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Preface

Fixed point theory is one of the famous and traditional theories in mathematics and has
a broad set of applications. It is concerned with the result which states that under certain
conditions a self map T on a set X admits one or more fixed points like functional equation
¢ == I'a has one or more sciutions. Fixed point theory started almost bmmidiately after the
classical analysis began its rapid development. A large variety of the problems of analysis
and applied mathematics relate to finding solutions of nonlinear functional equations which
can be formulated in terms of finding the fixed points of a nonlinear mappings. In fact, fixed
point theorems are extremely substantial tools for proving the existence and uniqueness of
the solutions to various mathematical models {(diferential, integral and partial diferential
equations and variational inequalities etc), exhibiting phenomena arising in broad spec-
trum of fields, such as steady state temperature distribusion, chemical equations, neutron
fransport theory, economic theories, financial analysis, epidemics, biomedical research and
flow of fluids ete. They are also used to study the problems of optimal control related to
these systems. Thus fixed point theory started as purely analytical theory., This field of
mathematics can be divided into three major areas which are Metric fixed Point Theory,
Topological Fixed Point Theory and Discrete Fixed point Theory, Classical and major re-
sults in these areas are Brouwer’s Fixed Point Theorem, Banach Fixed Point Theorem and
Tarski’s Fixed Point Theorem.
A self mapping T on a metric space X is said to be a Banach contraction mapping
if d(T'a,I'b) < pd{a,b) holds for all a,b € X where 0 < p < 1. This theorem plays a
fundamental role in the field of fixed point theory and has become even more important
because being based on iteration, it can be easily implemented on a computer. This principle
has many applications and it has been extended by several authors. Taking this process
much further Kannan, Chaterjea and Hardy Roger proved other fixed point theorems with
better contractions, which also have many applications in fixed point theory. There has also
been a lot of activity in different weakly contractive mappings, which are generalization of
the existing contractive conditions.

Recently, many results appeared related to fxed point theorem in complete metric spaces



endowed with a partial ordering <. Ran and Reurings [30] proved an analogue of Banach’s
fixed point theorem in metric space endowed with a partial order and gave applications to
matrix equations. In this way, they weakened the usual contractive condition. Subsequently,
Nieto et, al. [37] extended the result in [30] for nondecreasing mappings and appiied it o
obtain a unique solution for a 1st order ordinary differential equation with periodic boundary
conditions. Indeed, they all deal with s monotone mappings (either order-preserving or
order-reversing} mapping and such that for some ag € X, either ap % Tag or T'ap =< ap,
where I' is a self-map on metric space. To obtain unique solution an additional restriction
that each pair of elements has a lower bound and an upper bound. Instead of monotone
mapping, one can take dominated mapping, which is introduced in [2, 3, 4]. The dominated
mapping which sasisfies the condition I'a < @ occurs very paturally in several practical
problems. For example if a denotes the total quantity of wheat produced over a cerfain
period of time and (e} gives the quantity of wheat consumed over the same period in a
certain village, then we must have I'e < a.

In 1963, Ghaler generalized the idea of metric space and introduce 2-metric space which
followed by a number of papers dealing with this generalized space. A plenty of material is
available in other generalized metric spaces, such as, semi metric spaces, Quasi semi metric
spaces and D-metric spaces, Fixed points results of mappings satisfying certain contractive
conditions on the entire domain has begn at the centre of vigorous research activity, for
example (see {2, 3, 5]). Thereafter, many work related to fixed point problems have also
been considered in G — metric spaces (see [7, 8, 10, 13}). Z. Mustafa and Sims introduced
the concept of G — metric Space in {12]. G —metric Spaces have applications in theoretical
computer science. Aydi |26] used the idea of partial metric space and partial order and
gave some fixed point theorems for contractive condition on ordered partial metric spaces.
Recently, Karapinar et. al. 28] introduced the concept of (,¥) contractive G — metric
space. Azam et. al. [1, B, 7] proved a significant result concerning the existence of fixed
peints of a mapping satisfying a contractive condition on closed ball of a complete metric
space. Arshad et. al. [2] have submitted a paper related to fixed points of a pair of

Bagnach type mappings on a closed ball in ordered partial metric spaces. For the last few



decades, there has also been a lot of activity in weakly coniractive type mappings and several
well-known fixed point theorems have been extended by a number of authors in different
directions (see, for example, [6, 10, 13, 15, 16, 17, 18, 20, 21, 22, 24, 25, 27, 30, 34, 35, 36]).

Chapter-1, is devoted for some essential and basic definitions and propositions, some
classical fixed point results and their related examples.

Chapter-2, consist of modified Banach fixed point results for locally contractive map-
pings in G — metric spaces, which are proved by Erdal Karanpinar [39] for globally con-
tractive mapping in G — melric spaces.

Chapter-3, is devoted for common fixed point results for locally contractive double

mappings in G — mefric like spoces.



CHAPTER 1

INTRODUCTION

The purpose of this chapter is to present basic defipitions and concepts about 7 —metric
spaces, some classical fixed point results and to explain the terminology used through out
this thesis. Some previously known results are given without proof. Section 1.1 is about
basic concepts, Section 1.2 is concerned with the introduction of G - metric space and
concept of closed ball. Section 1.3 deals with some classical fixed point results in G metric

spaces for single self dominated mappings and about error bounds.

1.1 Basic Concepts

Definition 1 /93] Let (X, d} be a metric space. A point a € X 18 said to be o fixed point

of mapping T : X - X ¢f a = Ta.

Definition 2 [§] Let {X, =) be a partial ordered set. Then elements a,b € X are called

comparable elements if either a < b or b < a holds.

Definition 3 [4] Let {X, =) be a partially ordered sei. A self mapping I" on X is called

dominated if I'e < a for eacha € X.

Definition 4 [38] Let (X, =%} be a partially ordered set. A self mapping T’ on X is called

dominating o « < Ta for each a € X.

Definition 5 [87] If (X, %) i3 a parfially ordered set and I" : X — X we say that I' is

monotone non — decreasing f for a,b € X,

¢ 3 h==pTa <Th

This definition coincides with the notion of a pon decreasing function in the

case where X = R and = represents the usual total order in R."



1.2 G-metric Space

Definition 6 [12] Let X be o nonempty set, and let G : X x X x X — [0,00), be a function

satisfying the following properties:

(Gy) Glabey=0ifam=b=c,

{Ga) 0< Gle,a,b;;Vabe X, with a # b,

{Gs) Gla,0,b) <Gla,b,¢)},YVa, b ce X withbs#e,

(Gg) Gla,b,¢) = Gla,c,b) = Gb,a,¢) = Glb, ¢,a) = G{¢,q,b) = Ge, b, a), (symmetry
in all three variables),

{Gs) Gla,b,c) < Gla,d,d) +G(d,b, ¢}, for all a,b,c,d € X, {rectangle ineguality),

then the function G is called a Generalized Metric, more specifically a G — metric
on X and the pair (X, G) is a G — metric space. It is known that the function G{z,y, 2}
on G -~ meiric space X is jointly continuous in all three of its variables, and G{a, b, ¢} = 0

fand only if @ = b = ¢,

Definition 7 [17] Let X be o nonempty set and let Gy : X x X x X — [0, 00} be a function

satisfying the following axioms:

(i} ¥ Gyla, b, ¢} = Gyla,c,b) = Galb, a,¢) = Gglb,c,a,} = G4le,0,b) = G4le,b,a) = 0,
thena=b= ¢,

(ii} Gala, b, c} < Ggla,u,d) + Gald, b, ¢) for all a,b,¢,d € X (rectangle inequality).

Then the pair {X,Gy) is called the dislocated quasi G4 — metric space. It is clear
that if

Gala,b,c) = Gq(b, c,a) = Galc,a,b) == - - = 0 then from (i) a = b = c. But if a = b= ¢
then Gg{a, b, ¢} may not be 0. It is observed that if Gg{a, b, ¢} = Gg{b, ¢, e} = Gylc,a,b) for

all a,b, ¢ € X, then {X,Gy) becomes a Gy ~ metric like space.

Example 8 Let X = R be a non empty set and G : X x X x X — {0,00) be a function
defined by

Gla,b,¢) = d{a, b) + d(b,c} + d(a, ¢},



Ya,b,c € X whered : X x X ~— [0,00) is usual metric. Then clearly G 1 XxXx X - [0,00}

is (7 — metric Like Space.

Definition 9 /23] Let A G-metric space {X,G)} is said to be G — complete if every G-

Cauchy sequence in {X, ) is G-convergent in X,

Definition 10 /28] Let (X,G) be a G-melrie space then for ag € X, v > 0, the G ~ ball

with centre ag and radius r > 0 ig,

Blag,r} = {p € X : Glag,p,p) <r}.

Definition 11 [28] Let T' and A be self maps of set X. If b="Ta = Aa for some a € X,

then a 13 called a coincidence point of I" and & and b is called point of coincidence

of I' and A.
Note that if @ == b then b € X becomes common fixed point of self mappings I' and A.

Definition 12 [16] Two self mappings I’ and A are said fo be weakly compatible if

they commute at coincidence point.
Proposition 13 [12] Let (X,G) be a G-metric space, then the following are equivalent:

(1} {en} is G convergent to a,
(2) G{an, ty,a) — 0 a8 1 — 00,
(3) Glan,a,a) — 0 a8 1 — 00,

{4) Glan, 8m,6) ~ D as m n — oo.

Proposition 14 [28] Let (X, () be a G-metric space. Then the function G{a,b,¢) is

jointly continuous in all three variables.

Proposition 15 /28] Let (X, G) be a G-metric Like space, then the following are equiva-

tent:

(1) The sequence {a,} i8 G4 — cauchy,

(2) For € > O,there exists k € N such that Gg(an, am,a) < €, for all n,m 2 k.



Definition 16 [23] Let {X,G) be a G-metric Like space and let {a,} be a sequence of points
in X. A pointa in X is said to be the limit of the sequence {a,} zfm}?'iaam(?d{a, an,.am) e
0, and one says that sequence {am} is G — convergent o a. Thus, if a, — ¢ in a G-metric
space {X,G), then for any € > 0, there ezists n,m € N such that Gy{a, an, om) < €, for all

n,m > N.a€ X be a non empily sel.
Definition 17 Let (X,Gq) be a G — metric Like space then,

{i} A sequence {a,} in {X,Gy) is called Cauchy Sequence if for all € > 0, there exists
ng € N such that m,n,l 2 ng, Galtn, m, %) < € , G¢(@m, n, a1) < €, and Gglay, 6n, m) <
€,

(i) A sequence {ay} in Gmetric Like space {for short G converges) to a if ?}ngo Galtn, an, a) =
nZEf{éﬂGd(a, Gy, Gn) = 0. In this case g is called a Gy — limit of {a,}.

(iii) (X,Gq) is complete if every Cauchy Sequence in it is G4 — convergent.

Lemma 18 [39] Let (X, G} be a G-metric space then Va,be X

Ga,0,b) < 2G{a,b,b).
Definition 19 [/I] Let (X, G} be a G-metric space then it is symmetric G-melric space
if Ya,be X

Gla,b,b) = G{b,a,a).

1.3 Some Classical Fized Point Results on Closed Ball

This section deals with some fixed point results on a closed ball for ordered complete metric

Spaces.

Theorem 20 [33] Let {X,d) be a complete metric space, § : X — X be a mapping,
r > 0 and agp be an arbitrary point in X. Suppose there ezists k € {0,1) with

d{(Sa, 5b) < kd(a,b),
Y a,b€Y = Blag,r} and

d{ag, Sap) < {1 — k)r,

then there exists a unique point a* in B(ag,r), such that, o* = Sa*.



Theorem 21 [8] Let (X, <,dq) be an ordered complete dislocated quasi metric space, S :
X — X be o dominated map and ap be an arbitrary point in X. Suppose there exists
£€10,1) with

d,(Sa, Sb) < £dy(a,b), Ya,b € Blag,r)

and dg(ag, Sag) < {1—&)r.

If, for a nonincreasing sequence {a,} — u implies that u < an. Then there exists o point
a* in Blag,7) such that a* = Sa* and d,{a*,a*) = 0. Moreover, if for any two points a,b
in Blag, ) there exists a point ¢ € Blag, v} such thet ¢ %X a and ¢ X b, that is, every pair of

elements in Blag,r} has a lower bound, then, the point o* is unique.

Theorem 22 [8] Let {X,=,d,)} be an ordered complete dislocated quasi metric space, S :
X — X be a dominated map and ag be an arbitrary point in X. Suppose there exists
ke (0,3) with

dy(Sa, §b) < €ld {a, Sa) + do{b, Sb)],

for all comparable elements a,b in B{ag, 7} and
dg(a0, Sap) < (1 - 6)r,

where § = ;«ég If for a nonincreasing sequence {an} — u implies that v < an. Then there
exists a point o® in Blag,r) such that a* = Sa* end dy(a*,a*) = 0. Moveover, if for any

two points a,b in Blag,r) there exists a point ¢ € Blag, ) such that ¢ = a and ¢ <% b,and
dq(a(h Saﬂ) + dq(ca SC) ﬁ d{;(a{}, C) + dq(saﬂy SC), V 4 ﬁ ag,
then, the point a™ is unigue.

Theorem 23 [9] Let (X, %,d,) be an ordered complete dislocated quasi metric space, ap €
X,r>0and 5T : X — X be a two dominated mappings. Suppose there exists x, ¥,
z € [0,1) with © + 2y + 2z < 1 such that

di{Sa,Th) < « di{a,b) +y [di(e, Ta) + (b, Th)] + z[di(a, Th) + di(h, Ta)],



for all compareable elements a, b € Blag,r) and
di{a, b} < (1 - X)r,

where A = %. If for o non increasing sequence {an} in Blag, 7). tpn — u implies thal

u % ap then there exist a point a* in B{ag,r) such that dj(a*,a*) = 0 and a* = Sa* = T'a*.

