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Preface

Peristaltic pumping has been the object of scientific and engineering research during past few
decades. It 1s wave like mvoluntary contraction and expansion of elastic wall. it is an important
biological mechanism, which is later implemented. In many engineering applications Latham [1]
was perhaps the first to study the phenomenon theoretically and experimentally.

Jaffrin and Shapire [2] give a detail review of earlier literature. A large amount of literature is .
available now ever since [3-10]. Particulate suspension in Fluid Dynamics is now of interest o.f
scientist since Pre-historic times. The suspension like solid particles, liquid droplets and gas bubbles
etc. are very useful in understanding various engineering applications [11-14]. The particulate nézttire
of blood has become the scientific research [15-19]. The purpose of this thesis is to discuss the
effects of MHD of particle-fluid suspension in a planar channel.

This thesis is composed in three chapters. First chapter is constructed to give the brief introduction
of Fluid Dynamics and perturbation method which is use to solve mathematical model.

Chapter two is the review work of Mekheimer etal [20]. In this chapter he studies the peristaltic
pumping of particle fluid suspension in a planar channel. The mathematical model is developed, the
model is then simplified using stream function and transforming from fixed to wave frame. The
model is then solved using perturbation method and graphical results are displayed for pressure rise
and stream lines. ’

In chapter three the effect of uniform magnetic field is considered. The particles are non-conducting
whereas fluid is electrically conducting. The solution is developed and graphical results are

discussed.
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Chapter 1

Preliminaries

In this chapter, some basic definitions and parameters are defined, which are helpful in the sub-
sequent chapters. The phenomenon of peristaltic transport has enjoyed increased interest from
investigators in several engineering disciplines. The word peristaltic terms from the Greek word
peristaltikos, which means clasping and compressing. It occurs due to the action of progressive
waves which propagates along the length of distensibie tube containing liquid. Peristalsis is a
natural mechanism of fuid transport for many physiological Suids. This s achieved by passage
of progressive waves of area contraction and expansion over flexible walls of tube containing I.
fluid. The peristaltic pump is based on alternating compression and relaxation of tube drawing
the contents into tube, operating in a similar way to our throat and intestines. Peristalsis offers
the opportunity of constructing pumps in which the transported medium does not come in
direct contact with any moving parts such as valves, plungers and rotors. This caa be of great
benefit in cases where the medium is either highly abrasive or decomposable under stress. This
has led o the development of finger and roller pumps which work according to the principle of
peristalsis.

in fluid mechanics, the study of peristaltic transport start with the assumption that fluid
is either Newtonian or non-Newtonian, The equation concerning the law of conservation of
mass and momentum with constitutive equation for a Newtonian fiuid provide the well known
Navier -Stokes equations, which justifies the mathematical treatment of a motion of fluid after

deformation by applied stress, In the beginning, analyses of periodic flows incorpoorated by



theoretical assumptions such as periodic, sinusoidal wave trains in infinitely long tubes or
chanmnels, having long wavelength or low Reynolds number. Several theoretical and experimental
attempts have been made to understand peristaltic action in different situations from the first
investigation of Latham [1]. A review of much of early literature is presented by Jaffrin and
Shapiro {2]. The particulate suspension theory of blood has become the object of scientific
research Hill and Bedford [16]. Theoretical study of this fluid system is concerned with powder
technology, sedimentation, in medicine, rain erosion in guided missiley F;z:(i in oceanography.

Most of analytical studies use perturbation series in & small parameter such as amplitude
ratio or dimensioniess wavenumber, but appears that no rigorous attempt has been made fo
study the effects of Reynolds number, wave number and concentration of particles on pressure
rise, peristaltic pumping, augmented pumping, and backward pumping for a particle-fuid sus-
pension. The purpose of this paper is to study peristaltic pumping of a particle-fluid suspension
in planar channel with and without MED.

A regular perturbation series is used to solve present problem; variables are expanded in a
power series of wave number a, which is defined as ratio of half-width of channel $o wavelength
of peristaltic wave, closed form solutions upto order a? are presented. The pressure rise per

wavelength is obtained as a function of time-averaged flow rate.

1.1  Fluid

A substance that deforms continuously under the action of applied shear stress is known as

fluid i.e Liquids and gases.

1.2 Types of fluid

1.2.1 Ideal Buid

A fuid that has no viscosity is called ideal fluid. Such type of fluids do not exist in reality. It

is incompressible in nature,



1.2.2 Real Fluid

Real fluids are compressible in nature. They have some viscosity. Examples: Kerosene, Petrol,

Cagtor oll.

1.2.3 Newtonian fluid

In a fiuid if the viscous stresses that arises from its flow, at every point, are propotional fo the
strain rate then the 8uid is said to be Newtonian., For a Newtonian fluid, viscosity is entirely
dependent upon the temperature and pressure of the fluid. Mathematically, it can be written
as,

du
Tyg = P’@: (11)

where 7, is shear stress acting on the plane normal to y axis and u is the viscosity of fuid.
Water and gasoline are examples of Newtonian fluids under normal conditions. The Newtonian

fluid is an idealized 8uid that approximates the behavior of water, air and many other fluids.

1.2.4 Non-Newtonian fluid

Fluids that do not obey Newson's law of viscosity are non-Newtonian fuids. Most commonly
the viscosity of non-Newtonian 8ulds is dependent on shear rate, Mathematically, it can be

written as,

du
Fyz = P’("&"g)m:nl ?é i, (12) '
where nl denote the own behavior index and consistency index respectively. Paints, blood,
shampooc etc. are the common examples of non-Newtonian fluids. .
1.2.5 Compressible fuid

A compressible fiuid is one in which the fluid density changes when it is subjected to high
pressure gradients. For gases, changes in density are accompanied by changes in temperature,

and this complicates considerably the analysis of compressible flow,



1.2.6 Incompressible fuid

If the density of fuid is constant then it is known as incompressible fluid. Incompressibility is

that the divergence of the flow velocity is zero, All liquids are assumed as incompressible fluid.

1.3 Viscosity

The force which resist the motion of a fluid is called viscosity. Mathematically, viscosity is the

ratio of shear stress to the shear strain le.

shear stress

VISCOBIEY w4 27 e
VE BT hear strain’

where, p is called the coefficient of viscosity.

1.4 Flow

A material goes under deformation when different forces act on it. If deformation increases

continmously without any limit then the phenomenon is known as Sow.

1.5 Types of flow

1.5.1 Uniform flow

The fiow is defined as uniform fow when in the fiow feld the velocity and other hydrodynamic
parameters do not change from point to point at any instant of time.

