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Preface 
The knowledge of flow in slider and journal bearing systems is quite useful for proper 

functioning of these instruments. Numerous studies are available where Newtonian model is 

used to analyze the flow. However, due to the use of additives in lubricating fluids, the flow 

in the bearing systems becomes non-Newtonian. In this dissertation idealized geometries are 

used to study the flow in slider and journal bearing systems. The geometry of slider journal 

bearing system consist of a fixed surface inclined at an angle over a horizontal sliding 

surface, while the geometry of the journal bearing comprises of two eccentric cylinders one 

of which is rotating at constant angular speed. Some specialized literature on flow in a slider 

and journal bearing systems is reviewed in the next paragraph. 

Some of the relevant studies on non -Newtonian lubrication in bearing are as follows: 

Ng and Saibel [I] used a special third grade fluid (second grade terms neglected) and studied 

the flow occurring in a slider bearing. Harnoy and Hanin [2] and Harnoy and Philippoff [3] 

studied the flow of a second grade fluid in a journal bearing. Bourgin and gay [4] used a 

similar model with that of Ng and Saibel [I] to investigate the behavior of flow in a journal 

bearing. Buckholz [5] used a power-law model as a non-Newtonian lubricant in a slider 

bearing. Kacou et a1 [6] studied the flow of a third grade fluid in a journal bearing and 

constructed a perturbative solution. The work is extended by the same author (Kacou et a1 

[7]) by including thermal effects. Yiiriisoy and Pakdemirli [8] studied the flow of a special 

third grade fluid in a slider bearing. Lot of work has also been done on various shapes of 

slider bearings. For instance Lin et al. [9] performed linear stability analysis of a wide 

inclined plane slider bearing. An analysis of dynamic characteristics for wide slider bearing 

with an exponential film profile was carried out by Lin and Hung [lo]. The characteristics of 

parabolic slider bearing and tapered land slider bearing were also studied by Lin et al. 

[11,12]. 

Motivated by above studies, we in this dissertation review two important articles on 

flow in slider and journal bearing systems by Yiiriisoy [13] and Beris et al. [14]. The 

dissertation is based on three chapters. Chapter 1 is introductory and includes some basic 

definitions and equations. In chapter 2, the work of Yiiriisoy [13] is reproduced with full 

details. Here pressure distribution in a slider bearing is studied which lubricated with second 

and third grade fluids. In chapter 3, the flow in a journal bearing system is studied using 

constitutive equation of upper convected Maxwell fluid. This paper is review of work by 

Beris at al. [14]. The velocity and pressure field are computed using domain perturbation 

method and discussed in detail. 



Contents 

1 . Preliminaries 4 

..................................................................... 1.1. Some basic definitions 4 

......................................................................................... 1.1 . 1. Fluid 4 

...................................................................... 1.1.2. Fluid mechanics 4 

........................................................................ 1.1.3. Fluid dynamics 4 

..................................................................... 1.1.4. Fluid kinematics 4 

...................................................... 1.1.5. Hydro-statics or Fluid statics 4 

........................................................................................... 1.2. Flow 5 

................................................................................. 1.3. Types of flow 5 

........................................................................ Uniform flow -5  

.................................................................. Non-uniform flow -5 

........................................................................... Steady flow 5 

...................................................................... Rotational flow 5 

...................................................................... Irrotaional flow 5 

...................................................................... Turbulent flow 6 

........................................................................... Inviscid flow 6 

......................................................................... Viscous flow 6 

.................................................................. Compressible flow 6 

................................................................. 1.3.10. Incompressible flow 6 

...................................................................................... 1.4. Lubricant 6 

.......................................................................... 1.4.1. Lubrication -6 

......................................................................... 1.5. Types of lubrication 6 

1.5.1. Hydro-dynamics Lubrication ...................................................... 6 

1.5.2. Hydro-static Lubrication ............................................................ 7 

1 



............................................................... 1.5.3. Boundary Lubrication 7 

1.6. Fluid properties ............................................................................. -7  

................................................................................ 1.6.1. Pressure 7 

................................................................................ 1.6.2. Density 7 

