T5 S22
Real-Time Transmission of Video and Text

complexity through RTP (Real-Time Transport
Protocol)

/=5ty

Developed by:

Rehana Yasmin
324-CS/MS/F06

Supervised by:

Dr. Muhammad Sher

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University Islamabad
(2008)

WITH THE NAME OF ALLAH ALMIGHTY,
THE MOST BENEFICIENT,
THE MOST MERCIFUL

Final Approval

N

Department of Computer Science

International Islamic University Islamabad

Date:

Final Approval

This is to certify that we have read the thesis submitted by Rehana Yasmin 324-
CS/MS/F06. It is our judgment that this thesis is of sufficient standard to warrant its
acceptance by International Islamic University, Islamabad for the degree of MS in
Computer Science.

Committee:

External Examiner

Mr. Shiraz Baig

CEO e

Askari Information Systems
Islamabad

Internal Examiners M
Mr. Matta-ur-Rehman

Assistant Professor

Department of Computer Sciences,
Faculty of Basic and Applied Sciences,
International Islamic University,

Islamabad

; ‘ ‘!§>
Supervisor —

Dr. Muhammad Sher

Chairman

Department of Computer Sciences,

Faculty of Basic and Applied Sciences,

International Islamic University, =
Islamabad

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Dedication

Dedication

Dedicated to My Beloved Parents

After Allah Almighty, I am very grateful to my parents for this dissertation,
whose affection has always been a source of boast for me, and whose

prayers always work out to be a key to my success.

Rehana Yasmin

324-CS/MS/F06

i

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Dissertation

A dissertation Submitted To
Department of Computer Science,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad
As a Partial Fulfillment of the Requirement for the Award of the

Degree of MS in Computer Sciences.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

il

Declaration

Declaration

I hereby, declare that this thesis “Real-time Transmission of Video and Text

Complexity through RTP (Real-Time Transport Protocol)” neither as a whole
nor as a part has been copied out from any source. It is further declared that I have don
this research with the accompanied research thesis report entirely on the basis of my own
personal efforts under the proficient guidance of my teachers and supervisor Dr
Muhammad Sher. If any part of the system is proved to be copied out from any source or
found to be reproduction of any project from any of the training institute or educational

, institutions, I shall stand by the consequences.

Rehana Yasmin
324-CS/MS/F06

iv

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Acknowledgment

Acknowledgment

With the name of Allah Almighty, WHO is the most Merciful and Beneficent. The most
Gracious and Compassionate, WHOSE abundant blessings enabled me to pursue and
complete this research project. After Allah almighty all praises are for His Holy Prophet
Muhammad (SAW) who enabled us to recognize our Creator, Allah almighty and who is a

role model for us in every aspect of our life.

I would consider it a proud to express my warmth gratitude and deep sense of obligation
to my supervisor Dr. M Sher, Head of Department of Computer Science, International
Islamic University Islamabad for his skilful guidance, knowledge sharing and kind

behavior during this research project.

This would be also a proud for me to express my heartily gratitude for my most
honorable teacher Mr. Shiraz Baig, for his dedication, encouraging attitude, untiring help
and kind behavior throughout of this project work. His encouragement boasted me to

initiate and complete this project.
In last but not least it was mainly due to my parents whose moral and financial support
enabled me to complete this task particularly my mother who always prays for my

SUCCess.

I am also thankful to all my faculty members and my friends.

Rehana Yasmin

324-CS/MS/F06

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Project in Brief

Project Title

Objective

Undertaken by

Supervised by

Starting Date

Completion Date

Tool Used

Operating System

System Used

Project in Brief

Real-time Transmission of Video and Text Complexity Through
RTP (Real-Time Transport Protocol)

To develop an environment that allows real-time applications to

send text data along with the video data in real-time through RTP

Rehana Yasmin
324-CS/MS/F06

Dr. Muhammad Sher
Head of Department of CS, International Islamic University

Islamabad.

September 2007
October 2008

C/C++ language

Linux Distribution - Fedora Core 5
Kernel 2.6.15

Intel Pentium IV

Vi

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Abstract

Abstract

This research is a study for an efficient transmission of video data along with the textual

A

data that is linked with this video, on the network. The study includes finding an efficient
way of transmitting Video and text data contents through RTP (Real-Time Transport
Protocol) without impairing quality of both types of data. The study will be based on RTP
(Real-Time Transport Protocol) and RTCP (RTP Control Protocol), two companion parts
of the protocol RTP. The issues handled are how to send text data along with the video
data in real time using RTP, which is basically a protocol used for the transmission of
real time multimedia contents over network, and how to synchronize both types of data

on receiving side.

Possibilities to be investigated are either to maintain a single RTP session for both types
of data or to maintain separate sessions for them. This research will help to find an
efficient approach to send text data in real-time together with the other multimedia types
using RTP. .

vii

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Table of Contents

Chapter Page #
L INtroduction...............ocooooiiii 1
1.1 Motivation behind the project...........coooeiiiiiiiiiiiiiiii e 1

1.2 Real time Transport Protocol...............oooiiiiiiiii e 1

1.2.1 Backgroundcoovveiniiiiiitiiniii e 1

1.2.2 Real-Time Transport Protocol (RTP) Description....................... 2

1.2.3 Protocol Structure (RTP)........coiiiiiiiiiii e, 3

1.2.4 RTP Control Protocol (RTCP) Description.............cccoeveeeninenen 6

1.2.5 Protocol Structure (RTCP).......cocveiiiiiiiiiiiiiic, 6

L3RTP VIEO. .. coniiniie e 7

1.3.1 Video ComPresSION.uuiutiteitentiteiiene ettt enneeenniaeennennn 7

1.3.2Video Codec. . .ouovininiiiiiii i 8

1.3.3 RTP Video Encodings........ccoeveiiiniiniiiiiiiiiiiiiiiiiiiieenen, 8

1.4 Problem Identification.............c.cceeiuiiiiiiiiiiiniiiii 12

1.5 Proposed SOIUtion........ooouuiuiiiiiir e 12

1.6 Outline of the Thesis........c.cocvviiiiiiiii 14

2. Literature SUTVeYccccoiiiiiiiiiii s 16
2.1 INtrodUCHION. ... v et 16

2.2 Transport TeChniquescoiiiiiiiiii i 16

2.2.1 Transmission Control Protocol (TCP)..............cooeviiiiiiininin 16

2.2.2 User Datagram Protocol (UDP)...........c.ccoooiiiiin 16

2.2.3 Real Time Streaming Protocol (RTSP)............cooooiiiin, 17

2.2.4 Real Time Transport Protocol (RTP)............ccocieviiiiiiiiiiin, 17

2.2.5 Other Related Research Workc.coooviiii, 18

P B 3101117 11 o) SO 18

R 31 1 110 1 F: 1 o 19

3. Requirement Analysis......................ooooviiiiiii 21

T B o 15 (0 Ts L1 o1 8 o) o AR T 21

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

3.2 Problem ANAlySiscvueiriiiii it e 21
3.2.1 Functional Requirement Definitions & Specifications 21
3.2.2 Non-Functional Requirements.............cc.oveeieiinenieenneecnennn. 24

3.2.3 Hardware and Software Requirements................ccccoeevvvinnnnn. 25

3.2.4 Phases of the Project...........ooiiiiiiiiiiiiiiiiiiii i e 26

3.2.5 Scope of the Project........ccouveiniiiiiiiiiiiiiiiiii e, 26

3.3 Focus 0f Research........o.ovvuiiiniiiiniinii e 27
3.3.1 Transport Protocol..........ccouvuiiiiviiiniiiniiiiece e, 27

3.3.2 Packetization of Text and Video data in RTP packets................ 27

3.3.3 Size of Text and Video Data in One Packet............................ 27
3.3.4 Transmission and Reception of RTP Packets over Network..........27

3.3.5 Synchronization and Display of both types of Data................... 28
RITIN0) 00140 F: | S PPN 28
4. System Design..................ccooiiiiiiiiiii 29
4.1 INtrodUCHION ..e.vuininiei et e 29
4.2 Proposed SOIUtION. .. coeet ittt e 29
4.2.1 Components of the proposed solution................ccoveviieiinnen. 29
4.3 Proposed ArchiteCture.vueirinii i i 30
4.3.1 System StIUCTUIE.ovuieinieii e e e e s e 31

4.3.2 SERVER-CLIENT Specifications..........c.cccovviuiiniiinnnnnee. 32
4.3.3 Control MOdeling.......ooiviiniiiiiiiiiaii i 35

4.3.4 Modular DecompoSition.vvevieiieiiiiieiiee e reeaeenns 37

T R NN 1400 0 1 3 2 P RTRN 38
S. Implementation..........................oocoiiii 39
5.1 INtrOUCHION. ..ottt e e 39
5.2 Implementation Details...........cooooiuiiiiiiii e 39
5.2.1 Overview of the Implementation Environment........................ 39

5.2.2 TMage CaPLUIE.vveneeniiii ettt 39

5.2.2.1 Attaching Camcorder with PC................ccoiiiiiinn. 39

5222 Driversfor FireWire Card......ccoovvieiiiiiiii i, 41

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

5.2.2.3 Installation and Configuration of System.................... 42

5.2.2.4 Image Capture through Camcorder........................... 44

5.2.2.5 Video Encoding Used.................ooiviiiiiiiiinninn., 48

523 TextInput.. ..o 50

5.2.4 Packetization of Text and Video Data..................coceeeiiennnnnn 50

5.2.4.1 Packet Format for Video Data Only........................... 50

5.2.4.2 Packet Format for Video and Text Data...................... 51

5.2.5 Implementation of Bufferingcoooiii 51

5.2.6 Implementation of Redundandant Text Data............................ 52

5.2.6.1 Packet Format for Redundant Text Data..................... 52

5.2.7 Duplication of Received Packets.............c.ccoveiiiiiiiniiiiiann.n, 53

5.2.8 Port Numbers for RTP & RTCP..........cccovviiiiiiiiiniiieee, 53

5.2.9 Modification of ibjpeg.........ovviriieiiiiiiiiiiieee e 53

5.2.10 Synchronized Display..........cccoviiiiiniiiiiiiii 54
5.2.10.1 Display Program...............cooeiviiiiiiiiiiiiiicen, 55

5.2.11 Graphical User Interfaces............ccoovvriieniiiiniiniiniannna 56

5.3 Implementation ToOLS..........cciuiiiiiii 56
R 11141 1o F: o N 57
6. Testing and Performance Improvement.............................. 58
6.1 OVEIVIEW .. ettt ittt et et et et e tae e e e eneens 58
LI N 11 T~ S TP 58
6.3 Performance ImMprovement.couvuiiiioniniiiet i 59
6.3.1 Single Packet to Reduce Bandwidth Wastage.......................... 59

6.3.2 Buffering of Text Dataccocoieviieiiiiiiiiiiiiiiie e 59
6.3.3 Redundandant Text Data............c.cooooviiiiiiiiiiiiiiiien, 60

6.3.4 No Duplicationccoooiriiiiiiiiiiiiiii e, 60

6.3.5 Read Image Data into Memory for Decompression................... 60

6.3.6 Text COMPIESSION. ... eueuenrneneninientieneetnee et eensenneens 60

6.4 How to use this software over Internet..................ccoooiiiiii 61

6.5 SUMIMATIYttt e e ettt et s e e aae e 62

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

7. Conclusions and Future Enhancements................................... 63
FRKE =015 o1 B D S R (o)1 R 63
A O3 T 1 L s s PR 63
7.3 FUtUIE B amiC e mentS oottt ittt ittt et ettt ettt et e e e e ae e e e e v ter e ae e aaannns 64
Appendix A: Header File (rtp.h)....................................... 65
Appendix B: Interfaces ... 69
Appendix C: JPEG Library.......................... 78

Appendix D: References..................c.ccoooiiiiiiiii 83

Chapter 1 Introduction

CHAPTER 1
INTRODUCTION

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

1. Introduction

This research is an attempt to find a way to handle text contents in real-time. Real-time
applications have their own constraint in terms of delay. Text data is also more sensitive
to packet loss as compare to other multimedia type’s contents. In order reception and
display of text data contents are also very much important. Loss of a few text packets or
even a single text packet can disturb the whole text conversation meanings. Therefore,
real-time text contents require careful handling of data. RTP is the best choice to handle
text contents in real-time.

1.1 Motivations behind the project

Demand for the real time multimedia applications has been increasing day by day. These
applications transfer real time contents i.e. digital audio and video in real time, for
example multimedia conferencing, capture and broadcast of live events by TV channels
and news agencies etc. RTP is a protocol which is currently being used for the
transmission of the real time multimedia contents in real time. The Transmission Control
Protocol (TCP), designed to transfer text packets over the Internet, overcomes the
problem of transmission of text in a reliable manner. However, TCP does not suite to
carry real-time data. On the other hand, UDP alone does not provide mechanism to
handle real time contents. So there is a need to modify RTP (Real time transport protocol)
in order to accommodate real time text data as well. Attempts have been made to transmit
textual data alone through RTP. This research is a study to find the possibility of sending
text data along with video data through RTP in real time and synchronizing both types of
data on receiving side.

1.2 Real-time Transport Protocol (RTP)
1.2.1 Background

Guarantee of services delivery is always a problem on the Internet, how best effort they
are built. The Transmission Control Protocol (TCP), designed to transfer text packets
over the Internet, overcomes this problem by retransmitting the packets that fail to reach
their destination. But this causes an end-to-end packet delay.

Today there is a well-known demand of the real-time applications that transfer
multimedia contents i.e. digital audio and video in real time, for example multimedia
conferencing. These real-time applications have their own requirements, in terms of
delay, error rate, jitter and throughput those are different than other applications. Timely
delivery is most crucial for these applications.

In order to maintain the good quality of audio and video applications, these types of data
must be played back at their sampling rate. For a better quality playback, data must arrive
in time otherwise playing back process will be affected and human ears and eyes will
pick the artifacts. A latency of 250 milliseconds can be tolerated by internet telephony
applications but if it exceeds this limit, it will affect the quality of voice.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

Network congestion is another serious issue for real-time applications. It has more
serious effects on real-time traffic than non-real time traffic. The only effect of congested
network on non-real time traffic is that the transmission takes longer time to complete,
but the real-time data becomes outdated. It ultimately affects the quality of playback. The
retransmission of lost packets would make the situation worse and jam the network.

Multimedia applications are mostly multicast applications for which the same data is sent
to a group of receivers at the same time rather than sending separate copies. For example,
in video conference, the video data is sent to a group of all participants of the conference
simultaneously. So the protocols designed for multimedia applications must allow for
multicast in order to reduce the traffic burden.

Internet is a packet-switching datagram network. The other transport technologies cannot
guarantee that real-time data will reach the destination in time and without being messy
and bouncy. So a need was felt that a new transport protocol must be put into effect to
take care of the timing issues so that audio and video data can be played back
continuously within the time limit and synchronized as well [10].

Hence, in order to meet these requirements of the real-time multimedia applications,
Internet Engineering Task Force (IETF) designed the Real-time Transport Protocol for
continuous media transmission in real-time.

1.2.2 Real-Time Transport Protocol (RTP) Description

The Real-time Transport Protocol (RTP) provides end-to-end delivery services for data
with real-time characteristics, such as interactive audio and video or simulation data, over
multicast or unicast network services. Those services include:

Time stamping

Sequence numbering

Identification of payload type
Monitoring QoS of data transmission

The RTP is primarily designed to meet the needs of multicast of real-time data, but it can
also be used in unicast applications. Primary focus of RTP was multi-participant
multimedia conferences and IP telephony but its implementation was not restricted.
Applications can implement it according to their own need. It can be used for one-way
transport such as video-on-demand as well as interactive services such as Internet
telephony. Other than these, RTP is also being used in different types of applications like
storage of continuous data, interactive distributed simulation, active badge, and
measurement and control applications.

