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Preface

Main natural resourccs of fresh water reservoir are springs, fountains, rivers, and
lakes. All rivers do not maintain their aboveground passage throughout the flow
journey, from their sources to cstuaries. Sometimes, a river vanishes beneath the
ground, at one place and emerges above the ground at other. One wonders, how docs
this underground flow take place? Flow of all sort of fluids (liquids and gases)
beneath the crust through sands, soil's particles and aquifers are caused by the
"Porosity of the matter" or "Void friction”. Porosity of a rock or a matter is a
measure of its ability to held or allow fluids to pass through it. For, in the rocks there
are tiny spaces that hold the oil or gas etc. Quantity or capacity of porosity for any
material lies between 0% to 100%, for instance thc sandstone consists of 8% of the
void [riction, This means 92% ol its composition 1s solid rock and 8% is an opcn
space, permitting fluids to pass through, Moreovcer. Lthe characteristic in any material
allowing fluids to leave or enter in any vacuum is known as its "Permeability” and
denoted by "k". Permeability is affected by the pressure in a rock. A practical unit of
measure of permeability is called the "Darcy ()", named after Henry Darcy.,
Morcover, it is adequate cnough to state that peristaltic flows arc caused by
propagation of waves along (lexible walls of a rectangular duct or any channel, in
which the fluid (air, liquid and gas} is moving. The transport of fluids from one place
to another in body follows the mechanism/principle of peristaltic pumping. Besides,
peristaltic flows have a significant function in the practical applications of various
biomedical apparatuses, like as hcart-lung machines ctc. Thorough investigations of
the biofluids, help physicians and surgeons to diagnose various diseases that arise in a
living body due to their flow behavior of non-Newtonian fluid such as blood.

Flow of non-Newtonian fluids through the porous medium has always fancied the
geologists for their interesting behaviors. Therefore, a number of rescarch works is
gasily available for the young and new learners, in which the veteran scientists and
engineers have employed their unique innovation and skills, with their own
perspective, to achieve their desired goals.

[t is a well-known fact that Latham [1] is considered to be the pionecr and is held
responsible for introducing the concept of peristalsis. To understand peristaltic motion
[1] in diverse situations, several theoretical and experimental attempts have been
made. Among all, the early literature is presented by Jaffrin and Shapiro |2]. Most
recently, Mahmoud et al. [3] havce successfully applicd the cffects of MHD on
peristaltic motion of Jeffrey fluid passing through porous medium in an asymmetric
channel by means of Adomian decomposition method. The influences of Hall current
and slip condition on MHD flow induced by sinusoidal peristaltic wavy wall in two
dimensional viscous fluid through a porous medium for moderately large Reynolds
number is reported by Mckheimer ct al. [4]. They obtained series solution by regular
perturbation method. Vajravelu et al. [5] have analyzed the influence of heal transfer
on peristaltic flow of Jeffrey fluid in porous stralum. Also Elmaboud and Mekheimer
[6] have studied peristaltic motion of second-order fluid through porous medium. The
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system of governing nonlinear partial differential equations is solved by using
perturbation method up-to second-order. In order to derive out the expression for the
pressure gradient the analytic solution has been obtaincd in the [orm of a stream
function. The peristaltic flow of Jeffrey fluid with variable viscosity through porous
medium in an asymmetric channel is investigated by Ellahi et al. [7] whereas Hayat at
et al. [8] have obtained an analytic solution for the problem having the impacts of
MHD on peristaltic flow of Maxwell fluid in porous medium. Ramesh and Devakar
[9] have examined the influences of heat and mass transfer on peristaltic transport of
magnetohydrodynamic couple stress fluid through homogeneous porous medium bin
a vertical asymmetric channel. The peristaltic fluid flow through porous medium in a
cylindrical tube is presented by Shehawey and E] Sebai [10]. The simultaneous effects
of MHD and slip condition, on peristaitic flow of Newtonian fluid are examined by
Ebaid [11]. Tripathi [12] has presented analyticatly and numerically results on
transient peristaltic heat for porous channel of finite length. The peristaltic flow of
Newtonian fluid with heat transfer in vertical asymmetric channcl through porous
medium has becn studied by Srinivas and Gayathri [13]. The analytical solution has
been obtained in the form of temperaturc from which an axial velocity. stream
function and pressure gradient have been derived. Srinivas and Kothandapani |14]
have obtained an analytic solution under the assumption ol long wave length and low
Reynolds. In the said study the effects ol heat and mass transfer on peristaltic
transport of an electrically conducting fluid passing through porous space with
compliant walls are perceived. Elshehawey ct al. [15] offercd the solution of
peristaltic flow of an incompressible viscous fluid in an asymmetric channel through a
porous medium. Afifi and Gad [16] have reported the interaction of peristaltic flow
with pulsatile fluid through porous medium. Some noteworthy investigations on the
topic can be seen from the list of references [17-26].

In view of existing literature, a uselul contribution to sec the effects of partial slip
condition on the peristaltic flow of Jeffrey fluid in a rectangular duet through a porous
medium, which indeed, is a unique innovation since for all reasons, the available
literature is an indicative due to omitted idea reported in this article. [n order to bridge
this gap a fruitful attempt is made to analyze the peristaltic flow of Jeffrey fluid by
using the assumption of long wave length and low Reynolds. Eventually, exact
solutions are obtained with the help of separation of variables method. Moreover, the
expression for stream functions is obtained numerically. Graphical behavior of
important parameters have also been discussed and displaycd.
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Chapter 1

Preliminaries

This is an introductory chapter which presents some basic definitions of fluid mechanics

and governing equations necessary for the subsequent chapters.

1.1 Definitions

1.2  Fluid mechanics

Fluid mechanics is a branch of engineering sciences, which deals with the behavior of the
fluid under the conditions of both static and dynamic situations. Moi‘eover, one can say
that fluid mechanics is the study of fluids (i.e., liquids and gases) and involves various
properties of the fluid, such as velocity, pressure, density and temperature, as the function

of space and time. Fluid mechanics may be divided into three categories these are:

*  Fluid static.
=  Fluid kinematics.

*  Fluid dynamics,

1.2.1 Fluid statics

A branch of fluid mechanics deals with the fluid behavior when the fluid is at rest.

1.2.2 Fluid kinematics

A branch of fluid mechanics deals with the fluid behavior at rest, neglecting forces

causing the motion,

1.2.3 Fluid dynamics

A branch of fluid mechanics deals with the fluid behavior at motion under the influence

of forces acting on it.



1.3  Velocity ficld

When dealing with the fluids, we are interested in the description of the velocity field. If
we define a fluid particle as a small mass of fluid of fixed identity of volume du, the
velocity at point ¢ is defined as the instantaneous velocity of the fluid particles which, at
a given instant, is passing through a point ¢, at a given instant, the velocity ficld Vis a
function of space coordinates (x,y,z) the vclocity at any point in the flow fietd might

vary from one instant to another. Thus the entirely representation of velocity is given by

V=V(x,y, zt). (1.1

1.4  Fluid

Fluid is defined as a substance which is capable of flowing. It has no defined shape, but it
takes the shape of its container. Besides, a fluid offers very little or no resistance to the
external force/stress, when applied on it. In simpler terms, one can also make it out that
the fluid is a substance which offers no resistance subject to shear foree. I'luids can be
liquid, vapor or gas. Common examples of daily fluid include water, dicscl, petrol, gas

and air etc.