Theorem 24 [{0] Let {X,G) be a complete G — metric space and let T : X — X be a

mapping satisfying te following condition Va,b,c ¢ X
G{T'a,Th,T'c) < £G(a,b,9),
where £ € [0,1). Then T has a unique fived point a* € X such that I'e* = o™,

Theorem 25 [99] Let (X,G) be a complete G — metric space and let T : X — X be a

mapping satisfying te following condition Va,b,c & X,
G(T'a,I'b, T'c) < £M(a, b, c),
and

M{a,b,¢) = max{G(a,T'a,b},G(b,1%a,T'b),G(Fa,T%a,T'b), G, I'a,Th),G{a,l'a, c),
G{e,T%a,Tc), G(Ta, e, I'c), G{c, e, T'b), Gla, b, ¢), Gle, Ta, I'a),

G(b,Th, b}, Gle, e, T'c), Gle, Ta, T'a), Gla, b, T'b), G(b, T, Te) },

where § € [0,3) Then 3 unique a* € X such that T'a* = o*.



CHAPTER II

MODIFIED BANACH THEOREM IN G-METRIC SPACE

Karapinar et al. {39 have proved Banach fixed point theorem for globally contractive
mappings in 7 — metric spaces. In this chapter we will prove modified Banach theorem for
iocally contractive dominated mappings in G — metric spaces and the related examples are

given to verify the results.

2.1 Modified Banach Fixed Point Theorem

Theorem 26 Suppose for a G — metric spac (X, G} if a defined dominated mapping I' :
X s X satisfies,

G{Ta,Th,T'c) < éW{a,b, ¢} (2.1}
Va,a0,b,¢ € Bglao, ) € X and r > 0, where £ € [0,3) and
Wia,b,c) = max{G(b,I%e,I'b}, (e, "%, 1b),G(a,I'a,b),
Gla,Te,c), Gle, 1%, I'c), G(b,Te,I'b), G(I'e, 120, Te),
Gle,Ta,Th), G{a, b, ¢}, Gla,T'a, I'a), G(b, T'b, Th),
e, T'e,Te), Gla, b, T'b), G{b, T'e, I'c), G, I'a, T'a) } (2.2}
And
Glag,ar,01) < {1 - p)r {(2.3)

where p € {£,T = i} and p € [0,1). Then 3 unique a € Bglag, ) such that Ta = a.
Proof. Consider a picard sequence {a,,} with initial guess ap € X such that anis 7 ap,
Gpi) =Fa,, YneN (2.4)
From (2.3} it is clear that

Glag,a1,00) < (1= pjr

G(aﬂ?al,al) =r

16



Then a3 € Balag, v). Now consider the relation

Glay,ap,02) = G{lag,Ta3l'ar)

Glay,az.03) < £W{ag,01,01), From (2.1)
From (2.2},

Wiag,a1,61) = max{Gag,a1,61),Gla1,aza2),Gla1,01,02),

Glap, ag,a2)}

In first case if W{ap, a1,61) = G{ay, ag,a3) then,

Glay,e,02) < €G(a1,0a9,02)

(1—£&)G(a1,02,02) 0

IA

G(staz,az) = 0

@) = 4y
It is contradiction because a; 7 ag. In second case if W{ag, 61,01} = G{01,a1,02) then,

Glai,a2,09) S &G{ar,a1,09)

Glas,az,02) < 2Glas,02,02)

(1 - 26)G{a1, a9,a2)

1A
]

Glar,az82) < 0

Glay,a,02) = 0
a4 = a9

It is again contradiction because a1 3 ap. In third case if W{ag, 6;,61) = G(ag, a1,01) then,

Glay, az,62) < £Glag, a1,01)

11



It is true for £ € [0, %} In fourth case if W{agp, a1,61) = G(ap, az,a2) then,

Glas,az,02) < £Glag, 02,02}

Glay,a2.03) < EG(ag, ay,a1) +£G(a1,a2,02)

(1-86G(ay,a903) < €£Glap, 01,01}

£
1§

It is again true for ¥ = zi‘g and 0 < T < 1. Hence

G(az H 32,32)

A

G{ag, a1,a1)

G{ay, a2,02) S pGlag, a1,01), For p € {£,T}
Now by rectangular property,
Glan, az,02) < Glag, a1,01) + Glaz, az,09)
Glap, az,02) < (1 + p)Glao, a1,01)

Glag,e2,02) < (L+p)(1=p)r=(1-p")r

Glag,a0a2) < 7

Hence ag € Bglao, 7). Now let azaq,...... ai € Be{ag, ), by mathematical induction general

inequality can be obtain far all even ¢ € IV as follows,
Glai-1,a5,0i) = pG{ag, a1,61) (2.5)
Now consider the relation

Glai, 0i41,0i01) = G{lai1,Ta;Ta;)

Glas, 6i11,0i1) < EW(ai-1,ai04)

From (2.2},

Wilai1,a,0) = max{G(as,ai+1,8i41), G{@i-1, @i41,8i4+1), Glai-1, 85,0},

G{ay, a; 6i41}}

i2



In first case if W{az—1, i ai} = G{ai, @it1,ai4+1) then,

Glai, @i, 0i01) S EG{ai, aig1,8i41)

(1-8Clas 01, 2i01) S 0

Glai, @ip1,8i41) = 0

a4y = U4l
It is contradiction because a; % 41 In second case if W{ay.1,a:ai) = G(a;,04,a:41) then,

Glai, 0411,0i41) S £Glai, a5,0i41)

Glag, 641,0i41) S £G(ai, aig1,0i41) + £G(0ip1,a4, 0i41)
By symmetry of G — metric space, as G(ay, air1,8i41) = Glaip1,64, 6341) then,
Glai,0i1,0i01) S 26G(ai, Gig1,8i41)

(1~ 28)G(ai,8i41,0i11) S 0

Glas, 0ig1,0i41) = 0
G = G4l
It is again contradiction because a; # @441, In third case if W{ai1, 6 ai) = G{ai-1, @is1,8i41)

then,

G(a”i} ai+1'a‘€+l) g 5@(@{,«“1, &;‘,4..1,&7‘,.;.2)

Glai, @ir1,Gie1) S EG(ain1,ai,0:) + EG(as, aip1,841)

(1-8)G(ai, 00410041} £ £G(0i-1, 040

Glai-1,4i,0:) (2.6)

¢
1-£

Itistruefor ¥ = Ti? € [0,1). In fourth case if W{a;..1, ai ;) = G{a;-1, a;,a;} then,

Glai, gig1,041) S

Glas, @iv1,8i41) < £G{ai1,0:0:) (2.7)

13



It is true for £ € [0, 3). Hence in general from relations (2.6) and (2.7),

G{ai, Gip1,0i41) S pG(@i-1,04,05) (2.8}
where p € {£,T = 1{?} Therefore from relations {2.5), relation {2.8) gives,

Glai, ais1, 0ie1) < p°G (00, 01,61) (2.9)
Now from rectangular property,

Glao, 2irs Gis1) S Glag,ar,01) + Glar, a2,02) + oo + Glag, Gi1,9541)
Glap, 9i51,8i01) < Glap, 01,81) + pGlag, a1,a1) + p*Glag, 01,61)

& LOUTIE 5 p"G(ag,a;,al)

PR

(1+p+ P 4 oo + p')G(a0, a1,01)

| - g1
o)1=

G{ag, @ie1,Qis1)

Glag, aie1,0i41) < |

Glao, Gigr,aia1) < {1—p"N)r

Glag, ai41,8i41) S 1

Hence a;11 € Bglag, ). Therefore picard sequence {a,} € Bglag,r), Yn € N U {0}. Now
to show that picard sequence {a,} is Cauchy sequence consider for m,n € N such that for

< 1m,

G(any Qoyriy am) < G{aﬂ: LT an*'l“l) + G{G?H-Z: Gty ﬁm-}-Z) b AT

+G(am-2 y el s Gy} ) + G(amwl s Ghyny am)

Glan, tm, 0m) < p"Glag, a1,81) + 0" Glag, a1,01) + " *Gag, a1,01) +

...... + ™ G{ag, a1,01)

Glon, m, 0m) S (L4 p+ 0 + e + 9™ 7)0"Cla0, 01,01)
I p™

G{“m ammam) < ( 1-p )PnG(aﬂ? ai,al) (2'10)
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from relation (2.3),
Glan, tm, am) S (1— " 7")p"r
Glan, Qm, am) < 071 (2.11)
As p € [0,1), then p® — 0§ if n — oo. Hence p™r — 0 if n — o0, So for any € € R however
small, 3 & € R such that from (2.11),

GG, Om, Gm) < o"r =€, when m,n > k

Therefore picard sequence {a,} is Cauchy sequence in close ball Bg(ag,r). As close ball
Bclag, r) is close subset of set X, then the sequence {a,} is convergent in close ball Balag,r)
and the point of convergence is a € Bg(ao,r). Hence a, ~ @ as n — 0o, In general it is
clear that,

,{’iﬁo(““’“‘ a} = iiﬁG(a, Oy On) == 0 (2.12)
To check a € Bolag, r) is either fixed point of T': X — X or not consider,
Gla,Te,Ta) < G(a, 0n41, Gns1) + Glany1,Ta, Ta)
Gla,Ta,Ta) < G{e,tn, tn) + W (ayp, a,0) {2.13)
From (2.2},
W{an,a,6) = max{G(a,Ia,,Ta), {an,Cag,a), G{Tay,I?a,,Ta),
Gla, Tan, ['a), Glan, Tap, a}, G{a, [Pa,, La),
G('a,, 2y, Ta), Gle, Dap, Ta), G{an, ¢, a),
Glan,Tan, Fey, ), Gle, e, Fa), Gla,Ta, I'a),
Gla,Tan, l'ay}, G{a,Te, 'a), Gla,,Ta,l'a)}}

W(a'ﬂ? a, a‘) = zzza,x{G(a, By y Ta)? G(Gn, Api-1x a)‘f G(a‘n+1 s b2y ra):

G(&} LR FCL), G(ans Gntdy G), G(as Q42 Fﬂ‘):
G(aﬂ+1: G425 I‘a), G(&a Qnil, F&), G(am &, a}:
G(am Gpi1y an+2): G’(a, Te, FG), G(aa Ta, F&),

Gla, tni1, Ons1), G, Ta,Ta), Glan, Ta, Ta)}

15



W(am @, 3) == max{G(a, Gn+2s r&): G(an; Ort-1s an+i): G(“a Dnde iy a’nﬁwl)?
G(G, Q42 Fa): G(a; Gnitls Fﬂ.), G(“n-&ly Gy g2y Z‘a}, G(am @, G),

G(&, T'a, Ta}! G(a'm Gt s a)a G(an: Pa, Pﬂ')} (214)
For every selection of W{ay, q,a} from (2.14) and applying limit n -» oo on {2.13) gives,

G{a,Ta,Ta)

I
=t

e = ¢

Hence a € Bglag,r) is fixed point of I' 1 X — X. For uniqueness of fixed point consider

a,b € Be{ap,r) are two distint fixed point of T : X — X. Sc consider the relation,

Gla,b,b) = G{la,I'b,I'b)

Gla,b,b) < EW(a,b,b) (2.15)

Where
W{a,b,b) = max{G(a,b,b),G{b, 0,b,),G{a, a,b),G (b, a,0}} (2.16)

From (2.16) every choice of W{a, b,b), relation (2.15) gives,

Gla,b,b) = 0

a = b

It is contradiction to our asswmption (- a # b}, So our suposition is wrong. Hence fixed

point of I': X — X is unique. =

Example 27 If for a set X = [0,2], e mapping G : X X X X X = [0,00), Ya,b,c € X
defined by,
Gla,bey=a+b+c (2.17)

then (X, G) is symmetric and complete G — metric like space. Let mappingT : X — X are
defined by,
ifa € [0,1]

g
Tas=
a+t Hfee(l,2

(2.18)
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Obviously T dominated mapping inside of [0,1] but not dominated outside of [0,1). Let
ag w % and r = % such that Bglag,v) = [0,1). Alsoletpe {£ =3, T = z_i'é = i—,} ¢ 0,1

such that,
i 16
Jor p u= “?;’ (I “p)r = '"g“
and
1 4
e (] =
forp=5, (1=pjr=3
Also as
2 2
Glag,e1,01) = 7 +2I(3) =1
3 3
Clearly

Glag, ar,a1) < (1~ p)r, For every p € { % -;* (2.19)

To show contractive condition is locally contractive, for first case let a,b,¢ € [0,1] then,

abec
G(P&, I'b, PC) = G(gf g: g)
G{Ta,I'6,Tc) = ~1~(a +b+ ¢ (2.20)

&
Also let

Qo -+ 80 a-+726 9a-+ 86 a--0b
W(a‘!b}c) - m&x{ 8 H 64 H 64 ] 8 ¥
9&+8€:}a+72c‘9a6~28¢:}9a;b,a$b+c,
ba Bb B¢ 4a+b 4b+c 4c+a}
4 7 47 4

Ifa,bce 0,1, then

9a + 86 9o+ 8¢ 17 a+ 726 a+ T2 3

< K e < < e
0 = 64 ' 64 “64’0‘ 64 ° 64 64
0 < a+9 9a+b 58 5b 5c da+b db+e 4c+a<§
e 8 ¥ 8 1 4 ) 43 4! 4 H 4 ? 4 »w4
0 < 9a+8b‘9a+835ﬁ’05a+b+css
8 8 8
Clearly above inequalities shows that mavimum value for W{a,b,¢) is
Wia.bc)=a+b+c {2.21)
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From {2.20} and (2.21},

1 1
g{a+b+c) < g(a+b+c)

G{la, 15, Tc) < Wla,b,¢)

Henee contractive condition is locally satisfied on Belag,r) = [0,11. For the second case if

a,b,¢ € (1,2] then,

G(la,Th,T) = Gla+ b+ 2+ )
8 8 8
G{Ta,I'b,Tc) = {a+b+c)~i—§ (2.22}
Also let
3 i 1 |
W(a,b,c) = max{a+26+§,2a+b+§,a+2b+Z,,2a+b+~2~
2a+c+§ a+26+§ 2a+c+é~ 2&~E~b+§,
1 1
a+b+c+33a+ 36+ 3c+4,a+2!)+—,
1
b+2c+z,c+2a+z}
IfV a,bc € (1,2] then
25 1 1T 49
— o< < 22
g S 2a+b+8’2&’+c+3“ 5
13 1 1 1 1 1 1 1 25
o« < -
24? < a+2b+§,2a+b+§,3a+4,36+3 3(::- 4,a+2b+4,b+2c+4,c+233+4 n
5 7 1
— — < < L e
5 = a+2b+8,a+2c+8a+b+c+8 8’2”2 +b+22a+c~§2w 7

Clearly above inegualitics shows that mazimum values for W{a, b, c) are,

Wla,b,¢} = 2a+b~f~}» and Wia,b ¢} = 2a+c~}w%

Now as

(a+b+c}+g

G(Ta,I'b, T'e}

v

I 1
5(2a+b+ ~2~)

v

§W{a,b,c}

- e o

G{la,I'b, I'c) tWia,b, ¢}

iv
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Hence contractive condition is failed outside of Belag,v) = [0,1). Therefore fired point of

I': X - X exists and is O € Bglag, v} such that T0 = 0.

