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Preface

This project focuses on creating a Python/MATLAB code to estimate the

percentage of a given value and then compare the result to the total value.

Fractional derivatives are a powerful mathematical tool for modeling op-

erations with infinite numbers. These rules will ensure the performance of

estimating these values and measuring their accuracy. This article is divided

into five parts.

In the first chapter, the historical background of fractional calculus and

some basic definitions are stated along with the literature review.

In Chapter 2, smog data is collected from AQI for different cities of Pak-

istan then we derive the factors causing smog. We then drive mathematical

modeling of smog data and formation of Modified Trapezoidal Rule.

In Chapter 3, derivation of Modified Trapezoidal Rules and Caputo Frac-

tional Derivative Rules along with theorem and applications.



Nomenclature

• Mittag-Leffler M. L.

• Riemann-Liouville R. L.

• General Analytic Kernel G. A. K.
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• Fractional Integral F. I.

• Fractional Differential F. D.

• Fractional Differential Equation F. D. E.
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Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Thesis Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction 1

1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Euler’s Gamma Function . . . . . . . . . . . . . . . . . . . . . . 8

2 Preliminaries 10

2.1 Problem Formation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Studing Area and Field Surveys of Sites . . . . . . . . . 11

2.1.2 Remote Sensing Data . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Quality Evaluation . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 Relevance with Pollutants Spatial Data . . . . . . . . . 13

2.1.5 Pollutants’ Concentration . . . . . . . . . . . . . . . . . 15

2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . 20



2.4 Implementation Steps . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Numerical Simulation: . . . . . . . . . . . . . . . . . . . 24

2.4.2 Discretization of Time Interval . . . . . . . . . . . . . . 26

2.4.3 Modified Trapezoidal Rule for Smog Density . . . . . . 27

3 Modified Trapezoidal Rule & Caputo Fractional Derivative 29

3.1 Modified Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Error Analysis of Trapezoidal Rule; . . . . . . . . . . . 30

3.2 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Application 1 . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Application 2 . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Caputo Fractional Derivative Rule . . . . . . . . . . . . . . . . 42

3.7 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.1 Application 1: . . . . . . . . . . . . . . . . . . . . . . . . 46

3.8.2 Application 2 . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1



Abstract

This thesis delves into the advancements and applications of fractional cal-

culus, focusing on the comparative and sensitivity analysis of numerical

methods specifically the modified trapezoidal rule and Caputo derivatives

applied to fractional order derivatives. Using trigonometric functions, sin(x)

and cos(x), and smog data from Pakistan, the study explores the perfor-

mance of these methods across orders ranging from 0 to 1.

Key findings reveal that the error behavior of the modified trapezoidal

rule is highly dependent on the fractional order parameter α, with mini-

mum error observed around α=0.3 maximum error near α=0.9. Addition-

ally, the performance varies significantly between functions, with sin(x) ex-

hibiting errors three orders of magnitude smaller than cos(x). The Caputo

derivatives, particularly the 0.5th order, demonstrated high sensitivity and

accuracy in approximating the sine function, highlighting the importance of

careful parameter selection for numerical accuracy.

The research underscores the practical implications of fractional calculus

in modeling complex systems in physics, engineering, and biology, where

traditional calculus falls short. It also emphasizes the relevance of these

methods in contemporary clinical research, offering new avenues for ana-

lyzing and interpreting medical data. Despite its contributions, the study

acknowledges limitations in scope, particularly in its focus on air quality

data, the constraints of the modified trapezoidal rule, and the need for more

comprehensive error analysis and parameter optimization.



Chapter 1

Introduction

Fractional Calculus is a unique department of carried-out sciences offer-

ing derivatives of arbitrary (actual/complicated) order. Fractional calculus

has emerged as an effective mathematical device with critical implications

for information-complicated structures that defy conventional integer-order

calculus. These complex structures, which can be discovered in physics, en-

gineering, and biology, among different fields, have sparked a significant

surge of scientific interest.

The maximum hard issue of using fractional calculus is calculating frac-

tional derivatives, which generally defy analytical solutions. This problem

has precipitated the improvement of numerous numerical algorithms to re-

liably and swiftly compute fractional order derivatives. The number one

motive of this studies have a take a observe is to offer a complete compar-

ative assessment of the numerous numerical algorithms used to compute

fractional order derivatives.

The number one intention of this evaluation is to decide how nicely those

numerical strategies carry out in assessment of each other and to analyti-

cal solutions. This study makes a specialty of the essential definitions of

fractional derivatives: Riemann-Liouville, Modified Trapezoidal Rule and

Caputo fractional by-product. The Riemann-Liouville by-product, the max-
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imum broadly used definition of fractional derivatives, extends to the con-

ventional integer-order by-product framework.

In contrast, the Grunwald-Letnikov by-product introduces a discrete ap-

proach to fractional derivatives using a weighted sum of characteristic val-

ues. By combining beginning situations in its definition, the Caputo by-

product additionally called the fractional by-product in regards to prelimi-

nary circumstances, improves at the classical by-product. Through this as-

sessment research, the researchers need to shed mild on the blessings and

barriers of every numerical technique for computing fractional order deriva-

tives.

Such data is beneficial for lecturers and experts searching to accurately

observe the fractional calculus of their fields. This study’s paper’s trajec-

tory starts with an in-depth evaluation of fractional order derivatives, their

mathematical underpinnings, and their essential utilization in present-day

clinical studies.

This essential information is needed to research destiny trigonometric

features, sine (sin(x)), and cosine (cos(x)) characteristics. These approaches

function as the inspiration for mathematical modeling and represent an ex-

tensive variety of actual-global structures. The number one intention of this

study is to compute the fractional derivatives of trigonometric features, par-

ticularly sin(x) and cos(x), spanning various fractional orders (0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and primary order). These computations function

as essential research of the sensitivity and accuracy of numerous fractional

derivatives, imparting treasured data concerning their realistic packages.

Instead of being merely theoretical, this examination appears at how

fractional calculus may be used to cope with complicated, dynamic struc-

tures inside the actual global. Fractional order derivatives are interesting

due to their awesome capacity to offer a greater entire and unique descrip-

tion of methods that don’t observe conventional integer-order differentia-

tion. Fractional calculus, as adversarial to standard calculus, permits us to

2



understand the complexities of structures with long-variety memory, fractal

properties, and non-nearby behaviors.

As a consequence, fractional calculus has discovered packages in an ex-

tensive variety of fields, together with physics, engineering, biology, eco-

nomics, and others, demonstrating its transformational power. Observing

fractional derivatives carried out to trigonometric features is an essential el-

ement of this study. The goal is to research the sensitivity and precision

of those derivatives, exposing contrasts and subtleties that seem at distinct

fractional orders, through computing fractional derivatives of the sine and

cosine at distinct fractional orders. In addition to enhancing our information

on fractional calculus, this analytical approach guarantees to open up new

avenues for progressive packages in disciplines in which unique modeling

and evaluation are essential.

In conclusion, at the same time as the theoretical exam is the inspiration

of this study, it isn’t confined to abstraction. The task intends to bridge the

theoretical and realistic hole through the usage of fractional order deriva-

tives to actual global records and complicated structures. This study’s pa-

per provides for the continued improvement of fractional calculus and its

actual effect on several clinical and realistic fields by placing the framework

for destiny studies so that it will enlarge and widen our hold close of this ef-

fective mathematical device. Future studies would possibly have a take ob-

serve greater complicated packages, extra numerical strategies, or increas-

ing using fractional calculus into new domains, all of which might assist in

enhancing the subject.

1.1 Historical Background

Fractional calculus dates returned to the early 18th century, while pioneer-

ing mathematicians like Leonhard Euler, Johann Bernoulli, and Pierre-Simon

Laplace commenced to research the extension of differentiation and integra-
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tion to non-integer orders. Despite those early advances, fractional calculus

remained noticeably inert till the overdue 1960s, while a revived hobby in-

side the subject arose, fueled via way of means of contributions from mathe-

maticians which include Anatoly N. Kolmogorov, Alexander M. Ostrowski,

and Anatoly M. Samoilenko. Their contributions reinvigorated the a look

of fractional calculus and set up the framework for its destiny improvement

and use in quite a few areas.