1.5 Types of fluid

Physical features and nature go a long way, in understanding the different types of fluid
that exist in or on the planet earth. Therefore, it is classified into four basic kinds. These

are.

1.5.1 Ideal fluid

An ideal fluid is the one which has no viscosity. Moreover, it is not compressible in

nature, Physically, such a fluid does not exist in our universe.

1.5.2 Real fluid

A real (or viscous) fluid is one which has finite viscosity and thus can exert a tangential
{or shearing) stress on a surface with which it is in contact. Common examples of real

fluid in daily lives include; Kerosene oil, Petrol, Castor oil ete.



1.5.3 Newtonian fluid
Newtonian fluid can be defined as a linear relation between shear stress and rate of strain.
It can also be defined as ‘‘Fluid which holds Newton's law of viscosity is called

Newtonian fluid’’. Mathematically, it can be described as

Tyy & -:—;i (1.2)
Tey = B (1.3)

where 7., is shear stress, u is the fluid viscosity, x is the direction of flow and y is
perpendicular to the flow. Fluid that exhibits Newtonian behavior are water, gasoline, air
and glycerin.

1.5.4 Non-Newtonian fluid

Non-Newtonian fluid can be described as the fluid for which shear stress is directly but

non-linearly proportional to the rate of deformation.

Mathematically, it can be written as

r,y=p(j—:)",n¢1, (1.4)

where n called the flow behavior index. For n = 1 the above equation reduce to
Newtonian’s law of viscosity. Examples include lubricants, paintes, slurries, toothpastes,

drilling muds and biological fluids.

1.6 Jeffrey fluid
Jeffrey is the name of a scientist who gave a stress tensor for a non-Newtonian fluid,
containing a ratio of times A, (i.e., the ratio of relaxation time to retardation times) known

as Jeffrey parameter. It is denoted by

__ Relaxation time of the fluid (1.5)
1 ™ “Retardation time of fiuid ' '
Relaxation time of the fluid
A = ; : (1.6)
2



1.6.1 Relaxation time
It is describe as the time taken by the Jeffrey fluid to regain equilibrium state, after its

deformed or perturbed state.

1.6.2 Retardation time
It is describe as the time taken by the Jeffrey fluid to get deformed subject to shear stress.

It is denoted by A,.

1.7 Propertics of fluid
Fluids, in general, may have many properties related to mechanics, thermodynamics, or
other science fields. The following are some of the most important and basic properties of

the fluid which are used in this dissertation.

1.7.1 Deausity
The density defincs as mass per unit volume. 1t can also be termed as the ratio of mass of

a fluid to its volume. Mathematically, it can bc written as

Density = LR (1.7

Voume

Density is represented by the symbol p its unit is kgm™2. Generally, the fluid density
decreases by increasing the temperaturc of fluid. Similarly it increases by increasing the

pressure of fluid. Moreover, the density of a standard liquid (i.c., water) is 1000 kgm™3,

1.7.2 Dynamic viscosity

The coefficient of dynamic viscosity # can be delined as the shear [orce per unit area {or
shear stress) required to drag one layer of fluid with unit velocity past another layer a unit

distance away from it in the fluid. Rearranging Eq. (1.3),

_ _tay
,u-—dumy. (1.8)

2

Units of viscosity in SI system arc Nsm™< or Pascal- sccond (pas).



1.7.3 Kinematic viscosity

The ratio of absolute viscosity to the fluid density is known as kinematic viscosity.

Mathematically, it can be written as

Kinematic viscosity = “—"-"3{%:‘—;:::%“’ (1.9)
&
b=t (1.10)

Kinematic viscosity is denoted by Greek symbol v (nu). In S! units, kinematic viscosity
measured in square meter per second (m?s~1) as well as in the metric system the well-

known units are square centimeter per second (cm?s™1) also called the stoke (St).

1,7.4 Pressure

Pressure is basically a type of surface forces. This is defined as the force per unit area. In
fact, it is the ratio of force to an area of the fluid on which the force acts (area is normal

to the direction of the force acting upon it).

Mathematically, it can be represented as

Pressure = Force exerted (1.11)
™ Area on which the force acts ’ ’
P= Force rvartad (l 1 2)

™ Asve on which w.e force acts *

In SI units pressure is measured in Newton per square meter (Nm™2) and also known as

Pascal.
1.8 Flow

It is a phenomenon in which the deformation of material increases continuously without

limit when different forces act upon it.



1.9 Flow types

1.9.1 Internal flow

Flows that are bounded by entirely by solid surface are called internal flows. Internal
flow can be laminar, turbulent, compressible or incompressible. Examples are flow in

duct and flow in nivers.

1.9.2 External flow
Flow over bodies immersed in an unbounded fluid is called external flows. Examples are

flow over an airplanes, missiles and ships.

1.9.3 Steady flow

A flow is said to be steady or stationary when the velocity vector and other fluid
characteristic (i.e., pressure, density, etc.) at every point in a fluid do not change with
respect to time so that the flow pattern remains unchanged. Mathematically, it can be

written as

& =o. (1.13)

1.9.4 Unsteady flow

A flow is said to be unsteady when fluid characteristics and conditions at any point in a

fluid change with time. Mathematically it can be written as
av
5 * 0 (1.14)

1.9.5 Uniform flow

Flow is described as uniform if the velocity at a given instant iz the same in magnitude

and direction at every point in the fluid.

1.9.6 Non-uniferm flow
Flow is described as non-uniform if the velocity at a given instant, the velocity changes

from point to point,



1.9.7 Incompressible flow

The flow in which the density of the fluid does not éhange during the flow and viscosity
of fluid decreases with temperature is known as incompressible flow. All liquids are

compressible fluids.

1.9.8 Laminar flow

Flow is described as laminar if the fluid particles move along straight parallels paths in
layers (or laminar). For example, a stream of dye of ink inserted in a laminar flow will

trace out a thin line and always be composed of the same fluid particles.

1.9.9 One dimensional flow

Flow is described as one dimensional if the velocity is function of only one space

coordinate and time. For examples, flow through a straight pipe.

1.9.10 Two dimensional flow

Flow is described as two dimensional if the velocity is function of two space coordinates

and time. For examples, flow over a porous plate.

1.9.11 Three dimensional flow

Flow is described as three dimensional if the velocity ts function of three space

coordinates. For examples, flow past a porous plate in a rotating fluids.

1.9.12 Volumetric flow rate

The volume of fluid passing any cross-section in unit time is called the volumetric flow
rate {or discharge). It i usually represented by the symbol! @ in SI units, volumetric flow

rate measured in cubic meters per second (m*s™?).

10



1.10 Forces in the fluid

In fluid dynamics, a moving fluid often comes under the effect of various kinds of forces,
acting upon it. Which have been categorized into two main types. These forces are given

as follows:;

1.10.1 Body force

Body force is a force which applies on per unit mass of the fluid. This kind of force acls
throughout the volume of a body. Gravitational lorce, Centrifugal [orce, Llcctric force
and Magnetic force, arc the common examples of the body force. Furthermore, it is also

termed as long range force or volume force.