.............................................................................. 1.6.3. Viscosity 7 

................................................................ 1.6.4. Zero-shear viscosity -7 

................................................................. 1.6.5. Kinematic viscosity 7 

........................................................... 1.6.6. Visco-elasticity , ........... 8 

1.7. Classification of fluid ........................................................................ 8 

............................................................................ 1.7.1. Ideal fluid -8 

............................................................................. 1.7.2. Real fluid 8 

1.7.3. Newtonian fluid .................................................................... -8  

1.7.4. Non-Newtonian fluid ............................................................... 9 

1 . 8. Some non-Newtonian fluid models ...................................................... -9 

1 .8. 1. Second grade fluid .................................................................. 10 

1.8.2. Third grade fluid ................................................................... -10 

1 .8. 3. Maxwell fluid ........................................................................ -10 

1.9. Some dimensionless numbers ............................................................. 11 

1.9.1 . Deborah number .................................................................... 11 

1.9.2. Weissenberg number ............................................................... 11 

1.9.3. Reynold number .................................................................... 11 

1.10. Bearing ..................................................................................... 11 

1.10.1. Slider bearing ....................................................................... 12 

1.10.2. Journal bearing .................................................................... -12 

1.1 1 . Solution methodology .................................................................... 12 



2 . Non-Newtonian flow in a slider bearing system 13 

............................................................... 2.1. Formulation of the problem 13 

................................................................... 2.2. Solution of the problem 15 

................................................................. 2.2.1. System of order 1 -15 

.................................................................. 2.2.2. System of order E 15 

.............................................................................. 2.3. Pressure field -17 

............................................................................ 2.4. Graphical results 19 

..................................................................... 2.5. Results and discussion 21 

3 . Non-Newtonian flow in a journal bearing system 22 

................................................................. 3.1. Geometry of the problem 22 

.............................................................. 3.2. Formulation of the problem 23 

................................................................. 3.3. Solution of the problem -24 

................................................... 3.4. Solution of the zeroth-order problem 25 

...................................................... 3.5. Solution of the first order problem 29 

.................................................................................. 3.6. Graphical result 33 

..................................................................... 3.7. Results and discussion 36 



Chapter 1 

Preliminaries 

The purpose of this chapter is to introduce the readers with some of the basic terminologies of 

fluid mechanics. We start with some basic definitions and then present the classification of 

fluids and their flow. Different non-Newtonian models slider and journal bearing systems and 

some dimensionless numbers are also introduced in this chapter. The chapter ends up with a 

being account on solution methodology. 

1.1 Some basic definitions 

1.1.1 Fluid 

A substance which deforms continuously under the application of shear stress is called fluid. 

It moves and flow under the action of the force. Fluids are conventionally classified as 

either liquids or gases. 

1.1.2 Fluid mechanics 

Fluid mechanics deals with the study of the motion of fluid and the forces acts on it, i.e. 

liquid and gases. Velocity and acceleration are the two basic field variables in the study of 

fluid mechanics. 

1.1.3 Fluid dynamics 

Fluid dynamics deals with the study of the effect of forces on fluid flow and the natural 
sciences of fluid. 

1.1.4 Fluid kinematics 

Fluid kinematics referred the study of quantities involving space and time only. It describes 

the motion of particles and objects. 

1.1.5 Hydro-statics or Fluid statics 

Fluid statics deals with the study of fluid at rest. Any force developed is only due to normal 

stresses i.e. pressure. 



1.2 Flow 

When a force is applied on a material, it goes under deformation, if the deformation exceeds 

continuously without limit, this phenomena is called flow. Flow is also described as 

movement of gases and liquids in a medium. 

1.3 Types of flow 

On the basis of the flow parameters the fluids flow can be classified as: 

1.3.1 Uniform flow 

Flow is said to be uniform, if velocity has the same magnitude and direction at any point in 

the fluid. 

1.3.2 Non-uniform flow 

Flow is said to be non-uniform if velocity is not the same at any point in the fluid (every fluid 

that flows near the boundary of a solid will be considered as non-uniform as the fluid speed is 

zero). 