Fractional calculus has acquired a variety of hobbies in current many

years due to its huge variety of programs. It has proved beneficial for simu-

lating complex structures like organic structures, manipulate structures, and

viscoelastic materials [13]. Furthermore, fractional calculus has programs in

statistics analysis, photograph processing, and sign processing, highlighting

its significance in contemporary-day clinical and technical activities.

However, the computational hassle of producing fractional derivatives,

which regularly defy analytical solutions, has been a main obstacle to hav-

ing a look at fractional calculus. To remedy this difficulty, researchers have

created a huge variety of numerical algorithms, that are kind of categorized

as spectral or non-spectral techniques.

Spectral procedures use collection expansions of the characteristic be-

ing differentiated to approximate fractional derivatives. Examples are the

Fourier collection technique, the Chebyshev polynomial method, and the

Legendre polynomial method.

Non-spectral methods, on the other hand, use finite separation or expan-

sion techniques to approximate fractional derivatives. Riemann-Liouville

[28], Grunwald-Letnikov and Caputo derivatives are the most frequently

used definitions. The Riemann-Liouville byproduct uses a covariance op-

erator to express the inverse of the variable, while the Grunwald-Letnikov

byproduct uses a decomposition function based on weighted eigenvalues.

Caputo Spinoff expands the Classic Spinoff by combining the starting area.

Extensive have a look at has focused on figuring out the usefulness and

4



performance of diverse numerical strategies, thinking of parameters which

includes convergence rates, stability, and computing complexity. These ex-

periments have supplied insights into the strengths and bounds of various

methodologies, spurring the improvement of greater unique and green tech-

niques for computing fractional derivatives.

In summary, fractional calculus has visible a brilliant rebirth, growing

from its humble beginnings to end up a cornerstone of cutting-edge mathe-

matical and clinical studies. While computing boundaries exist, contemporary-

day studies refines numerical methodologies and deepens our knowledge of

fractional calculus, reinforcing its importance in coping with complex real-

global problems.

1.2 Literature Review

Pakistan’s Air Pollution Problem: Relationship Between Scientific Anal-

ysis and Fractional Calculation

The impact of poor air quality is far-reaching and has significant impacts

on human health and economic productivity. The annual number of air-

borne deaths in Pakistan is expected to reach 105,000 by 2020, indicating an

urgent need for mitigation strategies (Pollution: 2016). This highlights the

important role of advanced analytical techniques such as numerical analysis

and numerical calculations in understanding and unraveling the complex-

ity of air pollution. Numerical analysis provides an important tool for de-

termining and predicting the impact of environmental change on human

health and the economy. Like "Applied Numerical Analysis" (C. Gerld,

P. Wheatley, 2004) emphasized the role of numerical methods in assessing

the economic losses of pollution. In Pakistan, where climate-related health

and environmental costs account for approximately 1% of GDP, this pro-

cess is critical for policy development and budget allocation (Park, 2013).

Thanks to it, researchers can develop models to simulate the spread of in-
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fectious diseases, measure exposure risk, and predict long-term prognosis.

These models include environmental data, public data, and economic pa-

rameters to provide policymakers with evidence-based insights on the cost-

effectiveness of managing this bad weather. br>< br>Fractional calculus

unifies traditional calculus by combining derivatives and concepts of non-

numerical degrees and allows for a deeper understanding of Air pollution

related systems provide a theoretical basis for using fractional derivatives to

simulate complex environmental phenomena. 5 concentrations stand out.

Vehicle emissions and commercial activities are the main source of this high

pollution (Owusu and Sarkodie, 2020). Fractional analysis plays an impor-

tant role in the development of forecast models that can account for poor

air pollution distribution, seasonal variations and their effects on air quality.

Application: Monitoring of Watersheds

Mathematical and numerical methods are frequently used to develop

predictive models and monitoring systems to track pollutants and their con-

sequences in Pakistan’s urban landscape. Studies using remote sensing and

ground monitoring have shown significant changes in air quality index (AQI)

between weekdays and weekends in terms of interaction effects of environ-

ment and model (Lodhi and Ghauri, 2009; Raja and Biswas and Husain,

2010). These communication efforts are essential for developing interven-

tion plans to reduce pollution hotspots, improve public health outcomes,

and promote urban development. br>Pakistan’s rapid development and

economic growth have brought great challenges to climate control. Inte-

grating these systems with environmental systems is essential for pollution

control and mitigation strategies. Policymakers can use information from

statistics and statistical analysis to create evidence-based policies that bal-

ance economic development with the environment. The combination of sta-

tistical analysis, general statistics and environmental science provides a use-

ful framework for solving Pakistan’s air quality problems. Through ongo-

ing research and practical application of mathematical models, Pakistan can
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support a healthy environment and strong communities in its urban trans-

formation. Integration of advanced analytical techniques improves our un-

derstanding of environmental processes and allows policymakers to make

informed decisions to cleanly protect public health and promote sustainable

development. The challenge of defining numbers and counting numbers is

often a silver lining, offering new solutions to reduce pollution and ensure

a safe future for future generations.

1.3 Trapezoidal Rule

Mathematical integration is an important tool used by scientists and re-

searchers to obtain predictive answers to facts that cannot be resolved an-

alytically. There are several ways to compare the major points of a given

element by balancing the weights of the eigenvalues of the detailed points.

The basis of the trapezoidal law is to divide the area between f(x) and the

x-axis into a strip of straight lines in the function f(x).

Trapezoidal rule: Suppose that the interval [y,z] is subdivided into N

sub-intervals [xi, xi+1] of equal width h = (z − y)/N by using the nodes

xi = y + ih for i = 0, 1, 2, .., N .

The composite trapezoidal rule [26] for the function f(x) over [y, z] is

defined as [1, 4]

T (f, h) =
h

2

N∑
k=1

( (xk−1) + f (xk))

=
h

2
(f0 + f1 + f1 + f2 + f2 + . . .+ fN−1 + fN)

=
h

2
(f0 + fN) +

h

2
(2f1 + 2f2 + . . . .+ 2fN−1)

=
h

2
(f0 + fN) +

h

2
(2) (f1 + f2 + . . . .+ fN−1)
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=
h

2
(f0 + fM) + h (f1 + f2 + . . . .+ fN−1)

=
h

2
(f0+ fN) + h

N−1∑
k=1

(xk)

1.4 Euler’s Gamma Function

In fractional calculus theory, the Gamma function [14] is fundamental. It

generalizes the factorial (m!) and accepts non-integer and complex values

for m. The formal definition and a few key characteristics are presented

below.

Definition 1.4.1 (Gamma function). The Gamma function Γ(α), where α is

a complex parameter, is defined by the integral:

Γ(α) =

∫ ∞

0

e−ttα−1 dt,

which converges for ℜ(α) > 0.

Proposition 1.4.1. The Gamma function can also be expressed as: Γ(α + 1) =

αΓ(α).

Proof. Consider the integral representation of the Gamma function:

Γ(α + 1) =

∫ ∞

0

e−ttα dt.

We will apply integration by parts to evaluate this integral. Let u = tα

and dv = e−t dt. Then, we have du = αtα−1 dt and v = −e−t. Using the

integration by parts formula,
∫
u dv = uv −

∫
v du, we get:

Γ(α + 1) =

∫ ∞

0

tαe−t dt =
[
−tαe−t

]∞
0
+

∫ ∞

0

αtα−1e−t dt.

Evaluating the boundary term [−tαe−t]
∞
0 , we note that as t → ∞, e−t

8



approaches 0 faster than any polynomial function grows, so:

lim
t→∞

−tαe−t = 0.

When t = 0, since α > −1, tα → 0. Therefore, the boundary term is zero.

Hence, we have: [
−tαe−t

]∞
0

= 0.

This simplifies our expression to:

Γ(α + 1) = α

∫ ∞

0

tα−1e−t dt.

Recognizing the remaining integral as Γ(α), we find:

Γ(α + 1) = αΓ(α).

