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Preface

An important flow phenomenon that occurs in kidneys is the passage of fluid through
renal tubule. The function of nephron in kidneys strongly depends upon the flow through
renal tubule that helps in bearing the final products of metabolism. They are also helpful
to maintain the body fluids volumes. The transport of fluid in tubule is due to the pressure
drop. The understanding of hvdrodynamics in tubuie will help to understand the functions
of nephron. The mathematical model of the renal tubule consists of a permeable tube that
allows the fluid to move across the boundaries. The theoretical study of flow in renal
tubule was first presented by Macey [1, 2]. They assumed a creeping viscous flow
through a narrow permeable tube. They predicted that an exponentially decaying flow
rate exist along the tube. An extension of the work presented in [1, 2] for the flow
through porous wall duct for small Reynold number is discussed by Kozinsk: [3]. The
effects of the variable cross-section tube for the flow through mbe were analyzed by
Radhakrishnacharya et al. [4]. The exact closed form solution for a viscous flow through
a permeable wbule was presented by Marshall et al. [5]. In [5] they have neglected the
nertial terms by supposing a creeping flow situation. Palatt et al. [6] solved the viscous
flow through a permeabie tube by imposing the assumption that fluid loss across the tbe
wall is a linear function of the pressure gradient across the wall. Effects of variable wall
permeability on the creeping flow of a viscous fluid through a tubule were investigated
by Chaturani and Ranganatha [7]. In a recent study Siddiqui et al. [8] analvzed the effects
of an external applied magnetic field on the theoretical model of the flow for renal tubule.
The literature survey indicates that most of the theoretical studies of flow in renal tubules
are investigated for Newtonian fluids. It is now established fact that many physiological
and indusirial fluids deviates from the Newton's law of viscosity. On the basis of
experimental studies many relationships of the apparent viscosity are propesed in the
literature. These fluids are generally classified as generalized Newtonian fluids and in
such fluids the fluid responses to an applied shear stress at an instant do not depends upon
the response at some previous instant. The generalized fluid models are widely applied to
discuss the physiological flows such as peristaltic flows [9-16] and blood flows [17-22].

Keeping this fact in mind we have revisited the hydrodynamical model of renal tubule



using an Ellis fluid model. Ellis fluid exhibits the shear thinning and thickening
characteristics at low, moderate and high shear rates. The advantage of Ellis fluid is that
it can predict the Newtonian and power law behavior at small and large shear siress.
Javed at al. [23] discussed the theoretical analysis of calendaring of an Ellis fluid based
on lubrication approximation theory. Hopke and Slattery [24] provides the upper and
lower bounds of the drag coefficient for a sphere moving slowly through Ellis fluid.
Chhabra at el. [25] discussed the experimental results as compared to the theory of Hopke
and Slattery [24] for creeping motion of sphere through Ellis fluid.

The present dissertation is structured as follows. Chapter 1 is devoted to include basic
definitions and governing equations. The detail review of a paper by Palatt et al. [6] is
carried out in chapter 2. Chapter 3 extends the analysis of Palatt et al. [6] for a non-

Newtonian Ellis fluid model.



Contents

Chapter 1

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

------------------------------------------------------------------------------------------

----------------------------------------------------------------------

......................................................................

......................................................................

N e e T3 | S S PSS

Kinematic viscosity...
Velocity field .........

Shear stress.............

Incompressible flow..

Couette flow...........

R L L L R N I R A IR

......................................................................

..........................................................................

......................................................................

......................................................................

POISEUILLE TOW ..t iieeeiiet et eeeevnereerareneereensessersanenrasreesneernns evarmereoranne

One dimensional flow

......................................................................



1.3.8  Two dimensional Flom. ..ottt ottt e e bt e e e e nanans 9

1.3.9 Three dimensional flow............ooieininiiiiiii 9
1.4 Types of fluids......cvvininii i 9

141 Jdeal fluids. ..o e e e e 9

142 Real fluids......coooiiniiiiii e 9
1.4.3 Newtonian fluids........c.oooiiiiiiiiii e e e 10
1.4.4 Non-Newtonian fluids...........ccoiiiiiiiiiiiiiiii e 10
145 Ellisfluld model.......o.vniininiiiiiiii e rae s e 10
1.5  Assumptions for fluid flow...........cooooiiiiiiiii 11

1.5.1 Conservation Of MASS. . ....c.evveiiiiiiiiiiriis cerrre it e e e e renieaeen o 11
1.5.2  Equation 0f MOtION. .. . .euiceerii e et e e ee vt vn e e aeeraenaes s 11