The RTP specifications recommend the use of two different generalized destination ports
within one RTP session, one port for the reception of RTP payload packets and one for
RTCP control packets. RTP is used in combination with other network or transport
protocols as shown in the following figure.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

canfamnca o RTP
pratacal RTCP

I 4
uopP TCP
P IPX
3 W AALS h tohan
signalling | P Ethamat ring/bus

Figure: RTP over other network protocols

Typically, RTP run on top of UDP to make use of its multiplexing and checksum
services. Both these protocols together provide transport protocol functionality. However,
RTP may be used with other suitable underlying network or transport protocols. RTP
supports data transfer to multiple destinations using multicast distribution if provided by
the underlying network.

RTP Packet in a UDP/IP stack: The RTP header is created first and then the packet is
moved down the stack to UDP and UDP header is attached and then IP header is
attached. The following figure shows the RTP stack.

[P header | UDP header | RTP header | RTP paylosd

Figure: RTP/UDP/IP protocols stack

1.2.3 Protocol Structure (RTP)

RTP data packets consist of a header followed by payload data. The RTP header has the
following format:

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1

Introduction

0 1

2

3

01234567890123456789%90123456789101
B Rt B B e B S At e

|[V=2{P|X] CC |M] PT
Rt R Rahaat et S
l

R et E
| synchronization

l sequence number
t—t—t—t—t—t-t—t—t—t-t—t~t-t
timestamp
tt—t—t—t—t—t—t—t-t-t—t-t-+
source {SSRC) identifier

-+

t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t=t

[contributing source (CSRC) identifiers |

e Rt e e T B e B T T e B B e e B e e e e L e
Figure: RTP header format [according to RFC 3550]

First 12 bytes of the header are fixed for every data packet, while the list of CSRC
identifiers is present only when inserted by a mixer. The payload data can be either a
video frame or several audio samples. The fields have the following meanings:

Version (V): 2 bits

This field identifies the version of RTP. The version defined by RFC 3550 specification
is two (2). (The value 1 is used by the first draft version of RTP and the value 0 is used
by the protocol initially implemented in the "vat" audio tool).

Padding (P): 1 bit

If the padding bit is set, the packet contains one or more additional padding octets at the
end which are not part of the payload. The last octet of the padding contains a count of
how many padding octets should be ignored, including itself.

Extension (X): 1 bit

If the extension bit is set, the fixed header is followed by the exactly one header
extension, with a defined format.

CSRC count (CC): 4 bits
The CSRC count contains the number of CSRC identifiers that follow the fixed header.
Marker (M): 1 bit

The interpretation of the marker is defined by a profile. It is intended to allow significant
events such as frame boundaries to be marked in the packet stream.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

Payload type (PT): 7 bits

This field identifies the format of the RTP payload and determines its interpretation by
the application. A profile may specify a default static mapping of payload type codes to
payload formats. Additional payload type codes may be defined dynamically through
non-RTP means.

Sequence number: 16 bits

The sequence number increments by one for each RTP data packet sent, and may be used
by the receiver to detect packet loss and to restore packet sequence. The initial value of
the sequence number is random (unpredictable) to make known-plaintext attacks on
encryption more difficult.

Timestamp: 32 bits

The timestamp reflects the sampling instant of the first octet in the RTP data packet. The
sampling instant must be derived from a clock that increments monotonically and linearly
in time to allow synchronization and jitter calculations. The initial value of the timestamp
1s random, as for the sequence number. Several consecutive RTP packets will have equal
timestamps if they are (logically) generated at once, e.g., if they belong to the same video
frame. Consecutive RTP packets may contain timestamps that are not monotonic if the
data is not transmitted in the order it was sampled. (The sequence numbers of the packets
as transmitted will still be monotonic).

SSRC (Synchronization Source): 32 bits

This identifier is chosen randomly, with the intent that no two synchronization sources
within the same RTP session will have the same SSRC identifier.

CSRC (Contributing source identifiers) list: 0 to 15 items, 32 bits each

The CSRC list identifies the contributing sources for the payload contained in this packet.
The number of identifiers is given by the CC field. If there are more than 15 contributing
sources, only 15 can be identified.

RTP itself does not provide any means to ensure timely delivery or provide other quality-
of-service guarantees. For these functions, it relies on lower-layer services. It does not
provide guarantee of delivery or in-order delivery, nor does it assume that the underlying
network is reliable and delivers packets in sequence. Receiver can restructure the
sender’s packet sequence using the sequence numbers included in the received RTP
packets. The sequence number can also be used to determine the proper location of a
packet in decoding without necessarily decoding the packets in sequence [2].

RTP consists of two protocols: RTP and RTCP.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

RTP: responsible for real time transmission of data packets.

RTP control protocol (RTCP): provides control functionality. It helps in monitoring QoS
and in conveying participants’ information in an on-going RTP session.

1.2.4 RTP Control Protocol (RTCP) Description
The control functionality of RTCP is described below:

1- QoS Monitoring: RTCP provides traffic monitoring by gathering some control
statistics and sending them as a feedback of quality of data distribution in the
form of reports. These statistics helps to control congestion which causes delay.
The feedback is maintained by two RTCP reports: Sender Report (SR), and
Receiver Report (RR). Both reports contain performance statistics on number of
packets lost, highest sequence number received, jitter, and other delay
measurements to calculate the round-trip delay time and these statistics may be
used to modify sender transmission rates in order to avoid congestion and for
diagnostics purposes.

2- Identification of source: RTCP maintains a persistent transport-level identifier
for an RTP source, called canonical name, CNAME. Receivers use CNAME to
keep track of each participant in the RTP session and to synchronize related
media streams (with the help of NTP).

3- Calculation of transmission rate: Because of bandwidth limitations and
expected large number of participants, the rate at which packets are sent must be
controlled. The rate can be calculated by getting the total number of participants
in an RTP session using RTCP reports.

4- Session control information: An OPTIONAL function of RTCP is to convey
minimal session control information, for example participant identification to be
displayed in the user interface.

1.2.5 Protocol Structure (RTCP)
The RTCP packet carries following control information:
« SR: sender reports; sending and reception state
* RR: receiver reports; for reception statistics from multiple sources
» SDES: source description item, includle CNAME
* BYE: indicates end of participation

» APP: application specific functions

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

1.3 RTP Video

Traditionally RTP is used for the transmission of continuous media, e.g. audio, video or
audio plus video. The possibility of transmitting such media over networks facilitates
new kinds of distributed applications, such as digital television broadcasting,
teleconferencing, or multimedia information systems.

Handling video transmission over packet switched network and designing an optimal
video transmission application for such network is a very challenging job. For the
efficient transmission of video data a good knowledge of the transport network is
required. It also requires a good understanding of the whole video data and its
manipulation. Video applications also need some form of video data compression to
achieve reasonable size for storage and transmission. The digital video compression is
one of the main issues in digital video coding. It enables efficient transmission of visual
information.

1.3.1 Video Compression

To transverse network optimaily, video data size should be smaller enough. As we know
digital video files tend to have a larger size. For an efficient transmission file size is an
important concern. So to reduce the transmission size of video, the only solution is
compression.

How compression reduces digital video data size?

Compression is the process of skipping or eliminating those data from video data, which
can not be perceived by human’s eyes. Compression utilizes human’s limitations to
reduce video data size. For example, humans can see only about 1024 color shades,
although there are billions of colors. As human eye can not distinguish the slight
difference between the two consecutive shades, so this fact is utilized to reduce the file
size by not keeping every color. In this way digital video can be compressed without
affecting the perceived quality by human eye. Same can be applied to redundancy in
consecutive images. There may be redundant data in consecutive frames. This redundant
data can be eliminated.

There are different video formats which provide different compression ratios. But
compression should be till one limit. Too much can be a bad thing and can affect
perceived quality of video. More you compress, more data is skipped, and eliminating
more data may result in changes which are noticeable by human eyes. Ultimately it will
affect perceived quality. So compression should be as much as possible until data loss
becomes noticeable. Otherwise color fidelity fades, artifacts and noise appear in the
picture, the edges of objects become over-apparent, and eventually the resuit is
unwatchable.

As compare to video data text files can be compressed to a high level. Spaces in text files
can be utilized to achieve maximum compression. A text file can be made 80 to 90
percent smaller.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

1.3.2 Video Codec

Video Codec is the technology through which compression is achieved. It is used to
compress and decompress as well as to encode and decode video streams. The main goal
of coding is to reduce bit-rate for storage and transmission of the video source while
preserving the video quality as good as possible. The word codec may be a combination
of any of the following: 'compressor-decompressor, 'coder-decoder, or
'compression/decompression algorithm'. Various types of codecs have been developed
implementable either in software or in hardware, and sometimes utilizing both. Codecs
allow video to be translated to and from its compressed state with good grace.

1.3.3 RTP Video Encodings

Payload format specification documents define how a particular payload is to be carried
in RTP. Currently, payload format specification RFCs exists for H.261 video streams
[RFC2032], for CellB video encoding [RFC2029], for JPEG-compressed video
[RFC2035], and for MPEG video [RFC2038].

Standard payload formats for RTP are [12]:
» CelB

JPEG

H261

H263

MPV

> MP2T

vV V VYV VY

All of the above video encoding standards use an RTP timestamp frequency of 90,000 Hz
which results exact integer timestamp increments for the typical 24 (HDTV), 25 (PAL),
and 29.92 (NTSC) and 30 Hz (HDTV) frame rates and 50, 59.94 and 60 Hz field rates.
Although 90,000 Hz is the recommended rate for the video encodings used within this
profile, other frequency rates can also be used. However, a frame rate between 15 and 30
Hz is not suggested because it doe not provide sufficient resolution for typical
synchronization requirements when calculating the RTP timestamp corresponding to the
NTP timestamp in an RTCP SR packet. The timestamp resolution must also be adequate
for the estimation of jitter in the receiver reports.

RTP timestamp encodes the sampling instant of the video image enclosed in the RTP data
packet for most of these video encoding. Packets from different video images are
differentiated by their timestamps. If a video image has more than one packet the time
stamp remains the same for all of those packets. It may also require that for most of these
video encoding that for the last packet of a video image, marker bit of RTP header should
be set to one otherwise it should be set to zero. It will tell the receiver that it was the last
packet of the image and it is not necessary to wait for a packet with a different timestamp

8

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

to detect that next a new frame should be displayed. Most of these video encodings also
specify that the marker bit of the RTP header should be set to one in the last packet of a
video frame and otherwise set to zero. Thus, it is not necessary to wait for a following
packet with a different timestamp to detect that a new frame should be displayed.

CelB

The CELL-B encoding is designed by Sun Microsystems. It is a variable bit-rate
coding scheme. Cell image compression algorithm provides high quality, low bit-
rate image compression at low computational cost. Cell encoder produces a byte
stream that consists of instructional codes and information about the compressed
image.

According to RFC 2029 — “RTP Payload Format of Sun's CellB Video Encoding”
currently, there are two versions of the Cell compression technology: CellA and
CellB. CellA is primarily designed for the encoding of stored video which are
intended for local display. While CellB which is derived from CellA, has been
optimized for network-based video applications. CellB is computationally
symmetric in both encode and decode. To achieve compression, it makes use of a
fixed colormap and vector quantization techniques in the YUV color space.

JPEG

The JPEG encoding is specified in ISO Standards 10918-1 and 10918-2. JPEG is
the image compression standard developed by the Joint Photographic Experts
Group for continuous-tone, still images, both grayscale and color. It works best on
natural images (scenes). This still image compression can also be applied to
video. It compresses each frame of video as an independent still image and
transmits them in a series resulting full motion video. Video coded in this way is
often called Motion-JPEG.

The JPEG standard defines four modes of operation: the sequential DCT mode,
the progressive DCT mode, the lossless mode, and the hierarchical mode (see
details in chapter 5). Image is scanned in one or more passes depending on the
mode of operation used. Each such pass is called a frame. This frame is further
broken down into one or more scans. Within each pass there are one to four
components, which represent the three components of a color (red, green, blue)
for a colored image or a luminance signal and two chrominance signals for a grey
scale image. These components are either encoded as separate scans or
interleaved into a single scan.

In case of JPEG, information about compression parameters like quantization
tables and Huffman coding tables is contained in a header which leads each frame
or scan. These headers and optional parameters are identified with markers and
encompass a marker segment.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

H261

H.261 is a video coding standard proposed by ITU. It was designed for the data
rates which are multiples of 64Kbit/s, and therefore is sometimes called p x
64Kbit/s (p is in the range 1-30). These data rates go well with ISDN lines, for
which this video codec was originally designed. H.261 transports video data
stream as payload data within the RTP protocol, with any of the underlying
protocols on which RTP runs.

The coding algorithm of H.261 is a mix of inter-picture prediction, transform
coding, and motion compensation. The data rates are able to be set to between 40
Kbits/s and 2 Mbits/s. In Intra coding, 8x8 pixels blocks are encoded with
reference to each other. While in Inter coding frames are encoded with respect to
another reference frame. Temporal redundancy is removed through inter-picture
prediction while spatial redundancy is removed through transform coding. To
remove any further redundancy, variable length coding is used.

H.261 supports two image resolutions, QCIF (Quarter Common Interchange
format) which is 144x176 pixels and CIF (Common Interchange format) which is
288x352.

The following fields of the RTP header are specified:
The payload type should specify H.261 payload format.

For H.261, the RTP timestamp is based on a 90,000Hz clock. This clock rate is a
multiple of the natural H.261 frame rate. For each frame time, the clock is just
incremented by the multiple to remove inaccuracy in timestamp calculation.
Initial value of the RTP timestamp is chosen randomly to avoid known-plaintext
attacks on encryption. The RTP timestamp is set for the first video image
contained in the RTP packet. If a video image is contained in more than one RTP
packets then the same RTP timestamp is set for all of those packets. RTP packets
of different video images must have different timestamps. This helps to
differentiate between the packets of different video images.

For H.261, the marker bit of RTP header is set to one for the packet containing
last sampling instance of a video image to inform receiver that next is the packet
for new image otherwise it must be zero.

H263

The H.263 encoding is specified in the 1996 version of ITU-T Recommendation
H.263, "Video coding for low bit rate communication”. Its packetization and
RTP-specific properties are described in RFC 2190.

It was designed for low bit-rate communications; it never really worked well over
POTS (plain old telephone service) lines [ITU H.263 Video Compression].
H.263 is based on the ITU-T Recommendation H.261 and has replaced H.261 for
video conferencing in most applications. It also dominates Internet video

10

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

streaming today. H.263 employs similar techniques as compare to H.261, to
reduce both temporal and spatial redundancy, but there are several major
differences between the two algorithms that affect the design of packetization
schemes significantly.

H263-1998

The H.263-1998 encoding is specified in the 1998 version of ITU-T
Recommendation H.263, "Video coding for low bit rate communication". Its
packetization and RTP-specific properties are described in RFC 2429.

Since H.263-1998 is a superset version of the above mentioned H.263, its payload
format can also be used with the above mentioned version of H.263, and is
recommended for this use by new implementations. This payload format does not
replace RFC 2190, which is still used in the existing implementations while the
implementations which use the new features of the H.263-1998 must use the
payload format proposed in the RFC 2429.

