Surrogate Key Generation through
Multi-Agents

Undertaken By: |
Muhammad Nadeem Yasin
259-FAS/MSCS/FO05

Supervised Byk
Mr. Muhammad Imran Saeed

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University Islamabad
2009

Dissertation

A Thesis Submitted to the
Department of Computer Science
International Islamic University Islamabad
as a partial fulfillment of requirements for the award of
the degree of

MS in Computer Science

Surrogate Key Generation through Multi-Agents

Final Approval

Final Approval

It is certified that we have examined the thesis titled “Surrogate Key Generation through
Multi-Agents” submitted by Muhammad Nadeem Yasin, Registration No. 259-
FAS/MSCS/FO05, and found as per standard. In our judgment, this research project is
sufficient to warrant it as acceptance by International Islamic University, Islamabad for

the award of MS Degree in Computer Science.

Project Evaluation Committee

External Examiner:

Dr. Nazir Ahmad Sangi

Chairman, Department of Computer Science

.
Allama Igbal Open University, Islamabad w‘g\\

Internal Examiner:

Muhammad Nadeem
Assistant Professor
Department of Computer Science

Internatinal Islamic University, Islamabad

Supervisor:

Muhammad Imran Saeed
Assistant Professor

Department of Computer Science

International Islamic University, Islamabad.

Surrogate Key Generation through Multi-Agents

Dedication

In the Name of ALLAH

Who has all the names, and who does not need any name

Surrogate Key Generation through Multi-Agents

Declaration

Declaration of Originality

[hereby declare that this work, neither as a whole nor a part of it has been copied out
from any source. It is further declared that [have developed the framework on the base of
proposed model and the results with my personal efforts and under the sincere guidance
of Muhammad Imran Saeed and Ainan Sadiq. If any part of this project is proved to be
copied from any source or found to be reproduction of some other project, I shall stand
by the consequences. No portion of the work presented in this dissertation has been
submitted in support of any application for any other degree or qualification of this or any

other university or institute of learning.

Muhammad Nadeem Yasin
(259-FAS/MSCS/F05)

Surrogate Key Generation through Multi-Agents

Acknowledgment

Acknowledgement

At very first, I bestow all praises, acclamation and appreciation to Almighty Allah, the
most merciful and compassionate. The most Gracious and Beneficent, Whose bounteous
blessings enable us to pursue and perceive higher ideals of life, All praises for His Holy
Prophet Muhammad (SAW) Who enabled us to recognize our Lord and creator and
brought to us a real source of knowledge from Allah, The Quran, Who is role model for
us in every aspect of life. Secondly I must mention that it was mainly due to my family’s
moral and financial support during my entire academic career that enabled me to

complete my work dedicatedly.

I am very thankful to my supervisor Muhammad Imran Saeed and friend Ainan Sadiq for
their kind help and supervision. I shall remember their support for building my research

capacity for research methodology and always guiding me to next bold step.

I would like to pay thanks to my class mates and faculty members of the university for
their help and support, with special thanks to Mr Zeeshan Shafi Khan, Rashid Mehmood
and Muhammad Shoaib.

Finally once again I would like to admit that I owe all my achievement to my parents
who mean most to me, for their prayers which are more precious than any treasure on

earth.

Muhammad Nadeem Yasin
(259-FAS/MSCS/F05)

Surrogate Key Generation through Multi-Agents

Project in Brief

Project Title:

Organization:

Undertaken by:

Supervised by:

Starting Date:

Completion Date:

Tools Used:

Documentation Tools:

Operating System:

System Used:

Project in Brief

Surrogate Key Generation through Multi-Agents

International Islamic University, Islamabad (IIUI).

Muhammad Nadeem Yasin (259-FAS/MSCS/F05)

Muhammad Imran Saeed

August 2008

December 2009

Visual Studio Dot Net, 2008 (ASP.Net with C#)

SQL Server 2005
MS Access 2003
SAGE (Agent Framework)

MS Word
E-Draw

Windows XP

Pentium IV (2.0 GHz, Dual Core)
RAM1GB

Surrogate Key Generation through Multi-Agents

Abstract

ABSTRACT

A central repository to store huge amount of data from multiple information
based sources is known as data warehouse. The data in warehouse is transformed and
formalized into single format for the analysis process. The primary reason for using data
warehousing is to provide analytics result to businesses from data mining, OLAP, score
carding and reporting. Sorting of the data warehouse records facilitate the searching and
mining algorithms. The sorting can be performed either by using dimensional approach
or through normalized approach. Since primary keys can not be applied on the data of
heterogeneous databases so to uniquely identify a record from billions of heterogeneous
records, data warehouse introduces the concépt of surrogate keys. Researchers have
proposed many algorithms to generate the surrogate keys but all of them have some
lacking with respect to different parameters. Few techniques creates gaps among the
records, few results in deadlock and hot spots, some of the techniques assign the same
key to multiple records, some increases the searching and mining delay and few
techniques génerates the bigger keys hence increases the storage and processing load. We
in this proposal introduced a new technique to generate the surrogate keys through
software agents. The proposed technique will give better results in all the dimensions
discussed above. It will avoid the deadlock, reduce the delay and size, eliminate the
chances of vduplication, and will support the searching and mining techniques. The most
important advantage of the proposed approach is to trace the source system of the

particular record as records come from heterogeneous environment.

Surrogate Key Generation through Multi-Agents

Table of Contents

Table of Contents

Contents Page #
1 INErOAUCHION ccuvvecveesenssnncressescressnssnsssssssssnsssosassssssssssassssesssssssesassssssassassanssns |
1.1 Introduction t0 Databasesccceieerirererienieniiiiinenierereesies et eresre et esiesressaseesaas 2
1.2 Overview of Data War€housSe...........coceuviiririerertnreinnieiernnreinieeseeeseasseae e sseseneses 2
1.2.1 Data Warehouse CharaCteristiCscccuererimruerierereeiuesrsesiuesseseseersesessessessens 3
1.2.2 Data Warehouse ArchiteCturecooevverierieeieniirrence e 4
1.2.3 Data Warehouse Benefits...........cccovuveererniinienieineiinenreeceeesceeeeeeeve e 5
1.2.4 Comparison of OLTP and Data Warehouse Systems........c..ccceeeverererererennenc. 6
1.2.5 Extraction, Transformation and Load...........ccceeevvveiiiiiiicvinniiciee e erie e 6
1.2.6 Components Of ETL.......ccooiiiiiie et senaene 8
1.2.7 ETL ENVITONMENTocueiieiiirieiienerierie st teeie e sevesinesne st asneseresasennes 9
L2.8 ETL ISSUES ..ccueieiiiieinieeteeie ettt ettt ettt e sns s saaesane s nnans 9
1.2.9 Common Operations on Data Loaded..........cccocooinreccniniinniniiiiniiinn, 10
1.2.10 Data MOAEINGccccoveveeiierierieeiirieeseescneee et siee e s sbsesnssre s saie 10
1.2.11 Data Warehousing Modelingc.cccceoeeiivieeiniiiininneccniereccieccicnens 10
1.2.12 Dimensional MOdeling...........ccceeevierierieeninrireneeneerreieeie e ereseesne s eaens 11
1.3 SUITOZAE KEYS..oiuveeeiirieiiiiniiiceet ettt ettt nte s e e bee e emee s bas e s acsnnee 12
1.3.1 Characteristics of Surrogate Keys.......ccovvveriiniiniineninnncniicninicnicceincnnns 13
1.3.2 Reasons for using Surrogate KEYScocvvcerireirieinrreniueensnienvrenenneseeeseessseesanens 14
1.3.3 Advantages of Surrogate Keys......ccoceverieviinienieiseniieeeneeeie e see s 15
1.3.4 Cost 0f SUITOZAE KEYS 1.veeurieiiiiiiininieerieeiterieete e sresiceeie e ae e st asies e eneens 16
1.3.5 Surrogate Key TyPeSs.....cceiiimerreeniriienie ettt srre e 17
1.3.6 Surrogate Key Generation Stage..........ccevervreeiereeneniennieerenneenensseeneessessessessenne 17
1.3.7 Surrogate Key Assignment Managementcccocuevveeereiennennireneesnreeeennns 18
1.3.8 Visibility and Intelligence of Surrogate Keys.........coovvevveveirienceneneniienieene. 19
1.4 Problem AT@acccuiiiireiiieiiireiiete ettt ettt ettt e be et s et s e e b e ebesaaenenens 20
1.5 ODJECLIVES ...eoviirieererieiiieieetcieeree e e vt etesae et esseeseasseeseaessaaseesntanseesnsesseensaeseensnenes 20
1.6 ThesisS OULINEccc.eivuiriiiicieeieteeettertriee et s rrete e st e st e st a e sresae e e snnesaaensenns 20

Surrogate Key Generation through Multi-Agents

Table of Contents

2 Literature Surveyceeueeeee testesssessnesssnesentssastesssnsssssnsssrasessstessssassrasenne w22
2.1 Related ReSArCh.c.coveoveiiiiiiiiieericenccte ettt 23
2.1.1 Surrogate Key Generation Methods and Limitationsceeeveveneeeneennnn, 23

2.2 Gaps between Sequentially Structured Numbers.........ccccoceorveinininincnennicnn 27
2.3 SOTtWAIE AZENLS......cccveeireeeieeieeirieitrerteerreesreeseeenseesseesseseseesessesassesnssssnseesssesssesssees 27
2.4 SUMIMATYveieririeiiriereeereesteeeesteseessesseeseessesseestessaasseasasseeessaesssessnanssesssesseessesssesnsenne 28

3 Problem Analysis........ccecuneene teteesstesssisssnessntsssstessstsssnsnssnsatessasesssssessanesnas «.29
3.1 INtrOAUCHION.. ... ettt sttt et ese e eseenens 30
3.2 Problem SCONATIOSc.coevveereririirieerieirereer ettt st ee st see st ee e nens 30
3.3 Focus Of RESEAIChcc.cceiuiriiiriiieierceieee ettt 31
3.4 SUIMIMATY -..veeeriieiiiereiereeeeterteretnesseasteessaesseesseesasaesesssesessssessesesssaessasessessnseensnesaserns 32

4 Proposed SOIUtioN........cocueiveercencncsensenisanssanssaresanesanssssnsssnsesssesssasssssssnses .33
4.1 INIPOQUCHION.....c.veuieerrereteeeretetee st sresee b seee e e sr s rssrbesee e e esnasaesesanenssaeas 34
4.1.1 Agent TeChNOIOEY ... ccerviruivieriiiiieenererce ettt 34
4.1.2 Data Sharding...........cccoeevierreerernineieniteniniiiieeeenesnrene e e sne s 34
4.1.3 Data Loading........ccocvveermiieieienenesesecerenteiesie et s 35
4.1.4 Increasing ETL Performanceccccocceeviiniiniinieniniiicieicceeccieniencee 36
4.1.5 Parallelism in ETL ...ccooviiiiiiiceccceeccnee e s 37

4.2 Proposed ATCRItECTUTE.......cc.coviruiieieiiicceere ittt 37
4.3 MEthOAOLOZYoveererieiieieecteeteetcrt ettt et et n e saa s rs e s saesee e ressesusenne 38
4.4 Agent Architecture for Key Generation.........c.ceceevevvevrennenieneneneesioneneenencnennes 39
4.5 Transformation Implementationc..ccccviiniininiiniennini e 40
4.6 Fact Table Data Processing........c..c.cuivviviiiniiiniiiinininicnnicnesneseennens 4]
4.7 Major Capabilities of Proposed Frameworkcceeeeeverviiiiininiincnneiiinnees 42
4.8 Scope of Proposed Frameworkcccceevereeriiiiiiieninienicenenesiieseereseeseeseeenens 42
4.9 SUIMMATY ...eeiveeiirieeiiieeieereeseeesteeitesreetesseeesseessasesseesseeesseesassasassesassessnesssesssesssessnes 42

S IMPIeMeENtaAtion.....ccceeccseicsriniranssrnccnrssssrsssnsssanessasessnsessnseessassessnssssnassssass 44
5.7 INrOAUCHION......oveeieiieriiecciiecetet sttt et e sb et be s reeseessensesaeeressanns 45

Surrogate Key Generation through Multi-Agents

Table of Contents

5.1.1 Abstract Flow of Frameworkcccccceceriiineirinicrcnieniiniesieneceseecrevcieans 45
5.1.2 Detailed Flow of Frameworkccccoevvinimniciiiniiniiiiinrccieneeecerene e 46
5.2 Framework Implementation............ccueverereeeeerieieienieneieeeeeseereseeseeeseeeesneseennens 47
5.2.1 Database Information........cc.cceceeveererienenenininiieninitete e e 48
5.2.2 SCreen ShOtS......ccuovveriivieriertiieereeneee ettt st s 49
5.2.2.1 WElCOME SCIEENeoieierrieniiiieeieeeeeererste ettt eesre e s saeesasesaens 49
5.2.2.2 Source & Destination Database CoOnnectionscceevveereecrereeneeennnne 49
5223 ETL MaANAZETc.vivoieeiiirreeiersienieentesiiesseeesseessstessneeessanensessssenessessnssenseens 50
5.2.2.4 AENt MANZETc.ovvevriiiiiiiieeetee ettt sttt st 52
5.2.2.5 Output Page (Fact Table)cccccoeeeveeiinieieniineeeciee e 53
5.2.2.6 Output Page (Dimension Tables)..........ccccccovieiiiiiiiinniniciciecceneenens 54
5.2.2.7 Star Schema of Fact & Dimension Tables...........coccoeevenieininvcneneninnenne. 55
5.2.2.8 Source Database with Table..........cccceoeriniriniiiiniiiineneceenecene 56
5.2.2.9 Agent Manager Window in SAGEccccccoiivininiinininneneneeceeseneeens 57
5.2.2.10 Agent Actions Window in SAGE..........ccccccceviiiiiinnninriccene 58
5.2.2.11 Agent Creation Window in SAGE........cccccecvniiriiiniininneneccinienicneens 59
5.2.3 Proposed Framework FIOWcccccocviiviiininininicicccees 60
5.3 SUMMATY ..coeeiiiieriieeeteerice ettt ettt s sttt neseeene e 62
6 Testing and Performancecccecceeveeccieccsnncssnncnsenicssencsssonesssssessassosssnenes 63
6.1 TSt SCONATIOS ...vveveeeieiieieiieiiet ettt ettt s ettt e b e sae st e sessaseesnesesane 64
6.2 Testing and ReESUILScoceeriviiiieierieiccneceecceree ettt s 64
6.3 Comparison of Keys Generation by Agents and Ordinary Methods...................... 64
6.3.1 Source System Tracingccccecrevrreererrercrsresririesnressersnesresiesieesseseseessessessessanse 65
6.3.1.1 Example Source Tracing: Ordinary vs. AZentscoceeeververcvenrenienercnrnens 65
6.3.2 Agent based Framework Performance.............cccoccevemvrviiiinvnniniinceninenennn, 66
6.3.3 Database Volume vs. Response Time.........c.cccccecererienieiennienenneiennnenenenenne 67
6.3.4 Transactions Volume vs. Response Time.........c.ccocevenevrnininineniceneeerineenen 68
6.3.5 Concurrency OptimiZation............cceevvereeirenierisieneniensenieeeseeeseeeereese e eresseaes 69
6.3.6 Reduced I/O Operations.............ccvueeruencrenreieesenesie e seeeeeee oo ssenenes 72
6.3.7 Gaps between Sequentially Generated Numbers...........ccc.ccoeevvievvivenneenrenenne. 73

Surrogate Key Generation through Multi-Agents

Table of Contents

6.3.7.1 Example: Gaps GENerationcocooueeververerieirieerenienieneeseecneneesenenenns 73
6.3.8 REPLICAtION ...ecuveviririieieeeiieseetesee ettt see s e e b s e s eraenne 74
6.3.8.1 Example: RepliCation........cccccevvevireieniieieiieeeieiesieceesre e nesve e e saneenens 74
6.4 Other BENETItSooveeiieierieieieieeereneee ettt s e ene s 75
0.5 SUMIMATY ..ottt ettt e e r e nessssae e s esesseessesreersessassassseseeseeneen 75
7 Conclusion & Outlookccuceu.. crresssesneissnnesarnisnseas cessesesnnessannsssenesssaress 77
7.1 CONCIUSIONeuvinrenirneeneieetetite sttt ettt se s b s ae s e s e s e e ssesse s eseesessines 78
7.2 CONIIIDULIONeiiierieeieetecreitesee e eteesteste et e s e esae e e e saeesetesssesseesseesssesstesseesansnenne 78
T3 OULOOK ...ttt sttt et e s re e s e e ee e e sheeneaennenes 78

8 Appendix

9 References

Surrogate Key Generation through Multi-Agents

List of Tables

List of Tables
Contents Page #
1.1 Comparison of OLTP and Data Warehouse System...........cccccevvvvrrenerenierercnnenreennenes 6
1.2 Common Load Operations.........ccccovereeriererenieieerieresresiessesseseesesessessesssssesesaesensenes 10
1.3 Comparison of Surrogate Key TYPes.......ccoccevirrirerieniiiercencesenie e 17
5.1 Database INfOrmation...........c.covveeiiieinineniiinreencee et see e saneneeene 48
6.1a Keys Generated by Ordinary Methods...........oocevivierieiniiiicieceeeccree e 65
6.1b Keys Generated by Multi AGENLS......cccuecevvreieiiriererieieinierereeeieneee e ssesae e sannesens 65
6.2 Time Taken by each Method for ETLcccocoeviviiiinieniceeeeeeeecee e 66
6.3 Data Volume vs. Response Time...........ccocoeveviiiiiierenininienenene e seneneseeenes 67
6.4 Transaction Volume vs. Response Timecccccoevierciinnieniienieenienie e 68
6.5a Request per Sec. vs. User Load........ccoceviriivinininiiniiicnecinene e 70
6.5b Response Time vs. User Loadccoveeeeveinieniinennienieieccerercere e e eeesees 71
6.6 DBMS I/0 OPEIationsccceevvereriuerereeniesreneeniestesseesteetesresssesesseesressseseseonessseenss 72
6.7a Keys Generated by Ordinary Methods (with Gaps)........c..coceeviviiieeinnininiiniinieinns 73
6.7b Keys Generated by Multi Agents (without Gaps)........ccccceveeereeniiveccinenininsenneene. 74
6.8a Keys Generated by Ordinary Methods in SOUICecccoeveecinicrienecnniinincninnenn 74
6.8b Keys Generated by Multi Agents in Replicationccocceevverevieneeerienireiceenneeenn. 75