Thus, we have shown that:

Γ(α + 1) = αΓ(α).
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Chapter 2

Preliminaries

Lahore, with a population of eleven million, is one of the world’s most pol-

luted cities. Contamination leads to fatalities, birth abnormalities, and a loss

of years of life. The study’s instant review of data from the Air Quality In-

dex found that pollution in the air was 54% unsafe for everybody 88% over

the duration from June 2019 to September 2021. In 2021, Lahore’s pollution

index smashed 175 µg/m3. To evaluate the dangerous air circumstances,

14 sites were chosen according to their level of industrialization and emis-

sions from tailpipes. The information from remote sensing was analyzed in

field investigations to determine the connection between pollution concen-

trations for these specific locations and the existing on ground procedures.

CO, NO2, SO2, optical depth of aerosols, CH4, or CH3OH were both pri-

mary and secondary airborne contaminants selected during analysis. Calcu-

lating the current AQI with the month level for every pollutant revealed an

overwhelming beneficial relationship with the AQI and SO2, NO2, and CO.

Assessments showed that the weekend’s AQI score was greater compared

to the weekday. The findings may be used for developing carefully planned

adaptation strategies that may be implemented immediately to lessen the

town’s visible concerns regarding the environment.

10



2.1 Problem Formation

2.1.1 Studing Area and Field Surveys of Sites

The district of Lahore appeared in the study area. The region, which spans

the Punjab province of Pakistan, is approximately 1772 km2 in total and

is located within 31◦1500 00 N and 31◦4500 00 N, and 74◦0100 00 E and

74◦3900 00 E.

Figure 2.1: Map indicating Lahore district and its surrounding areas

With 1.12 million people living there, Lahore is the 26th most populous

city on Earth [21]. Taking into account an average population density of

6500 people per 2 km, Lahore’s population increased from 6.31 million [22]

to 11.13 million [22] in 2017, almost doubling since 1998. Islamabad ex-

periences dry, cold winters from November to February, and hot, humid

summers from May to September. The average annual temperature is 23.3

°Celsius, and there is typically 2398 millimetres of precipitation, with 80%

11



of the total falling between May and September. Certain industries, brick

kilns, and tailpipe emissions are among the main causes of air pollution in

the town. As Figure 2.1 illustrates, these locations are dispersed, with nearly

all of Punjab surrounding them. A ten-day inspection has been conducted

at different work sites and special bricks since August 2020 to examine the

current works, including the fuel type utilised and whether pollution by

the International Organisation for Standardisation (ISO) can be prevented.

technology that is employed. Searches are conducted on already identified

routes. The data collected is summarised in Table.

2.1.2 Remote Sensing Data

In order to explore the related ecological effects and offer a crucial adapta-

tion strategy over a particular area, monthly satellite observational data for

nitrogen dioxide (NO2), carbon monoxide (CO), sulphur dioxide (SO2), for-

malin (HCHO), methane (CH4), and optical depth of aerosols (AOD) were

gathered between July 2018 and April 2021. [16]

The search engine giant’s Earth Engine (GEE) API on the cloud platform

was used to gather and manage these data Four main pollution (NO2, CO,

SO2) or three secondary pollutants (HCHO, CH4) were selected to deter-

mine the levels of air pollutants related to the three primary industries (in-

dustrial, congestion, and brick kiln) Sentry 5P’s tropospheric surveillance

equipment (TROPOMI) gave information on air pollution levels A spatial

scale of 0.01 was employed to produce the Level 3 data Excellent craftsman-

ship pixels (’qa-value’ ≥ 0.75) [15] were included in the result, and poor-

quality pixels were removed. To avoid producing incorrect outcomes, re-

gions (Khanum and Kumar, 2017) with cloud coverage probabilities of over

0.2 were removed as well from all datasets.

Month averaging and expanded intervals may help avoid significant er-

rors from atmospheric conditions, even though meteorological factors may
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affect the air amount of the pollutants. In comparison sites in neighboring

locations, nevertheless, the effect of climate was expected to be minimal.

With near-daily worldwide coverage and 0.01 [17] spatial resolution, AOD

provided an extensive variety of geographical data The medium-range im-

age spectroradiometer (MODIS) [23] produced a level 2 product, MCD19A2-

V6, with an AOD at 550 nm. The multi-angle application of atmospheric

adjustment (MAIAC) [24] was used to combine the Terre and aquatic data

for the final result [18]. Good quality pixels [19] were retained with the im-

age quality tags layers "AOD-QA," and photons with tags such as "Cloud

Shadows," "Overcast," or "Possibly Cloudy" had been eliminated using the

"Cloud" mask. The mean of the pixels collected throughout the locations

selected was employed to generate each dataset.

2.1.3 Quality Evaluation

The association between AQI data (June 2019–September 2021) and World

Health Organization guidelines was explored. The Pakistan Air Quality

Monitor—USEPAWorld Air Quality Index Program (31.559989968731156,

74.33600917621109) [15] provided the necessary AQI information. Air qual-

ity monitoring equipment from Graphic Astronomy and Imaging Analysis

(GAIA) were employed. The results were compared to WHO standards to

assess if the air quality was adequate for human occupancy and produced

significant results.

2.1.4 Relevance with Pollutants Spatial Data

To determine the relationship between the effects of variations in the overall

amount of each pollutant and the corresponding AQI value in Lahore, the

total amount of monthly peak levels for every location for each pollutant

was plotted against the highest point in the month’s AQI readings. It was

done to help ensure that data from remote sensing was relevant to the AQI

13



findings and to investigate whether we may use regional concentrations of

contaminants in conjunction with AOD findings for a credible indicator of

AQI. It can also help determine which of the main pollutants Report Phrases

that cause smog should be the focus of preventative measures.
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The COVID-19 pandemic came out in February 2020, and the state of

emergency that followed was partly imposed on industry or transportation

operations throughout an array of phases. Pakistan had a nationwide state

of emergency from March 25, 2020, to April 15, 2020, following which the

clampdown was gradually lifted by May 15, 2020 [19]. Smart restrictions

were initially implemented in hot spot areas in early May the study’s re-

duction in emission depends on previous studies. Regarding the broader

composition of the pollutants, a hypothesis has been made.

2.1.5 Pollutants’ Concentration

To determine each station’s contribution to the total Lahore sky globe, the

cumulative quantity of each pollutant for the whole data period at each

site was estimated. To find the principal responsible emissions source, the

amount of emissions was lowered to a percentage. This is designed to be

used as a tool to assist determine which pollutants, if future rules and legis-

lation are in the works, should be the primary emphasis at a certain location.
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The findings may also be converted into a useful tool and digital application

for routine site inspection, allowing intervention against the fundamental

drivers of pollution.

2.2 Discussion

The geographical data from locations gave the highest values for every sin-

gle month through three years (June 2018–April 2021). The main points,

which appear in the figure below, serve as crucial for further investigation

and will form the basis for several inferences. The information shown in-

dicates the mean level of every pollutant for the specified amount of time.