MPV

MPV chooses the use of MPEG-1 and MPEG-2 video encoding elementary
streams as specified in ISO Standards ISO/IEC 11172 and 13818-2, respectively.
The RTP payload format is as specified in RFC 2250, Section 3.

To restrict the selection of the payload type of MPEG video, the MIME
registration for MPV in RFC 3555 specifies a parameter that may be used with
MIME or SDP. Applications which use this media type include audio and video
streaming and conferencing tools.

MPV video format is mostly used for burning to digital media (read SVCD,
KVCD, KDVD for further details).

MP2T

MP2T selects the use of MPEG-2 transport streams, for either audio or video. The
RTP payload format is described in RFC 2250.

MP2T is encoding for compressed video and audio data multiplexed with
signaling information in a serial bit stream. MP2T format was primarily
developed for the transmission of compressed television programs via broadcast,
cablecast, and satellite, and afterward adopted for DVD production and for some
online delivery systems,

Idea behind this research is to study the possibility of using RTP to send video along with
the text data (which is not a continuous media type) in real time scenario. Furthermore, it
will review several possibilities which have been developed recently by the Internet
community for the transmission of time-critical data to send video along with the text.

11

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

One motivation for this separation is to allow some participants to receive only one
medium if they choose. Despite the separation, synchronized playback of a source's video
and display of text can be achieved using timing information carried in the RTCP packets
for both sessions.

1.4 Problem Identification

Most applications require transmission and reception of continuous media type (video)
along with the non continuous media type (text) in real time and synchronization of both
types of data on receiving end. For example, televideoconferencing tools require
transmission of three types of data; audio, video and text. Transmission of simulation
data may also require sending text data along with other media types. Text data in these
cases may be the coordinates of the mouse or positions of the pointers. News agencies
and TV are other candidates of the transmission of real-time video along with text. Video
frames are captured at the site of the event and then transmitted to a number of locations.
But besides the video, they also need to transmit text as a commentary for this video. This
is then broadcast in case of TV and multicast in case of news agencies

RTP is the protocol designed for the transmission of real time contents but currently RTP
provides support for the combined transmission of continuous media streams that are
audio and video and not the text. Therefore, current possible strategy to send both types
of real-time data types may be to transmit real time video data using real time transport
protocol and text data through TCP, UDP or any other mean. Synchronization of both
types of data received through two different means on receiving end is then a problem.
This approach does not suit to real-time application for which time frame is most crucial.

So there is a need to find a mean to transmit and receive both non continuous and
continuous media types which meet the requirements of real-time applications and get the
synchronization of both data types on receiving end.

1.5 Proposed Solution

In this research, we are focusing at the problem of transmission of text data, along with
the video data. This would be helpful for the development of different applications like a
tele-videoconference tool, transmission of simulation data including the transmission of
the coordinates of the mouse or pointer positions in real time and News agencies or TV
transmission applications.

Real time multimedia applications transmit audio and video contents over networks in
real time and this transmission is mostly related to multicast. Combining these two
features, RTP is the protocol that helps to formalize this concept. RTP is capable of
transmitting the video and audio data in real time for unicast as well as for multicast. The
current RTP format does not cater for video plus text. Therefore, this research is an
attempt to make some modification in the packet format of RTP and make it possible the
combined transmission of video along with the text using RTP. This scenario creates
certain additional problems to be investigated. These are listed hereunder:

12

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

a. What should be the format of Textual data ([1] suggests T.140).
Transformation of textual data is to be used or not.

b. Placing of textual data in the RTP header or in RTP payload.

c. Placing textual and video data in separate RTP packets or use the same RTP
packet to send both types of data.

d. Transmitting text and video frames in the same RTP session or in separate
sessions, which will require separate timestamps and sequence numbers for
both media types.

e. Taking care that the video quality is not impaired.
f. Synchronization of different media types at the receiving end.

g. Analyzing the systems that are optimal and also do not impair the quality.

Proposed approach for the proposed solution will be to create client server architecture,
where server will be the sending process while client will be the receiving process. Server
will take text and video input. Then the packetization of data will be done. Both types of
data will be placed in the RTP packets. These packets will be then transmitted through IP
network. On receiving side the RTP packets will be received. Video and text data placed
in these packets will be decoded and synchronized using the timestamping and sequence
numbers contained in the RTP packets. Then both types of data will be displayed on the
screen simultaneously and synchronized.

For the proposed solution there is further a need to analyze, test and evaluate various
possible solutions. But the strategy of the solution is decided as follows:

a. For format of text data, first of all we shall cater for Unicode type of data. In
addition we shall look at T.140 format [1]. It is already coded in UFT-8 format.

b. A new packet format will be generated. We shall compare the three options and
choose the most optimal one, 1) Existing RTP packet [2], 2) Existing text packet
[4] or 3) A new packet format which will be a combination of the two packets.

c. In order to reduce video data size, chose most suitable video encoding for video
data. As H.263 is mostly used for RTP applications, this will be prefered. H.263 is
a protocol used for creating a Codec (Coder-decoder) that is used for transmission
of video. In H.263, the pictures are divided into groups of blocks (GOB) which
are numbered according to the vertical scan of the picture. It can use the formats
CIF (Common Intermediate Format), QCIF (Quarter CIF source format), Sub-
QCIF, 4CIF, 16CIF. The blocks can be a consisting of k*16 lines where k
depends on the picture format (k=1 for QCIF, CIF and sub-QCIF; k=2 for 4CIF
and k=4 for 16CIF). The other one is MB, A macro block (MB) containing four
blocks of luminance and the spatially corresponding two blocks of chrominance.

13

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

d. It will be investigated that whether the compression will also be applied to the
accompanying text or not.

e. RTP does not guarantee reliable delivery of service. Packets could arrive in an
order which is different than the one originally used. In addition, the jitter
conditions could emerge that would also impair the transmission. But RTP has
certain mechanism to cater for these problems and these will be used. The flags
for H.263 features could also provide additional information for video streams.

f. Finally, we shall use RTP for packetization of video and textual data, dispatch it
on the network and then receive it on the other side, render the video data on the
screen and the textual data will be displayed along with the video data.
Synchronization of text and video data will be maintained through timestamping
feature of RTP. It will provide an optimal and efficient means of transmission of
such data.

g. It may also enhance existing packet format which can then form recommendation
for a new RFC.

h. It may also be implemented for SRTP which is a secure version of RTP. The key
creation and key distribution mechanism will be devised for SRTP. Symmetric
encryption will be used. Session key and Salt key will also be used. The
encryption will be carried out at the sender end and decryption at the recipient
end.

1.6 Outline of the Thesis

In this research study we are going to propose a strategy to send text data together with
the video data in real time which will be used for many real-time applications which need
to transmit the text data along with the video data and get the synchronization of both
types of data in real-time. This proposed solution is supposed to improve the efficiency of
such real-time applications by decreasing the processing time and headache required for
the synchronization of both types of data on the receiving end. The thesis consists of the
following chapters:

Chapter 1

Contains the introduction to the research topic and motivations behind this research. It
also discusses RTP, Real-time Transport Protocol used for the transmission of real-time
contents which is focus of this research. It further discuses some of the video payload
types of RTP video transmission. Then an overview of the problem and the proposed
solution is given in this chapter.

14

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 1 Introduction

Chapter 2

Contains the literature review which describes the existing techniques used for the
transmission of data over network. These techniques include TCP, UDP and RTSP. It
further discuses some of their limitations.

Chapter 3

Contains requirement analysis which in turn includes the problem analysis, functional
and non functional requirements. This chapter further discusses the main points which are
to be focused during this research study. It provides an outline of the research to be
followed.

Chapter 4

Contains detailed discussion about proposed solution and the proposed architecture, its
components. It further explains system structure and design which includes client server
specification, control modeling and modular decomposition of the proposed architecture.

Chapter 5

Describes implementation details of the proposed architecture. It includes overview of the
implementation environment, implementation details of text and video input,
Packetization of both types of data, transmission and reception and in last display of both
types of data. It also gives list of implementation tools used.

Chapter 6

Gives an overview of the testing environment, performance improvements achieved
during the implementation which includes synchronized display of both types of data,
buffering of text data, redundant text data, reading image data into memory for display.

Chapter 7

Concludes this research and also specifies some areas where further research can be done
for the improvements.

15

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 2 Literature Survey

CHAPTER 2
LITERATURE SURVEY

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 2 Literature Survey

2. Literature Survey

2.1 Introduction

A lot of work has been done on the transmission of text contents (non continuous media type)
and multimedia contents (continuous media type). Different protocols have been developed
which can be used for the transmission of text and multimedia contents in real time.
However, there is still a need of an efficient approach to carry combined transmission of real
time text and video (multimedia) contents. Only a few approaches which are widely used for
the transmission of data over network are discussed here.

2.2 Transport Techniques

This section will discuss the different transport mechanisms developed over the years which
are being used for the transmission of text and video contents over the network.

2.2.1 Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) [19] is a connection oriented transport protocol
which runs over Internet protocol (IP) in order to provide end to end delivery. TCP best suits
the requirements of non real time textual data and is mostly used for its transmission. TCP is
a reliable protocol. In TCP, reliability is achieved through sequence numbers and
acknowledgments (ACK). At the receiving end sequence numbers are used to arrange the
received packets correctly in order and to eliminate duplicated received packets. Positive
acknowledgment (ACK) of each successfully delivered packet is received from the receiver.
If the ACK is not received within timeout interval for any of the transmitted packet, that
packet is retransmitted until its successful delivery. Checksum provides a mechanism to
handle damage. Checksum is recalculated at the receiving end and every damaged packet is
discarded and then is retransmitted again.

TCP also provides a mechanism for flow control to handle congestion. This is achieved
through a "window". A "window" is returned with every ACK indicating a range of
acceptable sequence numbers beyond the last segment successfully received. This gives an
indication to the receiver about the allowed number of packets that the sender may transmit
next time. Whenever congestion occurs, this window size is reduced. TCP is a connection
oriented protocol so does not support multicast applications.

2.2.2 User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) [18] is used when reliable transmission is not necessary
rather robustness is more important. UDP is a connection less transport protocol. Like TCP,
UDP also run over IP to provide end to end delivery. It does not provide any mechanism to
ensure ordered reliable delivery of packets of data as is provided in TCP through sequence

16

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 2 Literature Survey

numbering. A 16-bit checksum of UDP provides a mechanism to handle packet damages.
Checksum for each packet is calculated for every packet to be transmitted and is sent along
with the packet. On receiving end this checksum is recalculated and is verified to check the
delivery of packet without damage. This checksum procedure is the same as is provided in
TCP. Its robust delivery makes it suitable for the transmission of real time multimedia
contents. Unlike TCP, UDP supports multicast applications.

2.2.3 Real Time Streaming Protocol (RTSP)

The Real Time Streaming Protocol (RTSP) [3] is an application level protocol. RTSP
provides a control over the delivery of real-time data. It enables controlled, on-demand
delivery of real-time data. RTSP establishes and controls either a single or several time-
synchronized streams of continuous media types such as audio and video. The sources of
audio and video data may be live captured data or stored files. RSTP merely provides a
control over streams; it does not deliver the continuous streams itself. So RTSP acts as a
"network remote control" for multimedia servers. Although interleaving ot the continuous
media streams with the control stream is possible.

In RTSP no files or contents are stored at the receiver [8]. RealNetworks' RealPlayer is an
example of an RTSP application. It provides play, fast forward, pause, and other controls.
Real-Networks developed the protocol in conjunction with Netscape and submitted it to the
IETF for standardization.

2.2.4 Real Time Transport Protocol (RTP)

The Real Time Transport Protocol (RTP) [2] is an end to end real time transport protocol
primarily designed for applications like audio, video conferencing. As other general purpose
transport protocols are unable to meet the requirements of the real time applications so IETF
(Internet Engineering Task Force, AVT WQ) defined this new protocol. It has been accepted
as a standard for the real time multimedia transmission. RTP provides end-to-end network
transport services suitable for applications transmitting real-time multimedia data, such as
audio, video or simulation data over multicast or unicast network services. Those services
include Identification of payload type, Sequence numbering, Time stamping and Monitoring
QoS of data transmission. It provides support for the functions but does not restrict
implementations. Applications can implement according to need. RTP consists of two closely
linked parts. The real-time transport protocol (RTP) to carry real time data while RTP control
protocol (RTCP) to monitor the quality of service and to convey information about the
participants in an on-going session

RTP runs over any of the transport protocol like TCP, UDP but typically, RTP run on top of
UDP to make use of its multiplexing and checksum services. Both these protocols together
provide transport protocol functionality. RTP provides timestamping, sequence numbering,
and other mechanisms to take care of the timing issues and in order delivery which best suit
to the requirements of real time multimedia contents transmission and synchronization on
receiving end. Sequence number helps to detect the packet loss and to keep the real time data
in order. Timestamping also helps in the synchronization of the different media streams. The
payload type identifier specifies the payload format as well as the encoding/compression

17

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 2 Literature Survey

schemes. From this payload type identifier, the receiving application knows how to interpret
and play out the payload data. RTP is primarily designed and used for the transmission of
real time multimedia contents (continuous media types).

Later on RTP payload for text was proposed for RTP to carry real-time text conversation
contents in RTP packets. A mechanism based on RTP is specified in [4]. This mechanism
gives text arrival in correct order, without duplication, with detection and indication of loss
packets through sequence numbering. . In order to reduce the risk of loss text data, it also
includes an optional possibility to repeat data for redundancy. Buffering of input text data,
increases payload size in a packet during the conversation. Text conversation may be used
alone or in connection with other conversational Medias, such as video and voice, to form
multimedia conversation services. Uniform management of text and other media can be
achieved in, for example, conferencing systems, firewalls, and network translation devices by
using RTP for text transmission in a multimedia conversation application [4].

Later on an RTP payload for text conversation interleaved in an audio stream has been
described in [5]. This payload format for real-time text transmission described in this RFC is
anticipated for use between Public Switched Telephone Network (PSTN) gateways and is
given a name of audio/t140c. The audio/t140c packets are generally transmitted as
interleaved packets between voice packets or other kinds of audio packets. The objective is to
create one common audio signal in the receiving equipment to be used for alternating
between text and voice. Each medium in a session usually maintains a separate RTP stream.
To achieve synchronization of the text with other media packets, it is recommended that the
streams must be associated when the sessions are established and the streams must share the
same reference clock. RTP timestamps of the voice, text, or other audio packets is utilized in
order to reproduce the stream correctly when playing out the audio.

2.2.5 Other Related Research Work

In [9] an RTP based chat program has been developed which shows the possibility of sending
data from non continuous media (i.e., text) using RTP in real-time applications and to
synchronize it with other continuous media (i.e., audio or video) on receiving end. Final
objective of this research is to develop a teleconference application integrating three tools:
one for audio, one for video and another for text. The intension behind this ongoing research
is to use its results in a security and telesurveillance system in which non continuous media
streams such as text data from alarm sensors and access control devices will be transmitted
together with video and audio streams.

2.3 Limitations

The mechanisms used for the transmission of data over network mentioned in section 2.2
have some limitations which do not suit for the combined transmission of real time text data
(non continuous media type) and video data (continuous media type).

e For real-time applications, reliability is not as important as timely delivery. So
reliable transmission mechanism provided by retransmission in TCP is not desirable.