Surrogate Key Generation through Multi-Agents

List of Figures

List of Figures
Contents Page #
1.1Architecture of Data Warehouse...........ccocvveriiieerininenicieeeee et 4
1.2 Detail of Warehouse Layercccevuveireriniiciiinieeeieeie st ste et sae v eees 5
1.3 ETL Process and COMPONENLS........cccuevuereertrriniieniieienieenieeiaesreesseesseesaeesseessesssesmeensenne 7
1.4 Hierarchy between Process Flow, Data Flow and Operations...........cccccccecerrirrerernenenee 8
1.5 The OLTP relational Database Model for BOOKSc.ccceovvereriiiinicinieininneneenenn 11
1.6 Surrogate Key ASSIgNMENLc..ovvviiiiiiiierininerreneeeciiereesessees et seaesesenes 13
1.7 Data WarehouSing StePSccuuvviveeiiveiiinenieierieieeesrerte e e sine e s e ssaesreereessasessesesnenns 15
1.8 Surrogate Key Generation...........ccocvveevvenerieieiirenriseeseesenieesessssesseesseesseensnsasesnsenee 17
1.9 Sequence Generator in ETL.......c.ocvivrvieriniiiienieierieseeerestenee et 18
1.10 Dimension Cross Reference Table...........cooovirieneeienieniinienienceere et 19
1.11 Dimension Table Surrogate Key Management..........cccccoccvervenerieninenennreneenennenn 19
3.1 Data Warehousing StEPSvoeerererierioririeteeeeerr ettt ettt er e ereenees 30
4.1 Data Sharding...........c.occveeeeriiiieiiiiece ettt st sttt res 35
4.2 ETL Data Loadingcc.ccoeviiririeninieicnieiiesiese ettt st sas s 35
4.3 Data Loading with Staging Database.............ccovevvereeerieererirenienieneccierveeeeseesreesee 36
4.4 Proposed ATCHItECTUTE..........cocuivrerieririirererenineneseerenit et seesbeeeeseseneesreseeenteneenesaesnens 38
4.5 Agent Architecture for Key Generation...........cceceecvevveriinienenncenieniniienneerennneneenns 39
4.6 Surrogate Key Assignment in DImension.........cccvevererreerrinenienienenneeniieneesrenneenens 40
4.7 Transforhnation for Dimension Changec.ccouevevciierinieninceicennireie e 40
4.8 Fact Table Record ProCesSINg.........ccecevieeiriieiierrenieeieetenitsntnessreseeeseeseresnaesseessesasenes 41
5.1 Abstract Flow of Proposed Frameworkccocueevveeiiriinniiinieeceeeeeceeceree e 45
5.2 Detail Flow of Proposed Frameworkccccocvvereerernirieieniinienieneeeceenre e 47
5.3 WEICOME SCIEEIvviriieiieeiieciteitieeee ettt ebe et e et e e bt e st e s s e e sareeemne e st e eneeeeeen 49
5.4 CONNECHION STEINEScoveriiriiiiiieiiciiirte ettt sttt st as 50
S ETL MANAZETceieiieieieeeiiie ettt ste e ettt ee e e e bae st e e emeeseme e e bt e eseeenneen 51
5.8 AGENt MANAZEcuervirieeiiiieinieneerte ettt ettt s en e st 52
SO FACE TADIE.....ccviriieieeeterereeteeste ettt ettt sat st e s s it e be et e b e nte s e sreene 53
5.10 Name Dimension Tablecccciiieviiiieniniiniiieerieneeeeeesvessre e esteesen s s sse e 54
5.11 Address Dimension Table............ccceveiivivinininiinieteccerce e 54

Surrogate Key Generation through Multi-Agents

List of Figures

5.12 Phone Dimension Table.........cccceceriririiieninieneniniceseeceeesieee e sve s eneeaes 55
5.13 Star SCHEMAcouveiiiiiiiiiiircctecenterte e ettt e e st e e s e e st e e asesanesssessseassaessesnnessessnans 55
5.14 SOUICe Database.......cccvceerieiiierieirineetierenreseesiesaessesteseeesessaessessesssesseessassessessessesseenes 56
5.15 Source Table Data VIEWccccevreriririnienrenineniiseneseeesnsiessessesreseesesseesessesesssosene 56
5.16 Agent Management in SAGE ..ot 57
5.17 Agent Actions in SAGEooo oo 58
5.18 Agent Creation in SAGEccooiiiiiice et e 59
5.19 Proposed Framework Flow Visualization............cocoevevveeienienieneenienennnineseneseeennns 61
6.1 Time Taken by Each Method for ETL.......ccccoeceviiinincenirieesercre e 67
6.2 Database Volume vs. ReSponse Time...........ccouverererirrenieseeieresiesesenernnnenessesseneesnns 68
6.3 Transaction Growth vs. Response TImeccccovvrviereenieninnieeneceeireeeseeeeeeneenes 69
6.4a Request per Sec. vs. User Load........cocuvovieiiiiviniininencnicciesecere e 70
6.4b Response Time vs. User Loadccccooirieiininiiineceeeieee e 71
6.5 DBMS I/O OPEIAtiONScovveeiieiriieiierirrineenreneneesresreessseeeseesenssessesaeeneessesasssesssones 72

Surrogate Key Generation through Multi-Agents

CuaartER 1

INTRODUCTION

Chapter 1 Introduction

1. Introduction to Databases

Database is a structured collection of logically related and shared data and its
description, and is designed to get the desired information for multiple users in any
organization. A database model is required to organize and structure the data and it also
defines several operations to be operated on the collected and stored data.The most
common and likely used database model relational model.

There are various database architectures including row-oriented and column-
oriented architectures, depending upon nature of stored data, their use and end-user
requirement. Different databases use single or a combination of architectures. Mostly
row-oriented architecture is used in Online Transaction Processing system and column-
oriented architecture is commonly used by data-warehouse systems.

Software named as Database Management System is used for storing, organizing
and managing the data in a system. DBMS provides a gateway to users by which
database can be defined, created and maintained and also the control to access the
database. DBMS also involves with performance, recovery (from hardware failure),
integrity and concurrency. DBMS is not dependent on the data model used but it can be
categorized based on their supported database model. In Relational Database
Management System, data is organized and managed by tables in which the relationships
of related tables are represented by common values. Hence a relational model is
implemented in RDBMS.

Tables are used in databases to organize the data having many rows and
columns. A single database record is represented by a table row. Keys are used in
database to keep the all records straight. A key is an attribute in database which is used to
identify individual record, keeps the tables normalized, provide the index creation facility
and/or sort the records in some manner. A key in a table having such properties is called
Primary Key. One or more columns should be made as PK in each table for a good
design. Foreign Keys are another type of keys used to cross-reference data between
logically related tables.

1.2 Overview of Data Warehouse

IBM devised a solution for manipulating data stored in non-relational systems

named as ‘information warehouse’. Unlike OLTP, data warehouse is relational database

Surrogate Key Generation through Multi-Agents 2

Chapter 1 Introduction

which is not used for transaction processing but built for querying and analysis purposes
and enables the knowledge workers like analyst, manager or executive for fast and better
decision making [16]. Usually it consists of historical data extracted from one or more
transactional systems. There is a separation between transaction workload and analysis

workload in warehouse systems [62].

1.2.1 Data Warehouse Characteristics
A simple way of defining data warehousing is to describe the characteristics of a
data warehouse as devised by Bill Inmon, who earned the title of ‘father of data
warehousing’. The characteristics of DWH include [66]:
» Subject Oriented.
> Integrated.
» Time Variant.

> Nonvolatile.

By the definition of Bill Inmon, the data is Subject-Oriented as the WH is not
structured around the major application areas such as stock control, inventory and
invoicing but it covers the major subjects of the enterprise such as customers, products
and sales. Simply the ability to define a DWH by subject matters, makes it subject
oriented. The data is Integrated because it is coming in inconsistent from disparate
sources and put into a consistent format so that a unified view of the data can be
presented to the end-users. The data is Time Variant because as the historical data has to
be maintained, so data in the WH is only valid over some time interval. The data is
Nonvolatile because it should not change once entered. Data in WH is refreshed from
operational systems on a regular basis rather than updating in real time. New or updated
data is always supplementary integrated to the database, rather than replacing the existing
one.

Instead of defining the DWH on the basis of characteristics of data, it can be
defined according to processing associated with accessing the data from the source

systems to the delivery of the data to the end-users. As defined by Ralph Kimball [40]:

Surrogate Key Generation through Multi-Agents 3

Chapter 1 Introduction

“DWH is a system that extracts, cleans, transforms, and delivers source data
into a dimensional data store and for decision making it also provides and implements

querying and analysis mechanism”.

1.2.2 Data Warehouse Architecture

Data Stagin
Sources Mrge'ag

Warshouse

Operational

Operational
System

Flat Files Inventory Mining
Fig 1.1: Architecture of a DWH [62]

Daté Warehouse architecture can be divided into five layers, as Data Source,
Staging Area, Warehouse, Data Marts and Users, based on the nature of job of each
layer. Typically, data comes from one or more Operational Data Sources into WH or
Operational Datastore (ODS) on a daily, weekly or monthly basis. Before adding data to
DWH, it is normally processed into a staging file held in ODS. ODS is a repository of
current, extracted, cleaned and integrated data ready for analysis purposes. The Load
Manager present in WH Layer performs extraction and loading of data into the WH.

The Warehouse Manager performs the management operations on the data in
the DWH. The operations include consistency assurance, transformation, merging and
transferring of source data into DWH tables from temporary storage, indexes and views
creation on base tables and archiving data. The Query Manager performs the

management of user queries. All the detailed data in the database schema is stored in the

Surrogate Key Generation through Multi-Agents 4

Chapter 1 Introduction

Detail Data of the Warehouse Layer, all the predefined lightly and highly summarized
data generated by the warehouse manager is stored in Lightly and Highly Summarized
Data area of Warehouse Layer. All the detailed and summarized data for the purpose of
archiving is stored in Archiving/Backup Data area of the Warehouse Layer. All the
meta-data definitions used by extraction and loading process, warehouse manager
processes and query management processes in the warehouse are handled by Meta Data

arca.
Warehouse

Warehouse Manager

Meta Data Highly

) Summarized Data
Staging Area
Load

M
. anager
/ Lightly
Summarized Data
Déitailed Data DBMS

Warehouse Manager

A

A4

Archive/Backup Data

Fig 1.2: Detail of a Warehouse Layer {66}

1.2.3 Data Warehouse Benefits
A successful implementation of DW can bring various benefits to an
organization as well as an individual including:
» DWH is very useful for trend reporting in decision support system applications.
» DWH is designed to perform well with aggregate queries running on large
amounts usually terabytes of data.
» It decreases the workload on legacy systems by building and maintaining the

complex queries.

Surrogate Key Generation through Multi-Agents 5

Chapter 1 Introduction

» Reports based on data that is non uniform and scattered across variety of sources
can efficiently be managed by WH Systems.

» DWH enable queries to cut across different segments e.g. Production data can be
compared against Sale data even if they are different in structure and stored in
different databases.

» Data warehousing provides the capability to store, manage and analyze large
amounts of historical data.

> Potential high returns on investment, Competitive advantages to an organization
can be achieved by the successful implementation of a DWH.

> By creating an integrated database of consistent, subject oriented, historical data,

the productivity of corporate decisions makers can be improved.

1.2.4 Comparison of OLTP and DWH Systems
OLTP and DWH systems are built for different purposes and have different

requirements and characteristics. The comparison between these systems can be made by

a table as [62][66]:

Only sport edeﬁned operations ccoodate ad hoc queries

Stores current data Stores historical data

Holds detailed data Holds detailed, lightly and highly summarized data
Updation through individual data modification | Updation through bulk data modification techniques
statements by ETL.

Nature of data is dynamic Mostly data is static

Use normalized schemas Use denormalized schemas

Transaction Driven Analysis Driven

Application Oriented Subject Oriented

Useful for day-to-decisions Useful for strategic decisions

Table 1.1: Comparison of OLTP and DWH Systems

1.2.5 Extraction, Transformation and Load (ETL)
ETL consists of all the back-end processes required to make data ready for the

end users to make business decisions. ETL includes collection of data from different

Surrogate Key Generation through Multi-Agents 6

Chapter 1 Introduction

source systems, validation of it so that accuracy can be maintained, cleaning and
transforming according to business rules to make it consistent, and eventually loading it

in the WH where the users can query it [16][45][59][62].

Fie Sysm
‘ Data Warehouse
‘Staging Databse
Waratwrusmhtari
| Bugrg Area Layer
e e 1
Transformation, 1
ng, Reprocessing, |

ng, Metadata, Profiling) d

| Business Ty
Transformation M

www.D\WHinfo.com
Fig 1.3: ETL Process and Components [45]

According to above figure, the ETL process starts from the source layer and ends
on WH layer after passing through different stages. So, ETL can also be defined simply
as "collection of all the processes involved in preparing and loading the data for users"
[45].

Surrogate Key Generation through Multi-Agents 7

Chapter 1 Introduction

The set of data in WH is called Dataset which can be persistent or runtime.
Persistent datasets can be in the form of database or files data and Runtime datasets are
the outcome of particular process. Each ETL process contains Operations which are
usually parameterized and operate on the datasets. Operations can be grouped to make a
Data Flow which performs a set of operations to provide functionality. Similarly a group

of data flows is called Process Flow which provides a requirement of one subject area.

ETL
Process Flow for Subject Area 1 Process Flow for Subject Area 2 | o
A \
Deta Flowfor | | DataFlowfor | |JDataFlowfor) | Dot Flow for |} Dala Flow for
Functionality! | | Functionality2 | [JFunctionalltyd Functionalitys |} Functionality§
—1 Opemstlont - Dperstion? Oparationt Opearationt Oparationt
Ommuoan Opsration? Cperation? Oparation2
OpamﬂonSJ cpbmnpna Operation3 — Oparationd
Operstiond ® - __| Operations
—ﬁ
® L 4
L 4
L

Data Flow for
Functicnality 3 is

common for both
Process Flow 1 and 2

www. DWHinfo.com

Fig 1.4: Hierarchy between process flow, data flow and operations [45]

1.2.6 Components of ETL

ETL consist of following components [45].
Data Profiling.
Data Extraction.
Data Validation and Integration.

Data Cleansing.

V V V V VY

Data Transformation.

Surrogate Key Generation through Multi-Agents 8

Chapter 1 Introduction

Exception Handling.

Surrogate Key Generation.

Data Load.

ETL Scheduling.

Data Archiving and Backup.
Data Purging.

ETL Auditing and Data Quality.
ETL Metadata.

YV V V V V V V VY

1.2.7 ETL Environment

The ETL environment consists of three architectures as data, application and
technology aﬁd a group of people including developers, support and management [59].

Data and its quality, models to represent data, structure and business rules are
included into the Data Architecture. Hardware like computers, networks and its all
elements and Software like operating system and data management systems are included

in Technology Architecture. Application Architecture includes ETL programs.

1.2.8 ETL Issues
We can categorize the ETL issues according to ETL Environment Architecture
as [59]:
» Data Architecture Issues.
» Technology Architecture Issues.
» Application Architecture Issues.

» People Issues.

Data Architecture issues includes the dissimilarity of target and source system
data structures, meta data, dependencies in the data, poor quality of source system data
and complexity of source data. Technology Architecture issues includes less
interpretability between platforms, improper scheduling, disk space and volume and
frequency of loads.

Application Architecture Issues includes imprecise logging process,

inappropriate error notifications and managing of start over and start from points in a

Surrogate Key Generation through Multi-Agents 9

Chapter 1

Introduction

failure scenario. People Issues includes support, in-house expertise and management’s

comfort level with technology.

1.2.9 Common Operations on Data Loaded

There are many operations which are needed on the loaded data as described in

following table [59]:

Ienty Column K eertor

Surrgte Key Generation
Code Translation If-then Logic, Lookup
Splitting Data Bulk of Write Statements
Merging Data Joining from Multiple Tables
Logging Error and Progress Scheduling
Loading Code Tables Set of Scripts
Table 1.2: Common Load Operations
1.2.10 Data Modeling

For building the complete DWH system, the first step is designing the data

model for it. The primary objective of the data model is to confine the structure of data

and its contents, and also the relationships between the data. Due to the granularity of the

OLTP’s relational database model, it does not cater the DWH requirements [31]. As

DWH often uses column-oriented data store architecture so the model used for the data

warehouse environment is dimensional model.

1.2.11 Data Warehouse Modeling

There is a sequence of steps in approaching data warehouse database design,

beginning with the end-user prospects [29].

> Subject Areas: Establish the business subject areas.

» Granularity: Granularity is the level of detail required to satisfy the user queries.

The recommendation is to include all historical data down to the lowest level of

granularity. This ensures that any possible requirements in future for detailed

analysis can always be met.

> Building Dimensions: Dimensions contain static information. Dimensions

describe facts through storing static details about fact table transactions.

Surrogate Key Generation through Multi-Agents

10

Chapter 1 Introduction

Dimensions are built before facts because fact tables contain foreign key
references to dimension tables.
> Building Facts: Facts are transactional records. As facts are dependent on

dimensions, so fact tables are created after all dimensions are finalized.

1.2.12 Dimensional Modeling

For data warehouse systems, neither normalized nor de-normalized relational
database model is suitable. A quite different model is needed for data warehouse which is
called a dimensional database model. A dimensional database model contains
dimensions and facts and a standard framework called star schema is used to store the
data. Dimension describes facts and fact table contains historical transactions, such as all
orders placed by the customers for the last ten years. Dimensional model can be best

described by the example.

Fig 1.5: The OLTP relational database model for books [29].

Above figure shows a relational database model for static and dynamic book
data. In figure the gray shaded tables are static whereas others are dynamic (in state of

constant change) data tables. Dimensions are represented by static data tables and Facts

Surrogate Key Generation through Multi-Agents 11

Chapter 1 Introduction

are represented by dynamic data tables. Star Schema contains centralized fact table that is
joined to denormalized dimension tables.

The main characteristics of fact tables include normalized table, multipart
primary key, numeric values, large number of rows, granularity level is same and not
considered to be updated. The types of FT are as follows:

» Factless FT.

» Transaction FT.

» Periodic Snapshot FT.

» Accumulating Snapshot FT.

The main characteristics of dimension tables include denormalized table, a
meaningless primary key, usually textual values and attribute values can change over a
period of time [33]. The types of DT are as follows:

» Degenerate Dimension.
» Conformed Dimension.

» Slowly Changing Dimension.

e Type 1 SCD.

e Type 2 SCD.

e Type 3 SCD.
1.3 Surrogate Keys

There are many dimensional modeling concepts and techniques that are critical
to implement dimensional models. The key concepts are: surrogate keys and slowly
changing dimensions.