The area that contributes the greatest amount to each pollutant in Lahore’s

air is also highlighted by this information. For all sites in the information

set, the mean CO material was 41.1 millimol/m2. Jia Bagga has the smallest

value (34.57 million/m2) while Jail Road has the greatest value (58.982 mil-

lion/m2). The mean amount of NO2 accumulation was 0.1010 million/m2,

with Kot Abdul reporting the lowest value of 0.037 million/m2 and Jail

Road reporting the highest value of 0.255 million/m2 [23]. In Lahore, the

average SO2 concentration was 0.428 million/m2. At Jia Bagga, the greatest

value recorded was 0.747 million/m2, whereas in Karol, the smallest value

was 0.232 million/m2. The mean CH4 value was 1.914 million/m2, with

Industrial Estate having highest value at 1.993 million/m2 and Sundar In-

dustries Estate having the lowest value at 1.860 million/m2. Its HCHO was

0.236 million/m2 on average. The main street yielded the greatest result,

measuring 0.376 million/m2, while Jail Road produced the smallest value,

at 0.079 million/m2 [23]. The safe range of AOD is 0.1 µm–0.4 µm, in the US

EPA oversight nothing, not even one time, did the general quality of the air

in Lahore match this minimum standard. The upper bound of the safe range

is 5.6 times less than the highest level. This requires a thorough analysis of

the data to create workable adaption action plans right away.
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Figure 2.2: Pollutant concentrations were measured across three sectors
(roads, industrial estates, and brick kilns)

Plotted in Figure 2.2 is the annual cost of pollution in unusual financial

sports. The outcome served as an example of the most harmful contaminant
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at each location, necessitating an immediate remedial action plan. The rea-

son for its heightened awareness can be explored with the help of on-floor

data, providing guidance towards desired policy actions. The areas with

the highest CO had been Quaid-e-Azam Industrial Estate (within business

estates), Sherwani (inside brick kilns), and Jail Road (inside roads). There-

fore, CO filters should be used in those areas going forward while mitigating

measures are implemented or surveillance is carried out. Ferozepur reached

its maximum SO2 contribution, although its contribution to CO and NO2

has decreased significantly. In brick kilns, Jia Bagga and Kot Abdul were

the ultimate figures of SO2. Despite having multiple enterprises accredited

to ISO 14001, Sundar Industrial Estate was the source of the most SO2 emis-

sions.Ferozepur reached its maximum SO2 contribution, although its contri-

bution to CO and NO2 has decreased significantly. In brick kilns, Jia Bagga

and Kot Abdul were the ultimate figures of SO2. Despite having multiple

enterprises accredited to ISO 14001, Sundar Industrial Estate was the source

of the most SO2 emissions.

Figure 2.3: Percentage contribution of the corresponding pollutant.

2.3 Modeling

This study uses mathematical models to examine changes in air smog con-

centration in different cities of Pakistan. Integrated variables such as plant
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density x(t), population density y(t), and smoke density z(t) over time t.

Physical factors include emissions from various sources, human and nat-

ural consumption rates, interactions between plants and humans, and en-

vironmental carrying capacity. Differential equations have been derived to

describe growth and interactions between plants, humans, and smoke con-

centrations. Methods involving the trapezoidal transformation law (MTR)

are used to simulate and analyze the behavior of the system over different

time periods. The findings provide insight into the interaction between ur-

banization, emissions and environmental sustainability in Pakistan.

2.3.1 Mathematical Model

In this study, we will try to reveal how air pollution and problems affect dif-

ferent regions of Pakistan. Much of the smoke emitted from vehicles, indus-

trial pollutants, and ventilation systems such as electric stoves is consumed

by plants and humans. This research is based only on mathematical models

that provide greater accuracy and can predict the ultimate effects of smoke

emissions. Among them, x(t) represents the vegetation density, y(t) repre-

sents the human density, z(t) represents the initial smoke density at time

t [25] respectively. Let the total amount of smoke in the environment be Q

and let the emissions δ, δ0, δ1andδ2 be CO, representing the fuel consump-

tion coefficient of people caused by smoke, and the plant consumption co-

efficient, the cost coefficient of plants, and the cost consumption coefficient.

The amount xy is the interaction value. Decrease and increase diversity due

to competition. These examples are αxy and e αxy respectively. Here α > 0,

let α be the predictive value plus the interaction value, and let e be the con-

version factor. The environmental carrying capacity of plants and humans

is K&L, respectively. Here, the growth of plants and humans is expressed in

terms of r & S. When plants and humans smoke heavily, the consumption

value when the smoke enters the atmosphere is shown as δ1xy and δ2yz.
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Figure 2.4: Emitted Smog Concentration Model

2.3.2 Hypotheses

Let:

• x(t): Vegetation Density

• y(t): Human population Density

• z(t): Smog concentration Density

The system is affected by various factors at time t:

• Q: Total increase in smog concentration due to emissions

• δ1, δ2, δyz: Emitted CO2 gas coefficient rate, natural depletion coeffi-

cient rate of smog, and depletion coefficient rate due to absorption by

humans, respectively

• α: Interaction rate between plants and humans

• β: Interaction rate causing changes in species due to competition

• e: Conversion factor
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• K: Carrying capacity of vegetation

• L: Carrying capacity of humans

• r: Integral growth rate of plants

• s: Integral growth rate of humans

• δxy: Depletion rate of smog consumed by Vegetation

Differential Equations

1. Plants’ Dynamics:

dx(t)

dt
= rx(t)

(
1− x(t)

K

)
− αx(t)y(t)− δ3x(t)z(t)

Explanation:

• rx(t)
(
1− x(t)

K

)
: Logistic growth of vegetation considering carrying ca-

pacity K

• −αx(t)y(t): Interaction term where vegetation are affected by human

activities

• −δ3x(t)z(t): Depletion of plants due to smog absorption

2. Humans’ Dynamics:

dy(t)

dt
= sy(t)

(
1− y(t)

L

)
− αx(t)y(t)− δxyx(t)y(t)

Explanation:

• sy(t)
(
1− y(t)

L

)
: Logistic growth of human population considering car-

rying capacity L

• −αx(t)y(t): Interaction term where humans affect plant density
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• −δxyx(t)y(t): Depletion of humans due to smog absorption

3. Smog Dynamics:

dz(t)

dt
= Q+ δ1y(t)− δ2z(t)− δyzy(t)z(t)

Explanation:

• Q: Constant increase in smog concentration due to emissions

• δ1y(t): Contribution of CO2 emissions from human activities

• −δ2z(t): Natural depletion of smog

• −δyzy(t)z(t): Depletion of smog due to absorption by humans

where:

• r, s: Vegetation and human intrinsic growth rates, respectively

• K,L: Carrying capacities of vegetation and humans, respectively

• α: Interaction rate between vegetation and humans

• δ3, δxy, δ1, δ2, δyz: Various coefficients affecting the dynamics of the sys-

tem

• Q: Constant increase in smog concentration due to emissions

Modified Trapezoidal Rule (MTR) for Numerical

Integration

To estimate the integral of z(t) over the time interval [0, T ], we apply MTR

[29]:

∫ T

0

z(t) dt ≈ ∆t

2

[
z(0) + 2

N−1∑
i=1

z(ti) + z(T )

]
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where:

• ∆t = T
N

is the time step,

• ti = i ·∆t, for i = 0, 1, 2, . . . , N are the time points,

• N is the number of subintervals,

• z(ti) are the values of smog concentration obtained from solving the

differential equation system at time points ti.

2.4 Implementation Steps

Step 1: Solving System of Differential Equations

Use numerical techniques (e.g., Runge-Kutta methods such as RK4) to solve

the system of differential equations:

dx

dt
= f(x, y, z),

dy

dt
= g(x, y, z),

dz

dt
= h(x, y, z)

under basic circumstances x(0), y(0), z(0).

Step 2: Discretize Time and Compute Values of z(ti)

Divide the time interval [0, T ] into small intervals. Compute z(ti) for each

interval using the numerical solution obtained in Step 1.

Step 3: Apply the Modified Trapezoidal Rule (MTR)

To compute the integral of z(t) over the interval [0, T ], apply the Modified

Trapezoidal Rule (MTR):
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Differential Equation for Smog Concentration

The differential equation for smog concentration z(t) is given by:

dz

dt
= Q+ δ1y − δ2z − δyzyz

where:

• z(t): Density of smog concentration at time t

• Q: Total increase in smog concentration due to emissions

• δ1: Emitted CO2 gas coefficient rate by humans

• δ2: Natural depletion coefficient rate of smog

• δyz: Depletion rate of smog due to absorption by humans

• y: Density of human population

2.4.1 Numerical Simulation:

Python Code

Below is the Python code for numerically solving the differential equa-

tion describing smog concentration dynamics:
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Table 2.1: Data Table
t 10 20 30 40 50 60 70 80 90 100

y(t) 88.4 78.4 69.2 61.1 53.8 47.3 41.4 36.1 31.3 27.0

Figure 2.5: Graph code of y(t) over t = 1 to 100
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2.4.2 Discretization of Time Interval

After obtaining the numerical solution using the Runge-Kutta (RK) method,

we can discretize the time interval [0, T ] into N subintervals [30] and com-

pute z(ti) for each time step ti:

ti =
i · T
N

, i = 0, 1, 2, . . . , N

∆t =
T

N

where:

• T : Total simulation time

• N : Number of subintervals

• ti: Time points at which to evaluate z(t)

• ∆t: Time step size

The computed values z(ti) are gathered numerically for the differential

equation.