For a uniform fow, the velocity is a function of time only, which can be expressed in Eulerian
description as

V=V (t). ’ (1.3)

1.5.2 Non-uniform fow

A flow in which fluid particles possess through different velocities at each section of a channel

ot a pipe is ¢alled non-uniform fow.



1.5.3 Laminar flow

A flow in which each particle has a definite path and the path of individual particles do not
cross each other is called laminar flow. Laminar flow generally happens when dealing with small
pipes and low flow velocities. Laminar flow can be regarded as a series of liquid cylinders in
the pipe, where the innermost parts flow the fastest, and the cylinder touching the pipe isn’t

moving at all. Shear stress depends almost only on the viscosity u and is independent of density

o

1.5.4 Tarbulent flow

In turbulent flow vortices, eddies and wakes make the flow unprediciable. Turbulent flow
happens in general at high Sow rates and with larger pipes. Shear stress for turbulent flow is

a function of the density p.

1.5.5 Steady Sow

A flow in which properties associated with the motion of fluid are independent of time or flow
pattern and remains unchanged with the time is called a steady flow. Mathematically it can
be written as

v

% =0, (1.4)

where, v represests the velocity.

1.5.6 Unsteady flow

All those flows in which properties associated with the motion of 8uid depend on time so that
flow pattern varies with the time are called unsteady flows. Flow in ocean tides is an example

of unsteady fow. Mathematically, it can be expressed as,

% # 0. (1.5)



1.6 Pressure

The magnitude of force per unit area is known as pressure. It is a scalal quantity,

1.7 Density

Density of a fluid is defined as mass per unit volume. Mathematically, density o at & point P
may be defined as

T

where, V' i8 total volume element around the point and m is the mass of fluid.

1.8 Dimensionless numbers

A dimensionless number is a number without any unit associated with it. It is ratio of the
quantities having same unit. There is a lot of dimensionless number but here we mention only

those being used in this work.

1.8.1 Reynolds number

Ratio of inertial force to the viscous force is said to be the Reynolds number. It is denoted by

the symbol Re. Mathematically,
_ inertial forces

)y o . 1.7
® = Viscous forces (1.7)
1.8.2 Wave number
Wave number is defined as total number of waves to wavelength. Mathematically,
orb '
& = T (2»8)

1.9 Boundary conditions

The set of conditions specied for the behavior of the solution to a set of differential equa-

tions at the boundary of its domain. Boundary conditions are important in determining the



mathematical solutions to many physical problems.

1.10 Governing equations for fluid motion

In order to describe physical behaviour of fluid flow, one needs to haye some mathematical
relations. In fluld mechanics, we have three basic laws which account for motion of fluid and

those are recognized as law of conservation of mass, momentum and energy.

1.10.1 Law of conservation of mass

This law stabes that mass of closed system siways remalns constant with time, a8 mass of gytem
cannot change quantity except being added or removed. The mathematical relation expressing
law of conservation of mass is known as continuity equation. For compressible fluid, it is defined
as,

dp
= +pVV =0, (1.9

g s fluid density, t is time, V is the flow velocity vector feld.
For an incompresgible fiuid, the density remains stable and therefore, the continuity equation
becomes
V.V = (), (1.10)

1.10.2 Law of conservation of momentum

This law is defined as the total momentum of an jsolated system is always conserved. The
equations which describe this law mathematically are called as Navier-Stokes equations. In

general, these equations are composed in subsequent form

p (%%+V.VV) = ~VP + uV*V + pb, (1.11)

where, P is pressure, V is the velocity field, u is viscosity and b represents the body force.

i0



1.11  Magnetohydrodynamics

The word magnetohydrodynamics (MHD) comes from "magneto" meaning magnetic field, "hy-

dro" means lquid and "dynamics" means movement. The fundamental theme of MHD is that

magnetic fields can induce currents in a moving conductive fiuid, which in response irapose

forces on the fluid and also effects the magnetic field itself. The basic equations which describe

MHD are a combination of Navier-Stokes equations of fluid dynamics and Maxwell’s equations

of electromagnetism. -

in the presence of MHD, the momentum equation will be

p (%? +V.vv) = VP 4+ uV*V + J x B,

where the term J x B iz the Lorentz force and can be written as

2
Ixp=EYE ¢ (&) ‘
Ho 29
Maxwell’s equations can be described by following expressions.

Solenoidal nature of magnetic field B

V.B=0
Faradays law
-8B
V X B oo .
gt
Ampere equation
VXxB= #(}J
Charge conservation
V.d =1,
Lorentz force
F=JxB.

11

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

1.17)

(1.18)



Ohm's law

J=c(E+V x B) (1.19)

In these equations, B is total magnetic field, By is magnetic field strength, E is electric field,

14 is permeability of free space, J is current density and o is conductivity.

1.12 Method of solution

Most of the problem encountered in fuid mechanics are highly nonlinear. To find the exact
solution of these nonlinear problems is very difficult and sometimes émpossible. Therefore
various methods have been developed to solve nonlinear differential equations. Among these
perturbation is the widely used analytical technigue. We have used this technique in the

subsequent chapter to obtain the solution of the problem.

1.12.1 Perturbation solution

The mathematical methods used to find out the approximate solution to a problem by starting
from the exact solusion of a related problem are studied in perturbation theory. In this method,
the solution ig given by few terms of an expansion. These expansions may be carried out in

term of small or large parameter which appear in the equations.

1.13 Problem definition

Peristaltic flow problems are unsteady moving boundary value problems. Mathematical model-
ing of peristaltic transport deals with a prescribed train of waves moving awith constant speed on
the flexible boundaries. The fluid motion is studied in either a fixed frame of reference, (X, Y },
or a wave frame of reference, (x, v}, moving with constant velocity of the wave. The longitudinal
direction is parallel to the direction of the wave progression. Here the two dimensional flow of
a mixture of small, spherical, rigid particles in an incompressible Newtonian viscous fluid in an
infinite channel of width 2b is considered. We choose a rectangular coordinate system for the
channel with X along the centerline in the direction of wave propogation and Y transverse to

it. There exist two geometrical ratios. The first, ¢ = b/a, is the amplitude ratio, which is the

12



amplitude of she wave divided by the total height or radius. The second ratio is wave number,
which is the ratio of the total radius or height divided by the wavelength and multiphied by ,
so it represents the number of repeating units of a propagating wave,

The only restriction on the waveshape, H, of the wall is that it be a function of the quantity
X -ct for two-dimensional plane or Z -¢t for axdsymmetric. This form of the waveshape aliows
for an easy, direct change frame of reference from the fixed frame (laboratory frame} to the

moving frame {wave frame}, in which the observer moves with the wave a{ the wavespeed c.

