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Preface 

Peristaltic pumping has been the object of scientific and engineering research during past few 

decades. It is wave like involuntary contraction and expansion of elastic wall. It is an important 

biological mechanism, which is later implemented. In many engineering applications Latham [I] 

was perhaps the first to study the phenomenon theoretically and experimentally. 

Jafpin and Shapiro [2] give a detail review of earlier literature. A large amount of literature is 

available now ever since [3-101. Particulate suspension in Fluid Dynamics is now of interest of 

scientist since Pre-historic times. The suspension like solid particles, liquid droplets and gas bubbles 

etc. are very usekl in understanding various engineering applications [I1 - 141. The particulate nature 

of blood has become the scientific research [15-191. The purpose of this thesis is to discuss the 

effects of MHD of particle-fluid suspension in a planar channel. 

This thesis is composed in three chapters. First chapter is constructed to give the brief introduction 

of Fluid Dynamics and perturbation method which is use to solve mathematical model. 

Chapter two is the review work of Mekheimer et.al 1201. In this chapter he studies the peristaltic 

pumping of particle fluid suspension in a planar channel. The mathematical model is developed, the 

model is then simplified using stream function and transforming from fixed to wave fkame. The 

model is then solved using perturbation method and graphical results are displayed for pressure rise 

T 

and stream lines. 

In chapter three the effect of uniform magnetic field is considered. The particles are non-conducting 

whereas fluid is electrically conducting. The solution is developed and graphical results are 

discussed. 
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Chapter 1 

Preliminaries 

In this chapter, some basic definitions and parameters are defined, which are helpful in the sub- 

sequent chapters. The phenomenon of peristaltic transport has enjoyed increased interest from 

investigators in several engineering disciplines. The word peristaltic terms from the Greek word 

peristaltikos, which means clasping and compressing. It occurs due to the action of progressive 

waves which propagates along the length of distensible tube containing liquid. Peristalsis is a 

natural mechanism of fluid transport for many physiological fluids. This is achieved by passage 

of progressive waves of area contraction and expansion over flexible walls of tube containing 

fluid. The peristaltic pump is based on alternating compression and relaxation of tube drawing 

the contents into tube, operating in a similar way to our throat and intestines. Peristalsis offers 

the opportunity of constructing pumps in which the transported medium does not come in 

direct contact with any moving parts such as valves, plungers and rotors. This can be of great 

benefit in cases where the medium is either highly abrasive or decomposable under stress. This 

has led to the development of finger and roller pumps which work according to the principle of 

peristalsis. 

In fluid mechanics, the study of peristaltic transport start with the assumption that fluid 

is either Newtonian or non-Newtonian. The equation concerning the law of conservation of 

mass and momentum with constitutive equation for a Newtonian fluid provide the well known 

Navier -Stokes equations, which justifies the mathematical treatment of a motion of fluid after 

deformation by applied stress. In the beginning, analyses of periodic flows incorpoorated by 



theoretical assumptions such as periodic, sinusoidal wave trains in infinitely long tubes or 

channels, having long wavelength or low Reynolds number. Several theoretical and experimental 

attempts have been made to understand peristaltic action in different situations from the first 

investigation of Latham [I]. A review of much of early literature is presented by Jaffrin and 

Shapiro [2]. The particulate suspension theory of blood has become the object of scientific 

research Hill and Bedford [16]. Theoretical study of this fluid system is concerned with powder . 
technology, sedimentation, in medicine, rain erosion in guided missiles and in oceanography. 

Most of analytical studies use perturbation series in a small parameter such as amplitude 

ratio or dimensionless wavenumber, but appears that no rigorous attempt has been made to 

study the effects of Reynolds number, wave number and concentration of particles on pressure 

rise, peristaltic pumping, augmented pumping, and backward pumping for a particle-fluid sus- 

pension. The purpose of this paper is to study peristaltic pumping of a particle-fluid suspension 

in planar channel with and without MHD. 

A regular perturbation series is used to solve present problem; variables are expanded in a 

power series of wave number a, which is defined as ratio of half-width of channel to wavelength 

of peristaltic wave, closed form solutions upto order cr2 are presented. The pressure rise per 

wavelength is obtained as a function of time-averaged flow rate. 

