p(2), for some z € M(z,y),

for all z,y € X. If f(X) or S(X)UT(X) is a complete subspace of X, then S,T and f have
a unique point of coincidence. Moreover, if (S, f ) and (T, f) are weakly compatible, then S,T
and f have a unique common fixed point.

Proof

Let zo be an arbitrary point in X. By Proposition 2.3.2 every §-T-sequence {fz,} with
initial point zg is a Cauchy sequence. If f(X) is a complete subspace of X, there exist u,v € X
such that fz, — v = fu (this holds also if S(X) UT(X) is complete with v € S(X) U T(X)).

51



Then
d(f’ll., S’ll.) S d(f’U:, fl'2n) + d(fl'2m Su’)

< d(v, fzan) + @(zn),

with z, € {d(fu, Su),d(fron—1, fTan),d(fu, fzon-1)}. Fix 0 < ¢ and choose L € N be such
that

d(v, fzan) € ¢/2, d(fzon-1, fTon) € ¢/2, d(v, fzon_1) < c/2

for all n > L. Now for infinitely many n € N one of the following conditions holds:
(1) d(fu,Su) € ¢/2+ p(c/2) € c/2+c¢/2=c,
()  d(fu, Su) — p(d(fu, Su)) < ¢/2.
Furthermore, either (i) or (ii) implies fu = Su. Similarly, by using the inequality,

d(fu, Tu) < d(fu, foant1) + d(fzons1Tu)
we can show that fu = Tu. It implies that v is a point of coincidence of S, T and f, that is
v= fu=Su=Tu

Now, we show that S,T and f have a unique point of coincidence. For this, assume that there

exists another point v* in X such that v* = fu* = Su* = Tu*, for some u* in X. From
d(v,v*) = d(Su, Tu*) € ¢(2),

with z € {d(fu, Su), d(fu*, Tu*),d(fu, fu*)} we deduce v = v*. Moreover, if (S, f) and (T, f)

are weakly compatible, then
Sv=Sfu= fSu= fvand Tv=Tfu= fTu= fv,

which implies Sv = Tv = fv = w (say). Then w is a point of coincidence of S,T and f

therefore, v = w, by uniqueness. Thus, v is & unique common fixed point of S, T and f.
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2.3.4 Remark

From Theorem 2.3.3 if we choose § = T, we obtain Theorem 1 of [46] and if we choose f = Ix,
the identity map on X, we obtain Theorem 4 of [46].

2.4 Banach contraction principle in rectangular cone metric

spaces

Results given in this section have been published in [23].
"In this section, we introduce the notion of cone rectangular metric space and prove that
a self mapping on complete cone rectangular metric space satisfying the Banach contraction

condition has a unique fized point.”

2.4.1 Definition

"Let X be a nonempty set. Suppose, the mappingd: X x X — E satisﬁes:A
1. 0 < d(z,y), for all z,y € X and d(z,y) =0 if and only if z =y,

2. d(z,y) =d(y,z) forall z,y € X;

3. d(z,y) < d(z,w) + d(w, 2) + d(2,y) for all z,y,€ X and for all distinct points w,z €
X — {z,y} [rectangular property].

Then, d is called a cone rectangular metric on X, and (X,d) is called a cone rectangular

metric space."

2.4.2 Definition

"Let z, be a sequence in (X,d) and z € (X,d). If for every ¢ € E, with 0 <« c there s
ng € N such that for all n > ng,d(zn, ) < c, then {T,} is said to be convergent, {z,} converges

to z and z is the limit of {z,}.We denote this by lim,z, =z, or T, — z, as n — c0."
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2.4.3 Definition

"If for every ¢ € E with 0 < c, there is ng € N such that for all n > ng, d(zn, Tntm) < ¢, then
{zn} is called a Cauchy sequence in (X, d). If every Cauchy sequence is convergent in (X,d),
then (X, d) is called a complete cone rectangular metric space."

2.4.4 Example

Let X =N, E=R? and
P= {(:L',’y) : -’E,yZO}'

Defined: X x X — FE as follows:

0,0) ifz=y,
d(z,y) =4 (3,9) if z and y are in {1,2}, T # .
(1,3) otherwise.

Now (X,d ) is a cone rectangular metric space but (X,d ) is not a cone metric space because

it lacks the triangular property:
(3,9) = d(1,2) > d(1,3) +d(3,2) = (1,3) +(1,3) = (2,6)
as (3,9) — (2,6) =(1,3) € P.

2.4.5 Lemma

Let (X,d) be a cone rectangular metric space and P be a normal cone with normal constant
k. Let {z,} be a sequence in X. Then {z,} converges to z if and only if ||{d(zn,z)|| = 0asn —
0o0.

Proof

Suppose that {zn}converges to z. For a given real number ¢ > 0, one has ¢ € E, with

0 < csuch that & |lc|| < e. Then for this 0 < c, there is a natural number N, such that

d(zn,z) € cforalln > N.
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Since P is a normal cone with normal constant k, therefore,

fld(zn, z)]| < kllc|| <€ foralln > N.

It follows that

ld(zn,z)|| — 0 as n — co.

Conversely, suppose that ||d(z,,z)]| — 0 as n — oo. For given ¢ € E with 0 < c, one has
¢ > 0, such that

c — B(0;6) C intP,

where B(0;8) = {z € E : ||z|| < §}. For this §, there is a natural number N such that
ld(zn, z)|| < & for all n > N.

That is d(zn, z) € B(0;4) for all n > N. This means ¢ — d(z,,z) € intP for all n > N. Hence,
d(zp,z) < c for all n > N. Therefore, {z,} converges to .

2.4.6 Lemma

Let (X, d) be a cone rectangular metric space, P be a normal cone with normal constant «. Let
{zn} be a sequence in X. Then {z,} is a Cauchy sequence if and only if ||d(Zn, Tnsm)l| —
0 as n — oo.

Proof

Suppose that {z,} is a Cauchy sequence. For given € > 0, one can choosec € E with 0 < ¢
and « ||| < €. Then for this 0 < ¢, there is a natural number N such that

d(Zn,Zn+m) € cforall n > N.
Since P is a normal cone with normal constant «, therefore,

ld(zn, Tnem)l| € kllcl| < € for all n > N.
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It follows that

ld(zn, Zntm)lf — 0 as n — oo.

Conversely, suppose that [|d(Zn, Zn+m) — 0| as n — oco. For given ¢ € E with 0 < ¢, one has
d > 0, such that:

¢ - B(0;6) C intP.

F:or this 4, there is a natural number N such that:
{d(zn, Znem)|| < & for all n > N.

That is d(zn, Trnim) € B(0;4) for all n > N. This means that ¢ — d(Zp,Znym) € intP, for
all n > N. Hence, d(zn, Zn4+m) < ¢ for all n > N. Therefore, {z,} is a Cauchy sequence.

2.4.7 Theorem

Let (X, d) be a cone rectangular metric space, P be a normal cone with normal constant x and

the mapping T : X — X satisfies:
d(Tz,Ty) < A d(z,y)

for all z,y € X , where 0 < A < 1. Then T has a unique fixed point.
Proof

Let z¢ be an arbitrary point in X. Define a sequence of points in X as follows:
Tpp1 =Tz =T "z, n=0,1,2,.....
We can suppose that zg is not a periodic point, in fact if £, = zp, then,

d(zg, Tzg) = d(zn,Tzy)=d(T "zo,T n'H:Bo) < Ad(T "'_I:L'Q,T "zo)

IA

Md(T "2, T " zg) < ... < Ad(zg, Tx0).
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It follows that

(A" — 1] d(zo, Tzo) € P.

It further implies that

A" -1
— T ,
{1 —_ An] d(z()v IQ) €P.

Hence —d(zg,Tz¢) € P and d(zg,Tzg) = 0, this means zg is a fixed point of T. Thus, in

this sequel of proof we can suppose that z,; # z, for all distinct m,n € N. Now, by using

rectangular property for all y € X , we have,

dly, T y) < d(y,Ty)+d(Ty,T %y) +d(T %y, T 4y)

A

< d(y, Ty) + Md(y, Ty) + \d(y, T %y).