13



Chapter 2

Peristaltic Transport of a
Particle-Fluid Suspension in a

Planar Channel

This chapter is a detailed review of a research article peristaltic motion of a particle-fluid
suspension in a planar by Makheimer et al. [20]. This chapter focuses on peristaltic transport
of a particle-fuid suspension in a planar channel. The analysis has been carried out under
the assumption of long wavelength and low Reynolds number. The analyiic soluiions are
obtained for veloeity, pressure gradient and stream function using perturbation method. The
mathematical modeling is discussed in detail. The graph of parameter of interest are drawn

and analyzed.

2.1 Mathematical formulation

Consider the two dimensional particle fluid suspension in a planar channel of width 2b. The
flow is generated by wave motion of channel walls. A rectangular coordinate system {X,Y)

is taken, where X-axis is along the center Line of channel and Y-axis is perpendicular. The

14



geometry of the wall surface is defined as,

_ 9 (X — ot ’
h= b4 gsin [Mﬂ(-; )} ) (ZZ}
and the b.c's are
3@?}: (r)‘“ﬁp — — _
oY ov o 1T 22)

Uy = § at Y =h,

where ¢ is the wave amplitude, ¢ is the velocity of the wave, A is the wavelength, b is the half
width. The drag coefficient is as

9% .,
§ = 52‘;%,\ () (2.3)

and
4+ 3[8C ~ 3CIV2 + 3C

X ()= 5~ 302 ’

(2.4)

where uq is fuid viscosity and o’ is radius of particles.

w

‘The emperical relation for viscosity of suspension suggested by Charm and Kurland [2]:

H
te (C) = PT (2.5)

q = 0.07exp{2.49C + E}i?—z exp (—1.68C)], (2.6}

where, T is absolute temperature (K). The velocity profile are defined as
{Ws = [Ul,5,4), V(#,5,t),0], Wy = [U(z,9,t), V(z,5,t),0} . (2.7)

The governing equations are, . _
al; 0OVy _

5% Ty =Y 28)

15



v i . TT i L7 3?.? -8‘6“2 3?}“2«
(1-C)ps [ + UG + Vit === F+ (- Chs |G + 5|
*%MOS( Uf)
8V vy OV, v V) 57 oV, | oV |
(1= Choy [T+ Vsgg + ViG] = - 0= O ff+ (1= Ohss |G + 5
+C8{(Vy—Vs),
R — {}, 2‘10
5% T ov (2.10)
3Up 803, SUP] 8 -
) T 1% m ===+ 8§ - {nl, 2.11
v, V, .« GV P —
C EyT ”Vj'} 0% o5, -7,).
"’?[@t"’” 5 S > S
Introducing the transformation for conversion from fix to wave frame,
T XK—ct,G=Y, G =Us—¢ 5=V, lp=Up—c, Tp="Vp, (2.12)

where U, 'V, P are the velocity components and pressure in the laboratory frame and @, 70, P
are the velocity components and pressure in the wave frame respectively. Using the eq. (2.12)

into the egs. (2.8) — {2.11).

w

For fluid phase
duy 0%y

(1~ O oy [ + 7,5 | =~ (1= C) B+ (1 - Oy us | o + ]
OS5 (@ =), : (2.14)
(1~ 0oy [ 5 49, ] == (1= OV E+ (1~ O s % + 5|
+C85 (Tp —¥y) .
For particulate phage
&ty 0%y _
e wé_ji =0, (2.15)
. OF e
Cpp [up 5+ T —ﬁ”'} = wC? + CS§ (Tp — Up), (2.16)

Cp, [gz + 52| = —CE +CS (57~ 7).

i6 v



Now, Introducing the nondimensional quantities as follows,

xz_g"nm'::y‘:”%aufh:: ch‘}upﬁg{?: (21?)
Defining the stream function i,
67;"_}‘ 3¢f 8$p 6@97
thy By \Uf A, up By Up ap {2.18)

Using eqs.(2.17) and (2.18) into egs. (2.13) — {2.16), we find that eqs. (2.13) and (2.15) are
satisfied identically and eqs. (2.14) and (2.16} yields,

&y, Oy
= i:a’&“é“x—f - “ay—éf:l

Bipe ¥, P 8% O O3 p r B34
B 200 0%, Oy Oy 9% 0%y £ 8%y
(1-C)Rea {”‘ By 955 T By 0252 T \Y Bz a9y T Bz B

Sy, & 200 Py T O
2.9 i 27V 2_q2Z S /
o e T aatag T M (a & " EE T o
(2.19)
o 5y G %4 e 83'(,b &y 83?5
CaRe [w (o232 50 + %ﬂgg‘gg) + (azwfa‘%%j B o )] (2.20)
oy, | O / ' ‘
= on (- (25 + 5f) + o258 + 5)

Simplifying,

(1—C)Rea [W;, V* Tpy, ~ 05, V2 Up] = V22U, 4 OM(V? Tp—V? ¥f) (2.21)
CaRe (¥ V2 ¥pp ~ U, V2 8, = CON{(VE ;- V2 9,),

where

2uh _Hs () sp? szpf

. . Cbpf 9 82 32
YRRy (TE) P

R A =R
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2.2 Rate of volume flow and boundry conditions

The instantaneous volume flow rate in fixed frame is given by

h — Pred - rar
Qr={1 wC)/a U5 (X,7,t) a¥, (2.22)
h - s — —
Q'P o C/ Up (X= Y: t} dY} (2.23)
4
@m = Qf + Qp: . (2.24}

where Qf, @y, and Gy, are volume flow rate for fluid phase, particulate phase, and the
mixture. h is a function of X and t.

The instantaneous volume flow rate in wave frame is given by

;)
g =(1-0) [B a5 (5, 75) 47, (2.25)
B
=C £ 5, (Z,5) 47, (2.26)
Im = gf -+ Qp, (2.27}

where h is a function of X,
We are interested only with volume flow rate of 8uid in this study. By using {2.12) into
(2.22) and making use of (2.25), we find thas

Qr=gr+ (1~ C)ch (2.28)
The time-mean flow over a period T at a fixed position X is defined as
, 1 47
Qg = 7 / Qydt. {2.29)
¢
Substituting (2.27) into {2.28), and integrating, we get
Qs =g;+{1-C)ac {2.30)

18



On defining the dimensionless time-mean fows # and F in the fixed and wave frame as
6= F41, (2.31)
where
Fm/%%{dyw@f (h) - 95 (0). 232)
If we choose the zero value of streamline at (y = 0}, then
Ty (h) = F. . (2.33)

The b.c’s for dimensionless stream function in the wave frame are

b
By = F,%«yimwi at  y=h, (2.34)
5% 5ep

2.3 Solution of problem

To obtain the solution, we expand the flow quantities in a power series of small parameter o as

follows,

{ W= g0t onpy +0(%) vy =Yy + opyy + 0 (0?), F = Ry + aF1 +0 (o).