In above theorem, interval for contractive condition can be extended to {0,1) as shown

by following corcliary.

Corollary 28 Suppose for a G — metric spac (X, G} if a defined mapping T : X — X
satisfies,

G(T'a,Tb,T'c) < £W(a,b,0) (2.23)

Vag, a,b,c € Belag,r} © X and r > 0, where £ € [0,1) and

Wia,bc) = max{G(,%e,I'b),G(a,I%,Th),Ga,Tea,b),G(c,T%,Te),
G(I'e,T%a,T'c), G(a,I'a, ¢), G{a, b, ¢}, G(a,T'a,T'a),

G5, Tb,T5),G{c,Te, Te), G, Ta,Ta), G(b,T'e, I'e} } (2.24)

And
Glao, 01,01} < (1 p)r (2.25)

where p € {£,T = “f.%“g} and p € [0,1). Then I unigue a € Bglag, 7} such that I'a = a.

2.2 Error Bounds

In this section errors approximations and their related exampie are discused.

Corollary 29 (Iteration, Error Bounds) From Theorem 26, iterative sequence {2.4),
with arbitrary a9 € Bglae, v} € X, converges to unique fized point a € Bglag,r) of domi-

nated mapping I': X - X. Error estimates are the prior estimale
pn
G(am &, &) < ?_pc(“e, al,az) (2'26}
and the posterior estimate

G(G‘ﬂ: a, G) < "_)E“;G(aﬂwi s aﬁ;a?‘s} (2‘27)
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Proof. As from relation {2.10) of theorem 1,

i1

1 o
G@n,s Om, am) < p“(wli;p)(?(au, a1,01)

As sequence {a,,} is convergent to o € Bgles,r) € X, then by taking m — oo gives

Gon, — 00 and g™ - {}. Therefore above relatioin leads to the prior estimate i.e.,
pﬂ
Glan,0,0) < 1—:“59(019, 1,01}
Setting n = 1 and write b, for ag and & for a; in {2.26} gives,
Glb1,0,0) < 1E—Glbo, br.br)

Letting b, = @y..1 then by = Tb, = 'ap.) = a, in above relation leads to the posterior
estimale 6.,

G(am Gy a) <

i f pG(anw:., G, 0 )

The prior bound (2.26) ean be used at the beginning of the calculation for estimating the
required number iterations to obtain the assumed accuracy. While posterior estimate(2.27)
can be used at infermediate stages or at the end of the calculation. Posterior estimate{2.27)

is at least as accurate as prior estimate(2.26).

Example 30 If foraset X =[0,2], a mapping G: X X X X X ~ X, Va,b,¢c € X defined
by,

Gle,bc)=a+b+c¢ (2.28)
then { X, G} ts symmetric and complete G — metric like space. Let mapping ' : X — X are

defined by,
¢ Haeci0l]

a+% ifa (1,2

T'a ==

Obviously I' dominated mapping inside of [0,1] but not dominated outside of [0,1]. Let
ao = % and r = § such that Bilag,r) = [0,1]. Also let p& {€ = 3,7 = 1—i—£ =1} € [0,1).

Consiruct the picard iterative sequence taking ap == % € [0,1] as initial guess as,

20 vn e NU{0} (2.29)

tn = lap.y = g’
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Also as
2 2 5
e e 2 ) e
Glag,ar01) = 3 +2(5) = ¢
and
Glan, 0,0} = a, + 2a
As picard sequence {an} satisfies all the conditions of modified Banach fized point theorem

1 as in example 2, then If n — 00 s0 ay, — @ 1.€ an = a. Then

3ag 2
G(an,a,a} = Jay = *g;;‘ e *8*;;
As from prior estimate
T
Glan;2,0) < 75—Glao, 0101 (2.30)
If p= 1 then (2.30) gives,
2 3 5
S S
g — 2376
8
3”(3) < ne= 047919 < n
In(3)
n = 1,2,8,... being integer
If p= & then (2.30) gives,
2 25
& 5 7%
In(§)

< med 03315172 <0
In(%)

no= 1,2,3, ... being integer
In either case if p € {31», %}, picard sequence {an} converges for n = 1,2,3, ... =2
Qg
ag = ') = e = 0.0104166667

Ifn=23 then

a3 = Tag = ‘8‘_2 = 0.0013020833
Therefore

0.0013020833 ~ I'0.0104166667

This suggests, when integer n > 1 goes on increasing, picard sequence moves towards fized

point of T which ts a =0€10,1], i.e, T0= 0.
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CHAPTER I1I

COMMON FIXED POINT RESULTS IN G-METRIC LIKE
SPACES

Banach {32, Kannan [35] and Chattergea [24] have independently proved fixed point
theorems by using different contractive conditions in metric spaces. In this chapter we will
generalize some common fixed point results for locally contractive dominated mappings in

G-metric like spaces,

3.1 Banach Common Fixed Point Result

Theorem 31 Suppose (X;<;G) be a symmetric and ordered complete G — metric like
space and ¢, ¢ : X -» X are any two dominated mappings and ag, a, bye € X, r > Q.
Suppose that 3 £ € {0,1) such that,

Galpa,6b,6¢) < £Gyla,b,c), ¥ a,b,c € Balag,r) C X (3.1.1)

and
Galag, a1, a1} = Galag, wao, pap) < {1 — &) (3.1.2)
If for non-increasing sequence {an} tn Belag, 1), {an} — v then 3 a unique @ € W

such that Gu(d,d,8) = 0 and d = 8@ == 4. Moreover Gy(8,4,8) = 0.
Proof. With initially choosen guess gp € E}"(TG,?) C X, consider picard sequence
agn+1 = §02, 80d A9n4g = PAgRe1 (3.1.3)
As § and ¢ are dominated mappings then,
----- Gn S Onel SOp-2 S o D03 S a2 S a1 S0
We know thas,

Gd(aﬂaaflsa‘l) = Gd(a@: $ag, ‘,0{1{)) < (1 - 5)?"

Gylag,a1,0:) < 7
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Clearly a1 € Beg{ag, r). Now concider the relation
Gd(alr a2, az) = Gd(aﬂ{}, L ‘foa‘i)
As G-metric 18 syminetric then

Galas,az,02) = Gulpas,dag,dao)

Galar,az,03) < £Galag,a1,01) (3.1.4)
Now for az € X, again consider by rectangular proprty of G-metric space,

Gd(a'{]'.r ‘12)a2) < Gd(aﬂs a‘i'}a‘l) + Gd(mi‘rx:hx?)

Gylag,ag,a2) < (1+£6)Galag, 61,0:)

Galag,a3,a2) < (1+8(1—&r

(1=&Hr

IA

Galag, a2, 1)

N

Gd(aG} 42, '9'2) ¥ I
ag € Ba(ag,r}). Again consider the relation

Gglag,az,a3) = Gqlpay,day,das)
Gylag,a3,03) < €Gglas, 02,a2)
Galag, a3, a3) < £2G4lap, a1, a1) (3.1.5)
Again consider for a3 € X

Galag,az,a3) < Galag, 01,01} + Galay, ag, a2) + Galas, a3, a3)

Gd(ﬂ(},a3,ﬂ3} < Gd(a@:algai)"}"EGd(a@aaZ:a'l)+§20d(a31a11a1)1 Of(31‘5)

Gd(ﬂ{},&g,&g} < {1"‘1"‘6“{“&2)(;({(&{),&1,&1)

Gelag,03,03) < {14+ £ +E{1 = Er, .~ of (3.1.2)

Galag,a3,03) < (1 -a)r

Galap,03,03) S 7
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ag € Bglag,r). Now let aq a5, ai € Balag,r), by mathematical induction general

inequality can be obtain for all even i € N as follows,

Gal@, Giv1, 0541} = Galpai,da;, da;)
Galai, a1, 1) S EGqlain,ai,0i) = £Ga{80i2,00i1,90i-1)

= EGq(pai-1, a;-2,00:.2)

Galai, 41, aig1) < E2Gg{ain1, tin9, Ging)

zzzzz

Galai, a1, air1) < €7 1G4lag, a1, a1) {3.1.6)

Now consider by rectangular property of G — metric space for az1 € X,

Galag, ai,a5) < Gglao, a1, a1} + Galay, az,62) + .o + Galai-1, @i, 03)

Galap, i, ;) < Galao,ar,a1) + EGqfag, a,a1) + v + & Gylap, a1, 01)

Gilan, a0} S (I+E+E + e + £72 4 £71)Gy(ag, a1, 01)

Galag, aiy @) < (Q4+€+E%4 e + €724 87D 1 - £)r, -7 of (3.1.2)

Galag,ai ) < (1-&)r

Gd(aﬁs Gy ai) < r

Clearly a; € Bg{ag,r) Vi € N. Hence sequence {a,} is in the closed ball Be{ag, r). Now to

show that picard sequence {a,} is Cauchy sequence consider for m,n € N such that n <m,
Gd(am Qorry s am) < Gd{am Angl; aﬂi-l) + Gd(“ﬂwi-la Gn-4-2y an~§«2) + o + Gd{“mmb Qins am)

G{i(anaamx am) < £n(1 + ‘S +€2 + et gmwnwl)Gd(%? aisai}

1 — 5mwn

Gd(amam:am} < én( }_......6 }Gd(a{}:ahai) (317)
Gylan, tm, 0m) < én(é—}fzﬁj){zmg)r, . of (3.1.2)
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AN

Galan, m, Gm} & - £

Gilan, @m,am) < &'r {3.1.8)

As £ € [0,1), then & —» 0 if 1 ~» 00. Hence £™r — 0 if n —» 00, So for any € € R however

small, 3 § € R such that from 1.6,
Gd{&m am;afm) < fﬂr =€, when m,n > jJ

Hence picard sequence {a,} is Cauchy sequence in closed ball Bglag,r). As closed ball
Balag, r) is closed subset of set X, then the sequence {a,} is convergent in closed ball
W and the point of convergence is & € W. Hence g, — G asn — oo In
general it is clear that

ﬁiﬁ‘o@d(“ma’ @) = ’{ijorng(ﬁ, G, ) =0 (3.1.9)

To check & € Be(ap, r) is either common fixed point of ¢,§ : X — X or not consider

Gu(8, 08, ¢8) < Guld, a4, G2ns1) + Galans1, 98, ¥7)

Ga(@,¢8,908) < Gal@, 0an41, @2ns1) + Galbazn, 98, o)
By symmetric condition of G-metric space
Gald, o8, 98) < Gal@, agne1, 62041 + Gul@8, Sagn, Sagn)

Gd (ﬁ, ‘Paa SOEE} < Gd (a, on+1, a2n+1) + €Gd (Ea A2ny a2n)

Gqld, 08,08 < 0, whenn— oo, "~ of {3.1.9)
As it is not possible that G4{@, &, &)} < 0, so the only possibilty left is

Gd,(a, wa, ‘P&w) = 0

va =

af

Again consider

Gd(ay Ja: 63} = Gd (6, A2n42y a2ﬂ+2) -+ Gd(a2‘n+21 6ﬁ5 '56}

Gd(a: 55} 65) < Gd (E‘Ef G242, 32n+2) + Gd (‘pa2n+1 » 56; 55)

25



Gale,88,88) < Gu(T, anszs aon+2) +EGu(azn+1,3,3)
G4la,87,68) < 0, whenn — oo, - of (3.1.9)
As it is not possible that G4(4, 68, §7) < 0, so the only possibilty left is
Gy(@,66,68) = 0
dd = @
Hence @ € Bg{ag, r) is common fixed point of dominated mappings ¢ and §, i.e ¢ = 08 = @.
For uniqueness of common fixed point, consider @,5 € Bg{ap,r) are any two common fixed
point of mappings @ and §, such that @ # b, Then there arises two cases for @,b € Bglag, 7).

