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ABSTRACT

Recently, deep learning has revolutionized various scientific disciplines. Strategies based on deep
learning have consistently surpassed traditional methods, proving extraordinary efficiency in the
healthcare environment. Alzheimer's disease (AD) is one of the major global health threats due to its
rapid increase and late diagnosis. Originating from complicated neuroanatomical variations, AD is
caused by the brain's accumulation of amyloid and tau proteins. Various deep learning methods have
been proposed in the literature, yet these models demand significant time and computational resources
due to their multi-layered architectures. Therefore, a solution providing a good balance between
accuracy and computational efficiency is a dire need of time. The proposed research contributes in the
following directions, (1) The transformer-inspired spatial attention mechanism-driven a compact and
lightweight CNN structure has been proposed to produce an accurate and efficient solution for
Alzheimer’s disease diagnosis, (2) Furthermore, a non-linear activation function named Gompertz
Linear Unit (GLU) is exploited in the proposed network for capturing complex relationship in the
given data and to overcome the issues of dead neuron and vanishing gradient faced in existing
activation operations, (3) To address the challenges of over adaptiveness in existing techniques, a
Partially adaptive variant of Adam optimizer (Padam) is utilized in this study. Moreover, the
incorporation of Padam provides flexibility to fine-tune the model as needed which improves the
performance in terms of accuracy and speedy convergence, (4) Explainable Artificial Intelligence
(XAl) is exploited to produce an interpretable diagnostic insight which will be valuable for healthcare
professionals to make the informed clinicals decisions. The proposed model achieves a substantial test
accuracy of 99% on OASIS database. Moreover, the proposed approach outclasses the existing
benchmark models in terms of both accuracy and computational cost. The proposed solution has the
potential to serve as a smart healthcare system for detection and classification of Alzheimer’s disease

at premature stages
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides an overview of deep learning techniques for classification of
Alzheimer’s disease, highlighting their importance and significance in medical image processing.
It devils different machine learning techniques employed to distinguish and differentiate different
classes and stages of Alzheimer’s disease. This chapter also explain different stats regarding
Alzheimer’s disease as it is one of leading causes of death worldwide. Lastly, the chapter

introduces a Deep Neural Network approach for classification of Alzheimer’s diseases.

1.2  Inspiration and Background

Al has recently demonstrated promising results in medical diagnostics. These advancements play
a key role in enhanced accuracy and precision [1]. The effectiveness of the treatment relies on the
availability of medical data like health surveys and other reports. Al-based models have the power
to visualize and analyze the complexity of medical data which is not a normal task for humans [2].
Al and deep learning techniques have contributed to detecting different brain ailments like EEG
signal analysis and pattern detection. For Alzheimer's disease, accurate and early detection is

crucial & important as it leads to an appropriate medical treatment.

AD is a progressive neurodegenerative disorder. According to World Alzheimer’s Report 2020,
over 50 million people are living with dementia. This number will be increased to 131.5 million
by 2050 due to the aging population. In the US, about 5.8 million people are surviving with AD.

AD mainly is the sixth leading cause of death. It leads to the destruction of cognitive processes &



cognizance. Data in Fig 1 [3] is a graphical demonstration of this. Research indicates that AD has
no effective treatment. However, early detection may help in early intervention & control of the

symptoms of AD.

DEMENTIA WAS THE UK'S LEADING
CAUSE OF DEATH IN 2022

Dementia and Alzheimer's disease
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strokes, aneurysms)
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Fig 1: Alzheimer’s Disease Stats
There are numerous factors for AD-like age, genetic, and medical history. It seems that age is a
major risk factor for AD as its value is 5% for people between 65-74, while it increased
exponentially to 50% above the age of 85 [4]. It is also observed that people having cardiac-related
issues have a higher rate of AD. Biomedical assessments are used to identify different stages of
AD. But this is time-consuming as well as it depends upon the expertise of a person. In recent
decades, various approaches have facilitated the prediction of AD through the assessment of MRI
images. These techniques yield more effective & accurate results. Research focuses on different

factors like cortical thickness, grey matter density, ventricular expansion, etc. Studies show the



relationship between reduced gray matter and AD, especially affecting the hippocampus in the

early stages, it is shown in Fig 2.

There are different ML methods like SVM used for AD detection. DL methods like auto-encoders
and CNN have been used for AD diagnosis [5]. However, these approaches' significant
computational cost and time requirements stem from their intricate architecture. To get around
these problems, we modified CNN in addition to PADAM (optimizer). This lowers the model's
weight parameter and shortens the testing and validation period. Additionally, this aids in

overfitting.

The goal of this research is to distinguish between AD and normal MRI pictures using a customized
CNN that makes use of optimizers and X-Al. This will assist with the features and characters that
are key factors of classification as well as the decrease in computation. The main aim is to create

a robust and automated model that can precisely predict the AD symptomatic images.
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Fig 2: Human brain overview



1.3 Problem Statement

Deep learning has profoundly revolutionized various scientific disciplines in recent years.
Strategies based on deep learning have consistently surpassed traditional methods, proving
extraordinary efficiency in the healthcare environment. Alzheimer's disease (AD) is one of the
major global public health threats due to its rapid increase and late diagnosis. Originating from
complicated neuroanatomical variations, AD is caused by the accumulation of amyloid and tau
proteins in the brain. Auspiciously, developments in Al techniques have facilitated the early
detection/diagnosis of AD using different datasets that help in both cost & time savings. In
literature, various deep learning methods have been proposed, yet these models demand significant
time and computational resources due to their multifaceted structure. In this study, Padam is used
to fine-tune the parameters of along with spatial attention mechanism-based CNN model to target
the major contributing features for classification and also the indication of affected areas using
explainable Al (X-Al). Introducing a state of art descriptive approaches, the proposed model
achieves a remarkable 95% accuracy while testing and validating using the OASIS dataset.
Moreover, this method transcends complicated algorithms with respect to time & cost. Its

performance is assessed by different metrics including precision, recall, & F1 score.

1.4  Goals and Objectives

The primary objectives of this research work are
e To develop an enhanced and customized CNN model integrated with spatial attention
mechanism to (a) Focus most Effective Regions (b) Avoid Computational Complexity (c)

Classify Alzheimer’s Disease Images Accurately.



e An unexplored Partially Adaptive Momentum Estimation (PADAM) optimizer will be
exploited to accelerate convergence speed for efficient classification.

e To address the problem of dead neurons and vanishing gradient problem of activation
functions.

e Explainable Artificial Intelligence will be exploited for making the model’s predictions

interpretable and human understandable.

1.5 Thesis Organization

The chapter-wise organization of the research work is presented below.

Chapter 1 gives a conceptual summary of the entire thesis, including research gaps, statements,
and definitions that explicitly outline the objectives of the study, as well as the background
information and reasons for the identification of significant issues and the formulation of the

research topic.

Chapter 2 discusses the benefits and drawbacks of previously proposed techniques in the

literature to give a detailed overview of the work completed thus far.

Chapter 3 explains the suggested deep learning model's research process by expanding on the
suggested strategy. The description of the various procedures employed in our proposed model is
also included.

Chapter 4 includes hyper-constraints selection details. Moreover, it provides simulation results
in terms of tables and learning curves for a detailed analogy of the proposed deep learning model

with the state of art algorithms using OASIS benchmark datasets.