18

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 2 Literature Survey

For example, in case of network congestion, some packets may get lost and the
application may result in lower but acceptable quality. If the protocol insists on a
reliable transmission, the retransmitted packets could possibly increase the delay, jam
the network and eventually starve the receiving application. Thus reliable
transmission is badly chosen for delay-sensitive data such as real-time text and video
data.

e The TCP congestion control mechanisms decreases the congestion window abruptly
when packet losses are detected. Multimedia applications have natural rates that
cannot be suddenly decreased without starving the receiver.

e Mostly real-time multimedia applications are of multicast type, while the connection-
oriented TCP does not allow multicast and therefore is not suitable for such
applications.

e Although UDP supports multicast, UDP is not a reliable protocol and does not
provide any mean to arrange packets in order on receiving end.

e RTSP is used for real time multimedia applications but it alone does not transfer the
real time contents on receiving end. it merely provides a control over media streams.

o These other transport protocols do not contain the necessary timestamp and encoding
information needed by the receiving applications in order to synchronize different
media types and play out of that media types in real-time.

e RTP provides a mechanism to transmit real-time multimedia contents over network
and synchronize them on receiving end. But currently it focus is continuous media
types. Although a payload for text alone and a payload for text interleaved in audio
stream have been specified in [4] and [5] but no payload for combined text and video
has been discussed.

2.4 Summary

Although many different mechanisms have been proposed and designed for the transmission
of continuous and non continuous media contents but no one of them alone meets the
requirements of text along with the video contents over network in real-time. Some are

19

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 2 Literature Survey

designed, and are suitable, for the text data that is non continuous media type and some are
suitable for the transmission of multimedia contents. The need exists for the enhancements
and improvements in these approaches. Even the smallest enhancements in the above
mentioned approaches and or combinations of the above approaches will make a better
solution for the combined real-time text and video transmission.

20

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

CHAPTER 3
REQUIREMENT ANALYSIS

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

3. Requirement Analysis

3.1 Introduction

This focus of research is the transmission of real-time video and text contents over the
network. It provides means for capturing, transmitting and displaying video stream as
well as textual data over the network employing Real Time Protocol.

The system is to be implemented as a client server model where server acts as a sender
process, responsible for capturing video data through camcorder and text data through
keyboard, sending both types of data over the network in RTP packets. On the other hand
client is responsible for receiving both types of data and displaying video data along with
the text data received in RTP packets. RTP/RTCP take cares of real time issues. RTP
packet contains video data as well as text data while RTCP packets contain control
statistics like packet loss, delay and inter arrival jitter etc.

3.2 Problem Analysis
3.2.1 Functional Requirements Definitions & Specifications

1. The operating system will be Linux.
» The system is to be implemented in GCC under Linux environment.
» Standard Linux Sockets will be used for Data Transmission.

> raw1394 module is facilitated in the Linux kernel as a module.

2. The Image is to be captured through FireWire card.
» The input source to the FireWire card is Sony Handycam (camcorder).
» The capture card is to be installed at server.

» Server computer should provide means to configure FireWire card with
the help of raw1394 module and ohcil394 drivers.

» FireWire card proper installation and working is to be verified through
gscanbus application.

21

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

3. LAN network based on TCP/IP consisting of at least two workstations.

» The two Linux computers server-client will be connected together
through a network.

» The network card will be configured in Linux

» Data can be sent between the two computers through network cable.

4. Server is to facilitate the capture of video stream from the video source and
text data through keyboard.

» Individual frames are to be captured using camcorder while text is to be
entered through keyboard.

» Server will also display the captured frame which is to be transmitted
next, through XWindows program.

> Both types of data are to be placed in RTP packets, having proper header
and payload.

» The header of RTP packet will contain information as sequence number
and timestamp; while payload has the video and text data.

» If a frame occurs to be in more than one RTP packets it will have same
timestamp.

Text will be transmitted after every 10 packets to facilitate buffering.
Initially server will be in waiting state.

Only when it receives a request of connection from client it goes into
transmission state and sends RTP packets containing video and text data
to the client.

» Sender report of RTCP packet and SDES of sender is to be generated by
the server.

» Receiver report of RTCP packet is to be received from the client
computer through open sockets.

» Similarly bye packet indication is also received from the client computer
after which the transmission is stopped, client is exited and server again
goes in waiting state.

22

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

» Keyboard input of ‘e’ makes client to exit by force after which the server
again goes into waiting state.

» Keyboard input of ‘q’ makes both server and client to finish
transmission and exit.

S. Captured video stream and text data will be transmitted to the client
computer in RTP packets through open sockets.

» UDP sockets will be opened and binded between the two computers.

> Both server and client will be able to communicate on two ports at a
time, one for RTP that is 5004 and one for RTCP data that is 5005.

» RTP packet is composed of RTP header and RTP payload i.e. video and
text data.

» RTCP packet provides control information and statistics on quality of
services.

» FDset will be introduced through which the input can be taken from all
three, RTP port, RTCP port and keyboard.

6. The client will receive the video and text data through open sockets.
» The UDP sockets are to be opened and binded at client end.

» Over there text and video data is to be received through RTP port i.e.
5004.

» RTCP control information and statistics on Quality of services is to be
received through RTCP port i.e.5005.

» FDset is to be introduced at client end where the data can be received on
the three possible inputs that are RTP port, RTCP port and keyboard.

7. The client will depacketize RTP packets and display the text and video data on
screen.

» The RTP packets on reaching client are depacketized and RTP header is
to be removed from them.

» The video data is to be written to a memory buffer area.
» Video data is then read from the memory location, decompressed and

23

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

displayed on the screen.

» Text data is also to be displayed in the same window as used for video
data.

» Client produces and sends RTCP information as that of SDES
information of client, receiver report and bye packet to the server.

» Keyboard input of ‘q’ at client computer causes client to send a bye
packet to server after which the transmission is stopped and client is
exited.

8. The codec will be used for image while it is transmitted.

» Transmission of video on network requires some sort of codec through
which video stream can be encoded and transmitted on network. At
receiver end that video stream is to be decoded and put to some use. The
codec compresses and decompresses the data by which network latency
time does not cast any bad effects on data transmission in real time.

9. System will provide a user interface through which it will supply the statistics
about packet loss, delay, time stamp and inter arrival jitter.

» The interface will be designed through curses library and will be
presented at server computer only.

RTCP reports are to be produced and displayed on server computer.

SDES information of both server and client are put on show on the
server screen.

» Sender report generated by server and receiver report received from the
client will also be presented here.

3.2.2 Non-Functional Requirements

This project involves a number of integration issues that makes a no. of requirements that
are not directly the part of my project.

Image capture: In order to send a video stream through RTP on the network I must
have data source capturing image in real time. Though it could have also been done
with a stored video file but then the real time element is eliminated. Therefore it was
required that I be able to facilitate the capture of image in real-time.

24

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Reguirement Analysis

Camera/Video card: The only way chosen to capture image in real-time is through a
digital video camera and a video capture card. The camcorder to be used is a Sony
camcorder. It also required getting a video capture card whose drivers are available
for Linux platform. Handycam will able to capture the live image at the same time.

Image display: Another difficult part is display of video data. It requires finding a
suitable way of display of video data for Linux platform. Two possibilities are either
SVGA library of Linux or writing own program using X Windows.

Final date of submission: Restricts to complete this project within deadline.
Therefore less time constraint also limits to do the project.

Efficiency: System should be efficient enough to display the video stream on client
as soon as it is captured on server. In order to match the quick pace of display
module, some delays need to be implemented.

3.2.3 Hardware and Software Requirements
1. Hardwre
FireWire card
Handy Cam
1.Link cable

Network card

PIV - server
PIV — client
2. Software

Fedora core S (OS) Kernel 2.6.15
Libraries

FireWire card drivers

25

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

3.2.4 Phases of the project
The whole project comprises of three major modules:

Phase 1: Image and text data input

Capture the image through camcorder, compress it into jpeg. Take text input from
keyboard.

Phase 2: Networking

Packetize the video and text data and transmit it through RTP to the client, and also
recetve RTCP reports.

Phase 3: Displaying video and text data

Receive the RTP packet, depacketize, de-compress video data and then display both type
of data on screen.

3.2.5 Scope of the project

> The system to be implemented is Unicast and does not support multicast i.e.
Server-Client Model where only single server will send data to only a single
client.

> Implementation of client and server is Half-duplex i.e. only in one direction —
Server can only send data and client can only receive data.

> Implementation of video is Without Sound, i.e., transmission of video stream
only and no audio issues are handled in it.

» System is implemented only on LAN. However it can be used on the Internet
also.

» Since speed and RAM of my computer is insufficient to meet the requirements
of a multimedia server, so it may or may not disturb video display results.

The highest resolution of video display is 352x288.

Y

Since data is received from only one source, that is server, therefore for the
implementation of rtp I am restricting only to one ssrc

There is no mixers and no contributed sources i.e. csrc.
The architecture used will be Intel PC not macintosh and Alpha etc.

Operating system used is Linux.

YV V V¥V V¥V

IPv4 is used and not IPv6.

26

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

3.3 Focus of Research

Focus of the research in the above mentioned requirements analysis would be the
following points.

3.3.1 Transport Protocol

Which transport protocol to be used in order to provide transport functionality needed by
RTP? Two major alternatives are TCP and UDP.

3.3.2 Packetization of Text and Video data in RTP packets

It will require finding a suitable solution to Packetize and send both types of data that is
continuous and non continuous data in RTP packets. Whether it will be efficient to
maintain a single session for both types of data or maintain two different sessions for the
one for each. Single session requires maintaining same timestamps and sequence
numbers for both types of data streams while separate sessions means maintaining
separate timestamps and sequence numbers. Maintaining a single session will further
have two possibilities. One is to send both types of data in separate RTP packets and
synchronize them on receiving end. Second is to use the same RTP packet to send text as
well video data. So the focus of research at this step would be to find an efficient
approach for the packetization of both types of data.

3.3.3 Size of Text and Video Data in One Packet

To find the suitable size of transmission of both types of data in order to avoid bandwidth
wastage and also in order to meet the maximum transmission size (MTU) requirements of
the underlying transport protocol. It will require to adjust the size of the image as well as
to set the size of the text input taken through keyboard. The input size of both types of
data will be so adjusted to enable them to send in RTP packets. Size of the image is
adjusted so that whether to send it in a single RTP packet or to send in more than one
RTP packets. In that case the timestamp would be the same for all such packets
containing parts of the same image. Compression algorithms can also be applied to
reduce transmission size. So finding an appropriate compression is also a part of this
research.

3.3.4 Transmission and Reception of RTP Packets over Network

Focus would be to find an efficient approach for the transmission and reception of both
types of data.

27

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 3 Requirement Analysis

3.3.5 Synchronization and Display of both types of Data

This is the most important part of this research study. Synchronization of both types
(continuous and non continuous) of data in real-time on receiving end is the major point
of concern in this study. RTP provides timestamping and sequence numbering which help
to synchronize different media types on receiving end. These both will be used to
synchronize text and video data. So focus of research would be to find an efficient way to
synchronize both data types of data and display them in real-time.

3.4 Summary

Focus of this study is to find an efficient way of transmission of text along with the video
data in real-time. This will require studying all alternatives carefully and chose those
which are the most appropriate. For example how to packetize text and video data in RTP
packets, what should be the size one data in one RTP packet, how data will be
synchronized and displayed on receiving end. These are the requirements of this research
which are to be investigated.

28

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

CHAPTER 4
SYSTEM DESIGN

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

7H S2/4

4. System Design

4.1 Introduction

The basic focus of this study has been the combined transmission of real-time text and
video contents over the network and their synchronization on receiving end. Its various
aspects have been studied, keeping in mind the applications like tele-videoconferencing,
transmission of simulation data and TV and News agencies softwares and tried to find out
the most efficient approach.

4.2 Proposed Solution

In this proposed solution, an effort has been made to decrease the over head of sending
real-time text and video contents separately using two different protocols and on
receiving end synchronize both types of data received through two different transport
mechanisms. Video data is captured using camcorder, while the text input is taken from
keyboard, entered by user.

4.2.1 Components of the proposed solution
* Transport protocol to be Used

The alternatives for transport protocols are TCP and UDP. The transport protocol
selected is UDP for the following reasons.

» Retransmission mechanism of TCP causes and end to end delay which does
not suit for the real-time applications.

» Congestion control mechanism of TCP suddenly decreases the window size
which causes starvation.

> TCP does not provide support for multicast while UDP provides

» TCP header is larger than a UDP header (40 bytes for TCP compared to 8
bytes of UDP).

* Packetization of data

Packetizaion of data includes how to send both types of data in RTP packets.
Among the three possibilities mentioned in section 3.3, the chosen one is to
maintain a single session for both types of data streams and maintained same
timestamps and sequence numbers for both data streams. A single RTP packet is
used to send both types of data. It means pack both types of data in a single RTP
packet rather than using separate packets, one for text and one for video. The
reason behind this selection is that as text input is taken through keyboard, the rate

29

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

of character entry is usually at a level of a few characters per second or less. Even
with a maximum typing speed, rate of character entered is a few characters per
second or less than it. In worst it may be a single character or not even a single
character. Which means text data available for transmission is only a few bytes or
may be a single byte. On the other hand, minimum size of RTP header is 12 bytes,
while that of UDP is 8 bytes. So sending separate packets for few bytes of text
data requires sending minimum 20 bytes of header data with each packet. This is
not an efficient approach rather is wastage of bandwidth. So it was selected to
send text data in the same RTP packet used for video data. It required modifying
the current RTP packet format. Currently RTP packet contains video data only,
using it for text also requires adding new fields in it. So the ultimate result was a
modified packet format.

* Size of both types of data to be transmitted in one packet

IPv4 (Internet Protocol version 4) uses 32 bit addresses. IPv4 provides packet
delivery service for TCP, UDP, ICMP and IGMP. The maximum transmission
size of an IPv4 datagram for UDP is 65535 bytes, including IPv4 header. The
image size has been adjusted so that to meet the maximum transmission size of
UDP datagram.

* Transmission and reception of RTP packets over network

RTP stack used is RTP/UDP/IP that is RTP data is encapsulated in RTP packet
and RTP header is attached, then on transport layer UDP header is attached and
then IP header is attached.

* Synchronization and display of both types of data

Synchronization of both types of data is achieved through time stamping and
sequence numbering.

4.3 Proposed Architecture

A client-server architectural model is followed in implementation i.e. a distributed system
model showing how data and processing is distributed across a range of processors. As
the focus of the implementation is only a single server (sending process) and a single
client (receiving process), so the whole processes are divided just between the two. A
server, who will capture the video data and text data, pacektize it into RTP packets,
transmits it on network. A client, who receives RTP packets, obtains both types of data,
synchronize it using time stamps and sequence numbers and display it. Whole system is
implemented using C/C++.

Following figure shows the block diagram of purposed architecture.