1.1 Fluid 

A substance that deforms continuously under the action of applied shkar stress is known as 

fluid i.e liquids and gases. 

1.2 Types of fluid 

1.2.1 Ideal fluid 

A fluid that has no viscosity is called ideal fluid. Such type of fluids do not exist in reality. It 

is incompressible in nature. 



1.2.2 Real Fluid 

Real fluids are compressible in nature. They have some viscosity. Examples: Kerosene, Petrol, 

Castor oil. 

1.2.3 Newtonian fluid 

In a fluid if the viscous stresses that arises from its flow, at every point, are propotional to the 

strain rate then the fluid is said to be Newtonian. For a Newtonian fluid, viscosity is entirely 

dependent upon the temperature and pressure of the fluid. Mathematically, it can be written 

where ry, is shear stress acting on the plane normal to y axis and p is the viscosity of fluid. 

Water and gasoline are examples of Newtonian fluids under normal conditions. The Newtonian 

fluid is an idealized fluid that approximates the behavior of water, air and many other fluids. 

1.2.4 Non-Newtonian fluid 

Fluids that do not obey Newton's law of viscosity are non-Newtonian fluids. Most commonly 

the viscosity of non-Newtonian fluids is dependent on shear rate. Mathematically, it can be 

written as, 

where n l  denote the own behavior index and consistency index respectively. Paints, blood, 

shampoo etc. are the common examples of non-Newtonian fluids. 

1.2.5 Compressible fluid 

A compressible fluid is one in which the fluid density changes when it is subjected to high 

pressure gradients. For gases, changes in density are accompanied by changes in temperature, 

and this complicates considerably the analysis of compressible flow. 



1.2.6 Incompressible fluid 

If the density of fluid is constant then it is known as incompressible fluid. Incompressibility is 

that the divergence of the flow velocity is zero. All liquids are assumed as incompressible fluid. 

1.3 Viscosity 

The force which resist the motion of a fluid is called viscosity. Mathematically, viscosity is the 

ratio of shear stress to the shear strain i.e. 

shear stress 
viscosity = p = 

shear strain' 

where, p is called the coefficient of viscosity. 

1.4 Flow 

A material goes under deformation when different forces act on it. If deformation increases 

continuously without any limit then the phenomenon is known as flow. 

1.5 Types of flow 

1.5.1 Uniform flow 

The flow is defined as uniform flow when in the flow field the velocity and other hydrodynamic 

parameters do not change from point to point at any instant of time. 

For a uniform flow, the velocity is a function of time only, which can be expressed in Eulerian 

description as 

v = v (t)  . (1.3) 

1.5.2 Non-uniform flow 

A flow in which fluid particles possess through different velocities at  each section of a channel 

or a pipe is called non-uniform flow. 
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1.5.3 Laminar flow 

A flow in which each particle has a definite path and the path of individual particles do not 

cross each other is called laminar flow. Laminar flow generally happens when dealing with small 

pipes and low flow velocities. Laminar flow can be regarded as a series of liquid cylinders in 

the pipe, where the innermost parts flow the fastest, and the cylinder touching the pipe isn't 

moving at all. Shear stress depends almost only on the viscosity p and is independent of density 

P . 

1.5.4 Turbulent flow 

In turbulent flow vortices, eddies and wakes make the flow unpredictable. Turbulent flow 

happens in general at  high flow rates and with larger pipes. Shear stress for turbulent flow is 

a function of the density p. 

7 

1.5.5 Steady flow 

A flow in which properties associated with the motion of fluid are independent of time or flow 

pattern and remains unchanged with the time is called a steady flow. Mathematically it can 

be written as 

where, v represents the velocity. 

1.5.6 Unsteady flow 

All those flows in which properties associated with the motion of fluid depend on time so that 

flow pattern varies with the time are called unsteady flows. Flow in ocean tides is an example 

of unsteady flow. Mathematically, it can be expressed as, 



1.6 Pressure 

The magnitude of force per unit area is known as pressure. It is a scal* quantity. 

1.7 Density 

Density of a fluid is defined as mass per unit volume. Mathematically, density p at a point P 

may be defined as 

where, V is total volume element around the point and m is the mass of fluid. 