Chapter 5 highlights future research directions for the potential extension of a current study as

well as the findings reached from the research endeavor.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter includes the basic concepts, key limitations and differences of deep learning
methods specific to Alzheimer’s disease classification, which describes how different scientist
have used deep learning networks to classify this disease. Additionally, this chapter also includes

our contributions and a summary at the end.

2.2 Algorithms for Classification of Alzheimer’s Disease
The following section includes an explanation of algorithms that are used for the
classification of mental disorder i.e. dementia.

Various Al-based approaches [6] are introduced for diagnosing Alzheimer’s disease. In [7]
the transfer Learning technique was proposed for AD classification. Researchers have utilized
sagittal MRI images from benchmark datasets, i.e. ADNI & OASIS. They utilize ResNet for
feature extraction from the input dataset and concatenated with age & gender characteristics.
Furthermore, the SVM that was specifically trained for this problem classified the input into
different labels. An accuracy of about 86.47% was reached. The study [8] has suggested innovative
modifications in capsule networks for the detection of AD by using OASIS dataset. The modified
Capsule Network takes the data as input and forms a parent vector by considering different features
in the dataset. The suggested model was Computationally effective due to the incorporating the
Squash activation function in Capsule Net. Overall, this proposed method has achieved an

accuracy of 92.39%. In [9] ensemble learning technique was introduced for the classification of



AD. Authors have applied image segmentation on MRI images to isolate the brain's hippocampus
region. The model was trained on these segmented images and compared with the model trained
on complete images. The accuracy obtained though segmented approach outperforms the other
one by achieving an accuracy of 94.1%. Gopi and Nali [10] have utilized a convolutional neural
network (CNN) for the categorizing of AD on the OASIS dataset. They trained a CNN model with
Adam optimizers along cross entropy as a loss operator which shows satisfactory efficiency by
accomplishing the AD classification task with an accuracy score of 83.33%. In [11] a deep
learning-based algorithm named as long short-term memory (LSTM) was proposed for the
diagnosis of dementia. LSTM was used to create a memory component that was both for the short
and long term as compared to traditional RNNs. For feature selection part Brouta algorithm based
on Clinical Dementia rating CDR and mini mental status examination MMSE was exploited. The
accuracy of this method was 95% on the test dataset. Abdulkareem and Ebrahim [12] have
recommended two deep learning algorithms based on ResNet-50 and AlexNet for AD
classification on the OASIS dataset. AlexNet with 25 layers achieves an accuracy of 92.2% while
177-layered ResNet50 reaches an accuracy of 93.1%.

In [13] Researchers have proposed a 3-way hybrid analysis using clinical and MRI images for the
classification of AD. In this study to extract and classify features hybrid technique that was
consisted of four algorithms AlexNet-MLP, AlexNet-NB, AlexNet-ETC, and AlexNet Adaboost.
Researchers have tested these on three different datasets OASIS, ADNI, and EEG. Different
accuracies such as 95.32% for OASIS by using AlexNet-ETC, 97.7% for ADNI, using AlexNet-
MLP, and 92.5% for EEG using AlexNet-MLP have been achieved. Island and Zhang [14] have
proposed an ensemble learning technique for the categorization of AD. In this research, their

proposed model was also able to predict different stages of AD. Three different convolutional



networks with different configurations were used which include convolution, batch normalization,
Relu, and pooling. An accuracy of 93% was achieved. Residual-based multistage deep learning
architecture was proposed by Hassan and Shin. [15]. This model comprised five stages for feature
enhancement while maintaining model depth. To reduce overfitting, they used deep learning-based
feature selection techniques as well. This model was tested on Three different datasets ADNI,

OASIS, and MIRAID. Accuracy rates of 99.46. 99.7 and 99.1% respectively was achieved.

In [16] a 2D convolutional network was proposed for the detection of AD. In this method, the
model has learned various features from brain images. Two transfer learning architectures
Inception Vision 3 and Xception for feature learning along with separable CNNs were developed
for AD diagnosis task. Overall, 93% accuracy was achieved by fivefold cross-validation.
Moreover, Atif and Moazzam [17] have designed a deep Siamese CNN (SCNN) for the detection
and classification of AD. This model was inspired by VGG16 and OASIS dataset was used for
testing and training purposes. A test accuracy of 98% was attained in this study. Additionally,
researchers have also suggested a transfer learning-based approach for early detection and
diagnosis of different stages of AD [18]. AlexNEt was Alex Net pre-trained on segmented and
non-segmented images. The progress of the recommended model was evaluated on the OASIS
dataset with an accuracy of 92.85%.

Table 1: Summarized Literature Review

Study Methodology Dataset Accuracy Key Findings

Sarraf & Tofighi | Transfer Learning ADNI, 86.47% ResNet for feature

(2016) (ResNet + SVM) OASIS extraction, concatenated
with age & gender,
classified with SVM.

Hinton et al. Modified Capsule OASIS 92.39% Squash activation

(2018) Network function improved
computational efficiency.

Liuetal. (2019) | Ensemble Learning MRI 94.1% Segmented hippocampus

(Image Segmentation) Images region outperformed full-

image approach.




Gopi & Nali CNN (Adam optimizer, | OASIS 83.33% CNN with Adam
(2020) Cross-Entropy) optimizer achieved
satisfactory performance.
Zhang et al. LSTM + Brouta CDR, 95% Memory component
(2021) Algorithm MMSE improved short- and long-
term feature learning.
Abdulkareem & | Deep Learning OASIS 92.2% AlexNet (25 layers) and
Ebrahim (2021) | (ResNet-50 & AlexNet) (AlexNet), ResNet-50 (177 layers)
93.1% tested.
(ResNet-50)
Lee et al. (2022) | 3-Way Hybrid OASIS, 95.32% Hybrid approach using
(AlexNet-MLP, ADNI, (OASIS), clinical and MRI images.
AlexNet-NB, AlexNet- | EEG 97.7%
ETC, AlexNet- (ADNI),
Adaboost) 92.5% (EEG)
Island & Zhang | Ensemble Learning (3 - 93% Predicted different AD
(2022) CNN Variants) stages using CNN
variations.
Hassan & Shin Residual-Based ADNI, 99.46% Deep learning-based
(2022) Multistage Deep OASIS, (ADNI), feature selection and five-
Learning MIRAID 99.7% stage architecture reduced
(OASIS), overfitting.
99.1%
(MIRAID)
Kimet al. (2023) | 2D CNN + Transfer Brain 93% Fivefold cross-validation
Learning (Inception Images approach.
Vision 3, Xception)
Atif & Moazzam | Deep Siamese CNN OASIS 98% SCNN model inspired by
(2023) (SCNN) VGG16 for AD
classification.
Patel et al. Transfer Learning OASIS 92.85% Evaluated early detection
(2023) (AlexNet on Segmented performance using
& Non-Segmented segmented images.
Images)

2.3  Our Work

The rise of deep learning in the medical industry has significant and lasting influence on detection
and classification of different diseases. In the medical sector the understanding of complex
structures of medical images and prediction of disease is always challenging. To overcome this,
researchers are working in this area of research. The early detection of Alzheimer’s disease is

necessary so patients can get enough medical treatment to get rid of this early. Thus, designing a



deep learning algorithm for classification of Alzheimer’s disease will help medical experts for

their decisions.