1.3.3 Steady flow 

Flow is steady if the fluid's velocity and pressure at a particular fixed point remains constant 

with time. Cross section area is constant through the flow path. 

1.3.4 Rotational flow 

In a flow if every fluid's particle rotates about its own axes the flow is called rotational flow. 

vxvgo, (1.1) 

where V is the velocity field. 

1.3.5 Irrotational flow 

In a flow if the fluid particles do not rotate about its axes, the flow is called irrotational flow. 

vxv=o. (1 -2) 



1.3.6 Turbulent flow 

In turbulent flow, fluid particles do not flow parallel to the path in the form of layers. In this 

flow velocities vary erratically from point to point as well as time to time. 

1.3.7 Inviscid flow 

An ideal fluid flow showing no viscosity is called an inviscid flow. 

1.3.8 Viscous flow 

Viscous flows are always rotational because of shear stress that is exerted on the fluid 

element due to viscosity. 

1.3.9 Compressible flow 

Flow in which density of a fluid is not constant during the flow is called compressible flow. 

1.3.10 Incompressible flow 

Flow in which density remain constant is called incompressible flow. Flow of liquids usually 

be considered as incompressible. 

1.4 Lubricant 

A substance which reduces the friction, if introduced between moving surfaces, is called 

lubricant. 

1.4.1 Lubrication 

For preventing the friction and wear, introduction of a lubricant between moving surfaces is 

called lubrication. 

1.5 Types of lubrication 

Out of the many types of lubrication, we introduce the following three relevant types: 

1 S.1 Hydro-dynamic lubrication 

When moving loaded surfaces are separated by thick film of lubricant for prevention from 
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contact is called hydrodynamics lubrication. 

1.5.2 Hydro-static lubrication 

At high pressure when a lubricant is introduced into a loaded bearing region, it is called 

hydrostatic lubrication. 

1.5.3 Boundary lubrication 

When lubricant is introduced at the boundary for increasing velocity, it is called boundary 

lubrication. 

1.6 Fluid properties 

1.6.1 Pressure 

Pressure is the magnitude of normal force acting on a unit surface area. It is a scalar quantity. 

where, F is the magnitude of force acting in the direction perpendicular to the surface of the 

fluid and A is the area of the surface of the fluid. 

1.6.2 Density 

The mass of unit volume of the fluid at a certain temperature and pressure is called the 

density of the fluid. 

1.6.3 Viscosity 

The viscosity is a measurement of resistance to the motion of the fluid. Viscosity is the ratio 

of shear stress to the rate of shear strain. 

1.6.4 Zero-shear viscosity 

When shear rate approaches to zero, the measured viscosity is called zero-shear viscosity. 

1.6.5 Kinematic viscosity 

The kinematic viscosity (also called momentum diffusivity) is the ratio of the dynamic 

viscosity p to the density of the fluid. It is usually denoted by the v and is given by 
7 



1.6.6 Visco-Elasticity 

Viscoelasticity is the property of a material to demonstrate both viscous and elastic properties 

under the same conditions when it undergoes deformation. Viscous materials present 

resistance to shear flow and strain linearly with time when a stress is applied. Some common 

and well-known viscoelastic materials include paint, blood, ketchup, honey, mayonnaise, 

polymer melt, polymer solution and suspension, shampoo, and corn starch. 

1.7 Classification of fluids 

Following are the types of fluids 

1) Ideal fluid. 

2) Real fluid. 

3) Newtonian fluid. 

4) Non-Newtonian fluid. 

1.7.1 Ideal fluid 

An Ideal fluid is non-viscous and offers no resistance ,u = 0 whatsoever to a shearing force. 

An ideal fluid really does not exist. One example of this is the flow far from solid surfaces. In 

the region of the flow field far away from the boundaries the viscous effects can be neglected 

and the fluid is treated as inviscid (ideal fluid). In an ideal fluid, there is no existence of shear 

force because of vanishing viscosity. 

1.7.2 Real fluid 

All the fluids in the nature have viscosity p > 0 and hence they are known as real fluid and 

viscous flow is called their motion. 