Chapter 2

Viscous flow in a permeable tubule........cc.ccuiiiriviiinincerenirensiiiimsemeeerersrisnans 13
2.1  Mathematical formulation.............ccoomiviiiiiriiiiie e 13
2.2 APPIOXIMAtODS. ....oiuiiiiisit et e et et e ra e et e ee e 15
23 Analytical SOIUtION. .. .ot e 16
2.5 Validity of ApproXimations..........ccuvevninimiiiiiiiiniiiiieiaee i eeee e enen 19
2,10 Result and Discussion.............oovviiiiiiiiinin i 20
Chapter 3

Flow of an Ellis fluid in ranel tubule............ccocevevreecearenennrnanne. cestnaanrasesasesas 27
3.1  Formulation ofthe problem................ocooiiiiiiiii 27



3.2 Solution of reduced eqUAtIONS. . ........ooviiii it e 30
33 Result and DISCUSSION. ...ttt et e e 31
Bibliography......ccccovveeiiiiiniinn. eereaserietranteannrassasensones veenes 41



Chapter 1

Introduction

Some basic definitions and governing equations are included in this chapter.
1.1 Fluid mechanics

Fluid mechanics is the branch of mechanics that concemns with behavior of fluids either in
motion or in rest and their interaction with boundaries. It is divided into two main
branches fluid statics and dynamics. The discipline that deals with the behavior of fluids
in rest is categorized as fluid statics. In contrast the discipling that deals with fluids in

motion is classified as fluid dynamics.

1.2 Fundamental concepts

1.2.1 Fluid

Fluid is a substanice which cannot sustain a shear force under the static conpdition.

1.2.2 Density

Density {p) is defined as mass (m) per vnit volume (V) of the fluid. Mathematically,

<3

p= (L.
1.2.3 Pressure

It is the force (F) per unit area (A) that is applied perpendicular to the surface.
Mathematically,

p = E (1.2)



1.2.4 Viscosity

It is the internal property of fluid that measures the resistance of a fluid against any
deformation when different forces are acting upon it. Mathematically, it can be expressed

as

Shear stress ( 1 3)
Rate of shear strain’ )

viscosity(u) =

It is convenient to use kinematic viscosity (v) given by the ratio of dynamic viscosity (1)

to the fluid density as

.y
v==~ (1.4)

1.2.5 Velocity field

Fluid motion cannot be understood without the concept of velocity ficld. Among the
properties of a flow the velocity field V(r, t) 1s the foremost. By a solution of the flow
problem we mean to determine its velocity field. Once a velocity field is determined
other properties follow directly from it. If one needs to determine temperature field it can

be obtained once a velocity field is known. Mathematically,
V(r,t) = [u(r,t),v(r,t),w(r ). (1.5)

in which r is the position vector and u, v and w are components of velocity in three

orthogonal directions respectively.
1.2.6 Shear stress

The component of stress tangential to the material cross section and arises from the
component of force parallel to that cross section is known as shear stress. It is
proportional to the deformation and the constant of proportionality is the dynamic
viscosity. All fluids that interact with the solid boundary experience a shear stress. The

deformation of fluid element can be expressed as rate of deformation or shear stress

Trz = HZ (1.6)



1.2.7 Normal stress

The component of stress that acts in the normal direction on a control volume is known as

normal or tensile stress.

1.3 Classification of fluid flows

1.3.1 Steady flow

Flow properties of some fluids do not depend upon time, such flow of fluid is known as

steady flow. In steady flow time derivative of any fluid property is zero. 1.e.

on _
%=0 (1.7)

Where n represent any fluid property and ¢ is the time
1.3.2 Unsteady flow

In contrast to steady flow, if fluid properties depends upon time, we call the flow as
unsteady and therefore

dn
P 0. (1.8)

1.3.3 Laminar flow

In laminar flow each particle of fluid has distinct, definite path and never intersect with
its own path. If there is interaction between the paths of different fluid particles then the
flow is turbulent.

1.3.4 Incompressible flow

In general all fluids are compressible to some extent because the density varies with
variations in pressure or temperature. In most of the cases this change is small enough
that we can neglect it, in such a case we treat density as constant and flow as an

incompressible flow.



1.3.5 Couette flow

It is a flow between two plates, in which one plate remains at rest and the other one is

moving with uniform velocity.
1.3.6 Poiseuille flow

In the direction of flow a constant pressure gradient ts produced between two plates ts

known as Poiseuille flow.
1.3.7 One-dimensional flow

A flow which the velocity field depends only on one space variable is called a one-

dimensional flow.
1.3.8 Two-dimensional flow

A flow for which the velocity field depends upon two space variables is called a two-

dimensional flow.
1.3.9 Three-dimensional flow

A flow for which the velocity fields have three space variables is called a three-

dimensicnal flow.