1.8 Dimensionless numbers 

A dimensionless number is a number without any unit associated with it. It is ratio of the 

quantities having same unit. There is a lot of dimensionless number but here we mention only 

those being used in this work. 

1.8.1 Reynolds number 

Ratio of inertial force to the viscous force is said to be the Reynolds number. It is denoted by 

the symbol Re. Mathematically, 
inertial forces 

Re = 
viscous forces ' 

1.8.2 Wave number 

Wave number is defined as total number of waves to wavelength. Mathematically, 

1.9 Boundary conditions 

The set of conditions specied for the behavior of the solution to a set of differential equa- 

tions at the boundary of its domain. Boundary conditions are important in determining the 



mathematical solutions to many physical problems. 

1.10 Governing equations for fluid motion 

In order to describe physical behaviour of fluid flow, one needs to haye some mathematical 

relations. In fluid mechanics, we have three basic laws which account for motion of fluid and 

those are recognized as law of conservation of mass, momentum and energy. 

1.10.1 Law of conservation of mass 

This law states that mass of closed system always remains constant with time, as  mass of sytem 

cannot change quantity except being added or removed. The mathematical relation expressing 

law of conservation of mass is known as continuity equation. For compressible fluid, it is defined 

p is fluid density, t is time, V is the flow velocity vector field. 

For an incompressible fluid, the density remains stable and therefore, the continuity equation 

becomes 

v.v = 0. (1.10) - 
1.10.2 Law of conservation of momentum 

This law is defined as the total momentum of an isolated system is always conserved. The 

equations which describe this law mathematically are called as Navier-Stokes equations. In 

general, these equations are composed in subsequent form 

p ($ + V.VV) = -VP + pv2V + pb, 

where, P is pressure, V is the velocity field, p is viscosity and b represents the body force. 



1.11 Magnetohydrodynamics 

The word magnetohydrodynamics (MHD) comes from "magneto" meaning magnetic field, "hy- 

dro" means liquid and "dynamics" means movement. The fundamental theme of MHD is that 

magnetic fields can induce currents in a moving conductive fluid, which in response impose 

forces on the fluid and also effects the magnetic field itself. The basic equations which describe 

MHD are a combination of Navier-Stokes equations of fluid dynamics and Maxwell's equations 

of electromagnetism. 

In the presence of MHD, the momentum equation will be 

where the term J x B is the Lorentz force and can be written as 

Maxwell's equations can be described by following expressions. 

Solenoidal nature of magnetic field B 

Faradays law 

Ampere equation 

Charge conservation 

Lorentz force 



Ohm's law 

In these equations, B is total magnetic field, Bo is magnetic field strength, E is electric field, 

po is permeability of free space, J is current density and r~ is conductivity. 

1.12 Method of solution 

Most of the problem encountered in fluid mechanics are highly nonlinear. To find the exact 

solution of these nonlinear problems is very difficult and sometimes impossible. Therefore 

various methods have been developed to solve nonlinear differential equations. Among these 

perturbation is the widely used analytical technique. We have used this technique in the 

subsequent chapter to obtain the solution of the problem. 

1.12.1 Perturbation solution 

The mathematical methods used to find out the approximate solution to a problem by starting 

from the exact solution of a related problem are studied in perturbation theory. In this method, 

the solution is given by few terms of an expansion. These expansions may be carried out in 

term of small or large parameter which appear in the equations. 

1.13 Problem definition 

Peristaltic flow problems are unsteady moving boundary value problems. Mathematical model- 

ing of peristaltic transport deals with a prescribed train of waves movingwith constant speed on 

the flexible boundaries. The fluid motion is studied in either a fixed frame of reference, (X, Y ), 

or a wave frame of reference, (x, y) , moving with constant velocity of the wave. The longitudinal 

direction is parallel to the direction of the wave progression. Here the two dimensional flow of 

a mixture of small, spherical, rigid particles in an incompressible Newtonian viscous fluid in an 

infinite channel of width 2b is considered. We choose a rectangular coordinate system for the 

channel with X along the centerline in the direction of wave propogation and Y transverse to 

it. There exist two geometrical ratios. The first, C#J = bla, is the amplitude ratio, which is the 



amplitude of the wave divided by the total height or radius. The second ratio is wave number, 

which is the ratio of the total radius or height divided by the wavelength and multiplied by T, 

so it represents the number of repeating units of a propagating wave. 