Some noticeable features of the proposed study are stated as follows:

2.4

The transformer-inspired spatial attention mechanism integrated with compact CNN
framework is suggested to produce an accurate and efficient solution for Alzheimer’s
disease diagnosis

A non-linear activation function named Gompertz Linear Unit (GLU) is exploited in the
proposed network for capturing complex relationship in the given data and to overcome
the issues of dead neuron and vanishing gradient faced in existing activation operations.
The Partially adaptive variant of Adam optimizer (Padam) is utilized in this study, to
address the challenges of the over adaptiveness in existing techniques. Moreover, the
incorporation of Padam provides flexibility to fine-tune the model as needed which
improves the performance in terms of accuracy and speedy convergence.

Explainable Artificial Intelligence (XAI) is exploited to produce an interpretable
diagnostic insight which will be valuable for healthcare professionals to make the informed

clinicals decisions.

Summary

This chapter has described the basic concepts and literature review of Deep learning

algorithms along with their limitations. The next Chapter provides the detailed description of the

proposed methodology and Auto-encoders.
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CHAPTER 3

PROPOSED METHODOLOGY

3.1 Introduction

This portion delves with a general summary of the proposed partially adaptive optimization

driven spatial focused CNN with Gompertz non-linearity for interpretable Alzheimer’s disease

diagnosis. It includes detailed overview of proposed methodology containing simulation

environment, dataset description, proposed CNN model, local interpretable model-agnostic

explanation, Padam and Gompertz Linear Unit. Fig 3 displays the overall methodology for the

proposed research.

Data Analysis

Testing Trainng

Data distribution Data Biasnes

Data Framing

-G5-

Data Pre-processing

@

£

Explainable Al

@<

S0

@0

Pre-processing

Data Normalization Urider an.d
oversampling

— :

Proposed CNN

Model Evaluation Evaluation Metrices

Fig 3: General Work-flow of the Proposed Study
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3.2  Database Description

An OASIS database [19] is utilized consisting of more than 80000 MRI (brain) images of the
people effected and not effected by the Alzheimer’s disease. The dataset contains four classes of
brain MRI images such as very mildly demented (VMD) containing 13.7k images with high degree
of AD, moderately demented (MOD) containing 488 images with initial stage AD, mildly
demented (MID) involving 5002 images with more severe AD, and non-demented (NOD)
comprising of 67.2k images without AD. To improve the performance of the model, necessary
preprocessing steps such as data balancing and data normalization were performed. Training,

validation and testing are done by splitting the dataset in the ratio of 85:10:10 respectively.
3.3  Proposed Model

Convolutional Neural Networks (CNNSs) are being widely used in computer vision problems for
feature identification and extraction in images. Recently, due to their outstanding accomplishments
in dimension reduction and extraction of attributes, CNNs are extensively used in imagery in
healthcare problems. This research suggested a customized CNN architecture for Alzheimer’s
disease diagnosis. The general block schematic for the suggested architecture is in Fig 4. The
architecture comprises three blocks. The firsttwo blocks consist of two convolutional layers with
Gompertz non-linear activation function to reduce parameters complexityand increase training
speed. Additionally, spatial attention mechanism is exploited within CNN model to focus on
specific features for enhanced prediction. The final block includes a flatten layer that alters the 3D
feature map to 1D. Then this is followed by a fully connected dense layer and two further dense
layers along with a Gompertz non-linear activation function for the classification of Alzheimer’s

patients and normal ones. The detailed architecture of the proposed model is shown in Table 1.

12
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Fig 4: Block Diagram of the Proposed Spatial Focused CNN Model

3.4 Spatial Attention
The CNN model has been exploited with a special attention mechanism [20] that helps in

complexity reduction and also enhances the value of major contributing factors in the classification.
The layered representation of the incorporated mechanism is shown in Fig 5. This attention

mechanism has enhanced the accuracy of the model as well. By ensuring the

utilization of interrelationships between different features a spatial attention map is created. In
contrast with channel attention, spatial attention only concentrates on the informative part where
this is located. We initially perform max pooling that will result in an output of effective feature
descriptor before the computation of spatial attention. This pooling technique effectively
highlights informative regions. The input tensor block relates to a specific input image given to
the module. There is a Conv2D layer that is also known as the attention block is responsible for
the calculation of attention weights. There are trainable parameters in this module which implies

that there is automatic adjustment of different parameters like weight and biases. Additionally,

13



attention weights that have been calculated match the significance of every region, and then
element-wise multiplication between input and attention weights is carried out to get weighted
output. This weighted output refers to the original input after channel-wise attention mechanism
operation, where sections with prominent features within provided images are given spatial
attention weights. This model benefits from spatial attention when it comes to focusing on
comprehensive information, giving task-relevant critical position information a higher weight, and
reducing the importance of irrelevant noise information. By highlighting the channel that is most
important for the given prediction, it provides insightful information about the process by which

the suggested model make decisions.

conv layer /‘
> @ —
/-%

L

Max pooling, . Spatial
Refined Avg Pooling Concatenation gitention
features

Fig 5: Layered Representation of Spatial Attention

3.5 Gompertz Non-Linearity (GNL)

In this study, we have introduced an unexplored activation function in the proposed CNN model
which is inspired by a mathematical model named as ‘Gompertz Function (GF)’ mainly utilize [21]
to elaborate the progression the process. GNL is designed to offer a mix of linear and non-linear

transformations [22]in the deep neural network for capturing latent feature characteristic in the

14



complex data like medical imaging. The mathematical expression for Gompertz function is given

below, which results in a curve similar to sigmoid:

Where y refers to the growth rate and u is the point of inflection. However, the above expression

g = e—e_)/(i_ﬂ) 1)
is further modified for simplified computations and making it compatible with the neural
activations. The scaled sigmoid transformation is exploited to leverage the capabilities of

Gompertz function into a neural activation.

GNL() = i.o(u.i + a) 2)
Where i is the input, o () refers to the sigmoid operation, u and « are the learnable parameters
which will be automatically adjusted during the training of deep network. The dot product of an
input i and a non-linear sigmoid term permits the deep model to scale the operations on the basis
of learnable parameters for making a smoother balance between linear and non-linearactivation

operation in the deep neural networks.

3.6 Partially Adaptive Moment Estimation (Padam)

Padam an evolved version of Adam [23], designed to improve the balance between
convergence and generalization of the optimizer. It introduces a new factor p, which
adjusts the adaptivity level in the optimization technique. The pseudo code and
mathematical basis behind the proposed partially adaptive moment estimation (Padam) are

detailed in Algo-1.
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Algo-1: Padam - Pseudo Code-based Mathematical Intuition

Input:

Preliminary point: w, ¢ Z, momentum terms: g, ,, B, partially adaptive

term: p € [0,1],step size: s,

To begin with, m; = 0,e, = 0,é, =0

¢, = Vh(w,)
m, = :Bltmt_1 +(1- .Blt)ct
et = ﬁzet_l + (1 - ﬁz)ci_?

é, = max(é, ;,e,)

s = g, diag (&0 ) (we — seme/E)

end

Table 2: Architecture Parameters of Proposed Model

Layer (type) Output-Shape Parameters
Conv-2D (None,126,126,200) 5602
Spatial attention (None,126,126,200) 19
Average_pooling-2D (None,63,63,200) 0
Conv-2D-2 (None,61,61,100) 180102
Spatial_attention-1 (None,61,61,100) 19
Average_pooling-2D_1 (None,30,30,100) 0
Flatten (None,90000) 0
Dense (None,100) 9000102
Dense-1 (None,50) 5052
Dense-2 (None,4) 204

Total-params: 9191049 (35.06 MB)

Trainable-params: 9191049 (35.06 MB)

Non-trainable-params: 0 (0.00 B)
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In Algo-1c; is the resultant stochastic gradient, and &.is the moving average of 2nd degree
momentum for the computed stochastic gradient. The main difference between Algo-1 and regular

Adam [23] is the insertion of the "partially adaptive term (p) " by the second-degree momentum.

n
Wi = We — Sté_pt ' ©)
t

where &; = max(é;_4, &;)

Padam modifies the basic Adam optimizer by adjusting the second momentum studied in adaptive
learning rate. The general updating rules for both regular Adam and suggested Padam are listed

below:

Wiy = W — O-\/élil:—g (Adam) (4)

Where, m, and e, are 1% and 2" order momentum estimate, ¢ is learning rate (LR) and ¢ is

constant term.