1.10.2 Surface force

It is define as a force, which acts upon per unit arca of the fluid. Whenever, a surface
force applies on the surface of any fluid it acts normally over the arca, whcereas shear

stress acts tangentially over an area. Pressure, shear stresses, resistance ete. are the
common cxamples of surface force. Mathematically, is denoted by /.
1.11 Dimensionless number

In field of Fluid mechanics, in order to reach beticr results and conclusions, it is oftcn
preferred to ignore the dimensions of some paramcters. Thercfore, to mect this purposc a
sort of numerical quantity/parameter is uscd which is known as “Dimensionlcss number”
or “Dimensionless parameter™, Basically, this number is the ratio of a pair of forces. This
can be obtained if force of inertia is divided by any one of these forces i.e., viscous force.
force of gravity, pressure force, force of surface, or clastic force. There are various
dimensionless numbers in use, each depending upon its use and condition. Most
commonly used non-dimensional parameters include Reynolds number, Hariman
number, Froude’s number, weber’s number, Richardson number. Here is the mention of
those dimensionless parameters which have been used in this dissertation.

1.11.1 Reynolds number (Re)

It is defined as the ratio of inertial force, to viscous force of the flowing fluid. The

expression for Reynolds number is obtained and denoted as:

11



Re = 2&Z (1.15)

T}
Eq. (1.15) can be rewritten as:
Re =<, L(L16)
L ¥
where [ is the characteristic length, and U is the typical velocity. "

The significance of a Reynolds number is, to help one in describing the flow pattern of a
fluid, It determines whether the fluid's flow is a laminar or a turbulent. For instﬁht, a fluid
is passing through a round pipe if: -

s Re <2100, then the fluid flow is termed as laminar flow.

s Re > 4000, then the fluid flow is termed as Turbulent flow.

e 2100 < Rex 4000, then the fluid flow is termed as transitional flow.
1.11.2 Hartmann number (Ha)
It is descrihed as the ratio of electromagnetic force to the viscous force and has the

expression:

M=BLJ§. (1.17)

where

» B is the magnetic field.

* o is the electrically conductivity.

1.12 Stream line

Streamlines are a family of curves that are instantaneously tangent to the velocity vector

of the flow.

1.13 Boundary

It is defined as a condition, which is required to be satisfied, hy the set of differential
equations, at all parts of the houndary of a region, in which the given set of differential

equations is to be solved.

12



1.13.1 Partial slip condition

In fluid mechanics, partial slip condition also koown as ship condition of a great
significance. For, in real life phenomenon, no-slip condition rarcly exists or does not hold
in all the situations. In some cases, the fluid tends to slip at stationary wall solid
boundary. This gives rise in differencc between the velocity of the fluid and the wall. The
idca of partial slip was, originally proposed by Navier. This condition states that vclocity

u in x-direction is directly proportional to shcar stress at the wall,

Mathematically, it is denoted as

Viwall & Ty (1.18)
Vwalt = ﬁlr:ry : (1.19)

where ff; denotes the slip parameter, Eq. (1.19) is known as the slip condition of the Muid

at wall.

1.14 Peristalsis

Peristalsis is one of thc most csscntial and significant systems being carried out in a
human body. It is a spontancous, scries of muscular contraction and relaxation, which
takcs place in human’s digestive systcm or digestive tract, and in somc organs that

connect kidney to the bladder, Peristalsis is responsible for the movement of

* Urine from kidney to bladder.
* Food through digestive system.
* Bile from gallbladder to the duodenum,

1.15 Magnetohydrodynamics (MHD)

In 1942, a Swcdish scicntist and Nobel Prizc laureate, Hanncs Alfven for the very first
time introduce the use of (MHD). MHD is the academic discipline which studies the
dynamics of elcetrically conducting fluids, Examples of such fluid include plasmas. salt,
water and liquid metals. The elementary idea behind MHD generates forces on the fluid
and also changes the magnetic field itself. Equations which deseribe MIID arc a
combination of the Navier-stokes equations of MMuid dynamics and Maxwell's equation of

electromagnetism,

13
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1.16 Darcy number

It i1s described as

K="5 (1.20

a?’

where k; is the permcability of the medium and a is a characteristics length. Darcy

number presents the effect of permeability of the medium versus its cross- sectional area.

1.17 Porous medium

A porous medium is a continuous solid phase with intervening void or gas pockets.
Natural porous media include soil, sand, sponge, wood and others. Synthetic porous

media include paper, cloth filters, chemical reactions catalysts and membranes.

1.17.1 Darcy’s law

Darcy’s law hold for viscous fluid flows with low speed in an unbounded porous
medium. This law relates the pressure drop include by was the fractional drag and
velocity and ignores the boundary ¢ffects on the flow (i.c., invalid where there arc
boundaries of the porous medium). According to this law thc induced pressure drop is

directly proportional to the velocity, Mathematically it can cxpressed as

V‘Dl:‘f”- (1.21)

where k, is a constant called permeability (ability of porous medium to transmil or pass
fluid through the voids) and is independent of the nature of the fluid and depends upon

the geometry of the medium and has dimension [L?].

1.17.2 Porosity

It 1s also known as void fraction, It is measurcd of void spaces in a material and defincd

as the ratio of volume of voids to the total volume,

_w _
¢ =" {1.22)

where Vy, is the volume of void-space (such as fluids) and V7 is the total or bulk volume

of material, including the solid and void components.
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1.18 Basic equations

1.18.1The equation of continuity

The equation of continuity is the mathematically expression of the principle of

conservation of mass. The differential form of this principle is

ap _
For steady state situation
dp _
rria 0. (1.24)

So the continuity equation for steady state fluid takes the form

7.(oV) = 0. (1.25)
If density p is constant as in the case of incompressible fluid, the continuity equation
simplified to

v.V=0. ¢ (1.26)

1.18.2 The equation of metions

Equations of motion describe the law of conservation ol linear momentum. In [luid

dynamics, vector differential form of momentum equations, is given by

oV av

===+ (V.7)V,
oo o b (1.27)
=E—F—;Vp+uv 14

1.18.3 Maxwell’s equations

Maxwell's equations are tbe set of four equations which relates the electric and magnetic
field to their sources, charge density and current density. Individually, these equations are
Gauss’s law, Gauss’s law for magnetism, Faraday’s law of induction and Ampere's law

with Maxwell’s correction.
These equation are described as

v.E=£, (1.28)

€
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v.B=0, (1.29)

3B
VXE=—-— (1.30)

and
VXB=u0]+uDGO' (l%])

In above equations, p, is charge density, £ is the electrical field, €, is the permittivity of

the free space, g is the magnetic permeability, B is the magnetic field.

1.19 Separation of variables

In the solution of differential equations, separation of variables is one of several methods,
which are used to solve both an ordinary and partial differential equations. It is also
known as the Fourier method. Separation of variables is applicable in the solution of
PDEs, if

* The given PDE is homogencous (i.e., in the absence of forcing function).
* Boundary conditions are also homogeneous.

* Domain should be finite.
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Chapter 2

Simultaneous effects of MHD and partial slip on peristaltic
flow of Jeffrey fluid in a rectangular duct

This chapter contains the review work of [26]. In this chapter, we givc a detailed
calculation of the flow of the Jeffrey fluid under the ¢ffects of MIID and partial slip. The
analytical solution of wvelocity and pressurc gradicnt have been found under the
supposition of long wave length and low Reynolds number. The expression for pressure
rise in a rectangular duct has becn evaluated numerically. The effects of related
parameters, such as the Hartman number, slippage paramcter. volume flow, aspecl ratio

and Jeffrey parameter, pressure gradient and pressure rise arc graphically tllusirated.