2=PraP+0()

{2.35)
After substituting eq. (2.35) into egs. {2.19) ~{2.20} and equating the coefficients of like powers

of «, we obialn a system of eguations of different orders.

2.3.1 Zeroth order problem

2 2
D0, ot (5 Y _ 0 *f”fe) o, (2.36)

oyt dy* oy*
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2 2
on (8£§G"aaj§e) o

along with the boundary conditions

T;{"f(} = 2}{);3{} = 83 ‘!F!Jﬂ)yy = Qppﬂyy = { at Y*Oa

¢fﬁ 5 Fas'd)ﬂ}y m"l&tyxh

2.3.2 First order problem

O po P po _ Oy Bog| g ?ﬁ’?ﬁi - P¥n
by dzoyr Bz oy | oy oyt Oyt

O 0%y O 0¥ | _ on [ Oim
Jy Ozdy* Oz Oy° Fy? oyt ]’

(zmc)‘ne{ +GM(

C.Re

the corresponding boundary conditions are

Y1 = U = 0¥ sy = Ypryy = 0 8t y=0,

Yp = ¢, =0aty=nh

2.3.3 Second order problem

(1 N C) Re Bty B g 5 By Bibpy _ 8%y &g B Bpe ] By
: gy Bxdy* dy  Bxby? gz oy or 8y | T oyt

vou (S - S,

O e o O o, 8% Ao B30
CRe[Znlie  Hrlin  Snlip Sulial

along boundry conditions

bip = e = 0, Y2y = gy =0 8t y=0,

Y1 = Py, =0aty=h
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2.3.4 Zeroth order solution

The solution in terms of stream function, is given by

and

Ypp =

Yo =

—FQy® — 4%k + 3F0yh? + yh®

2R3 ’

_ —6F0y —6yh | —F0y° — y3h + 3F0yh® + yh®

The axial velocity is

g =

2CMA3 243

—3F0y? — 3%k + 3FOR% + B3

2h8 ’

—~8F0 — 6k  —3F0y? — 3y2h + 3F0h% + b3

Ul

2.3.5 First order solution

sonn T 553

-

P =y AL+ A2+ yP A3+ y A4,

Py =y Bl+y°B2+ B3,

and the velocities are

where

Al

upy = TyP Al + 55142 + 392 A3 + A4,

tp}

o1 7
= 280N1RTY

= Ty® Bl + 5y* B2 + 34° B3,

[ —3CPO2MReh’ — 3FO*N1Reh' \
+3CF0?Reh' — BOFOM Re hh

—5FON1Rehh +5CFON1Rehh
~2CM Re bR’ ~ 2N1Re bk ]

\ +2CN1Re h2h /
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A2 m

A3 =

Ad =

Bl= gessomzy’ | —5FON1Rehh' + SCFON1RehE |,

Ly

1 5

280N 1HTY

i 3
280N1RTY

1
2BONTRTY

1

b s
TRON1RT Y

[ 21CFO’M Re b2 +21F02N1Reh2h )

~21CF0*N1Reh*k + 21CFOM Reh3h

+21FON1M Re k3 — 21F02CM Re h34
+7CM Re h*h' + TN1Rehth

[ 420FIN1AS + 15CFOPMReiSE )

\ ~3CN1Re k3 T

\ ~7CN1Reh4h/ /

[ ~l40F1N1K* - 33CFO*MRehr )
+33CFO?N1Reh®h — 2TCFOM Re h3h'
~27TFON1Reh®h + 27CFON1RehSA
~8CM Re h%h' — 8N1Re hPh
\ +8CN1Reh®h /

~15C1FO* N1 Re hbh' + 11CFOM Re hTH
+11FON1ReA'h — LICFON1RehTH
+3CM Reh8h + 8N1Reh8H

[ ~3CFO*MRek —3F02N1Rek' )
+3CF0?Reh' — BCFOM Re hh

~2CM Reh?h’ — AN1Re hZR'
\ +2CN1Re A2 /

{ 126F0? Re &' + 210F0 Re hh' \
+84 Re h2h' + 21CF02M Re h2H
+21F0? Re N1h?h' — 21N1F0°C Re h2H'
+21CFOM Re h%k' + 21FON1Re k3R
\ +7N1Reh's — 7ON1Reh*s’ /
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[ A0FIN1KS + 15CFO?MRehSH )
~15CF02N1Reh®h + 11CFOM Re hTH'
1
. ; T 73/
B3 ssonirY | +H1\FON1Reh’h — 11CFON1RehTh
+3CM Reh8h' + 3N1Rer8h
\ ~3CN1Rer¥h /

2.3.6 Second order Solution

Py = ylAB+y A6+ y AT (2.52)
+y° A8 + A9 + yA10,
and
ey =y B4+ y°B5 + y"B6 + y° BT + 1°BS, (2.53)
where

|
TR — 3 3
] 16632{)N1h3(210M65Reh +21GINIReh

~21CGIN1Re k),
A6 = 1 55G6ME? + 55G2N1Re h®
166320V 147 ~55C1G2N1Re k3
are 1 198GTMA3 + 198G3N1Re b’
166320N 14 ~198CG3N1Reh®
e ] 1386G8K° + 1386G4N1 Re 43
166320N1k3 ~1386CG4N1 Re k3 ’
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[ —83160F2N1 — 2772MHES — 2TT2GAN1Re A )

+2T720GAN1 Re h® — 594GTMNKT

to— 1 ~594G3N1 Re k7 + 594CG3N1 Re k7
166320143 —920GEMAE® — 220G2N1 Re h?

+220CG2 Re h® — 105CG5M Re h!

\  ~105G1N1Rel +105CGIN1Rehl!