: (Padam) (5)

In Eq (5), é;is raised to the power of p (0<p<1), making the learning rate Somewhat adaptive. Eq

(4) employs \/é_t for flexible learning rate, which sometimes results in poor generalization
outcomes. Padam offers a partially adjustable term (p) to tune the supremacy of &;. This addition
can reduce the adaptiveness of learning trends while improving generalization features. Padam
proposes bridge the convergence-generalization gap using adaptive control. Exploration of
partially adaptive terms (p) allows for a more supervised convergence method, avoiding excessive

adaptiveness, which can impede convergence. For the Tensorflow implementation of the
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recommended Padam, we essentially change the conventional Adam optimizer's update_step.

Algo-2 presents the TensorFlow-like pseudocode for the suggested Padam.

Algo-2: Padam — TensorFlow code-like pseudocode

Import TensorFlow as tf
# define the custom Padam class which inherits the tensorflow optimizer class
Class Padam(tf.keras.optimizers.Optimizer)
# Initialize the hyperparameters for optimizer class
def _ init__ (self, learning_rate=0.01, betal=0.9, beta2=0.999, epsilon=1e"-9, p =

0.125):

# make slots for 1 moment (n), 2" moment (e) and max 2" moment (ecap)

def _create_slots(self, variable_list):

# For computational Compatibility with tensorflow convert specified parameters to tensors

def_prepare(self):

# update-rule

def_apply_dense(self, gradient, variable):

# obtain bias corrected LR

LR=self. LR*sqrt(1-beta2_power)/(1-betal_ power)

# modify 1% moment approximation
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end

n_t=betal*n + (1-betal)*gradient

# modify 2" moment approximation

e_t=beta2*e + (1-beta2) *(gradient*gradient)

#Modify maximum 2" moment approximation

ecap_t=max (e_t, ecap)

# Utilize update-rule

variable_update= variable — LR*n_t / (ecap_t" p +epsilon)

return variable_update

# to hold sparse gradient

def_apply_sparse(self, gradient, variable):

# Modify power accumulators

def_finish (self, modified_ops, name_scope):

# compilation

model= Padam(learning_rate=0.005, p = 0.225)

19



3.7 Convergence Evaluation of Partially Adaptive Moment Estimation
(Padam)

This section goes into the convergence analysis of the suggested Padam optimizer in an online
optimization context [24]. The primary goal is to lower the aggregated objective value for a set of
loss operators hy, hy, ... ... , hr.. Furthermore, the Padam optimization technique computes a point
w, € Z, where Z represents the reachable group for each step time t. Beyond this, a loss operator
g_tis formed, and the technique incurs loss of g;(w;).. Assuming w™* as the optimal outcome, the

aggregated objective operator is:

T
w* € argmingec, Z he(w)
=1 (6)

In this case, Z is an achievable group for every step t. The regret approach is also used to evaluate
the proposed strategy. It measures the number of previous loss values h;(w;)in relation to the
optimal parameter w*from the achievable group (Z). The following is a summary of the regret

approach:

T

Kr = ) (hu(w) = he(@) o
t=1

From the above equation (36), the main aim is to predict w; and reduce overall regret (K;). The

analysis is performed with convex loss functions along certain assumptions.
Assumption-Each h;(w) are convex operatorson Zfor 0 <t < T witheach a, b € Z.

he(b) = he(a) + Vh(a)" (b — a) (8)
This presumption serves as a benchmark for online optimization-learning and is also used by
standard optimizers like Adam[24] and Adagrad [25]. Under above assumption, if convex
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attainable group Z has bounded span i.e., ||w — w*|| < Eo foreach w € Z, and h, has confined

gradients like ||Vh:(w)]|eo < Lo foreach w € Z, 1 < t < T. Moreover, assuming s; = % Bt =

Byt~ wherey € [0,1]and 0 < B, B, < 1, p € [0,1] , the regret approach for Algo-1 will be:

Eoo? d Ap sLoo(l—ZP) [1+logT d ) . BldEoozLoo(Zp) (9)
ke = 25050 VT (1-B1)2(1-Q)(1-B2)P allen: Tl + 25(1-B)(1-1)?

Where Q = 2L < 1. Similar to Adam [4], the aforementioned discussion demonstrates that

VB2

partially adaptive moment estimation (Padam) regrets are significantly better than current online
gradient descent techniques. Additionally, it is shown that despite the limited moment delay S,; =

a4 /t, the regret bound still remain same. For each T > 1, the regret operation for Padam fulfills

Kz = 0~(\/T), which shows that Padam converges to ideal outcome when loss functions are

convex as given by lim;_,.K;/T — 0. This detailed discussion concluded with a fact that the

suggested Padam optimizer resulted a regret operations of 0~ (+/T), which is the optimal known

parameter for any convex learning problem.

3.8 Local Interpretable Model-Agnostic Explanation (LIME):

In the healthcare sector, the accountability of the solution is crucial for fostering confidence in Al-
based analytical tools. Thisis why the application of explainable Al to transparent, approachable, and
user-friendly solutions is utilized for comprehensible Alzheimer's disease categorization. As the
complexity of algorithms increases, XAl [26] is needed for critical identification, especially in the
field of medical imaging. This can help medical experts understand the model and then predict
different patterns and diseases. Various XAl methods, such as gradient weighting class activation

mapping (Grad-CAM), local interpretable model-agnostic explanation (LIME), and Shapley
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adaptive explanation (SHAP), exist, which illustrate promisingresults in explaining the conclusive
behavior of the Al-based models. However, we have utilized LIME [27] for the interpretability of
our solution. LIME selects a particular case that demands elaboration. To create a collection of
comparable but marginally different examples, this instance is disrupted. The predictions of the
complicated model are then obtained for this modified dataset. The third phase involves training a
more easy-to-understand interpretable model like a decision tree on the perturbed occurrences and
the predictions that go along with them. It teaches how the model works by weighing different
features and inputs [28]. In the area of the selected instance, this interpretable model serves as a
substitute for the complex model. Finally, the original forecast is explained in a way that is
understandable by humans using the coefficients of the interpretable model to describe the
contribution of various aspects. The LIME [29] technique essentially provides important insights
into the decision logic of deep learning algorithms by bridging the gap between interpretation and

complicated models. The graphic diagram of LIME-based explainable Al is given in Fig 6.

22



1

-
3.9
1 ) Test Dataset

~
User Test Instance P T
O
) ]
Explanation / t's\
- " & = g
Random Data - ','Q ! '\"’ 3';': s
Perturbation °~ "'s 7
- ®
N\
.O. Features Selection New Sample
Weightages °
* 3
Labels Prediction r

Model Training
For New Samples

- < @c@ [ § P \
Y 2 { L 7
Fig 6: Working Process of LIME for Interpretable Predictions

Summary

This chapter has described the proposed methodology of research. The description of different

terminologies and dataset has been discussed. The next chapter will briefly explain the results and

simulations of the proposed architecture.