30

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design
Yideo izat
3| Video Cam Synebtonzzton
video and text Video
data
—Y RIP |- i RTP | usng -3
Packets Network Packets | | tmestamping
and
Text sequence
E— Reyboard numbers
Text
Input Output
Sending Process Receving Process
Figure: Proposed Archutecture
4.3.1 System Structure
System is structured into a no. of principal subsystems as follows:
Read video data
from video source
Packetize data with | Send on Network Depacketize data
RTP header i over UDP and remove header
y
y
Read text through Display both types
keyboard of data on Screen
31

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

4.3.2 SERVER-CLIENT Specifications

Reference: SERVER

Events: Start Transmission
End Transmission
Server Exit

Services: Capture video from video input source
Text input from keyboard
Produce and display Sender Report (SR)
Send RTP packets

Receive RTCP packets from client, including SDES of client, Receiver
report, Bye packet if any

Display RTCP info on screen

Wait) Transmit
} Request received R
for connection RTP packets
request
y
Display
RTCP info

Figure: Server — Start Transmission

32

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4

System Design

Transmit

RTP packets

Received e or Bye Packet from Client

[

Wait

Client Exited

Figure: Server — End Transmission

Transmit

RTP packets

for connection
request

Received q - /Serve:(m

Wait

for connection
request

from keyboard

Figure: Server-Client Exit

Exit

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

33

Chapter 4 System Design

Reference: CLIENT
Events: Send Request of Connection to server
End Transmission
Services: Receive RTP packets from server
Display video and text on screen
Produce Receiver report and SDES of client

Send RTCP packets to server

Establish
Request Connection
Request succeed Receive RTP
For R Packet
communication i
Request
fail
No Server Send RTCP
Request Failed SDES, RR, Bye

Figure: Client — Start Transmission

34

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

If e is pressed

Connection Send RTCP

Receive RTP Bye packet

l

Client
exited

|

Server
waiting

Figure: Client end transmission — server again waiting

4.3.3 Control Modeling

There is a centralized control implemented in this project. That is the server has the
central control of sending the data to client. During transmission server can force the
client to exit or can quit itself making the client exit as well at the same time. Server is
responsible to capture video stream and text data and transmit it over the network.
Furthermore the server also displays the RTCP information on its own end.

35

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

Capture RTP packets
processes processes

Start/Stop Display of
transmission RTCP info

Figure: A centralized control model for a real time video plus text server

Event-based Control: Transmission of video and text data is event based i.e. initially
server is in waiting state, when the client initiates a request, the transmission takes place.
After every 10 sec the RTCP data is sent from the client to the server and reports are
updated at server end. Client can send bye packet to the server computer to end
transmission, it can do so by pressing b and hitting enter key. The client can exit and stop
receiving network data by pressing q and hitting enter. The client is also responsible for
displaying video and text data on receiving it from the server computer.

Send RTCP
info

Display text
and video

Start/stop
receiving

A A y
Event and message handler of client

Figure — A control model based on selective event handling

36

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

4.3.4

Modular Decomposition

Each subsystem is decomposed into a number of modules that are as follows:

Server
1.

AT I

10.
11.

Client:
1.
2.

AN AR o

~

Establish/open sockets on two ports 5005 for RTCP and 5004 for RTP
Wait for connection from client and on connection receive SDES packet
Open video device and capture frame

Compress frame and put it into RTP packet

After 10 packets of video take text input entered through keyboard other wise
move to step 8

Put text data in RTP packet along with the video data and set flag for text

Store same text data in a buffer to send it again in exactly next packet to
implement redundancy

Attach RTP header
Allot sequence number and time stamp and send data to client
After every 10 sec display stats on screen: SR,RR,SDES

On receiving bye msg from client, display bye packet along with the source of
Bye packet and reason to go. '

Establish sockets

Send SDES packet to server.

Receive each packet

Depacketize rtp packet and remove rtp header from frame.
Decompress video frame

Take text from packet if it is present in it by checking text flag otherwise move to
step 9

Check flag value: if 0 then original text otherwise repeated text

Check if repeated text is already received then discard this text otherwise read it
for display

Display video frame and text data (if it is available) on screen of client

37

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 4 System Design

10. Concatenate the new received text (if text is received) with the previously
received text for display

11. Send RTCP reports after every10s

12. When finished send bye packet to server.

4.4 Summary

This chapter describes the components of proposed solution of sending real-time text and
video data using RTP. It also discusses the proposed architecture which is client server
architecture and its design in detail which include its systems structure, client and server
specifications, control modeling and modular decomposition of the whole structure.
Using this proposed solution for combined transmission of real-time text and video data,
the processing time and overhead of synchronization of both types of data on receiving
end is reduced, that enforced a great cost for such real-time applications. The RTP packet
format is modified to accommodate both types of data in RTP packets which provides
efficient processing of such real-time applications.

38

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

CHAPTER 3
IMPLEMENTATION

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

5. Implementation

5.1 Introduction

The proposed architecture, to test and verify the proposed solution and the improvements
made by this proposed method, has been developed using C and C++. The application
has been developed using object oriented implementation.

5.2 Implementation Details

5.2.1 Overview of the Implementation Environment

The environment which is created for the implementation is a client server model. Video
input is taken through camcorder which is attached at the server computer. A separate
application is used to grab video frames through camcorder. Compression is applied to
video data. Text input is taken through key board on server side. Then text and video data
is put into RTP packets and is transmitted to client. But before this packing and
transmission, both types of data, that are to be transmitted right now, are displayed on
server side as well. This display of data on server side is merely to verify the
synchronization achieved on the client side. Client side receives both types of data
packed in RTP packets. Read both types of data. Decode video data and display both
types of data in a synchronized manner. Following are the major components and steps of
the implementation procedure.

5.2.2 Image capture

First phase of the implementation is taking video input that is image capture. Input source
used to take video input was camcorder. Image capture phase further has some steps.

5.2.2.1 Attaching Camcorder with PC

Following are the possible two ways to attach camcorder with PC in order to take video
input.

IEEE 1394 (FireWire Interface)

The IEEE 1394 interface is a serial bus interface standard for high-speed communications
and isochronous real-time data transfer, frequently used in a personal computer. The
interface is also known by the brand names of FireWire (Apple Inc.), i.Link (Sony), and
Lynx (Texas Instruments). It is used in digital camcorders because it is capable of quickly
transferring full-motion video. Most consumer video equipment uses 4-pin FireWire

39

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

ports and connectors, but some also use a 6-pin FireWire configuration. FireWire card is
a plug and play and is automatically detected when inserted in PCI slot. The following
figure shows 2 connectors and 3 connectors FireWire Cards.

FireWire-adapter-cards

With a 2 connectors, one can attach two devices with the computer at a time and with a 3
connectors, 3 devices can be attached at a time. The core component of a FireWire is an
expansion card and a cable. FireWire card is plug_and_play and is plugged into a PCI
slot. It is automatically detected when inserted into PCI slot.

USB Interface

USB (Universal Serial Bus) is a plug and play interface between a computer and
peripherals which allows plugging in a device without adding an adapter card or even
restarting computer. This is the easiest way to capture video to a computer. USB 2.0 is
very fast, maximum up to 480 Mbps.

Why to prefer FireWire Interface?

Because of technical differences, FireWire is a better way for transferring uncompressed
(raw) video from digital camcorders to PCs, even though USB 2.0 has a higher maximum
speed (400Mbps vs. 480Mbps). FireWire interface is the best solution for streaming
video for many reasons. One of the reasons is it enables faster transfer of high resolution
video data as compare to USB interface. Another reason is software solutions are
available for streaming through camcorder using FireWire card for Linux platform like
Kino, Dvgrab etc. while no such solution is available for USB interface. So FireWire
interface is used for streaming through camcorder.

FireWire connecting cables

Two types of connecting cables available in market with which to connect different
FireWire devices with PC are as follows :

4pin-to-4pin plugs — This is used between camcorder and computer, where the
FireWire (i.Link) socket is of smaller type (picture left).

40

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

4pin-to-6pin plugs — This is used between camcorder and computer, where the
sockets are of the 6-pin type (picture right).

5.2.2.2 Drivers for FireWire Card

Drivers for FireWire card to interact with ieee1394 subsystem
> rawl394

> ieeel394

» ohcil394

Drivers’ hierarchy

The GNU/Linux IEEE-1394 Subsystem is divided into three layers. The core of the entire
1394 subsystem is the module ieee1394. It manages all high- and low-level drivers in the
subsystem, provides basic services like handling of the 1394 protocol, collecting
information about bus and nodes. Below the ieee1394 module are the low-level
(hardware) driver modules, which handle converting packets and bus events to and from
hardware accesses on specific 1394 chipsets.

Above the core (ieee1394 module) are the high level driver modules, which use the
services provided by the core to implement protocols for certain devices and act as
drivers to these. One such driver is raw1394, which is designed to accept commands from
user space to do any transaction wanted (as far as possible from current core design).
Through raw1394, user applications can access 1394 nodes on the bus and it is not
necessary to write kernel code just for that. To access the raw 1394 bus from user
application, libraw1394 is used. User application is linked with libraw1394, which
handles the communication with the raw1394 high-level driver.

The following figure shows the driver hierarchy.

41

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

Application y
l a
o
Korawl39a M
raw 1394
§ —
a4
ioce 1394 <3
| 48
ohcil 394
Physical cerd

Figure: The driver hierarchy in a simple setup.
There are three low-level drivers:

aic5800 Adaptec AIC-5800 PCI-IEEE1394 chip driver
peilynx Texas Instruments PCILynx driver
ohcil394 1394 Open Host Controller Interface driver

An OHCI compliant FireWire card is used for the implementation, so ohci1394 module is
used to interface the 1394 card. It is also possible to have all three low-level driver
modules loaded and active at the same time. All the low-level drivers can control more
than one card.

5.2.2.3 Installation and Configuration of System

Following are the steps followed to install and configure FireWire card to capture video
on fedora core 5. Detailed steps to install FireWire for different kernel versions of Linux
are given on the web site of IEEE 1394 for Linux [6].

Installation

1. Install the adapter card into computer’s PCI slot and make sure everything is still
working before continuing.
2. Download libraw1394.
You can save this where you choose—your home directory, /tmp, /usr/src, etc.
3. Compile libraw1394:
cd /where/you/downloaded/libraw1394
tar xvfz libraw1394-1.2.1.tar.gz
cd libraw1394-1.2.1
Jconfigure

42

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

make

make install

Create the raw device (/dev/raw1394):

make dev

Reboot:

shutdown -r now

After the system reboots, logon and load the modules:
modprobe ohcil394

modprobe raw1394

modprobe ieee1394

Module dependencies should ensure that the ieee1394 subsytem module installs
automatically. If you receive errors about unresolved symbols, then try the following:
insmod ieee1394

insmod ohcil394

insmod raw1394

Testing

1.

W

View messages using dmesg:
dmesg | pager or dmesg | ieee1394

Look for lines beginning with "ieee1394" or "ohci1394 0." Do not be alarmed by
the number of messages or messages with the words "error," "timeout," or
"inconsistent” in them because often these are not indicators that the initialization
has failed! Identify one or more messages that read "ieee1394: Host added: Node
[...." These messages indicate the detection of each host adapter and its
acceptance by the ieee1394 subsystem.

Run libraw1394-1.2.1/src/testlibraw. It performs simple tests on all detected
nodes.

Download gscanbus. [To check the proper installation of FireWire]
Unpack gscanbus:

tar xvfz gscanbus-0.7.1.tgz

Compile gscanbus:

cd gscanbus-0.7.1

/configure

make

Run ./gscanbus. If you are using X windows, then run gscanbus from a terminal
window to view errors and warnings. If you are experiencing errors on any of the
test steps, then run gscanbus with the -v2 switch to get more verbose error
reporting. gscanbus opens a window displaying each node as an icon. You can
click an icon to get more information about the node.

Without rebooting, plug in and/or turn on any device connected to your host
adapter.

Repeat steps 1, 2, and 6.

43

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

This was the process to install and configure the FireWire card. It was a hit and trial
process for me. But ultimately I succeeded to install FireWire cad.

5.2.2.4 Image Capture through Camcorder

After the installation and configuration of FireWire card, next step was video capturing
from camcorder to PC. For which video capturing software was required. Kino and
dvgrab are the two softwares, which are both used for image grabbing for Linux
distributions. These both are developed by the same team and are available under GPL to
further use and modify. Kino is similar to dvgrab but with enhanced functionalities of
video editing. As only it was needed to capture images and store them on disk, so dvgrab
was the best solution. Its binary code was downloaded from internet and modified
according to the need of implementation. It also required installing required libraries
needed to work with dvgrab. Finding a proper combination of these libraries was a tough
job. Libraries used for this application are:

» libraw1394

Summary: Streaming library for IEEE1394
» libavc1394

Summary: FireWire AV/C interface
> libiec61883

Summary: Streaming library for IEEE1394
> libdv

Summary: provides codecs

libraw1394 functions used to access raw1394:

1). raw1394_new_handle
Name: raw1394 new_handle -- create new handle
Synopsis: raw1394handle t raw1394 new_handle (void);
Arguments:

void -- no arguments

44

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

2).

3).

Description:

Creates and returns a new handle which can (after being set up) control one port. It is
not allowed to use the same handle in multiple threads or forked processes. However,
it is allowed to create and use multiple handles. Use one handle per thread which
needs it in the multithreaded case.

Returns:

It returns the created handle or NULL when initialization fails. In the latter case errno
either contains some OS specific error code or 0 if the error is that librawl1394 and
raw1394 don't support each other's protocol versions.

raw1394 destroy_handle

Name: raw1394 destroy_handle -- deallocate handle

Synopsis: void raw1394 destroy_handle (raw1394handle_t handle);

Arguments:

Handle -- handle to deallocate

Description

It closes connection with rawl394 on this handle and deallocates everything
associated with it. It is safe to pass NULL as handle; nothing is done in this case.

raw1394 get_port_info
Name: raw1394 get port_info -- get information about available ports

Synopsis: int rawl394 get port info (rawl394handle t handle, struct
raw1394 portinfo * pinf, int maxports);

Arguments:

handle -- libraw1394 handle

pinf -- pointer to an array of struct raw1394 portinfo
maxports -- number of elements in pinf

Description

45

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

Before we can set which port to use, we have to use this function to find out which
ports exist. If the program is interactive, the users are presented with this list to let
them decide which port to use if there is more than one. A non-interactive program
(and probably interactive ones, too) should provide a command line option to choose
the port. If maxports is 0, pinf can be NULL, too.

Returns

It returns the number of ports and writes information about them into pinf, but not
into more than maxports elements.

4). raw1394_set_port

Name: raw1394_set_port -- choose port for handle

Synopsis: int raw1394 _set port (rawl394handle_t handle, int port);

Arguments:

handle -- libraw1394 handle

port -- port to connect to (corresponds to index of struct raw1394_portinfo)
Description

This function connects the handle to the port given (as queried with
rawl1394 get port_info). If successful, raw1394 get port_info and raw1394_set port
are not allowed to be called afterwards on this handle. To make up for this, all the
other functions (those handling asynchronous and isochronous transmissions) can
now be called.

Returns

It returns O for success or -1 for failure with errno set appropriately. A possible failure
mode is with errno = ESTALE, in this case the configuration has changed since the

call to raw1394 get port_info and it has to be called again to update your view of the
available ports.

5). raw1394_set_bus_reset_handler

Name: raw1394 set bus_reset_handler -- set bus reset handler
Synopsis :

bus_reset handler t rawl394 set bus reset handler (rawl394handle t handle,
bus_reset handler t new_h);

46

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

Arguments

handle -- libraw1394 handle
new_h -- Pointer to new handler
Description

It sets the handler to be called on every bus reset to new_h. The default handler just
calls raw1394 update_ generation.

Returns

The old handler
6). raw1394 get_fd

Name: raw1394 get fd -- get the communication file descriptor

Synopsis: int raw1394 get fd (rawl1394handle_t handle);

Arguments

handle -- libraw1394 handle

Description

This can be used for select/poll calls if you wait on other fds or can be integrated into

another event loop (e.g. from a GUI application framework). It can also be used to

set/remove the O NONBLOCK flag using fentl to modify the blocking behavior in

raw1394 loop_iterate. It must not be used for anything else.