The only restriction on the waveshape, H, of the wall is that it be a function of the quantity 

X -ct for two-dimensional plane or Z -ct for axisymmetric. This form of the waveshape allows 

for an easy, direct change frame of reference from the fixed frame (laboratory frame) to the 

moving frame (wave frame), in which the observer moves with the wave at the wavespeed c. 



Chapter 2 

Peristaltic Transport of a 

Part icle-Fluid Suspension in a 

Planar Channel 

This chapter is a detailed review of a research article peristaltic motion of a particle-fluid 

suspension in a planar by Makheimer et al. [20]. This chapter focuses on peristaltic transport 

of a particle-fluid suspension in a planar channel. The analysis has been carried out under 

the assumption of long wavelength and low Reynolds number. The analytic solutions are 

obtained for velocity, pressure gradient and stream function using perturbation method. The 

mathematical modeling is discussed in detail. The graph of parameter of interest are drawn 

and analyzed. 

2.1 Mat hemat ical formulation 

Consider the two dimensional particle fluid suspension in a planar channel of width 2b. The 

flow is generated by wave motion of channel walls. A rectangular coordinate system (X, Y) 

is taken, where X-axis is along the center line of channel and Y-axis -is perpendicular. The 



geometry of the wall surface is defined as, 

2lr (X - ct) 
h = b + a s i n [  A I ,  

and the b.c's are 

where a is the wave amplitude, c is the velocity of the wave, X is the wavelength, b is the half 

width. The drag coefficient is as 

 PO s = -A1 (C) 
2 aI2 

and 

A' (C) = 
4 + 3[8C - 3cI1l2 + 3C 

[2 - 3CI2 9 

where po is fluid viscosity and a' is radius of particles. 

The emperical relation for viscosity of suspension suggested by Charm and Kurland [2] : 

where, T is absolute temperature (K). The velocity profile are defined as 

The governing equations are, 
a& avf = + = = o ,  



Introducing the transformation for conversion from fix to wave frame, 

-- - 
where U ,  V, P are the velocity components and pressure in the laboratory frame and Ti,-,? 

are the velocity components and pressure in the wave frame respectively. Using the eq. (2.12) 

into the eqs. (2.8) - (2.11). 

For fluid phase 

For particulate phase 



Now, Introducing the nondimensional quantities as follows, 

Defining the stream function +, 

Using eqs.(2.17) and (2.18) into eqs. (2.13) - (2.16)) we find that eqs. (2.13) and (2.15) are 

satisfied identically and eqs. (2.14) and (2.16) yields, 

Simplifying, 

where 



2.2 Rate of volume flow and boundry conditions 

The instantaneous volume flow rate in fixed frame is given by 

where Qf, Qp, and Qm are volume flow rate for fluid phase, particulate phase, and the 

mixture. h is a function of X and t. 

The instantaneous volume flow rate in wave frame is given by 

where h is a function of %. 

We are interested only with volume flow rate of fluid 

(2.22) and making use of (2.25), we find that 

The time-mean flow over a period T at a fixed position x 

Substituting (2.27) into (2.28), and integrating, we get 

(2.27) 

in this study. By using (2.12) into 

* 

is defined as 



On defining the dimensionless time-mean flows 6' and F in the fixed and wave frame as  

where 

F = / T d y =  Q~ (h)  -qf (0) 

If we choose the zero value of streamline at (y = 0), then 

Q f (h)  = F. 

The b.c's for dimensionless stream function in the wave frame are 

2.3 Solution of problem 

To obtain the solution, we expand the flow quantities in a power series of small parameter a as 

follows, 

After substituting eq. (2.35) into eqs. (2.19) - (2.20) and equating the coefficients of like powers 

of a,  we obtain a system of equations of different orders. 