CHAPTER 4

SIMULATIONS AND ANALYSES

4.1 Introduction

This portion of the research assessment explains the implementation of the suggested customized
CNN architecture along with the spatial attention mechanism for the identifying and categorizing
of Alzheimer's disease on the benchmark OASIS database. Following comprehensive
hyperparameter adapting, the suggested model is implemented with ideal parameters which
contain the range of learning rate (LR) and partial adaptivity (p) values of the Padam optimizer i.e.
trade-off between robustness and simplicity. Allthe possible variations were carried out to fine-
tune the hyperparameters. Three case studies that represent various modifications and variations
in optimization methodologies to get the best forecast feasible for the given assignment make up

the overall result part.

4.2 Simulations and Results

This section includes subsections like data manipulation, datasets particulars, simulation
description, simulation setting, ranking-based evaluation metrics, results and discussion and

detailed analysis.

4.2.1 Study-I (With LR =0.00001 and p = (0.125 to 1)):

To begin with, the proposed model is executed with a partial adaptive (Padam) optimizer. The
value of partial adaptivity p varies from 0.125 to 1 with a difference of 0.25. The learning rate for
this case study was 0.00001. For this learning rate, the model has been evaluated with different

performance parameters like accuracy, F1-Score, etc. The overall performance of various p values
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with a learning rate of 0.00001 can be evaluated from Table 2. It can be seen that at p =0.25 model

performancewas worst with the lowest accuracy of about 39%, while the model performed well at

p=0.75 and reached an accuracy of 99%. The learning behaviors of the proposed model associated

with variations of study-I can be seen in Fig 7(a) & 7(b). It is concluded from the study-I, that with

a learning rate of 0.0001, the proposed model shows best assessment outcomes on p=0.75 which

can be illustrated by the mean of confusion matrix shown in Fig 7 (c).

Table 3: Performance Evaluation of the Proposed Model with LR=0.00001 ((Precision as PR,

Recall as RE, F1-Score as FS, Loss as LS and Accuracy as AC (%))

Training Set Validation Set Teé;'tng
Optimizer Labels
PR| RE | FS | LS| AC| PR| RE| FS | LS| AC| PR | RE | FS| LS| AC
Non- 0.96| 0.98 | 0.97 0.93| 0.95 | 0.94 091 | 0.96 | 0.94
Do e 96| 0. . 93| o. . . . .
VveryMild 1 5| 96 | 0.97 097| 0.92 | 0.94 097 | 091 | 094
Padam Demented
S S 0.06| 0.98 0.09| 0.96 009| 096
! 0.99| 1.00 | 1.00 0.98| 1.00 | 0.99 098 | 0.99 | 0.99
Demented
Moderate 1.00| 1.00 | 1.00 1.00| 1.00 | 1.00 0.99 | 1.00 | 0.99
Demented
Non- 0.49| 044 | 0.46 0.46| 0.42 | 0.44 048 | 043 | 0.46
Demented
VeryMild | 43 019 | 026 047| 021 | 0.28 050 | 019 | 0.27
Padam Demented
(025 ” 127| 051 1.28| 0.50 131 039
' Mi 047| 047 | 0.47 0.46| 0.46 | 0.46 046 | 046 | 0.46
Demented
Moderate 057| 093 | 0.71 056| 0.94 | 0.70 0.17 | 0.96 | 0.29
Demented
Non- 0.99| 1.00 | 1.00 0.97| 0.96 | 0.97 098 | 097 | 097
o e 99| 1. . 97| o. . . . .
veryMild 4 65 1 69 | 1.00 0.97/ 0.98 | 0.98 0.97 | 0.99 | 0.98
Padam Demented
(0205) i 0.01| 0.99 0.06| 0.98 007| 098
1.00, 0.99 | 1.00 0.99 0.99 | 0.99 1.00 | 0.99 | 0.99
Demented
Moderate | 4 1 1 99 | 1,00 1.00 1.00 | 1.00 0.97 | 1.00 | 0.98
Demented
Non- 1.00 1.00 | 1.00 0.99 0.97 | 0.98 0.99 | 0.98 | 0.99
Demented
Padam VeryMild |4 45 100 | 1.00 | 0.00 1.00 0.98 0.99 | 0.98 | 0.03 0.99 0.99 | 0.99 | 0.99| 0.03| 0.99
(p=0.75) Demented
Mild 1.00{ 1.00 | 1.00 1.00{ 1.00 | 1.00 1,00 | 1.00 | 1.00
Demented
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Moderate |, 5 1 59 | 1,00 1.00] 1.00 | 1.00 0.99 | 1.00 | 0.99
Demented
Non- 0.90 0.90 | 0.90 0.69 0.66 | 0.68 0.66 | 0.69 | 0.67
Demented
Padam \[;demg 0.91/ 0.89 | 0.90 0.70 0.66 | 0.68 0.66 | 0.66 | 0.66
il 0.16 0.94 0.55 0.80 058| 0.72
(p=1.0) ! 0.96 0.97 | 0.97 0.84 091 | 0.88 0.82 | 0.78 | 0.80
Demented
Moderate | oy 1 59 | 1,00 0.99 1.00 | 1.00 0.89 | 0.90 | 0.89
Demented
Validation Loss Trends for Study-I
L4 m | i 4 1
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Fig 7: Performance Evaluation of Proposed Model in Study-I (continue)
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4.2.2 Study-II (With LR =0.0001 and p = (0.125 to 1)):

The learning rate was increased to 0.0001 for evaluating the accuracy level of the model.

This study with a higher learning ratefrom the previous case has been studied and assessed

with different values of partial adaptivity p. After the implementation ofvarying p values

the model has shown the lowest accuracy with a p-value of 1, and the model has achieved

an accuracy of 59%.Conversely, the model performance was extraordinary at p=0.5 with

the highest accuracy of 99%. The performance of the proposed model with variations of

study-11 is given in Table 3. The learning behaviors of the recommended model associated

withdeviations of study-11 can be seen in Fig 8(a) & 8(b). It is concluded from the study-

I, that with learning rate of 0.0001, the proposed architecture shows best classification

performance on p=0.5 which can be verified by means of confusion matrix shown in Fig

8(c).