[ 249480F2N1h? + 1386G8MAT )
+1386(F4N1Re k7 — 1386CG4AN1Re b’
+396GTMA? + 396G3N1Re h?
AlLQ S N ~3%6CG3N1 Reh® + 165G6M A4
186320N15H3 '
165G2N1 Re h*? — 165CG2N1 Re b1
+84CCHM Reh®® + S4GIN 1A
\ —~84CGIN1RE J,

where

- mwj;mm 2 3 3 9 3
4= Teesmon e PICTMGI Reh” + 21CGINTRe ™ ~ 21C7GIN 1 Re 1),

o : 55CGEMES — 2310CG5 Re h?
166320N1R3 | | s50GaN1 Reh® — 55C2GONTReh® |
B6 = 1 ~3960G6R% + 198CGTM A3
166320N1A% | | 198CG3N1 Reh® — 198C2G3N1Re:S |
- 1 ~8316G7A% + 1386CGEA®
166320N1A% | | 1386CGANT R k3 — 1386C2GAN1Reh® |
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( ~83160CF2N1 — 27720G8R® \
~27T2CG8MA3 —~ 2T72CGAN1 Re AS
+2772C*G4AN1Re h® — 594CGTMHET
594CG3N1Reh’ + 594C2G3N1Re b’
—220CGEMHK? ~ 220CG2N1Re h¥+
220C2G2Re h? — 105C2G5M Re hlt

\ ~105CG1N1ReA'* +105C*G1N1Re !t /

i

B8 = T46305N 13

}

where

~252F0¢A1C0osz _ 168pA1C0osw  63FDAY
(1+¢Sinz)?  (1+¢Sinz)® (1+ ¢Sinz)

6341 (=6F0—6(1 + ¢Sing) A1)
(1 + ¢ Sing)? 2(1 + ¢8inz)®

]

—45F00A2C0sz  300A2Co0sz 63F0AY
(1+ ¢Sina)* T+ ¢ Sing)® * {1+ ¢8Sinz}
_ 315F{}¢A'}C’o.;z + 1AL — 3{)}?’{).'42’ "
(1+ ¢Sinz) (14 ¢Sinz)
_{(~6F0 - 6(1 + ¢8Sinx) A2)
2(1 + ¢Sinz)®

3

18F0¢A3Cosz  120A3Cosz  90F06A2C0sx
(14 ¢Sinz)t (1+¢Sinx)3 (1+ ¢Sinx)
30FQAY 9FQAY v
1+ ¢Sinz  (1+¢Sinx)’
B 9AY _ {~6F0 —6{1 + ¢ Sinz)AY)
(1+ ¢Sinz)? 2(1 + ¢Sinz)® '

+10A42 +
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9F0pAdCosy  364°Cosz 6¢A4Cosz
T+ 4Sine)® ~ (1+4Sina)® ~ (1+ 4Sine)®
6¢Sine QFbp A3Cosz
(1+¢Sinz)®  (1+ 6Sing)?
L6F0 ( 12¢*Cosa® 3¢ Sing )
(1+¢8inz)® (1+ ¢Sinz)?
+8 {1 + ¢Sinz) ( 22‘;520?%25 + 3¢ SI:'%‘ 4)
(1 + ¢Sinx) (1 + ¢ Sinx)
OF0AY  (—6F0—6(1 + ¢Sinz)Ad)
1+ ¢Sinz 2(1 + ¢ Sinz)® ’

G4 =

+3A3 4

_ 252F04B1Cosz _ 168¢B1Cosz _ 63FO0BY
(T+¢Sinz)*  (1+4Sinz) (1+¢Sinz)®
___e3Bv (—6F0 — 6(1 + ¢ Sinz)BY)
(1+¢%inz)? 2(1 + ¢ Sinz)® *

Gh =

1890F0¢B1Cosz  45F0B2Coss
CM(1+ ¢Sinz)t  (1+ ¢Sinz)t
12604B1Cosz 30¢B2Cosz
CM(1+ ¢Sinz)® (1 + ¢Sine)
315F0¢6B1Cosx , . G3F0BY
Oresinay TP+ yToes
21{—6F0 — 6(1 + ¢ Sinz)B1')
a CM{1+ ¢Sinz)®
__30F0BY  (~6F0—6(1 + $Sinz)B2)
(1+ ¢Sinz)® 2(1 + ¢Sinz) ’

&

540F0¢B2Cosx  18FGpB3Cosx 3604B2Cosx
CM(1+ ¢Sinz)* {1+ ¢Sinz)t  CM({1+ ¢Sing)?
12¢B3Cosz  90F0¢B2Cosx , )
i - 1081
(1 +¢Simx)3 N (14 ¢Sinz)? *
30F0B2  10(~6F0 — 6(1 + ¢ Sinz)B2)

a7

14 ¢Sinz C1M {1+ ¢ Sinz)®
__9FO0BY  (—6F0 - 6(L + ¢Sinz)B3)
(1+ ¢Sinz)® 2(1 + ¢ Sinz)? !
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54F0¢B3Cosx 360B3Cosx QFdB3Cosx
CM{1 + ¢Sinz)t ~ CM{1+ ¢Sinz)d * (1 + ¢Sina)?
9F0BY  3(—6F0 — 6(1 -+ ¢ S8inz)BY)
1+ ¢Sinz CM(1+ ¢Sinz)? !

G8 + 3B3%

gy = 1151045 + 98 A6 + 78 A7 + 5y A8

(2.54)
+32 A8 + A10,
wpy = 11584+ 9885+ 78B6 + 5y1B7 (2.55)
+3y°B8.
The result of our analyses can be expressed to second order flow rate by defining
FO = Fy + aFy + o*Fy. . (2.56)

Then substituting Fg into ¥y and neglecting the terms greater than 0(&2), we obtain second
order expression for stream function \If?e’? in terms of the second flow rate F2),
where

Fy=F® _aF +o*F. (2.57)

2.4 Pressure gradient

By subtituting {2.35) in dimensionless equation of motion and equating like powers of o on
both sides of equations, we get a set of partial differential equations for %ﬁ, %‘- and %

We define the dimensionless pressure rise per wavelength in wave frame ag

dp
VP, = / Eg;da:, (2.58}
by using {2.35) in equation {2.58),we obtain -
VP, = VP + aVPsy + a? VP + ..., (2.59)

and then we compute the pressure rise per wavelength by using zeroth, first and second order
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sclution and integrating from 0 $o 27,

2.5 Graphs and discussion

in order to see quantitative effects of various emerging parameters involved, velocity distribution
and pressure £ise, the result of our analysis are presented as by graphical presentation of cbtained
soluion,

The results of our analytical sclution are presenied for the pressure rise and flow rate for the
various parameters such as He, €, and small parameter a. It is also represented for the stream
lines and trapping regions for several parameters like Re, C, and «. Figure 2.1 represents
the pressure change per wavelength AP and observed flow rate 8 for the various values of
concentration particle €. We notice that an increase in C resuls a decrease in pumping rate.
Figure 2.2 is a graph of AP and peristaltic pumping rate 8 shows that an increase in Reynolds
number Re results an increase in pumping rate if all other parameters are held fixed. Figure

2.3 shows that peristaltic pumping rate increases for the various values of .

en—\

40

ap

28}

+
i
}
oA N
H
2
Y

-3 1. % %.5 X

T

Figure 2.1: Graph of dimensionless pressure gradient per wave
length AP and flow rate 8 for fixed Re == 1, o == 0,06 and for

various values of concentration C. v
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Figure 2.2: Graph of dimensionless pressure gradient per wave
fength AP and flow rate 8 for fixed o=0.2, C = 0.4, and for

various values of Reynolds number Re.
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Figure 2.3: Graph of dimensioniess pressure gradient per wave
length AP and flow rate 6 for fixed Re = 1, = 0.4, and for

various values of a.
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Stream lines and fluid trapping

Stream lines are the geometrical representation of fiow velocity. Stream line is a curve
tangent to velocity vector. The trapping phenomenon, whereby a bolus {defined as a volume of
fluid bounded by closed stream lines in the wave frame)} is transported at wave speed, has been
examined by several investigators. Fig. 2.4 — 2.8 are graphs of streamlines for the conditions
Re=1,a=006,C =0, ¢ =04 and 6 = 0.5, 0.7, 1, 2. Figure 2.4 shows that there is no
srapping for peristaltic pumping when flow rate is small at low Reynold number. Figure 2.5~
2.8 represents that the streamiines from all the ends of the tube direct themselves in such a

way that all are clustered along the central part .