1.4 Types of fluids

1.4.1 Ideal fluids

Fluids having no viscosity fall in the category of ideal fluids. In this case fluid offers no

resistance to the applied shear stress.
1.4.2 Real fluids

All real fluids have some non-zero value of viscosity, and offer resistance to the flow. It

also distributed into two main types.



1. Newtonan fluids
2. Non-Newtonian fluids

1.4.3 Newtonian fluids

Fluids that obey the Newtonian law of viscosity are Newtonian or viscous fluids. For one

dimensional flow that mathematical expression for Newtonian fluid is given by

=l (1.9)
Examples of Newtonian fluid are water, air, oil etc. Viscosity is constant for Newtonian
fluid.
1.4.4 Non-Newtonian fluids

Fluids that do not follow the linear relationship between stress and rate of deformation

are non-Newtonian fluids and in such case

= k(j—:)n, (1.10)

where n and k are flow behavior and consistency index. Rewriting Eq. (1.10) one gets

du\"*"1 gy du
r—k(a) 2= (1.11)

where 77 1s apparent viscosity. The common examples are shampoo, paint, tooth paste,

blood etc. Viscosity in such a case depends upon shear stress and is no more constant.
1.4.5 Ellis fluid model

The limitations of power-law fluid at low and high shear rates are addressed in the Ellis

fiuid model. Apparent viscosity of three constant Ellis model is defined as

U -_“)__ (1.12)

- 1+{%/z,

where 7y and a are material constant, g is the viscosity at zero shear rate and T is the

second invariant of deformation tensor given by

10






=_0r 9, _Tee
= ar+‘"( a7 "")+raat"f+a r )’

r

(1.18)

w 8w waw =10 ( r 19 2
P ag'“” Ity oty ) raa T e, (Fmre) + 155700 + 5, Tee +

Tﬂr"ﬂ?), (1.19)

r

du ap 2
p(at+v—+?§+ ) _E+‘u(rar( Trg) + = 66792+6zr"'2)' (1.20)

12



Chapter 2

Viscous flow in a permeable tubule

In this chapter the Newtonian fluid flow in small diameter, porous tube (renal tubule) is
considered. The governing equations are solved analytically to obtain an exact solution.
The graphical results are presented and discussed for various values of involved

parameters. In this chapter we are presenting a detail review of a paper by Palatt et al. {6],

2.1 Mathematical formulation

Consider the steady, axisymmetric creeping flow of a viscous fluid in a long thin
permeable tube with small diameter. For the mathematical model a cylindrical coordinate
system is used. The flow under consideration is two-dimensional and is represented by

the following velocity field.
V = [D(F 7),0,4(F, £)]. (2.1)
For Newtontan fluid extra stress tensor T 1s given by
T = Ay, 2.2)
where A, is the first Rivlin-Erickson tensor given by
A, =YV + (W), (2.3)

For veloctty field given in Eq. (2.1), we have

25, 0 @iy + Dy
r=,u( 0 28/F O ) 2.4)

— (Fil) + = (75) = 0, 2.5)

13



19p _ 8% 198 | 2%

udr  ofz ' for 2 ' 322 (2.6)

19 9% 18T 9%

L% art | Faf | age @.7)

In above equations we have neglected the inertial term due to the fact that flow in renal
tubule is creeping. The appropriate boundary conditions are

5(0,2) = 0, 2.8)
ai(0,2) /af = 0, 2.9)
5(a,2) = L,[f(a,2) - pc, (2.10)
ii(a, %) = 0, @2.11)
fi(7,0) = 21i,[1 — (f/a)?], f{iy = constant, (2.12)
p(f.0) = Py, Pp = constant. (2.13)

The volumetnic flow rate is
0o = 2m [, #i(7, 0)dF = ma?il,, (2.14)

which gives

iy = 2. 2.15)

In above equations, ¥ and i are the radial and axial velocity components, respectively, i,
is the mean axial velocity at Z = 0, ¥ and Z are radial and axial coordinate of tubule,
respectively, f is the hydrostatic pressure within tubule, P, is hydrostatic pressure within
tubule at point Z = 0, u is the coefficient of viscosity, a is the radius of tubule, L, is the
hydrodynamic coefficient of permeability of the tubule wall, p, is the external hydrostatic
pressure of the tubule and §j is the flow rate within tubule at point Z = 0.