Surrogate keys are keys that are created and maintained within the data
warehouse instead of the taking'natural keys of source systems. SK contains not any
information and independent of data itself. These are used in place of heavy meaningful
composite keys of the source systems due to performance reasons [9]. Performance and
Semantic Homogeneity are the basic reasons for this replacement [16]. Surrogate keys
are named by many other aliases, such as non-natural keys, system generated keys,
dummy keys, meaningless keys, database sequence numbers, arbitrary unique identifier ,

artificial keys, non-intelligent keys, entity identifiers, synthetic keys, technical keys and

Surrogate Key Generation through Multi-Agents 12

Chapter 1 Introduction

integer keys. Dimension tables should always be built with a surrogate key assigned by
the ETL process. It is recommended that SK are created and used as the PK of all the
dimension tables [8][37].The surrogate keys joins the dimension tables to the fact table
[19]. Surrogate keys serve as an important means of identifying each entity or instance
inside a dimension table [11]. SK are not defined in Logical Model [25]. SK provides
better performance with respect to joins due to their numeric nature [13].

Surrogate Keys and Primary Keys can be differentiate on the basis of the type of
the database whether Temporal or Current database [63]. SK can be used as primary
key in current database because it stores the data that is currently valid and the
relationship between PK and SK is one-to-one. However the SK can not be used as
primary key in temporal database because the correspondence between PK and SK is
many-to-one. Hence there is a need of an attribute other than SK to uniquely identify any

object in temporal database.

Fig 1.6: Surrogate Key Assignment [16]

1.3.1 Characteristics of Surrogate Keys
Surrogate keys has the following characteristics which make them perfect keys
for the dimensions [30][63].
» Numeric in nature.

» System generated.

Surrogate Key Generation through Multi-Agents 13

Chapter | Introduction

YV V. V V V¥V V¥V

System wide uniqueness.
Unambiguous

Stable i.e not changed.
Invisible to business users.
Single rather that Composite.

No business meaning.

1.3.2 Reasons for Using Surrogate Keys

Primary reasons to use Surrogate Keys are as follows [12]:

>

An entity can have different keys in different tables of different OLTPs and
similarly a key is also used by different entity instances [38]. In other words
reconciliation problems due to semantic homogeneity can be avoided [31].

SK can preserve the order in which the rows are being inserted.

Unlike integer keys, mostly string keys can cause overflow problems and also
performance degradation.

Surrogate keys are very useful to handle changes in dimension table. It maintains
data warehouse information when dimensions are changed [8].

Due to the uniform key structure it is very helpful in integration [30].
Occasionally OLTP system keys may be reused due to absolute data or change in
the source systems. However, the key may still be in use in historical data in the
data warehouse, and the same key cannot be used to identify different entities
[15].

By the use of surrogate keys, performance of queries can be improved. The
narrow integer surrogate keys mean a thinner fact table and due to thinner fact
table, the performance can be increased.

SK can be used to uniquely identify the billions of records of dimension tables.
Surrogate keys also help to handle exceptional cases such as ‘To Be Determined’
or ‘Not Applicable scenarios’.

Due to the numeric nature of SK, they have better structure, more stable [24], give

better control and have less storage.

Surrogate Key Generation through Multi-Agents 14

Chapter 1 Introduction

> The join between fact and dimension tales can be simplified by using Surrogate
Keys [26].

» The use of Surrogate Keys reduce the number of I/O operations in such a way that
more rows of fact tables ca be loaded into data pages of memory.

» Surrogate Keys enable database optimizations through bitmap indexing and star

optimization.

Surrogate key generation is the one major step in getting the data from source

system and delivering it to the target user and it takes a lot of time i.e 35% of overall data

warehousing process.

STEP # DESCRIPTION TYPICAL SHARE OF TIME

1 Request a data package. 0%

2 Extract data from the source. 10% of the ETL process

3 | Transformation rules/transfer 15% of the ETL process
to the PSA.

4 Update rules. 40% of the ETL process

5 Surrogate key generation and 35% of the ETL process
database updates.

6 Subsequent steps. (varies)

Fig 1.7: Data Warehousing Steps [32]

1.3.3 Advantages of Surrogate Keys
Using surrogate keys in dimension tables provide some of the following
benefits:
» Surrogate Keys replace the use of compound keys. Joins and maintenance of
indexes for single column keys are very efficient [20].
» Surrogate keys have the same structure of data instead of different representation
of same key in different OLTPs.

» Due to the compactness of SK, performance based on joins is very high.

\4

Surrogate Keys have storage and access independence [17].
» As their values and format of keys never change that is why surrogate keys as

foreign keys are very stable [11].

Surrogate Key Generation through Multi-Agents 15

Chapter 1 Introduction

>

Y

YV V. V V

Surrogate Keys buffer the data warehouse environment from changes in the
source system. In other words they protect the data warehouse system from
changes in the source system. For example, a migration to a new software
package in the source system will likely create a new set of keys [28].

Surrogate keys allow the data warehouse system to integrate data from various
source systems. Different source systems may keep data of the same products
with different keys.

Surrogate Keys are not tightly coupled with business therefore they are easy to
maintain [7].

Surrogate keys facilitate the user to add rows to dimensions that do not exist in
the source system [24].

Surrogate keys are used to keep track of changes in dimension attributes over
time. Generally, it keeps the history of add new rows to the dimension table when
an attribute changes. This means there will be various rows in the dimension table
with the same source system key. The surrogate key provides the unique key for
each row [40].

With Surrogate Keys the Data Warehouse Load process can control the value
assignment and ensure uniqueness because all keys have the same format.

Integer surrogate keys are efficient keys and these are used to improve query and
processing performance [41].

The size of the fact table can be tiny due to the compactness of surrogate keys.
The index on PK and FK is also compact due to compact nature of SK [30].
Surrogate Keys are easy to handle for developers due to consistency of the keys.
The use of SK also reduces the no of /O operations [12].

The ability to track changes in dimension attributes over time is reason enough

to implement surrogate keys.

1.3.4 Cost of Surrogate Keys

The most critical cost of using surrogate keys is that it places the burden on the

ETL process [41]. Data normalization, query optimization, data disassociation, business

process modeling [63] are also the cost factors. Other disadvantages of Surrogate keys

Surrogate Key Generation through Multi-Agents 16

Chapter 1 Introduction

include extra space due to addition of a new column, hence extra index has to be built on
SK column, difficulty in changing SK, data verification is not possible, as cluster index
can give fast searching mechanism but cluster index on SK is useless and getting next
value [9][21].

1.3.5 Surrogate Key Types

There are three types of surrogate keys as Concatenated Surrogate Keys,
Semisurrogate Keys and Surrogate Keys [25]. Concatenated SK is multi-column
compressed key with strings data type. Semisurrogate Key substitutes a portion of a

multi-column concatenated key with a system generated numeric data. Finally Surrogate

Keys are totally system generated numeric keys.

Integrity N Yes I Yes N Yes Yes
Integration None None None None
Readability Best Ok Compromise None
Accessibility Difficult Easy Moderate Easy
Performance Not Good Better Better Best
Security Almost None Almost None Better Best

Table 1.3: Comparison of Surrogate Key Types [25]

1.3.6 Surrogate Key Generation Stage

Surrogate Keys are generated in the data-staging. Also the maps to the

operational systems, current loads of operational data, and any atomic data not currently

used in the data marts is stored in the Data Staging. Most of the heavy lifting performed
by the ETL tools occurs here as well [30].

Fig 1.8: Surrogate Key Generation [18]

Surrogate Key Generation through Multi-Agents

17

Chapter 1 Introduction

According to Vincent McBurney, there are two way to generate Surrogate Keys
in the data load of ETL process [13].
» Surrogate Keys can be generated in the ETL job.
> Surrogate Keys can be generated in the target database.

SKs are made foreign keys in the fact table and hence the referential integrity in
DWH can be ensured. The speed of data loading process can be increased by disabling
redundant FK reference checking by the system. A row in the reference table is located
with the help of natural key in order to assign a surrogate FK to incoming data and
selecting the primary SK value. If no row is selected so we can either reject the incoming
row or create a new row in the reference table from the natural key of the incoming data

[30]. To generate SK for dimension tables, a Sequence Generator is used in ETL [45].

Paramesters
Currant Value = 2234
Increment Value = 1
Maximum Value = 999999059

10001001 | 67675523 8 10001004

10001002 | 87653422 5 2236 | 110001002 $
10001003 § 77641235 2 2237 1310001003 | 77641235 2
10001004] 12278865 11 2238 | 110001004 | 12276885 1
10001005 | 12778833 2 2239 1110001005 | 12778899 2
10001006 | 97762222 3 2240 | 110001006 | 9776222 3
10001007 | 20245421 5] AL 224l 000ig07 | 20245421]

Sequance Generator www. DWHInfo.com

Fig 1.9: Sequence Generator in ETL [45]

1.3.7 Surrogate Key Assignment Management

As surrogate keys are generated for the dimension tables during the load process,

a master cross-reference table for each dimension must also be maintained. This table

Surrogate Key Generation through Multi-Agents 18

Chapter 1 Introduction

keeps the track that a particular SK is assigned against which business key along with

time information.

Surrogate Dimension Key

Operational Source Key +—— [f combining data from
Dimension Attributes 1-N muiltiple sources, there
Dimension Row Effective Date would be additional
Dimension Row Expiration Date columns for the other
Most Recent Dimension Row Indicator operational sources.
Most Recent Cyclic Redundancy Checksum (CRC)

Fig 1.10: Dimension Cross Reference Table [40]

When a new dimension row has to be entered in the warehouse, then it is simple
than managing the change in the existing row of the dimension table. In order to manage

the change in dimension, we can follow the procedure as:

New Source A"%";’g"‘* insert
Rows
dates/indicator
Source No CRC ignore
Change
CRC T
Compare —’O ows Tord
) Assign surrogate
Cross-Ref . l
Update
prior "most Update
recent” row

Fig 1.11: Dimension Table Surrogate Key Management [40]

1.3.8 Visibility and Intelligence of Surrogate Keys

Many data warehouse experts suggest that business code should be avoided in
joining the dimension table with fact table. Hence meaningless numeric surrogate key
should use in gluing between dimension and fact tables [40]. Also the intelligence should
be avoided because it creates the dependency on business data. Similarly according to

some experts, the surrogate keys should be hidden from the user based on several

Surrogate Key Generation through Multi-Agents 19

Chapter 1 Introduction

reasons. First, if SK are visible, then user can understand it as business attribute. Second,

the user may want to change its value according to system standard [24].

1.4 Problem Area

There are different methods to generate the surrogate keys each having some
limitations. According to figure 1.7, 35% of time is consumed by SK generation in ETL
process. So in order to accelerate the ETL process there is still a need of SK generation
method having characteristics like reducing gaps in the records, solve the issue of
concurrent access and deadlock, small in size to overcome storage overhead, ability to

trace the source system of particular record and supports in replication.

1.5 Objectives

Our objective is to provide a framework to remove the maximum issues
involved in existing methods of generating the surrogate keys. The core objectives of the
framework are:

» To eliminate the bottleneck created due to the deadlock in processing huge

amount of data (TB of data) in warehouse.

Y

To optimize the cost and performance by reducing the size of the surrogate key in
fact table.

To provide the surrogate key generation in an intensive concurrent environment.
Avoiding hot spots created by concurrent transactions.

To minimizing the number of I/O operations.

YV V V VY

To keep track of a particular record present in DWH in such a way that the user

can tell the belonging of record to its source system.

Y

To minimize the load on DBMS in managing almost terabytes of data.

1.6 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2 we have highlighted
the previous work and their limitations in this domain. In chapter 3 we have reviewed the
requirement analysis of our proposed framework. In chapter 4 we have discussed the

designed model of our proposed approach. In chapter 5 we have discussed the

Surrogate Key Generation through Multi-Agents 20

Chapter 1 Introduction

implementation issues. In chapter 6 we have evaluated our framework by showing the
results taken from the software designed on the base of our proposed framework. In the

last chapter we have described the conclusion and future work in this domain.

Surrogate Key Generation through Multi-Agents 21

CHAPTER 2

LITERATURE SURVEY

Chapter 2 Literature Survey

Data Warehouse is a process for building an application architecture having a
knowledge-base, a decision support systems and an environment which supports decision
makers. DW is becoming a focus of the database industry because it is essential element
of corporate strategizing and decision support. A lot of research has been done on the
technical aspects and issues of data warehouse rather than focusing on its interaction with
the organization.

Currently the main focus of DWH research is on back end processes, modeling
of data, management of metadata, query processing, scalability, recoverability and front
end process. Back end process includes extraction, cleansing, transformation and loading
of data into WH. Front end processes consist of data analysis.

There are also a number of 3 party tools which are developed to accelerate and

optimize the overall data warehousing process.

2.1 Related Research

So for as our topic “Surrogate Key Generation through Multi-Agents” is
concerned, we could not find any relevant material based on our approach. As the process
of SK generation is done in loading phase of data warehousing, a lot of work has been
done in data loading related issues along with SK generation. We have gone through
many electronic articles and papers which show some work on SK generation methods
with pros and cons and the requirement under which particular method is applicable.

Following is the survey of the literature we did in our research.

2.1.1 Surrogate Generation Methods and Limitations

Joe Celko and Markus Zywitza have described the basic method to generate SK
by using a counter [9]. This counter is maintained by DB engine and usually starts with
one. A function is used to increment the value of counter locally by one [5]. In Sybase
SQL the function NUMBER(*) is the example of this method.

The basic problem with this method is that it can not be useful in multi client
environment and also for clusters or an environment where data comes from
heterogeneouS sources. The second problem with this method is the overflow of number

range. This method is also not useful under the circumstances where data from different

Surrogate Key Generation through Multi-Agents 23

Chapter 2 Literature Survey

databases of organization have to merge. There can be clash of counter value that is an
object represented in one database can be different in other database. So in order to gain
consistency a lot of work has to be done.

Another method to generate SK is to use the Oracle “Sequences” [2][4]. It
automatically generates a unique number which can be used as key of any kind of table.
This is customized in such a way that user can set the incremented value between two
numbers and also the limit of numbers. The main limitation of this technique is that it is
only supported in Oracle.

An automatically generated value with “IDENTITY” keyword in SQL Server,
Sybase can also be used for SK generation [10], as described by Gary Meyer. It is also
customized as user can set the initial value and increment value. The value of identity
column is sequentially unique numbers and generated on saving of record. A table can
have one identity column [11]. The main advantages of using this method includes the
keys are small, high performance on joining and indexing, debugging is easy and key
updating is not allowed.

There are also some drawbacks of using this technique. The main drawback is
that it is problematic in replication. Second, generated values can only be accessed after
insertion. Other“ includes the gaps between generated numbers, uniqueness in a single
table, not portable, creates insertion hot spot in concurrent environment, must declare as
primary key to avoid duplication [49].

According to Scott W. Ambler the simplest solution to surrogate primary key
generation is the “Max Plus One” [7]. In this strategy a column with numeric data and
starting from one is used. On insertion of any new record, the maximum value on this
column by uéing Max function is calculated and then one is added.

The main disadvantage of this approach is that it affects the performance when
the size of the table is large as mostly in warehouse. Also it gives uniqueness within
single table. It can be problematic after deletion of last row because its value can be
reused for next record [34]. It causes serious problem in concurrent environment when
concurrent transaction read the same value for the next record [42]. So this algorithm is
best suitable for low intensity applications. The solution given by Mayer is ""Enhanced

Max Plus One" algorithm in which the deficiency of Max Plus One algorithm is

Surrogate Key Generation through Multi-Agents 24

Chapter 2 Literature Survey

improved by including the keyword “hold-lock” in the query [10]. However, this
algorithm also causes deadlocks in a highly concurrent environment.

Another approach to generate surrogate primary key is the "Composite Key”
devised by Meyer [10]. In this concept two approaches are applicable including one
column with multi part and other is combination of more than one columns. In first
approach, the first part is the object id which controls the inserts into the table and the
second part is datetime which ensures uniqueness. The main disadvantage of this
approach is the size of the key and the other is, no mechanism to check and control the
gaps generated between keys. This method also degrades the performance of DWH
Process [30].

Joe Celko devised an approach to build a “Separate Table” that holds the next
value to be generated. The table has single column usually integer type for that storing
next value. Each time to generate SK a SP is invoked to get next value and then update
- that table [9]. The main advantage of this approach is the high portability [4].

This approach causes gaps between numbers when operated between concurrent
transactions and also slows their processing by causing Hot-Block problem {29].

Another technique described by Roy Hann is use of a Pseudo Random
Number Generator [15]. The values generated by this technique are the integers in
random order not random number. The repetition of numbers does not appear for billions
of values. A next seed table is used get the key value for the generator. This key value is
hidden. The lmain advantage of this technique is that the keys are distributed uniformly.
The other advantage of this technique is the security in sense that next value can not be
predicted and it is also useful in concurrent environment.

The disadvantages of random surrogate keys include cyclicity in a sense it
generates duplicates, size and complexity [9].

Surrogate keys can also be generated and inserted in the DW by DB Triggers.
The main disadvantage of triggers is the severe bottleneck created in ETL [33].

According to Chuck Ballard and Daniel M. Farrell, GUIDs can also be used as
surrogate keys [8][14]. GUIDs are Microsoft’s standard. The technique is hashing the
current datetime with the MAC address of network card to produce the key value. In the

absence of network card, the software id is used. The main advantage of this technique is

Surrogate Key Generation through Multi-Agents 25

Chapter 2 Literature Survey

the uniquely generation of SKs over each table. It also allows the integration of data
comes from different sources without any clash. It is helpful in replication. GUIDs
increase the performance by reducing the joins [14]. It is highly portable [55] and hot
spot can be avoided.

Some authors suggest to avoid the usage of GUIDs in DWH due to several
reasons. The main reason is storage [37]. GUIDs takes a large amount of space then
integers. The other reason is that as GUIDs are four times larger than integer key so
indexes on GUID columns are slower integer keys. The process of debugging GUIDs is
hard task and these are updateable [49].

UUID is another method to generate the surrogate key, described by Markus
Zywitza and Scott W. Ambler [5][7]. Open Software Foundation create the algorithm for
this approach. UUID is 128 bit value. This value is generated by a hash of the datetime of
the currently used system and network card id. In the absence of card, an equal software
representation is used. There are two representations in UUIDs, hex and compact [5]. In
hex representation the id is converted and represented by hex values and string is made
which is readable. In compact representation the id is converted into array of byte and
then represented into string.

The disadvantage of this method is same as GUIDs. It includes large size, slower
indexing and hard debugging.

According to Joseph Sack Surrogate Keys can be generated and managed by
using ROWGUIDCOL property columns which provides the uniqueness at very high
level [11]. This is very useful in heterogeneous environment. The main limitation of this
technique is that a table can have only one rowguidcol column.

The integrity of data of column can be attained by the use of constrains in SQL
Server as devised by Joseph Sack [11] and also can be used to generate SKs. It includes
Unique Constraint and Default Constraint. Unique Constraint can be used to generate
distinct values on non key columns and Default Constraint can be used on column where
data type is not known. The major drawback of these techniques is the duplication in

concurrent transaction environment when clock is set to backward.