Code

Here’s an example of how to implement this in Python after obtaining the

numerical solution:
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2.4.3 Modified Trapezoidal Rule for Smog Density

Given:

• z(tk): Numerical solution of smog density at time tk.

• h: Time step ∆t.

• N : Number of subintervals.

The modified equation for the MTR applied to z(t) is:

T (z, h) =
h

2

N∑
k=1

(z(tk−1) + z(tk))

where:

• z(tk−1) and z(tk) are the values of smog density at time points tk−1 and

tk, respectively.

• h = T
N

is the time step.

Parameters: Set the total simulation time T , and the number of subinter-

vals N , and compute the time step ∆t = T
N

.
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Numerical Solution: Assume z_t contains the numerical solution of

z(t) obtained from a previous step (e.g., using a numerical method like

Runge-Kutta).
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Chapter 3

Modified Trapezoidal Rule &

Caputo Fractional Derivative

It involves the application and analysis of computational methods to ap-

proximate fractional integrals. It provides a modified trapezoidal rule that

extends the classical trapezoidal rule for solving mixed fractions. This for-

mula calculates the function f(x) over a parameter using a weighted param-

eter that is not modified by the h and alpha parameters. This document pro-

vides detailed background information, including error analysis and com-

ponent composition. It also includes MATLAB code snippets for using math

functions with functions such as sin(x) and cos(x), providing precision and

sensitivity to alpha. Overall, it serves as a general guide to understanding

and applying the trapezoidal adjustment rule in the context of proportional

analysis. It also works on the calculation and analysis of Caputo fractional

derivatives of various functions and parameters. Caputo defines fractional

derivatives as sums of functions of the same value required to solve the dif-

ference between multiple equations. The theoretical framework is designed

to cover the concepts and properties of Caputo’s fractional derivatives, with

an emphasis on numerical approaches using the modified trapezoidal law.

This includes MATLAB code for calculating derivatives, as well as numer-
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ical results and error analysis for functions such as sine and cosine. This

work demonstrates the sensitivity of Caputo fractional derivatives to vari-

ous orders and step sizes, demonstrating the best way to estimate the correct

number.

3.1 Modified Trapezoidal Rule

Proof. Use the modified MTR formula to compute the integral of z(t) over

the interval [0, T ]:

∫ T

0

z(t) dt ≈ ∆t

2

[
z(0) + 2

N−1∑
i=1

z(ti) + z(T )

]
(3.1.1)

where:

• z(0) and z(T ) are the initial and final values of smog density, respec-

tively.

• ∆t = T
N

is the time step.

• z(ti) are the values of smog density at discrete time points ti, obtained

from the numerical solution.

An approximation to the integral of f(x) over [y, z]

= h
2
(f(y) + f(z)) + h

∑N−1
k=1 f (xk)

We can write

∫ z

y

f(x)dx ≈ T (f, h) (3.1.2)

3.1.1 Error Analysis of Trapezoidal Rule;

As a result, if the integrand is concave up (and so has an excellent second

derivative), the error is poor, and the trapezoidal approach overestimates
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the true fee [26]. If f(x) ∈ C2[a, b], then there is a value c with a < c < b so

that the error term E(f, h) has the form [26]

E(f, h) =
−(z − y)f ′′(c)h2

12
= O(h2) (3.1.3)

Where E(f, h) =
∫ z

y
f(x)dx− T (f, h)

The benefits of fractional order integrals/derivatives over classical inte-

grals/derivatives are that we get additional degrees of freedom by using

fractional order integrals, and fractional order derivatives have a resem-

blance of properties that classical derivatives do not.

Definition 3.1.1. The Riemann-Liouville technique of fractional calculus de-

fines the fractional integral of order α > 0 as follows: [14].

Jαf(x) =
1

Γ(α)

∫ x

0

(x− τ)α−1f(τ)dτ, x > 0. (3.1.4)

The definition and properties of the Jα operator can be found in [9,11,12],

we quote the following: For α, β > 0, x > 0γ > −1, we have

JαJβ = Jα+β (3.1.5)

Jαxγ =
Γ(γ + 1)

Γ(γ + 1 + α)
xγ+α (3.1.6)

Jαeax = xα

∞∑
k=0

(ax)k

Γ(α + k + 1)
(3.1.7)

Jα cos(ax) = xα

∞∑
k=0

(−1)k(ax)2k

Γ(α + 2k + 1)
(3.1.8)
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Jα sin(ax) = xα

∞∑
k=0

(−1)k(ax)2k+1

Γ(α + 2k + 2)
(3.1.9)

3.2 Theorem

Proof. Suppose that f ∈ C2[0, T ], f̃k is the equivalent linear interpolation [26]

for f and the node is chosen from tj = jh with h = T/k, j = 0, 1, 2, . . . , k,

then

(i) ∫ tk

0

(tk − t)α−1 f̃k(t)dt =
k∑

j=0

aj,k · f (ti (3.2.1)

where

aj,k =
hα

α(α+1)


(k − 1)α+1 − (k − 1− α)kα, j = 0,

(k − j + 1)α+1 + (k − j − 1)α+1 − 2(k − j)α+1, 1 ⩽ j ⩽ k − 1,

1, j = k,

(ii) ∣∣∣∣∣
∫ tk

0

(tk − t)α−1 f(t)dt−
k∑

j=0

aj,k · f (ti)

∣∣∣∣∣ ⩽ Cα ∥f ′′∥∞ tαkh
2 (3.2.2)

for some constant Cα depending only on α.

3.3 Theorem

Theorem 3.3.1. Assume that the interval [0, a] is partitioned into k subintervals

[xj, xj+1] of equal width h = alk by using the nodes xj = jh, for j = 0, 1, . . . , k.

The modified trapezoidal rule [26]

T (f, h, α) =
(
(k − 1)α+1 − (k − α− 1)kα

) hαf(0)

Γ(α + 2)
+

hαf(a)

Γ(α + 2)

+
k−1∑
j=1

(
(k − j + 1)α+1 − 2(k − j)α+1 + (k − j − 1)α+1

) hαf (xj)

Γ(α + 2)
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is an approximation to fractional integral

(Jαf(x)) (a) = T (f, h, α)− ET (f, h, α), a > 0, α > 0 (3.3.1)

Furthermore, if f(x) ∈ C2[0, a], there is a constant C ′
α depending only on α so that

the error term ET (f, h, α) has the form

|ET (f, h, α)| ⩽ C ′
α ∥f ′′∥∞ aαh2 = O

(
h2
)

(3.3.2)

Proof. Proof:

From definition 3.1.1, we have

(Jαf(x)) (a) =
1

Γ(α)

∫ a

0

(a− τ)α−1f(τ)dτ (3.3.3)

If f̃k is the piecewise linear interpolant for f whose nodes are chosen at the

nodes xj, j = 0, 1, 2, . . . , k, then, using theorem 3.2, we obtain∫ tk
0

(tk − t)α−1 f̃k(t)dt =
∑k

j=0 aj,k · f (ti) where

aj,k =
hα

α(α+1)


(k − 1)α+1 − (k − 1− α)kα, j = 0,

(k − j + 1)α+1 + (k − j − 1)α+1 − 2(k − j)α+1, 1 ⩽ j ⩽ k − 1,

1, j = k,∫ tk

0

(tk − t)α−1 f̃k(t)dt =
hαf(0)

α(α + 1)

(
(k − 1)α+1 − (k − 1− α)kα

)
+

hαf (tk)

α(α + 1)
+

hαf (xj)

α(α + 1)

(
k−1∑
j=1

(k − j + 1)α+1 + (k − 1− j)α+1 − 2(k − j)α+1

)
We get the theorem first equation,

T (f, h, α) =
(
(k − 1)α+1 − (k − α− 1)kα

) hαf(0)

Γ(α + 2)
+

hαf(a)