Introducing the normalized variables

14



A:%,‘r:i’zzf, u(nz):ﬁi;, v(r)z):ﬂiu,
= 2 — [B(7Z)—pela? _ Lpul
Q(2) = oo p(r,z) = g k=T (2.16)

Equations (2.5)-(2.13) takes the form

? &
Aa(ru) +$(rv) =0, 2.17)
O _ [ 10 b 0t
r 4 ar? + rér r2 +A azz]’ (2.18)

Bp - du 12 2 Bzu

229 Trar T2 222 (2.19)
v(0,z) =0, (2.20)
Zu(0,2) =0, (2.21)
v(1,2) = kP(1,2), 2.22)
u(1,z) = 0, (2.23)
u(r,0) = 2(1 — r2), (2.24)
p(r,0) = py. (2.25)

2.2 Approximations

In biological tubule of small radius one can assume that the ratio of tubule radius teo its
length is very small. Furthermore, the outward radial velocity is much smaller than mean

axial velocity. Therefore
(1) A«1

2 Y, <Unp

An order and magnitude analysis of Eqgs. (2.17)-(2.19) gives

15



2 v
¥y 1 T, oW,], (2.26)

arz  rar r2

az
AR =~ O[A2V,], (2.27)
92 1du
57 = rar = OlUn], (228)
2 Bzu —~ 2 _
AP = = O[A2.Up). (2.29)

The simplified equations for the flow are

2
LN | A LGS (2.30)

ar art ' rar reb

2
O 8w 1% _10 . du (2.31)

2z ar2 rar rart or??

From Eqgs. (2.30) and (2.31)}

op

£=0[4V,], (2.32)
d

321 ~ O[Up]. (2.33)

Using approximations, we neglect (2.30) in comparison to (2.31) and pressure can be

evaluated using continuity equation. The flow is then governed by

dp _

%_y, (2.34)
dp 101 ou

az rorl orl (2.35)

2.3 Analytical solution

Since pressure is not a function of r, therefore one can integrate Eq. (2.35) in the

following way
2
PPy (2.36)

Boundary condition (2.21) suggests that ¢, = 0 and hence

16



Integrating Eq. (2.37) and utilizing boundary condition (2.23), we get
2-1) g,
u= {08 (238)
Utilizing the value of u obtained in Eq. (2.38) into continuity Eq. (2.18), we get
r(ri-1)d?p 8 _
A= =5+ (rv)=0. (2.39)

The equation that gives the pressure distribution can be obtained by integrating Eq. (2.39)
from R = 0 to 1 and is given by

% _15.,01,2) = 0, (2.40)

dz? A
Eliminating v(1, z) between Eqs. (2.40) and (2.22) one gets

Lr_ikp =0, (2.41)
Solution of Eq. (2.41) is then
p(z) = 6, exp(=$ 2) + 6, exp(B 2, (2.42)
where §2 = 16k/A, and 6, and 6, are arbitrary constants.

Substituting Eq. (2.42) into (2.38)

u=EVg, exp(—p 2)+ 6, exp(8 )] @43)

Radial velocity component v can be evaluated by integrating Eq. (2.39) w.r.t r and is
given by

r4
v=2@r-rZk (2.44)

Upon substituting p from Eq. (2.42), Eq. (2.44) becomes

17



Aﬁz(?.r r )[9 exp(~8 2) + G,exp(f z)].

Conditions (2.24) and (2.25) are utilized to give

~Pc_ 2
61-2+ﬁ,
—Po_2
62—2 5

Therefore,

p2) = (B+3)exp(-B2)+(2~3) exp(8 2).

u(r,z) = B(r*-1) [(-2— - i) exp(B z) — (? + %) exp(—f§ z)].

4

8

v(r,z) = M[(”" ) exp(—f z) + ( %) exp(8 z)|.

The non-dimensional pressure at z = 1 is given by

p(1) = pocosh f — (8 cosh B) /B,
Assuming p(1) = 0, we get
po 2 (Btanh B)/8,
The case when # = 0, Eq. (2.51) gives

p(1) =p, — 8.

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(250)

(2.51)

(2.52)

(2.53)

To validate the theoretical results given by the assumed model, we have compared our

results with available data existing in the literature.