2.3.1 Zeroth order problem 



along with the boundary conditions 

2.3.2 First order problem 

the corresponding boundary conditions are 

2.3.3 Second order problem 

along boundry conditions 



2.3.4 Zeroth order solution 

The solution in terms of stream function, is given by 

and 
-6FOy - 6yh -Foy3 - y3h + 3F0yh2 + yh3 

' P O  = 2CMh3 + 
2h3 

(2.46) 

The axial velocity is 

-3F'0y2 - 3y2h + 3 ~ 0 h ~  + h3 
u f o  = 2h3 1 

-6F0 - 6h -3F0y2 - 3y2h + 3F0h2 + h3 
u p 0  = 2CMh3 

+ 
2h3 

2.3.5 First order solution 

and the velocities are 

where 



- ~ C F O ~ M  Re h1 - 3 ~ 0 ~ ~ 1  Re h' 

+3CFo2 Re h' - ~ C F O M  ~e hh' 

-5FON1 Re hh' + 5CFON1 Re hh' 

-2CM Re h2h' - 2N1 Re h2h' 

+2CN1 Re h2h' 

i 
126F02 Re h' + 210FO Re hh' 

+ 8 4 ~ e h ~ h ' + 2 1 ~ ~ 0 ~ M R e h ~ h '  

B2 = 
1 

280Nlh7 Y5 +21F02 Re ~ l h ~ h '  - 2 1 ~ 1 ~ 0 ~ ~ R e h ~ h '  

+21CFOM Re h3h' + 21FON1 Re h3h' 

+7N1 Re h4h' - 7CN1 ~e h4h' 



2.3.6 Second order Solution 

and 

where 



where 



where 

-252FOq5AlCosx 168r$AlCosx 
G1 = - - 63FOA11 

(1 + 4 ~i nx14 (1 + 4 ~ i n x ) ~  (1 + 4 
- 63A1' - (-6F0 - 6 (1 + 4 Si nx) All) 

(1 + 4 s i  n ~ ) ~  2 (1 + 4 ~ i n x ) ~  
7 

G2 = 
-45FOq5A2Cosx - 304A2Cosx 63FOA11 + 

(1 + 4 ~ i n z ) ~  (1 + 4 ~ i n x ) ~  (1 + 4 Si nx) 
315FO4AlCosx + + 21All' - 

30FOA2' 

(1 + 4 ~ i n x ) ~  (1 + 4 s i  n ~ ) ~  

- (-6F0 - 6 (1 + 4 Sins) A2') 
2 (1 + 4 ~i nx13 

7 

G3 = 
18FO~A3Cosx 124A3Cosx 9OFOq5A2Cosx + + 
(1 + 4  sin^)^ (1 + 4 (1 + 4 Si nx) 

30FOA2' 9FOA3' . 
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The result of our analyses can be expressed to second order flow rate by defining 

Then substituting Fo into Qf and neglecting the terms greater than 0(a2), we obtain second 

order expression for stream function 81, in terms of the second flow rate ~ ( ~ 1 .  

where 

Fo = F ( ~ )  - aF1 + C X ~ F ~ .  

2.4 Pressure gradient 

By subtituting (2.35) in dimensionless equation of motion and equating like powers of a on 

both sides of equations, we get a set of partial differential equations for g, and 2. 
We define the dimensionless pressure rise per wavelength in wave frame as 

by using (2.35) in equation (2.58),we obtain 

VPx = VPxo + cwVPxl + a2vpAl + ..., (2.59) 

and then we compute the pressure rise per wavelength by using zeroth, first and second order 



solution and integrating from 0 to 27~. 

2.5 Graphs and discussion 

In order to see quantitative effects of various emerging parameters involved, velocity distribution 

and pressure rise, the result of our analysis are presented as by graphical presentation of obtained 

solution. 

The results of our analytical solution are presented for the pressure rise and flow rate for the 

various parameters such as Re, C, and small parameter a. It is also represented for the stream 

lines and trapping regions for several parameters like Re, C, and a. Figure 2.1 represents 

the pressure change per wavelength A P  and observed flow rate 6 for the various values of 

concentration particle C. We notice that an increase in C results a decrease in pumping rate. 

Figure 2.2 is a graph of A P  and peristaltic pumping rate 6' shows that an increase in Reynolds 

number Re results an increase in pumping rate if all other parameters are held fixed. Figure 

2.3 shows that peristaltic pumping rate increases for the various values of a. 