Similarly,

d(y, T %)

IA

d(y, Ty) +d(Ty, T 2y) +d(T %y, T 3y) +d(T %y, T 4y)
+d(T *y, T ®y)

IA

d(y, Ty) + Ad(y, Ty) + Ad(y, Ty) + Xd(y, T y)
+Md(y, T %)

3
< ) Nd(y,Ty) + X d(y, T %), for all y € X.

i=0
Now by induction, we obtain for each k = 2, 3,4, ...,

2k-3

d(y, T %*y) < ) Nd(y, Ty) + X2 d(y, T ). (2-12)
1=0

Moreover, for all y € X,

dy,T %) < dy,Ty) +d(Ty,T *y) + d(T %y, T 3y) + d(T 3y, T *y)

+d(T *y, T 5y)
4

) Xd(y, Ty).

=0

IA
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By induction, for each &k = 0, 1, 2,... we have,

2k
d(y, T **+1y) <Y Md(y, Ty).
=0

Using inequality (2.12), for k£ = 1,2,3,... we have,

d(T "-’l—‘o, T n+2kz0)

iN

Ad(zo, T %)

k—3
A" rz N (d(:l:o,T:l:o) + d(xo,T 230))

i=0

IA

+X%2 ( d(z0, T30) + d(z0, T *20)) |
2k-2
A" Z bo [d(:to,T:l:o) +d(zo, T 2170)]
i=0
/\n(l _ I\Zk—l)
1-A

A"
T [d(zo,Tz‘o) +d(zo, T 2:1:0)] .

IA

IN

[d(z0, Tz0) + d(z0, T 2z0)]

IA

Similarly, for & =0,1,2,..., inequality (2.13) implies that

d(T nzo, T n+2k+1170)

IN

A"d(zo, T 2k+1x0)
2k
A > Nd(zo, Tzo)

=0
n

1-A

IA

IA

[d(zo, Tzo) + d(zo, T 21:0)] .

Thus,

n

A
1-A

d(T ™z, T "*™zp) < [d(:z:o, Tzo) + d(zo, T 2:1:0)] .

Since P is a normal cone with normal constant x, therefore,

n

(T "zo, T "*™z0)|| < 1/\_ 5

% || [d(zo, Txzo) + d(zo, T 2x0)]|| -

(2.13)

Therefore, ||d(zn,Zn+m)l| — 0 as n — co. Now Lemma 2.4.6, implies that {z,} is a Cauchy

sequence in X. Since X is complete, there exists u € X such that z, — u. By Lemma 2.4.5, we
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have

ld(T ™zg,u)|| — 0 as n — oo.

Since Zn # Ty, for n # m, therefore by rectangular property, we have

d(Tu,u) < Ad(u,T "'zg) +d(T "zo, T " 120) + d(T "lzg,u)

A

M(u, T " 1zp) + A"d(zo, Tzo) + d(T "+lzg,u).

Thus,
1d(Tu, u)|| < & [A]|d(, T " zo)|| + A™ lld(zo, Tzo)l| + ||d(T ""'Izo,u)“] .

Letting n — oco,we have

ld(w, Tu)fl = 0.

Hence u = T'u. Now, we show that T" has a unique fixed point. For this, let’s assume that there

exists another point v in X such that v = T'v. Now,

d(v,u) = d(Tv,Tu)

IN

A d(v,u).
Hence, u = v.

2.4.8 Example

Let X ={1,2,3,4}, E=R? and
P = {(z,y): 7,y 2 0}
is a normal cone in E. Defined: X x X — E as follows:

d(1,2) = d(2,1)=(3,6)
d2,3) = d(3,2) =d(1,3) = d(3,1) = (L,2)
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Then (X, d ) is a complete rectangular cone metric space but (X, d ) is not a cone metric space

because it lacks the triangular property:
(3,6) =d(1,2) > d(1,3) +d(3,2) = (1,2) + (1,2) = (2,4)

as (3,6) — (2,4) = (1,2) € P. Now define a mapping T : X — X as follows:

T(:r)={ 3 if o #4,
1 ifz=4

Note that
d(T(1),T(2)) = d(T(1),T(3)) = d(T(2),T(3)) = 0

and in all other cases

d(T:z:,Ty) = (172): d(z’y) = (2) 4)

Hence, for A = —;—, all conditions of Theorem 2.4.7 are satisfied to obtain a unique fixed point
3ofT.

2.4.9 Remark

In example 2.4.8, results of Huang and Zhang (78] are not applicable to obtain the fixed point

of the mapping T on X, since (X, d) is not a cone metric space.
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Chapter 3

Fixed points of multi-valued

mappings

"Nadler [118] was the first to combine the ideas of multivalued mappings and contractions. He
proved some remarkable fized point results for multivalued contractions. He also introduced the
idea of multivalued locally contractions and generalized a fized point theorem of Edelstein [52].
Afterwards, Dube and Singh [48], Iseki [84], Ray [136], Itoh and Takahashi [85], Aubin and
Siegel (18], Hu [76], Massa [118], Kaneko [95, 97] and many others have studied fized theorems
for multivalued contractive type mappings. Kaneko [97], Naimpally, Singh and Whitfield [119],
Rhoade, Singh and Kulshrestha [144] and several other authors succeeded to extend the funda-
mental contraction theorem of Banach to a pair of mappings. Beg and Azam (28] extended a
result of [118] for a pair of mappings.

The results of Razani and Fouladgar [138], motivated us to study the fized points of sequence
of locally contractive multivalued maps in an e—chainable metric space. This area was not in
focus of recent research for a while (since Waters [173] for single valued and Beg and Azam
[28] for multivalued mappings) so we thought to build on the basic work of Nadler (1969). We
believe that our work will highlight this area and research focus will again tilt back into fized
points of locally contractive mappings in e— chainable metric spaces.

' Fized point theorems in fuzzy mathematics are emerging with varying hope and vital trust.

Weiss [174] and Butnariu [38] initiated the study of fized point theorems in fuzzy mathemat-
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ics. Heilpern [73] first used the concept of fuzzy mappings to prove a fized point theorem for
fuzzy contraction mappings which is a fuzzy analogue of the fized point theorem for multivalued
mappings of Nadler [118]. Afterwords, Arora and Sharma [10], Azam and Beg [20], Bose and
Sahani [37], Lee and Cho [109], Park and Jeong [126], Rashwan and Ahmad [135], Rhoades
(147], Som and Mukherjees [159], Vijayaraju and Marudai [169], among others studied fized
point theorems for fuzzy generalized contractive mappings. This chapter deals with the study of
fized point and common fized point results for multivalued and fuzzy mappings.

In section 3.1, the existence of fized points of sequence of locally contractive multivalued
7;zaps have been established. As an application, common fized points of sequence of single valued
ezpansive type mappings have been obtained.

In section 3.2, we establish some fized point theorems for fuzzy contractive and fuzzy locally
contractive mappings on a compact metric space using deo-metric for fuzzy sets.

In section 8.3, we establish common fized point theorems for fuzzy mappings under @—contraction
condition on a metric space with the dy, metric on the family of fuzzy sets.

In section 3.4, a result on a common fized point theorem for a pair of contractive type fuzzy
mappings in a metric space is established which improves/rectifies the result of Vijayaraju and

Marudai [169]."

3.1 Fixed points of a sequence of locally contractive multivalued
maps
Results given in this section have been published in [15].
" In this section we prove the existence of common fized points for a sequence of locally con-
tractive multivalued maps in a eé— chainable metric space and use it to obtain a result regarding

common fized points of a sequence of single valued uniformly locally ezpansive mappings

We recall the following concepts due to Edelstein [52, 53]."

3.1.1 Definition

"Let (X,d) be a metric space, e > 0, 0'< A < 1, and z,y € X. A strict e— chain from z to

y i8 a finite set of points T,,3,T3,...,Zn such that = = z1 Zp =y, and d(zj_1,z;) < € for
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all j =1,2,3...,n. A metric space (X,d) is said to be strict e— chainable if and only if given
z,y € X, there erists an e~ chain from z to y.
In the section, for the sake of convenience, we will be using the term e— chain (e— chainable)

instead of strict e— chain (strict e— chainable).”