In first case let @, b are comparable say @ < 5. As @ and b are common fixed point of

dominated mappings ¢ and § then,
¢(@) =a,8(@) =7, b)) =b and 6(b) = (3.1.10)

Now consider by relation,

Gala, E: ?;) = Gd{‘f)ﬁf 63: 53)
Gal8,5,b) < £Gu(a,b,b)
(1 . €)Gd(§, -51 E) <0

As & €10,1), then | — £ # 0. Thus
G4(E,5,8) <0
As by definition of G-metric space G4(&,5,5) £ 0, then only possibilty left is
C.@ 55 = 0

b

=
i

It is contradiction (- @ # b). So our supposition is wrong. In second case if 4, b are
not comparable then 3 a point ¢y € Bglag, r) such that tg < @ and £g < b. Then clearly
to € Balag,r) is lower bound of both @ and b. Now construct an itterative picard sequence

{t;} € X for j € N such that

tgj41 = Otg; and foj49 = igjy (3.1.13)
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As i and § are dominated mappings then clearly
...... b Sty € e Sl Sty <ty <y
As by assumption i € m,
Galag, te, 20} S 7 (3.1.12)
Now consider the relation

Gd(a}:tht}) = Gd(‘Paﬁ16t915tG)
Gala, b)) < EGyalap, to,to)

Galay,t1,81) < &r, *- of (3.1.12)

Consider for t3 € X by rectangular properiy of G-metric space

Gd(a{htl:tl) < Gd(&(},a}\,&})+Gd(ﬁ},t;,t1)

Gd(&g, 4, t}.) < (1 - E)T + 5?"

Galap,t1,ty) < r—fr+ér

[Fa

Gd(aﬂ:thti) r

Gd(a'2} t2! 32) = Gd (5&1 ' (Pt} [ ‘Ptl)
As G-metric is symmetric then

Galag, ta,t) = Galets,bay,da1)
Galog, t2,82) < £G4(t,a1,a1)

Galag, ta,t2) < &

Again consider for £ € X,

Gd(aﬂat‘bt?) < Gd(a{]}al,al)'*'ad(az,&z,aQ)+Gd(@2,t2,t2)

Galag, i3, 1) (1 &r4all = &r+ &

A
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Galap,ta, b)) < r—&r+ér—Er 4 &%

1A

Galap, 2, t2) T

Hence &3 € Be{ag, ). Now let {3, 1q, t5, ..o ,t; € Balap, v}, then by mathematical induc-

tion consider for {;;; € X such that 741 € N is even,

Galajei, tivn, i) = Galway, 85, 6;)

Galaserstisty biet) S EGalas by, ts) = EGglbaj.1, @tj1,¢ti-1)

Ga(ajs1,tia1, ti41) € EGalipty1,805-1,0a51) < E2Ca(tj-1, @jet; Gim1)

.....

Galajin, b tive) < EGalag, o, to)

A

Galajvs, st tiat) givir
Hence V j ¢ N following relation holds
Glaj tj,t5) < &r (3.1.13)

To show sequence {t;} € X is in closed ball Bglag,r). By mathematical induction for

j € N,consider the relations,

Gylag, G, tje1) S Galeo, ey, a1) + Gylar, a2, a2) + e + Galaj, 0541, a5e1)
+Galajan, e, tig1)
Galantjsrtiv) € (L= Er+&(1L—Er 4+ + &1 - Er+ &
Galap,tja1,tisr) S r—&r+ér—Er+ri . 4 &ir e gV Ty

Galap, b, tipay < 7

Hence t; € Bglag, ). Hence in general t, € Bg{ao,r), ¥ n € N. Now as tp < @ and g < b,

then t, < tp <@ and £, < tp < b. So clearly

th ST = ¢ 8, 1, ST =84, i, K b=y "band t, <b= b (3.1.14)
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AsVn & N, 6" = & = ¢"a and 6" = b = ¢"b. Then consider from (3.1.14),
Gd(ﬁa g: E} = Gd((pn?i, 51‘;3’ ’5?35)

Ga(,5,8) < £G4(¢" g, 6715, 6" 15)

Ga(@,5,8) < &Gu(" %G, %, 8 %)
Ga(,5,5) < € 1G4lpa, 85, 65)
Ga(a@,b,b) < £"Ga(a,b,b)
(1~ &")Ga(@, b,b) < 0
Ag 1l —&" £ 0, then
Ga(E, 5,5y <0

By definition of G — metric space G4(8,b,b) £ 0. then the only possibility left is

Gala,bb) = 0
= b

&

It is contradiction (" @ # b). So our supposition is wrong. Hence from both cases it is
clear that common fixed point in closed ball Bg(as,r), of dominated mappings ¢ and § is

unique. M

Example 32 If for a set X = [0,00), a mapping Gg: X x X x X ~— X thenVa,bce X
defined by,
Gala,b,e)=a+b+c (3.1.15)

e ¥

then (X; <; Q) is symmetric and complete G—metric like space. Let mappings ¢, 6 : X — X
are defined by,

§ faell1]
da ==

a%—% ifa € (1,00}

§ faell ]
pa =

a+3 ifae(lw)

29



Obvicusly ¢ and § are dominated mappings inside of {0,1] but not dominated outside of

{0,1]. Let ag = % and r = % such that Bglag,7) = [0,1]. Also let{ = % € [0,1) so to get,
3.5
(I=8&r = (3;* 55
5
(1=&r (“5"}“2*
{1-&r 1 (8.1.16}

i

i

Also as,

| |
Gd(aﬂ:alaai) = § + 2¢(§)

. |
Galag,an,a) = 5+3
Gailao,a1,a1) = % (8.1.17}
From (3.1.16) and (3.1.17),
5
-
g 1
Also ¥V a, bee {0,1]
a b c
Gd(i{?&,&b,éﬁ) = Gd(gﬁ §: ‘"2"’)
Galpa,0b,5¢) = S+24+E -+ From3.1.15
3 2 2
Gylpa,6b,6¢) = %{an%w S % {3.1.18)
Also as,
£Gala,b,c) = %(a +b+0) (3.1.19)

Y a,b,c e 0,1} it is clear that,

1 a 1 3
e —— < =
2(a+b+c) 6m2(a+b+0)m5{a+b+c)

%(a +b4c) ~ % < g(a +b+c), - From {3.1.19) and (3.1.20)
Gd(‘,fﬁﬂ, (55,5(2) < ’SGd(a: b?"‘:)
Hence contractive condition is satisfied inside of the closed ball [0,1]. Now for a,b,c €
(1, 00},
Ggylpa,éb,6c) = pa + b4 de, . From (3.1.15)
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Galwa, 5b,6¢) = (a-+b+¢) + i:{é“ (3.1.20)

From (3.1.19) and (3.1.20},V a,b,c € (1,00) it is clear that,

7 3
— 2
(a~+~6+c)+12 5(a+b+c)
Gd&ﬁa, 6ba 56) 2 ng (&, b;- C)
Hence contractive condition is not satisfied outside of the closed ball [0,1]. It shows that

all conditions of Banach fived point theorem for double dominated mappings. Moreover

0 € [0,1] common fix point of mappings ¢ and 8, i.e @0 = §0 =10,

Corollary 33 Suppose {X;<;G) be o symmetric and ordered complete G — metric like
space and ¢, 8 1 X — X are any two dominated mappings and ag, a,b,c € X, r > (.
Suppose that 3 £ € 0,1} such that,

Galpa, gb,pc) < €Gala,b,c) (3.1.21)
Y compareable elements a,b,¢c € Bglag,r) C X, and
Gd{aegalr al) = Gd(ﬂe,fﬁﬁﬂ; ‘p“ﬂ) < (1 - E)T (3‘1'22)

If for non-increasing sequence {an} in Bglag,r), {an} — v then 3 o unique & € Bg{ap, 7)

such that ¢ = &8 = &. Moreover Gg(&,d,8) =0,

Proof. In the main result common fixed point of Banach mappings take ¢ = § to get
unique fixed point ¥ = ¢@. =&
Proof of the following corollary is similar to the proof of Theorem 31 but without

discussing the ordered property of G — metric like spaces.

Corollary 34 Suppose (X; <; G} be a symmetric and complete G — melric like space and

@, 61 X - X are any two dominated mappings and ag, @, b,e € X, r > 0. Suppose that 3
£ € [0,1) such that,

Galwa,db,dc) < €Gafa, b,c), V a,b,c € Bglag,r) € X (3.1.23)
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and

Galag, a1, a1) = Galao, pag, pag) < (1~ &r (3.1.24)
If for non-increasing sequence {a,} in Balag, v}, {an} — v then 3 a unique & € Bp{ag,r)
such that Gg{(a,%,8) = 0 and ¢d = 0@ = §. Moreover G4(¢,d,8) =0,

3.1.1 Error Bounds

In this section errors approximations and their related example are discused.

Corollary 35 (Heration, Error Bounds) From Theorem 31, iterative sequence {3.1.3),
with arbitrary ag € Bales, ) © X, converges to unique common fized point & of dominated
mappings ¢ and §. Error estimates are the prior estimate

T

G¢lan,8,8) < 1_§G“(aﬂ’a1’“1) {3.1.28)
and the posterior estimate
Caln,8,5) € +—Galtn-1,tny ) (3.1.26)

1—¢
Proof. As from (3.1.7} of Theorem 31,
1 — am““ﬂ
Galan, tm, am) < a™(—7—=——)C4(ap, 01, 01)
As the sequence {a.;} is convergent to & € Bg{as,r} € X, then by teking m — oo gives
@y — @ and o™ - 0, Therefore above relation leads to the prior estimate, i.e,

i3

Gd(amﬁy&) S 1=

565(&[}, 2y, &1)

Setting n = 1 and write bp for a¢ and by for ag in (3.1.25)
Galb1,8,3) < *{E—é:Gd.(bﬂ, by, )

Letting by = ap-y then by = 8by = da,..1 = a, in above relation leads to the posterior

estimate (3.1.26), i.e,

Gd(%,a,a) < TE“ng(an-la G aﬂ)



The prior error bound {3.1.25) can be used at the beginning of the calculation for
estimating the required number of steps to obtain a assumed accuracy. While posterior
error bound (3.1.26) can be used at intermediate stages or at the end of the calculation.

Posterior error bound (3.1.26) is at least as accurate as prior error bound (3.1.25).

Example 36 If for a set X = [0,00), a mapping Gg: X x X x X — X, Va,bc € X
defined by,

Ggla,bc)=a+b+c {3.1.27}
then {X; <; G) is symmetric and complete G—metric like space. Let mappings p,6 : X — X

are defined by,

s = & ifaclo,l]

a%«% ifa € (1,00)

ifaclo1]

wie

po =

a+ 5 #fae(l,o00)

]

Obviously @ and & are dominated mappings inside of [0,1} but not dominated outside of
[0,1]. Let ap = 4 and r = § such that Bglag,r) = [0,1]. Also let £ = & € [0,1). Construct

the picard iterative sequence taking ag = § € [0, 1] as initial guess as,

alm&xgmm—l-w» and ag = @a1 _.—,,__.ml_
(2)%.(3)° (2)2.(3)1
335532:,."“_“&“__ ﬁrﬂd{}.,;mgpgew m...g'............m
23.3)¢ B3R
aswfs%m"—lw andasmw%mw—l‘
(2)%.(3)% 2% .3)

.....

1
A2t = dGm.g = ST T and Gym = PG = SmTlgm

Letting 2m — 1 = n then for every odd n € N gives,

= %ﬁ an == w-wm-—w*l
Gn = 2\/5(\/3)“ daﬂ.{.l == 2-\/5(‘/6)?3 (31-28)
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Now as,

i 1
Gd(aﬂ:alaal) wE g 25&0 i »»2~ e 2(2) —
Also as,

As picard sequence {an} satisfies oll the conditions of Banach fived point theorem 31 as in

example 32, then If n — 00 s0 a, 5 B t.€ a, = 4. Then
Galon, @, ﬁ) = 30y

As prior error estimate is given by,

5?’3-
1-¢
5 3.,

3v3 _ 3v6

VS < (R

527 B
0.73484692283495 < (1.46969384566991)"

Gd(a'n:as a) =< Gd(ﬂe,ﬂll,ﬂl)

da, <

1n(0.73484692283495)
In{1.46069384566991)

—0.8002076 < n

This shows that for odd integers n > 1, picard sequence becomes convergent, i.e. for n =3

relation (3.1.28) becomes,

S N S WY
PTOEST a T TR
a3 = 0.04166666666667 and aq = 0.01388888888889

Also forn = 5,
oo L v 11
5 = 25%8'35;2 = 144 R S 25;3.35-? - 439

as = (.00694444444444 and ag = 0.0028148148481
Hence it is clear,

5(ag) ~ olas) ~ ag ~ 0.0023148148481

p{0.00694444444444) =~ §{0.0023148148481}) = 0.00000000005414
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This suggests, when odd integer n > 1 goes on increasing, picard sequence moves towards

common fized point of § and ¢ which s G=0¢€ [0,1], i.e, @0 =80 =0,
Remark 37 Above results not only helds for dominated mapping but also holds for domi-

noting mappings.

3.2 Kannan Comwmnon Fixed Point Result

Theorem 38 Suppose {X;<;G) be a symmetric and ordered complete G — metric like
space and L, ¥ : X — X are any two dominated mappings and ag, a, b,c € X, r > 0.