2.1 Formulation of the problem

Let us constder the flow of an incompressible, Jeffrey {luid in a duct of rectangular cross
section having the channel width 2d and height 2a. [n the present geomelry, the
Cartesian coordinates system 1s considered in a way that X — axis is taken along the axial
direction, Y — axis 1s taken along the lateral direction and Z — axis is along the verlical

direction of a rectangular duct.

Fig. 2.1. Gecometry ol the problem.

17



The peristaltic wave on the wall is represented as:

Z = H(X,t) = +a + bcos [%”(Xﬁct)]. oD
where a and b are the amplitudes of the waves, 4 is the wave length, ¢ is thé velocity
propagation, t is the time and X is the direction of wave propagation. The wal‘!s parallel
to XZ plane remain undisturbed and are not to subject any peristaltic wave motion. I 1s
assumed that there is no change in lateral direction of the duct cross section mcans the
lateral velocity is zero. Let V = (U,0,W) be the velocity for a rectangular duct. The

govemning equations for the problem arc given below.

(1). Equation of conservation of mass:

v | aw
w3 0. (2.2)

(2). Equation of momentum:

poe=-YP+V.S+]XB,

where J is the current density or Lorentz force which is the force requircd by a charge

particle to move in magnetic and electric field, Mathematically. it is cxpressed as
] =0(E+VxB),

in which B is the total magnetic [lield such that B = By + b. B 1s the sum of applicd and
magnelic lleld By and induced magnetic field b. Induced magnctic ficld is negligible
eompare with applied magnctic ficld. Morcover, the XZ-walls of the rectangular duct are
electrically insulated and no energy or charge / clectricity is added or extracted from the
fluid by the eleetric field. Therefore, this implies that there is no electric ficld present in
the fluid region. With the help of these assumptions the clectiromagnetic force J X B takes

the following form
JxB=0c(V xB)xB.

Then, the above equation of momentum in the form of velocity components, becomes

18



au au dai ___6_P a i _a_ B 2
P2+ U+ W) = =4 Sux + 3 Sur + 5 Sez — 03U, (2.3)

ar i} a a
0=""a';+aSyx +‘5‘Fs‘ry +£Sy‘z, {24}
aw oW awy_ _ap 2 a F I,
,o(at +US+ WE) = 2 L Sux + 5o Suy + 3= 522 — OBIW, (2.5)

where U and W are the velocity components in fixed frame (X,Y) and, § denotes the

shear stresses. Moreover, stress tensor for Jeffrey fluid is defined as

ot (4 AP |
=1 (7 + A7), (2.6)
Y=+ 0V, 2.7

The boundary equations for the problem are:

UX,Y,Z) =0, atY = + d, (2.8
L v '

U(X, Y,Z) = Uwau - EE , atZ = H(X, t), . (2,9)
L 8u .

U(X,Y,Z) = Uwau‘FTME, atZ=—H(X,t), (210}

where H(X,t) = +a + bcos [3;—' (X — ct)] and —H({X,t) = —a — bcos [3;- (X - ct)].

Now, we define a wave frame (x, y) moving with the speed ¢ away from the laboratory

frame (X, Y) by using the following transformation:

x=X—ct,y=Y,z=Z,u=U—c,} @11
w=W,p(x,z) =P(X,Z,1). '
Selecting the following set of non-dimensional variables and parameters
sfoY polg Mooy TRt 4
x_l'y_d’z_a'u_c'w_rﬁ't_ n'h_ﬂ'p_.uczl
= a d = a = d . = A
:Ef=;sx:rl Siy"—‘;;Sxya ff:Ia_c xz Sjrz = Tty Syy = C,Syy: (2.1
_b L _ pacé - |7 _a _ A o
p=tp=tRe =20 M= [Fan =t 5, = 45,0
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Egs. (2.2) — (2.6) after dropping the signs of bar, take the following form:

g_: i_‘:=0, (2.13)

Re(ug—:+w?£ =—g—z+5;;3xx+ﬁ2%5xy+%3ﬂ—Mz(u+l), (2.14)
0= 6225, +86225,,+ 55y, (2.15)

Re&? u‘;—‘:+w‘;—‘:)=wg+52%52,+5525"552y+52%sn—52M2w. (2.16)

Using the supposition of long wave length and low Reynolds, terms of order § and higher
power are neglected. Then the above-mentioned Eqs. (2.13) — (2.16} will be reduce the

following non-homogeneous, lincar and second order partial differential equation (PDE):

g2 O%u 1 2w —
1424, 3y2 + 1+4, 92?2 M+ 1) = ax’ (2.17)

Therefore, the corresponding boundary conditions at the walls are describes as:

ulx,y,z) =~1, at y = +1, (2.18)

u(x,y, z) = —1%3—:— 1, at z=+h(x) =1 + ¢ cos 2nx, (2.19)
1

u(x,y, z} = +;%—g§— 1, at z=—h(x) = —(1+ ¢cos2nx). (2.20)
1

2.2 Solution of the problem

It is observed that Eq. (2.17), is a linear, non-homogenous and sccond order partial
differential equation, comresponding to the boundary conditions given in Egs. (2.18) -

(2.19). In order to solve Eq. (2.17), consider the {ollowing transformation
u(x,y,z) = vi{x,y,2) + w1 (), (2.21)

which 1s suggested by Richard Haberman in his book ‘‘Elementary applied partial
Differential Equations’’, This transformation is useful to converl non-homogeneous
partial differential equations and boundary conditions into homogcneous panial
differential equations and boundary conditions. By using Eq. (2.21), in Eq. (2.17). This
gives
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g2 a%p, 1 2%y,

1 — M2, =
1444 8y2 1+, D22 Mv, =0 . (2.22)
and
B dwy a2 g2 _ 0P
7 Méw, — M* = e (2.23)

Moreover, the boundary conditions are transformed into the following form

wy(y) = —1, when y=1+1, (2.24)
v {x,y,2) =0, when y==1, (2.25)
v (x,y,2) = _1%?% —-1—w,(y), when z = h(x), (2.26)
v, (x,y,2) = +1f_il2_v;‘ 1—w,(y), when z = —h(x). @2

Here, it can be noted that the transformation yields, the main given problem:into two
systems of differential equation. First one is a partial differential equation (i.e.,iq. 2.22)
and second one is a second order linear ordinary differential equation (i.e., Eq.s2.23) but
non-homogeneous, comresponding to their boundary conditions. Now, we arefgoing to

find the solution of these two equations.

2.2.1 Solution of ordinary differential equation
By considering Eq. (2.23), with the boundary conditions Eq, (2.24) such that

82 a*w,

2 2 _4p
e d MW MT=o

dx’

wi()=-1 at y ==*1.

e

The complementary function (C.F,) is the solution of homogeneous equation, for the

above ODE, the complementary function and particular solutions are

wy, = ¢, cosh (%Hl y) + ¢3sinh (@ y) (2.28)

and
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wy =—1-—22 (2.29)

Thus the general solution is determined by

) = o (S 5w cysion (S ) - o

M2 dx

Applying the boundary conditions Eq. (2.24), in above equation to obtain the values

of ¢; and ¢,. Such that:

1d M T4
€, = ——Lsech (—-———’)

17 M2ax g
and
¢z = 0.
Thus the general solution is
wi(y)=-1- %-‘;—: [1 — sech (%—m)cosh (—M;—H' y)] (2.31)

2.2.2 Solution of partial differential equation

Considering the PDE in Eq. (2.22), this is second order, linear and homogeneous partial
differential equation with the corresponding boundary conditions from Eq. (2.25), such
that

ﬂz azvl 1 Bzvl

2 —
— v —
1+4; dy2  1+4, aa? My, =0,

nx,y2)=0 at y=41.