Returns

The fd used for communication with the raw1394 kernel module.
dvgrab was used to grab video frames from camcorder and save on computer disk on
server side. dvgrab receives audio and video data from a digital camcorder via an IEEE
1394 (widely known as FireWire) link and stores them into some defined format file by
default into an AVI file. It supports saving the data as raw frames, AVI type 1, AVI type

2, Quicktime DV, or a series of JPEG stills (which is utilized to implement M-JPEG in
my case).

47

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

5.2.2.5 Video Encoding Used

Frames obtained through camcorder were in raw format which produces a large amount
of data. To transverse network optimally, video data size should be smaller enough. As
we know digital video files tend to have a larger size. For an efficient transmission file
size is an important concern. So to reduce the transmission size of video, the only
solution is compression.

Specifications of this research did not include writing any codec or compression
mechanism for video data. Because writing a compression algorithm is in itself a
complete project. It was proposed to use H.263 codecs for video data, which is CCITT
standard for videoconferencing applications based on RTP. But as focus of this research
was transmission of real time data for applications such as news agency applications, live
TV broad cast, and transmission of simulation data along with the coordinate point data
etc. rather than videoconferencing applications. So it was further studied which video
format is most suitable for the implementation of this proposed solution. After studying
different video formats supported by RTP vide types it was got to know that rather than
H.26x video codecs M-JPEG is more suitable for the purpose of focused applications for
the following reasons.

e "Temporal compression” techniques (MPEG4, H.263 and H.264) provide
advantages over "frame-by-frame compression" techniques (MJPEG) when the
background is fixed and there is not a lot of motion in the scene. In these
applications, they can really compress images (small file sizes) with very little
loss of image quality like video conferencing applications. Temporal compression
also makes it easier to synchronize audio with video. However, temporal
compression offers little or no advantage over frame-by-frame compression when
there is a lot of motion in the scene or when the background is changing [13].
Focus of my research is applications like TV and News agency transmission
applications where background is not fixed.

e The video compression algorithms have conventionally developed for constant
bit-rate channels. However in case of heterogeneous packet networks like the
Internet, packet losses are not rare and loss patterns may be bursty. In case of
MPEG and H.261/ H.263, the packet loss causes a significant degrade in quality
due to their method of removing temporal redundancy. Both MPEG and H.261
rely on intra frames to eventually resynchronize, but at low bit rates the
resynchronization intervals can be too broad and decoded bit stream may virtually
never be error free. This can not be tolerated in case of live broadcast of media
contents. So the solution is to reduce the resynchronization interval. This scheme
is used in M-JPEG where each frame is coded independently. However, this
approach results in low compression because of redundant information [14].

48

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

e In Motion JPEG, each video frame is compressed separately using the JPEG still
image compression standard. Frame differencing or motion estimation is not used
to compress the images. This makes frame accurate editing without any loss of
image quality during the editing possible (Suitable for TV and News agency who
need to edit their video clips before broadcast or multicast) [15].

¢ Another reason was that the source code of JPEG library was available and its
implementations examples were also available.

Therefore, M-JPEG video format was used for the implementation of video rather than
H.26x formats. M-JPEG stands for Motion JPEG. M-JPEG is a video format that uses
ISO JPEG picture compression in each frame of the video. JPEG standard handles
compression of continuous tone image for color and grayscale images. In M-JPEG,
frames of the video don't interact with each other in any way like they do in other video
compression techniques for example MPEG-1, MPEG-2, etc... It makes the video editing
easier because each of the frames has all of the information they need stored in them.

How JPEG works?

For Compression, JPEG divides the whole image into 8 by 8 pixel blocks, and then
calculates the discrete cosine transform (DCT) of each block. A quantizer then calculates
the DCT coefficients according to the quantization matrix. This step produces the "lossy"
nature of JPEG, but allows for large compression ratios. Then it uses a variable length
encoding on these coefficients, and writes the compressed data stream to an output JPEG
file. For decompression, repeats the process in reverse order. JPEG recovers the
quantized DCT coefficients from the compressed data stream, takes the inverse
transforms and displays the image [16].

Following figures describe the JPEG Compression/Decompression process.

BLOCK DIAGRAM OF JPEG COMPRESSION

8x 8 Discrete ;

. . Bin 011010...
pxel — Cosine —t Quantizer ’%Enca;ga ——
block Transform Otrl'l put data

strearn

49

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

BLOCK DIAGARAM OF JPEG DECOMPRESSION

Discrete
|mage \L. COSine é—JDequaﬂtlzere Blnaw » 011010.
Data Transform Decoder | Compressed Data
Stream

libjpeg library is used to convert raw frames into jpeg format. On client side, there is no
need to store video on disk as it is merely wastage of storage space, so this library is
modified in order to achieve this goal.

5.2.3 Text Input

Text input is taken from keyboard entered by user. The rate of character entry is usually
at a level of a few characters per second or less. Beacause volume of text input is very
small so no further ecnoding or copression is appplied to textual data. It merely increases
the processing burden on server and client.

5.2.4 Packetization of Text and Video Data

After text and video input next step was Packetization and transmission of both types of
data. The proposed solution devised to send text data in same packet as that of video data.
It required changing the current RTP packet format (payload type). Currently RTP packet
contains video data only, using it for text also required adding new fields in it. RTP
packet format used for the video data only is a given below.

5.2.4.1 Packet Format for Video Data Only

0 1 2 3
0123 456789012345678901234567825H5H01
B ks s e S Ei i el e e e e s s S S S S
RTP header
e e e e e R e T S e T e ks s S S e e s

f

- Video streamn... +

N S S o o S S S S

Figure: RTP packet

50

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

Where maximum value for PSIZE is 60000 and is defined in file unp.h. It means
maximum this size of image only can be transmitted in one packet.

5.2.4.2 Packet Format for Video and Text Data

In order to add text in same RTP packet, two fields are added: one for text data and

second for the size of the text data to be transmitted. New packet format (payload type)
then became.

0 1 2 3
01234506789 0123456789012345671893801

B e e s e ST e S S Bt e et T N o ok Tt R e
RTF header

R e e i T e e e e e e o e e S e Tl ik Sk S S TS SRS

Video stream. i
B et et SR A R A A
| iText data.... |
I R T e T o R i p L S R S s ol i S v S S e

Figure: RTP packet

Where maximum value for TSIZE is 500 and it is also defined in unp.h file. It means
maximum 500 bytes can be sent in one RTP packet.

5.2.5 Implementation of Buffering

Initially text input was taken for each RTP packet but it was found that even with a
maximum typing speed, only a few characters could be typed for every RTP packet and
sometimes not even a single character was available. So in order to avoid transmission of
a single or only a few characters in each packet, buffering is provided. Small blocks of
text data are prepared by the user and transmitted after some delay. It resulted to carry
more text data with each packet. Buffering time is selected so that text users on receiving
end will perceive a real-time text flow. So text data is sent after every 10th packet of
video data. On receiving end, client expects and checks for text data after receiving ten
packets of video data.

Even with this arrangment, only a very small text data could be sent but it reduced the
case of sending only a single cahracter or empty text filed and also reduced the overhead
of client to check every RTP packet for text data.

51

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

5.2.6 Implementation of Redundandant Text Data

Textual data is more sensitive to packet loss as compare to video data. Loss of even a
single packet containing text may change the meaning of whole conversation. Therefore a
mechanism based on RTP is used. It specifies a possibility to repeat text data for
redundancy to lower the risk of loss. Since RTP packet overhead is usually much larger
than the text contents, the usage of bandwidth with the transmission of redundant data is
minimal.

5.2.6.1 Packet Format for Redundant Text Data

In order to cope with the loss of packets containing text data, it was decided to send
repeated text data. It required to add one more field in RTP packet: A flag field. So the
RTP packet format for redundant data is:

O 1 z 3
0123456789012 3456789012345%6789392301

Rt e e e E SR ToE P P

RTP header

R e T e S e S S R e e R R T (T T, Ty SyVRpr pRIpS MG RGOS Wy S SIS SRS SYGS ST RS S A

Video stream. |
o m b o e = e e
5 |FlagiText data|
F+-t-t-F-F-t-tet ettt ettt ottt -ttt ottt et et ettt ettt et et -+

Figure: RTP packet

The mechanism used to implement redundancy idea is as follow: Initially this falg is set
to O when original text is sent. The same text is buffered on server side. In exactly next
RTP packet this same text is sent again but flag is set to 1 this time. On receiving end,
client checks for text after receiving ten packets of video data. Then it checks for value of
flag. If it is set to 0, which means orignal text data is received, it uses sequence number
and timestamp to display this text data on screen in order along with the video data.

But if the value of flag is set to 1, which means repeated text data is received in this
packet, client first compares the sequence number of this newly received packet with the
sequence number of last received packet containing text. If it is exactly the one plus the
last sequence number received then it means that this text has already been received. So
client will not read this text data again and will discard this repeated text data.

If the difference between the sequence number of this newly received packet and the last
received sequence number is larger than one then it indicates that newly received packet
52

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

contains text data which has already not been received. So client will read this text data
and will dsiplay it on screen.

More than one levels of redundancy can be implemented. It means redundant data of

many previously transmitted packets can be sent in each packet. But only one level of
redundancy have been provided in this application.

5.2.7 Duplication of Received Packets

In order to avoid duplication of received text data, sequence number of each newly
received RTP packet is compared with the last received sequence number to check
whether this packet data has already been received or not. If it has already been received,
then discrad this packet otherwise read data from this packet.

5.2.8 Port Numbers for RTP & RTCP

Ports for RTP and RTCP are not fixed and can be allocated in application. For allocation
of ports to RTP and RTCP, there are two requirements:

1) They should be numerically greater than 1024 and

2) They should be consecutive in sequence.

A constant is defined for RTP Port at server in my application, as

#define SERV_PORT 9877

Same constant is used at the client end. The RTCP port has been defined as SERV_PORT

+1, both at client and server. So port number for RTP communication is 9877 and for
RTCP itis 9878. Both of these are defined in unp.h header file.

5.2.9 Modification of libjpeg

On client side storing video data on disk and then reading from disk to decompress that
video before display was merely wastage of the disk space. Secondly it causes delay for
real-time application. It involves two disk accesses. So it was decided to read video data
(image) from RTP packet into memory buffers rather than storing it on the disk and then
directly display this data from memory buffer using through display application.

As it is mentioned in the description of libjpeg that its source manager reads data to
decompress from file rather than from memory and that memory read can be
implemented through application.

See Appendix C for JPEG Library details.

33

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

One of the standard function calls of Jpeg Library is:
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile)

In this call, cinfo is a Jpeg object. The outfile is a standard pointer of the type FILE * (for
disk files as used in C language). Similarly, when compressing the file, we have a similar
call, as

jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile)

It means that whenever the image is compressed, it will have to write on the disk.
Similarly, whenever, de-compressing the image, it will have to read from the disk. This
was not a very satisfactory arrangement. So there was a need to find a way to read data
from memory. After some search, I got a solution that by using the files Jmemdst.c and
Jmemsrc.c in place of Jdatadest.c and Jdatasrc.c this will be possible for the source
manager and destination manager to read from and write into memory respectively.

These files changed the above functions to:
jpeg_memory_src (j_decompress_ptr cinfo, const JOCTET * buffer, size t bufsize)
jpeg_memory dest (j_decompress_ptr cinfo, const JOCTET * buffer, size_t bufsize)

A buffer was defined of the desired size and a variable indicating the buffer size of type
size_t. These arguments were passed to these functions. So, that when compression was
carried out, the compressed data was written to the buffer defined by the application.
Similarly, when the decompression was taking place, the data was being read by from
application’s buffer. This helped me to reduce the time required to first store data on disk
and then read from disk to display on client side.

5.2.10 Synchronized Display

For video display on Linux platform two alternatives at hand are: Either to use SVGA
library and utilize the VGA functions provided by this library or use X Window System
and write any program using X Windows to display both types of data. The image data
received on client side was Jpeg compressed and therefore, it needed to be decompressed
before it could be displayed on monitor screen. First it was decided to use SVGA library
but due to some difficulties with this library discarded this option of SVGAlib and went
for X Windows.

There are different reasons which compelled to use X Window system for display rather
than SVGALib.

* Using SVGAIib to display video takes control of whole monitor screen. As received
text data was also to be displayed along with the received video data on client side, so
giving whole control of screen to video does not solve the problem. Therefore, it was

54

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

preferred to use X Windows and created a program, which displayed video data as
well as text data in the same windows. GTK+ toolkit is used to create this interface.

s Latest versions of Linux distributions do not contain SVGALib, or it is not installed in
proper directories [17]. Fedora core 5 is used to implement this thesis. It does not
have SVGAlib.

* It is not possible to switch back and forth quickly between two consoles using
SVGALib graphics, it may result in screen corruption, forcing reboot.

* X Windows system is cross-platform which runs on variety of UNIXes while only
Linux uses SVGAlib.

5.2.10.1 Display Program

GTK+ toolkit is used to create widgets. GTK+: GTK+ is the GIMP toolkit that form basis
of GNOME Desktop environments. It is free software [20]. My display program contains
one main window. Text and video data is displayed in the same window. Same X
window application is used on both client and server. Upper portion of the window
displays video data while the lower portion contains an entry widget which displays text
data. On client side, each RTP packet received from server contains video data as well as
the text data. Received video data is Jpeg compressed. This data is directly decompressed
into a buffer (memory) rather than storing on disk. Then this decompressed video data is
displayed on screen on the upper portion of the window. While the associated text data is
displayed in the entry widget in the lower portion of the same window.

On client side settext() function is used to set received text in entry widget.

Same program is used on server side to display a frame that is to be transmitted and to
take text input from user. Same interface is used for this program. The only difference is
that the entry widget, used to display text on client side, is used to take text input from
user on server side. On server side the display program is taking video input from stored
video file on disk rather than from memory as it is doing on client side. Display program
on server side reads a frame stored on disk, decompresses it and displays it in upper
portion of the window before transmission of that frame.

On server side gettext() function is used to get text from entry widget entered by user.

On client side, to give a look of flowing text on display, the newly received text is
concatented with the already received text each time and then it is displayed. It exacly
gives the impression of flowing text as is displyed on TV channales on the lower portion
of any video clip display. Text look like moving from right to left, entering on right side
and exiting on left side.

See Appendix B for interfaces used to take input from user on server side and display it
on client side.

55

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

5.2.11 Graphical User Interfaces

In implementation of the solution graphical user interface is only provided on server side
to display server status, client details, sender reports data and receiver report data. To
create this interface, curses library is used. Curses is a terminal control library for Unix-
like systems. It enables the construction of text user interface (TUI) applications. It is a
library of functions that manage an application’s display on character-cell terminals (e.g.,
VT100). Curses library is a part of most Linux distributions.

When you write a program that uses this library, you have to include the directive
#include <ncurses.h>

When compile the program with g++, add -Incurses to the command. See Appendix B for
Interfaces developed using ncurses library functions.

5.3 Implementation Tools
Hardware

» Firewire card
» 1.Link cable to connect camcorder with firewire card
» Sony HCR-DC32E Handy camcorder

Softwares
Drivers

Drivers for firewire card

> rawl394
> 1eeel394
> ohcil394

Libraries

libraw1394
libavc1394
libiec61883
libdv
libjpeg
libcurses
libX11

VVVVVVYY

56

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 5 Implementation

Programming Tools

Language: C, C++
Toolkit: GTK+

Operating system

Linux platform (Fedora Core 5 kernel version 2.6.15)

Compiler

gecc compiler (Fedora Core 5)

5.4 Summary

This chapter describes implementation details of the proposed solution and difficulties
faced. The toughest part of the implementation was to find the proper combination of
hardware and software which are compatible with Computers as well as with Fedora
distribution of Linux. This also lists the software (OS, libraries, drivers) and hardware
(Video capture card, camcorder and connoting cables) used in implementation.