Suppose that 3 § € [0, 3) such that the following conditions holds

Ga(00, b, %c) < 8Gala, Na,Da) + Gylb, Tb, Tb)

+Gyle, ¥e, ¥e) (8.2.1)
V comparabe elements a,b,¢ € Belas,r) @ X
Gd(a‘f}? ay, al) = Gd(aﬁs Qﬂe: Qaﬂ) < (1 - '}')?‘ (3'2'2)

where v = 255, If for non-increasing sequence {a,} in Bglao,r), {an} — v then 3 a

unique o* € Bglag, v} such that Gele*,a*,a") = 0 and Qa* = ¥a* = a*.

Proof. With initially choosen guess ap € Bglag,r) € X, and consider picard sequence
{an} such that

agn+1 = ag,) and aspis = ¥{eon41) (3.2.3)

Az 2 and ¥ are dominated mappings then,
..... n Syt SO S SagSas<ay S ap
As from reiation,

Gd(aﬁs 61,0}1} = Gd(ae: Qa(}} Qa‘ﬂ) < (I - ’T)"

Gd(a(}yaisg‘i) ﬁ i
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Hence a1 € Bglag, r). Now consider the relation,

Galar,az,a3) = Ga(Qag, ¥ay, Vay)

Gylay,an,02) < 6[G4{ag, Nag, Qag) + 2G (a1, ¥ay, ¥ay )]

Galay, a2, a2) € 6G4{ag, a1, 1) + 20Gq(ay, az, az)

Gyla1,ag,a9) £ Galag, a1,01)

1 — 28
Galay, ag, a9} < vGalae, a1,01)

For as € X, consider

Gylag, a2,02) < Gylan, a1,41) + Galar, az, a2}

Galag,a3,00) < (1 +v7)Galas,a1,01)

Galag,02.08) < 1+ {1 —v)r, -~ From (3.2.2}

Gdlag,az,02) < (1=

Galag,a,02) < 7
Hence ag € Bglag, 7). Again consider the relation,
Galaz, 03, a3) = Ga(¥ay, Qay, Qag)
As G-metric is symmetric then

(;d(a% ag, 33) = Gd(gafl} ‘I’al, ‘I‘&})
Gylag,as,a3) < Q{Gd(az, Qag, Qag) + 2Galay, Pay, ‘?a;)}
Galag, a3, a3) < 0G4{az, a3, a3) + 20Gq4{a1, ag, ag)

(1 - 8)Gylaz, as, a3) < 26G4(az, a2, 02)
58 2¢ 58

Galaz, a3,03) < (7755) Galag, ar 1), =8 = =2

Now for ag € X consider

Galag, a3, a3) < Galao, a1, a1) + Galay, ag, ag) + Galag, a3, a3)
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Galag, az,a3) S (147 +7%)Galao, a1, 01)
Gylao,a3,a3) < {14+ +4{(1—)r, *+ From (3.2.2)
Galag, a3,a3) < (1 —4%)r
Galag, a3,a3) S 7

Therefore a3 € Bg(ap, r). Now let ag, a5, a; € Bg{ag, ), then following relation holds

a’S‘I
26
1—-26

Galaj-1,85,0;) < ( ¥ *Galap, a1,01) (8.2.5)

By mathematical induction for 5 4+ 1 € N let,
Galaj, @41, 0541) < GalQaj-1, Paj, ¥ay)
Galaj, 0441,0541) < 0G4laj-1, aj-1,Qa;..1) + 2Gd(aj, Yaj, ‘I‘aj)}
Galaj, 841, a541) < 0G4laj-1, a;5,0;) + 20Ga{aj, @541, 8541)

(1=~ 20)Gale;, 6541, 541)

(1 = QQ)Gd(Gj, aj_},z, aj,m) < 59Gd(ajm3, (Lj, Gj)

IA

6Gglaj—1,64,05) < 50Gq4(a;.1,a5,8;), because 6 < 56

56
Gala, 0541, 8541) S (mg)ad(&jwhaj:aj)

50 56

Galaj, a1, a541) < (W)(Imze)‘f“z@d(aﬂa“hai):

59
T5g) Galao, a1, 1)

Gala;, 0541, @541) S (
Galaj, aj41,8541) < ¥ Galag, a1, a1)

Similarly by rectangular property of G — metric like spaces, consider for aj41 € X
Galao, a541,8541) € Galag, a1, 01) + Galay, ag,a2) + ... + Galay, 6541, 8542)
Galep, 0541, 0541} S (1 + v+ A Gylag, a1, a1)
Galao, aj41,0541) S (1=+")r
Galag, aji1,0541) < 7
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Hence aj.; € Ba{ag,r), for j +1 € N. Hence V n € N, @, € Bg{ao, 7). Now to check that

the sequence {a,} C Bglag, 7} is Cauchy sequence consider m, n € Z and m > n such that,

Gd(a'ﬂ? Gryy a’m) < Gd(a'rn Gty a‘n+1) "+ G,;{(G“.y;, Gy 2y aﬂ.~‘r2)

Ao + Gal@mt, Gy G}

Gd(%,am,ﬁ-m} 5 (’Yﬂ + 7?’”’2 F e + '}’mwz)Gd(a@!al:al)

Giltn, tm,am) < YL +7+7 4 e + ¥ NG i{ap, a1, 01)

i-— 1 1
X )Gulao, a1, 01) (3.2.6)

Gd(anxam:am} < ,},ﬂ( 1_»}‘

Y3

Galan, am; am) < 1—7:?64(&9, a1,a1)
Now if n ~ 00, then ¥* ~ 0 because € [0, 1).
Galtn, Gm, Cm) — 0, a8 n —s 0
Hence {a,} G Beolag, v} is Canchy sequence. Therefore 3 a point 2* € w such that
ﬂé@f&(}’d(ama‘,a*) o= n%rgg@g(a*,am an) =0

Therefore a* € Be{ag, ) is limit point of the sequence {a,} C Bg(ao,r). Now to show ¢* €
Be{ag, r) is common fixed point of dominted mappings {2 and ¥, Consider for dominated
mapping §I,

Gd(a*) Qa*a QG‘) < Gd(ﬂ-* » G2n, a?ﬁ) + Gd(az‘n; Qﬂ'*a ﬁa*)

Gala*, Qa*, Qa*) < Gula*, azn, a2n) + Ga(Wagy..1,$2a", 82a™)

Gd(a**; Qa*, Qa*) =< Gd(@*1 a2n, af‘)::;) + Gd(ﬂa*, $Yagn-1, ‘I’ﬂznwl)
Gala*, Qa*, Qa*) < Gula*, agn, a2n) + 6[Gala*, (a*, Qa*)

+2Gq(aan-1, Yagn-1, Yagn-1)]

Ga{a*, ", Qa") < Gale”, agm, ag,) + 8Gy{a™, Qa*, Qa™)

+26G 4(agn-1, 02n, 0on)
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(Z - Q)Gd(a’* s QG*, Q&*) = Gd(ata Q2n. 61-213) + 26Gd(a2n—2 4 &*) G*)

+20Gq(a”, agn, agn)

(1 “ Q)Gd(a*s Qa‘: 'Qa") < (1 + 29)0{,{(&*; Any a?’n) + ngd(GQR«wiya*: G*)

As a* € Belag, ) is limit point of the Cauchy sequnce {a,} C Bealag, 7} as n —— 00, 50
Lim Gala*, agn, ton) = 0= LimG4lazn..1, 0%, a%)
T £ T e 00

So the relation becomes

(1-8)Gy(a®, 020", Qa*) < 040
(1~ 8)Gula*, Qa*,0a*) < 0

Gala*,Qa*,Qa*) < 0
As Gyla*,$la*, Q2a*} £ 0, so the only possibility left is

Gala*, Qa*,0a*) =0
By symmetric condtion of G -~ metric space

Gala®, e, Q™) = GuiQa*,a*, 0"} =0

Na* = g

Therefore a* € Be{ag, r) is fixed point of dominated mapping £2: X ~— X. Now for second

dominsted mapping ¥,

G{g(&*, ‘Z’(E*, ‘Z!a*} S. Gd{a*s Q21 323'1“1) 3 Gd(a2n—1; ‘I’G*, ‘I’G*)

Gyla*, ¥a®, ¥a*)

[Fa

G4(a*, an-1,02n-1) + Ga{Qagn2, ¥a*, ¥a*)
Gala®, Wa*, ¥a*) < Gale®, amme1,02m-1) + 61Ga{00n-2, Q0202, Qagn-2)

+2Gg{a”, ¥a*, Va*)]

Gala®, ¥a*, ¥a*) < Gula®, a1, 00n-1) + 8Galagn—2 S2aon-2, (2a2n-2)

+26G4(a”, ¥a*, ¥a*)

39



(1 - 20)Gq4la®, ¥a*, ¥a*) < Gyla*,aan-1,02m-1) + 6Ga(09n-2,02n-1, G201}
(1~ 20)G4(a*, ¥a", ¥a*) < Gala®, agn-1, Gon-1) + 9G¢(a2nm2'a*, a*)

“}*BGd(a* ) Q2ne1, @n—1)

{Z - QQ}Gd(a*, ¥a’, ‘Ila,*) < (1 + G}Gd{a@nwl: a*, 3*) + 80(1(“2?1“2,“*: a*)

As a* € Bglap,r) is limit point of the Cauchy sequnce {an} C Bglag,r) as n — 00, s0
Lim Gylogn-1,0",a%) = 0 = Lim Gelagn—o,e",a")
Fe—d D0 Ttk 0

So the relation becomes

{1 = 20)Gq{a*, ¥a*, ¥a*)

IA
o

Gya*, ¥a*, Wa*) < 0
As Gyla®, ¥a*, ¥a*) £ 0 so the only possibility left is,
Gala*, ¥a*, ¥a") = 0
By symmetric condtion of G — metric spaces,

Gala*, ¥a*, ¥a") = Gg{¥a*,¢",d") =10

va* = @
Hence a* € Bg({ag, ) is fixed point of dominated mapping ¥ : X = X. As
a* = ¥a" = a*

Therefore &* € Bglag,r) is common fixed point of dominated mapping ¥,0 : X ~— X,
Now to prove uniqueness of common fixed point o* € W For this let us take
ancther common fixed point ¥ € w of dominated mapping ¥,§2 : X -~ X such
that a* # b*. Then there arises two cases for a*, b* € Bg{ag,7). In first case let a* and
b* are comparable, that is either a* < & or b* < ¢*. As ¢® and " are common fixed point

of dominated mappings ¥ and {2 then,
Va* = q*, Qa* =a*, ¥b* = b Q" ="
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Now consider the relation,

Gd(af: 6*1

Gd(at: b*a

B = GalQa®, U, Ub)

B < 6{Gala",Qa*, Qa") + 2G4(b*, Wb, W)}

Gala*,b°,5%) < BG4la*,a*,a") + 20Ga(b*,b*,b%)

Gale™, 0%, 6") < 0

As by definition of G — metric space, G4{a*, 5, %) £ 0, then only possibility left is,

Gala™, 0", 0"} =10

As G — metric space is symmetric then,

Cat*,b,6") = Gala,b",5") =0

at = b

1t is contradiction (' " 3 b*}. So our suposition is wrong. Hence a* € Bg{ag, ) is unique

when a® and §* are comparable. For second case when o* and * are not comparable then

3% € Beglag,r) such that & < o* and & < b*, then & is lower bound of both ¢* and &".

Now consider a picard sequnce {&;} such that,

Eak1 = W7 and &g = &3

Asg ¥ and 0 are dominated mappings then,

It givesV k€ N U {0},

So,

Gk = Q1 S Gp-1 = Vi3 & T2

A

a* and & < b*

in

Va*, & < Qa*, & < Ub", 7 < Qb*
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Now 0 check picard sequence {8z} I8 in closed ball Bg{ag,r) consider the relation,

Gd, ({‘{3 1 EZ: ?:T) = Gd(ga{)} WESJ WF&)
Gd(&l,&?} EI) ..<.. Q{Gd{ﬁl}; Qa’ﬂ: Qa‘ﬁ) + ZGd(Z‘.E} ‘I"{E, ‘I’C)}

Gd(ai ¥ E?: aI) ..<.. QGd(a{;, ai., 52) 3 29Gd(2‘6$ E{'} C)

Gd(all -C_f: C_l) < f?Gd(“O; a1, a’l) + 29@(1(@& &g, ae)

+20G 4(ag, a1, a1} + 26G4ay, 1, )

(1~ 26)G4(a1, 8,80 < 30Ga(ae, 1,01} + 260G a(en, %, )

(1-~26)G4la;, 51,77} < 36(1 ~y)r + 20r = 567

LY
<
-1 —-28
Gylar 61} <

Gd(ais}?{x E{) r

Now let,

Gd(@oﬁ?,é—l) g Gd(“rh aj, G’l) + Gd(afz }E?: Ef)
Gyglap. T, &) £ (Q=7)r+9r

Galae,1,%) < r
Hence 71 € Bg{ap, 7). Again consider the relation,

Galog, 3, 6) = Ga(Wa1, 00,080

Gd(“%&}ﬁi) = Gd(g-éf,‘l‘ﬂ.z,‘}:’&z)

IA

Gylaz, 85, 5) G{GalTT, 061, 05} + 2Ga(ay, Yay, Tay )}

A

Galag, 03, 0) £ 0G4(81,33,85) + 20Gq{ay, ag, a2)

Gal02,63,83) < 0G4E, a1,6;) +0G4lar, a3, a9)

”‘!‘“96‘!(3.(@2 s €3, 33) -+ 23@&(“1 y B2y 0’2}
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(1 - Q)Gd(aﬁancni} C_2~) < 39@,_{(&1,&2,&2) + QGd(Gl, <y, ‘6_1)

56
(1 " Q)Gd(G‘Z!Zﬁv E) S 39( )Gd{aﬂa fll,a]) + 6. ( )?‘
— 28 28
1 0)Gula2, 53 < (T + (G )1 = e
567 1562 58
56 s 1 1
Gylag, 5,5 < ( 29) ;2080 < 256 and T2 < . 29