.

3.1.2 Definition

"A mapping T : X — X is called a (g, A) uniformly locally contractive mapping if 0 < d(z,y) <
¢ implies d(Tz,Ty) < Ad(z,y). For n > 0, T : X — X is called an (e,n) uniformly locally
ezpansive mapping if 0 < d(z,y) < ¢ implies d(Tz,Ty) > nd(zx,y)."

3.1.3 Remark

"We observe that a globally contractive (contractive) mapping can be regarded as (o0, A) uniformly
locally contractive mapping and for some special spaces, every locally contractive mapping is

globally contractive. For details (cf. [76, 116, 138])."

3.1.4 Theorem [52]

"Let (X,d) be a complete e— chainable metric space. If T : X — X is an (e, A) uniformly
locally contractive mapping. Then T has a unique fixed point."

3.1.5 Definition

"A mapping T : X — CB(X) is called globally non-ezpansive multivalued mapping if for all
z,y € X, H(Tz,Ty) < d(z,y). T : X — CB(X) is called e~ non-erpansive multivalued
mapping if z,y € X, 0<d(z,y) < € implies H(Tz,Ty) < d(z,y).

A mapping K : (0,e) — [0,1) is said to have property (p) if for t € (0,¢€) there exists

5(t) > 0, s(t) < 1 such that 0 < r~t < §(t) implies K(r) < s(t) < 1 (cf. [28, 76, 116, 140]).

Nadler [118] extended the theorem 3.1.4 to multivalued mappings as follows:"

3.1.6 Theorem [118]

"Let (X, d) be a complete e— chainable metric space and T : X — C(X) be a mapping satisfying

the following condition:
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z,y € X and 0 < d(z,y) < € implies H(Tz,Ty) < Md(z,y). Then T has a fized point.

As an improvement and generalization of the above theorem we have the following result:"

3.1.7 Theorem

Let (X,d) be a complete e~ chainable metric space and {T,}52,be a sequence of mappings
from X to CB(X) satisfying the following condition:
z,y € X and 0 < d(z,y) < € implies

H(Tnz, Tmy) < K(d(z,y))d(z,9) 3.1)

for n,m = 1,2..., where K : (0,&) — [0,1) is a function having property (p). Then there
exists a point y* € X such that y* € N3, Ty".

Proof

Let yp be an arbitrary, but fixed element of X. We shall construct a sequence {yn} of points
of X as follows. Let y1 € X be such that y1 € Tiyo. Also let yo = z(1,0), T(1,1), T(1,2) -+ T(1,m) =

y1 € T1yo be an arbitrary e— chain from yp to y;. Rename y; as z(3q). Since z(20) € T1Z(1,0),

H(T1z( 0y, Toz11) < K(dZ(1,0), T1,1)))42 0,0 T(1,1))
< \/[K(d(-’h,o),21,1)))14(-"3(1,0)7-""(1.1))

< d(za,0),T(1,1))

< €.

Using Lemma 1.1.9, we obtain z(3 1y € T2Z(1 ;) such that

d(Z(2,0), T(22)) < \/[K(d(f(m), z(1,1)))]14(Z(1,00 Z(1,1))
< d{za0),Ta,1))

< & (3.2)
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Since z(31) € T2z(y,1) and

H(T2z(1,1), Tez(1,2))

IA

K(d(z 1,1y, T(1,2)))d(Z(2,1), T1,2))
VIE(deam, 20 2)dEa, 202)

d(z(1,1), Z(1,2))

A

A

< €.

We may choose an element z(59) € T5z(1,9) such that

d(z(2,1), T(2,2) < \/[K(d(m(m), z1,2)))ld(z(,1), Z@1,2))
< d(z(,1),%(1,2))

< e

Thus we obtain a finite set of points z(3,0), T(2,1)s F(2,2)s s T(2,m) Such that z(s0) € T12(1,0) and

Z2,4) € Tz:l:(Lj), for j =1,2,3...,m, with

d(z(2,5), T(2,5+1)) < \/ (B(d(z(1,), T(1,5+0))](&(1,3): Z(1,541))
< Az, T(1,i+1))

< &g

for 7=0,1,2..,m~1. Let 23 ;) = y2, then the set of points y1 = Z(2,0), (2,1), Z(2,2)> -+ Z(2,m) =
Y2 € Ty is an €~ chain from y; to y2. Rename y2 as z(3), then by the same procedure we
obtain an &- chain y2 = z(30), T(3,1) (3,2)> -+ T(3,m) = ¥3 € T3y2 from yz to y3. Inductively, we

obtain yn = Z(n+1,0)r T(n+1,1)1 T(n+2,2)1 =<<s T(n+1,m) = Yn+1 € Th+1Yn With

AT(n+1,5) T(nt1,41) < \/ [K(d(%(n, 1)) T(n,j+1) DIA(E(n,5)> T(n,j+1))
< &) Tn,j+1))

< g (3.3)

for j=0,1,2..,m - 1 and n = 0,1,2,.... Consequently, we obtain a sequence {y,} of points of X
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with

B = ZTam) =Z20 € %o
Y2 = Z(gm) =Z(30) € Taym
¥3 = Z@3m) =2z € T3ye,

and so on. That is,

Ynt+l = T(ntlm) = T(n42,0) € Toy1Yn, forn=0,1,2,....

Then from (3.3), we see that {d(Z(n, ), T(nj+1)) : ? = 0} is a decreasing sequence of non-negative
real numbers and therefore, tends to a limit ¢ > 0. We claim t = 0. For if ¢ > 0, the inequality
(3.3) yields t < e. Then by the property (p) of K there exists 6(t) > 0, s(t) < 1 such that

0 <r—t<4(t) implies K(r) < s(t) < 1.

For this d(t) > 0, there exists an integer IV such that

0< d(x(n,j),x(n,j.*_l)) —-t< J(t) forn > N.

Hence,

K(d(z(n,j)s T(n,j+1))) < 8(t) <1 whenever n > N.

Then

d(Z(n5)) T(n, j+1)) < \ﬂK (d(Z(n-1,5) T(n-1,5+) DA T(n=1,5)) T(n—1,5+1))

N
< max {I?:f(\/[f{ (d(z (i g)s (i g+1) )]s S(t)} d(T(n-14) T(n—1,j+1))

< (max {\/ I?Za;x[ff (d(z(,5) T(i,5+1)))], 8(E) }) " d(Z(0,4)) T(0,5+1))-

On letting n — oo and in the view of ma.x{ mlgx[K(d(z(,-,j),:z:(,-.j.,_l)))], s(t)} < 1, the above

i=j

t
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inequality yields d(z (s j), Z(n,j+1)) — 0, a contraction. Hence ¢ =0 and
m~-1
d(Yn—1,Yn) = d(m(n,0)7 z(n,m)) < Zd(z(n,]‘), x(n,.‘i+1)) - 0.

j=0

Now, we prove that {yn} is a Cauchy sequence. Assume that {y,} is not a Cauchy sequence.
Then there exists a number ¢t > 0 (we may assume t < & without loss of generality) and two

sequences {n;}, {m;} of natural number with n; < m; such that
d(Tn;, Tm;) 2 t, d(TnjyTm,_y) <tfor j=1,2,3,...
Then,

t S d(xnj 1 Im,-) S d(mﬂj) zmj_]_) + d(zmj_p zTT!.‘-,')

< t + d(zm,'_la xmj)-

It follows that lim d(zn;,Zm;) =t € (0,¢). For this ¢ > 0, by property (p) of K, we can find
j—vo0

5(t) > 0, s(t) < 1 such that 0 < r —¢ < §(t) implies K(r) < s(t) < 1. Now for this (t) > 0,

there exists an integer N such that j > N implies 0 < d(zn;, Tm;) — t < d(t) and hence,

K(d(Tny Tm,)) < s(t) i j > N. (3.4)

Thus,

IA

d(xnj ’ xmj) d(xﬂj y xﬂj+1) + d(xﬂj+1 ) xmj+1) + d(xmj+1 ) xmj)

< d(Zn;, Tnyy,) + K(d(Tng, Tm,))d(Tn;y Tmy) + A(Tmyyy, Tm;)-

This in the view of inequality 3.4 implies that ¢t < s(¢)t < t, a contradiction. It follows that
{yn} is a Cauchy sequence. Since X is complete, therefore y, — y* € X. Hence, there exists an

iﬁtegerM > 0 such that n > M implies d(yn,y*) < . This in the view of inequality 3.1 implies

H(Tn-i-lyn’ TJy*) S K(d(y‘m y"l )d(y"h y‘)
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Consequently,

H(Tnt1yn, Tjy") — 0.