Surrogate Key Generation through Multi-Agents 26

Chapter 2 Literature Survey

Ralph Kimball and Joe Caserta have described another technique to generate the
SK for DWH by concatenation of system’s natural key with datetime stamp [33]. It
also describes the insertion time of particular record.

There are various drawbacks of this technique. First is the dependency on source
system. Secondly it is only supported in Homogeneous Environment. The major
drawback is the less control, huge size and degraded query performance.

Scott W. Ambler describes another technique named High/Low strategy [7].
According to this strategy, any key is logically consists of two parts i.e. High and Low.
High value comes from the source and Low is n digit value that is assigned by the
application itself. The procedure is as on obtaining high value every time, the low value
is set to zero. If the high value is 101 and n=3 then the key will be 101000,101001,
101002 and so on. If the high get the value 201 and n= 3 then the sequence will be
201000, 201001 and so on.

An approach which is useful in concurrent environment is the Recycled Series
described by Gary Meyer [10]. In this approach every process in concurrent transaction
environment has conceptually next key table with specific range. For example one
process has its range from 101 to 1000 and other would have 1001 to 2000. This
approach is most effective in insert intensive scenarios where cache hit ratio and

concurrency can affect the performance.

2.2 Gaps between Sequentially Structured Numbers

There are four main reasons due to which gaps are generated between
sequentially structured numbers according to DBMS support [48].
» Abortion of DML statements.
» Rolling back of any transaction.
» Seed value is reset.

» Rows deletion.

2.3 Software Agents

Software Agent is a stand alone computer based program works for predefined

tasks in dynamic situation on behalf of user or any entity. It can work without any control

Surrogate Key Generation through Multi-Agents 27

Chapter 2 Literature Survey

for an extended period [36][61]. In a Multi Agent System, there are more than one
software agents and they can interact with each other in different scenarios including
competitive, cooperative or autonomous. They can produce results for entities that
initiated them and these entities can also terminate their instance. They can have a user
interface [65]. A software agent can run manually by user in foreground or automatically
in background. An agent call other agent, they are portable and can be replicated, serve
for specific task. Other characteristics include persistence, reactive, social/collaborate and
flexible. The application area of software agents includes data presentation, event
notification, pattern recognition, data collection, data sorting and filtering, optimization
and planning.

Agent Technology is used rapidly in data warehousing with growing size of
DWH.

2.4 Summary

There are many techniques to generate a PK for a table in different DBMS and
hence using for surrogate key generation for the dimension tables in DWH. Each
technique has its own implication with pros and cons. Hence surrogate keys generation
and management is still a problems for developers of DWH. Software agents are usually
used for reporting purpose in DWH. By considering the application of software agents we
are going to generate the surrogate keys through agents with various performance

benefits.

Surrogate Key Generation through Multi-Agents 28

TH - 6SS6

CHAPTER 3

PROBLEM ANALYSIS

Chapter 3 Problem Analysis

In this chapter we have analyzed the problems and limitations with existing
methods to generate the SK with respect to their success. We have also discussed the

major factors which are basis of our purposed work

3.1 Introduction

DWH contains huge volume of data this is stored on historical basis for analysis
purposes for decision makers. The creation and maintenance of DWH is also a
cumbersome job. It takes too time and resources of the software including DBMS as well
as hardware resources including memory and processor. Collecting data from different
source systems either homogeneous or heterogeneous environment, integrating them with
some transformation and then loading them into the DWH tables is very complex, time
taking, heavy and critical process. The whole process is called ETL and its various
components are extraction, cleansing, transformation, profiling, SK generation, loading
and other sub components which play supportive role with major components. We are
concern with SK generation which is the major step in ETL process. It takes 35% of time

of overall DW process [32].

STEP # DESCRIPTION TYPICAL SHARE OF TIME

1 Request a data package. 0%

2 Extract data from the source. 10% of the ETL process

3 | Transformation rules/transfer 15% of the ETL process
to the PSA.

4 Update rules. 40% of the ETL process

5 Surrogate key generation and 35% of the ETL process
database updates.

6 Subsequent steps. (varies)

Fig 3.1: Data Warehousing Steps [32]

3.2 Problem Scenarios

After conducting an extensive literature survey we conclude that all the current
methods to generate the surrogate keys have some limitations. First of all few techniques

generate gaps in the records listing, which results in confusions and de-organization of

Surrogate Key Generation through Multi-Agents 30

Chapter 3 Problem Analysis

data. Secondly the issue of concurrent access is not dealt efficiently in few of the
techniques. Two concurrent records may obtain the same surrogate key. In few of the
techniques the algorithms designed to handle the concurrency results in deadlock. The
deadlock occurs due to the combination of shared lock and exclusive lock mechanism. So
due to the chances of deadlock these techniques can only be efficient in low intensity
environment. The size of the key is also one of the main issues that need to be dealt
properly. In few techniques the size of the generated keys becomes bigger which
indirectly increases the storage overhead and results in searching delays. Few techniques
required the value of the next seed. If multiple transactions are allowed to access and
retrieve the value of the next seed then multiple transactions can get same seed value and
if only one transaction is allowed to get the value of the next seed then the delay arises.

As data come from different sources in DWH, there is no method available, to
our best of knowledge, to keep the track of a record that it belongs to which system. The
reason may be the transformation of data during ETL before loading of data into WH.

Methods which generate the SK automatically by DWH with DBMS supported
type are considered best. The main problem with these types of method is the mismatch
of values generated in replication and the originally in DWH.

The major cost of SK is that it places huge burden on the ETL system. First SK
is assigned to each distinct dimension row. Secondly substitution is made on keys of
transactional systems in fact table with SK from DT [41].

Till now, agents are used in DW systém for reporting purposes including trend
checking, event notification, pattern recognition etc. They can be used to maximize the

performance of ETL process by sharing the load of processing and calculations.

3.3 Focus of Research

As there are many components of ETL which are required to be considered for
advancement but we have selected Surrogate Key Generation for our focus point. There
are many techniques available but we are going to propose a framework to generate
surrogate keys though multi agents. Now generation of unique number across the DT is
the duty of agents rather than DBMS itself. Agents are invoked and terminated by the

WH system. By using the advantages of multi agents, the limitations of prior method to

Surrogate Key Generation through Multi-Agents 31

Chapter 3 Problem Analysis

generate keys can be resolved and burden on ETL system can be reduced by dividing the
task between agents. Tracing the source of the record present in DT is a major advantage
of using this technique, which was not possible in prior methods (to the best of our
knowledge).

3.4 Summary

Present methods of SK generation have limitations including gaps between
sequentially arranged numbers, concurrent access issues, deadlock occurrence, size of
key, next seed problem and unknown ownership of records. To overcome these problems
we have proposed a technique to generate SK by using multi agents and it will provide

satisfactory performance optimization.

Surrogate Key Generation through Multi-Agents 32

CHarTER 4

PROPOSED SOLUTION

Chapter 4 ' Proposed Solution

In this chapter we have given comprehensive discussion on our proposed
framework designed for the purpose to bring into existence the surrogate key generation

through multi agents concept.

4.1 Introduction

We start with discussing the base on which idea is inherited, SK generation
stage, agent technology, proposed framework architecture in detail and consequences of

solution.

4.1.1 Agent Technology

Software Agent is a stand alone computer based program works for predefined
tasks in dynamic situation on behalf of user or any entity. It can work without any control
for an extended period. In a Multi Agent System, there are more than one software agents
and they can interact with each other in different scenarios including competitive,
cooperative or autonomous. The major characteristics of agents include persistence,
reactive, social/collaborate and flexible. The application area of software agents includes
data presentation, event notification, pattern recognition, data collection, data sorting and
filtering, optimization and planning.

Agent Technology is used rapidly in data warehousing with growing size of

DWH. We have used multi agents for SK generation for the WH. They reside on separate

layer and interact with WH in order to get datarow and then return the key for that row.

4.1.2 Data Sharding

Data warehousing is used very commonly for last few years due to size of
application database and huge volume of transactions. Google engineers devised the term
sharding. It is “shared nothing” partitioning approach in which huge volume of database
is partitioned into smaller shards and then distributed over many servers for achieving
scalability, throughput and performance increase [54].

The performance measures depend upon three components including disk I/0,
memory and CPU. The basic database partitioning techniques are Master-Slave,
Clustering Computing, Table Partitioning and Federated Tables. Each technique has its

Surrogate Key Generation through Multi-Agents 34

Chapter 4 Proposed Solution

own pros and cons but in a common each has dependency on shared resources and
services. Database Sharding has mechanism for dividing database into smaller shards and
distribute over independent servers having their own memory, disk and CPU. It provides

faster, easy to manage and low cost solution for managing huge volume of database.

Fig 4.1: Data Sharding [54]
We have inherited the idea of database sharding with little change to our

roposed solution. Instead of dividing whole database, its all related tasks and

distributing it on other server., we distribute the task of surrogate key generation to

multiple agents interacting with database application. The burden of generation and

management of SK is now responsibility of agents. Agents are invoked and terminated b

DB application itself. During the time to kev generation DBMS can perform other task

without depending on the return of generated keys.

4.1.3 Data Loading

caption Handiing

Fig 4.2: ETL, Data Loading [45]

Surrogate Key Generation through Multi-Agents 35

Chapter 4 Proposed Solution

Data Load is the process of loading the cleaned and transformed data to
warehouse/mart where users can access it. The loading process is completed in two steps

if DWH architecture has a staging database as:

Dataset containing

Transformed Data ’ /—\

Dataset containing

Staging Datab
Transformed Data aging Database

Data Warehouse /
(Surrogate Key Generation) Data Mart

YVvYY

Dataset containing __—/

Transformed Data

Fig 4.3: Data Loading with Staging Database
> Loading transformed data to staging database.

> Loading data in staging database to DWH/data mart.

Insert, Update and Upsert operatins are performed during loading the data into
DWH. These operations can be performed by one by one row at a time but can create
bottleneck. So a bulk load utility can be used. There are two types of Data Load including
history load and incremental load [45].

In staging area agents are invoked to generate SK for DWH. Agents being held

on separate layer, they can interact with DW system through this staging area.

4.1.4 Increasing ETL Performance

In common practice, the data loading of ETL process is the slowest phase due to
index creation, integrity maintenance and concurrent environment. So bulk loading
operations can be used to accelerate ETL process but it can also create bottleneck during
access to database. The ETL performance can be increased by partitioning table in small
size and heﬁce indexes, disabling validation, integrity checking and triggers during load
process on target DB, generate ids in ETL instead of database, dropping index before
load process and creating after load process in DWH, using bulk loading in parallel and

minimizing dependency of jobs to each other [64].

Surrogate Key Generation through Multi-Agents 36

Chapter 4 Proposed Solution

Most authors suggest that ETL processing should be done outside the DB in
order to get higher performance. For example, by using distinct we can remove duplicates
from the table but it is slow in DB so we can perform it outside the DB. We have
proposed the solution based on it with a change that key generation is done outside the

DB and return back to it.

4.1.5 Parallelism in ETL

The performance of ETL process can be improved by implementing
parallelisms. It can be achieved in three ways by splitting a large table into small chunks
for parallel accessing, by pipelining multiple components on same dataset and by
pipelining several components on different dataset [63].

We in our proposed solution provide parallelism by dividing a data row from
selected dataset into chucks according to subject area. Then agents automatically generate

keys according to their subject based chunks and then loaded into the DW.

4.2 Proposed Architecture

We have proposed the said technique named Generating Surrogate Keys
through Multi Agent after comparing all the prior methods. By using this technique
cost, bottleneck, deadlock, hot spot and complexity can be reduced and performance can
be maximized.

As data modeling for WH is dimension modeling and hence dimensions and fact
tables are maintained within DWH. Surrogate keys are also called primary keys of DW.
They are the part of the dimension table and the replacement of the keys coming from the
source system, either from homogeneous or heterogeneous environment and also
referenced into the fact table as foreign key. According to proposed architecture there is
MAS layer in contact with staging area (staging database). Multiple agents reside on
MAS layer. In staging area, cleaned and transformed data is stored for temporary basis
and data is going to load into the different dimensions. As the numbers of dimensions to
be made in DWH are known, so one software agent is reserved for each dimension in

MAS layer to generate key for it. Agent will guarantee the generation of unique key

Surrogate Key Generation through Multi-Agents 37

Chapter 4 Proposed Solution

against each source system key. Each agent will add a new surrogate column to the data

collected at staging database on staging area of ETL layer.

Source
Svstem 1
File System File System
Source System 2 ——— —
s s e Y s o
Source System 3 Landing Database Staging Database Data Warehouse
Landing Area Staging Area WH/Mart Layer
Source
System
ETL)
Source Layer ~
Fig 4.4: Proposed Architecture
4.3 Methodology

Information about each agent and its concerning is stored at central point in
MAS layer. Information about agent includes agent id, unique id and start value where as
it’s concerning information includes source system id, database name, schema name,
table name and the primary key field(s).

Surrogate Key is made by concatenating the unique id of particular agent with
start value. Hence a unique number is generated. For example if an agent unique id is 100
and next value is 1 then the key will be 1001 and it will be the desired key for the
dimension table. After generating the number it will return this number to the calling
module in data staging area and then it immediately increments the start value by one for
next generation of key.

Agent id differentiates each agent with other present in MAS layer. Unique id is
the prefix used for keys which shows that this key is generated by which agent and hence

Surrogate Key Generation through Multi-Agents 38

Chapter 4 Proposed Solution

its dimension and source can be easily found. Start value is the seed value which will

increment sequentially by agent.

4.4 Agent Architecture for Key Generation

An agent is present against each dimension table which is responsible for the
generation of the surrogate key against each record for that particular dimension. Being
autonomous system, agents are not part of the DBMS but can communicate with it. When
the data is ready to be loaded into the dimension of the data warehouse, a request of
surrogate key value is made against each record of the cleaned data resides in data
staging area. Agents are constantly listening to the request for the next key value. After
the request is made by ETL module, the particular agent according to the contents of data

is invoked and key is returned.

Request for : Schema + Table Info Key
New Key >

A
\ 4

Data Warehouse Layer MAS Layer

Fig 4.5: Agent Architecture for Key Generation

A new surfogate key must be assigned to every newly inserted dimensional
record. In data warehouse two different SK can have same value but it does not make
confusion for DWH because both belongs to separate dimensions [33]. But in our
proposed technique this situation can not occur because each agent amends its id to the
next number to be obtained. Hence, for two or more agents, generating same key for their

dimensions is totally out of question.

Surrogate Key Generation through Multi-Agents 39

Chapter 4 Proposed Solution

P new surrogate key
dim key (PK) < = getKey (schema, table)
dim ID (NK) N
cleaned and
attribute 1 conformed
> new dimension
record
ready for
delivery step
attribute K y

Fig 4.6: Surrogate Key assignment in dimension

4.5 Transformation Implementation

Perform data

Perform data N
cleansing functions

source system
transformation functions

data changes
for dimensions

A 4

Determine type of P Consolidate and integrate

dimension change N data
Typel Type 2 v Type3 E
Convert production key to Convert production key to Convert production key to g‘
existing surrogate key new surrogate key existing surrogate key <
H

A A \ 4
Create Create Create load image
load image load image (include effective date)

Fig 4.7: Transformation for dimension change

Instead of adding new rows into dimension tables, there is also a possibility that the data
of dimensions may change. There are three options to handle change in dimension and

these are called Type 1, Type 2 and Type3 changes. In Type 1, new values are

Surrogate Key Generation through Multi-Agents 40

Chapter 4 Proposed Solution

overwritten with old values by losing preserve history. In this type value of SKs do not
change. In Type 2, as history is preserved so new values are assigned new surrogate keys
and save as new dimension record. In type 3, current values are pushed to old value and
new values are added in dimensions as current values. In this type value of SKs also do

not change. Our proposed system also caters these types of changes.

4.6 Fact Table Data Processing

As primary key of dimensions are surrogate keys, so these are referenced in fact
table as foreign keys. Hence prior to processing the fact tables, dimension table must be
populated with new records. So in order to maintain referential integrity in DWH, this
order must be followed but converse is not true except in deletion. As natural keys of the
dimension are replaced with SK, similarly in order to process the FT, natural keys of
dimensions are bring into fact table and then replaced with SK with the help of look up

table. Qur proposed architecture follows the same sequence.

Processing a Fact Table Record
Maost Bacont Most Recont Most Recont
Time Koy Product Koy Swro Kay
Map Map Map MAS Layer
time_ID product_[D store_ID
me_| product_key

Fact Table Fact Table
Records with Records with
Production 1DS Surrogate Keys
ime ID tima_key
pmdu% iD product_koy
store_| $10r0_|
production_ID production_koy
unit_sales unit_salos
dolar_cost dolar_cost

DBMS

Fig 4.8: Fact table record processing [33]

Surrogate Key Generation through Multi-Agents 41

Chapter 4 Proposed Solution

4.7 Major Capabilities of Proposed Framework

The main purpose of our proposed framework is to remove the maximum issues
involved in existing SK generation methods. Our framework will be distinguished from
other methods in the following ways:

» It will provide the mechanism to trace the source of a particular record present in
DWH.

» The resultant keys will be generated without gaps.

> It is also portable and support the replication and will give effective and accurate
results.

» Cost and performance will be optimized due to reduced size of the surrogate keys
in fact table.

» The bottleneck created due to the deadlock in processing huge amount of data
(TB éf data) in warehouse will be eliminated.

» It will support the surrogate key generation process in an intensive concurrent
environment.

» Hot spots created by concurrent transactions will be eliminated.

A\

Number of I/0 operations will be minimized..
» The load on ETL layer and DBMS in managing almost terabytes of data and keys

will be reduced.

4.8 Scope of the Proposed Framework

Our research is focused on generation of surrogate keys with an affective way
other than ordinary methods which will support DW building process as well as end user.
Our proposed framework is capable of generating the unique gapless sequentially

numeric surrogate keys.

4.9 Summary

We have introduced a new method to generate surrogate keys for dimension
using multiple agents. All agents are grouped in multi agent system (MAS) layer which
can interact with data staging area in ETL phase. The only purpose of agent is to generate

surrogate keys and maintain referential integrity between dimensions and fact tables.

Surrogate Key Generation through Multi-Agents 42

Chapter 4 Proposed Solution

When data is going to load into dimension, a request is made for its WH key. This
request is intercepted by particular agent present in MAS layer and returns the key. The
purposed technique can also handle all three types of changes in data present in

dimensions and fact.

Surrogate Key Generation through Multi-Agents 43

CHAPTER S

IMPLEMENTATION

Chapter 5 Implementation

In this chapter we have discussed the implementation detail of our proposed
framework and its working in DWH environment. Other detail includes the description of
development environment, demo application, flow of framework, output and

visualization of key generation method.