57

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 6 Testing and Performance Improvement

CHAPTER 6

TESTING AND PERFORMANCE
IMPROVEMENT

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 6 Testing and Performance Improvement

6. Testing and Performance Improvement

6.1 Overview

This research is an attempt to send textual data (non-continuous data) in real-time using
RTP which is primarily designed for the transmission of real-time multimedia contents
(continuous media types). RTP provides the necessary measures for the handling of real-
time contents. Its time stamping and sequence number options make it easy to re-arrange
real-time data on receiving side in its original order and process it in real-time. Using
RTP for the transmission of real-time text together with other media types provides a way
to achieve uniform handling of text and other media types. This fact can be utilized in
applications like conferencing systems, firewalls, and network translation devices etc.

Other than conferencing systems, RTP can also be used for the transmission of real-time
contents for other applications, for example, to transmit simulation data. Some
applications may also require sending textual data along with the other multimedia types.
For example, data from sensors, pointer coordinates etc., can be transmitted along with
other multimedia types and need to be synchronized with other media types at receiver.
TV and News agencies are other users with the need of textual data transmission along
with the other media types like video in real-time.

Keeping in view the requirements of these applications this research is an attempt to see
the possibility of sending textual data along with the video data using RTP and get
synchronization of both types of data on receiving end. Video data is captured using
camcorder, while the text input is taken from keyboard entered by user.

6.2 Testing
Client server architecture has been implemented and run on LAN connected by two
computers. 1000 packets are transmitted and jitter is calculated using the jitter calculation

formula given in [2].

Average inter arrival jitter for video only packets was 20149 microseconds measured in
timestamp unit.

Average inter arrival jitter for video plus text packets was 30871 microseconds measured
in timestamp unit.

Achieved synchronized display of text and video data on receiving end which is verified
by displaying the same data before transmission on server as well.

58

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 6 Testing and Performance Improvement

6.3 Performance Improvement

6.3.1 Single Packet to Reduce Bandwidth Wastage

Text input was the characters entered by the user through keyboard. Even with a
maximum typing speed, rate of character entered was a few characters per second or less
than it. In worst it may be a single character or not even a single character. Which means
text data available for transmission is only a few bytes or may be a single byte. On the
other hand, minimum size of RTP header is 12 bytes, while that of UDP is 8 bytes. So
sending separate packets for few bytes of text data requires sending minimum 20 bytes of
header data with each packet. This was merely wastage of bandwidth. Also extra
processing was required in this case for synchronizing both types of data received
through two different packets on receiving end.

So this approach to send text data in the same RTP packet used for video data reduced the
bandwidth wastage and synchronization over head on receiving end.

6.3.2 Buffering of Text Data

Initially text input was taken for each RTP packets to transfer text along with the video
data in same packet. But it was found that even with a maximum typing speed, only a few
characters could be typed for every RTP packet and sometimes not even a single
character was available. It means video frames were being transmitted in every RTP
packet but no text data was available for every packet or very few characters were
available to transmit. But on receiving end, client was checking every packet for the text
data. So there was a need to provide some means of buffering in order to increase text
volume and circumvent client from checking each packet for text data.

Therefore in order to avoid transmission of a single or only a few characters in each
packet, buffering is provided. Small blocks of text data are prepared by the user and
transmitted after some delay. The result was to carry more text data with RTP packet.
Buffering time is selected so that on receiving end an illusion of a real-time text flow is
achieved. This is achieved by sending text data after 10 packets of video data. On
receiving end, client expects and checks for text data after receiving ten packets of video
data.

This mechanism reduced the chance of sending only a single cahracter or empty text
filed. This improved the size of transmitted text data and it enabled to send more text data
than in case of no buffering. It also reduced the overhead of client to check every RTP
packet for text data. Now client checks for text data after processing of ten packet of
video data. If the buffering time was further increased, it might reduce the real-time effect
of text data on client side. So sending textual data after 10th packet best suited the
situation.

59

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 6 Testing and Performance Improvement

6.3.3 Redundandant Text Data

Text data is also more sensitive for packet loss as compare to video data. Loss of a single
or even a few video packets may not affect the perceived quality of video data as much.
But loss of even a single packet of text data may change the meaning of whole text
conversation. Reception of duplicated text data also causes the same effects. In order to
overcome this problem, a mechanims is provided to avoid the effects of loss of text data
and reception of repeated text data.

Repeated data is transmitted in consective RTP packets to lower the risk of loss. Since
RTP packet overhead is usually much larger than the text contents, the usage of
bandwidth with the transmission of redundant data is minimal. If a packet containing
original tex is lost, then text an be read from the next coming RTP packet.

Although more than one level of redundancy can be implemented, but only one level of
redundancy is provided here. Those applications for which loss of packet is much more
serious issue, they can either send repeated text data in each RTP packet or they can send
text data in separate RTP packets containing original text along with the repeated text of
many previously transmitted packets.

6.3.4 No Duplication

In order to avoid duplication of received text data, a mechanis based on sequence number
is provided. In this way duplicate reception of same packet is avoided.

6.3.5 Read Image Data into Memory for Decompression

On client side there is no need to store the video data. Display of the synchronized video
and text data is the primary focus of this study. Storing video data on client side is merely
wastage of the disk space. Secondly it is a real time application, so first storing data on
disk and then reading it from disk causes delay. It involves two disk accesses. So jpeg
library is modified to read video data from memory for decompression before display. It
decreased number of disk access which is ideal for real-time applications.

6.3.6 Text Compression

Text data is tranmsitted without applying compression. As text data comprises only few
bytes as compare to video data so there is no need to apply compression on it.
Compression is applied on video data which has size in megabytes. Applying
compression on text also, merely increases the processing burden of client and server.
Similalry no encoding is applied to tex data. Text input is simply taken from keyboard
and 1s transmitted through network.

60

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 6 Testing and Performance Improvement

6.4 How to use this software over Internet

This application can also run over Internet. For this purpose keep image size smaller,
176x144 otherwise the packet size becomes larger to easily travel over the Internet. To
run over the Internet, make sure that a serial connection and a modem are installed on
both client and server computers and that ppp is also installed. If you have fixed IP
address for the server then there is no issue. Use it to connect the client with the server.
But mostly IP addresses are dynamic. In that case use the following steps.

On Server Computer:

a). Dial your ISP through your PPP connection. Use wvdial, if you are using
fedora or RedHat for dialing.

b). When you have connected with ISP, assuming you had already included your
username and password in the wvdial configuration file. Now you issue the same
command:

ifconfig

You will see an output for each of your interface, which would most likely be
eth0, lo and ppp0. We are interested in ppp0. In this interface, you will see an IP
address in the form x1.x2.x3.x4. Note it down on piece of a paper. If you do not
find ppp0 listed, then you are not connected with Internet and you will have to try
it again.

c). Create a file say addrfile, which contains this address. Send this file to client
computer via normal email. Now the client knows the IP address of the server.
Run your software for capturing the images and start sending them on the
network.

On Client Side:

a). The client also uses Linux and connects to its ISP. It should also use the
“ifconfig” command to check that a connection to Internet is established or not.
When gets the IP address from the server side, through normal email, client
should ping the server computer as follows:

ping x1.x2.x3.x4.

If the response is 64 bytes being received, then both are on Internet. The client
can also communicate its IP address to the other party. Now you can also use FTP
and telnet etc on these computers, since you now know the IP addresses of each
other.

61

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 6 Testing and Performance Improvement

b). Next run your client software on the client computer and you should start
seeing the video.

That’s all there is to it.

6.5 Summary

In this way attempt has been made to give a mechanism to meet the needs of real-time
applications. Sending text and video data in a single packet reduces overhead of
synchronization for display of both types of data on receiving end. It has been tried to
resolve both problems of slow typing speed, by introducing buffering and packet loss, by
transmiting redundant data. This mechanism of trsansmission gives text arrival in correct
order, without duplication, and with detection and indication of loss. Real-time display on
client side is improved by reading video data from memory for decompressing image
rather then from disk.

62

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 7 Conclusions and Future Enhancements

CHAPTER 7

CONCLUSIONS AND FUTURE
ENHANCEMENTS

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Chapter 7 Conclusions and Future Enhancements

14. Conclusions and Future Enhancements

14.1

General Discussions

This thesis is an extension of the work already done by two students of the same
university. Their work deals only with the video capture on server, packetization of video
data only, transmission and reception and rendering on client side over Linux platform.
This work includes video capture along with the textual data on server, packetization of
both types of data, transmission, reception on client side, synchronized display of both
types of data on client side. Due to the requirements of sending both types of data, the
implementation details of video also differ from existing work as follows:

14.2

Conclusions

In previous work, video capture is achieved with analog video camera and then
analog to digital conversion is used to convert data in digital form. So capture
card and its driver used are also different, one suitable to work with analog
camera. In this case, digital camcorder is used to grab video data, which works
using FireWire card, and uses Linux IEEE1394 subsystem. Its drivers are
different than an analog video camera.

In previous work, application used to grab frames is vgrab which uses Linux AP,
video for Linux and works for analog camera. Because capturing images through
analog camera requires different settings for image capture like selection of color
palette etc as compare to those required while using digital camcorder. In this
work dvgrab is used which accesses digital camera through Linux IEEE1394
module. It requires a number of different libraries to capture video from camera.
Accessing digital camera in Linux is comparatively a tough job because it cannot
be simply opened on /dev/ like other devices. It requires accessing handle of
ieee1394 bus. Details of Linux IEEE1394 subsystem are given in chapter
Implementation Details.

For display of video SVGA library is used in previous work which displays video
over the whole monitor. In this work, it is required to display text as well along
with the video data; secondly SVGA is no more part of each latest version of
Linux distributions, so X Window System is used to display text data along with
the video data.

Basic working of client server is the same like Sockets have been used to establish
a connection between the client and server. In previous work threads have been
used to separately manage video capture. In this work threads have not been used
for video capture rather image grabbing is managed separate in order to cope with
the difference of processing speed of computer and the digital camcorder.

63

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

ChaJter 7 Conclusions and Future Enhancements

For text, input is taken from keyboard and is packetized in the same packet as
video. In order to facilitate the slow typing speed as compare to the fast video
frames transfer speed, buffering is implemented, which is specified in RFC 4103
“RTP Payload for Text Conversation”. Video data is sent in each RTP packet
while the text input is taken and sent after sending ten packets of video.

As textual data is more sensitive to packet loss as compare to video data. Losing
one or few video frames do not affect the result so much but losing even a single
text packet can change the meaning of whole text. So in order to make textual
data more reliable, the concept of redundancy of textual data is applied here
which is also specified in RFC 4103 “RTP Payload for Text Conversation”. Only
one level of redundancy is implemented. That is redundant data is sent only for

one packet which is the exactly previous packet carrying text data. Details of
these implementations are given in chapter Text.

14.3| Future Enhancements

This research is an attempt to send textual data using RTP which is basically developed
and used fro multimedia real-time applications. Now a day attempts have also been made
RTP for the transmission of non-continuous real-time media type like text. Some
of details are given in Chapter Literature Survey. Initially it have been tried to keep the

things as simple as possible. In future this research can be enhanced to get further results.
Some possible enhancements could be:

Currently text input has been taken through key board. The rate of character entry
is usually at a level of a few characters per second or less. Only a few new
characters are expected to be transmitted with each new packet. Stored text file,
handwriting recognition, voice recognition or any other input method can be used
to increase the volume of textual data.

Currently it has been selected to send data in the same packet as used for video
because keyboard input results in availability of only few characters to send. So
sending it in separate packet causes bandwidth wastage. In future, text can be
taken from any other source (capable of providing large text data input) and can
be transmitted in separate RTP packets.

Currently image size is kept smaller to meet the maximum packet size restriction
to travel through the network. Complete frame is sent in a single packet. To send
igh resolution video, in future image size can be made larger and a single image
an be transmitted in more than one packet for which details are given in RTP
pecifications.

ame work can be implemented for SRTP, which is a secure version of RTP. It
ill require implementing encryption/decryption of transmitted data. It will also
equire a mechanism to generate and distribute encryption keys.

64

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix A Header File rtp.h

APPENDIX A
HEADER FILE (RTP.H)

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix A Header File rtp.h

Appendix A — Header File (rtp.h)

This is a header file for rtp and needs to be used with server
as well as client. This is given in RFC 3550 and provides
examples of C code for aspects of RTP sender and receiver
algorithms.

/*

* rtp.h -- RTP header file (RFC 3550)
*/

#include <sys/types.h>

/-k

* The type definitions below are valid for 32-bit
architectures and

* may have to be adjusted for 16~ or 64-bit architectures.
*/

typedef unsigned char wu_int8;

typedef unsigned short u _intlé;

typedef unsigned int u_ int32;

typedef short intlé6;
/*
* Current protocol version.
*/
#define RTP_VERSION 2

#define RTP_SEQ MOD (1<<1l6)

#define RTP_MAX SDES 255 /* maximum text length for SDES
*/
typedef enum {
RTCP_SR = 200,
RTCP_RR = 201,
RTCP_SDES = 202,
RTCP_BYE = 203,
RTCP_APP = 204

} rtcp _type t;

typedef enum

RTCP_SDES_END = 0,
RTCP_SDES_CNAME = 1,
RTCP_SDES NAME = 2,

65

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix A

Header File rtp.h

RTCP_SDES_EMAIL =
RTCP_SDES_PHONE =
RTCP_SDES_LOC

RTCP_SDES_TOOL
RTCP_SDES_NOTE =
RTCP_SDES_PRIV

~

~

o
® oUW
- ™

~

} rtcp sdes type t;

/*

* RTP data header

*/

typedef struct {

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int
int

u int32 ts;

u int32 ssrc;

version:2;

p:l;
x:1;
cc:4;
m:1;
pt:7;
seq:16;

u int32 csrc(l];

} rtp hdr t;

/*

* RTCP common header word

*/

typedef struct {
unsigned int version:2;
unsigned int p:1;
unsigned int count:5;
unsigned int pt:8;
u intlé length;

word */

} rtcp_common t;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

protocol version */
padding flag */

header extension flag */
CSRC count */

marker bit */

payload type */

sequence number */
timestamp */
synchronization source */
optional CSRC list */

protocol version */
padding flag */

varies by packet type */
RTCP packet type */

pkt len in words, w/o this

/*
* Big-endian mask for version, padding bit and packet type
pair
*/
#define RTCP VALID MASK (0xc000 | 0x2000 | Oxfe)
#define RTCP_VALID VALUE ((RTP_VERSION << 14) | RTCP_SR)
/*

* Reception report block

*/

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix A

Header File rtp.h

typedef struct {

u int32 ssrc;
*/

unsigned int fraction:8;
SR/RR */

int lost:24;
(signed!) */

u int32 last seq;
received */

u int32 jitter:;

u int32 lsr;
source */

u int32 dlsr;

*/
} rtcp rr t;
/*
* SDES item
*/

typedef struct ({
u_int8 type;
(rtcp_sdes_type t) */
u int8 length;
*/
char dataf[l];
} rtcp _sdes_item t;

/*
* One RTCP packet
*/
typedef struct {
rtcp common_t common;
union {
/* sender report
struct {
u int32