18



Table 1: Experimental data for rat proximal convoluted tubule

Quantity Experimental Value
a 1.08 x 1073%¢m
0.67cm
cm
Ly 150X 107 ——— s
Do 14.4 cm H,0
Pe 10.3 cm H,0
T, 16.5¢cm H,0
Qo __cm?®

40.2x 1076 —
sec

m 7.37 X 10~%¢m H,0 — sec

2.5 Validity of Approximations

Numerical data presented in table 1 gives
A=2%16x107, k—-ﬂ~6.4x10-6,ﬁ =4\E“°'25*

_ Bo-petnp)nat _
po = TELEEE ~ 44,4, 6, =

N I'\':h

Since A « 1, approximation (1) is valid.

Also

Vw _ 8K [681exp(—f z)+8,exp(F z) _4
€, exp(-f§ z)—81exp($ ) =3 10

Thus approximation (2) is valid. The volumetric flow rate gives

Qz)=2 ful u(r, z)r dr,

Utilizing value of u and integrating we get

19

(2.54)

(2.55)



@(2) = cosh fz — %sinh Bz.

The non~dimensional mean pressure drop is

Ap = p(0) — p(2),

Ap =py [1 - (cosh ﬁz - %sinh ﬁz)].

The dimensionless shear stress is obtained es
Tw(2) = Trzlreas
1,(2) = 4cosh Bz ~ E?sinh Bz.
The dimensionless fractional reabsorption is obtained as

_ Qo)y-g(1)
FR = Q@ °

FR=1- (cash B —E2sink ).

2.10 Results and discussions

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

This section is devoted to discuss the obtained results for the flow of 2 Newtonian fluid in

a renal tubule. In Fig. 2.1 inlet pressure is plotted against parameter 8 to differentiate

between admissible and inadmissible regions. A decrease in inadmissible region 1s

observed for large values of . The outlet pressure plotted against inlet pressure is
depicted in Fig. 2.2 for three different values of 8. The case of § = 0, corresponds to the
Poisseuille flow for a non-porous tube. Eqgs. (2.48) and (2.56) respectively can be written

as

22 _ cosh Bz — 2 sinh Bz,
Po 14

@(z) = cosh Bz — ysinh fz,

20

(2.63)

(2.64)



where ¥y = 2Kpy/f and K = k/A. It is observed that y is strongly effects the behavior of
pressure distribution and volume flow rate. To discuss @(z)} in detail Fig. 2.3 is plotted
for various values of y. There are some important cases for various values of y. For
—oo <y < 0, the flow rate monotonically increase from @ =1 at z=0 and @
approaches to +o0 as z — oo, For some large values of z the expression of flow rate is

approximated by
Q=:(1+lyDexp(f 2). (2.64)

Fory = 0, Q = cosh Sz and the flow rate also present the same properties. For 0 < y <

1, flow rate initially decrease from @ =1 at z =0 to a minimum value of Q. =

J1—y2whenz= ﬁln(l +y/1 —y). The flow rate monotonically increase from that

oint and § — 400 as z =5 o, When @ = -1-(1 —y)exp(B z) for large z. When y = 1,
P 2

the flow rate monotonically decreases from @ = 1 atz = 0 and Q = 0 as z = <. For the

case of 1 <y < oo,  monotonically decreases from @ =1 at z=0 and Q =0 at

z= -z-lgln(y + 1/y = 1). Negative flow rate is obtained after that point, it decreases

monotonically and Q — —oo as z = oo. For large z, flow rate is approximated by
Q= —%(y—— 1)exp(f z). This predicts a reverse flow phenomena that may not be

admissible in many physical situations. Fig. 2.4 is plotted for p(z)/p, with z. for
different values of y with presents the same properties. Fig. 2.5 presents the variation of
radial velocity v for different K by keeping other parameter fixed. The radial velocity 1s
enhanced by increasing K. The velocity component u for different K is shown in Fig. 2.6.
The increment in X cause a decrease in u. Mean pressure drop is presented in Fig. 2.7. It
1s noted that mean pressure drop decreases by increasing K. Fig. 2.8 represent the
variation of wall shear stress T,,. It is clear from figure that the wall shear stress decreases
with increasing K. Fig. 2.9 depicts the variation of fractional reabsorption FR with p,. It
can be seen from this figure that the fractional reabsorption is enhanced with increasing

parameter K.

21
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Fig 2.5.

Fig 2.6.
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Fig 2.7.