1.7.3 Newtonian fluid 

Fluid is said to be Newtonian if shear stress linearly proportional to deformation rate. This 

fluid obeys Newtonian law of viscosity, molten semiconductors, pure water, mercury, molten 

metals, and many molten salts are the examples of Newtonian fluids. Let us consider a flow 



of Newtonian fluid between two parallel plates one of which is in motion with constant 

velocity and denote u as x-component of velocity of fluid and y the direction perpendicular to 

the flow, then the shear stress is related to the velocity gradient by the following equation. 

Eq. (1.5) is also known as Newtonian law of viscosity. Viscosity may depend on temperature 

and pressure but not on the force acted upon it. Generally, the stress tensor T and strain rate 

tensor A, are related by the following equation: 

T=-pI+S, 

where I is the identity tensor, S = pA, and A, is given by 

in which t denotes the transpose. 

1.7.4 Non-Newtonian fluid 

Fluids for which shear stress and deformation rate are non-linearly related. Non-Newtonian 

fluid viscosity can be change by adding additives, and flow properties are different fiom 

Newtonian fluid. The viscosity of non-Newtonian fluid is dependent on shear rate. Non- 

Newtonian fluid is a fluid whose flow curve (shear stress versus shear rate) is nonlinear. In 

practice, many fluid materials exhibit non-Newtonian fluid behavior such as, salt solutions, 

molten polymers, ketchup, custard, toothpaste, starch suspensions, paint, blood, and shampoo 

etc. For such fluids the analogue of Eq. (1.5) is 

where 77 is the consistency index and n is the flow behavior index. 

1.8 Some non-Newtonian fluids models 

1 Second grade fluid. 

2 Third grade fluid. 

3 Maxwell fluid. 



1.8.1 Second grade fluid 

A model (second-grade) for viscoelastic fluids were given by Rivlin and Erisksen with the 

following constitutive equation: 

where, p is the dynamic viscosity, a, and a, are the non-Newtonian fluid parameters and A, 

is defined by 

1.8.2 Third grade fluid 

The constitutive relation for a third grade fluid is 

T= - PI-+-S, 

where 

s = p 4  +%A, +a,A12 +P( t r~ ,Z)4 ,  

and is p called third grade parameter. 

1.8.3 Upper convected Maxwell model 

The constitutive equation for upper-convected Maxwell fluid from Eq. (1.1 I), where S 

satisfies 

The upper convected derivative of S in above equation is defined as 



1.9 Some dimensionless numbers 

1.9.1 Deborah number 

A dimensionless number used in rheology, equal to the relaxation time for some process 

divided by the time it is observed. It characterizes the fluidity of materials under specific flow 

conditions. For smaller relaxation time all materials are fluids but for large time of 

observation all materials are solids. Deborah number is expressed as: 

where, tc is the characteristics time, to is the time of observation. 

1.9.2 Weissenberg number 

A dimensionless number used in the study of viscoelastic flows. The weissenberg number is 

the ratio of the relaxation time of the fluid and a specific process time. In simple steady shear, 

it is often abbreviated as Wi or We. 

1.9.3 Reynold number 

It is a dimensionless number that establishes the proportionality between the fluid inertia and 

the sheer stress as a result of viscosity. In the simplest form, it can be described as 

Re = pV I l p , where p is the density in kilograms per cubic meters (1.2250) for air at sea 

level), V is the velocity of the fluid in meters per second, I is the linear dimension of the body 

(chord length, in airfoils), and ,u is the coefficient of the viscosity of the fluid. 

1.10 Bearing 

A bearing is a machine element that constrains relative motion to only the desired motion, 

and reduces friction between moving parts. The design of the bearing may, for example, 

provide for fi-ee linear movement of the moving part or for fi-ee rotation around a fixed axis. 



1.10.1 Slider bearing 

The hydro-dynamically lubricated bearing is able to separate two sliding surfaces working 

against load acting on the bearing. Slider bearing is a system of stationary block and a 

horizontal surface (moving with a velocity Us) in positive x-direction, separated by a varying 

heights, (4 ,  b, 4) containing non-Newtonian fluid between the surfaces. 