Since yn+1 € Tn+1Yn With d(yn41,9*) — 0, now Lemma 1.1.7 implies that y* € Tjy*, therefore,
y* € M52, Thy*. This completes the proof.

3.1.8 Corollary

Let (X,d) be a complete e- chainable metric space and {T,}%2; be a sequence of mappings
from .X to CB(X) satisfying the following condition:

z,y € X and 0 < d(z,y) < ¢ implies H(T,z, Tray) < Md(z,v)

for n,m = 1,2,3....Then there exists a point ¥* € X such that y* € N3, Tny*.

"Nadler [118] used Theorem 3.1.6 and obtained some results regarding fized points of single
valued (not necessarily one to one) uniformly locally expansive mapping T : dom(T) — X
by placing some conditions on the inverse of T (e.g., T"'z € (domT) and T lis e—non-
éa:pansive ). We use corollary 3.1.8 to improve and generalize corresponding results of [118] as

follows:"

3.1.9 Theorem(An application to single valued expansive mappings)

Let (X,d) be a complete ¢- chainable metric space, n > 1,& # A C X and {To}%2,; be a
sequence of mappings from A onto X satisfying the following condition:

7,y € X and 0 < d(z,y) < ¢ implies d(Tnhz, Tmy) = n(d(z,y), for n,m = 1,2.... If for each
n=12.and z € X, T;'z € CB(A) and 0 < d(z,y) < ¢ implies H(T; 'z, T;;'y) < ¢, for
n,m=1,2, .., then there exists a point y¥* € X, such that y* =T,y* foreachn=1,2,....

Proof

Let z,y € X such that 0 < d(z,y) < € and choose § > 0. Let u € T;'z. Since
H(T 'z, Tly) < e. Hence, by Lemma 1.1.9, there exists a point v € Tjlz such that
d(u,v) < €. Therefore,

d(Thu, Trnv) = nd(u,v)

That is,
d(u,v) < [% +ﬁ] d(z,y).

68



It follows that
1
AT < |2+ 6] o).
This further implies that
ueEN ([% +ﬂ} d(z, y),Tn‘lly) .
This proves that

TrlgC N ([% + ﬂ] d(z,y),T;Iy) -

Similarly, it can be shown that

. 1 .
Taly ¢ N([n +/3] d(z,9), T z) -

Since £ is arbitrary, it now follows that

H(T 2, TY) < %d(:c,y).

We may now apply Corollary 3.1.8 to conclude that there is a point y* € X such that. y* €

N, T 1y*. Clearly y* = Tny*, foreach n = 1,2, ....

3.2 Fixed points of fuzzy contractive and fuzzy locally

contractive maps

Results given in this section have been published in [19].

"In this section, we consider two metrices d and d* on a set X, therefore Hausdorff metrics

induced by d and d* are respectively denoted by dy and di;. We establish some fized point

theorems for fuzzy contractive and fuzzy locally contractive mappings on compact metric space

with doq—~metric for fuzzy sets.
We recall the following notions from [3, 65, 75]:
Let X be a metric space. We define

C(X)={AeI*: [4], € C(X), for each a € [0,1}},
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K(X)= {4 e I":Ae C(X)},
F(X)={A eI [A, € C(X) for some a € [0, 1]},

E(X)={AeI*:[A4], € CB(X), foreach x € [0,1]}.
For A,B € I, A C B means A(z) < B(z) for each z € X. If there ezists an c € [0, 1] such

that [A],,[B], € CB(X), then define

«(A,B) = inf d(z,y),
Pa(A, B) et s, (z,9)

Do(A,B) = du((Al,, Bla)-
I_.f [A]l,,[Bly € CB(X) for each a € (0,1}, then define P(A, B),dw(A, B) as follows:

p(A,B) = suppa(4,B),
deo(A, B)

snga(A, B).

We note that [65, 73] pa is non-decreasing function of a, deo is a metric on E(X) and
(X,d) = (CB(X), dr) = (E (X) o)

are isometrics embeddings by means ¢ — {z} (crisp set) and A — x4 respectively.”

3.2.1 Definition [173]

"Let (X,d) be a metric space. For z,y € X, an e-chain from x to y s a finite set of points
P / p

Zg, T1, X2, ..., Tn, Such that = zg,zn =y and d(z;,z;41) <€ forall j=0,1,2,..,n-1."
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3.2.2 Definition

"A mapping T : X — C(X) is called fuzzy (globally) contraction [73] if there ezists X € [0,1)
such that

doo(T'(x), T(y)) < Ad(z,y),

for all z,y € X.
Mapping T is said to be (g, A) uniformly fuzzy locally contraction [20] if

z,y € X, d(z,y) < ¢ = du(T(2), T(y)) < Ad(z,y).
Mapping T is said to be fuzzy (globally) contractive (see (53, 150]) if for all z,y € X,z £y
do(T'(2), T(y)) < d(z;y). (3.5)

Mapping T is known as fuzzy locally contractive (see [53, 150]) if each T of X belongs to
an open set U so that if y,z €U, y # z,

doo(T (¥), T(2)) < d(y, 2). (3.6)
One very useful and significant fized point theorem, due to Edelstein [53] is:"

3.2.3 Theorem

"If (X,d) is a compact metric space and T : X — X is a contractive mapping (i.e. d(Tz,Ty) <
d'(a:,y) for each z # vy, z,y € X), then there exists a unique fized point of T.

Subsequently, Beg [81], Daffer and Kaneko [44], Grabiec [70], Hu and Rosen [77], Mihet
(115], Park [124], Razani [187], Rosenholtz [150] and Smithson [158] among others studied
some extensions (generalizations) and applications of this result.

We establish the following fized point theorem for fuzzy contractive mappings on a compact
metric space with the do-metric for fuzzy sets, which extend the above result to fuzzy mappings. "
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3.2.4 Theorem (Edelstein Theorem for Fuzzy Contractive Maps)

Let (X,d) be a compact metric space and T : X — €(X) be a fuzzy (globally) contractive
mapping. Then T has a fuzzy fixed point.
< Proof

For each z € X, [T'z], is nonempty and compact. Define a real valued function g : X —» R
by

g(z) = Pi(z, T (z)).

It implies that

P\(z,T (z))

d(z,y) + Pi(y, T (z))

d(z,y) + Pu(y, T (y)) + du([T=l; , [Ty])
d(z,y) + Pily, T ()) + D1(T (z), T ()
d(z,y) + Ay, T (y)) +sup De(T (), T (y))
d(z,y) + 9(y) + doo(T (), T (¥))-

2
&
IN N IA A

IN

It further implies that
g(z) — g(y) < d(z,y) + doo(T (), T (y))-

By symmetry, we obtain

lg(z) — 9(¥)| < d(z,) + dea(T (2), T (y)).

Using condition (3.5) along with the above inequality, it follows that g is continuous. By
compactness, this function attains a minimum, say at z*. Now, by compactness of [T'(z*)],,

we can choose 71 € X, such that {z1} C T(z*) and d(z*,z1) = Pi(z*,T (z*)) = g(z*). Then
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{z*} C T(z*), otherwise, g(z1) = Pi(z1, T(x1)) implies that

9(z1) < du([Tz*],,[Tz1],)
doo(T (z*), T (z1))

IN

A

d(z*, 21) = P (2", T (z*)) = g(z*),

which is a contradiction to the fact that g(z) is minimal at z*. This completes the proof.