Table 4: Performance Evaluation of the Proposed Model with LR=0.0001 ((Precision as
PR, Recall as RE, F1-Score as FS, Loss as LS and Accuracy as AC (%))

Training Set Validation Set Testing Set
Optimizer Labels
PR| RE | Fs | Ls| ac| PRI RE | Fs | Ls| Ac| PR | RE |Fs | Ls| Ac
Non-Demented | 0.81] %8 | 0.7 077 05 | 06 080 | 063 | 071
4 2 9 7
Very Mild o9 04 | 05 o77] %4 | 05 0.80 | 0.43 | 0.56
Padam Demented 4 6 2 4
adam 0.56| 0.76 0.59| 0.73 060| 070
(p=0.125) . 09 | 07 09 | 07
Mild Demented 0.59 0.57 0.59 | 097 | 0.74
7 | a4 6 | 2
Moderate 1.0 0.9 1.0 0.9
poderate oogl 10| % osg 0| % 0.88 | 1.00 | 0.93
Non-Demented | 1.00 %2 | 92 0.99| 02 | 09 0.99 | 093 | 0.96
6 | 8 3 | 6
Padam Very Mild 10 | 09 09 | 09
oo very 098 10 | % | 0.03| 0.98| 095 % | % | 008 097| 096 | 098 | 0.97| 008| 097
Mild Demented | 0.99 1(')0 Oég 0.97 059 Oég 0.97 | 1.00 | 0.98
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Moderate 10 | 1.0 1.0 1.0
Moderate vool 10| Loo| 10| 4 0.96 | 1.00 | 0.98
Non-Demented | 1.00 20 | 10 0.99| 09 | 09 0.99 | 098 | 0.98
o | o 9 | 9
\éeryM"d 100 10| 10 0.99) 02 | 09 0.98 | 0.99 | 0.99
Padam emented 0 0 9 9
a 0.00| 1.00 0.02| 0.99 002| 099
(p=0.50) . 10 | 10 10 | 10
Mild Demented | 1.00 1.00 1.00 | 1.00 | 1.00
o | o o | o
Moderate 10 | 1.0 1.0 1.0
Moderate vool 10| voo| B0 | 4 1.00 | 1.00 | 1.00
Non-Demented | 1.00 20 | 10 083 08 | 08 082 | 081 | 082
o | o 3 | 3
Very Mild 10 | 10 08 | 08
very M vool 10| oss| % | % 083 | 085 | 0.84
padam 0.01| 0.99 0.39) 0.90 040| 086
(P=0.75) | Mild Demented | 1.00 160 1(')0 0.95 0%9 069 093 | 091 | 092
Moderate 10 | 1.0 1.0 1.0
Moderate vool 10| ogel 10| 1 0.98 | 095 | 0.96
Non-Demented | 0.60] %> | &2 055 05 | 05 0.60 | 054 | 057
5 | 7 1| 3
Very Mild 050 0.7 | 05 049 0.7 | 05 048 | 071 | 058
Padam Demented 3 9 1 8
a 12.9| 0.68 15.1] 0.66 161] 059
(p=1.00) _ 04 | 06 04 | 05
Mild Demented | 0.85 0.82 083 | 043 | 057
7 | o 4 | 7
Moderate 1.0 | 0.9 1.0 | 0.9
Moderate ogg 10| % 092 10| % 0.63 | 1.00 | 0.77

Validation Loss Trends for Study-II

804

60
—o— PADAM(p=0.125)
PADAM(p=0.25)
4 PADAM{p=0.5}
40 ~4- PADAM(p=0.75)
* ¥ PADAM(p=1.0}

Loss

20 3 %

o] gt

4] 2 1

[ 8 10
Epoch

(@)

Fig 8: Performance Evaluation of Proposed Model in Study-11 (continue)
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4.2.3 Study-III (With LR =0.001 and p =0.125 to 1):

The learning rate was further increased to 0.001 and the model has been trained and validated on

various values of p. The modelperformance with this learning rate was best in all of the cases

under this study. The overall model has shown a poor performance with an accuracy of 59% while

using a value of p=1. However, the model achieved the highest accuracy of 99.35%

when it was

trained and tested with p=0.25. The model's overall behavior and performance are shown in the

Table 4. The learning behaviors of the proposed model associated with variations of study-I11 can

be seen in Fig 9(a) & 9(b). It is concluded fromthe study-I, that with learning rate of 0.0001, the

suggested model shows best categorization performance on p=0.25 which can be illustrated using

the provided confusion matrix. shown in Fig 9(c).

Table 5: Performance Evaluation of the Proposed Model with LR=0.001 ((Precision as PR,
Recall as RE, F1-Score as FS, Loss as LS and Accuracy as AC (%)).

Training Set Validation Set Testing Set
Optimizer Labels
PR| RE | FS | Ls| Ac| PR| RE | Fs | LS| Ac| PR | RE | FS | LS | AC
Non-
1.00| 1.00 | 1.00 1.00| 0.98 | 0.99 099 | 0.98 | 0.99
Demented
VeryMild |4 61 4 00 | 1.00 0.98 1.00 | 0.99 0.99 | 0.99 | 0.99
Padam Demented
(o0.125) N 0.01| 1.00 0.02| 0.99 002 | 099
-0, :
Demented | 00| 100 | 1.00 1.00| 1.00 | 1.00 1.00 | 1.00 | 1.00
Moderate | 4 )1 1 55 | 1.00 1.00| 1.00 | 1.00 099 | 1.00 | 0.99
Demented
Non- 1.00| 1.00 | 1.00 1.00| 0.98 | 0.99 099 | 0.98 | 0.99
Demented
VeryMild |4 51 4 00 | 1.00 0.98| 1.00 | 0.99 0.98 | 0.99 | 0.99
Padam Demented
(00.25) N 0.00| 1.00 0.02| 0.99 002 | 099
‘ ! 1.00| 1.00 | 1.00 1.00| 1.00 | 1.00 1.00 | 1.00 | 1.00
Demented
Moderate
Domeneq | 1.00| 1.00 | 1.00 1.00| 1.00 | 1.00 1.00 | 1.00 | 1.00
Non- 1.00| 1.00 | 1.00 0.99| 0.98 | 0.99 099 | 098 | 0.98
Demented . . . . . . . . .
Padam VeryMild 14 1 100 | 1.00 | 0.00| 1.00| 0.98| 099 | 0.99 | 0.03| 0.99| 0.98 | 0.99 | 0.99 | 0.03| 0.99
(p=0.5) Demented
Mild
Demented | 1:00| 100 | 1.00 1.00| 1.00 | 1.00 1.00 | 1.00 | 1.00
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&?ﬁ;‘;‘;ﬁ 1.00| 1.00 | 1.00 1.00| 1.00 | 1.00 099 | 1.00 | 0.99
Non-
Demameq | 000| 0.00 | 000 0.00| 0.00 | 0.00 0.00 | 0.00 | 0.00
\égge'\rftgg 0.00| 0.00 | 0.00 0.00| 0.00 | 0.00 0.00 | 0.00 | 0.00
?paf(? ?5) Mild nan| 0.25 nan| 0.24 nan 0.05
' Demerteq | 000] 0.00 | 000 0.00| 0.00 | 0.00 0.00 | 0.00 | 0.00
&%ﬁ:ﬁgg 025 1.00 | 0.40 0.24| 1.00 | 0.39 005 | 1.00 | 0.09
Non-
e | 041] 0.12 | 049 041] 013 | 0.19 041 | 014 | 0.20
d \é:xemg 0.36| 0.38 | 0.37 0.36] 0.38 | 0.37 038 | 038 | 0.38
E’pa:fg; Mild 1.63| 0.43 1.81| 0.42 1.89 0.30
' Demerted | 054] 029 | 038 0.49| 0.28 | 0.36 055 | 029 | 0.38
Ig"e‘r’g:;?;fj 0.44| 091 | 059 0.44| 090 | 059 040 | 087 | 018
167 Validation Loss Trends for Study-Ill
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Fig 9: Performance Evaluation of Proposed Model in Study-I11 (continue)
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4.3 Discussion

It is evident from all of these case studies that the partial adaptivity (p) value is a key factor in
determining the model's performance; as p rises above 0.5, the model shows a downward trend
in accuracy, indicating a negative impact on its learning ability; this decline in performance is
consistent across a range of p values, indicating that higher levels of partial adaptivity may
impede effective convergence; the analysis also shows that model stability is dependent on the
choice of suitable parameters, highlighting the necessity of optimizing p to achieve better

generalization and efficiency.