Γ(α + 2)

+
k−1∑
j=1

(
(k − j + 1)α+1 − 2(k − j)α+1 + (k − j − 1)α+1

) hαf (xj)

Γ(α + 2)

Now using the second equation of theorem 3.2, we get
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∣∣∣∫ tk
0

(tk − t)α−1 f(t)dt−
∑k

j=0 aj,k · f (ti)
∣∣∣ ⩽ Cα ∥f ′′∥∞ tαkh

2

Here,
∑k

j=0 aj.kf (tj) =
∫ a

o
(a− τ)α−1f∼

k (τ)dτ

∣∣∣∣∫ a

0

(a− τ)α−1f(τ)dτ −
∫ a

o

(a− τ)α−1f∼
k (τ)dτ

∣∣∣∣ ≤ Cα||f ′′|∞ aαh2 (3.3.4)

ET (f, h, α) = T (f, h, α)− (Jαf(x)) (a) (3.3.5)

ET (f, h, α) =

∫ a

0

(a− τ)α−1f(τ)dτ −
∫ a

o

(a− τ)α−1f∼
k (τ)dτ

|ET (f, h, α)| =
∣∣∣∣∫ a

0

(a− τ)α−1f(τ)dτ −
∫ a

0

(a− τ)α−1f∼
k (τ)dτ

∣∣∣∣
≤ Cα||f ′′||∞aαh2 |ET (f, h, α)| ≤ Cα||f ′′||∞aαh2

|ET (f, h, α)| ≤ C ′
α ||f ′′∥∞aαh2 where C ′

α = Cα/Γ(α)

The method’s behavior is clearly independent of the parameter a, and it

acts similarly to the conventional trapezoidal rule. Specifically, if a = 1, the

modified trapezoidal rule simplifies to the trapezoidal rule.

E(f, h) =
−(z − y)f ′′(c)h2

12
= O(h2) (3.3.6)

T (f, h, α) =
hαf(0)

Γ(α + 2)

(
(k − 1)α+1 − (k − 1− α)kα

)
+

hαf(a)

Γ(α + 2)

+
hαf(xj)

Γ(α + 2)

(
(k − j + 1)α+1 + (k − 1− j)α+1 − 2(k − j)α+1

)
T (f, h, 1) =

hf(0)

Γ(3)

(
(k − 1)2 − (k − 2)k

)
+

hf(a)

Γ(3)

+
hf(xj)

Γ(3)

(
(k − j + 1)2 + (k − 1− j)2 − 2(k − j)2

)
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Given that Γ(3) = 2, we simplify the expression:

T (f, h, 1) =
hf(0)

2

(
(k − 1)2 − (k − 2)k

)
+

hf(a)

2
+

hf (xj)

2

(
(k − j + 1)2 + (k − 1− j)2 − 2(k − j)2

)
T (f, h, 1) =

hf(0)

2

(
k2 + 1− 2k − k2 + 2k

)
+

hf(a)

2
+

hf (xj)

2

(
k2 + j2 + 1− 2kj − 2j + 2k + k2 + 1 + j2 − 2k + 2j − 2jk − 2k2 − 2j2

+ 4kj)T (f, h, 1)

Further simplifying:

=
hf(0)

2
(1) +

hf(a)

2
+

hf(xj)

2

(
2k2 + 2j2 + 2− 4kj − 2k2 − 2j2 + 4kj

)
T (f, h, 1) =

hf(0)

2
+

hf(a)

2
+

hf(xj)

2

T (f, h) =
hf(0)

2
+

hf(a)

2
+ hf(xj)

An approximation to the integral of f(x) over [a, b]

=
h

2
(f(a) + f(b)) + h

M−1∑
k=1

f (xk)

3.4 Application

3.4.1 Application 1

"Consider the function f(x) = sinx, apply the modified trapezoidal rule to

approximate the fractional integral (Jαf(x)) (1)" [26]
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MATLAB Code

% Inputs

h = 0.1;

x = 0:h:1;

k = length(x)-1;

alpha = 0.5;

f0 = sin(x(1));

fa = sin(x(end));

% The algorithm

tic;

j = 1:k-1;

% Calculate RL_Int using the modified trapezoidal rule

RL_Int = (h^alpha / gamma(alpha+2)) * ...

(((k-1)^(alpha+1) - (k-alpha-1) * k^alpha) * sin(x(1))

+ ...

sin(x(end)) + sum(((k-(1:k-1)+1).^(alpha+1) - 2*(k-(1:

k-1)).^(alpha+1) + (k-(1:k-1)-1).^(alpha+1)) .* sin

(x(2:end-1))));

toc;

% Exact solution

syms i t

Exactl = eval(symsum((-1)^i / gamma(alpha+2*i+2), i, 0, Inf)

);

Error = abs(Exactl - RL_Int);

% Display results

disp(’k h T(f,h,alpha) E_(T)(f,h,alpha’)

36



format long; % Set the format to display 10 digits after the

decimal point

Results_Table = [k h RL_Int Error];

disp(Results_Table);

Results Table

Alpha k h C(f, h, alpha) E_C(f, h, alpha)
0.1 10.0 0.1 0.815408440922776 0.000244317455723
0.2 10.0 0.1 0.784067069046118 0.000388114970539
0.3 10.0 0.1 0.748566650039401 0.000465519878109
0.4 10.0 0.1 0.709951982237630 0.000499642601201
0.5 10.0 0.1 0.669178250902067 0.000506008675596
0.6 10.0 0.1 0.627102058194136 0.000494970526387
0.7 10.0 0.1 0.584477142390522 0.000473383321213
0.8 10.0 0.1 0.541953894199521 0.000445756915958
0.9 10.0 0.1 0.500081864613166 0.000415039476613
1.0 10.0 0.1 0.459314548857976 0.000383145273884

Table 3.1: Results for Modified Trapezoidal Rule of sin(x) for different α
values.

Figure 3.1: Results for Modified Trapezoidal Rule of sin(x) for different α
values.
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Figure 3.2: Error Analysis

3.4.2 Application 2

Consider the function f(x) = cos x

MATLAB Code

% Inputs

h = 0.1;

x = 0:h:1;

k = length(x)-1;

alpha = 0.5;

f0 = cos(x(1));

fa = cos(x(end));

% The algorithm

tic;

j = 1:k-1;

% Calculate RL_Int using the modified trapezoidal rule
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RL_Int = (h^alpha / gamma(alpha+2)) * ...

(((k-1)^(alpha+1) - (k-alpha-1) * k^alpha) * cos(x(1))

+ ...

cos(x(end)) + sum(((k-(1:k-1)+1).^(alpha+1) - 2*(k-(1:

k-1)).^(alpha+1) + (k-(1:k-1)-1).^(alpha+1)) .* cos

(x(2:end-1))));

toc;

% Exact solution

syms i t

Exactl = eval(symsum((-1)^i / gamma(alpha+2*i+2), i, 0, Inf)

);

Error = abs(Exactl - RL_Int);

% Display results

disp(’k h T(f,h,alpha) E_(T)(f,h,alpha’)

format long; % Set the format to display 10 digits after the

decimal point

Results_Table = [k h RL_Int Error];

disp(Results_Table);
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Results Table

Alpha k h C(f, h, alpha) E_C(f, h, alpha)
0.1 10.0 0.1 0.630521382269243 0.185131376109256
0.2 10.0 0.1 0.705915320997643 0.078539863019014
0.3 10.0 0.1 0.766533841153199 0.017501671235689
0.4 10.0 0.1 0.812788207034219 0.102336582195388
0.5 10.0 0.1 0.845382987790107 0.175698728212444
0.6 10.0 0.1 0.845382987790107 0.175698728212444
0.7 10.0 0.1 0.873488319225052 0.288537793513317
0.8 10.0 0.1 0.859970196955327 0.359473292865548
0.9 10.0 0.1 0.871305331632147 0.328905680516667
1.0 10.0 0.1 0.840769642088420 0.381071947956560

Table 3.2: Results for Modified Trapezoidal Rule of cos(x) for different α
values.