Another remarkable theorem of Edelstein [53] is:

3.2.5 Theorem

"Let (X,d) be a compact and connected metric space and T : X — X is a locally contractive
mapping (that is each x of X belongs to an open set U such that if y and z are distinct points
of U, then d(Ty,Tz) < d(y,2)). Then T has a unique fized point."

"Recently, Ciric [42] obtained fized points of locally contractive mappings in fuzzy metric
spaces and established a fuzzy version of the above theorem.

Theorem 3.2.7 is proved for fuzzy locally contractive mappings, which extends the above
result. We shall make use of following lemma, which is noted in Rosenholtz [150] and Waters
[178]."

3.2.6 Lemma

"Let (X,d) be a compact connected metric space. Then for each € > 0 and z,y € X there exists
an e-chain from = to y and the mapping d° : X x X — R defined by

n-1
d*(z,y) = inf Zd(zj,xj+1) : g, Z1, %2, ..., Tn iS an € — chain from z to y
3=0
is a metric on X equivalent to d. Furthermore, for x,y € X and ¢ > ( there erists an e-chain
T = 20, Z1, L3, .y Tn = ¥ Such that
n-—-1

d(z,y) = Zd(xjwzj+1)-“

Jj=0
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3.2.7 Theorem(Edelstein Theorem for Fuzzy Locally Contractive Maps)

Let (X,d) be a compact connected metric space and T : X — &(X) be a fuzzy locally
contractive mapping. Then T has a fuzzy fixed point.
Proof
First, inequality (3.6) implies that each z of X belongs to an open set U so that if y,z €
U, y# 2, B ‘.
da([Ty];,[Tz];) < d(y,2)). 3.7

Next, by Lemma 3.2.6, for each ¢ > 0 and each pair of points u,v € X there exists an e-chain
u = Ip,T1,Z3,...,Ln = v from u to v. Now, use compactness of X to find § > 0 such that if

z # y and d(z,y) < 4, then
dH([Tx]l b [Ty]l) < d(.’l), y)

Define d* : X x X — R as follows:

2

n~-1 )
d*(u,v) = inf {Zd(zj,xj+1) : xg, 1,22, ..., T is a0 =-chain from u to v} ,
=0

L)
that is d* = d7° By Lemma 3.2.6 d* is a metric on X equivalent to d and there exists a % -

chain v = z,, 71, Z2, ..., Tn = v from u to v such that

n-1

d*(u,v) = Zd(xji zj+1)' (38)
j=0

Now, d(zj, zj+1) < % < § implies that
du([Tzi];, [Tzj);) < d(zj,T541) < 6.

It further implies that
d(zj,zj+1) — du([Tzj]y, [Tz441];) > 0.

Assume that

M; = d(zj,zj41) ~ da([Tz;]; , [Txi41]y),
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for 7 =0,1,2,..,n — 1. It implies that M; > 0 and

de([Tzs), , [Tzje1]y) < dlzg, 2541) — %, (3.9)

forj=0,1,2,...,n— 1. To show

[Tz}, € N (k, [Tz,),) (3.10)

for some & > 0, consider an arbitrary element yg € [Tzg],. In view of inequality (3.9), we may

choose y; € [T'z1];such that

' M,
d(yo,y1) < d(z0,%1) — -29
Similarly, we can find y2 € [Tx2); such that
M
d(ylryil) < d(xl,-’!?:z)‘ - —51-

Continuing in this fashion, we produce a set of points yo, ¥1,¥2, ..., yn Where y; € [T'zj|, such
tilat

My
d(yJ—liyJ) < d(zj—lyxj) — ; ,

for § =0.1,2,...,n — 1. Obviously, yo,v1,¥2, -, Yn is & %— chain from yg to yn.Thus,

n-1
Z d(:L'j, x.‘i+l) 120, %1, %2500y T is
d'(yOr yn) = inf i=0

a %-chain from yo to yn

n-1
< Zd(yj’yj+l)
=0
n—1
M
< Y (d () Tj+1) ~ TJ)
j=0

n-1 n-1
M,
= Zd (zj,Tj41) — ZTJ
J=0 i=0
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This, in view of (3.8), we have

n-1
M;

d*(yo,yn) < d*(u,v) — 5

7=0

Suppose that
n~1
— g M;
k=d"(u,v) jE_o (—2—> ,

then k > 0 and yp € N¥ (k, [T'zp),). Hence, (3.10) holds. Now, we show that
[Tza], € N¥ (k, [Tzo],) - (3.11)

Consider an arbitrary element 2, € [T'z,);. Again in view of inequality (3.9) along with Lemma

1.1.9, we may choose zn—1 € [Tzn_1] such that

n—1

d(Zn_l, Zn) < d(l‘o, zl) - 9

Then in a similar way, we obtain a %- chain zg, 21, 23, ..., 2n, from 2 to z,, where

n—1 M
& anym) <& (o) = 3 (3 =k
j=0
Thus, 2, € N% (k, [Tzo];). Hence, (3.11) holds. In view of inequalities (3.10) and (3.11), it
follows that k € Ef‘;.:o]v [Tzal," Thus,

;{ ([Tzoh ) [Tzn]l) <k.

It implies that

n—-1
M.
i (T, o) < o) - 3 (B2 < @)
=0
Hence, for all z,y € X

D (T (),T (v)) < d*(z,y). (3.12)
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Define a real valued function g on X as follows:

9(2) = P (=, T (z)).

It implies that

IN

g(u) d*(u,v) + P (v,T (u))

A

Now using (3.12) and (3.13), we obtain

9(w) S d*(w,v) + P (v, T (v)) + d*(w,v).

Therefore,

9(u) — g(v) < 2d°(u, v).

By symmetry, we obtained
lg(u) — g(v)| < 2d™(u, ).

d*(u,v) + P{ (v, T (v)) + D} (T (u) , T (v)) -

(3.13)

It follows that g is continuous. By compactness, this function attains a minimum value say

m, at a point z* € X. Then m = 0, otherwise, by compactness of [T'(z*)};, we can choose

u; € [T(z*)], such that d*(z*,u;) = g(z*) = m and

g(u1) = Pf(u1, T (w))
< DT (z*),T (u1)).

Now, using (3.12) along with above inequality, we obtain

g(ul) < d.(z‘)ul) =m,

which is a contradiction to the fact that m is minimal at z*. Hence m = 0, it implies that

{z*} [Tz*). This completes the proof.

It is quite easy to exhibit spaces which admit fuzzy locally contractive mappings or even
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uniformly fuzzy locally contractions which are not (globally) contractions. The following is a

simple example:

3.2.8 Example

X

{2 = (cost,sint): 0<t < '4:.31},
T(z) = X
(2¢) B(zi;l),

where,

E(z§;1> = {zu EX:d(zu,z%) < 1}

and X is taken with Euclidean metric of the plane.

3.2.9 Conclusion

"Let (X,d) be a compact metric space, then we get the fractal space (C(X),dy) and the fuzzy
fractal space (C(X),dw) (see [131]). Let T : X — C(X) be such that either for all z,y €
X.z#y

oo (T(2), T(y)) < d(z, ),

or X is connected and each z of X belongs to an open set U so that if y,z € U, y # z,
doo(T (y) , T(2)) < dly, 2).

Then there ezists an element = € X such that{z} C T(z)."

3.3 On a pair of fuzzy ¢- contractive mappings

Results given in this section will appear in {25].

3.3.1 Definition [20]

"A real linear space V along with a metric d is metric linear space if d(z + 2,y + z) = d(z,y)

and Qg — @, Ty — T ==> OQpZ, — L.
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A fuzzy set A in a metric linear space V s said to be an approrimate quantity if and only
if [A], is compact and convez in V for each o € [0,1] and supA(z) = 1. The family of all
approzimate quantities on V is denoted by W (V). i

In [10, 65, 108, 109, 126], the authors generalized Heilpern’s [73] result by using more gen-
eral contractive type conditions for the same class i.e., (W(X NX of fuzzy mappings using the
deo-mnetric for fuzzy sets. Recently, Abu-Donia [3] (see also [94]) studied an important role of
Hausdorff metric between fuzzy subsets and studied common fized points of a pair fuzzy map-
pings S, T € (K(X))X under a o-contraction condition on §,T. Of course, Abu-Donia’s results
do not require linearity on X and convezity on § (z) (t), T () (t) but Kamran [94] showed that
Abu-Donia’s [3] results hold only when S(z)(t), T(z)(t) are compact instead of closed and
bounded. Therefore, Abu-Donia’s results need some further adjustments/corrections (see corol-
lary 8.3.8). In this section, we extend Abu-Donia’s main result to a wider class (F(X)) X of
fuzzy mappings. Furthermore, some other results of the literature are obtained as corollaries.