5.1 Introduction

The approach is that an agent is present against each dimension table which is
responsible for the generation of the surrogate key against each record for that particular
dimension. There may more than one agent against one dimension in case of data present
in staging area belongs to two or more sources. Being autonomous system, agents are not

part of the DBMS but can communicate with it and each other also.

5.1.1 Abstract Flow of Framework

START

Request for Key to MAS
Layer from Staging Area

v

Agent Receives Request
with Arguments

'

Pre-existence is Checked
from Look-Up Table

v

Generate Surrogate Key
and Update Start Value

Return Surrogate Key to
Staging Table

v

Master Dimension
Cross Reference

Fig 5.1: Abstract Flow of Proposed Framework

Surrogate Key Generation through Multi-Agents 45

Chapter 5 Implementation

Figure 5.1 is the abstract level of flow of our agent based framework. When data
is ready to be loaded into DWH at staging area after transformation, a request for key is
initiated to MAS layer and data row is sent as argument against which key has to be
generated. At MAS layer, this data is divided into chunks based on subjects/dimension
and particular agent concerned with particular dimension generates key after checking
either it is new or pre-existing row. If the data is new to DWH then key is returned to data
staging area and agent increments the starting value to generate next key. Then it is

loaded into dimension tables in DWH,

5.1.2 Detailed Flow of Framework

Figure 5.2 is the detailed level of flow of our agent based framework with some
extension with figure 5.1. Pre-existence checking is the most critical part of the whole
process. If Data coming from source system do not already exist in WH so process is
simple inserting it into dimensions after key generation. But there is also a situation
where data in dimension get change. There are three types of changes categorized as
Type 1, Type 2 and Type 3. If change is checked in MAS Layer, then there are two
scenarios.

In Type 1 or Type 3, new SK is not generated and designate scenario 1 whereas
in Type 2, new SK is generated and designated as scenario 2. In Type 1, new values are
overwritten with old values by losing preserve history. In this type value of SKs do not
change. In Type 2, as history is preserved so new values are assigned new surrogate keys
and save as new dimension record. In type 3, current values are pushed to old value and
new values are added in dimensions as current values. In this type value of SKs also do
not change.

In scenario 1, as new key is not generated so simply changed fields are updated
by neglecting the history constraint and this change is synchronized with dimension table
in DWH.

In scenario 2, new key is generated against change values by maintaining the
history constraint. There are two tasks which have to be performed in scenario 2. First,
generate new SK for the changed values and insert into dimension. Second, prior most

recent values are updated into the dimension.

Surrogate Key Generation through Multi-Agents 46

Chapter 5

Implementation

Request for Key to MAS
Layer from Staging Area

A 4

Agent Receives Request
with Arguments

A

Pre-existence is Checked
from Look-Up Table

new or change New Data |

Generate Surrogate Key

Insert

Fig 5.2: Detailed Flow of proposed framework

5.2 Framework Implementation

data and Update Start Value
Change Data
Find Changed
Fields & Type
A4
Type 1or3 Update Attribute Update Master
Change Type Value Dimension Cross
Reference
Generate Surrogate Key Insert
and Update Start Value
\ 4
Update Prior most Update
Recent Rows
A4
END

We have developed an application based on framework in Visual Studio .Net
2008 with SQL Server 2005 as the DBMS. Our Demo source data is the PTCL Telephone

Directory which is created in MS Access 2003 Database. Our application is basically web

Surrogate Key Generation through Multi-Agents

47

Chapter 5 Implementation

based and agent framework used for this project is "SAGE" which is open source created
in JAVA. SAGE has its own GUI for creating and managing agents. Instead of running
separate application for SAGE, we have inherited the Agent creation and managing
which includes killing, suspending, resuming and sending messages process in our
application and made our own module i.e. it will execute the "exe" files of each agent.
This application contains the coding of Complete ETL Process i.e. Extraction of
data from source systems, Cleaning of data, Transformation of data and Loading of data

into data warehouse along with surrogate keys generated by software agents.

5.2.1 Database Information:

The information about source system DBMS and data warehouse DBMS is as

follows:

Source Database File Name | DWHProject2008.mdb (MS Access 2003)
Total No. of Tables | 1
Table Name | 51
Total No. of Records | 253077

Destination Database Name | ETLDestination
Total No. of Tables | 5 (1+3+1)
1 - Table to store Cleaned Data

3 - Dimenstion Tables
1 — Fact Table
Table Name | tbIPTCLcleanData (stores cleaned data)
Dimension Tables | DimtbIName, DimtblAddress, DimtblPhone
Fact Table | tblFact

Selected No. of Records for Data Warehouse
"conn-type=07"

No. of cleaned records saved in destination
"tbIPTCLCleanData"

No. of Distinct records for Name Dimension
No. of Distinct records for Address Dimension

No. of Distinct records for Phone Dimension

1251

1251

1154

324
1251

Table 5.1: Database Information

Surrogate Key Generation through Multi-Agents

48

Chapter 5 Implementation

5.2.2 Screenshots

Now we will present the screenshots of each module involve in data

warehousing with our proposed framework with detail description.

5.2.2.1 Welcome Screen

This is the 1* screen of our application. This page is loaded after checking the
availability of source and destination databases and their connection with our application.

Agents are not loaded here. The page has link button to navigate to the next page.

gy v -

WAy B ey
By B

Fig 5.3: Welcome Screen

5.2.2.2 Source & Destination Database Connections

This page shows the connection strings of source and destination databases. We
can get the system/server name and database name from connection string. As this is web
based application, so have stored the source system and database name and also

destination system and database name into separate session variables. As session

Surrogate Key Generation through Multi-Agents 49

Chanpter 5 Implementation

variables are global variables and have application wide visibility, we do not need to send
this information as parameter to agent in key generation process. The page has also a link

button to navigate to the next page.

dige. DAtASource="\SQLEXPRESS'; Integrated
Destination Connection SING:, ¢y ~Trus:Pooling=Faiss; Initial Catalog="ETLOsstination’

e s‘ﬂl\a: (D’h 'Somu-’NnAl’ ity TI'\JI': i g . ,Iﬂ;ﬁll Clti

Continue

Internet | Protected Mode: Off

Fig 5.4: Connection Strings

5.2.2.3 ETL Manager

This is the main window of our application. Qur proposed framework is

incorporated in this module. The page has 3 command buttons. "Manage Agents" link

button is used to redirect to Agent Manager Page where one can create and manage (edit,
delete) agents. "Start" button is used to start the ETL process including Agent loading
process. "Stop" button is used to stop the agents which are loaded into the memory.
There three check boxes showing the ETL progress i.e. extraction, transformation and
loading respectively.

As we have made ETL module in our application, so we have divide ETL

manager module into three sub modules. Each sub module is represented by check box

Surrogate Key Generation through Multi-Agents 50

Chapter 5 Implementation

on the screen. Initially start button is enabled and stop button is disabled and agents are
not invoked. When we press start button, it gets disable and stop button gets enable. Also
agents are invoked and activate in MAS Layer and load into memory. Also ETL process

starts by executing the load sub module.

Maaae Agers

iExtraction
“Transformation

oading

Fig 5.5: ETL Manager ’

When the extraction process is completed, then check box on the screen is
marked with checked and next sub module i.e. transformation starts. We have created a
temporary table to store extracted data from source system in our demo application.
During transformation sub module, data is cleaned, inconsistencies are removed and
transformations are made. In our demo application, source system table had one table
with four columns (conn_type, name, address, phone). After transformation, the
temporary table in DWH has twelve columns (conn_type, title, first name, middle name,
last name, house no, street no, sector, city, isResident, phone no, description). The major
operations involved in transformation sub module are string manipulation and use of
regular expressions for patterns. After completion of transformation, the check box on

screen is marked checked and next sub module starts i.e. loading. This is the major part

Surrogate Key Generation through Multi-Agents 51

Chapter 5 Implementation

of our application where agents come into action and actual loading of data into the
warehouse dimension take place. Surrogate Keys generation is done in this process.

As in transformation all the cleaned data is placed into temporary table, then in
loading process it is moved into actual DWH dimensions. SKs are generated against each
distinct row of this table. Each row is sent to MAS layer for key generation. This row id
divided into subject area and an agent concerned with that subject generate key if its
record does not already exist. Then it is loaded into its subjected dimension along with
surrogate key. After the completion of load process, its checkbox is marked with checked
and result page appears showing data of dimension(s) and fact tables.

Execution of ETL module can be interrupted and terminated by pressing stop
button. On pressing stop button, it gets disable and agents loaded into the memory are
killed and release the memory and start button gets enable and any change made to

temporary table is rolled back.

5.2.2.4 Agent Manager

Agent Manager

Agent:ID

‘Source Server 1D

Source DB 'Name

Schems Nsme
Toble Name

Unique 1D (grefix)

Primary Key Fisld(s) Name) Generate Numeric Key
Start.Value

il 1155 Edit’ Delete-
= 324 Edk Deleto:’
s 1252 EdE Delete

@ Intornde | Proteciad Mlode O

Fig 5.8: Agent Manager

Surrogate Key Generation through Multi-Agents 52

Chapter 5 Implementation

This page has all the coding regarding Agents. One can view all the agents used
for current database in this page. Administrator can also add new Agent information here.
Also administrator can manage agents by updating their information stored in the
database as well as delete an existing agent. Agent information is stored at central
location and it includes agent id, unique id (prefix), source system id, database name,
schema name, table name, primary key field(s) and start value. This page has also link
button to move on to the "ETL Manager" page.

5.2.2.5 Output Page (Fact Table)

xoup mr 0= VPDMM B o
[1603bi]. Hoin. | 10230 me,m/ms 11:14¢30

A3¥agereaab ..

Fig 5.9: Fact Table ,
This page is opened after the data is loaded into the data warehouse. The page

contains the information of Fact Table. FT is the detail table of all the dimension tables. It
has primary keys of all the dimension tables. In our example, the primary keys of Name
Dimension, Address Dimension and Phone Dimension are present in it with transaction
date. This page shows the success of ETL process being executed prior to it.
Transactional table of an OLTP can be replaced by fact table in DW environment. In our
demo application, the table contains four columns and 1251 rows selected for

warehousing. After the ELT process in DWH, the fact table also contains 1251 rows with

Surrogate Key Generation through Multi-Agents 53

Chapter 5 Implementation

four columns but cleaned data. Three out of four columns are referenced from three

dimensions and fourth columns stores the transaction date and time.

5.2.2.6 Output Page (Dimension Tables)

S N

v AL ey
T ‘”'& B %

’

T8 @ Jatemec [Protested Mode OFF

Fig 5.10: Name Dimension Table
This page shows data in each dimension tables. In our example there are

three dimension tables i.e. Name, Address and Phone.

7 Drneinst

City

| RAWALPINDL

([@ Intemet | Protected Mode: OF

Fig 5.11: Address Dimension Table

Surrogate Key Generation through Multi-Agents 54

Chapter 5 Implementation

21 4 §523683
o2z | asazacs
: i 5517008 .
0328 | -
¢ 2851032
| 4421416 | o
5585868 -
5960333
*| 3455273
210 5581632
i134s678940.

T3 @ Intermiet [Prolected Made: Off

Fig 5.12: Phone Dimension Table

5.2.2.7 Star Schema of Fact & Dimension(s) Tables
As there are two options for DWH modeling with start schema and snow flake
schema. We have selected star schema for our demo application. It includes three

dimension tables includes name, address and phone and single fact table.

[ERTEENES

= [l Detabase Diagrarns
=3 dho ERD
= C@ Tables
- System Tables
@ 5 dboidgent: !
= I dbo.DimtbiAddress | §
® B dbie.Dimtbidarme
&. & dbo.DimtbiPhone
m 5 dbokTL
@ B dbo.metaDatasddsed
®: I dbo. T3} 4
® & dbomuoaum i
w8 dbo) m«mepunmei
@ 2 dboitblAddress
@ O dhotbiFsa
@ T dbotbiName i
& £ dboAbiPTCLcleanDa)- 41
& (@ dbo.Testingl @&
@' Bl dbo.Testing2
o Gl Views
& Bl Synonyms
@ {5 Programmability
@ [l Security
2 o
3Gl Datebase Disgrarns
. Tables
5 TR Views

DintblAddress
9 AddresalD

streetho
sector

dty
aResidential

I

Fig 5.13: Star Schema

Surrogate Key Generation through Multi-Agents 55

Chapter 5 Implementation

5.2.2.8 Source Database with Table

Creste table by using wizard
Create table by entering data
51

pc 5u=5tm fcr r;él

2570000, G.M OFFICE PTCL HOUSEF 5 ISLAMABAD
107 18T FLOOREVACUEE TRUST COMPLEX F-51ISLAMABAD

2870002/ US EMBASSY ENC RAMNA 5G-5 ISLAMABAD

3870003 U.S EMBASSY ENGLAVE RAMNA 56-5 ISLAMABAD

2870004/ U5 EMBASSY ENC RAMNA 5G-5 ISLAMABAD

2870005 G/FLOOR EVACUEE TRUST BLOGF-S/1ISLAMABAD

2870005 G/FLOOR EVACUEE TRUST BLDGF -5/1ISLAMABAD

(i T 2870007 G/FLOOR EVACUEE TRUST BLDGF-&/1SLAMABAD

NORTEL NETWORKS ASIA LTD 2870008 /ACUEE TRUST BLDGF 5/SLAMABAD
NORTEL NETWORKS ASIALTD , 2870009] G/FLOOR EVACUEE TRUST BLDGF -5/1ISLAMABAD
NORTEL NETWORKS ASIA LTD 2870010 GIFLOOR EVACUEE TRUST BLOGF -51ISLAMABAD
2870011 ROOM 26,27 FEDERAL LODGEIG-5 ISLAMABAD
2670012 /AMIN CHHALF PORTION ST FLOORBLK 74-W YASEEN PLAZAB/A F-7
AZHAR AMIN CHHALF PORTION 1ST FLOORBLK 74-2 YASEEN PLAZA BIAF-T IS
2870014/ DIR AZHAR AMIN CH HALF PORTION IST FLOORT4-W YASEEN PLAZA BIAF-7 (LAN

DATA BASE SYSTEM
"I DATA BASE SYSTEM

870020/HINO 4 ST 50 F-THISLAMARADISLAMABAD
2870021 FUNG 10 ST 61 F-&/3ISLAMABAD
HOUSE NO 330.8G B2ISLAMABAD
HNG 2/45 ST 18 G-T/ASLAMABAD
2870025({HIND 812:A 5T 167 G-7/3-11SLAMABAD
2870026/F/NC1Z ST 18 F-6/21SL AMABAD

2870027 HIND 195-A ST 40 G-6/1-3ISLAMABAD

2870028, NG 210 ST 42 E-TISLAMABAD o
231%@@@“ BUILDINGDIPLOMATIC ENCLAVEISLAMABAD
2870030 FLAT 24-C BLK 72 F/SUITF-5/1 ISLAMABAD

2870031/ H/NO § GOMAL RD E-TISLAMABAD _
2870032; HMO2EST195«GI2¥SLAMABAD

2870033/ROOM 108 PTCL HOUSEISLAMABAD

2T

GIONAL DEFICEISIAMARAD - N T
. "

Fig 5.15: Source Table Data View

Surrogate Key Generation through Multi-Agents 56

Chapter 5 Implementation

Figure 5.15 shows the data view of source table. The data in the table is not
clean and is inconsistent. There are spelling mistakes, missing words or fields. For
example Islamabad is entered differently in different as ISB, 1.S.B, 1.S and Islamabad.
Similarly for house no, different styles are present including HNO, H.No, H/No, House #,
H #, H-#. Same is the case with name field. The main purpose of transformation module
in ETL process is to remove such kind of inconsistencies so that same record is not saved
again and again, as in DWH historical data has to be save ranging upto Tera Bytes (TB)
of data.
5.2.2.9 Agent Manager Window in SAGE

Multi agent systems provide execution environment for intelligent software
(agents). There are different standard governing bodies. We especially focus on
Foundation for Intelligent Physical Agent (FIPA) standard which we follow throughout
our thesis. In multi agents system single task is divided among multiple agents on the
same or different platforms. The proposed architecture is based on the existing FIPA

compliant multi agent system framework, namely SAGE-Lite [68].

isual Management Agent

— § VMA:1013861291@Nadeem
- & AMS:1013861291@Nadesm

Fig 5.16: Agent Management in SAGE

Surrogate Key Generation through Mulﬁ-Agents 57

Chapter 5 Implementation

SAGE-Lite is a lightweight, open source context aware multi agents system,
which senses the capabilities of any system and reacts accordingly. In the proposed
technique generating keys are published as services of the agents and any other agent can
access the services according to its privileges.

As we are getting the task of generating the SKs from multi agents, so we have
inherited the working of SAGE framework with modification in our demo application.
The above snapshot is taken from the SAGE framework and shows the Agent Manager
Window. This window enlists all the agents created so for and also the date and time of
creation of each agent. The window also contains a toolbar having different commands to

control each agent loaded at time including Pause, Resume, Stop and Create New.

5.2.2.10 Agent Actions in SAGE

A,
[Ef visual Management Agent

+] Vitual Agent Cluster
©- (=3 1013861291
g DF:1013861291 @Nadeem

VMA:10138681291 @Nades
'\ e P

Fig 5.17: Agent Actions in SAGE

The actions which can be performed on an agent in SAGE frameworks are
creating new agent, killing created agent, suspending an agent, resuming suspended

agent, sending messages between agents, viewing information about agent, platform and

Surrogate Key Generation through Multi-Agents 58

Chapter 5 Implementation

machine. All these are actions are grouped in a popup menu and launched by right
clicking on any node in agent tree.

We have included only creating and killing operations in our framework and
these are invoked by the application needed to communicate with agents in order to
generate keys. In our demo application, agents are loaded into memory when press start
button in ETL Manager Window and they are terminated on completion of ETL process

and when results are displayed on new window.

5.2.2.11 Agent Creation in SAGE

Figure 5.18 shows the agent creation windows. The main window opens a new
dialog within previous window to create new agent. The parameters which are needed to
supple in order to create agent in SAGE framework are agent name, class path and

arguments.

E.E'j Visual Management Agent 7”5“?‘

DF:1013861291 @Nadeem
+t WMA:1013861281 @Nadeem :
AMS:1013861291 @Nadeem

Fig 5.18: Agent Creation in SAGE

We have inherited the same idea in our framework but getting information about

agent as well as data on which it would operate. This data includes agent id, unique id,

Surrogate Key Generation through Multi-Agents 59

Chapter 5 Implementation

system name, database name, schema name, table name, primary key field(s) and starting
value. After creation of agent it is added into the agent tree and its information about

agent name, date and time of creation is displayed on the status window at the bottom.