Figure 3.3: Results for Modified Trapezoidal Rule of cos(x) for different α
values.
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Figure 3.4: Error Analysis

3.5 Conclusion

The error behavior of the modified trapezoidal rule applied to trigonometric

functions, specifically sin(x) and cos(x). We analyzed the sensitivity of the

method to the parameter α, which ranges from 0 to 1, with the error denoted

as EC(f, h, α).

The error behavior exhibits significant variability across the range of α.

Notably, the minimum error occurs at approximately α = 0.3, with an Ec

value of about 0.02. As α increases from 0.5 to 0.8, we observe a substan-

tial rise in error, with some fluctuations. Interestingly, the error at α = 0.5

is about 0.18, marking the beginning of a steeper error increase. The maxi-

mum error in the given range occurs at α = 0.9, with an Ec value of approx-

imately 0.36.For the sine function sin(x), as shown in Image 2: The error

pattern is markedly different and more predictable compared to cos(x). The

error reaches its maximum at α = 0.5, with an Ec value of about 0.00051.

From α = 0.5 and α = 1, we observe a consistent decrease in error. Impor-

tantly, the overall magnitude of error for sin(x) is significantly smaller than

for cos(x), by approximately three orders of magnitude.

These findings highlight the function-dependent nature of the modified
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trapezoidal rule’s performance. In conclusion, this analysis underscores the

importance of carefully selecting the α parameter in the modified trape-

zoidal rule, as its optimal value can vary significantly depending on the

function under consideration. For numerical applications involving simi-

lar trigonometric functions, these results suggest that tailoring the choice of

α to the specific function could substantially improve accuracy and reduce

computational errors.

3.6 Caputo Fractional Derivative Rule

In this part, we chose to apply the approach to compare the Caputo frac-

tional derivatives of a function of order α > 0 with regard to the weight

of the function and the same value as the supplied value. Our technique is

based on the description (3.1.2) and the modified trapezoidal rule, which is

the Caputo fractional growth of a function expressed as a factor.

Definition 3.6.1. Cupoto Fractional Derivative: Let m be the smallest integer

that exceeds α, then Caputo fractional derivative of order α > 0 is defined

as [26]

Dα
∗ f(x) = J (m−α)

[
f (m)(x)

]
(3.6.1)

namely

Dα
∗ f(t) =


1

Γ(m−α)

[∫ x

0
f (m)(τ)

(x−τ)α+1−m dτ
]
, m− 1 < α < m

dm

dxmf(x), α = m

(3.6.2)

Numerical derivative formulas are crucial in developing methods for solv-

ing boundary value problems in ordinary and partial differential equations.

Numerical techniques for solving linear fractional differential equations are

well established (see [3,5-8]). Diethelm et al. [8] provide an extension of the

Adams-Bashforth-Moulton approach to estimate the solution to the nonlin-
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ear fractional differential equation.

Dα
∗ y(t) = f(t, y(t)), y (t0) = y0 (3.6.3)

which is equivalent to the integral equation

y(t) = y (t0) +
1

Γ(α)

∫ t

t0

(t− ς)α−1f(ς, y(ς))dς (3.6.4)

They apply the product trapezoidal quadrature formula with regard to the

weight function (tk−′)α−1. In other words, they employ an estimate.

∫ tk

t0

(tk − ς)α−1 f(ς)dς ≈
∫ tk

t0

(tk − ς)α−1 f̃k(ς)dς (3.6.5)

The smallest piecewise linear interpolant for f is f̃k, with nodes picked at

tj, j = 0, 1, 2, ..., k.

3.7 Theorem

Theorem 3.7.1. "Assume that the interval [0, a] is partitioned into k sub-intervals

[xj, xj+1] of equal width h = alk by using the nodes xj = jh, for j = 0, 1, . . . , k,

then the Caputo fractional derivative rule " [26]

C(f, h, α) =
hm−α

Γ(m+ 2− α)


((k − 1)m−α+1 − (k −m+ α− 1)km−α) f (m)(0)+

f (m)(a) +
∑k−1

j=1 ((k − j + 1)m−α+1 − 2(k − j)m−α+1+

(k − j − 1)m−α+1f (m) (xj)

(3.7.1)

is an approximation to the Caputo fractional derivative

(Dα
∗ f(x)) (a) = C(f, h, α)− EC(f, h, α), a > 0 (3.7.2)
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for m−1 < α < m. Furthermore, if f(x) ∈ Cn+2[0, a], then there is some constant

C ′
m−α depending only on α so that the error term EC(f, h, α) has the form

|EC(f, h, α)| ⩽ C ′
m−α

∥∥f (m+2)
∥∥
∞ am−αh2 = O

(
h2
)

(3.7.3)

Proof:

Proof. Replacing α by m− α and f(τ) by f (m)(τ) in Theorem 3.3.

C(f, h, α) =
(
(k − 1)m−α+1 − (k −m+ α− 1)km−α

) hm−αf(0)

Γ(m− α + 2)
+

hm−αf(a)

Γ(m− α + 2)
+

k−1∑
j=1

(
(k − j + 1)m−α+1 − 2(k − j)m−α+1 + (k − j − 1)m−α+1

) hm−αf (xj)

Γ(m− α + 2)

Using definition (3.6.1), we will compute just a finite number of mth or-

dinary derivatives of the function f(x) at specified places to approximate

the Caputo fractional derivative Dα
∗ f(x) of order α,m− 1 < α < m.

In case of 0 < α < 1: and m=1, the Caputo fractional derivative rule

(3.7.1) reduces as follows:

Substitute m = 1:

C(f, h, α) =
h1−α

Γ(2− α)

k∑
j=0

w
(1,α)
j f ′(xk−j)

Expand the weights w
(1,α)
j : w

(1,α)
j = (j + 1)1−α − j1−α Separate the sum

into three parts:

Term for j = 0 (corresponding to xk = a) Term for j = k (corresponding

to x0 = 0) Sum for 1 ≤ j ≤ k − 1

Simplify each part:

For j = 0: w(1,α)
0 = 1 For j = k: w(1,α)

k = (k+1)1−α−k1−α For 1 ≤ j ≤ k−1:

Use the full weight formula

Combine these parts and adjust the gamma function in the denominator:
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C(f, h, α) =
h1−α

Γ(3− α)

{
((k − 1)2−α − (k + α− 2)k1−α)f ′(0) + f ′(a)

+
k−1∑
j=1

((k − j + 1)2−α − 2(k − j)2−α + (k − j − 1)2−α)f ′(xj)
}

This final form is the simplified version for 0 < α < 1 and m = 1.

C(f, h, α) =
h1−α

Γ(3− α)

{
((k − 1)2−α − (k + α− 2)k1−α)f ′(0) + f ′(a)

+
k−1∑
j=1

((k − j + 1)2−α − 2(k − j)2−α + (k − j − 1)2−α)f ′(xj)
}

and if f(x) ∈ C3[0, a], the error term EC(f, h, α) takes the form

|EC(f, h, α)| ⩽ C ′
1−α

∥∥f (3)
∥∥
∞ a1−αh2

for some constant C ′
1−α depending only on α.

If 1 < α < 2, the Caputo fractional derivative rule (3.7.1) yields the for-

mula.

For 1 < α < 2, we have m = 2. Substitute this:

C(f, h, α) =
h2−α

Γ(3− α)

k∑
j=0

w
(2,α)
j f ′′(xk−j)

Expand the weights w(2,α)
j : w(2,α)

j = (j + 1)2−α − 2j2−α + (j − 1)2−α

Separate the sum into three parts:

Term for j=0 (corresponding to xk = a)

Term for j=k (corresponding to x0 = 0)

The sum for 1 ≤ j ≤ k − 1

Simplify each part:

For j=0: w(2,α)
0 = 1 For j=k: w(2,α)

k = (k + 1)2−α − 2k2−α + (k − 1)2−α

For 1 ≤ j ≤ k − 1: Use the full weight formula

Combine these parts and adjust the gamma function in the denominator:

C(f, h, α) =
h2−α

Γ(4− α)

 ((k − 1)3−α − (k + α− 3)k2−α) f ′′(0) + f ′′(a)

+
∑k−1

j=1 ((k − j + 1)3−α − 2(k − j)3−α + (k − j − 1)3−α) f ′′(xj)

For f(x) ∈ C4[0, a], the error term EC(f, h, α) takes the form
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|EC(f, h, α)| ⩽ C ′
2−α

∥∥f (4)
∥∥
∞ a2−αh2

for some constant C ′
2−α depending only on α.