We recall the following lemmas which are required for our onward discussion.”

3.3.2 Lemma [10]

" Let (V,d) be a complete metric linear space, T : V — W(V) be a fuzzy mapping and =, € V.
Then there erists T1 € X such that {z1} C T(z,), that is T(z,)(x1) = 1."

3.3.3 Lemma [3]

"Let ¢ : RY — R* be a non-decreasing function satisfying the following conditions:
(i) ¢ is continuous from right,
(i) 352, (t) < 0o for all t > 0 (¢ denotes the it iterative function of ¢).
Then o (t) < t.
In the rest of this section we, always suppose that ¢ is a function satisfying the conditions

of lemma 3.3.3 and T is the mapping induced by fuzzy mappings T i.e.,

T@)t)={yeX:T() ()= waxT (<) ()}."
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3.3.4 Lemma (3]

"Let (X,d) be a metric space, z* € X and T : X — IX be fuzzy mappings such that Tz € c(X)
forall z € X. Then z* € T (z*) iff T (z*) (z*) > T (z*) (z) for all z € X.

First, we furnish an ezample to show that the family (F(X)) X of fuzzy mappings is a wider
class than that of (K(X))X [8]." '

3.3.5 Example

Let X = [0,0), d(z,y) = |z —y|, whenever z,y € X and p € (IX)(°’°°) be defined as follows:

=5
o

AN N A

8

—
rn

w(@)(t) =

NH W OI8

AN AN

(5

O W= D=
o : .
NlE oy ol

Now, define T': X — IX as follows:

T(I)={ {0} ifz=0,
u(z) ifz#0.

Then T € (F(X))* but T ¢ (K(X))X asif z # 0,

()= {te X :T(z)(t) =1} = [o%)
T(2)]; = {t € X :T(z)(t) = %} = [o, %] .

"Let (X,d) be a metric space, S,T : X — IX. For every z,y € X and o, € (0, 1], we put

M(it, Y, ﬁ) = ma.x{d(z, y)’ d(I, [Sx]a)a d(yr [Ty]ﬁ)7 %[d(x1 [Ty]ﬁ) + d(ya [SIL‘]Q)]}-"

80



3.3.6 Theorem

Let (X, d) be a complete metric space and §,T : X — IX. Assume that for every z € X, there
exists ag(z), ar(z) € (0, 1] such that [Sz]as(z), [T2]ar(z) € C(X). If for all z,y € X

H([Sz) oy 1 [TWapqy)) S ¢(M(z,y, as(z), ar(y))), (3.14)

then there exists u € X such that u € [Su]
Proof

as(w N T¥az(u) -

Choose zg € X, by hypothesis, there exists as(zo) € (0, 1] such that [Szo],,,) € C(X). For

convenience, we denote ag(zo) by @1. By compactness of [Szo], , we can find z; € [Szo) oy Such

a(zo

that d (o, 71) = d (o, (SZol,, ) - Again by hypothesis, there exists ar(z1) € (0, 1] such that [T21]4,.(s,) €
C(X), denote ar(z1) by ap and by compactness of [I'zi],, , choose z; € [T'zi],, such that

d(z1,22) = d (z1, [Tz1], 2). By induction, we produce a sequence {z,} of points of X, with

Tok+r € [SToklag,,,

Tok+2 € [T22k+1]agk+2 ) k= 01 11 21 ceny

and such that

d(sza z2k+1) = d(z2k; [S$2k102k+1)’

d(Zok+1, Taks2) = A(Taks1, [TT2k41ley, ) F=01,2,....

By Lemma 1.1.10 and the above equations, we have

d(z2k, Taks1) € H ([Tzzk—ﬂa,,‘,[S-’Czk]a,,m),

d(Tokt1, Takse) € H((SZarlag,,, s TZ2k+1lage,,)s £=0,1,2,-...
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Assume that z9, = T4 for some & > 0, then

M (zok, Taks1, X2k+1, @2k42) = max{d(Toks1, Tak+2),

1
i[d($2k, Tokt+2) + A(Tokt1, Tak+1)]}

= d(z2k+1, Tok+2)-

Consequently (by using inequality 3.1.4),

d(Tok+1, Tokrs) € H([Szokla,,,,  [TTakt1lay,,,)

N

©(M (Tok, Tok+1, C2k+1, X2k+2))

< p(d(zak+1, T2k42)) -
Since ¢ (t) < t for all t > 0, we deduce that d (zk41, ZTok42) = 0, which further implies that

ok = Tokt1 € [STaklay,,, » T2k = Toks1 = Toky2 € [Tookila,, , = [TZ2k]ag, ,, -

It follows that xgx € [S:t:gk]mm_1 ﬁ[T:z:zk]%H2 . Thus, in this sequel of the proof, we can suppose

that zn41 # zn, for n =0,1,2.... Again by using inequality (3.14), we have

d(Tak+1, T2k42) S H([SToklay,,, » [(TT2k+1lag,,,)

< o(M(zok, Tak+1, X2k+1) €2k42)),

where M (Zk, Zok+1, O2k+1, Cok+2) = max{d(Tax, Tak+1), ATok+1, Toks2) }) I M {Tok, Toks1, @2k41, A2k42) =

d(Zok+1, Tokt+2), then the above inequality implies that

d(Zak+1, Tak+2) € @ (A(z2k+1, Tok+2)) < A(Z2k+1, T2k+2),

which is a contradiction, since Tn41 # =, for n =0,1,2,... . It follows that

M (Zok, Tok+1, O2k+1, Ook+2) = (T, T2k+1),
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and hence, d(Zak+1, Tok+2) < @ (d(T9k, Tok+1)) - In a similar way, we prove that

d(Tak+1, Tok) € @ (d(zak, Tog-1)) -

Consequently,

d(Zn+1,Zn) < ¢ (d(Zn, Tn-1)) € ¢? (d(Tn-1,2n-2)) < -+~ < ¢ (d(21,20)) ,
for each n > 1. Now, for each positive integer m,n (n > m), we have

d(zm, zn) < d(xm, $m+1) + d($m+11 $m+2) + d(zn—ly zn)

< @™ (d(z1,%0)) + ™ (d(z2,0)) + -+ + "7 (d(21, 20))

n—1 oo
< Z ¢ (d(z1,20)) € D ¢ (d(z1,70)) .

i=m

Since Y52, ¢*(t) < oo for each t > 0, it yields that {z,} is a Cauchy sequence. As X is
complete, there exists u € X such that z,, — u. Now, Lemma 1.1.10 implies that

d(u, [Su]as(u)) < d(u; $2n) + d(:tzn, [Su]as(u))
d(t, Tan) + H([TZan-1l4y, 1 [Stlggu))

d(u: z2ﬂ) + ‘P(M(u! Toan-1, aS(u)1 C‘Zn))v

N

N

where

M (u, Zon-1, os(u), 02n) = max{d(u, Ton-1), &4, [Sulag(y)), A(T2n-1, T2n),
-;-[d(u, Zzn) + d($2n—-11 [S‘U-]as(u))]}

> d(u, [Su]as(u))-

Now, nlim M(u, Ton—1, as(u), azn) = d(u, [Su)ogy))- Since @ is continuous from the right, as
—00

N — 00, wWe obtain

(0, [Stlag(y) < ¢ (d(us [Sulagquy)) -
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Then there exists point z* € X such that T (z*) (z*) > T (z*) (z) and S (z*) (z*) 2 S (z*) (z)
forallz e X."
Proof

By Theorem 3.3.7, there exists z* € X such that z* € §z* 0 Tz*. Now Lemma 3.3.4
implies that

T(z) (=) 2T (z")(z), S(z")(z") 2 5(z") ()

forall z € X.