Fig2.8.
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Chapter 3

Flow of an Ellis fluid in renal tubule

in this chapter we have extended the analysis of chapter 2 for an Ellis fluid flow in a
permeable tube of small diameter with an application to the flow in renal tubule. The
modeled equations are solved and results are presented in the graphs to discuss the effects

of various parameters.
3.1 Formulation of the problem

For an Ellis fluid 7 is given by

T = p(y)a,, 3.1
Since
fTT 0 fT‘Z
T= 0 fge 0 . (32)
Ty 0 T2z
i+ T, 0 Trp(frr + T22)
2= o & o | (33)
fzr(frr + fZZ) 0 f?z + fgz
Therefore,
u@y) = to = (3.4)

1 [lea = =7 =
1+(;%-J-2-(r$.,.+2t$z ~rr93+r§z))

Substituting Egs. (2.3) and (3.4) into (3.1), we get

23, 0 i@+
r= Zko ) ( 0 2%/F 0 ) (3.5)
il

1 [lro2 =2 22 =2 oy i3
1+(¥Jg(rrr+2rr2+r“ +t2,) iy + Uy 0 2
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Substituting the values from Eqgs. (2.1) and (3.5) in Eqgs. (1.16) and (1.18)-(1.20) and

neglecting inertial terms and body forces, we obtained the following equations

O fomn O g
Py- (Fil) + e (f8) =0, (3.6)
9 _18 oy 25 _Teo
aF  For (Ftrr) + 3z e g (3.7
B 19 .. 3 .
= (Fhr) + 52 e (3.8)
where
27
- 4logz
Try = r__._.__.a—_. =1 (3.9)
[1 l?$,+2f$z+fg9+1§z}
Q\f—z'
2o (242
b= 2w (3.10)
N [If;*’.,.-i-z‘bzrz-i- Go*Tez
1+ %\; 2
P . E— (3.11)
l+[—15 f%,+z‘r$zz+%§g+f§z]
TD‘\
3u
fgp = | R (3.12)
1+[;12\f~:-,2-,.+2?$2;%56+?§zl
The appropriate boundary conditions are
$(0,2) =0, (3.13)
a31u(0,) /o7 = 0, (3.14)
f’(a: f) = Lp[ﬁ(al Z) - pm]s (315)
ii(a,Z) =0, (3.16)
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B(#,0) = P, (3.17)
Qo = 2m [ 7i(F, 0)dF, (3.18)

where Py, = P — T, T, is the osmotic pressure outside the tubule. Introducing the
dimensionless variables and parameters

_ t _ Z ail maZLp Q(z)
r= ar zZ= L: u(r,Z) = Qo = V(T‘, ) - Qo Q( ) -
BE)~pminat [, _ Lpkol "“3*‘.{
plr.2) ==——— K=-"5m 1y =% (3.19)

The transformed system of equations are

o 8
;(rv) +=-(u) =0, (3.20)
= AFZ(rr) + 422 - oe], (3.21)
Bp aTn
72 ,a, T+ A5 (3.22)
4A?—
T, = —_— s (3.23)
1+[( no?o) ljl Frt2 T*Zj’&&”ﬂ]
wa~rs o/ 2
2 du zav
- i N (3.24)
Ji fea]
AL
Top = o = (3.25)
2, 4278 5 +732
1+I(§::?r%)\ll +2 Tz: L
4%

= az — (3.26)

Tzz
i+ (#oao) ’r$r+2r$.z+'r§9+r§z
madth /| ?

v(0,2) =0, (3.27)
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20 =0,
v(1,2z) = Kp(1,2),
u(1l,2) =0,
p(r,0) = p,,

2 f, ru(r,0)dr =1,

3.2 Solution of reduced equations

(3.28)

(3.29)
(3.30)

(3.31)

(3.32)

Invoking the appropriate simplification for biological tubules assuming that a fluid loss

through the walls. In such a situation 4 « 1, », <« u,, and governing equation becomes

=]

p_12
. - rar (rty,),

Tr =Tgg =Tz = 09

fou
T = 2\61’)
rz 1+(BTrg) a1’

where 8 = wy(y/ma®tZ. Equation implies (3.33) p = p(z) only.

Integrating Eq. (3.34) from r = 0 to r, we get

rdp
Trz = 330

Substituting Eq. (3.37) into (3.36), we obtained

du _rdp , 1 a_l(ldp)“ «
ar_4dz+2(‘3) zdz) |’

Integrating Eq. (3.38) and utilizing the boundary condition (3.30), we have

_ldp . > (B)=~ f1dp T a1 _
U= =1+ 2(a+1) (2 dz) G 1.

Substituting (3.39) into (3.20), we get

30

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)



2 a=1 a-1 .2
%(rv) - 147 (r3—r)-— ) (ld—p) Q(r‘”‘z -1, (3.40)

8 dz? 4{a+1) \2dz dz?