Figure 2.1: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 6' for fixed Re = 1, a = 0.06 and for 

various values of concentration C. 



Figure 2.2: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 0 for fixed a=0.2, C = 0.4, and for 

various values of Reynolds number Re. 

Figure 2.3: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 0 for fixed Re = 1, C = 0.4, and for 

various values of a. 



Stream lines and fluid trapping 
Stream lines are the geometrical representation of flow velocity. Stream line is a curve 

tangent to velocity vector. The trapping phenomenon, whereby a bolus (defined as a volume of 

fluid bounded by closed stream lines in the wave frame) is transported at wave speed, has been 

examined by several investigators. Fig. 2.4 - 2.8 are graphs of streamlines for the conditions 

Re = 1, a = 0.06, C = 0, 4 = 0.4 and 8 = 0.5, 0.7, 1, 2. Figure 2.4 shows that there is no 

trapping for peristaltic pumping when flow rate is small at low Reynold number. Figure 2.5- 

2.8 represents that the streamlines from all the ends 

way that all are clustered along the central part . 
of the tube direct themselves in such a 



Figure 2.6: Contour streamlines for a=0.06, C=O, Figure 2.7: Contour streamlines for a=0.06, C=O, 

$=0.4, Re=l and 9=1. 4=0.4, Re=l and 9=2. 
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Figure 2.8: Contour streamlines for a=0.06, C=O, 

4=0.4, Re=l and 8=5. 



Chapter 3 

Effects of Uniform Magnetic Fields 

on Peristaltic Transport of a 

Particle-Fluid Suspension in a 

Planar Channel 

Mekheimer [20] discussed the effect of peristaltic motion of a particle fluid suspension in a planar 

channel. In this chapter we will analyze the mechanics of peristaltic pumping of a particle- 

fluid suspension in a planar channel with uniform magnetic field applied perpendicularly. The 

approximations of low Reynolds number and long wavelength have been employed to reduce 

highly nonlinear partial differential equations. Perturbation method is ysed to obtain solution 

for velocities, stream lines and pressure gradient in terms of flow rate. The solutions are 

graphical displayed to see the effects of physical parameters like Reynolds number, concentration 

of particles, wave number, flow rate and concentration is discussed graphically. The streamlines 

are also drawn to discuss the trapping bolus discipline. 



3.1 Mat hemat ical formulation 

We consider the peristaltic flow with variable viscosity in an infinite channel having width 2b. 

The fluid is moving through infinite wave with velocity c along the walls. The X-axis and 

Y-axis are selected along and transverse to the channel walls. It is assumed that fluid conducts 

electricity, whereas particles are non magnetic in nature. The governing equations of fluid and 

particulate phase with transverse magnetic field is 

where J is the current density and B is the total magnetic field. 

The equations governing the two dimensional motion of this model are 

using eq~(2.12) into (3.3) - (3.6) , we get 



for fluid phase, 
8Ef Zf - + - = o ,  
LET * 

and for particulate phase we have 

using nondimensional quantities from eq. (2.16) and stream function as (2.17) into eqs. (3.7) - 

(3.10). 

The equations takes the form, 

( I  - C) R e a  [qfVv2 Qfx - qfXv2 qfY] = v2 v2 Bf + CM (v2 qp - v2 Qf) - ~ 2 @ f y y ,  

C a  Re (!Pmv2 ylpx - XPpXv2 qpy) = C N  (v2 !Pf - v2 qp) , 
(3.11) 

along with b.c's as described in previous chapter. 

3.2 Solution of problem 

3.2.1 Zeroth order problem 



along with the boundary conditions 

3.2.2 First order problem 

the corresponding boundary conditions are 

+ f  1 = = 0, $ f l y y  = +plyy  = 0 at  y=O1 

+f  1  = F ~ , + ~ ~ ~  = o at  y = h. 