1 3 3 &

Figure 2.4: Contour streamlines for a=0.06, C=0, Figure 2.5: Contour streamlines for a=0.06, C=0
wf},4, Re=1 and §:=0,5. ,¢=0.4 , Re=1 and §=-0.7.
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-1 o 4 2 3 § -1 o 1 2 3 |
Figure 2.6; Contour streamlines for @=0.06, =0, Figure 2.7: Contour streamlines for o=0.08, C'=0,
¢u==f).4, Re=1 and 6=1, =:(}.4, Re==1 and G=2,

-1 o 1 2 2 4
Figure 2.8: Contour streamlines for a=0.06, C=0,
¢=0.4, Re=1 and 6=5.




Chapter 3

Effects of Uniform Magnetic Fields
on Peristaltic Transport of a
Particle-Fluid Suspension in a

Planar Channel

Mekheimer [20] discussed the effect of peristaltic motion of a particle fluid suspension in & planar
channel. In this chapter we will analyze the mechanics of peristaltic pumping of & particle-
fluid suspension in & planar channel with ugiform magnetic field applied perpendicularly. The
approximations of low Reynolds number and long wavelength have been employed to reduce
highly nonlinear partial differential equations. Perturbation method is ysed fo obtain solution
for velocities, stream lines and pressure gradient in terms of flow rate. The solutions are
graphical displayed to see the effects of physical parameters like Reynolds number, concentration
of particles, wave number, flow rate and concentration is discussed graphically. The streamlines

are also drawn to discuss the trapping bolus discipline.
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3.1 Mathematical formulation

We consider the peristaltic flow with variable viscosity in an infinite channel having width 2b.
The fluid is moving through infinite wave with velocity ¢ along the walls, The X-axis and
Y-axis are selected along and transverse to the channel walls, It is assumed that fluid conducts
electricity, whereas particles are non magnetic in nature. The governing equations of fluid and

particulate phase with fransverse magnetic field is

cpﬁgﬁ — ~CVP +CS(W;~Wp), . (3.2)

where J is the current density and B is the total magnetic field.
The equations governing the two dimensional motion of this model are
oT; oV,

—— e || v
ox T 38

(1-Cyos |Gt + U+ Vi = -a-0) &
8lF> | auy” 75 2 ’
+(1 = C)pg |k + = | + 08 (Up — Uy) ~ 0 BiT
(1= 0oy (B + V5 + VB =1~V
v sV ¥7 ’ 34)
+ (1~ Cpg Bﬁ}%{"ﬁ“ o7 +CS(VP—V)')
OU, , 0Vy _
ox taw 3)
T, + U, = OF oF -
Cp, {%?3+-Up~5x§+ifpﬁ§] = “Oa—y“i“cs(ﬁf"yp% (3.6)
Vy o OV, o 8V aP 7
Cpp[wéf+%*§%+v “3“:373} = —ng{“x"i"csfvf“vp)!

using eqs.(2.12) into {3.3) ~ (3.6}, we get



for fluid phase,

ouy | 99y
Fr3 + 3%“ z ) (3.7)

(1-Chps [uf L+ %]m»(l«@)%+ }
(1-Clp [—mf? %]»%CS(%—%)*UB%@ ‘

(= Cypy [ur Gt +5, 5 = - (1-O) B+
g g2 D , (3.8}
(1~ C) g [-5.5;, + Fvﬂ +CS (@5 — 7))
and for particulate phase we have
du, 0%,
5 o 5 == 0, (3.9
R p TN
Cpp [up*“é*x_*j -+ ?)puéi}*—] = *C% +C8 (‘L‘,f up) ) (31{})
v, _ Op % .
Or, |2 +952] = ~0Z +05(w ),

using nondimensional quantities from eq. (2.16) and stream function as {2.17) into egs. (3.7} —
(3.16).

The equations takes the form,

(1-C)Rea [0y, V? Upp — U5V gl = VEVE Uy + OM (V2 Up ~ V2 Uy — 204,
CaRe (¥ V2 Uy — 0, V2 Uy} = ON (V2 85— V2 8,),

(3.11)
along with b.c's as described in previcus chapter,
3.2 Solution of problem
3.2.1 Zeroth order problem
8%y Py Fo
S ~E~CM( e 8y§" =0, (3.17)
Opyy % )
CN (_-5559- - WP—“ =0, (318)
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along with the boundary conditions

"fjfﬂ - ?Ppamoaif’fuyy

= Ypogy = 0 8t y=0,

’lpfg - F{),‘lﬁﬂ)y = -] at y = h.

3.2.2 First order problem

N g O° O g 6° a4 &
(1-C).Re Yo Y0 o lf’ge ¢i1 —OM ﬁbgz B
Oy Oz6y* Or OBy Oy ay
2950
’Y 832 ¥
a% O O & 5
O Re Py %g“ P60 OPpo —CN 1!’;;1“ “%f’gx ’
dy dzby ox Oy Oy dy
the corresponding boundary conditions are
ﬂbfz = lbpz == {J, @flyy == %bplyy = @ at y={,
T;Dfl = *F}&qpfiy = ) at ¥ h.
3.2.3 Second order problem
(1-C).Re [af;;* a1 83';“;9;515,83“9 3 - 835'55’“ 6§£" T =

My PPy |, Oy By
C.Re [658«—»:3;** B Gk —

20N(%g.w

along b.c's

1,

Y = Ypp = 0 Proyy

Wpl 83?}"9{) . Wp{] 331}";:1]
B oy 8z By

11};)
H

= Poney = 0 at y=0,

Y = Fypp, =0aty=h
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3.2.4 Zeroth order solution

The solution of zeroth order system gives the sfream function as

- FQy® — y3h + 3FOyh? + yh®

_ 6F0y —6yh  —FOY ~ %h + 3FOy? + yh?