Integrating equation (3.40) from r = 0 to r, we get

_ _iﬂ 3 _ a{B)-1 ldp a—1 a2p 2tz
v(r,z) = 32 dz? (r*—2r) 8(a+1)(a+3) (2 E) E(ZT — (@ +3)r). (3.41)

Now integrating (3.40) from r = 0 to 1. and using the condition (3.29)

d’p 32Kp(z)
dz? L_sa @)“‘1’ (3.42)
{a+3)2dz

A numercal solution of Eq. (3.42) is obtained subject to boundary conditions (3.31) and
(3.32). The numerical values of the appearing parameters for the proximal convoluied

tubule are given in table 1.
3.3 Result and discussion

This section is devoted to analyze how the Ellis fluid matenal parameters effects the
pressure gradient, pressure. velocity, leakage flux, flow rate, wall shear stress, mean
pressure drop and fracnonal reabsorption. To investigate the volume flow rate Q(z) in
response to the various value of c. Fig. 3.1 ts plotted for Newtonian and Ellis fluids.
There are important regions of interest for different ¢ for both Newtonian and Ellis fluids,
Forregion 1, 0 < ¢ < 1 for Newtonian fluid and 0 < ¢ < 0.7 for Ellis fluid. It 1s noted
that @ decreases from @ = 1 at z = 0 to a mimmum value and then starts increasing
monotonically and approaches +co as z — o, For region 2, ¢=1 and ¢ = 0.7 respectively
for Newtonian and Ellis fluids. Q decreases monotonically from @ = 1 at z =0 and
Q — 0 as z - oo 1n this region. For region 3, 1 < ¢ < o for Newtontan and 0.7 < ¢ < o0
for Ellis flutd a monotonic decrease is observed in the flow rate and for large z, flow rate
approaches —oo. Region 3, predicts a reverse flow phenomena that may not be admissible
in many physical situations. This figure further illustrate that flow rate decreases by
mncreasing ¢ and @. In Figs. 3.2 and 3.3 pressure normalized with p, and leakage flux are
plotted against axial coordmate z for Ellis and Newtonian fluids for different values of

parameter ¢. Figs. 3.2 and 3.3 elucidate that pressure and leakage flux respectively
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decreases and attains a minimum for ¢ < 1.0 in the case of Newtonian fluid. However for
Ellis fluid with @ = 3 the pressure and leakage flux increases with the reverse flow even
for ¢ < 1.0 in this case the pressure and leakage flux decreases and attains minimum for
¢ < 0.7. Fig. 3.4 presents the effects of radial velocity v for some values of material
parameter a by keeping the other parameter fixed. The radial velocity v is large in
magnitude for Ellis fluid as compared to Newtonian fluid. The radial velocity for
different K is presented graphically in Fig. 3.5. The radial velocity is an increasing
function of the permeability of the wall. The change in axial velocity u for different «
and K are presented in Figs. 3.6 and 3.7, respectively. The axial velocity u decreases by
increasing both the parameters @ and K. However the magnitude of change in the case of
K 1s very small 1n comparison to the case of material parameter @. The mean pressure
drop over the length of the tubule ts calculated for different values of @ and K and is
shown in Figs. 3.8 and 3.9. It is predicted that mean pressure drop decreases by
ncreasing @ and permeability coefficient K. The influence of a and wall permeability
coefficient K on the flow rate is shown in Figs. 3.10 and 3.11, respectively. These figures
[Nlustrate that @ decreases by increasing matertal parameter ¢ and wall permeability
coefficient K. Variation of wall shears stress 7,, with z for different a and K are shown in
Figs. 3.12 and 3.13, respectively. It is clear from figures that 7,, decrease considerably
with the increasing value of K and increases with increasing the value of «. The changed
in fractional reabsorption FR with p, for different a and K are presented in Figs. 3.14
and 3.15, respectively. The fact of K on fractional reabsorption is enhanced with

increasing K and a.
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Fig3.3.  Response of leakage flux q/4vK for different ¢, when 8 = 2.

Fig3.4. Response of axial velocity v for different a, when p, = 43,8 = 2,
K = 0.001.

34



_ L v v v — -\':
Lop £ = 0.003 '
1.0F E = {.002 -

N L
05k h=5000 ——
0.0: L L r 1 §
0.0 g2 04 0.5 0.8 1.0
T
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Fig3.6. Response of radial velocity u for different a, when p, = 43,z = 0.1, B =2,
K = 0.001.
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Fig 3.10. Response of flow rate @ for different @, p, = 43, § = 2, K = 0.001.
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Fig 3.15. Response of fractional reabsorption FR for different K, when § = 2, 2 = 3.