Now we can use the method of separation of variable to obtain the solution of given PDE.

It is assumed that

vi(x,y.z) = Y(y} x Z(z), (2.32)

is one of the possible solutions of Eq. (2.22). Using the Eq. (2.32) in Eq. (2.22), it

provides

y -1 ZH M2
Te=mrtEt)= —a? (say), (2.33)
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-
~n

=—=-a (2.34)

and
RS CEPNERTL | (2.35)

Using the boundary conditions Eq. of (2.25), in Eq. (2.32). This yield

[F(zD] x [2(z)] = 0,

= Z(z) #0,
this implies that

Y(z1)=0. (2.36)

Then, there are two possible cases to attain the mandatory solution.
Case-I.

From Eq. (2.34)

"

Y
= gl

Y
= [D? +a?]xY({y) =0,
=Y(y)+0,
= [D?+a?] =0,

D = +(ia).

It is familiar that a trivial solution is attained for the values of @ = 0 and a < 0, The only

non-trivial solution is obtained, for the value of @ > 0,Which yields

Y{¥) = c3 cos(ay) + ¢, sin(ay). (2.37)

where ¢3 and ¢, are the constants that are determined by using Y{+1) = 0, in above

equation. It gives

¢s =0, (2.38)
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o

an= (), n=123.. (2.39)
Thus the Eq. (2.37) becomes
YO) = cycos (F22Ey), n=123.. (2.40)
Case-11
Similarly, from Eq. (2.35)
2L+ a) =,
= %%: —a? —g—:—(l + 4,),

= D = +/a?f2 + M2(1 + 4,).

This implies that

Z(z) = cscosh(z/a?B? + M2(1 + 1) ) + cgsinh(zfa?B2 + M2(1+4,) ).  (241)

By using the values of Y(¥) and Z(z) in Eq. (2.32). This leads to be

vy (x,5,2) = ¢3]cs cosh(zy/a?fZ + M2(1 + 1) ) + ¢ sinh(z/aZB% + M2(1 + 4,) )]
(drn—-1)mw

s (2535,
(2.42)
For suitability, it is supposed that
C3 X ¢ = ¢y, (say)

€3 X €g = cg, (say)

Consequently, Eq. (2.42) becomes

¢y cosh(z/a?p2 + M2(1 + 1))

v (x, y,é) = |+cgsinh(zy/a2B? + M2(1+ 1)) ) _ (2.43)
X COS (_(2:;-1):: )
PR
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To calculate the values of the two constants given in the above equation, use the

boundary condition Egs. (2.26) - (2.27)}. This yields

¢, cosh{hJaZf2 + M2(1 + 1))

=B 8w . _[ _ — _ -
m,'ax 1 wl(y)'- +C351nh(h\/a g+ M (1+ 1)) '

X COS ((2?1;1)7[)’)
(2.44)
c; cosh{ha?p2 + M2(1 + 4,) )
B g () = |—cosinh(hfa?BZ + MI(1 + Ay) )
1+4; dz (2n-1)7
X COS (Ty)
(2.45)

Substituting the value of w; (¥} into the Eqs. (2.44) - (2.45) and integrating the both sides
of the equations w.r.t “y” from ‘Q’ to “h” respectively.

It is attained

2

: 2
32%—2-(1+A,)2cos(3 :osh(z —£—+M2(1+11))

v (x,y.2) = Yoo (2.46)

JI.rZ‘er
4

3 w272
Bimlm2Be+aM2(1+4,)|2 sinh( 'IT +M2(1+4;) (1+¢p cos erxJ)

Replacing the values of v, (y, 2z} and w,(y)} in Eq. (2.21), it gives the desired velocity

2r{14+A)[2 A2 +4M2 (1414 )] cosh( +M2(1+2,) (1+¢ cos 27rx))+

\ J

profile of the peristaltic wave, moving in the rectangular duct.
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1 dp M1+ ) (My,a‘TT)j '
——1—m[l—sech( 7 cosh 7 )

4p 2 Ty nEr | e
32dx(1+A,) cos( 3 )cosh(z\[ T tM {1+4)

u(x,y,z)=<{ +— - —— } (2.47)
21430 mE Rt 4aM2{1+4,)] cosh(‘!f:ﬂ—z +M2(1+4;) (1+¢ cos erx)>+

3 ,-,2;;2 B
Ol B2+ 4ME(144,}]2 sinh - +M2(1+A1) (1+¢ cos 2nx)

Also, volume flow rate average volume flow rate of the peristaltic wave are specified by

{1+¢cos an)x[moﬂ +H%)-%ﬂ tanh(M {:;“vl J)}
T PN

! 2
128%(“11)2 slnh( "378 +M2{1+14) (1+¢ cos Zn'x))
w2 .
3 2144 ) coshl [=—— +M?(1+4;) (1+4 cos 2nx)

w22 A2+ AM2(1+4,))2x
22
+ 3, JAe P amMI(1+4,) sinh %+M2f1+i,)(1+¢cus2nx)

+

(2.48)

Average volumetric flow rate over one period T = A/c of the peristaltic wave is stated as
=1 TGdt=q+1 (2.49)
= 7o = q s .
where

g = ful f:(x)(u(x, y,z)+ 1}dzdy =g+ h. (2.50)
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Therefore, the average volumetric flow rate is given as

M3 JS(1+ay)

M3 [T1+4,) —(1+¢ cos 2rrx)x[,r‘(1+.11)( +M—)—--Bt (M“ (L“”)]]

12822(142,)? sinh( "‘ B2 aM2(142)) (149 coser:r})
2(1+A1)cosh(’ g +4M2(1+.11)(1+¢c0527r:r))
+ By 3. H‘2(1+.11)5mh(, i +4M2(1+4,) (1+¢p cos erx))

3
m2{r2f2+amM2(1+44))2%

(2.51)

Likewise, the pressure gradient of the above equation can be obtained, such that

3
« {Q+¢ cos zrrx)xIltri,.l'(ihlﬂxrrz{rrzﬂz+4Mz(1+11)}Ex(z(1+11} cosh(@)+ f1 ’11'3,83++M2{1+.11}sinh(9))J
B_

4 Seappss . [20%  amt2(1 1 2g) sinht 0 . ey LY
SL2RMAO A M sinh(8) i1+ A Jcoshid+ .ﬁ’;‘m feraMeO A )sinhi@) ][t gdecosznxis M+, (1A }-Flanh )

(2.52)

where

g = Jl’_z;ﬁ_z +4M2(1 4 Ay) (1 + ¢ cos2mx). (2.53)

The fluid pressure rise can be calculated numerically by integration of Eq. (2,52) on wave

length yields

1d
ap = |, Cdx. (2.54)
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2.3 Results and discussion

In this section, the relative changes in the fluid flow behavior caused by changes in
differcnt parameters graphically displayed and discussed, The parameters that gives the
variation of the problem under consideration are aspect ratio 8, Jeffrey’s parameter 4,,

volumetric flow rate @, slip parameter 8, and Hartmann’s number M.