Ypo = ICMHES 9h3

The axial velocity is

—3F0y% — 3%k 4+ 3F0R2 + 13
wo o= 5TE ’

—6F0 ~ 6k ~3F0y? — 3y*h + 3FOR? + B®

2CMHRR + 2h3

3.2.5 TFirst order solution

The solution of first order system gives the stream function and axial velocity as

g =y dyy + yodi + yPdig + ydiy, .
where

+3CF0?Reh — B5CFOM Rehh'

}. F [
d1y = SEONTIT | —SFON1Rehh +5CFON1Rehh
~2CM Re h?h’ — 2N1Reh?n’
\ +2CN1Re b2’ )

36

[ —3CF02MReh —3F0N1Reh \

(3.26)

(3.27)

(3.28)

(3.29)



1

42 = SEERTR

PR
1B o8ON 1R

1

i = SRR

1
dyy =

[ TPON1y?Reh® — TCFON14? Re bt
+7N1v2Re h® — TCN142 Re h®
+21F0?N1Reh?h' — 21CFO*N1Reh2h
+21CFO*M Re h?h' + 21CFOM Re h3H
~21FON1Re h3h — 21CFON1Re h3H/
+7CM Re bR’ + TN1Re k%
\ ~TON1Reh*h

[ —140F1N1h* — 14F0F2N1RehS
+14CFOy*N1Rehb — 14N142 Re h”
~14CN1v2Reh” — 33CF0? M Re h*A’
+33CFOPN1Reh*h' — 27CFOM Re h5h'
~27FON1Reh®h’ + 2TCFON1Re h3H
~8CM Reh®h' — 8N1Re hoh'

\ +8CN1RehH

[ 420F1N1h® + 7TFON142 Re k8
~7CFON1v* Re h® + 7TN1Re~?h?
~7CN1Re~?h® + 15CF0* M Re h8h'
+15F0°N1Re h8H ~ 15CFOEN1 Re hOA
+11CFOM Reh™h’ + 11FON1Reh7H
~11CFON1Re h"h' + 3CM Re h8h/

= 98ON1RT

\ +3N1Reh®h' — 3CN1Re kB
PV =y dis + digy® + yidyr,

[ —3CFO°MReh —3F(2N1Rek'+
3CF0?Reh’ — 5CFOM Rehh'

~BFON1Reht +5CFON1Rehh —
2CM Re h?h' — 2N1Re h2h +

\ 2CN1Reh*h/ /
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( TFONIV? Reh* — TCFONIvy* Re bt \

+7N1¥?* Reh® — 7TCN1y* Re h®
+126F0? Re b’ + 210F0Re bR

_ 1 +84 Re h?h’ + 21FO* N1 Re k%1

2BONIAT | _910p02N1 Re k2K + 21CF0? M Re h2h

+21CFOM Re h3h' — 21FON1Re h3R
~21CFON1Reh*h’ +T7CM RehtH

\ +7N1Reh*h' — TON1Reh*h'

dig

[ ~140F1N1h% — 14F0y2N1 Re 8

+14CF0V?N1Reh® — 14N 172 Re h’
~14CN142 Re h™ — 420F0% Re h2h/

1 —420F0Re h*H — 140 Re h*h’

© 280N1RT | _330R02M Re k4K + 33CFO*N1Re A

~27TCFOM Re hSh' — 27TFON1Re h®h/
+27CFON1Reh®h' — 8CM Re h8h’

dyy

\ ~8N1Rehfh' + 8CN1RehSh )
wupy = TyBdyy + Syd -+ 3ydus + dug, (3.31)
upy = Ty%dss + 5ytdse + 3yday. C{3.32)

3.2.8 Second order solution

p =y dig + 1y drg + y7dao + yPdpy + yPday + ydas, (3.33)
e 1 N1CEGSM Re k3 + 21 EG1IN1 Re k3
166320V AP —21CEGIN1Rek ’
J 1 55C EG6M Re h?
10 7 T R
186320N1h3 | 155 5GINTReh® — 55CEG2N1 Re b3
. 1 198C EGTM Re h®
3 ey peae———-
166320N15% \ | 108 R(I3N1 Reh® ~ 198CEGIN1Resd |
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1
g1 = 166320N 143 (

e 1
2 TB6330N1hS

\

(

g 1
2 T66320N1A3

Vp2

1

dag = 166320N 143
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166320N 1R

1386C EGSM Re i®
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—105EG5M Re h'! — 105EGIN1 Re b1

-

+105CEGIN1RehH! /

249480F2N1h2 4 1386CEGSM Reh?  \
+1386EG4N1Reh” — 1386CEGAN1Re b7
+396CEGTM Reh® + 396EG3N1Re h®
~396CEG3N1Reh? + 165CEG6M Re hM |,
+165EG2N1Rehll — 168CEG2N1 Re b1
+84CEG5M Reh'® + 84EGIN1Reh13
~B4CEGIN1Ren!3 /

=y dag +y0das + 7 dyy

1y dag + i3 dag -+ ydao,
UCEG5M Rek® + 21 EGIN1 Re b3
~21CEGIN1Rerd - |

~2310EG5 Re A% + 55C EGEM Re h3
+55EGIN1Reh® — 55CEGON1 Re h® |

; 1 ~3960EG6 Re h® + 198C EQTM Re b
26 7 T ,
166320N1A% \ | 108 EGIN1 Re k3 — 198CEGNT Re A
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[ 249480F2N1R% + 1386CEGSM Reh!
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+396CEGTM Re h? + 396 EG3N1Re h®
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+165FEG2N1 Re k1t — 165C EG2N1 Re hlt
+84CEG5M Re h'® + 84EGIN1Re h13
\ ~84CEGIN1Re k'3 /

¥

430 = TEEION TR

the axial velocity is

gy = 11y %yg + 9yPdig + Tyddgo + Sydas + 3yPdas + das, {3.35)

gy = 11ydes + 9yPdas + TyBdyr (3.36)

+51tdog + ByPdag + dag.

3.3 Graphs and discussion

In order so anslyze the effects of pertinent parameter, namely perturbation parameter ¢, the
volume fraction density C, the amplitude ratio ¢ and volume flow rate ¢ on pressure rige

represented as by graphs of solution. Figure 3.1 shows that for positive values of peristaltic
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pumping rate #, pressure decreases and for negative values pressure increases for case of various
values of He, Figure 3.2 is a graph of peristaltic pumping rate ¢ vs pressure change per
wavelength AP for the case of « represents that as « increases 6 also increases. Figure 3.3
shows the effect of concentration particle C' on pumping rate. We observe that an increase
in O results a decrease in pumping rate. Also backward pumping increases with increasing
concentration of particles. Figure 3.4 is a graph of pumping rate § vs pressure change per
wavelength shows that as MHD ~ increases then flow rate also increases. Fig 3.5 represents
that for various values of armplitude rasic ¢ results an increase in peristaltic pumping rate 6.
Fig 3.6 is a graph of pressure change per wavelength vs pumping rate 6 in the presence of
MHD shows that an increage in Re results a decrease in How rate 8.