40



Bibliography

[1]

2]

[3]

(]

[7]

[8]

[9]

[10]

[11]

Macey, Robert 1. Pressure flow pattemns in a cylinder with reabsorbing walls. The
bulletin of mathematical biophysics 25.1 (1963): 1-9.

Macey, Robert I. Hydrodynamics in the renal tubu_]e. The bulletin of mathematical
biophysics 27.2 (1965): 117-124

Kozinski, A. A, F. P. Schmidt, and E. N. Lightfoot. Velocity profiles in porous-
walled ducts. Industrial and Engineering Chemistry Fundamentals 9.3 (1970):
502-505.

Radhakrishnaacharya, G., P. Chandra, and M.R. Katmal. A hydrodynamical study
of the flow in renal tubules. Bulletin of mathematical biology 43.2 (1981): 151-
163.

Marshall, E. A., and E. A. Trowbridge. Flow of a Newtonian fluid through a
permeable tube:; the application to the proximal renal tubule. Bulltin of
matbematical biology 36.5-6 (1974): 457-476.

Palatt, Paul J., H. Sackin, and Roger I. Tanner. A hydrodynamic model of a
permeable tubule. Journal of theoretical biology 44.2 (1974): 287-303.

Cbaturani, P, and T. R. Ranganatha. Flow of Newtonian fluid in non-uniform
tubes with variable wall permeability with application to flow in renal tubules.
Acta mechanica 88.1-2 (1991): 11-26.

A. M. Siddique, T. Haroon and M. Kahshan. MHD flow of Newtonian fluid in a
permeable tubule. Magnetohydrodynamics 51.4 {2015): 655-672.

N. Ali, M. Sajid, T. Hayat. Long wavelength flow analysis in a curved channel. Z.
Naturforsch 65a (2010): 191-196.

N. Ali, M. Sajid, Z. Abbas, T. Javed. Non-Newtonian fluid flow induced by
peristaltic waves in a curved channel. European Joumal of Mechanics B/Fluids 29
(2010): 387-394.

T. Hayat, S. Noreen, A. Alsaedi. Effect of an induced magnetic field on peristaltic
flow of non-Newtonian flud in a curved chennal. J. Mech. Med. Bio. 12 (2012):
1250058.

41



[12]

[13]

[14]

[15}

[16]

[17]

[18]

[19]

[20]

(21]

S. Hina, T. Hayat, A. Alsaedi. Heat and mass transfer effects on the peristaltic
flow of Johnson-Segalman fluid in a curved channel with compliant walls.
International Journal of Heat and Mass Transfer 35 (2012): 3511-3321.

S. Hina, M. Mustafa, T. Hayat, A. Alsaedi. Peristaltic flow of pseudo plastic fluid
in a curved channel with wall properties. Journal of Applied Mechanics 80
(2013): 024501,

F. M. Abbassi, A. Alsaedi, T. Hayvat. peristaltic transport of Eyring-Powell fluid
in a curved channel. J. Aerosp. Eng. 27 (2014): DOL 10.1061/{ASCE)AS.1943-
5525.0000354.

V. K. Narla, K. M. Prasad, J. V. Ramanamurthy. Peristaltic motion of viscoelastic
fluid with fractional second grade model in curved channels. Chinese Journal of
Engineering 2013 (2013): 582360,

N. Ali, M. Sajid, T. Javed, Z. Abbas. Heat transfer analysis of penstaltic flow of a
third grade fluid in a curved channel. International Journal of Heat and Mass
Transfer 53 (2010): 3319-3325.

H. S. Takhar, A. J. Chamkha and G. Nath. Flowand mass transfer on a stretching
sheet with a magnetic field and chemically reactive species. International Journal
of Engineering Science 38 (2000): 1303-1314.

S. Canic and E. H. Kim. Mathematical analvsis of quasilinear effects in the
hyperbolic model blood flow through compliant axi-symmetric vessel
MATHEMATICAL METHOD IN THE APPLIED SCIENCES 26 (2003): 1161-
1186.

S. Noreen and S. Nadeem. Carreau fluid model for blood flow through a tapered
artery with a stenosis. Ain Shams Engineening Journal 3 (2014): 1307-1316.

A. Zaman, N. Ali and T. Hayat. Effect of unteadiness and non-Newtonian
rheology on blood flow through a tapered time-variant stenotic artery. AIP
Advances 5 (2015): 037129,

N. Ali, A. Zaman, M. Sajid, J.J. Nieto and A. Torres. Unsteady non-Newtonian
blood flow through a tapered overlapping stenosed catheterized vessel.

Mathematical Biosciences 269 (2015): 94-103.

42