Gd(af‘b T4, ?5) < 727'
Now let,

Gd(a{}: 0_2962-) ...<..« Gd(a-(},al,&}) + Gd(alsa% 32) - Gd(aﬂzf ?':"2“&“&5)

Gd(aﬂ!%s EE) < {1 - '7)? + 7Gd(aﬂs i, al) + ’er

Gila,%3,8) < r—yr+y(1—y)r+~%r

Gd(“(h?f?"a EE) < r—ar4yr - ":{21" o 727-

A

Gd {aﬁr ?5: E’E} r

Hence & € Bglap,r). Now let ¢3,8, 85, ..., &7 € Bg(ao,r) for some j € N. Then following
relation holds,

Yr (3.2.7)

Then by mathematical induction consider for even 7+ 1€ N,
Gd(aj—klaném: E;;Z} = Gd(QajI ‘I’?;': ‘1’65)

Galoj+1, 571, Ge1) < 0{Galay, Qa;,Qay) + 2G4(c7, ¥, ¥E)}

Galj1, TR, G S 0Ga(as, 6541, 0541) + 260G4(%5, €31, 55r1)
Galoj1, G71, 65T S 0Ga(64, 6441, 0501) + 20G4(E, 05, 0;)

+20G 4(aj, aj41, 0541} + 206G (441, T3T, 5T1)

(1 - 28)Galaz1, G541, G51) € 30Gq{as, aj1, aj41) + 20Ga(55, a4, a5)
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o 50 . 56
(1 —20)Galaj1, 651, 6501) < 3’9(1 - QQ)JT + 29(1 o 29)%
. 50 .
{1-20)Galaj41, 541, G71) < 59(1 . 29)3?‘
56 56

Galaj41, 551, Gr1) S a- 29)(1 - 29}%

T e 56
Galaj1, GFILEHD) S (g™

Galaj1, i omn) € yithr
Now let by rectangular property of G — metric spaces,

Galao, 571, 641) < Galao, a1, 1) + Galay, ey, a2) + ... + Galaj, aj41,0541)

+Gal841, i1, GiT)

Gal00, 5T, G50 € (L4747 + . +¥)Galao, a1, 1) + ¥ Fir

1 — i )
T

Galao, G, 1) <

Galeo,G71,571) < (L= r 447

Galao, &1, G < r

Henceé}ﬁew. Therefore V k & N,“é;;em. Nowas g <o and JH < bt
then % < 45 < o* and 7 < & < b*. So clearly,
< a* =0, & < 6" = T, & <8 = b and 6 < B o= P (3.2.8)
AsY k€ N, (e = ¥"a¢* = a” and §I"6* = ¥™b* = b*. Then consider from (3.2.8),
Gala™, ", b6") = Gg{a™, ¥"b", ")
Gala™ b, 0") < 6(Gy(a’, %", Q") + 2G{b", ¥76", ¥75*))
Gala®, 0", 0%) < 8(0+90)

Gala*,0",8") < 0

As by definition of G — metric space, G4la*,b*,b*} £ 0, then only possibility left is,

Gala", b*,b*) =0
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As (G — melric space is symmetric then,

Galb* 8", a") = Gula”, b, 5) =10

a* o bt

1t is contradiction ("' a* % b*). So our supposition is wrong. Hence common fixed point
is unique. Jo if ¢ and b* are not comparable then common fixed point is unigue. Hence

Kannan common fixed point for double self dominated mappings is unique. =

Example 39 If for a set X = [0,0), a mapping Gg : X X X X X = X, ¥V a,bc € X
defined by,
Gala,b,c) ma+b+c (3.2.9)

then (X; <; G) is symmetric and complete G — metric like space. Let mappings O, ¥ 1+ X s
X are defined by,

0 = ¢ fac|01]

a3 ifa€(l,00)

Ya = & fac(0,1]
a+3% ifae(l,o0)

Obviously Q0 and ¥ are dominated mappings inside of 0,1} but not dominated outside of

[0,1]. Let ag = § and r = § such that Bglag,r) = [0,1]. Also let § = L € [0, 1), such that

ym%m%SOtﬁgﬂﬁ

5.7
1=y = (1“*3*)*3“
(1—mr = % (3.2.10)
Also as,
Gylag, a1,01) = E-1-2(«1--) *+ From (3.2.9)
d\ 8o, 81, 1 —:21 a7l o
Galao,a1,a1) = o (8.2.11)
From {3.210) and (3.2.11),
no_ 7
2t 7 8

Galag,a,a1) S (-7
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Now to check that contractive condition is locally satisfied on Bglao,v) = 10,1} but not

satisfled outside of Bolao,r) = [0,1]. IfVa,b ¢ € [0,1] then,

a b ¢
Gd(Q&, ‘-Ifb, ‘I‘C} s Gd(“é, {6, 'i*ﬁ)
CalQa, Wb, W0) = S4 oyl
ANHELTE O 5710710
Gu(Qa, Ub, Ue) = 59%9%@»9—6
Ga{Qa, ¥b,¥e) = é(a+b+c)w§5(b+c) (5.2.12)

Also as,

6{Ga(a, Qa, Qa) + Gylb, Ub, Ub) + Gylc, ¥e, ¥e)} =

< [ ¥
+Gd(¢> 'i"b"s 1“6)

8{G4la,$la, Qa) + Ga(b, ¥b, Ub) + Gqlc, ¥e, ¥e)} = »i%{a e 2% +5

b ¢
HE ~§~c+2~i§}

6{C4la,Qa,Na) + Galb, ¥b, ¥b} + Gulc, ¥, Te)} = é—%(a + b4 c)

-t

bt (8213

AsY a,b,c€ [0,1] dearly from {3.2.12) and (3.2.13),

1

450(27 4 ¢}

(a4b+c) < é%(a%«b%c) and -%(b»%c)sM

E=

1
450

Ga(Qla, ¥, Ve) < 6]Gy(a, Qa, Qa) + Gy(b, ¥, Tb) + Gyle, ¥e, Vo)

1 1 11
Bl _— < 22 —
9(a~i~b+c) 98(b+c)m90{a+b+c) {5+ c)

Hence contractive condition is satisfied on the closed ball [0,1]. Now for a,b,c € {1,00),

Ga(Qa, b, V) = Gyla + E,b-i- ! e+ ! }
5 7 7
17
Ga(Qa, ¥b,¥c) = {a+b+c) + 35 {3.2.14)
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Also as,

9{G ala, o, ) + Ga(b, Ub, ¥b) + Calc, Ve, ¥)} = ~1%{(a +b+o)
+2(a + b

+%e}}

6{G4(a,a,0a) + Gy(b, ¥b, b} + Gylc, ¥e, )} = %6{(& + b ¢}
+2{a + % + b

1

*5

et 2))

8{G4la,la, Na) + Gu{b, ¥, ¥b) + G4lc, e, ¥e}} == —1%(0, +b+¢)

T (8.8.15)
As clearly from {3.2.14) and (3.2.15),

173 17
(a+b+c)+§ga fﬁ(a+b+c)+ﬁg

Ga(Qa, ¥b, ¥c) > 0{G4(a,la,la) + Galb, ¥b, ¥b) + Gylc, ¥e, Tej}

Hence contractive condition is not satisfied outside of the closed ball {0,1]. It shows that
all conditions of Banach fized point theorem for double domineted mappings. Moreover

8 € {0,1] common fiz point of mappings ¥ and 1, i.e p0 = 80 == 0.

Corollary 40 Suppose (X;<;G) be a symmetric and ordered complete G — metric like
space and 3, ¥ : X - X are any two dominated mappings and ay, a,b,e € X, r > {,
Suppose that 3 6 € [0, §) such that the following conditions holds
Ga(Qa, b, e} < 0]Gyla, Qa,a) + Galb, Ob, )
+Gq(e, e, Sc)] (8.2.16)
Y comparabe elements a,b,¢ € Baleg, 7} € X
Galag, a1, 1) = Gglag, Nan, Qag) < {1 —)r (3.2.17)

Where «v o= I—E%@. If for non-increasing sequence {an} in Bg(ag,7), {an} = v then 3 a

unigue o* € Balag, r) such that Ggla®,a*,0%) =0 and Qa* = ¥a* = o*.
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Proof. In the main result Kannan common fixed point of dominated mappings take
¥ == {7 to get unique fixed point 2a* = a*. ™
Proof of the following corollary is similar o the proof of Theoremn 38 but without

discussing the ordered property of ¢ — metric like spaces.

Corollary 41 Suppoese (X;<;G) be a symmetric and complete G — metric like space and
,%: X — X are any two dominated mappings and ag, @, b,c € X, r > (. Suppose that 3

#el0, «1.;;) such that the following conditions holds

Ga(Qa, b, V) < OGy{a,Na,Qa) + Gy(b, Tb, Tb)

+G e, e, o) (3.2.18)
Y comparabe elements a,b, ¢ € Bglag,r) & X

Galag, 61,01} = Galap, Nag, Qag) < {1 —)r {3.2.19}
where y = }»%%«g. If for non-increasing sequence {an} in m, {an} = v then 3 a
unique a* € Belap, r) such that Ga{e®,a*,a*) =0 and Qo™ = ¥g* =a”,
3.2.1 Error Bounds
In this section errors approximations and their related example are discused.
Corollary 42 From Theorem 38, iterative sequence (3.2.3), with arbitrary ag € W <
X, converges to unigue common fized point a* of dominated mappings O and ¥, Error es-

timates are the prior estimaie

Galan,a*,a") < ;’_ de(ag, ax,a;s) (3.2.20)

and the posterior estimaite

Galan,a",0) < 7 j’?Gd(an_.z,an, an) (3.2.21)

Proof. As from relation (3.2.6) of Theorem 38,

,7?’!?. ¥

1 -
Gd(an} Gy am) < f}(n(_"i“";_’y"“)gd(aﬁa alsal)
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As the sequence {an} is convergent t0 a* € Bglag,r) € X, then by taking m — 00 gives

e — a* and v — (. Therefore above relation leads to the prior estimate, t.¢,

ki3

Gd(am a"‘,a*) <

< 3= ,YGd(aa?Gz,al)

Setting n = 1 and write by for ag and b, for 4 in {3.2.20)

i
-
Letting by = a,..1 then by = ¥hy = ¥a,.; = a, in above relation leads to the posterior

Gd(bi y a*ya*) <

Galby, by, b1)

estimate (3.2.21}, i.e,

5

Gd(ama*,a*) < 1 — v

Gd(anwis LT aﬂ)

The prior error bound (3.2.20} can be used at the beginning of the calculation for
estimating the required number of steps to obtain a assumed accuracy. While posterior
error bound {3.2.21) can be used at intermediate stages or at the end of the calculation.

Posterior error bound {3.2.21) is at least as accurate as prior error bound (3.2.20).

Example 43 If for a set X = [0,00), ¢ mapping Gg: X x X X X ~— X thenV a,bc€ X
defined by,

Gala,b,c) == a4 b+ ¢, {3.2.22)
then {X; <; ) is symmetric and complete G —metric like space. Let mappings Q¥ : X
X are defined by,

¢ facloi

fla =
a-f—% ifa & (1,00)
& fae D1
Yo = % a0

a - }f ifa € (1,00)
Obviously Q and ¥ are dominated mappings inside of [0,1}] but not dominated outside of
(0,1]. Let ag = § and r = I such that Bglag,r) = [0,1]. Also let 6 = - € [0, }), such that

e ff-% = g, Construct the picard iterative sequence by taking ag = % as initial guess as,

g a9
agm-1 = Qagm.q = gm jom—1 and agm = Wagm..1 = 9™ 10m
a9 49
“amet = g el O %m = g o
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Let 2m — 1 = n then for odd n € N,

k2 e and Gng] = = {3.2.23)

T gt 1p7E gn+1.10%
Now as,

Giltn,a%, ") = ap + 2a%, . From (3.2.22)

As picard sequence {a,} satisfies all the conditions of Kannan fixed point theorem 38 as in

ezample 39, then If n — 00 30 Gn — a* i.€ an ~ a*. Then
Gylan, *, ¢} = 3ay, (3.2.24)
Alse as,

Galag,a;,a1) = Galag,Nag, Qag) = ag + 2ag
1 11 2 11

Gylap,a1,03) = 3 +2Q§ e -?;-g-wﬁ - T,

And finelly as,

n
7 Galag,a1,a1)

1_

1 885
e n_
() 27 818

Galan,a”,a")

iA

A

dan =V, - From (3.2.24)

2.76136364a, < (0.625)"

2.76136364
L 2O < (0.625)", -+ From (3.2.23
3n+2_(\/f6)nwi — ( ) m{ )
27613636410 _ < (0:625)"
93" (VIO ~

0.97024428337 < (0.626 x 3 x VI0)" = (5.92927061282)"

In(0.97024428337) _
In(5.92927061282)

~0.01697138176 < n

Asn € N is odd and —0.01697139176 < n then forn=1, 3, 5,...... picard sequence starts

converging to ifs limit point i.e a* =0 € [0, 1] such that let forn =3,

i
4= P (Vi) and agy; = 3342, (y/10)3+1
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1 1
w5 e (). d 6 w5 < 2 ),
a3 = x5y 0.00041152263 and a4 R 0.000041152263
Again let forn =35,
IS S S 1
as = 5+2 (/10751 GG G54y = 35+2.(,/10)5+
1 1
a5 = Sy 0.00000457247, and ag = I .000000457247

Thus,
as = Wag and ag = ag
6.000041152263 == ¥{0.00041152263) and 0.00000457247 = 0{0.000041152263)

Hence common fized point approzimation és,
£2(0.000041152263) =~ {0.00041152263) ~ 0.00000457247

Finally when n — 00 then,

Q0)=%(0)=0

Remark 44 Above results not only holds for dominated mapping but also holds for domi-

nating mappings.