3.2.3 Second order problem 

along b.c's 



3.2.4 Zeroth order solution 

The solution of zeroth order system gives the stream function as 

-6FOy - 6yh -Foy3 - y3h + 3Foyh2 + yh3 
'PO = 2CMh3 + 

2h3 

The axial velocity is 

3.2.5 First order solution 

The solution of first order system gives the stream function and axial velocity as 

where 
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the axial velocity is 

In order to analyze the effects of pertinent parameter, namely perturbation parameter a, the 

volume fraction density C, the amplitude ratio q5 and volume flow rate 0 on pressure rise 

represented as by graphs of solution. Figure 3.1 shows that for positive values of peristaltic 



pumping rate 0, pressure decreases and for negative values pressure increases for case of various 

values of Re. Figure 3.2 is a graph of peristaltic pumping rate 6 vs pressure change per 

wavelength A P  for the case of a represents that as a increases 8 also increases. Figure 3.3 

shows the effect of concentration particle C on pumping rate. We observe that an increase 

in C results a decrease in pumping rate. Also backward pumping increases with increasing 

concentration of particles. Figure 3.4 is a graph of pumping rate 8 vs pressure change per 

wavelength shows that as MHD y increases then flow rate also increases. Fig 3.5 represents 

that for various values of amplitude ratio q5 results an increase in peristaltic pumping rate 8. 

Fig 3.6 is a graph of pressure change per wavelength vs pumping rate 6 in the presence of 

MHD shows that an increase in Re results a decrease in flow rate 8. 

Fig 3.7-3.11 are graphs of streamlines for the conditions Re=l, q5=0.4, C=O, a=0.0628, 

0=0.5, 0.7, 1, 2, 5. Figure 3.7-3.11 represents that the streamlines from all the ends of the 

tube direct themselves in such a way that all are clustered along the central part and bolus size 

decreases as B increases. 

Figure 3.1: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 8 for fixed a=0.2, C = 0.3, M=l, 
* 

N=l  and for various values of Reynolds number. 



Fig 3.2: Graph of dimensionless pressure gradient per wave 

length AP and flow rate 8 for fixed , Re = 0.3, y = 1, M=l, 

N=l and for various values of a .  

Figure 3.3: Graph of dimensionless pressure gradient per wave 

length AP and flow rate 8 for fked a=-03.5 , M=l, N=l, 

6 = 0.3, Re = 1 and for various values of C. 



Figure 3.4: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 0 for fixed a=-03.5 , C = 0.3, Re = 1 

and for various values of y. 

Figure 3.5: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 0 for fked a=0.2, C = 0.3, M=l, 

N=l, Re=l and for various values of 4. 



Figure 3.6: Graph of dimensionless pressure gradient per wave 

length A P  and flow rate 8 for fixed a=-03.2, C = 0.3, M=l, 

N=l and for various values of Re. 

Figure 3.7: For R=l,  8 =1, a =0.06,4= 0.4, y = 4. Figure 3.8: For R=l, 8 =1, a =0.06, q5= 0.4, y = 4. 



Figure 3.9: For R=l ,  0 =2, a = 0.06, 4= 0.4, y = 2. Fig 3.10: For R=l ,  8 =5, a! = 0.06,4= 0.4, 7 = 2. 
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Figure 3.11: For R=l ,  8 =7, a = 0.06,4= 0.4, y = 1. 



3.4 Conclusion 

In this thesis the peristaltic transport of a particle-fluid suspension in a planar c h a ~ e l  is 

discussed with and without MHD. Chapter two is a detailed review work of Mekheimer et al. 

[l].The small MHD effects are discussed in chapter three. The problem is formulated under 

the implementation of long wavelength and low Reynolds number. The analytical results are 

developed using perturbation technique. All the results are described graphically by observing 

the variation of various physical parameters. The results of A P  and streamline have displayed 

using graphs. The main results evaluated kom the above discussion are summarized as follows. 

0 It is found that peristaltic pumping rate increases with an increas; in small parameter a. 

0 It is observed that peristaltic flow rate decreases with an increase in concentration C. 

It is measured that peristaltic pumping rate increases with an increase in Re in the 

presence of MHD but results a decrease in pumping rate without MHD. 

It is seen that peristaltic pumping rate increases with an increase in amplitude ratio 4. 

It is noticed that the effect of y is the increase in pumping rate. 

0 It is observed that trapped bolus is being small with an increase in peristaltic pumping 

rate 8. 

0 It is found that streamlines from all the ends of tube direct themselves in such a way that 

all are clustered along the central part. 
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