1.10.2 Journal bearing 

Journal bearing is a system of circular cylinders, inner cylinder rotates while outer cylinder is 

stationary. The parallel axes of the two cylinders are separated by a distance e . Lubricant is 

used between the cylinder, either Newtonian or non-Newtonian. 

1.1 1 Solution methodology 

The most powerful technique to solve nonlinear partial differential equations is perturbation 

method. Perturbation method leads to an expression for desired solution in term of power 

series in some small parameter called perturbation series. The leading term in this power 

series is the solution of exact solvable problem. In this technique we assume a very small 

physical parameter, expend the dependent variables in power series of small parameter and 

then put this series into original equation(s) and conditions (boundary and initial). After 

equating the terms corresponding to powers of small parameter, one get system of linear 

differential equations. Solving such system sequentially one gets the solution of the original 

problem. In this work we non-dimensionalize the equations of motion, then construct the 

solution for velocities and the pressure distributions by perturbation technique and finally 

construct the parameters on various flow characteristics. Perturbation method is used to 

compute analytically, the two dimensional velocity and stress fields for the creeping flow 

between two slightly eccentric cylinders separated by a small gap. The flow associated with 

the constitutive equation of Maxwell fluid examined. Construct the graph of radial velocity, 

tangential velocity; also construct the contours of the tangential normal stress and for the 

absolute pressure for upper convected Maxwell model. For the construction of graphs and 

other difficult mathematics work we use "Mathematica" software, which is easy to handle 

and produces good results. 



Chapter 2 

Non-Newtonian flow in a slider bearing system 

In this chapter, flow in a slider bearing system is analyzed using the constitutive equation of 

third grade fluid. We first derive the equation of motion for second and third grade fluid in a 

slider bearing under thin film or lubrication approximation. Perturbation solution will be 

developed assuming second and third grade effects to be small compared with the viscous 

effects. The pressure calculated on the base of non-Newtonian connection is explained 

through various plots. This chapter is a detailed review of work by Yuriisoy [13]. 

2.1 Formulation of the problem 

I Surface 2 

L 
Fig. 2.1. Geometry of slider bearing system. 

A typical slider bearing system is explained in Fig. 2.1. The equations governing the flow 

inside the slider bearing system are: 

divV = 0, (2-1) 

dv 
- divT, P-- 

dt 
(2.2) 

T=-pI+S.  (2-3) 

For a third grade fluid S is given through Eq. (1.13). In component form Eqs. (2.1) and (2.2) 

for a two dimensional flow can be written as: 

ap as, as, p ( u + v -  g ;) =-- .&+x+$ 

av av + as, p u-+v- =-- as, +-+-, 
a J $ ax $ 



since flow is two-dimensional, therefore, 

224, uy +vx 

and 

2 1 2uun +2u,v +2ux +uyvx +vx 2 uu, + vu, + w, + uvx, + 2u u 
x y  1 

2 2 +2ux +uyvx +vx  
A, = 

UUAY + VUW + uvrr + vv, + U x U y  + 

where u and v are velocity components in x-and y-directions, respectively and subscripts 

denote differentiation. Let us scale various quantities to be non-dimensionalize as 

with the help of above defined variables, Eqs. (2.4)-(2.6) after using the expression take the 

form of various stress components as: 

where 

and bars are removed for brevity. The subsequent analysis we consider that l/Re, 3; and y2 is 

of order 6 and y, of orders3. With these assumptions the major terms in Eqs. (2.10)-(2.12) 

are: 



respectively. The above equations are subjected to the following boundary conditions 

2.2 Solution of the problem 

In this section, we shall employ perturbation method to solve the above equations for the case 

when second and third grade effects are smaller compared with the viscous effects. Therefore 

we shall assume 

Ki = s z i ,  i = 1,2,3, (2.19) 

where E is the small parameter. We now expand various quantities as follows: 

U =u0 +m,, (2.20) 

v=vo+m, ,  (2.21) 

P* = PO* + &PI*, (2.22) 

substituting Eqs. (2.19)-(2.22) into Eqs. (2.14) - (2.15), we get the following systems at 

various order of E . 