Figure 2.1 and Figure 2.2 show the velocity profile u of the peristaltic wave, for
dissimilar values of slip parameter 8;, Hartmanns’s number M. It can be observed from
these figures that the velocity profile, of wave propagates in a rectangular duct, is slowly
down-turn with the passage of time, corresponding to increase the values ol slip
parameter f#; and Hartmann number M, Figures 2.3 — 2.6 and 2.7 - 2.9 show the behavior
of the pressure risc for different values of the different parameters in relation to the

volumetric flow ratc @ and the aspect ratio 8, respectively.

The pressure rise Ap, in figures 2.3 — 2.4 above, as plotted relative 10 the volumetric flow
rate Q. It has been noted that Ap is increasing cormresponding to the increasc in 8 and M,
Moreover, in figures 2.5 — 2.6, the values of Ap decline for rise in numerical values of
slip parameter 8, and Jeffrey parameter A;. Similarly, the variation trend of Ap with
respect to B, has also been displayed in figure 2.7. Thercfore, it is noteworthy that Ap
declines corresponding (o the rise in @. whereas in figurers 2.8 — 2.9, Ap increasingly
converges to 0.2 and 0, for the grater values of slip parameter B, and Jeffrey
parameter Ay, respectively.

A very interesting phenomenon in the fluid transport is trapped. The formation of an
intemal circulating bolus of the fluid through the closed stream line is called trapping and
this trapped bolus is continued along the peristaltic wave at the speed of wave. The bolus
describes as volume of fluid bounded by closed stream lines in the wave frame, moving
to the wave pattern. Figures 2.10 - 2.25, represents the streamlines for the fluid flow. The
size of bolus varies; correspond to tbe variation in Jelfrey paramcter 4, aspect ratio 8,
and [lartmann number M and slip parameter 8, respectively. Figures 2.10 — 2.21, show
that boluses are gradually decreases in size, with the increase in Jeffrey parameter A,,
aspect ratio # and Hartmann number M, respectively, therefore, it can be deduced that

fluid flow becomes passive to the variation of the these parameters.
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It is inferred from the graphs, depicted in the ligures 2.22 — 2.25, that fluid is making its
way through consider rectangular duct, at casc. As the boluses get cxpanded

corresponding to the increase in numerical values of slip parameter f;.
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Figure. 2.1: Variation in the velocity trend for unlike values of §; when ¢ = 0.6, x =0,
y=05@¢=05M=0578=05A4,=2.
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Figure. 2.2: Variation in the velocity trend for unlike values of M when ¢ = 0.6, x = 0,
y=05@0=05 §=05p#=0541,=2.
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Figure 2.3: Variation of 4p with Q for unlike values of § when ¢ =06, 8, =05
M=051,=2

Figure 2.4; Variation of 4p with Q for unlike values of M when ¢ = 0.6, 1 =05,
B =0521=2
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Figure 2.5: Variation of Ap with @ for unlike values of f§; when ¢ =0.6, M = 0.5,
£=054,=2
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Figure 2.6: Variation of 4p with ¢ for unlike values of 4; when ¢ = 0.6, § =0.5,
y =05 M=054, =2
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Figure 2.9: Variation of 4p with § for unlike values of 4; when ¢ =0.6, §; = 0.5,
Q=05M=05.
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X

Figure 2.10: Stream lines for A; = 0. The other parameters are y = 0.5, ¢ = 0.6,
f1=05p0=05M=050=1

04 —ul 00 02 04

X

Figure 2.11 : Stream lines for A, = 1. The other parameters are y = 0.5, ¢ = 0.6,
f1=058=05M=050=1
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X

Figure 2.12 : Stream lines for A; = 2. The other parameters are y = 0.5, ¢ = 0.6,
f,:=058=05M=050=1

X

Figure 2.13: Stream lines for A; = 3. The other parameters are y = 0.5, ¢ = 0.6,
B, =058=05M=050=1
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Figurc 2.14: Stream lines for § = 0.3. The other parametersarc y = 0.5, ¢ =06,Q =1,

X

Figurc 2.15: Stream lines for § = 0.6. The other parameters are y = 0.5, ¢ = 0.6,Q = 1,
f1=05M=05.
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{7

X
Figure 2.16: Stream lines for 8 = 0.9, The other parameters are y = 0.5, ¢¢ = 0.6, ¢ = 1,
f1=05M=05.

Figure 2.17: Stream lines for § = 1.2, The other parameters are y = 0.5, ¢ = 0.6, ¢ = 1,
B, =05 M=05,
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Figure 2.18: Stream lines for M = 0.3, The other parameters are y = 0.5, ¢ = 0.6,
g=05 g,=05¢=1.

f—y

04 202 00 02 wu4

X

Figure 2.19: Strcam lines for M = 0.6. The other paramcters are y = 0.5, ¢ = 0.6,
g=05 8,=05@¢=1
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Figure 2.20: Stream lines for M = 0.9. The other parameters are y = 0.5, ¢ = 0.5,
=05 p,=05¢Q=1.

04 02 uu_ 02 04

Figure 2.21: Stream lines for M = 1,2, The other parameters are y = 0.5, ¢ = 0.5,
f=05p8,=05¢=1
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X

Figure 2.22: Stream lines for #; = 0. The other parameters are y = 0.5, ¢ = 0.6,
M=05 pg=050=1.

Figure 2.23: Stream lines for 8; = 0.2. The other parameters are y = 0.5, ¢ = 0.6,
Q=14=05M=05.
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Figure 2.24: Stream lines for 8, = 0.4. The other parameters are y = 0.5, ¢ = 0.6,
Q=1.8=05M=05.

X

Figure 2.25: Stream lines for f; = 0.6. The other parameters are y = 0.5, ¢ = 0.6,
Q=1=05M=05.
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Let V = (U, 0, W) be the velocity of Jeffrey fluid, moving through peristaltic wave under
the influence of porous medium inside a rectangular duct then mathematically one can

write it as:
n
Z=H(X,t) = +a t beos [T (X — ct)| G.1)

(1). Equation of conservation of mass:

v aw _

T + 2z = ¢ (3.2)
(2). Equation of momentum:

by

- _ _R
por=-VP+V.S-LV. (3.3)

The above-mentioned equation of motion in the form of velocity components can be

written as:
p(+ui+w) = —g—;+:—xs,,+:—ysxy+:—zs,z—%u, (3.4
0= =22+ Sy + =Sy + 35Sz, (3.5
p (3 + Ui—‘:+w3—‘:)=—:—;+%szx+%sn+:—zszz—ﬁw. (3.6)

Jeffrey stress tensor and shear stresses will remain same, which are used in second
chapter. By using the same transformation which are given in Eq. (2.11) of the second

chapter to convert the given Lab/Fixed frame into the wave frame.