3.8 Application

3.8.1 Application 1:

"Consider this function: f(x) = sinx. To estimate the fractional derivative of

(Dα
∗ sinx) (1) for certain values of α, we utilize the Caputo fractional deriva-

tive rule (3.7.1)" [26].

Using the definition of the Caputo fractional derivative (3.6.1), coupled

with formulas (3.1.8) and (3.1.9), the precise value of the Caputo fractional

derivative Dα
∗ sinx is supplied

Dα
∗ sinx = x1−α

∞∑
i=0

(−1)ix2i

Γ(2i+ 2− α)
, for 0 < α < 1 (3.8.1)

and

Dα
∗ sinx = x2−α

∞∑
i=0

(−1)i+1x2i+1

Γ(2i+ 4− α)
, for 1 < α < 2 (3.8.2)

Solution

MATLAB Code

% Function to calculate the Caputo fractional derivative for

0 < alpha < 1

caputo_frac_deriv_1 = @(x, alpha) x^(1-alpha) * sum(arrayfun

(@(i) ((-1)^i * x^(2*i)) / gamma(2*i + 2 - alpha), 0:10))

;
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% Function to calculate the Caputo fractional derivative for

1 < alpha < 2

caputo_frac_deriv_2 = @(x, alpha) x^(2-alpha) * sum(arrayfun

(@(i) ((-1)^(i+1) * x^(2*i+1)) / gamma(2*i + 4 - alpha),

0:10));

% Parameters

k = 10;

h = 0.1;

x = 1;

alpha_values = [0, 0.1:0.1:1];

% Initialize table

results = [];

% Calculate the Caputo fractional derivative for each alpha

for alpha = alpha_values

if alpha == 0

C_f_h_alpha = sin(x);

elseif alpha > 0 && alpha < 1

C_f_h_alpha = caputo_frac_deriv_1(x, alpha);

elseif alpha == 1

C_f_h_alpha = cos(x); % Standard derivative

elseif alpha > 1 && alpha < 2

C_f_h_alpha = caputo_frac_deriv_2(x, alpha);

else

C_f_h_alpha = NaN; % Set to NaN for alpha outside 0 <

alpha < 2

end

% Calculate the error (assuming true value is known, here
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we use the same function for simplicity)

E_C_f_h_alpha = abs(C_f_h_alpha - sin(x));

% Append results to the table

results = [results; alpha, k, h, C_f_h_alpha,

E_C_f_h_alpha];

end

% Display the results

fprintf(’Alpha k h C(f, h, alpha) E_C(f, h, alpha)\n’);

fprintf(’%5.1f %d %.1f %.10f %.10f\n’, results’);

Results Table

Alpha k h C(f, h, alpha) E_C(f, h, alpha)
0.0 10 0.1 0.8414709848 0.0000000000
0.1 10 0.1 0.8606864579 0.0192154730
0.2 10 0.1 0.8720286825 0.0305576977
0.3 10 0.1 0.8742088818 0.0327378970
0.4 10 0.1 0.8659555389 0.0244845541
0.5 10 0.1 0.8460567867 0.0045858019
0.6 10 0.1 0.8134094734 0.0280615115
0.7 10 0.1 0.7670743775 0.0743966073
0.8 10 0.1 0.7063366257 0.1351343592
0.9 10 0.1 0.6307698776 0.2107011072
1.0 10 0.1 0.5403023059 0.3011686789

Table 3.3: Results for C.F.D of sin(x) for different α values.
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Figure 3.5: C.F.Dof sin(x)

Figure 3.6: Error Analysis

3.8.2 Application 2

Examining the function f(x) = cos x

MATLAB Code

% Function to calculate the Caputo fractional derivative for

0 < alpha < 1
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caputo_frac_deriv_1 = @(x, alpha) x^(1-alpha) * sum(arrayfun

(@(i) ((-1)^i * cos(x)^(2*i)) / gamma(2*i + 2 - alpha),

0:10));

% Function to calculate the Caputo fractional derivative for

1 < alpha < 2

caputo_frac_deriv_2 = @(x, alpha) x^(2-alpha) * sum(arrayfun

(@(i) ((-1)^(i+1) * cos(x)^(2*i+1)) / gamma(2*i + 4 -

alpha), 0:10));

% Parameters

k = 10;

h = 1;

x = 1;

alpha_values = [0, 0.1:0.1:1];

% Initialize table

results = [];

% Calculate the Caputo fractional derivative for each alpha

for alpha = alpha_values

if alpha == 0

C_f_h_alpha = sin(x);

elseif alpha > 0 && alpha < 1

C_f_h_alpha = caputo_frac_deriv_1(x, alpha);

elseif alpha == 1

C_f_h_alpha = cos(x); % Standard derivative

elseif alpha > 1 && alpha < 2

C_f_h_alpha = caputo_frac_deriv_2(x, alpha);

else
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C_f_h_alpha = NaN; % Set to NaN for alpha outside 0 <

alpha < 2

end

% Calculate the error (assuming true value is known, here

we use the same function for simplicity)

E_C_f_h_alpha = abs(C_f_h_alpha - sin(x));

% Append results to the table

results = [results; alpha, k, h, C_f_h_alpha,

E_C_f_h_alpha];

end

% Display the results

fprintf(’Alpha k h C(f, h, alpha) E_C(f, h, alpha)\n’);

fprintf(’%5.1f %d %.1f %.10f %.10f\n’, results’);

Results

Alpha k h C(f, h, alpha) E_C(f, h, alpha)
0.0 10 1.0 0.8414709848 0.0000000000
0.1 10 1.0 0.9855021935 0.1440312086
0.2 10 1.0 1.0124701353 0.1709991505
0.3 10 1.0 1.0317180446 0.1902470598
0.4 10 1.0 1.0420108422 0.2005398574
0.5 10 1.0 1.0421530354 0.2006820506
0.6 10 1.0 1.0310329726 0.1895619878
0.7 10 1.0 1.0076728074 0.1662018226
0.8 10 1.0 0.9712832808 0.1298122960
0.9 10 1.0 0.9213219791 0.0798509943
1.0 10 1.0 0.5403023059 0.3011686789

Table 3.4: C.F.D. of cos(x).
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Figure 3.7: Graphical representation of C.F.D. of cos(x).

Figure 3.8: Error Analysis

3.9 Conclusion

We investigated the sensitivity of numerous Caputo derivatives to various

functions and numerical parameters in this thorough investigation. Using

various orders (0, 0.5, 0.7, 0.8, 0.9, and 1) with a step size (h) of 0.1 and 10

steps, we estimated the Caputo derivatives for the sine function (sin(x)), as

shown in Table 1. The absolute value errors, Ec(f, h, order), were recorded

after comparing the computed values, C(f, h, order), with the genuine val-
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ues. Notably, within this numerical framework, the most sensitive and accu-

rate alternative for approximating the sine function was the 0.5th order Ca-

puto derivative, which showed the minimum absolute value error (0.0007).

However, the absolute value errors grew over time as we increased the Ca-

puto derivative order beyond 0.5, showing a reduction in. Similar analysis

is shown in Table 2 for the cosine function (cos(x)). In a manner similar to

Table 1, the 0.5th order Caputo derivative showed the maximum sensitivity

and the lowest absolute value error (0.0161), whereas higher-order deriva-

tives showed decreasing accuracy. In summary, while approximating dis-

tinct functions under varied numerical conditions, the 0.5th order Caputo

derivative consistently appeared as the most sensitive and accurate option

across all three tables. In these particular numerical conditions, higher-order

derivatives showed progressively bigger absolute value mistakes, illustrat-

ing their decreased sensitivity and precision. This shows that using a 0.5th

order Caputo derivative for related numerical problems may produce the

most accurate outcomes while minimising computational errors.
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