5.2.3 Proposed Framework Work Flow

In figure 5.19 we have presented the visualization work flow of our demo
application based on our proposed framework. In this representation data flow from
process to process is replaced with actual table field(s) transformed and processed in each
module. Data after transformation is mature enough to load into DWH, so we divide it
into logically chunks according to the subject or dimension. Then each chunk is assigned
to an agent which is responsible to generate key against each distinct record of that
chunk. Then after getting the keys, data is loaded into dimension tables and at last all the
data is present in temporary table is load into fact table by removing attributes with

dimension keys.

Surrogate Key Generation through Multi-Agents 60

Chapter 5 Implementation

Source System ~

conn_type] name | address | phone > Extraction

\ 4
DWH Table ~

\ 4

Cleansing &
L Transformation

first middle last phone desc. house street sector city [residential

title
name name name no no no

y
[Logical Patitioning

in Chunks
title first middle last phone desc. house street sector city |residential
name name name no no no
y y A
MAS LAYER
x 0006060606000
\ 4 A 4
5| = |2 sz 8z ~ 2l 2| o §: L 2. sl 8 o g
= = = a = =3 o = 5 <1 S |ls=
“3| F|32RgdE =§|%8| ¢ “§1%%|%8 7| 7 |*%
y Loading v Loading v Loading
Name Dimension Phone Dimension Address Dimension
A 4
Fact Table
) 4
name address | phone | datetime
id id id stamp

Fig 5.19: Proposed Framework Flow Visualization

Surrogate Key Generation through Multi-Agents 61

Chapter 5 Implementation

5.3 Summary

In this chapter we have described in detail the implementation of our proposed
framework in our demo application. We have taken a database as an example and
perform the ETL process with key generation through agents and the loading of data into
warehouse. We have also presented the visualization flow of our framework through

which it is easy to understand.

Surrogate Key Generation through Multi-Agents 62

CHAPTER 6

TESTING AND PERFORMANCE

Chapter 6 Testing and Performance

In this section we have described the criteria through which we have intended to
judge the success and efficiency of our proposed framework. As discussed in the chapter
2, where we surveyed and analyzed different approaches to generate surrogate keys for
the dimensions of data warehouse system and also presented the advantages and
limitations of each approach. In continuation to the previous analysis of different
parameters, we are now presenting our proposed solution for the aforementioned

problems, by doing a comparison with the same parameters.

6.1 Test Scenarios
As we have to compare the performance of our framework with pre existing
methods and we use multi agents system approach in which a task is divided and
distributed between different agents to work individually and parallel, so we have tested
our results by using three test scenarios.
i. Key Generation by ordinary methods.
ii. Key Generation by ordinary methods with parallel processes.

iii. Key Generation by multi agents.

6.2 Testing and Results

We have created a demo application in which we have used our proposed
framework, discussed in chapter 5. As complete ETL module is included in this demo
application, so we have used same application to test our three test scenarios for different

test cases and parameters.

6.3 Comparison of Key Generation by Agents and Ordinary Methods
We have presented the side by side comparison of the proposed solution with
other existing technologies using following parameters and test cases.
» Source System Tracing.
Agent based Framework Performance.
Database Volume vs. Response Time.
Transactions Volume vs. Response Time.
Concurrency Optimization.

Reduced I/O Operation.

YV V V VYV VY

Surrogate Key Generation through Multi-Agents 64

Chapter 6 Testing and Performance

» Gaps between sequentially generated numbers.

» Replication.

6.3.1 Source System Tracing

As data come from different sources held either homogeneous or heterogeneous
in data warehouse and after ETL process where cleansing and transformation are
performed to make data consistent, so there is no method, to the best of our knowledge,
to trace out the source of data from which it has come into the DWH. In our proposed
method, as agents generate keys for the DWH record and its three digit id is used as
prefix of the generated key, so we can trace the source of the record in DWH from the
key because information about agent id, source system name, database name, schema

name and table name are stored at central location against each agent.

6.3.1.1 Example Source Tracing: Ordinary vs. Agents

Name Id Title First Name Middle Name Last Name
101 Syed Mansoor Khan
102 Syed Shabir Ali
103 Tahir Igbal
104 Tarig Naseem Qureshi
- 105 Khan Usman

Table 6.1a: Keys generated by Ordinary Methods

Name Id Title First Name Middle Name Last Name
1001 Syed Mansoor Khan
1002 Syed Shabir Ali
1011 Tahir Iqbal
1021 Tarig Naseem Qureshi
1012 Khan Usman

Table 6.1b: Keys generated by Multi Agents

In table 6.1a keys are numeric and sequential but seem to belong to a single
source. There is no distinction that record is either come from one source or many
sources. In table 6.1b keys are also numeric and sequential to some extent but there exists

a distinction of record that it comes from which source. First three digits are the prefix

Surrogate Key Generation through Multi-Agents 65

Chapter 6 Testing and Performance

added to the key and they show the agent id. In above table key “1001” means that it is
generated by an agent with id “100” with sequence number “1” and same is the case with
keys “1011” and “1021”. Hence records with keys “1001” and “1002” belong to one
source, keys “1011”, “1012” belong to second and “1021” belong to third source. it is not
compulsory that keys come from different sources, they can be from different databases
on single source, or different schemas in single database, or different tables in single

schema.

6.3.2 Agent based Framework Performance

To test our technique we have run our proposed framework based demo
application with the sample data. As we have used three test scenarios so in order to
check the performance we have taken result for same sample data using ordinary key

generation methods and key generation through parallel process.

Ordinary Methods Parallel Process Agents
Sample No. of Rows
(Min) (Min) (Min)
1000 20 16 11
10,000 35 25 19
100,000 . 60 40 32
200,000 100 55 46
250,000 115 60 50

Table 6.2: Time taken by each Method for ETL

Table 6.2 shows the total time required by ETL process to extract data from
source system to load data into DWH. Here we have taken different samples of data from
source system to check against three scenarios. As clear from table that ordinary methods
take too time by comparing others. So it can be improved by dividing the tasks and
transactions into parallel processes. But using our agent based approach there is a
significance performance difference against other methods. The main reason is that it is
also using parallel processes but the task of generating keys is now performed by agents
not by DBMS itself. During key generation time DBMS can do other tasks. So we can
enhance the efficiency by reducing the burden from DBMS.

Surrogate Key Generation through Multi-Agents 66

Chapter 6 Testing and Performance

Other important observation from table 6.2 is that as the volume of sample data
is increasing, the time for ETL is not increasing with same factor. Hence it can be
concluded that as volume of data increase in ETL, their time for processing reduce due to

caching.

140
120
100
80
60
40
20

—— Ordinary
—8— || Process

Agents

ETL Time

1000 10,000 100,000 200,000 250,000
No. of Sample Rows

Fig 6.1: Time taken by Each Method for ETL

Figure 6.1 shows the performance of ETL process against each method
graphically. It is clear that performance can be improved by using multi agent in ETL

process.

6.3.3 Database Volume vs. Response Time

With the linearly growth of the size of the database, response times grow

logarithmically.
Volume of Database Ordinary Methods Parallel Process Agents
(MB) (Sec) (Sec) (Sec)

1 30 16 15
100 55 25 22
200 80 40 34
300 105 55 46
400 130 60 50

Table 6.3: Data Volume vs. Response Time

Surrogate Key Generation through Multi-Agents 67

Chapter 6 Testing and Performance

Table 6.3 shows the three scenarios implemented in our demo application with
respect to increasing size of database and its response time. As clear from the table agents

based methods give improve results.

o 140
é 120
£ 100 —e— Ordinary
E gg —a—|| Process
2 40 Agents
a 20
[7/]
g O

1 100 200 300 400

Database Size (MB)

Fig 6.2: Database Volume vs. Response Time

Figure 6.2 shows the response time against increase in volume of database in
each scenario. Response time can be improved by using parallel process in DWH but
using agents give more satisfactory results. It is clear that in start the response time of
parallel process and agents based methods are nearly equal when volume of database is
small. As the volume increases, the efficiency of agents based methods also increase

more rapidly than parallel process method.

6.3.4 Transactions Volume vs. Response Time

With the linearly growth of the transactions like size of database, response times

grow logarithmically.
No. of Transactions Ordinary Methods Parallel Process Agents

(Sec) (Sec) (Sec)

1000 15 8 7.5

2000 27 12 11

3000 39 20 17.3

4000 50 26 23

5000 59 30 25

Table 6.4: Transaction Volume vs. Response Time

Surrogate Key Generation through Multi-Agents 68

Chapter 6 Testing and Performance

—e— Ordinary
—a— || Process

NWDh OO N
OO0 OO0 O

Agents

Response Time (Sec)
oo

1000 2000 3000 4000 5000
No. of Transactions

Fig 6.3: Transaction Growth vs. Response Time

Table 6.4 shows the three scenarios implemented in our demo application with
respect to increasing number of transactions and its response time. As clear from the table
agents based methods give improve results.

Figure 6.3 shows the response time against increase in number of transactions in
each scenario. Response time can be improved by using parallel process in DWH but
using agents give more satisfactory results. It is clear that in start the response time of
parallel process and agents based methods are nearly equal when number of transactions
is less. As the transactions increase, the efficiency of agents based methods also increase

more rapidly than parallel process method.

6.3.5 Concurrency Optimization
Indexes play a major role in the key generation in a concurrent environment.
There are four scenarios for indexes include:
» No indexing table data.
» Clustered indexing on table key.
» Non Clustered indexing on table key.
» Non Clustered indexing on table key plus Clustered indexing on another key.

As there are different methods to generate surrogate keys, so these methods
provide different results in different environment. Some are efficient in insert intensive
environment and some are efficient in low activity environment. Now we consider tow

performance parameters to compare different methods.

Surrogate Key Generation through Multi-Agents 69

Chapter 6 Testing and Performance

i. User's request per second for fetching rows within certain time against user
load.

ii. Response time for fetching rows within certain time against user load.

Case 1: Request/Sec vs. User Load

Ordinary Methods Parallel Process Agents
User Load
(fetched rows) (fetched rows) (fetched rows)
20 50 52 53
40 75 78 80
60 85 87 95
80 90 90 100
100 92 91 110

Table 6.5a: Request per Sec vs. User Load

Table 6.5a shows the rows fetched by each method upon increasing number of
concurrent process. Agents give us high values on increasing number of concurrent

processes.

20

o

E 120

S 100

iy

g 80 —e— Ordinary
8 60 —=— || Process
o 40 Agents
[

Q

o

()

(14

20 40 60 80 100
User Load (Concurrency)

Fig 6.4a: Request per Sec vs. User Load

Figure 6.4a shows the rows fetched by each method in a concurrent

environment. The efficiency of agent method is very clear from the figure. It can be

Surrogate Key Generation through Multi-Agents 70

Chapter 6

Testing and Performance

notices that row fetched by each method is increasing rapidly but with an increase in user

load it is not increasing with the same ratio. The reason is the hot spot creation when

multiple processes are trying to access same memory area. Hence dead lock occurs.

Case 2: Response Time vs. User Load

Ordinary Methods Parallel Process Agents
User Load
(Response Time Sec) (Response Time Sec) (Response Time Sec)
20 10 9 7
40 19 18 15
60 31 27 22
80 45 38 32
100 57 47 41

Table 6.5b: Response Time vs. User Load

Table 6.5b shows the response time by each method upon increasing number of

concurrent process. Agents give us high values on increasing number of concurrent

Processes.

Response Time (Sec)

= N W bHh O D
O O O O O O O

20 40 60
User Load (Concurrency)

—e— Ordinary
—a— || Process

Agents

80 100

Fig 6.4b: Response Time vs. User Load

Figure 6.4b shows the response time by each method in a concurrent

environment. The efficiency of agent method is very clear from the figure. The efficiency

of agent method is clear from the figure.

Surrogate Key Generation through Multi-Agents

71

Chapter 6 Testing and Performance

6.3.6 Reduced 1/0 Operations

I/O operations play an important role in performance of any query in DWH
environment. DBMS uses data pages for I/O operations which consist of indexed rows.
I/O operations include disc access, memory read/write, fetching rows and inserting rows.
If a data page having required row to get the results so it is read into the memory. If we
use large keys so size of fact table will be increased and less rows will be stored on any
data page. So with the increase in data pages more I/O operations are required in order to
satisty the query.

We now consider the 1/0O operations regarding DBMS. In our proposed
approach, all the task of key generation is done by agents not DBMS, whereas in ordinary
methods it is done by DBMS itself. As I/O operations are one of the main cause of
bottleneck in performance, so we can reduce so I/O operations done by DBMS by

shifting them to agents.

Ordinary Methods (Sec) Parallel Process (Sec) Agents (Sec)
No. of Rows
KG /0 Total | KG IO | Total | KG 1/0 Total

1000 3 3 6 2 2 4 0 2 2
10,000 5 6 11 3.5 5 8.5 0 5 5
100,000 20 25 45 13 16 28 0 16 16
200,000 35 40 75 25 28 53 0 28 28
250,000 42 47 89 33 35 68 0 35 35

Table 6.6: DBMS 1/O Operations

n

|En 100

o 80

> —— i

23 60 Ordinary

s8 —=— || Process

=< 40

X

[} Agents

g 20

1000 10,000 100,000 200,000 250,000
No. of Rows

Fig 6.5: DBMS I/0 Operations

Surrogate Key Generation through Multi-Agents 72

Chapter 6 Testing and Performance

Table 6.6 shows the time taken by key generation, other I/O operations and total
time consumed for processing the sample number of rows for each key generation
methods. In agent based method, the task of key generation is the responsibility of agents
so time taken in key generation for DBMS is zero. It makes all the difference. Another
observation is that time taken for I/O operations for parallel process and agent based
method are same.

The efficiency of key generation by agents can be observed clearly from the
figure 6.5. We can make the efficiency double by using agent based approach rather than

using ordinary épproaches.

6.3.7 Gaps between sequentially generated numbers
The auto-increments key like Identity method is considered to be moét efficient
methods for key generation for DWH. But the main disadvantage with this method is
gaps created between sequentially numbers. As the volume of DWH data is in TB (Tera
Bytes), so thére can be huge number of missing sequences wastage. There are four major
caused of gaps generation within numbers.
i. Abortion of DML Statements (Automatically Role Back).
ii. Deletion of Rows.
iii. Resetting Seed Value.

iv. Rolling Back Transactions Manually.

In our proposed method the gaps between sequentially number are handled by

agents itself. So it can be controlled easily.

6.3.7.1 Example: Gaps Generation

Name Id Title First Name Middle Name Last Name
101 Yasir Habib
102 Zaheer Haider
110 Zahoor Ahmed
111 Zulfigar Ahmed
125 Zulqumain Akhter

Table 6.7a: Keys generated by Ordinary Methods

Surrogate Key Generation through Multi-Agents 73

Chapter 6

Testing and Performance

Name Id Title First Name Middle Name Last Name
1001 Yasir Habib
1002 Zaheer Haider
1003 Zahoor Ahmed
1011 Zulfiqar Ahmed
1012 Zulqurnain Akhter

Table 6.7b: Keys generated by Multi Agents

Table 6.7a shows the key generation by ordinary methods. By going through the

“Name Id” field, the gaps between numbers are very usual. This drawback is overcome

by using agent based method and it can be seen from table 6.7b. There are two sequences

in our sample data generated by two agents but without gaps.

6.3.8 Replication

Replication is very important with administration point of view. As DWH holds

historical data, so its back is very necessary for accidental situations. Replication can be

used for backup purposes. In replicating the data table, not whole image is copied but

insert one by one each row of the table. So tables having columns with identity property

to generate numbers are generated again. There can be a situation where the keys in

original table are not generated in the same order in replicated place as they were in

source system. We can explain it with example using tables as:

6.3.8.1 Example: Replication

Table 6.8a shows the sample data of a table having “Name Id” as Identity field

Name Id Title First Name Middle Name Last Name
101 Yasir Habib
102 Zaheer Haider
103 Zahoor Ahmed
104 Zulfigar Ahmed
105 Zulqurnain Akhter

Table 6.8a: Keys generated by Ordinary Methods in Source

and it is the five records in the source system. In replicating this data there can be

Surrogate Key Generation through Multi-Agents

74

Chapter 6 Testing and Performance

possibility that Identity field generates value with other seed value rather than as in

source system.

Name Id Title First Name Middle Name Last Name
110 Yasir Habib
111 Zaheer Haider
112 Zahoor Ahmed
113 Zulfiqar Ahmed
114 Zulqurnain Akhter

Table 6.8b: Keys generated by Ordinary Methods in Replication

Table 6.8b shows the key sequence of sample table after replication. By comparing both
tables, it is clear that in replication DBMS has different seed value for that table. So there
is obvious difference between keys of both systems. As surrogate keys are meaningless
keys and they are invisible to users but still they are meaningful by DBMS to manage
integrity between dimensions and fact tables as well as look ups. By using our agent
based approach this problem can be overcome because agents are customized so we can
reset its starting value easily when deploying replicated table. Using agents for key
generation both tables at source and replication point would be same with respect to keys

order.

6.4 Other Benefits

Other benefits of key generation using multi agents rather than using ordinary
key generation methods are:
i. Portability.
ii. Scalability.
iii. Simplified Joins.

iv. High Performance Joins.

6.5 Summary

As there are different methods to generate key for the DWH, and each has its
own pros and cons with respect to implemented environment. In this chapter we have
compare our proposed approach with other approaches against different scenarios and

performance parameters. It can be concluded that the efficiency can be achieved in DWH

Surrogate Key Generation through Multi-Agents 75

Chapter 6 Testing and Performance

environment by using parallel processing instead of standalone ordinary methods. Our
proposed method has same mechanism by using multi agents in key generation. It can be
concluded from the facts and figures described in this chapter that by using multi agents a

very huge performance benefits can be achieved.

Surrogate Key Generation through Multi-Agents 76

CHAPTER 7

ConNcLusION AND OUuTLOOK

Chapter 7 Conclusion and Outlook

7.1 Conclusion

Agents are used for DWH for out put i.e. reporting and multi level analysis
purposes which includes sorting, filtering, alerting, threat identification in business and
monitoring related tasks. We have used and implement agents for surrogate key
generation and we have taken extra ordinary performance enhancing benefits from it by
comparing with other methods. So we conclude that using agents during DWH design

and implementation is a good practice for developers.

7.2 Contribution

We have used “SAGE” agent framework for the implementation of proposed
approach. SAGE is open source created in JAVA. SAGE has its own GUI for creating
and managing agents. Instead of running separate application for SAGE, we have
inherited the Agent creation and managing which includes killing, suspending, resuming
and sending messages process in our application and made our own module i.e. it will
execute the "exe" files of each agent. Agents are called with proper parameter to generate

the keys and they return the key for that particular row.

7.3 Out Look

The performance of agents can be improved by adding more intelligence to
them. So in future we will automate the process of agent creation rather than creating
manually as they are customizable. Further more it can be improved for concurrent

transactions as well as its new number generation algorithm.