Select the following given variables and parameters in their non-dimensional form

sofvo¥ pofo Mo wop_ctp oo _alp
x—l'y_d’z_a'u—c'w_cé't—A'h_a'p HeA

3 [ = d a = d -

Sff_zsxxr f""ESxy: sz—;sxz: ¥z ;Syzr',_ _'ucsyy (3.7
_b _ L _ pach _a = _ 4 a 5 K
¢_aﬁl_a' Re = n ! ~d Szz—pcsu‘s_ﬂ'k_az-

Having used the above given transformation, non-dimensional variables and parameters.
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The Egs. (3.2) to (3.6) after ignoring the signs of bar, take the following form

du  dw _
E;+?z-_-0’ (3.8)
uL LY W gl o 0o 1
Re(uax+waz - ax+6615"""+ﬁ aysly-l'azsxz k("-"'l)a (39)
- ep a 23 a2

2y W)= % 528 28 28 ¢ _52%
Ret? (uZt + w2t) = 4 5225, +6f oy + 855, — 8. (31D

Under the supposition of long wave length § <1 and low Reynolds, ignoring the
relations of order § and higher. Then the above-mentioned Egs. {3.8) — (3.11) will be
reduced to the following non-homogeneous, linear and second order partial differential

equation:

ou | 1 _ (e _ (1) 2
a—ﬁ+55;—(ﬂzk (u+1)_(ﬂz)u. (.12)

Therefore, the corresponding slip boundary conditions at the walls are described as:

u(x,y,z)=-1, at y=+=1, (3.13)
u(x,y,z)+1= -;%13—:, when z = +h(x) = 1+ ¢ cos 2nx, (3.14)
By 8u

u(x,y,2)+1=+ when z = —h(x) = ~(1 + ¢ cos 2nx). (3.15)

1+4, 2z’

3.2 Solution of the problem

Solution of the above given problem, is attempt via using the following transformation in
Egs. (3.12) to (3.15).

u(x,y, z) = v1(x,y,2) + w1 (y). (3.16)
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Thus Eq. (3.12) provide

vy ia*v;_ 1+.1,)__
T+ oo (,qu B =0 (3.17)
and
B2 &% 1. _ 1 dp
1+4; dy?2 k1 Pl (3.18)

Moreover, the boundary conditions are transformed into the following form

wi(y) =-1, when y==41, (3.19)
Uy(x,y,2z) =0, when y=+1, (3.20)
D(x,y,2) = —%% —1-wi(y), when z=h(x), 3.21)
7(x,y,2) = +;§;—laa—? —1-Wi(y), when z=—h(x). (3.22)

Interestingly, the transformation which is considered again provide, the main given
problem into two systems of differential equations. First one is an PDE (i.e., Eq. 3.17)
whereas the second one is ODE (i.e, Eq. 3.18), corresponding to their boundary
conditions. Thus the solution of the problem is obtained by solving the Eq. (3.18) and
Eq. (3.17), respectively.

3.2.1 Solution of ordinary differential equation
It is noted that Eq. (3.18) is a second order non-homogeneous and linear ODE, which
corresponds to non-homogeneous boundary conditions Eq. (3.19). So, the general

solution is given

_ 2 A
w(y) =-1- k%[l - sech( 1;2;) cosh ( 1;;; y)] (3.23)
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3.2.2 Solution of partial differential equation

In order to attain the solution of Eq. (3.17), this is second order, homogeneous and linear
partial differential equation (PDE), subject to the homogenecus boundary conditions Eq.
(3.20). By implementing process of “Separation of Variables” it is supposed that

Vi(x.y.2) =Y(y) x Z(2), (3.24)

is one of the possible solutions of Eq. (3.17). By using the Eq. (3.24) in Eq. (3.16)} which

provides

Yy —1zY . (144))

TR (3.25)

Y” 2

= —=-a (3.26)
and

-1z"  (1+1))

2L G g (3.:27)

Using the boundary conditions of Eq. (3.20), in Eq. (3.24) yield

[Y(£1)] x [Z2(2)] = 0, (3.28)
= Z(z) #0, (3.29)

this implies that
Y(x1) = 0. (3.30)

Then, there are two possible cases to attain the mandatory sclution.

Case-1

From Eq. (3.26)

L=-a (3.31)
= [D*+a?]lxY(y)=0, (3.32)
=Y =0, (3.33)
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= [D? + a?] =0, (3.34)
D = 4(ia). (3.35)

It is familiar that a trivial solution is attained for the values of @ = 0 and a < 0. The only

non-trivial solution is obtained, for the value of @ > 0. Which yields
Y(y) = ¢y cos(ay) + ¢, sin(ay), (3.36)

where ¢3 and ¢, are the constants that are determined by using Y(11) = 0, in above

equation. It provides

C4=0,

a, = (f_z’.‘;ﬂ) n=123..

Thus the Eq. (3.36) becomes

YO) = czeos (F52y),  n=1,23.. (3.37)

Case-11

Similarly, from Eq. (3.27)

—_li'_t (1+4,}) _ 2
S+ o= (3.38)
-_12_"_ 2 (1+4,)
=t -5, (3.39)
= D = % |a?p? + 1220, (3.40)

This implies that

Z(z) = cs cosh (z a2p? + “—1"‘ ) + ¢, sinh (z (2?62 + e ) (3.41)
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Substituting the values of Y(¥) and Z(z) in Eq. (3.24). This leads to be

Ti(x,y,2) =3 [cs cosh (z a?f? + — ‘”m ) + cg sinh (z ’azﬁz +—

(2n;1)rr }’)

X COS(

For suitability, it is supposed that
Cy = C3 X C5, (say)
Cg = C3 X Cq. {(say)

Consequently, Eq. {3.42) becomes

2 \
¢y cosh (z /azﬁz + “1—1))

uﬁ )]

(3.42)

vy, z) = +cg sinh (z /azﬁz + _(h:h)) & (3.43)

X COS (——(2";1)" y) ]

To calculate the values of the two constants given in the above
boundary condition Egs. (3.21) - (3.22). This yields

. cosh( J_ﬁ2+(1+11))
—_ g, vy _ f111
-1- wl(y)—H;lE“ +chinh(h ‘a2ﬁ2+ )

X COS ((2n;1)n y)

¢, cosh (h ’azﬁz + =1 (H"‘) )

equation, use the

)

> (3.44)

J

3

b v _
—1- W)+ 144, @z |—Cgsinh (h la?f? + (1+A1)) (" (3.45)

X cos (—-(2";1)" y)
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Substitute the value of W1 () into the Egs. (3.44) to (3.45) and integrate both sides of the

equations w.r.t ‘y’ from ‘0’ to ‘h’ one get

V) \
32k%¥(1+11)3 cas(ﬁzx) cos(z JH—“&J{"—AI
2{1+41) cosh({l-ﬂb cos an},ﬂM)

iy fk(rrE}i+4).1 +4 sinh((1+¢ cos 2x) ’k(nﬁ)z:e;,ll 1-4)

W(xl )’. Z) = r (346)

m(k(mf)?+44,+4)x

J

Since the values of 7;(y, z) and W;(y) are known, Thus, Eq. (3.16) changes

/

—1- k-—ll sech( ——R—l)cosh(yx 1441 )I

A2k B2k
u(x,y, Z) = . 321‘3%(14-11)2!:05(—2'!)cus(z\]g—k(nmi:” “‘3) : (34?)