2.2.1 System of order 1: 

2.2.2 System of order of E : 

uo (0) = 0, uo (b) = 0, 

vo(0) = 0, vo(b) = 0. 



It is noted that Eqs. (2.23)-(2.26) yield well known Newtonian problem whose solution is 

The differential equation of zeroth-order pressure is obtained by using the condition 

Eq. (2.33) is subjected to the following conditions: 

pot (0) = Po' (1) = 0. 

In a similar manner, the solution of first order system reads 

b 
Utilizing the constraint lo u,dy = Othe following differential equation evolves for the first 

order pressure 



The above equation is subjected to the conditions 

pJ0 )  = P,*(l) = 0.  (2.38) 

Inserting the expressions of u,, and u, in Eq. (2.20) and making use of substitution &Fi = Ki , 

we get 

Similarly 

2.3 Pressure field 

The solution of Eq. (2.33) subjected to the boundary condition gives 

where 
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b=(l-(1-r)x) and r = 414, (2.42) 

In a similar manner, one can obtained the expression of p,* . Finally, p,' is given through 



Graphical results 

1.5 

0.5 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 2.2: Profiles of pressure versus x for r = 0.5 when K3 = 0. Solid line corresponds to 

Newtonian 

*a, 

Fig. 2.3: Profiles of pressure versus x for r = 0.5 when K3 = 0.04. Solid line corresponds 

to Newtonian case ( K, = K, = 0). 
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Fig. 2.4: Profiles of pressure versus x for r = 0.5 when K, = 0.1. Solid line corresponds 

to Newtonian case ( K, = K, = 0). 

Fig. 2.5: Pressure distribution in the bearing corresponding to different clearance ratios 

for K, = K, =0.1. 



2.5 Results and discussion 

The plots of pressure field for various values of second and third grade parameters are shown 

in Figs. 2.2-2.5. Fig. 2.2 shows the effects of second grade parameters on pressure 

distribution taking third grade parameters equal to zero. The corresponding curve of 

Newtonian fluid is also included for comparison purpose. It is observed that pressure 

increases with increase the second grade parameters. The manner in which pressure varies 

with Kl for non-vanishing values of K, is illustrated in Fig. 2.3. It is observed that as before 

by increasing Kl the pressure increases. However, the pressure for non-Newtonian third 

grade fluid attains significantly higher values than that for a second grade fluid. The plots of 

pressure for different values of K, are shown in Fig. 2.4 for a fixed value of K, = 0.1 . Here 

again it is noted that pressure inside the bearing increases by increasing third grade fluid 

parameters. The effect of clearance ratio on magnitude of pressure inside the bearing is 

shown through Fig. 2.5. It is evident from Fig. 2.5 that pressure rises in the bearing for lower 

clearance ratios. 



Chapter 3 

Non-Newtonian flow in a journal bearing system 

The famous model of the journal bearing consists of two eccentric cylinders with a stationary 

outer cylinder and a rotating inner cylinder. In this work, we discuss the flow of upper 

convected Maxwell fluid in the journal bearing and explore the influence of visco-elasticity 

on both the velocity field and pressure. We assume the flow to be steady and two- 

dimensional. To obtain an analytical solution both gap and eccentricity are considered to be 

small. Due to complicated nature of the Maxwell constitutive equation the velocity, stress and 

pressure variables are computed employing domain perturbation technique. The effects of 

Deborah number on radial and tangential velocity, tangential stress and pressure are 

illustrated graphically. This chapter is based on the paper by Beris at al. [14]. 

Geometry of the problem 

Fig. 3.1. Geometry of journal bearing system 

Fig. 3.1 shows a journal bearing consisting of two cylinders of radii r, and r, respectively. 

Let the inner cylinder be rotating with angular velocity R so that the linear velocity is 

V = u,R . Let the center of the inner cylinder be the origin of cylindrical polar and Cartesian 

coordinates system. The local gap with between the cylinders is given by 

B (9) = c (1 + E cos 0) , where c = r, - r, is the average gap and E = a/c is the dimension less 

eccentricity. Here a is the distance between the axes of the cylinders. The gap inside the 

cylinders is filled with lubricant whose rheological behavior is represented by the constitutive 

equations of Maxwell fluid. 