With a learning rate (LR) of 0.001, the optimal performance among the tested configurations is
attained at p = 0.25 p = 0.25. This combination effectively improves model learning by producing
the maximum accuracy while reducing loss. This conclusion is corroborated by additional
evaluation criteria, which demonstrate that the model continues to behave optimally in these
particular circumstances. These findings highlight the significance of meticulous parameter
tweaking in deep learning models, where overall performance and predicted accuracy are greatly

improved by striking the ideal balance between stability and adaptability.

4.3.1 Comparison with benchmark models:

The suggested model demonstrates significant performance by achieving test accuracy of 99%,
which confirms the model's durability and universality, according to the results and discussion
section. Additionally, by achieving such great accuracy the proposed solution outperforms the existing

state-of-the-art (SOTA) models in terms of accuracy, efficiency and interpretability.In Table 5, an
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extensive performance comparison of suggested models with standard solution is given which gives

insightful information about the noteworthy results achieved by the recommended solution.

The proposed CNN [30] model demonstrates the efficient and accurate classification of AD. The
proposed solution is designed through CNN architecture integrated with an attention mechanism
that focuses on critical and most weighted regions of the human brain. The model was trained by
using benchmark data i.e. OASIS. The model evaluation was performed using key metrics i.e.
accuracy, F1 score, recall, etc. After in-depth training and testing of the model, it is observed that
the model has outperformed the existing models in terms of efficiency and accuracy. The model was
reliable and capable of detecting different stages of AD. To make the model more interpretable the
explainable Al i.e. LIME was employed to visualize important and effective features. This
capability improved the trust in the model’s output, making it suitable for clinical applications

where explainability is crucial. The projected outcomes by the suggested model on the test data

with LIME-based explainability is given in Fig 10(al) to 10(h3), which provides valuable insights
about the regions of the MRI on the basis of which decision is taken with graphical representation of top

features.
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Table 6: Performance Comparison of Proposed Model with Existing Solutions

Ref Approach Interpretability | Epoch Model Model FLOPs Accuracy
Parameters Size (Billion) (%)
(MB)
[7] Transfer X 300 25,625,741 102.41 40 78.72
Learning
[8] Capsule X 1000 18,361,136 70 13.33 92.39
Network
[9] Deep Neural X 30 14,634,372 58.3 9.47 94
Network
[10] CNN X 80 11,850,634 47.2 7.83 83.3
[11] LSTM X 175 - - - 94
[12] AlexNet + X 10 19,763,200 75 19.64 94.8
SVM
[13] AlexNet-ETC X - 62,472,951 238 94.81 95.32
Hybrid
Model
[14] Ensemble X - 128,648,641 488 162.83 93.18
Learning
[15] Transfer X 30 - - - 96.7
Learning
[16] Transfer X 10 62,378,344 249 98.62 92.85
Learning
[17] Deep Siamese X 20 138,947,624 555 183.74 99.05
CNN
Proposed Spatial 4 12 9,191,100 35.06 1.55 99.35
Model Focused CNN
with Gompertz
non- linearity
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4.4  Summary

The simulation of proposed architecture has been discussed in this section. The different case
studies have been discussed according to different hyperparameters and their effects on models

have been presented. The results and future work will be briefly described in the next chapter.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Introduction

As discussed in the previous chapters, these conclusions have been derived from the
suggested algorithm for Alzheimer’s disease classification. Besides from conclusion, this chapter
also provide recommendation for researchers who wish in doing future research by implementing

proposed methodology or adopting proposed methods in different domain.

5.2  Conclusions

The major findings of the proposed study are:

e The exploration of spatial attention module within CNN architecture is a useful approach
to design an accurate andefficient model for tasks at hand.

e Furthermore, the exploitation of Gompertz non-linearity in neural activation operation
results in smooth trainingprocess by intelligently overcoming the problem of dead neurons
and vanishing gradients.

e The incorporation of partial terms within standard Adam optimizer is beneficial for
controlling the over-adaptiveness factor and providing more flexibility in fine-tuning the
optimization as per the model needs.

e Opverall, the proposed model is reliable in the early diagnosis of AD which is truly visible

through its generalized test accuracy and other evaluation metrics.
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5.3

Future Work

Although the accomplishment and efficiency of the proposed model for Alzheimer's disease

classification and identification is encouraging, there are a few extents that need more research

to improve its performance and effectiveness:

>

Multi-Modal Data Integration: To provide a more complete diagnosis tool, the model is
being extended to incorporate multi-modal data, such as genetic information, biomarkers,
and clinical records.

Hardware Acceleration: Using GPU-based training to speed up processing and make it
possible to test out bigger datasets and more intricate model architectures.

Personalized Diagnostics: Investigating methods to include patient-specific data into the
classification process to personalize it and produce more precise and customized
predictions.

Explainable AI (XAI): Improving the model's explainability by incorporating
sophisticated interpretability methods, like Grad-CAM++ or SHAP values, to give
physicians a better understanding of the model's decision-making process.
Cross-Population Validation: To assess the model's generalizability and robustness
across a range of demographic and clinical contexts, validation studies are carried out on
a variety of datasets from distinct populations.

Development of Real-Time Applications: Creating real-time diagnostic systems that can
be integrated into healthcare environments while guaranteeing the model's scalability and
usability in clinical workflows.

Longitudinal Data Analysis: This method helps with early intervention methods by using

longitudinal data to monitor the course of the disease and forecast its future stages.
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By addressing these areas, the suggested model can advance into a more robust, adaptable, and

impactful tool for the timely detection and categorization of Alzheimer's disease.

42



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

M. A. Kamel et al., “How Artificial Intelligence Can Enhance the Diagnosis of
Cardiac Amyloidosis: A Review of Recent Advances and Challenges,” Journal
of Cardiovascular Development and Disease 2024, Vol. 11, Page 118, vol. 11,

no. 4, p. 118, Apr. 2024, doi: 10.3390/JCDD11040118.

A. Fabijan, A. Zawadzka-Fabijan, R. Fabijan, K. Zakrzewski, E. Nowostawska,
and B. Polis, “Artificial Intelligence in Medical Imaging: Analyzing the
Performance of ChatGPT and Microsoft Bing in Scoliosis Detection and Cobb
Angle Assessment,” Diagnostics 2024, Vol. 14, Page 773, vol. 14, no. 7, p. 773,
Apr. 2024, doi: 10.3390/DIAGNOSTICS14070773.

S. N. Etkind et al., “How many people will need palliative care in 2040? Past
trends, future projections and implications for services,” BMC Med, vol. 15, no.
1, May 2017, doi: 10.1186/5S12916-017-0860-2.

J. Javor et al., “Adiponectin Gene Polymorphisms: A Case—Control Study on
Their Role in Late-Onset Alzheimer’s Disease Risk,” Life, vol. 14, no. 3, p. 346,
Mar. 2024, doi: 10.3390/LIFE14030346/S1.

M. G. Alsubaie, S. Luo, and K. Shaukat, “Alzheimer’s Disease Detection Using
Deep Learning on Neuroimaging: A Systematic Review,” Machine Learning
and Knowledge Extraction 2024, Vol. 6, Pages 464-505, vol. 6, no. 1, pp. 464—
505, Feb. 2024, doi: 10.3390/MAKE6010024.