3.3 Chatterjea Common Fized Point Result

Theorem 45 Suppose (X;<;G) be a symmetric and ordered complete G-metric like space

and T,A : X — X are any two dominated mappings and ag, a, b,c € X, v > 0. Suppose

that 3 o € [0, §) such that the following conditions holds

Gi{Ta, Ab,Ac) < olGala, Ab, Ab) + Gala, Ac, He)

+G4(b,Ta,Ta) + Galb, Ac, Ac)

+ + Gyle, a, Ta) + Gale, Ab, Ab}] {8.9.1}
Y comparabe elements a,b,c € Bglap,r) € X

Galag, a1,a1) = Gglag, Tag,Tag) < {1 — i (3.3.2)

where pt = 11‘}; —. If for non-increasing sequence {a,} in Bglao,7), {an} ~+ v then I a point

a* € Belag, r) such that I'a* = Aa* = o* and moreover Gg{a*,a*,a*) = 0.
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Proof. With initially choosen guess a9 € Bg(ag,r) € X, consider picard sequence

Yrne N,
agn-1 = I'agn-2) and az, = Alagn-1) (33.3)

As T and A are dominated mappings then,

Oy S Opei S Gl S orene Cagfay<a <ap

.....

We know that,
Galag,a1,a1) = Ggleg,Tag,Tap) < {1 — w)r, From {3.3.2)
Galao,a1,81) < 7

Clearly oy & Balag, r). Now concider the relation
Gylay,a9,a2) = Ge{lag, Ay, Hay)

Galay,az,a2) < ol2G4(a0, Aay, Aay) + 2G4{ay, Tag, Tap)

+2G4las, Hay, Aeayp], From {3.3.1)

Galai,ag,a2) < o{2G4lap, ag, a2) + 2Gqlay, a5, 41)

+2G 4{ay, ag, a2)]

Galay,a,92) < 20Gg(a0,01,61) + 20Ga(ay, a9, a2) + 2(0)

“’f‘zﬂ'Gd(ai > @2y ‘12)

A

20Gd(aﬂ} a1, 0..1)

2o
- 40

{1 — 40)G4{a1,az,02)

Galan, ay,a1)

Galo1,ag9,82) < T

Gd(al} @3, &Q) ....<.. 4o Gd{aﬁa &1, 32); 20 5 4o
14
Galay, a,a2) < pGalap, a1, 01} (3.3.4)

For a3 € X, consider by rectangular property,

Galao, 02, 02) < Gglag, ax,a1) + Galar, az, az)

52




Galao, a2, a2) < (1 + )Galag, a1, a1)

Galag, az,02) < (1+ p)(1 — p)r, From (3.3.2)
Galag,a9,03) < (1—p)r
Gd(a{h @, 02} < 7
Hence ay € Bg(ag, r). Again consider the relation,

Galaz, a3, a3) = Ga(Da1,Tag, Tag) = Gg(Tag, Aay, Aay)

Galas,ag,03) < 0[2Ga(ag, Aay, Aay) + 2G4{o1,T'ap, T'ay)

+2G{ay, Aay, Aay )}, From (3.3.1)

Galag,a3,a3) < 20Gg{as, a9, a3) + 20G4{ay, ag, ag)

+2JGd (al 2+ 22y G'z)

Galag,as,a3) < 20(0) + 20G4{a1, 09, a3) + 20G4{az, a3, a3)

+20Gylay, ez, az)

(1~ 20)Gy(ag, 63, a3) < 40Gy{ay, a2, a2)

4o
Galas, as,a3) < - zo,uG’d(ag, a1,61), From (3.3.4)
4 1 1
< ..
Gd(&z,&;;, 33) = 1 40#04((193313&1)3 i Py g T — 4o

Gd(a2=a3sa3} < ﬂ2Gd(a0)aia al)
Now for ag € X consider
Galag, a3, a3) < Gylao, a1, 1) + Galar, ag, az) + Gylaz, a3, ag)
Galay,a3,03) < (L+ g+ p)Galao, a1, 1)
Galag,03,03) < (1+p+p")(1—~p)r, - From (3.3.2)
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Galag,a3,a8) < (1—pP)r
Gelag,az,03) < v
Therefore a3 € Bg(ag,r). Now let ag a5, ... a; € Bglag,r), then foloowing relation holds
forje N,
Gd(aj“z,aj,aj) < uj”zGd(ag,al,a;) {3.3.6)

By mathematical induction for §+1 € N, and let 7 € N is odd then,

Galay, @541, 2541} € Ga(Taj1, Ay, Aay)

Gala;, 6541, a.j.4.z) < 5{2@@(&:’“1 » Datg, Aaj} + ZGd(aj , Oag, Daj)

"‘}*2Gd(0} s ?aj“} 3 Paj“l)}

Gd(aj, gl aj+1) S ZO”Gd(ajw;, Git iy aj“;,ﬂ + ZO'Gd{aj, Gigty aj+;)

‘f-ZO‘Gd(Gj, G, a_:;}

Galay, ejat,a541) S 20G4{aj-1,65,05) + 20Ga{a;, 6541, a541)
+20G¢(aj, Gj41s aj_;.z) + 20{0}
(1 — 40)Galaj, @541, 8541) < 20Gq{a;-1,a5,a;)
20
Galaj, ajp1,a541) < mad(ajwhaj;ﬁj}

do
i M%Gd(ajwl,aj,aj), 20 < 4o

Galag, 041, 8501) S

Galaj,aj41,0541) < pp ' Gafao, 61,a1), From (3.3.6)
Galaj,ai41,0541) < 1 Galan, a1,01) (33.7)
Similarly by rectangular property of G — metric space consider for a;41 € X
Galan, a5, 05) < Galag, ay,a1) + Galar, a9,02) + .ooes + Ga(ay, 6541, 6541)

Ga(a0,05,05) S (14 p+ p + oo + p¥)Golag, a1, 01)
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Galao, aj,05) < (14 4 2+ e+ 7)1 = i, - From (3.3.2)

Galao, a5 a;) < {1—pH)r

Gd(ae,aj,aj} < r

Hence a;41 € Bglap,r), for j+ 1€ N. Hence Vn € N, a, € Bg{ag, ). Now we check that
the sequence {a,} C Bglap,r} is Cauchy sequence. For this we consider m, n € Z and

e > n such that,

Gd(am Gy am) = Gd(am Gind1, an»i»l} + Gd(an+1: Gpi2,y an+2)

v+ G 0mes, Bt Gmt) + GalGmen1, G, G )

Gilans Gm, am) S pH + 4 12 + o+ ™ DG glan, a1, a1)

#m"‘“ﬂ

1—
Galan, am; am) S p*{(————)Gqlag, a1, 01) (3.3.8)
1—p

u
1 -

Galtn, Gm, am) < #Gd(&o,alam)

Now if 1 ~— 00, then g™ — 0 because g € [0, 1),
Galan, Gm, Gm) — 0, 88 1~ 00
Hence {a,} € Bglag, 7} is Cauchy sequence. Therefore 3 a point a* € Bglag, ) such that
nl_ia;ﬂ;,oGd(an,a*,a*) e n&ifgo{}‘d{a‘,aman) =0

Therefore o* € Bglag, r) is limit point of the sequace {a,} C Bg{ag,r}. Now to show a* €
Be{ap, v} is common fixed peint of dominted mappings I' and A, Consider for dominated
mapping T,

Gyla*,Te*, Ta*) < Gyla®, agm, 02n) + Galagn, la*, T'a*)

Gala®, Ta",Ta") < Gala®, agn, agn) + Ga(Ta*, Aagn1, Aagn_1)

Gal{e®, Ta*, Ta*) < Gyla®, a9n, 890) + 0[2G(a™, Dagn-i1, Dagn.1)

+2Ga{agn-1,1'a*, T'a") + 2G4{agn—1, Dogn-1, Aagn-1)]
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Gala*, Ta*, Ta™) < Gula*, agm, a2:) + 20Ga{a”, agn, agn}

+20Glagn-1,Ta*,1'a*) + 20G4{02n-1, 02n, 92n)

Gala*, Ta* Ta*) < Gula®, aom, am) + 20G4(a*, agn, an)

Gala*,Ta*\T'a*) < Gala*,agn, agn) + 20G4la*, agn, a2n) + 20G4lagn—1,6%,a%)
+20G4la*, Ta*, Ta") + 20G4lan-1, 0", ")
+20Gg{a*, agn, Ggn)
{1 - 20)G4({a*,Ta*,Ta*) < 506G 4(a*, agn, agn} + 40G4lagn..1,a",a*)
{1 —20)G4le’, Ta",Ta*) <0, When n ~— 0
Gyla*,Ta*,Ta*} <0, Whenn —r o00. {1 —20)#0
As Ggla*,Ta*,Ta*) £ 0 then the only possibility left is,
Gyla*, Ta* \ I¢*} =0
Also as G — meiric space is symmetric then,
Gy{Ta”,a*,a*) = Ggf{a*,Ta*,T'a") =0
'e* = gq*
Hence ¢* € Bglag, 7} is fixed point of dominated mapping T' 1 X — X. Now consider for
dominated mapping A,
Galo™, a" Aa”) S Gyla®,a2n-1,820-1) + Galagn-1, Aa”, Aa®)

Ggla®, Aa* Aa*) < Gula®, agnei, ton-1) + Ga{lagn-2, Aa®, Aa®)

Gala*, Aa”, Aa*) < Gyla*, a2m-1,82n-1) + 012G 4(a2n-2, Aa”, Aa™)

+2G 4{a*, Tagn-2, Tagp2} + 2G4(a”, Aa”, Aa®)]

Gula*, Ad”, Ad™} < Gala*, 0941, 02n-1) + 206G 4{azn-2,6", 6%}
+20Gd(ﬁ* 5 Aa*a AG*) + 20Gd{a*! Gn—1s &27;...})

+20Gq{a*, Aa”, Aa™)
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(1 - 40')(;(1({1*, Aa*& '&a*} < (1 + 20)065(‘2‘*: i | >a2n—~1) 3 26Gd(a‘2n*—23a*}a*)

Gala*, Aa* Aa*y € Gy4la”, 6an-1, @n-1) + 206G 4{azn-2, Ad", Aa”)

+20G4{a*, @gn-1, @3n-1) + 20G4{a*, Ad”, Aa®)

{1 ~40)Ga(a*, Aa*,He*) < 0, Whenn -— o

Gala*, Aa*,Aa*) < 0, Whenn— o0, (1 ~4o}#0

As Gg{a*, Aa*, Aa*) £ 0 so the only possibility left is,

Gygla®, Aa*, Aad*) =0
Alzo as & — metric space Is symmetric then,

Ga(Aa*,a*,a") = Ggla*,Aa* Ad*} =0

Ag* = o

Hence a* € Belag, ) is fixed point of dominated mapping A : X — X. As
Fa" = Aa" =a"

Therefore o* € Bg(ag, 7) is common fixed point of dominated mapping I A : X — X. m

Example 46 If for a set X = [0,00), a mapping Gg : X X X x X ~ X,V a,bc & X
defined by,
Gala,b,ey =a+b+c {3.3.9)

then (X; <; G) is symmetric and complete G —metric like space. Let moppings I', & : X —
X are defined by,

o = ¢ faelll]
a+i ifae(l,x)
Aa = § facl0l]

a+é ifa € (1,00)
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Obviously T and A are dominated mappings on [0,1] but not dominated outside of 10,1l
Let ag = % and 7 = % such that Be(ag,r) = B(;(%,%) = {0,1]. Also let 0 = 115 € {O,%) and

p= 4 = % so to get,

4.9
a-or = 03]
—pir = (g)z
(1-mr = % (9.5.10)

Also as,

1 i
Gd{&ﬁ,ahag) = Z + zr(z)
Gylap, a,01) = g {3.3.11}

From {3.3.10) and {3.3.11},

3 .8
g 1

Galag,a1,01) < (1—pr

Now to check contractive condition is either satisfied or not on the closed ball [0, 1], let for

ab,c €0, i,
GuTa,Ab,A¢) = G225
d + ] i d 4{}} 81 g
Ga(La,Ab,Ac) = 54 =42 -+ From (3.3.9)
47878
GaTa, b, Ac) = é(a +bto) - —;»(b +¢) (3.3.12)

Also let R = 0[G4la, Ab, Ab)+Gyla, Ac, Ac)+Gy4(b, Ta, Ta)+Ga(b, Ac, Acy+Gale,Ta,T'a)+
Gale, Ab, Ab)} then,

RxE%[a_e2Ab+a+mc+b+2ra+b+mc+c+2rwc+mb}

1 a b ¢
Rm%[ﬁ(a+b+c)+4(z+§+§ ]

3 1
R= Eﬁ(a+b+c) - %(bﬁ-‘{:) (3313)
As elearly,

i 3 1 1
— L~ — JEp—
4(a+b+c)m 10(a+b+c) and 8(b+c)§ 20(?3»{»6)
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Then

;(a$b+c)—w(b+c)$~f5(a+b+c) 56+0)

Therefore from {3.3.12) and (3.3.13),
Ga{Ta, A, D) S R

Hence contractive condition is satisfied on the close ball [0,1]. Now for a,b,¢ € (1,0),

i 1

Gg{la, Ab,Ac) = Gd(a+1 b = ,C“i'*;?)