(SR)

ssrc;

report */
u_int32
u_int32
u_ int32
u_int32 psent;
u_int32 osent;
rtcp rr t rr[l];

} sr;

ntp_ sec;
ntp frac;
rtp_ts;

/* reception report

/+
/+
/+
/s

/*
/*

/*

/*

/*

/%
*/
/%
/%
/*
/%

/*
/*

(RR)

data source being reported
fraction lost since last
cumul.

no. pkts lost

extended last seg. no.

interarrival jitter */
last SR packet from this

delay since last SR packet

type of item
length of item (in octets)

text,

common header */

sender generating this
NTP timestamp */
RTP timestamp */
packets sent */

octets sent */
variable-length list */

*/

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

not null-terminated */

67

Appendix A

Header File rtp.h

struct {

report */

u int32 ssrc;

rtcp _rr t rr(l];

} rr;

/* source description
struct rtcp_sdes {

u_int32 src;

(SDES)

/* receiver generating this

/* variable~length list */

*/

/* first SSRC/CSRC */

rtcp _sdes_item t item[1]; /* list of SDES items*/
} sdes;

/* BYE */
struct {

}or;
} rtcp t;

u int32 src(l];

/* list of sources */

/* can't express trailing text for reason */
} bye;

typedef struct rtcp sdes rtcp sdes t;

/*

* Per-source state information

*/

typedef struct ({
u_intl6é max seq;

u int32
cycles */

u int32

u int32

u int32
valid */

u int32

u_int32
interval */

u int32
interval */

u_ int32
pkt */

u int32

} source;

cycles;
base seq;
bad_seq;

probation;

received;
expected prior;

received prior;
transit;

jitter;

/*
/*
/*
/*
/*

/*
/*

/*
/*
/*

highest seq. number seen */
shifted count of seqg. number

base seq number */
last 'bad' seq number + 1 */

sequ. packets till source is

packets received */
packet expected at last

packet received at last
relative trans time for prev

estimated jitter */

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

68

Appendix B Interfaces

APPENDIX B
INTERFACES

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix B Interfaces

Appendix B — Interfaces

root ~localhost: vrtpthesis

Fle Edt View Teminal Tabs Help

ST DALY ot ROE DESCRIPT TN

Qa ﬂ ’ a umRisAs sadeld suopedddy)

Lt

© wivu @

S

[@ root@localhost/vipthesis |{ £ screen shots (@ Starting Take Screenshot

3

Server waiting for the connection request from client.

Data Source Description currently showing the details of server only because no client is
connected.

69

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix B Interfaces

roat ™ localthost: vrtpthesis

Hle Edl View Temind Tabs Help

CAPB B imsis wma wommey O

nvevzt @ :

— u @
(#): (@ root@locaihostivnmhesis || € screen shats (@ Stanting Take Screenshot | WIS

Connection established

Data Source Description showing the details of both the server and the client.

70

Real-time Transmission Of Video And Text Complexity Through Real-Time Tnuisport Protocol

Appendix B Interfaces

toot ~localhost vrtpthesis

Hle Edt View leminad Tas Hep

BEALDP® P vasis s suorenddy P

€ nwvort @

® Staring Tak.. | I(WIININ ©

@-[D [screen shots]] W roor®locah

Transmission started

Sender and Receiver Reports both are displayed.

71

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix B Interfaces

root " localhost vripthesis

. Qa& ’ O waisis sadely suogesyddy @

Ryt PACKES

iy

€ nvot @@

()

I

(@ root@localhastv... || £ screen shots J((Z ivnps.cc (~/Deskt... || @ Staning Take Scr... | HI{ I ®

Received Bye packet from client.

Connection between client and server is disconnected and server again goes to waiting state.

72

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix B Interfaces

toot ~ localhost vrpthesis

WHRCE DESCRTITTON]

(@ rot@locah...) £3 [screen shats] J{ & vrps.cc (~/... _[. staning Tak... |]I

HleEdtVIewTetﬁnthstp

DOEALP P wasis soed suopenddy

]

(w)

Ny

Server exiting after receiving q from keyboard.

73

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix B Interfaces

root@localhost:~
Fle Edt View Teminal Tabs Help
[root@localhost ~]#‘[]

td
E4
o
£
455

. %a& ‘ a waAsAS sadelj suopedddy

s

S ———————————————

®
[CickwoDispayPic | 3
H
%

(#@): (@ no@locah..)| W roo@locaih... (] vipsewer

Server window to display video plus text data.

74

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocel

Appendix B Interfaces

root® localhost:~

fle Edt View Termind Tabs Help

‘[root@localhost ~]# D

- vrtpClient - - X

— —

[Click to Display Pic

S

%
. @@& P @ unsis sedey suopedpddy Q)

€ nvszt @@

(@) (@ no@locah..)| @ ro@iocah..)| vipsene)(3 vapChent)| @ Staring Tak...)[BT ©

Client window to display text plus video data.

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

75

Appendix B Interfaces

vitpServer - X

int @ X

Ai AP @ wnsis seeid suoedyddy @

| Click to Display Pic

i

B

z
| Click to Display Pic)
(@ root@locah... |l oot@localh. | [vipSewer ||] vipClient)| @ Starting Tak.-:__]- ®

oA

(]

Text entered in server window displayed in client window.
Video transmitted by server is also displayed by in client window

76

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix B Interfaces

VipServer

0]

[]

Click to Display Pic

ug btf jh bytf yhyughyugygygygyyyhuhyhyhuhuhuhuhohjiou ug uyugyu yu g

iE_:a]

Qa ﬂ o 0 i uRisAS sadEld suonedyady

| Click to Display Pic

U

o

(]

[M@Iocalh..j[. root@localh. ..]U T——

Next received text is concatenated with the previously received text on client side.

77

Real-time Transmission Of Video And Text Compiexity Through Real-Time Transport Protocol

—~—+ﬁmm?Tﬁmﬁﬁ-ﬂ-.®

Appendix C JPEG Library

APPENDIX C
JPEG LIBRARY

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix C JPEG Library

JPEG Library (libjpeg)

Library Overview

Typical compression/decompression steps

The rough outline of a JPEG compression operation is:

e Allocate and initialize a JPEG compression object

struct jpeg compress struct cinfo;
struct jpeg error mgr jerr;

cinfo.err = jpeg std error(&jerr);
jpeg create compress (&cinfo);

A JPEG compression object is a "struct
jpeg compress struct". A structure representing a JPEG
error handler is a "struct Jjpeg error mgr.

jpeg create compress allocates a small amount of memory.

e Specify the destination for the compressed data (eg, a file)
Typical code for this step looks like:
FILE * outfile;

if ((outfile = fopen(filename, "wb'")) == NULL) {

fprintf (stderr, "can't open $%s\n", filename),
exit(1l);
}

Jjpeg stdio dest(&cinfo, outfile);
Where the last line 1invokes the standard destination
module. You may not change the destination between calling

jpeg start compress() and jpeg finish compress().

e Set parameters for compression, including image size & color space etc

image width Width of image, in pixels

image height Height of image, 1in pixels

input components Number of color channels(samples per
pixel)

in color space Color space of source image

Typical code for a 24-bit RGB source image 1is
78

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix C JPEG Library

cinfo.image width = Width; /* image width and
height, in pixels */

cinfo.image height = Height;

cinfo.input components = 3; /* # of color components
per pixel */

cinfo.in color space = JCS RGB; /* colorspace of input
image */

jpeg set defaults(&cinfo);
/* Make optional parameter settings here */

e jpeg start_compress(...);
Typical code:
Jjpeg start compress(&cinfo, TRUE);

Once called jpeg start compress(), cannot alter any JPEG
parameters or other fields of the JPEG object until you
have completed the compression cycle.

e while (scan lines remain to be written)

jpeg write_scanlines(...);
write all the required image data by calling
jpeg write scanlines() one or more times which returns the

number of scanlines actually written. Image data should be
written in top-to-bottom scanline order.

e jpeg_finish compress(...);
After all the 1image data has been written, call
Jjpeg finish compress() to complete the compression cycle.
This step 1s ESSENTIAL to ensure that the last bufferload
of data is written to the data destination.
Jjpeg finish compress () also releases working memory
associated with the JPEG object.
Typical code:

jpeg finish compress (&cinfo) ;

e Release the JPEG compression object

79

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix C JPEG Library

When done with a JPEG compression object, destroy it by
calling jpeg destroy compress(). This will free all memory.
Typical code:

jpeg destroy compress(&cinfo);

A JPEG compression object holds parameters. Creation and destruction of this object is
separate from the start and finishing of the compression of an image, so same object can
be used to compress/decompress a series of images. So the same parameters setting can
be applied to a sequence of images. This fact is utilized for M-JPEG compression and
decompression.

The image data to be compressed is supplied to the function jpeg_write scanlines() from
in-memory buffers. If file-to-file compression is required, then reading image data from
the source file is the application's responsibility. The compressed data is written by the
library by calling a "data destination manager", which typically writes the data into a file;
but the application can provide its own destination manager to do something else.

Similarly, the rough outline of a JPEG decompression operation is:
e Allocate and initialize a JPEG decompression object

This 1s just like 1initialization for compression, as

discussed above, except that the object 1is a "struct
Jpeg decompress struct” and you call
Jjpeg create decompress(). Error handling 1is exactly the
same.

Typical code:

struct jpeg decompress struct cinfo;
struct jpeg error mgr jerr;

cinfo.err = jpeg std error(&jerr);
jpeg create decompress (&cinfo);

e Specify the source of the compressed data (eg, a file)

As previously mentioned, the JPEG library reads compressed
data from a "data source"” module. The library includes one
data source module which knows how to read from a stdio
stream. You can use your own source module if you want to
do something else, as discussed later.

If you use the standard source module, you must open the
source stdio stream beforehand.

80

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix C JPEG Library

Typical code for this step looks like:
FILE * infile;

if ((infile = fopen(filename, "rb")) == NULL) {

fprintf (stderr, "can't open %s\n", filename);
exit(1);

J

Jjpeg stdio src(&cinfo, infile);
where the last line invokes the standard source module.
o C(all jpeg read header() to obtain image info
Typical code for this step is just

jpeg read header (&cinfo, TRUE);
This will read the source datastream header markers, up to
the beginning of the compressed data proper. On return, the
image dimensions and other info have been stored in the
JPEG object.
e Set parameters for decompression
Default values are set by each call to jpeg read header().
However, you may alter these defaults before beginning the
decompression in this step.

e jpeg start decompress(...);

This will initialize 1internal state, allocate working
memory, and prepare for returning data.

Typical code is just
Jjpeg start decompress(&cinfo);
e while (scan lines remain to be read)
jpeg read_scanlines(...);
Read the decompressed image data by calling

Jjpeg read scanlines() one or more times. At each call, you
pass in the maximum number of scanlines to be read (ie, the

81

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix C JPEG Library

height of your working buffer). Image data 1s returned 1in
top-to-bottom scanline order.

e jpeg_finish_decompress(...);

After all the image data has been read, call
jpeg finish decompress () to complete the decompression
cycle. This causes working memory associated with the JPEG
object to be released.

Typical code:
jpeg finish decompress(&cinfo);
e Release the JPEG decompression object

When you are done with a JPEG decompression object, destroy
it by calling jpeg destroy decompress() or jpeg destroy().
The previous discussion of destroying compression objects
applies here too.

Typical code:
jpeg destroy decompress (&cinfo);

This is similar to the compression outline except reading the data stream header step.
This is helpful because information about the image's size, colorspace, etc is available
when the application selects decompression parameters. For example, the application can
choose an output scaling ratio that will fit the image into the available screen size.

The decompression library calls a data source manager to obtain compressed, which
typically reads the data from a file; but other behaviors can be obtained through
applications. Decompressed data is delivered into in-memory buffers passed to
jpeg_read_scanlines().

To abort an incomplete compression or decompression operation jpeg_abort() is called or
jpeg_destroy() can also be called which also destroys the JPEG object.

JPEG compression and decompression objects are two separate struct types who share
some common fields, and certain routines such as jpeg_destroy() works for both types of
object. The JPEG library has no static variables: all state is in the compression or
decompression object. Therefore it is possible to process multiple compression and
decompression operations concurrently, using multiple JPEG objects.

82

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix D References

APPENDIX D
REFERENCES

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix D References

References

[4].

[5].

[TU-T Recommendation T.140 (1998) — “Text conversation protocol for
multimedia application, with amendment 17, (2000).

Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport
Protocol for Real-Time Applications", RFC 3550, July 2003.

H. Schulzrinne, A. Rao and R. Lanphier, “Real Time Streaming Protocol
(RTSP)”, RFC2326, April 1998.

G. Hellstrom, Omnitor AB, P. Jones, “RTP Payload for Text Conversation”,
RFC 4103, June 2005.

G. Hellstrom, Omnitor AB, P. Jones, “RTP Payload for Text Conversation
Interleaved in an Audio Stream”, RFC 4351, January 2006.

“IEEE 1394 for Linux”, http://www.linux1394.org/start_req.php

Randa El-Marakby, David Hutchison, "Evaluation of the Real-time Transport
Protocol (RTP) for Continuous Media Communications", url =
citeseer.ist.psu.edu/88756.html"

Tom Sheldon's Encyclopedia of Networking and Telecommunications
“Multimedia”,
[Available at: http://www.linktionary.com/m/multimedia.html]

Fernando Boronat Segui, Juan Carlos Guerri Cebollada “NON CONTINUOUS
MEDIA STREAMS TRANSMISSION USING RTP. A MULTICAST RTP-BASED
TOOL” [Available at: http://personales.gan.upv.es/~fboronat/RTP_Text.html]

. Chunlei Liu, “Multimedia Over IP: RSVP, RTP, RTCP, RTSP”

Prof. Jean-Yves Le Boudec, Prof. Andrzej Duda, Prof. Patrick Thiran,
www.cs.wustl.edu/~jain/cis788-97/ftp/ip_multimedia.pdf

“RTP Video (Real-time Transport Protocol Video)”
http://www.protocolbase.net/protocols/protocol_RTP%20Video.php

83

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

Appendix D References

[13].

[14].

[15].

[18].

[19].

“Why we like MJPEG compression”
http://www.securityinfowatch.com/article/article.jsp?siteSection=430&1d=1433
5

Ismo Anttila, Markku Paakkunainen, Helsinki University of Technology,
Telecommunications Software and Multimedia Laboratory, “Transferring real-
time video on the Internet”, http://www .tml.tkk.fi/Opinnot/Tik-
110.551/1997/iwsem.html

Gregory K. Wallace, Multimedia Engineering Digital Equipment Corporation
Maynard, Massachusetts, “The JPEG Still Picture Compression Standard”,
Submitted in December 1991 for publication in IEEE Transactions on
Consumer Electronics.

. “Welcome to the JPEG Tutorial!” http://cobweb.ecn.purdue.edu/~ace/jpeg-

tut/jpegtutl.html

. “Linux”, http://easymamecab.mameworld.net/html/svgalib.htm

J. Postel, “User Datagram Protocol”, RFC 786, 28 August 1980

Prepared by Defense Advanced Research Projects Agency, “Transmission
Control Protocol”, RFC 793 , September 1981

. M. Shiraz Baig, “Beginning Internet Communication Programming through X

Windows on Linux using GTK+ ”, Educational Publishers, New Urdu Bazar,
Rawalpindi

84

Real-time Transmission Of Video And Text Complexity Through Real-Time Transport Protocol