4

2
o T 1o e (S5 )

The above equation mentioned Eq. (3.47) shows the required velocity profile of the

it i 244 +a
2(1+41) cush(( L+ cos ZTIX}JLW)

R{KGE)E+ady +4)x

Jeffrey fluid peristaltically moving in the rectangular duct. Integrating Eq. (3.47) twice
w.rt z and y, respectively thus the Eq. (3.47) gives the volumetric flow rate of the
peristaltic wave that is

128—Er1+.11)

G = —
2 2 i
2 J—E)—E—J—" +41 H) lz coth((1+¢coszrrx)\| 2 A +\|{g1 {kjﬁ:ﬁa;;?““

(1+¢ cos 2rmx){ {14+k2E M—ké"—” tanh( {241
o {( dx) 1-kaf ( kp )} (3.48)

Average volumetric flow rate over one period (T = &/c) of the peristaltic wave is defined

as
Q=zJ;Qdt=q+1, (3.49)
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where
a=1, foh(u(x, y,7) + 1) dzdy = q + h. (3.50)

Consequently, the average volumetric flow rate is given as

128%¢144,)

3
2 =5 . * 2. v
nz (M) 4ediae “)2[2 cuth((1+¢ cos 2rx) KB +4: )+ jﬂ: et +)42»11+4)]
1

3
JIH A+ (1+¢ cos 23:){(1+k%£) Jﬁ-.i.—l—ﬁ%ﬂ tan h(‘ %‘,1

- o =4 (3.51)

Q=

e

However, from the above Eg. (3.51) the expression for pressure gradient can be

calculated as

2 3 z 2 {
w2 (Q+ cos Z?rx){k(“'a) +4Ai+4)2 B170mB2 4423 48) 5 coh( (14 cos 2mx) KT Z4ad +a
k kt1+4)2 4k

dp _
e El
. kimf12+44 2
128(1+,11)+7r‘(1+¢c052nx)w x
vk
" 1+11)_ /k(rrmzmam 817 w440y )
[ T .anh( L 1]{2c0th((1+¢coszrrx) % + PRESAL

(3.52)

The pressure difference may be computed along the axial length by the expression

ap=J, Lax. (3.53)
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3.3 Results and discussion

In this segment, we purpose the approximate variations in the tendency of flow and
discussed thorough graphs for different parameters. The most significant parameters are,
aspect ratio 8, volumetric flow rate @, aspect ratio 8, slippage parameter f£,, Jeffrey fluid

parameter A, and above all, the porosity paramcter k.

Keeping the numerical values of some parameters, we realize from the figure 3.1, that the
velocity profile, of the wave which propagates in the rectangular duct, is slowly
increasing in reverse direction time being, corresponding to upturn the values of slip
parameter ;. On the contrary in figures 3.2 — 3.4, the velocity profile of the fluid through
porous medium, keeps on increasing corresponding to the increase in porosity parameter,

aspect ratio and Jeffrey parameter respectively.

Having witnessed the graphs presented in figure 3.5 — 3.7, it is noticed that pressure rise
Ap is decreasing with the increase of slip parameter 8, Jeffrey paramcter 4; and porosity
parameter k. Yet, in the figure 3.8 the variation trend of pressure risc is quite opposite as

compare to figures 3.5 - 3.7.

Figures 3.9 — 3.24 display the change in stream lines as Jeffrey paramcter, aspect ratio,
porosity and slip parameter arc varied respectively. Figures 3.9 — 3.16 show the strcams
lines for various values of Jeffrey parameter and aspect ratio. It is noticed that figure of
boluses are reducing when we give higher values to Jeffrey parameter 4; and aspect ratio
£. While, in figures 3.17 — 3.24, stream lines behave differently for both porosity and slip
parameter, by causing ecnough resistance at the wall which is evinced by the emergence of

new boluses,
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Figure 3.1: Variation in the velocity trend for unlike values of 8; when ¢ = 0.6, x = 0,
¥y=05¢=05k=054=2p=05.
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Figure 3.2; Variation in the velocity trend for unlike values of k when ¢ = 0.6, x = 0,
y=050=052 =2 8=058, =05.
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Figure 3.5: Change in Ap with @ for unlike values of 8, when ¢ =06, @ =05,
k=05/p8=0524 =2
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Figure 3.6: Change in Ap with Q for unlike values of A, when ¢ =0.6, @ =0.5,
k= 05, ﬁ = 05, ﬁl - 0.5
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Figure 3.7: Change in Ap with @ for unlike values of k when ¢ =06, @ =0.5,
B,y =0578=054,=2

Figure 3.8: Change in Ap with @ for unlike values of § when ¢ =06, @ =05,
f;=05k=0521 =2
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Figure 3.9: Display of stream lines for A; = 0. The other parameters are ¢ = 0.6,
£1=058=05k=05¢ =05

Figure 3.10: Display of stream lines for A; = 0.5. The other parameters are ¢ = 0.6,
By =058=05k=050=1
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Figure 3.11: Display of stream lines for A; = 1. The other paramcters are ¢ = 0.6,
@Q=1,8=05k=0570 =054, =2

Figurc 3.12: Display of stream lines for 2; = 1.5. The othcr parameters arc ¢ = 0.6,
@=1,8=05k=050 =054, =2

58



-

Figure 3.13: Display of stream lines for f = 0.4. The other parameters are ¢ = 0.6,
Q =1,ﬁ1 :0.5.k=0.5,k=0-5,11=2.
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Figure 3.14: Display of stream lines for § = 0.7. The other parameters are ¢ = 0.6,
Q=1p8,=05k=05k=051,=2
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Figure 3.15: Display of stream lines for 8 = 1. The other parameters are ¢ = 0.6,
=10, =05k=05k=054, =2
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Figure 3.16: Display of stream lines for [ = 1.3. The other parameters are ¢ = 0.6,
Q=18 =05k=05k=054 =2
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Figure 3.17: Display of stream lines for ¥ = 0.3. The other parameters are ¢ = 0.6,
0=17F=05p =054 =2
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Figure 3.18: Display of strcam lines for Xk = 0.6. Thc other parameters arc ¢ = 0.6,
Q = 1:6 = 0-5,31 = D-S.A] = 2
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Figurc 3.19: Display of strcam lines for k = 0.9. The other paramctcrs are ¢ = 0.6,
Q=18=05§8 =051, =2

X

Figure 3.20: Display of stream lines for k = 1.2. The other parameters are ¢ = 0.6,
R=1£=054§8 =054, =2.

62



Figure 3.21: Display of stream lines for #; = 0.0. The other parameters are ¢ = 0.6,
Q=1,=05k=054 =2

0.4 ~02 00 02 04
X

Figure 3.22: Display of stream lines for #; = 0.3. The other parameters are ¢ = 0.6,
Q=1F=05k=0524 =2
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Figure 3.23: Display of stream lines for 8; = 0.6. The other parameters are ¢ = 0.6,
Q:l,ﬁ =0.5,k=0,5,;{1=2.
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Figure 3.24: Display of stream lines for #; = 0.9. The other parameters are ¢ = 0.6,
@=18=05k=051, =2
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34 Conclusion

An exact solution for the peristaltically moving under the application of slip and porosity
has been done under the constrains of low Reynolds and long wave length. It may be
noticed that variations in the velocity profile decreases by increasing the slip parameter
while quit opposite behavior is noted for the case of porosity parameter, aspect ratio and
Jeffrey parameter. It is also observed that a linear dependence of pressure rise per unit
length, pressure rise increase for f, while decreases for slip, porosity and Jeffrey
parameter. Furthermore, the trapped blouse above and below formed there is an increase
with increase in k and f; while decrease for A, and §. Also, Newtonian model of fluid

can also be deduced by taking A; = 0, as a special case of presented model.
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