F. Uyguroglu, O. Toygar, and H. Demirel, “CNN-based Alzheimer’s disease
classification using fusion of multiple 3D angular orientations,” Signal Image
Video Process, vol. 18, no. 3, pp. 2743-2751, Apr. 2024, doi: 10.1007/S11760-
023-02945-W/FIGURES/6.

A. Puente-Castro, E. Fernandez-Blanco, A. Pazos, and C. R. Munteanu,
“Automatic assessment of Alzheimer’s disease diagnosis based on deep learning
techniques,” Comput Biol Med, vol. 120, p. 103764, May 2020, doi:
10.1016/J.COMPBIOMED.2020.103764.

43



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

S. Basheer, S. Bhatia, and S. B. Sakri, “Computational Modeling of Dementia
Prediction Using Deep Neural Network: Analysis on OASIS Dataset,” IEEE
Access, vol. 9, pp. 4244942462, 2021, doi: 10.1109/ACCESS.2021.3066213.

A. Balasundaram, S. Srinivasan, A. Prasad, J. Malik, and A. Kumar,
“Hippocampus Segmentation-Based Alzheimer’s Disease Diagnosis and
Classification of MRI Images,” Arab J Sci Eng, vol. 48, no. 8, pp. 10249-
10265, Aug. 2023, doi: 10.1007/S13369-022-07538-2/TABLES/S.

G. Battineni, N. Chintalapudi, F. Amenta, and E. Traini, “Deep Learning Type
Convolution Neural Network Architecture for Multiclass Classification of
Alzheimer’s Disease”, doi: 10.5220/0010378602090215.

B. Bhasuran, J. Natarajan, and S. Mirulalini Gnanasegar, “Journal of Applied
Bioinformatics & Computational Biology A Long Short-Term Memory Deep
Learning Network for MRI Based Alzheimer’s Disease Dementia
Classification,” J Appl Bioinforma Comput Biol, vol. 2020, p. 6, 2020, doi:
10.37532/jabch.2020.9(6).187.

B. A. Mohammed et al., “Multi-Method Analysis of Medical Records and MRI
Images for Early Diagnosis of Dementia and Alzheimer’s Disease Based on
Deep Learning and Hybrid Methods,” Electronics 2021, Vol. 10, Page 2860,
vol. 10, no. 22, p. 2860, Nov. 2021, doi: 10.3390/ELECTRONICS10222860.

Farhatullah et al., “3-Way hybrid analysis using clinical and magnetic resonance

imaging for early diagnosis of Alzheimer’s disease,” Brain Res, vol. 1840, p.
149021, Oct. 2024, doi: 10.1016/J.BRAINRES.2024.149021.

J. Islam and Y. Zhang, “Brain MRI analysis for Alzheimer’s disease diagnosis
using an ensemble system of deep convolutional neural networks,” Brain
Inform, vol. 5, no. 2, pp. 1-14, Dec. 2018, doi: 10.1186/S40708-018-0080-
3/FIGURES/10.

N. Hassan, A. S. Musa Miah, and J. Shin, “Residual-Based Multi-Stage Deep
Learning Framework for Computer-Aided Alzheimer’s Disease Detection,”
Journal of Imaging 2024, Vol. 10, Page 141, vol. 10, no. 6, p. 141, Jun. 2024,
doi: 10.3390/JIMAGING10060141.

44



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A. Bin Tufail, Y. K. Ma, and Q. N. Zhang, “Binary Classification of
Alzheimer’s Disease Using sSsMRI Imaging Modality and Deep Learning,” J
Digit Imaging, vol. 33, no. 5, pp. 1073-1090, Oct. 2020, doi: 10.1007/S10278-
019-00265-5/FIGURES/25.

A. Mehmood, M. Magsood, M. Bashir, and Y. Shuyuan, “A Deep Siamese
Convolution Neural Network for Multi-Class Classification of Alzheimer
Disease,” Brain Sciences 2020, Vol. 10, Page 84, vol. 10, no. 2, p. 84, Feb.
2020, doi: 10.3390/BRAINSCI110020084.

M. Magsood et al., “Transfer Learning Assisted Classification and Detection of
Alzheimer’s Disease Stages Using 3D MRI Scans,” Sensors 2019, Vol. 19, Page
2645, vol. 19, no. 11, p. 2645, Jun. 2019, doi: 10.3390/S19112645.

D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and R. L.
Buckner, “Open Access Series of Imaging Studies (OASIS): Cross-sectional
MRI Data in Young, Middle Aged, Nondemented, and Demented Older
Adults,” J Cogn Neurosci, vol. 19, no. 9, pp. 1498-1507, Sep. 2007, doi:
10.1162/JOCN.2007.19.9.1498.

S. Woo, J. Park, J.-Y. Lee, and 1. S. Kweon, “CBAM: Convolutional Block
Attention Module,” 2018.

M. Tanveer et al., “Fuzzy Deep Learning for the Diagnosis of
Alzheimer&#x0027;s Disease: Approaches and Challenges,” IEEE
Transactions on Fuzzy Systems, 2024, doi: 10.1109/TFUZZ.2024.3409412.

D. D. R. R. Fernandez, N. de A. Gonzaga, M. A. Cirillo, and J. A. Muniz, “Non-
linear regression models in the management of accumulated production of
parchment coffee in Peru,” Revista de Gestéo e Secretariado, vol. 15, no. 3, p.
e3270, Mar. 2024, doi: 10.7769/gesec.v15i3.3270.

A. Barakat and P. Bianchi, “Convergence and Dynamical Behavior of the
ADAM Algorithm for Nonconvex Stochastic Optimization,”
https://doi.org/10.1137/19M1263443, vol. 31, no. 1, pp. 244-274, Jan. 2021,
doi: 10.1137/19M1263443.

45



[24]

[25]

[26]

[27]

[28]

[29]

[30]

D. P. Kingma and J. L. Ba, “Adam: A Method for Stochastic Optimization,” 3rd
International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings, Dec. 2014, Accessed: May 20, 2024. [Online].
Available: https://arxiv.org/abs/1412.6980v9

J. Duchi JDUCHI and Y. Singer, “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization * Elad Hazan,” Journal of Machine
Learning Research, vol. 12, pp. 2121-2159, 2011.

F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explainable Al: A
Brief Survey on History, Research Areas, Approaches and Challenges,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 11839 LNAI, pp. 563—
574, 2019, doi: 10.1007/978-3-030-32236-6_51.

M. R. Zafar and N. Khan, “Deterministic Local Interpretable Model-Agnostic
Explanations for Stable Explainability,” Machine Learning and Knowledge
Extraction 2021, Vol. 3, Pages 525-541, vol. 3, no. 3, pp. 525-541, Jun. 2021,
doi: 10.3390/MAKE3030027.

L. Ji, S. Wu, and X. Gu, “A facial expression recognition algorithm
incorporating SVM and explainable residual neural network,” Signal Image
Video Process, vol. 17, no. 8, pp. 4245-4254, Nov. 2023, doi: 10.1007/S11760-
023-02657-1/TABLES/5.

F. Ozcan and A. Alkan, “Explainable audio CNNs applied to neural decoding:
sound category identification from inferior colliculus,” Signal Image Video
Process, vol. 18, no. 2, pp. 1193-1204, Mar. 2024, doi: 10.1007/S11760-023-
02825-3/FIGURES/2.

M. H. Farrell, T. Liang, and S. Misra, “Deep Neural Networks for Estimation
and Inference,” Econometrica, vol. 89, no. 1, pp. 181-213, Jan. 2021, doi:
10.3982/ectal6901.

46