Surrogate Key Generation through Multi-Agents 78

APPENDIX A

RESEARCH PAPER

Surrogate Key Generation:
A Generic Approach

Muhammad Nadeem Yasin, Muhammad Shoaib, Ainan Sadiq, Muhammad Imran Saeed
International Islamic University, Islamabad

Emails mnadeem.yasin@hotmail.com, shoaibishaagiiu@yahoo.com, ainansadig@gmail.com,

imran@iiu.edu.pk

Abstract— A central repository to store huge amount of data
from multiple information based sources is known as data
warchouse. The data in warehouse is transformed and
formalized into single format for the analysis process. The
primary reason for using data warehousing is to provide
analytics result to businesses from data mining, OLAP, score
carding and reporting. Sorting of the data warehouse records
facilitate the searching and mining algorithms. The sorting can
be performed either by using dimensional approach or through
normalized approach. Since primary keys can not be applied on
the data of heterogeneous databases so to uniquely identify a
record from billions of heterogeneous records, data warehouse
introduces the concept of surrogate keys. Researchers have
proposed many algorithms to generate the surrogate keys but all
of them have some lacking with respect to different parameters.
Few techniques creates gaps among the records, few results in
deadlock and hot spots, some of the techniques assign the same
key to multiple records, some increases the searching and mining
delay and few techniques generates the bigger keys hence
increases the storage and processing load. We in this paper
introduced a new technique to generate the surrogate keys
through software agents. The proposed technique will give better
results in all the dimensions discussed above. It will avoid the
deadlock, reduce the delay and size, eliminate the chances of
duplication, and will support the searching and mining
techniques. The most important advantage of the proposed
approach is to trace the source system of the particular record as
records come from heterogeneous environment.

Index Terms— ETL, Surrogate Keys, Data Warehousing,
Multi Agents, Dimensions.

1. INTRODUCTION

There are many dimensional modeling concepts and
techniques that are critical to implement dimensional models.
The key concepts are: surrogate keys and slowly changing
dimensions. -

Surrogate keys are keys that are created and maintained
within the data warehouse instead of the taking natural keys of
source systems. SK contains not any information and
independent of data itself. These are used in place of heavy
meaningful composite keys of the source systems due to
performance reasons [9]. Performance and Semantic
Homogeneity are the basic reasons for this replacement [16].
Surrogate keys are named by many other aliases, such as non-
natural keys, system generated keys, dummy keys,

meaningless keys, database sequence numbers, arbitrary
unique identifier , artificial keys, non-intelligent keys, entity
identifiers, synthetic keys, technical keys and integer keys.
Dimension tables should always be built with a surrogate key
assigned by the ETL process. It is recommended that SK are
created and used as the PK of all the dimension tables [8].The
surrogate keys joins the dimension tables to the fact table [19].
Surrogate keys serve as an important means of identifying
each entity or instance inside a dimension table [11]. SK are
not defined in Logical Model [25]. SK provides better
performance with respect to joins due to their numeric nature
[13].

Surrogate Keys and Primary Keys can be differentiate on
the basis of the type of the database whether Temporal or
Current database [6]. SK can be used as primary key in
current database because it stores the data that is currently
valid and the relationship between PK and SK is one-to-one.
However the SK can not be used as primary key in temporal
database because the correspondence between PK and SK is
many-to-one. Hence there is a need of an attribute other than
SK to uniquely identify any object in temporal database.

Surrogate key generation is the one major step in getting the
data from source system and delivering it to the target user
and it takes a lot of time i.e 35% [27] of overall data
warehousing process as depicted in table 1.

Table 1: Data Warehousing Steps

STEP # DESCRIPTION TYPICAL SHARE OF TIME

1 Request a data package. 0%

2 Extract data from the source. 10% of the ETL process

3 Transformation rules/transfer 15% of the ETL process
to the PSA

4 Update rules. 40% of the ETL process

5 Surogate key generation and 35% of the ETL process
database updates.

] Subsequent steps. (varies)

The most critical cost of using surrogate keys is that it
places the burden on the ETL process [22]. Data
normalization, query optimization, data disassociation,
business process modeling [6] are also the cost factors. Other

disadvantages of Surrogate keys include extra space due to
addition of a new column, hence extra index has to be built on
SK column, difficulty in changing SK, data verification is not
possible, as cluster index can give fast searching mechanism
but cluster index on SK is useless and getting next value
91121]. ‘

Surrogate Keys are generated in the data-staging. Also the
maps to the operational systems, current loads of operational
data, and any atomic data not currently used in the data marts
is stored in the Data Staging. According to Vincent
McBurney, there are two way to generate Surrogate Keys in
the data load of ETL process [13]. First, Surrogate Keys can
be generated in the ETL job. Second, Surrogate Keys can be
generated in the target database. As surrogate keys are
generated for the dimension tables during the load process of
ETL, a master cross-reference table for each dimension must
also be maintained. This table keeps the track that a particular
SK is assigned against which business key along with time
information.

II. RELATED WORK

A. Surrogate Keys Generation Methods and Limitations

Joe Celko and Markus Zywitza have described the basic
method to generate SK by using a counter [9]. This counter is
maintained by DB engine and usually starts with one. A
function is used to increment the value of counter locally by
one [5]. In Sybase SQL the function NUMBER(*) is the
example of this method.

The basic problem with this method is that it can not be
useful in multi client environment and also for clusters or an
environment where data comes from heterogeneous sources.
The second problem with this method is the overflow of
number range. This method is also not useful under the
circumstances where data from different databases of
organization have to merge. There can be clash of counter
value that is an object represented in one database can be
different in other database. So in order to gain consistency a
lot of work has to be done.

Another method to generate SK is to use the Oracle
“Sequences” [2][4]. It automatically generates a unique
number which can be used as key of any kind of table. This is
customized in such a way that user can set the incremented
value between two numbers and also the limit of numbers.
The main limitation of this technique is that it is only
supported in Oracle.

An automatically generated value with “IDENTITY”
keyword in SQL Server, Sybase can also be used for SK
generation [10], as described by Gary Meyer. It is also
customized as user can set the initial value and increment
value. The value of identity column is sequentially unique
numbers and generated on saving of record. A table can have
one identity column [11]. The main advantages of using this
method includes the keys are small, high performance on
Jjoining and indexing, debugging is easy and key updating is
not allowed.

There are also some drawbacks of using this technique. The
main drawback is that it is problematic in replication. Second,

generated values can only be accessed after insertion. Other
includes the gaps between generated numbers, uniqueness in a
single table, not portable, creates insertion hot spot in
concurrent environment, must declare as primary key to avoid
duplication [18].

According to Scott W. Ambler the simplest solution to
surrogate primary key generation is the “Max Plus One” [7].
In this strategy a column with numeric data and starting from
one is used. On insertion of any new record, the maximum
value on this column by using Max function is calculated and
then one is added.

The main disadvantage of this approach is that it affects the
performance when the size of the table is large as mostly in
warehouse. Also it gives uniqueness within single table. It can
be problematic after deletion of last row because its value can
be reused for next record [24]. It causes serious problem in
concurrent environment when concurrent transaction read the
same value for the next record [20]. So this algorithm is best
suitable for low intensity applications. The solution given by
Mayer is "Enhanced Max Plus One" algorithm in which the
deficiency of Max Plus One algorithm is improved by
including the keyword “hold-lock” in the query [10].
However, this algorithm also causes deadlocks in a highly
concurrent environment.

Another approach to generate surrogate primary key is the
"Composite Key” devised by Meyer [10]. In this concept two
approaches are applicable including one column with multi
part and other is combination of more than one columns. In
first approach, the first part is the object id which controls the
inserts into the table and the second part is datetime which
ensures uniqueness. The main disadvantage of this approach is
the size of the key and the other is, no mechanism to check
and control the gaps generated between keys. This method
also degrades the performance of DWH Process [28].

Joe Celko devised an approach to build a “Separate Table”
that holds the next value to be generated. The table has single
column usually integer type for that storing next value. Each
time to generate SK a SP is invoked to get next value and then
update that table [9]. The main advantage of this approach is
the high portability [4].

This approach causes gaps between numbers when operated
between concurrent transactions and also slows their
processing by causing Hot-Block problem [29].

Another technique described by Roy Hann is use of a
Pseudo Random Number Generator [15]. The values
generated by this technique are the integers in random order
not random number. The repetition of numbers does not
appear for billions of values. A next seed table is used get the
key value for the generator. This key value is hidden. The
main advantage of this technique is that the keys are
distributed uniformly. The other advantage of this technique is
the security in sense that next value can not be predicted and it
is also useful in concurrent environment. The disadvantages of
random surrogate keys include cyclicity in a sense it generates
duplicates, size and complexity [9].

Surrogate keys can also be generated and inserted in the DW
by DB Triggers. The main disadvantage of triggers is the
severe bottleneck created in ETL [26].

According to Chuck Ballard and Daniel M. Farrell, GUIDs
can also be used as surrogate keys [8][14]. GUIDs are
Microsoft’s standard. The technique is hashing the current
datetime with the MAC address of network card to produce
the key value. In the absence of network card, the software id
is used. The main advantage of this technique is the uniquely
generation of SKs over each table. It also allows the
integration of data comes from different sources without any
clash. It is helpful in replication. GUIDs increase the
performance by reducing the joins [14]. It is highly portable
[17] and hot spot can be avoided.

Some authors suggest to avoid the usage of GUIDs in DWH
due to several reasons. The main reason is storage [8]. GUIDs
takes a large amount of space then integers. The other reason
is that as GUIDs are four times larger than integer key so
indexes on GUID columns are slower integer keys. The
process of debugging GUIDs is hard task and these are
updateable [18].

UUID is another method to generate the surrogate key,
described by Markus Zywitza and Scott W. Ambler [5][7].
Open Software Foundation create the algorithm for this
approach. UUID is 128 bit value. This value is generated by a
hash of the datetime of the currently used system and network
card id. In the absence of card, an equal software
representation is used. There are two representations in
UUIDs, hex and compact [5]. In hex representation the id is
converted and represented by hex values and string is made
which is readable. In compact representation the id is
converted into array of byte and then represented into string.

The disadvantage of this method is same as GUIDs. It
includes large size, slower indexing and hard debugging.

According to Joseph Sack Surrogate Keys can be generated
and managed by using ROWGUIDCOL property columns
which provides the uniqueness at very high level [11]. This is
very useful in heterogeneous environment. The main
limitation of this technique is that a table can have only one
rowguidcol column.

The integrity of data of column can be attained by the use of
constrains in SQL Server as devised by Joseph Sack [11] and
also can be used to generate SKs. It includes Unique
Constraint and Default Constraint. Unique Constraint can
be used to generate distinct values on non key columns and
Default Constraint can be used on column where data type is
not known. The major drawback of these techniques is the
duplication in concurrent transaction environment when clock
is set to backward.

Ralph Kimball and Joe Caserta have described another
technique to generate the SK for DWH by concatenation of
system’s natural key with datetime stamp [26]. It also
describes the insertion time of particular record.

There are various drawbacks of this technique. First is the
dependency on source system. Secondly it is only supported in
Homogeneous Environment. The major drawback is the less
control, huge size and degraded query performance.

Scott W. Ambler describes another technique named
High/Low strategy [7]. According to this strategy, any key is
logically consists of two parts i.e. High and Low. High value
comes from the source and Low is n digit value that is

assigned by the application itself. The procedure is as on
obtaining high value every time, the low value is set to zero. If
the high value is 101 and n=3 then the key will be
101000,101001, 101002 and so on. If the high get the value
201 and n= 3 then the sequence will be 201000, 201001 and
SO on.

An approach which is useful in concurrent environment is
the Recycled Series described by Gary Meyer [10]. In this
approach every process in concurrent transaction environment
has conceptually next key table with specific range. For
example one process has its range from 101 to 1000 and other
would have 1001 to 2000. This approach is most effective in
insert intensive scenarios where cache hit ratio and
concurrency can affect the performance.

B. Software Agents

Software Agent is a stand alone computer based program
works for predefined tasks in dynamic situation on behalf of
user or any entity. It can work without any control for an
extended period [23][12]. In a Multi Agent System, there are
more than one software agents and they can interact with each
other in different scenarios including competitive, cooperative
or autonomous. They can produce results for entities that
initiated them and these entities can also terminate their
instance. They can have a user interface [1]. A software agent
can run manually by user in foreground or automatically in
background. An agent call other agent, they are portable and
can be replicated, serve for specific task. Other characteristics
include persistence, reactive, social/collaborate and flexible.
The application area of software agents includes data
presentation, event notification, pattern recognition, data
collection, data sorting and filtering, optimization and
planning. Agent Technology is used rapidly in data
warehousing with growing size of DWH.

III. PROBLEM

After conducting an extensive literature survey we conclude
that all the current methods to generate the surrogate keys
have some limitations. First of all few techniques generate
gaps in the records listing, which results in confusions and de-
organization of data. Secondly the issue of concurrent access
is not dealt efficiently in few of the techniques. Two
concurrent records may obtain the same surrogate key. In few
of the techniques the algorithms designed to handle the
concurrency results in deadlock. The deadlock occurs due to
the combination of shared lock and exclusive lock mechanism.
So due to the chances of deadlock these techniques can only
be efficient in low intensity environment. The size of the key
is also one of the main issues that need to be dealt properly. In
few techniques the size of the generated keys becomes bigger
which indirectly increases the storage overhead and results in
searching delays. Few techniques required the value of the
next seed. If multiple transactions are allowed to access and
retrieve the value of the next seed then multiple transactions
can get same seed value and if only one transaction is allowed
to get the value of the next seed then the delay arises.

As data come from different sources in DWH, there is no
method available, to our best of knowledge, to keep the track

of a record that it belongs to which system. The reason may be
the transformation of data during ETL before loading of data
into WH.

Methods which generate the SK automatically by DWH
with DBMS supported type are considered best. The main
problem with these types of method is the mismatch of values
generated in replication and the originally in DWH.

The major cost of SK is that it places huge burden on the
ETL system. First SK is assigned to each distinct dimension
row. Secondly substitution is made on keys of transactional
systems in fact table with SK from DT [22].

Till now, agents are used in DW system. for reporting
purposes including trend checking, event notification, pattern
recognition etc. They can be used to maximize the
performance of ETL process by sharing the load of processing
and calculations.

As there are many components of ETL which are required
to be considered for advancement but we have selected
Surrogate Key Generation for our focus point. There are many
techniques available but we are going to propose a framework
to generate surrogate keys though multi agents. Now
generation of unique number across the DT is the duty of
agents rather than DBMS itself. Agents are invoked and
terminated by the WH system. By using the advantages of
multi agents, the limitations of prior method to generate keys
can be resolved and burden on ETL system can be reduced by
dividing the task between agents. Tracing the source of the
record present in DT is a major advantage of using this
technique, which was not possible in prior methods (to the
best of our knowledge).

IV. PROPOSED APPROACH

We start with discussing the base on which idea is
inherited, SK generation stage, agent technology, proposed
framework architecture in detail and consequences of solution.

A. Agent Technology

Software Agent is a stand alone computer based program
works for predefined tasks in dynamic situation on behalf of
user or any entity. It can work without any control for an
extended period. In a Multi Agent System, there are more than
one software agents.and they can interact with each other in
different scenarios including competitive, cooperative or
autonomous. The major characteristics of agents include
persistence, reactive, social/collaborate and flexible. The
application area of software agents includes data presentation,
event notification, pattern recognition, data collection, data
sorting and filtering, optimization and planning.

Agent Technology is used rapidly in data warehousing with
growing size of DWH. We have used multi agents for SK
generation for the WH. They reside on separate layer and
interact with WH in order to get datarow and then return the
key for that row.

B. Data Sharding

Data warehousing is used very commonly for last few years
due to size of application database and huge volume of

transactions. Google engineers devised the term sharding. It is
“shared nothing” partitioning approach in which huge volume
of database is partitioned into smaller shards and then
distributed over many servers for achieving scalability,
throughput and performance increase.

We have inherited the idea of database sharding with little
change to our proposed solution. Instead of dividing whole
database, its all related tasks and distributing it on other
server, we distribute the task of surrogate key generation to
multiple agents interacting with database application. The
burden of generation and management of SK is now
responsibility of agents. Agents are invoked and terminated by
DB application itself. During the time to key generation
DBMS can perform other task without depending on the
return of generated keys.

In staging area agents are invoked to generate SK for
DWH. Agents being held on separate layer, they can interact
with DW system through this staging area.

C. Increasing ETL Performance

In common practice, the data loading of ETL process is the
slowest phase due to index creation, integrity maintenance and
concurrent environment. So bulk loading operations can be
used to accelerate ETL process but it can also create
bottleneck during access to database. The ETL performance
can be increased by partitioning table in small size and hence
indexes, disabling validation, integrity checking and triggers
during load process on target DB, generate ids in ETL instead
of database, dropping index before load process and creating
after load process in DWH, using bulk loading in parallel and
minimizing dependency of jobs to each other [3].

Most authors suggest that ETL processing should be done
outside the DB in order to get higher performance. For
example, by using distinct we can remove duplicates from the
table but it is slow in DB so we can perform it outside the DB.
We have proposed the solution based on it with a change that
key generation is done outside the DB and return back to it.

D. Parallelism in ETL

The performance of ETL process can be improved by
implementing parallelisms. It can be achieved in three ways
by splitting a large table into small chunks for parallel
accessing, by pipelining multiple components on same dataset
and by pipelining several components on different dataset [6].

We in our proposed solution provide parallelism by
dividing a data row from selected dataset into chucks
according to subject area. Then agents automatically generate
keys according to their subject based chunks and then loaded
into the DW.

E. Proposed Architecture

We have proposed the said technique named Generating
Surrogate Keys through Multi Agent after comparing all the
prior methods. By using this technique cost, bottleneck,
deadlock, hot spot and complexity can be reduced and
performance can be maximized.

As data modeling for WH is dimension modeling and hence
dimensions and fact tables are maintained within DWH.

Surrogate keys are also called primary keys of DW. They are
the part of the dimension table and the replacement of the keys
coming from the source system, either from homogeneous or
heterogeneous environment and also referenced into the fact
table as foreign key. According to proposed architecture there
is MAS layer in contact with staging area (staging database).
Multiple agents reside on MAS layer. In staging area, cleaned
and transformed data is stored for temporary basis and data is
going to load into the different dimensions. As the numbers of
dimensions to be made in DWH are known, so one software
agent is reserved for each dimension in MAS layer to generate
key for it. Agent will guarantee the generation of unique key
against each source system key. Each agent will add a new
surrogate column to the data collected at staging database on
staging area of ETL layer.

L —————
MAS Layer
“
File's: File System
St
i I e Y e I ol
Source System 3 Landing Datsbase Staging Database Dty Warshouse
Landing Area , Staging:Area WH/Mart Layer
Source FigLd:
Syste. ‘Proposed Archifactire;:
: { ETL B
Source Layer . |

Fig 1: Proposed Architecture

F. Methodology

Information about each agent and its concerning is stored at
central point in MAS layer. Information about agent includes
agent id, unique id and start value where as it’s concerning
information includes source system id, database name, schema
name, table name and the primary key field(s).