3.3.9 Example

Let X = [0,00), d(z,y) = |z —y|, whenever 7,y € X, o, 8 € (0,1} and S,T : X — IX be
fuzzy mappings such that T (z), S(z): X — I =[0,1] are defined as follows:

fz=0, T(:E)(t):S(z)(t)___
0 ift#0,
ifze(o’]']y
rC! 1f0<t<§—=,
. 2 ;
S(z)(t) = o ¢ ff-Z <tz %
§ fo-F<t<s
LO if:z:gt<0°,
(5 Hogt<Ei-Z
. 2 ,
T(z)(t) = { g fi-5<t<z-%
“{% i'fz—£23<t<z
ifz>1,
1 ift=1
T (z) (t) = S(z) (t) = i 1
ﬁt;é%
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Define ¢ : [0, 00) — {0, 00) as follows:

t—£ iftel0,1
¢(t)={ 17 . (0,1]
4 ift>1.

It is obvious that ¢(t) < t for ¢t > 0, but §(z), f(:z:) are not compact for z € (0, 1]. Therefore,

Corollary 3.3.8 is not applicable, whereas assumptions of Theorem 3.3.6 are satisfied. In fact,

for any = € X, there exists as(z) = §,aor(z) = g € (0,1} such that [Sz], (y),[T2]sp(z) aTe

compact. f z =y =0or z,y > 1, then [S:L‘]% = [Ty]% and

H([Sx]% ,[Ty]%) =0<y (M (z,y, g %)) .

z=0, y€(0,1], then [S0]s = {0}, [Tyls = [o,y— v;] and

# (15005 13lg) = fu-%|= e -0

< ¢ (M (&%%é))

Ifz,y € (0,1], then

2

2
z L2 .
-3 y+2“

- (1- 52
lm'z‘yl

|z~ y|?
|z -yl 5

o(u(=059))

H ([Salg [Tuls) =

il

N

1z—yl|1—

N

N
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fze(0,1], y>1 then

(o) = w03 () -3 (-
l(l—x)—-;-(l—zz) =|(1—z) (1—%(1+z))

a-2)1|(1-3a-2)
#(11 - =) < 6(ly )

o(u(=055))

"In [19, 20] the authors obtained fized points of fuzzy contractive and fuzzy locally contractive

N

= (1~ 2) - 511 - 2P

]

VAN

mappings on a compact metric space with the doy-metric for fuzzy sets and established fuzzy
extension of Edelstein’s fized point theorems [52, 53/]. In the following, we establish some fized
point theorems for fuzzy ¢-contractive mappings in connection with the de,-metric for fuzzy
sets. |

Let (X,d) be a metric space, S,T : X — IX. For every z,y € X and o,f € (0,1}, we put

m(z,y) = max{d(z,3), (2,5 (), 56, T W), 51z T @) + 2w, S @)]}."

3.3.10 Theorem

Let (X, d) be a complete metric space and S,T : X — €(X) be fuzzy mappings such that

@eo(§(2), T (¥)) € p(mlz,y)),

for all z,y € X. Then there exists a point v € X such that {u} C S(u) , {u} C T(u).

Proof

Pick z € X, by assumptions [Sz], , [T'z], are non-empty compact subsets of X. Now, for all
Z,ye X

Di(§(2),T(¥)) € deo(S(2),T(¥))

< p(m(z,9).



Since [Sz], C [Sz], for each & € [0,1]; therefore, d(z,[Sz],) < d(z,[Sz],) for each a €
[0,1] and it implies that p(z, S (z)) < d(z, [Sz];). This further implies that

H([Sx]l ’ [Ty]I) S 4 (M(x7 Y, 11 1)) .

Now, by Theorem 3.3.6 there exists u € X such that u € [Su}, N [Ty, .
The following theorem improves/generalizes the results of [10, 65, 73, 108, 109, 126, 174].

3.3.11 Theorem

Let (X, d) be a complete metric linear space and $,T : X — W(X) be fuzzy mappings and for
alz,ye X

doo(S (2), T (¥)) < w (m(z,)) .

Then there exists a point u € X such that {u} C S(u) , {u} C T(u).

Proof

Let ¢ € X, by Lemma 3.3.2 there exist y,z € X such that y € [Sz]; and z € [Tz];. It
follows that for each z € X, [Sz];,[Tz]; € C(X). The remaining part of the proof is similar as
that of the previous theorem.

If in Theorem 3.3.10 we choose ¢(t) = kt, where & € [0,1) is a constant, we obtain the
fgllowing corollary.

3.3.12 Corollary [126]

"Let (X, d) be a complete metric linear space and S, T : X — W(X) be fuzzy mappings. Assume
that there erists k € [0,1) such that for all z,y € X.

oo (S (), T (¥)) < km(z,y).

Then there ezists a point u € X such that {u} C S(u) , {u} C T(u).
Let g€ [0,3) . From

g max {d(z,y), p(z,5(2)),p(v,T ¥)),p(z, T (%)), Py, S (z))} < 2gm(z,y)
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and Corollary 3.8.12, we deduce the following result. "

3.3.13 Corollary [10]

"Let (X,d) be a complete metric linear space and S, T : X — W(X) be fuzzy mappings. Assume
that there ezists g € [0, %) such that for all z,y € X

doo(S (z), T (y)) < gmax{d(z,y), p(z, S(z)), p(y, S(¥)), p(z, T (¥)), p(y, S (z))}.

Then there exists a point u € X such that {u} C S(u) , {u} C T(u).
From Corollary 8.8.13, we deduce the following corollaries. "

3.3.14 Corollary [108]

"Let (X,d) be a complete metric linear space and S,T: X — W(X) be fuzzy mappings. If

doo(S(2),T(y)) < a1p(z,S(z)) + a2p(y, T (¥))
+a3p(z, T (v)) + asp(y, S (z) + a5 d(z,y)) (3.15)

for all z,y € X, where a1, ag, a3, a4, as are non negative real numbers with Zf=1 a; <1 and

a3 > a4. Then there exists u € X such that {u} C S(u), {u}C T(u).”

3.3.15 Corollary [37)

"Let (X,d) be a complete metric linear space and S, T : X — W(X) be fuzzy mappings.
If (3.15) is satisfied for all z,y € X, where a1, a3, a3, a4, as are non negative real num-
bers with Y5 a; < 1 and a3 = aq or ay = ap. Then there evists u € X such that
{u}C S(u), {u}cC T(u).”

-~

3.3.16 Corollary [73]

"Let (X,d) be a complete metric linear space and T : X — W(X) be fuzzy mapping such that
forall z,y € X,

doo(T (z),T (y)) < Ad(z,y)
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where 0 < A < 1. Then there exists u € X such that {u} C T(u).”

3.4 On a fixed point theorem for fuzzy maps

Results given in this section will appear in [26].
"We recall the Heilpern’s [73] fuzzy contraction theorem which states that if (X,d) is a
complete metric linear space and T : X — W (X)) be a fuzzy mapping such that for all z,y € X,

sup H([Sz],,[Ty],) < Ad(z,y)
a€0,1]

where, 0 < A < 1, then there ezists u € X such that u € [T (u)];. Several other authors
generalized this result and studied the ezistence of fired points and common fized points of
fuzzy (approzimate quantity-valued) mappings satisfying a contractive type condition in a metric
linear space. (e.g.,see [10, 19, 65, 108, 109, 126, 169] and references their in). Vijayaraju and
Marudai [169, Theorem 3.1] studied o fized point result for fuzzy (set-valued) mappings X to
F(X) in a metric space X. This result [169, Theorem 3.1] is significant as it does not require
the condition of apbmm’mate quantity for T (z) and linearity for X. However, its proof [169,
Theorem 3.1] is incorrect and incomplete, therefore it needs some further adjustments and
modifications. The aim of this section is to present the right version of this result.

The following theorem is the main result of Vijayaraju and Marudai [169].”