Fig 3.7-3.11 are graphs of streamlines for the conditions Re=1, ¢==0.4, C=0, a=0.0628,

tube direct themselves in such a way that all are clustered along the central part and bolus size

decreases as § increases,

58 ¥

Re

=igg |

Figure 3.1: Graph of dimensionless pressure gradient per wave
length AP and How rate 8 for fixed @=0.2, C = 0.3, M==1,

N==1 and for various values of Reynolds pumber.
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Fig 3.2: Graph of dimensionless pressure gradient per wave

length AP and flow rate 8 for fixed , Re = 0.3, v = 1, M=},

4.2
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Figure 3.3: Graph of dimensionless pressure gradient per wave
length AP and flow rate 8 for fixed a=-03.5 , M=1, N=1,
¢ = 1.3, Re = | and for various values of C.
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Figure 3.4: Uraph of dimensionless pressure gradient per wave
length AP and flow rate 4 for fixed a=-03.5 , C =03, Re=1

and for various values of «.

“0.02F

.04 F

Figure 3.5: Graph of dimensionless pressure gradient per wave
length AP and flow rate 8 for fixed a=0.2, C = 0.3, M=1,
N==1, Re==1 and for various values of ¢.
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Figure 3.6: Graph of dimensionless pressure gradient per wave
length AP and flow rate 6 for fixed a=-03.2, € = .3, M=1,

N=1 and for various values of Re.

Figure 3.7: For R=1, § =1, a =0.06, ¢= 0.4, v = 4, Figure 3.8: For R=1, § =1, a =0.06, = 0.4, v = 4.
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Figure 3.9; For R=1, 8§ =2, a = (0.06,¢= 0.4, v = 2. Fig 3.10: For R=1, 0 =5, a = 0.06,¢= 0.4, vy = 2.

Figure 3.1%: For B=1, 8 =7, a = 0.068,¢6= 04, v = 1.
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3.4 Conclusion

In this thesis the peristaltic transport of a particle-fluid suspension in a planar channel is
discussed with and without MHD. Chapter two is a detailed review work of Mekheimer et al.
[1]. The small MHD effects are discussed in chapter three. The problem is formulated under
the implementation of long wavelength and low Reynolds number. The analytical resuits are
developed using perturbation technique. All the results are described graphically by observing
the variation of various physical parameters. The results of AP and streamline have displayed

using graphs. The main results evaluated from the above discussion are summarized as follows,

» It is found that peristaltic pumping rate increases with an increasé in small parameter o.
e It is observed that peristaltic flow rate decresses with an increase in concentration C.

o [t iz measured that peristaltic pumping rate increases with an increase in Re in the

presence of MHD but results a decrease in pumping rate without MHD.
¢ It is seen that peristaltic pumping rate increases with an increase in amplitude ratic ¢.
o It is noticed that the effect of # is the increase in pumping rate.

e it is observed that trapped bolus is being small with an increase in peristaltic pumping

rate #.

» It is found that streamlines from all the ends of tube direct themselves in such a way that

all are clustered along the central part.

46



3.5

10.

11.

12,

References

. Latham, T.W. {1966). Fluid motion in a peristaltic pump, M.Sc. thesis, Massachusetts

Institute of Technology Cambridge, Massachusetts.

. Jaffrin, Shapiro, (1971) . Peristaltic pumping, annual review of fluid mechanics, 13, 13—36.

. Eyten O, Jaffa A.J, Elad D, {2001). Peristaltic flow in a tapered channel:application to

embryo transport within a uterine cavity, Med Eng Phy 23, 473 — 82.

. Siddique, A.M., Hayat T, Masood Khan (2004} . Magnetic fluid influenced by peristaltic

waves. J Physical. Soc. Of Japan, 73, 2142 — 2147,

. Srivastava, V.P. (2007q¢). Effects of an inserted endoscope on chyme movemesnt in smali

-

intestine. Apple. and Apple Math, 2, 79 — 9L,

Srivastava, V.P. {20075). A theoretical model for blood flow in small vessels. Applc. and
Apple Math., 2, 51 — 65.

Sobh, A.M. {2008). Interaction of couple stresses and Slip flow on peristaltic transport in

uniform and non uniform channels. Turkish J. Eng. Sci, 32, 117 — 123.

Mekheimer Kh.S. (2002}, Peristaltic transport of a couple-stress fluid in a uniform and

non uniform channels. Biorheology 39,755 ~ 765.

Ravikumar, S., et.al, (2010). Peristaltic fiow of a dusty couple stress fluid in a flexible

channel. Int. J.Open problems Compt. Math.,3(5}, 13, 115 — 125.

Rashmi 5. {2007). Unsteady flow of dusty 8uid between two oscillating plates under
varying constant pressure gradient. Novi., Sad J.Math., 37{2}, 25 — 34,

Marble, F.E. (1971}). Dynamics of dusty gas, annual Review of Fluid Mechanics, 2,
397 — 446.

Drew, D.A. (1979). Stability of a Stokes layer of a dusty gas, Physics of Fluids, 19,
2081 — 2084.

47



13.

14,

5.

186.

17.

18.

19.

20.

-

Bedford A, and Drumbeller, D.S {1983). Recent advances; Theories of immiscible and

structured mixtures, International Journal of Engineering Science, 21, 863 — 960.

Soo, 8.L. (1984) . Development of dynamics of multiphase flow. International Journal of

science and engineering 1.

Bungay,P, and Brenner, H, (1973) . Pressure drop due to motion of a sphere near the wall
bounding & Poiseuille Alow, Journal of Fluid Mechanics, 60, 81 — 96.

Hill C.D., and Bedford, A. (1981}. A model for erythrocyte sedimentation,Biorheclogy,
18, 255 — 266.

Srivastava, L.M., and Srivastava, V.P. (1983} . On two phase model of pulsatile blood fow
with entrance effets, Biorheology, 20, 71 — 777.

Trowbridge E.A. {1984). The Fluid Mechanics of bloed, Mathematics in Medicine and

*

Biomechanics, 7, 200 — 217.

Oka, 8. (1985). A physical theory of erythrocytes sedimentation, Biorheology, 22, 315 ~
321.

Mekheimer, Kh.S. Elsayed F. Shehawey El,.Elaw AM (1998). Peristaltic motion of a
particle-fluid suspension in a planar channel. International Journal of Theoretical Physics,

37, 2895 — 2920.

48