Surrogate Key is made by concatenating the unique id of
particular agent with start value. Hence a unique number is
generated. For example if an agent unique id is 100 and next
value is 1 then the key will be 1001 and it will be the desired
key for the dimension table. After generating the number it
will return this number to the calling module in data staging
area and then it immediately increments the start value by one
for next generation of key.

Agent id differentiates each agent with other present in
MAS layer. Unique id is the prefix used for keys which shows
that this key is generated by which agent and hence its
dimension and source can be easily found. Start value is the
seed value which will increment sequentially by agent.

G. Agent Architecture ‘

An agent is present against each dimension table which is
responsible for the generation of the surrogate key against
each record for that particular dimension. Being autonomous
system, agents are not part of the DBMS but can communicate
with it. When the data is ready to be loaded into the dimension
of the data warehouse, a request of surrogate key value is
made against each record of the cleaned data resides in data

staging area. Agents are constantly listening to the request for
the next key value. After the request is made by ETL module,
the particular agent according to the contents of data is

invoked and key is returned.

MAS Layer

Regquest for
New Key

Schema + Table Info Key

| Data Warehouse Layer

Fig 2: Agent Architecture for Key Generation

H. Abstract Flow of Framework

START

Request for Key to MAS
Layer from Staging Area

Y

Agent Receives Request
with Arguments

v

Pre-existence is Checled
from Loole-Up Tahle

v

Generaie Surrogale Key
and Update Start Value

v

Return Surrogate Key io
Staging Table

!

Master Dimension
Cross Reference

Fig 3: Abstract Flow of Proposed Framework

I Major Capabilities of Proposed Framework

The main purpose of our proposed framework is to remove
the maximum issues involved in existing SK generation
methods. Our framework will be distinguished from other
methods in the following ways:

1) It will provide the mechanism to trace the source of a
particular record present in DWH.

2) The resultant keys will be generated without gaps.

3) It is also portable and supports the replication and will

give effective and accurate results.

4) Cost and performance will be optimized due to reduced
size of the surrogate keys in fact table.

5) The bottleneck created due to the deadlock in processing
huge amount of data (TB of data) in warehouse will be
eliminated.

6) It will support the surrogate key generation process in an
intensive concurrent environment.

7) Hot spots created by concurrent transactions will be
eliminated.

8) Number of /O operations will be minimized.

9) The load on ETL layer and DBMS in managing almost
terabytes of data and keys will be reduced.

V. TESTING AND PERFORMANCE

We have developed an application based on framework in
Visual Studio .Net 2008 with SQL Server 2005 as the DBMS.
Our Demo source data is the PTCL Telephone Directory
which is created in MS Access 2003 Database. Our
application is basically web based and agent framework used
for this project is "SAGE" which is open source created in
JAVA. SAGE has its own GUI for creating and managing
agents. Instead of running separate application for SAGE, we
have inherited the Agent creation and managing which
includes killing, suspending, resuming and sending messages
process in our application and made our own module.

We have presented the side by side comparison of the
proposed solution with other existing technologies using
following parameters and test cases.

A. Source System Tracing

As data come from different sources held either
homogeneous or heterogeneous in data warehouse and after
ETL process where cleansing and transformation are
performed to make data consistent, so there is no method, to

the best of our knowledge, to trace out the source of data from .

which it has come into the DWH. In our proposed method, as
agents generate keys for the DWH record and its three digit id
is used as prefix of the generated key, so we can trace the
source of the record in DWH from the key because
information about agent id, source system name, database
name, schema name and table name are stored at central
location against each agent.

either come from one source or many sources. In table 2b keys
are also numeric and sequential to some extent but there exists
a distinction of record that it comes from which source. First
three digits are the prefix added to the key and they show the
agent id. In above table key “1001” means that it is generated
by an agent with id “100” with sequence number “1” and
same is the case with keys “1011” and “1021”. Hence records
with keys “1001” and “1002” belong to one source, keys
“1011”, “1012” belong to second and “1021” belong to third
source. it is not compulsory that keys come from different
sources, they can be from different databases on single source,
or different schemas in single database, or different tables in
single schema.

B. Gaps between Sequentially Generated Numbers

The auto-increments key like Identity method is considered
to be most efficient methods for key generation for DWH. But
the main disadvantage with this method is gaps created
between sequentially numbers. As the volume of DWH data is
in TB (Tera Bytes), so there can be huge number of missing
sequences wastage. There are four major caused of gaps
generation within numbers.

1) Abortion of DML Statements (Automatically Role Back).
2) Deletion of Rows.

3) Resetting Seed Value.

4) Rolling Back Transactions Manually.

In our proposed method the gaps between sequentially
number are handled by agents itself. So it can be controlled
easily.

Table 3a: Keys generated by Ordinary Methods
Name Id Title First Name Middle Name Last Name
101 Yasir Habib
102 Zaheer Haider
110 Zshoor Ahmed
m Zulfigar Ahmed
125 Zulgumain Akhter
Table 3b: Keys generated by Multi Agents
Name Id Title First Name Middle Name Last Name
1001 Yasir Habib
1002 Zaheer Haider
1003 Zahoor Ahmed
1011 Zulfigar Ahmed
1012 Zulqumnain Akhter

Table 2a: Keys generated by Ordinary Methods
Name Id Title First Name Middle Name Last Name
101 Syed Mansoor Khan
102 Syed Shabir Ali
103 Tahir Igbal
104 Tariq Naseem Qureshi
105 Khan Usman
Table 2b: Keys generated by Multi Agents
Name Id Title First Name Middle Name Last Name
1001 Syed Mansoor Khan
1002 Syed Shabir Ali
101} Tahir Igbal
1021 Tariq Naseem Qureshi
1012 Khan Usman

In table 2a keys are numeric and sequential but seem to
belong to a single source. There is no distinction that record is

Table 3a shows the key generation by ordinary methods. By
going through the “Name Id” field, the gaps between numbers
are very usual. This drawback is overcome by using agent
based method and it can be seen from table 3b. There are two
sequences in our sample data generated by two agents but
without gaps.

C. Replication

Replication is very important with administration point of
view. As DWH holds historical data, so its back is very
necessary for accidental situations. Replication can be used
for backup purposes. In replicating the data table, not whole
image is copied but insert one by one each row of the table. So
tables having columns with identity property to generate
numbers are generated again. There can be a situation where
the keys in original table are not generated in the same order

in replicated place as they were in source system. We can
explain it with example using tables as:

Table 4a: Keys generated by Ordinary Methods in Source

Name Id Title First Name Middle Name Last Name
101 Yasir Habib
102 Zaheer Haider
103 Zahoor Ahmed
104 Zulfigar Ahmed
105 Zulqumain Akhter

Table 4a shows the sample data of a table having “Name
Id” as Identity field and it is the five records in the source
system. In replicating this data there can be possibility that
Identity field generates value with other seed value rather than
as in source system.

Table 4b: Keys generated by Ordinary Methods in Replication
Name Id Title First Name Middle Name Last Name
110 Yasir Habib
11 Zaheer Haider
112 Zahoor Ahmed
113 Zulfigar Ahmed
114 Zulqumain Akhter

Table 4b shows the key sequence of sample table after
replication. By comparing both tables, it is clear that in
replication DBMS has different seed value for that table. So
there is obvious difference between keys of both systems. As
surrogate keys are meaningless keys and they are invisible to
users but still they are meaningful by DBMS to manage
integrity between dimensions and fact tables as well as look
ups. By using our agent based approach this problem can be
overcome because agents are customized so we can reset its
starting value easily when deploying replicated table. Using
agents for key generation both tables at source and replication
point would be same with respect to keys order.

D. Agent based Framework Performance

To test our technique we have run our proposed framework
based demo application with the sample data. As we have
used three test scenarios so in order to check the performance
we have taken result for same sample data using ordinary key
generation methods and key generation through parallel
process.

Fig 4 shows the total time required by ETL process to
extract data from source system to load data into DWH. Here
we have taken different samples of data from source system to
check against three scenarios. As clear from fig 4 that
ordinary methods take too time by comparing others. So it can
be improved by dividing the tasks and transactions into
parallel processes. But using our agent based approach there is
a significance performance difference against other methods.
The main reason is that it is also using parallel processes but
the task of generating keys is now performed by agents not by
DBMS itself. During key generation time DBMS can do other
tasks. So we can enhance the efficiency by reducing the
burden from DBMS.

P —
120 0

100
80
60
40
20

—— Ordinary
—&— || Process

Agents

ETL Time

1000

10,000 100,000 200,000 250,000
No. of Sample Rows

Fig 4: Time taken by Each Method for ETL

Other important observation from fig 4 is that as the volume
of sample data is increasing, the time for ETL is not
increasing with same factor. Hence it can be concluded that as
volume of data increase in ETL, their time for processing
reduce due to caching.

VI. CONCLUSION AND FUTURE WORK

Agents are used for DWH for out put i.e. reporting and
multi level analysis purposes which includes sorting, filtering,
alerting, threat identification in business and monitoring
related tasks. We have used and implement agents for
surrogate key generation and we have taken extra ordinary
performance enhancing benefits from it by comparing with
other methods. So we conclude that using agents during DWH
design and implementation is a good practice for developers.

ACKNOWLEDGMENT

We pay thanks to Higher Education Commission of
Pakistan and International Islamic University Islamabad for
their cooperation. Without their financial aid and resources
this research work was not possible.

REFERENCES

[1] John W. Krupansky, “What is a software agent?”,
January 2006

[2] Oracle Corporation,
Generation”, 2008.

[3] Lev Selector, “ETL - Extract, Transform, Load”, 2007

[4] Oracle Corporation, “How to Configure Primary Key
Generation”, December 2006.

[5] Markus Zywitza, “Primary Key Mapping”, February
2009.

[6] http//www.wikipedia.com

[7] Scott W. Ambler and Pramod Sadalage, “Choosing a
Primary Key: Natural or Surrogate”, 2005.

[8] Chuck Ballard, Daniel M. Farrell, Amit Gupta, Carlos
Muzuela and Stanislav Vohuik, “Dimensional Modeling:
In a Business Intelligence Environment”, March 2006.

[9] Joe Celko, “Data and Databases: Concepts in Practice”,
2001.

“Automatic Primary Key

[10]Gary Meyer, “How Surrogate Primary Key Generation
Affects Concurrency and the Cache Hit Ratio”, Aug 21,
1998.

[11]Joseph Sack, “SQL SERVER 2005 T-SQL RECIPIES”,
2006.

[12]1BM, “Agents”, January 2009.

[13] Vincent McBurney, “Why database generated surrogate
keys drive me nuts”, May 25, 2006.

[14] Sameer, “GUID Or Int Primary Key”, June 25, 2007.

[15]Roy Hann, Rational Commerce Limited, “Key Points
About Surrogate Keys”, August, 1996.

[16]Alkis Simitsis and Dimitri Theodoratos, “Data
Warehouse Back-End Tools”, 2005.

[17]Jeff Atwood, “Primary Keys: IDs versus GUIDs”, March
2007

[181ABC, “What should I choose for my primary key”, June
2005.

[19]Cesar A. Galindo-Legaria, Torsten Grabs, Sreenivas
Gukal, Steve Herbert, Aleksandras Surna, Shirley Wang,
Wei Yu, Peter Zabback, Shin Zhang, “Optimizing Star
Join Queries for Data Warehousing in Microsoft SQL
Server”, 2008 IEEE.

[20]Jason Zhang, “How to implement a DB2 UDB primary
key with a surrogate key”, July 2004,

[21]Lee Richardson, “Surrogate vs Natural Primary Keys”,
August 2007.

[22]Joy Mundey and Warren Thornthwaite, “The Microsoft
Data Warehouse Toolkit”, 2006.

[23]Paulraj Ponniah, “Data Warehousing Fundamentals”,
2001

[24] Scott W. Ambler, “Agile Database Techniques: Effective
Strategies for the Agile Software Developer”, 2003.

[25]Sharon Allen and Evan Terry, “Beginning Relational
Data Modeling”, 2005.

[26]Ralph Kimball, Joe Caserta, “The Data Warehouse ETL
Toolkit”, 2004s

[27]McDonald, Andreas Wilmsmeier, David C. Dixon, W.H.
Inmon, “Mastering the SAP Business Information
Warehouse”, 2002

[28]Claudia : Imhoff, Nicholas Galemmo and Jonathan G.
Gaiger, “Mastering Data Warehouse Design”, 2003

[29] Gavin Powell, “Beginning Database Design”, 2006.

REFERENCES

References

REFERENCES

[1]. Pwosboy, “A Pattern for Primary Key Generation”, August 2007.

[2]. Oracle Corporation, “Automatic Primary Key Generation”, 2008.

[3]. Troels Arvin, “Comparison of different SQL implementations”, March 2009.

[4]. Oracle Corporation, “How to Configure Primary Key Generation”, December 2006.
[S]. Markus Zywitza, “Primary Key Mapping”, February 2009.

[6]. Andrus Adamchik, “Primary Key Generation”, 2008.

[7]. Scott W. Ambler and Pramod Sadalage, “Choosing a Primary Key: Natural or
Surrogate”, 2005.

[8]. Chuck Ballard, Daniel M. Farrell, Amit Gupta, Carlos Muzuela and Stanislav
Vohuik, “Dimensional Modeling: In a Business Intelligence Environment”, March 2006.
[9]. Joe Celko, “Data and Databases: Concepts in Practice”, 2001.

[10]. Gary Meyer, “How Surrogate Primary Key Generation Affects Concurrency and the
Cache Hit Ratio”, Aug 21, 1998.

[11]. Joseph Sack, “SQL SERVER 2005 T-SQL RECIPIES”, 2006.

[12]. Pete Stiglich, “Performance benefits of surrogate keys in Dimensional Models”,
2007.

[13]. Vincent McBurney, “Why database generated surrogate keys drive me nuts”, May
25, 2006.

[14]. Sameer, “GUID Or Int Primary Key”, June 25, 2007.

[15]. Roy Hann, Rational Commerce Limited, “Key Points About Surrogate Keys”,
August, 1996.

[16]. Alkis Simitsis and Dimitri Theodoratos, “Data Warehouse Back-End Tools”, 2005.
[17]. S. M. Deen, “An Implementation of Impure Surrogates”, September 1982.

[18]. Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis, Alkis Simitsis, and Nils-
Erik Frantzell, “Meshing Streaming Updates with Persistent Data in an Active Data
Warehouse™; July, 2008.

[19]. Cesar A. Galindo-Legaria, Torsten Grabs, Sreenivas Gukal, Steve Herbert,
Aleksandras Surna, Shirley Wang, Wei Yu, Peter Zabback, Shin Zhang, “Optimizing Star
Join Queries for Data Warehousing in Microsoft SQL Server”, 2008 IEEE.

[20]. Brian Walker, “Why Use Surrogate Keys”, January 2006.

Surrogate Key Generation through Multi-Agents

References

[21]. Lee Richardson, “Surrogate vs Natural Primary Keys”, August 2007.

[24]. Graeme C. Simsion, Graham C. Witt, “Data Modeling Essentials”, 2005.

[25]. Sharon Allen and Evan Terry, “Beginning Relational Data Modeling”, 2005.

[26]. John V. Petersen, “Absolute Beginner’s Guide to Databases”, 2007.

[28]. Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Mundy and Bob Becker,
“The Data Warehouse Lifecycle Toolkit”, 2004.

[29]. Gavin Powell, “Beginning Database Design”, 2006.

[30]. Claudia Imhoff, Nicholas Galemmo and Jonathan G. Gaiger, “Mastering Data
Warehouse Design”, 2003.

[31]. Beixin (Betsy) Lin, Yu Hong, Zu-Hsu Lee, “Data Warehouse Performance”, 2005.
[32]. Kevin McDonald, Andreas Wilmsmeier, David C. Dixon, W.H. Inmon, “Mastering
the SAP Business Information Warehouse”, 2002.

[33]. Ralph Kimball, Joe Caserta, “The Data Warehouse ETL Toolkit”, 2004.

[34]. Scott W. Ambler, “Agile Database Techniques: Effective Strategies for the Agile
Software Developer”, 2003.

[36]. Paulraj Ponniah, “Data Warehousing Fundamentals”, 2001.

[38]. Djoni Darmawikarta, “Dimensional Data Warehousing with MySQL”, 2007.

[39]. Ralph Kimball, Laura Reeves, Margy Ross and Warren Thornthwaite, “The Data
Warehouse Life Cycle Toolkit”, 2005.

[40]. Ralph Kimball and Margy Ross, “The Data Warehouse Toolkit”, 2002.

[41]. Joy Mundey and Warren Thornthwaite, “The Microsoft Data Warehouse Toolkit”,
2006. '

[42]. Jason Zhang, “How to implement a DB2 UDB primary key with a surrogate key”,
July 2004.

[44]. Joshy George, “Surrogate Key Generation in DataStage”, February 2008.

[45]. www.DWHInfo.com

[46]. Brian Krow Aker, “Myths, GUID vs Autoincrement”, March 2007.

[47]. Donald M. Farmer, “Surrogate Key Generation and Utilization”, May 2007.

[48]. ABC, “Why are there gaps in IDENTITY / AUTOINCREMENT column”, March
2005. |

[49]. ABC, “What should I choose for my primary key”, June 2005.

Surrogate Key Generation through Multi-Agents

References

[50]. Jimmy Nilsson, “The Cost of GUIDs as Primary Keys”, March 2002.

[52]). AgileWare, “Performance Comparison - Identity(), Newld(), NewSequentialld”,
January 2009.

[53]. Priya Dhawan, “Performance Comparison: Data Access Techniques”, January 2002.
[55]. Jeff Atwood, “Primary Keys: IDs versus GUIDs”, March 2007.

[59]. Van Scott, “Extraction, Transformation, and Load Issues and Approaches”, January
2000.

[61]. IBM, “Agents”, January 2009.

[62]. Oracle Corporation, “Business Intelligence”, 2007.

[63]. http//www.wikipedia.com.

[64]. Lev Selector, “ETL - Extract, Transform, Load”, 2007.

[65]. John W. Krupansky, “What is a software agent?”, January 2006.

[66]. Thomas Connolly and Carolyn Begg, “Database Systems, 3™ Edition”, 2003.

[67]. Fred R. McFadden, Jeffrey A. Hoffer, “Modern Database Management, 4th
Edition”, 1994.

[68]. Hafiz Farooq, “Persistent Architecture for Context Aware Lightweight Multi Agent
System”, the Fifth International Joint Conference on Autonomous Agents & Multi-Agent
Systems (AAMAS 2006), Japan, 1994.

Surrogate Key Generation through Multi-Agents