3.4.1 Theorem
"Let (X,d) be a complete metric space and let Fy, Fy be fuzzy mappings from X to F(X)
satisfying the following conditions:

(a) For each = € X, there ezists a(z) € (0,1] such that [FiT]a(x) , [F2Z]a(sy are nonempty
closed bounded subsets of X and

(6)

H([F1z]ata) » [Fay)awy) < a1 d(z, [F1Yla@) + a2d(y, [Faylaw)) +
+a3 d(z, [Foylaw ) + as d(y, [F1Z]ae)

+as d(za y))
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for all z,y € X, where ay,a2,a3,a4,0a5 are non-negative real numbers and 3.;_,a; < 1 and

either a1 = ag or a3 = aa. Then there erists z € X such that z € [Fiz],(,) N [F2]

a(z) *

The following theorem is the right version of the above result.”

3.4.2 Theorem

Let (X,d) be a complete metric space. Let §,T : X — F(X) be fuzzy mappings. Suppose
that for each z € X, there exists a(z) € (0, 1] such that [Sz]acs) , [T'z] ;) are nonempty closed
bounded subsets of X and

H([8z)a@ , [TYlew) < @1d(z,[S7)a@) + a2d(y, [TY|am)
+a3 [d(z? [Ty]G(v)) + d(yv [Sm]¢(=))]
+a4d($1 y)v ] (3'16)

for all z,y € X, where a;, a2, a3, a4, are non negative real numbers with a; +ag+2a3+a4 < 1.
Then there exists z € X such that z € [Sz]y(;,) N [TZagy) -
Proof ’

We consider the following three possible cases:
(i) ey +az+ a1 =0;

(ii) az+az+as=0;
(il) a3 +a3+ ag#0, aa+az+aq #0.

Case (i) a; + a3 + a4 = 0. Since ay,a3,a4 = 0, therefore a; = a3 = a4 = 0. Let £ € X, then
by assumptions there exists a(z) € (0, 1] such that{Sz]..) is nonempty closed bounded subset
of X. Take y € [Sz]a(=) a0d 2 € [TYlaq) - Then by Lemma 1.1.10, we obtain,

Ay [Tylaw) < H([SZa@ » [TYlaw)-
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Now, by inequality (3.16)

Ay, [Tylaw) < a1d(2,[ST]a@ ) + a2d(y, [TY])aw))
+a3 [d(z, [TYlew) + d(y, [ST]am)]
+aqd(z,y).

Substituting, a1 = a3 = a4 = 0, in the above inequality, we obtain

(1 —ag)d(y, [Tylaw) < 0.

It follows that y € [T'y]aq) , which further implies that

d(y, [Sylaw) < H([TY)aw , [Sy]aw)-

Again, inequality (3.16) yields d(y, [Sy]aw) = 0. Hence,

Y € {Sylaw N[TYlaw -

Case(ii) If ay + a3 +a4 = 0, then, for z € X , as in case (i), we can choose y € [{ST]a(x) and 2 €
[Tyl such that

d(2,(S2]a@) = d([S2Z|at  [TYlaw),

which further implies that
b4 EV[SZ]n(x) n [TZ]G(;) .

Qase(iii) Let a;j + a3 +a4 #0, ag+ a3 + a4 # 0 and

— max a1 +a3+aq az +ag + aq
7= l—az—a3z3 /) '\ 1—a;~a3 )

Then a; + a3 + 2a3 + a4 < 1 implies that ¢ < 1. Choose 9 € X, by hypotheses there

exists a(zg) € (0,1] such that {Szo], (s, is nonempty closed bounded subset of X. For con-
venience, we denote a(zg) by c;. Let z1 € [Szg],, , for this z; there exists a3 € (0,1} such

that [T'z] ap iS MOD-empty closed bounded subset of X. Since a; + a3 + a4 > 0, by Lemma
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1.1.8, there exists x3 € [T'z1],, such that

d(z1, z2) < H([Sz0,, ,[T21],,) + a1+ a3 +aq.

By the same argument, we can find o3 € (0,1] and z3 € [Szs],, such that

d(zg, 2:3) < H([sz]aa ) [TI]]aa) +gq (a2 +a3 + 0.4) .

By induction, we produce a sequence {z,} of points of X,

such that

d($2k+1, Tok+2)

d(ZTok+2, Tok+3)

It implies that

d(T2k+1, Tk +2)

L2k+1

i

[SZaklaguys

Top42 = [T22k+1]a2k+2 , k=0,12,..,

N

N

N

N

N

IN

H([SZ2k)agy,, » T2k 11)ag,,,) + 9 (a1 + a3 + adq),

H([STak+2)ag, s » (T Z2kt1)age,,) + € (a2 +a3 +aq) .

H((SZalay,,, » [T 22k +1)0y,,,) + 97 (@1 + a3 + a4)
a1d(z2k, [STaklay, ,,) + 328(T2k+1, [TTok+1]ag, ,5)

+a3 [d(zzk, (Tzk+1]agy,) +d(Z2k+1, [Szzk]a,m)]
+a4d(Tok, Tak41) + 42 (a1 + a3 + aq)

(as + a1) d(Z2k, Tok41) + a2d(T2k+1, Tak+2)

+a3d(Zaox, Tak42) + 0°* (a1 + a3 + aa)

(a1 + a3 + aq) d(zak, T2k41) + (a2 + a3) d(T2k41, Takr2)
+¢%* (ay + a3 + aq)

qd(Tak, Tox41) + g*k+t,
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Similarly,

d(Tak+2, Tak+3) € qA(Tokr1, Toksa) + g+

It follows that for each n = 1,2, ...,
A(Zn, Tns1) < §"d(z0, 1) +ng™

Since ¢ < 1, it follows from Cauchy’s root test that 3 ng™ is convergent and hence, {z,} is
a Cauchy sequence in X . The remaining part of the proof is same as that of Vijayaraju and

Marudai [169].

3.4.3 Remark

"In connection with the proof (169, Theorem 3.1], consider the following equations:

ay +az+as az+a4+as
- . 1
q max{l—ag—a3’1—a1—a4} (3.17)
(1 - az — a3)d(z1,z2) < (a1 + a3 + as) d(z0,71) +¢ (3.18)
ai + a3+ as
£ ———— g
d(x11x2) X ( 1— as — ag ) d($01 IlZ]_) + q (3 9)
< qd(z9,71) + ¢
d(Tn, Tn+1) € ¢"d(Z0, 1) +ng™. (3.20)
_ {a1taz+as q
d(z1,72) = (———-——-1 g —— ) d(zo, 1) + Fp—— (3.21)
a1 +a3 +as
—_—)d . 3.22
(2E8L5) dfaga)+a 5.2

In [169, Theorem3.1], the authors constructed a sequence {z,} in X to achieve the requirements

(3.19) and (3.20) by using (3.18) == (3.19), an invalid assertion. In fact (3.18) =
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(3.21) = (3.22) as
—
1- ag — a3

>q (ie,l1~ay—-a3<1).

Note that (3.18) % (3.19) as (3.18) = (3.22) which is negation of (3.19). This type of
wrong derivation (i.e.(3.18) => (3.19)) has been performed at each step of induction to obtain
requirement (3.20). Moreover, the authors used (3.20) to show, {z,} is o Cauchy sequence
by claiming " ¢ < 1 ", whereas (under the given assumptions of [169]) it may happen that ¢ > 1,

1 5
eg.,letay =ay= ’116’ a3 = %, a4 = 17—0, as = 75, then Y ;_,a; <1 and a3 = ay but

a1 + a3z +as 0:2+a4+05}=§§>1.

q=max{1-—a2—a3’1—a1—a4 8

Therefore, in Theorem 3.4.2 first, we have replaced the condition "either a; = ag or a3 = a4 "
by "asz = a4 " In this way the statemént of [169, Theorem 3.1] has been revised with the help
of four constants a1, as, a3, a4 instead of five. This modification has been made to achieve
"q < 1" Then we have removed incorrect derivations by using an appropriate technique of
constructing the sequence {Tn}. Moreover, the proofs for the cases (i), (i) (i.e.a1 +a3 + aq4 =

0, ag + a3 + aq = 0) which were neglected in [169], have been established.”
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