Gu(Ta, Ab Ac) = (a+b+c) + % (3.3.14)

Also as,

m gl2{a 4 b+ e+ 4{Ta + Ab 4+ Ac)]

R m-%p@+b+d+4@a+ah+Aﬂ

1 1
R= ;ﬂ%a+b+c}¥ﬁa+ ~+b+8

Rmiﬁ[ﬁ(a+b+6}+4(z+§+g)}

+c+éﬂ

R=3(a+bte)+ (3.3.15)

As clearly,

B hd
L

(a+b+¢) > g(a+b+c) and

Then

ot
o«

{a+b+c)+ w(a+b+c)+~§

2=

C:!

Hence from (3.3.14} and (3.3.15),
Gall'a,Ab,Ac) > R

Hence contractive condition is not satisfied on the close ball [0, 1]. It shows that all conditions
of Chatterjea common fix point theorem satisfied. Moreover O € [0,1] common fix point of
mappings T and A, i.e. Ab=T10=0.
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Corollary 47 Suppose (X; <G} be o symmelric and ordered complete G — melric like
space and T',A : X - X are any two dominated mappings and ag, @, b,c € X, r > (.
Suppose that 3 o € [0, %) such that,
Gy{la, Ab,Ac) < 0]Gyla, Ab,Ab) + Gyla, Ac, Ac)
+Gg(b, Ta,Ta) 4+ Gyg(b, Ac, Ac)

+ + Ggle,Ta, Ta) + Gyle, Hb, Ab)) (8.3.16)
Y comparabe elements a,b,¢ € Belag,r) © X

Gd(aﬂa a‘lsal) = Gd(ﬂg,?&g,?&g) < (I - )‘,&)'T' (3317)

where p = -ﬁ%—; If for non-increasing sequence {an} in Bglag,r), {an} — v then 3 o

unigue a* € Bglag,r) such that Ta* = Aa* = a* and morecver Gg(a*,a*,a*) = 0.

Proof. In the main result Chatteriea common fixed point of dominated mappings take
I = A {0 get unique fixed point I'e* = a*. m
In the next theorem uniqueness of Chatteriea common fixed point in Theorem 13 is

proved.
3.3.1 Unigueness of Chatterjea Common Fixed Point

Theorem 48 Suppose (X; <;G) be an ordered and symmetric complete G-metric like space
and T and A are any two self dominated mappings and ag, a, b,e € X. Suppose that 3

o €[0,§) such that,

Ga(Ta, Ab, Ac) < olGala, Ab, Ab) + Gyla, Ae, Ac)
+Ge(b,Ta,Ta) + Galb, Ac, Ac)

++ Gale,Ta,Ta) + Galce, Ab, Ab)] (8.8.18)

¥ comparabe elements a,b,c € X
Gd(aﬂr Gy, G]) = Gd(a[}! Pa{): Fa{}) < (1 - ﬂ’)T (3'319)

where p = ﬁ%g. If for non-increasing sequence {a,} in X, {apn} - v then 3 o unigue

a* € X such that I'a* = Aa* = a* and moreover G4(a*,a*,a*) = 0.
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Proof. To prove uniquness of Chatterjea common fixed point, consider o*, " € X are
any two common fixed points of self dominated mappings I' and A, such that ¢* 3£ 5%, Then
there arises two cases for ¢*, ¥ € X. In first case let ¢*, 5 are comparable say o* < b*. As

a*and b* are common fixed point of dominated mappings  and é then,
Fa® = Aa* = a* and IV = Ab* = b* {3.3.20)
Now consider the relation,
Gala®, 6%, b)) = Gy(T'a*, AB*, Ab*), From (3.3.20)

Gala* b, b*) < 0[2Ga(a”, A, ABY) + 2Ga(b*, Ab*, AB*) + 2G4(b*, Ta*, Ta*)]

Gala*, 6", 0"} < o]2G4(a”, b*, 0%} + 2G (5%, b, b")

+2G4(b*, a*, a*}], From (3.3.20)

(1 —40)Gala®, b",0") < 0

fela®, 0°,0) <0, v1-40€ (%} 1} Vo € [0, g»)

As Gale*,b*,b*) £ 0, then only possibilty left is,
Gd(a*}b*sb*) == 0
Also as & — metric space is symmetric then,

Gala®*, b", 6"} = G4lb*',a*,a") =0
a* ., b*
It is contradiction (" a* # b*). So our supposition is wrong. Hence common fixed point is
unique. Hence for comparable o, ¢ X commom fixed point is unique. Now in second
case if a¥, 8" € X are not comparable then 3 wo € X such that we < a* and wy < b*. Then

clearly wp € X is lower bound of both a*,4* € X. Now construct an itterative sequence

{w,} C X for ¢ € N such that,
Wnet = MAWn.o a0 Wo, = Fwog. (3.3.21}
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AsT and A are dominated self mappingts then,

o S Wy S We € Wei S v <wpSw Swplat
And

..... L Wep)l SWE S Wl S v Swp S wy Swp < B
Consider the relation,

Galwy,wy,wy) = Gg{Dwe, Twy, Tw;), From (3.3.21)

Galwy, wa,wy) = Ga(Twy, Awg, Awg)

Galwy, we,we) < 0[2Gq{wy, Awg, Awe) + 2G 4{we, Awy, Awp)

%26‘{;(20(;, Twh I‘wl)]

Galwy,we, we) < 20G4{w, wr, wi) + 20Gq(wo, wy, wi) + 20Ga({wy, wa, wy)
Galwi, wy,we) < 20Gq(wo, wy, wy) + 20G4(wo, wy,w;) + 260G g{wy, wo, wa)

(1~ 20)Gg{wn, we, we) < 40Galwe, wi, wy)

40
Ty Galwo, w, wi)

Galwy, wy, we) <

47 1 1
< . <
Galwy,wa,w2) < i M%Gd(we,m,wz), TR ST

Ga(wy, we, w2) < pGa{wo, w1, w1)
Following in same way for ¢,q-+ 1 € N let following relation holds,
Gd(wqx Weals i1} < G a(wp, wi, wy) (3.3.22)

Consider for odd g€ N,

Gala*,wg, wy} = Gd(f’a*,.&wq,_l,ﬁwqw;)
Gale*, wg, wg) < o[2G (0, Awy1, Awgy} + 2G4{wy1, Ta*, Ta*)

+2G4(wy—1, Awg1, Awg_1)]
Gala®, wq, wq) < 20G{a*, we, we) + 20Ga(Wer, W, wg) + 20G{wg—1,a*, a*)
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Gala® wg,wy) S 20Ga", we, wy) + 20Ga{we—1, we, wg) + 20G{wy, a*,a*)

4“20”Gd(w€}"-1: Wy, w?)
(1 - 40)Gd(a*) Wy, 'wq) < 4‘7Gd(wq-1} Wy, w{?}

< 4o
— 1 -—do

Gala" wewy) < pGalwg.1, e, wq)

Gd(a*)qu wq) Gd(wqwls 'wq;’w{})

Gd(a*sw(p wq) < #qu(m(}a wlawl)a From (3'3‘22)
Taking limit ¢ — oo, gives u — 0, '~ u € [0, 1) then,
Gd(“*:wq;'wq) S

As Gala*, wg, wy) £ 0 then,

Gala®, wg,wg) =0
As G — metric space is symmetric then,
Galwg, a*,a") = Gala®, wg, wg) = 0
Similariy it can be shown that,
Galwe, 8%, b*) = Ga(b*, wg, wg) =0
Now finally consider by rectangular property of G — metric spaces,

Gd(&-*, biy b*) < Gd(a’! g, wq) + Gd(“’q: b*! bﬂ}
Gd(a*ab*!b*) < G, a8 g—
As by definition of G — metric spaces,
Gala*, 0", 8"} =0, as ¢~ 00

By symumetry 7 — metric space,

Ga(b",a*, ") = Gy(a*,b*,5") = 0, as ¢ — 00
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a* = b
It is coniradiction ("' a* % b*). So our supposition is wrong. Hence common fixed point
is unique. 8o if ¢* and $* are not comparable then common fixed point is unique. Hence
Chatterjea common fixed point for double self dominated mappings is unique. =

Proof of the following corollary is similar to the proof of Theorem 45 but without

discussing the ordered property of G — metric like spaces.

Corollary 49 Suppose {(X;<;G) be a symmetric and complete (G-metric like space and
A X -2 X are any twe dominated mappings and ag, a, b,c € X, r > 0. Suppose that 3
o €0, %) such that the following conditions holds
GafTa, Ab, Acy < olGyla, &b, Ab) + Gyla, De, He)

+Galb,Ta, Fa) + Ga{b, Ac, Ac)

+ + Gy4le, Ta, Da) + Gyule, Ab, Hb)] (5.9.83)
¥ comparabe elements a,b,¢c € Bg{ap, v} C X

Ga(ag, a1, 01) = G4{ap, Tag, Tap) < (1 — pjr (3.3.24)

where p = Ti% If for non-increasing sequence {a,} in Bolap,r), {an} — v then 3 a point
a* € Belag,r) such that Ta* = Aa* = a* and moreover Gyla*,a*,a*) = 0.

3.3.2 Error Bounds

In this section errors approximations and their related exampile are discused.

Corollary 50 From Theorem 45, iterative sequence {3.3.3), with arbitrary ap € Bglas,v) G
X, converges to unigue common fized point a* of dominated self mappings I" and A. Error

estimates are the prior estimate

T
Galon,a",6%) < 75— Galao, a1, ) (3.3.25)
and the posierior estimate
Galan,a’,a*) < ;%;Gd(aﬂ“l,aman) (3.3.26)
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Proof. As from relation {3.3.8) of Theorem 45,

L

1 o #
Giltn, 0m, Om) < ﬂ”(ﬁ“)Gd(ae, ai,a1)

As the sequence {an,} is convergent to ¢* € Bg(ag, 7} € X, then by taking m -~ oo gives
A, ~ 6~ and ™" — 0. Therefore above relation leads to the prior estimate {3.3.25), i.e,

u

Gd(a‘ﬂ:&*?a’*} g 1 .

Galag, a1, a
. a{ao, a1, a1)
Setting 7 == 1 and write by for ag and by for a; in {3.3.25)

Gd(b},ﬁ*,a*) 5 “"%};Gd(b@,b},b})

Letting by == ay..; then by == Uby = Ia,.1 = a5, in above relation leads to the posterior

estimate {3.3.26), t.e,

H
1—p

Gd(an,ﬂ*,ﬂ*) ﬁ Gd(an--lsa‘n: a‘n)

The prior error bound {3.3.25) can be used at the beginning of the calculation for
estimasing the required number of steps to obtain a assumed accuracy. While posterior
error bound (3.3.26) can be used at intermediate stages or at the end of the calculation.

Posterior error bound (3.3.26) is at least as accurate as prior error bound (3.3.25).

Example 81 If for a set X = [0,0), a mapping G : X x X x X = X, ¥V a,bjc € X
defined by,

Gyla,bcy=a+b+e, (3.3.27)
then (X; <) is symmetric and complete G —metric like space. Let mappings T, A 0 X ~+
X are defined by,

§ #acl0
e+l ifae(l,00)
g ifec|0]]

a+§ if ¢ € (1,00)
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Obviously I’ and A are dominated mappings inside of [0,1] but not dominated outside of

[0,1]. Let ag =  and r = § such that Bglag, ) = Be(},3) = [0,1). Also let 0 = & € [0, })

and g = E“?f"i&’ e % . Construct a picard iterative {a,} sequence by taking ag = % as initial

guess as,
ag ag
Gy o= Fﬂ-{)mw andagmAagwé-z—'g{
ag g
ag = Pﬁzxw andaa,mAang
- &g a
aom-1 = lagm.z = W and gy = Aagmat = 4 ;m
1
tgm-1 = Dagm-g = W and Ggm = Aagm..y = gl gm
Consider 2m — 1 = n then for odd n & N gives,
a, = Ia w and ayp1 = Aa, = !
" T PR T T R

fin (3.3.28)

1 1
N AT TV, Y7

Now as,

Gilan,a*,a%) = a, + 2a%, - From (3.3.27)

As picard sequence {a,} satisfles all the conditions of Chatierges fived point theorem 45 as

in example 48, then If n — o0 30 a, — o* L.e a, 2 a*. Then

Galzn, 3", 2") = 3a, {3.3.29)
Also as,
Galag,a1,a1) = Gglag,Tag,Tag) = ag -+ 2lag
Galao,a1,01) = % +2I‘§ = % + fé
3

il

G’d{ag,a;,a;) (3330)
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And finally as,

Gylan,a*,a") < I'Li #Gd(aﬁ; a1,a1)
2,8 9 2.
3a, < 3(~§) 5= §(§) , o From (3.3.29) and (3.3.30)
8 2
P e L
30 < (3)

1.88561808316413 < (3.77123616632825)"

In(1.88561808316413) _
In(3.77123616632825) —

0.4778170138305 < n

Asn e N is odd and 0.4778170138305 < n then forn =1, 3, 5,...... picard sequence starts

converging to tts limit point i.e a* = 0 € [0, 1] such that let for n = 3 (3.3.28) gives,

ag = m = (.001953125 and a4 = W = (1000244140625
And if n =5 then {3.3.28) gives,
ag == m == {.000006103515265 and ag = m = {}.00000762939453125
Thus
as = ['ag ==> 1'{0.000244140625) = 0.000006103515265
and

ag = Day == A{0.000006103515265) = 0.00000762939453125

Hence common fixed point approzimation s,
T{0.000244140625) ~ A(0.000006103515265) ~ 0.00000762939453125

Finally when n — 00 then,

I'(0) = A(0) =0

Remark 52 Above results not only holds for dominated mapping but also holds for domi-

nating mappings.
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