3.2 Formulation of the problem 

Neglecting the gravitational and inertial forces, the governing, continuity, momentum and 

constitutive equations are given by 

V.V = 0, (3.1) 

v p  + V.S = 0, (3 

Where denotes transpose. Since the flow is two-dimensional and steady therefore, 

V, = vr ( r ,  8) .  Ve = Ve ( r ,  0) , and v, = 0.  With this choice of velocity field, the above set of 

equations can be written in components form as: 

1 ap 1 as, asr6 2sr6 - -- +--+- +--0, 
r 86 r 38 ar r 

as, v as, 
'rr  + 1 ( V r  + A - -  ar r a 0  2 ~ ~ ~ ~ - ( 2 k , ~ , + k ~ ~ ~ ~ ~ )  r (3-7) 

sr, +A(  
as,, v, as 

v r - + - A + - (  @ Srr - 0 )  - ( k  + k r r  - o + ) ) = V 0  ( h e  + ; 1 z- % ;). Ve (3.8) 
ar Y 30 Y 

as, v as, v vr-+B-- 2 & ~ ~ ~ - 2 ( k , ~ , + k ~ s ~ ~ )  
dr i- dB Y 

9 (3.9) 

where we use the abbreviation K = (w)' . With this abbreviation (VV) = K' and for plane 

flow under consideration we have 

The components of stress S,, SeZ and S, are set to zero because of the invariance of the 

flow in z-direction. The flow problem is subjected to the following no slip boundary 

conditions 



V ,  = 0 ,  v8 = V .  on r = q ,  

v ,=O,v,=O. on r=r ,+B(B) .  

The pressure and stresses are subject to the following periodicity conditions: 

%(r,$)  = s ~  ( r , 8 + 2 n ) ,  

p ( r ,$ )  = p ( r , 8 + 2 n ) .  

3.3 Solution of the problem 

The set of Eqs. (3.4)-(3.9) subject to boundary conditions Eqs. (3.11)-(3.12) is solved by 

domain perturbation technique. In this technique, the original domain is mapped to some 

reference domain. For the present problem it is better to choose the reference domain to a 

concentric cylinders geometry with coordinates ( ~ , 8 ) .  The mapping is illustrated in Fig. 3.2. 

The coordinates in eccentric domain ( r ,  6 )  and concentric domain ( F ,  g )  are related by the 

transformation 

Figure. 3.2. Transformation of eccentric cylinder to concentric cylinders. 

r  = r [ O 1 ( T , g ; ~ ) = r  = q + ( ~ - ~ ) ( I + E c o s ~ ) ,  5 )  (3.15) 

6 = S [ ~ ] ( T ,  B; s) = 8, ( o s B s ~ z ) .  (3.16) 

In above transformation the superscript square bracket [ ] denotes the function of coordinates 

( F ~ B ) .  In the later part we shall also use superscript angular bracket ( ) to denotes functions 

of the original coordinates ( r , 8 ) .  The purpose of this change of variable is to transform the 

perturbation expression in eccentricity for the original eccentric problem to the concentric 

cylinder shape. Now a perturbation expression in either coordinates system involve the use of 
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partial derivatives of dependent variables with respect to E . The solution in the reference 

domain can be transformed back to original domain only by having the relation between two 

sets of partial derivatives. We now illustrate this relation for a function, 

~ ( r ,  0; E )  E u(O)(r, 0; E )  = ulO1 (7,8; E )  . For such a function the two partial derivatives are given 

by 

p u ( 4  a n u  [Ol 

u(") (r, e; E) I - ,ulnl (F,B;E) = -. 
8.5" a&" 

Now making use of chain rule the following relation between them can be developed 

Eqn. (3.18), is analogous to the definition of substantial derivative. Thus uI1] can be 

interpreted as a "substantial derivative" following the mapping. In view of Eq. (3.19, factor 

r"] can be computed as 

(P, B; 0) = (r - r ,)  cos e, (3.2 1) 

where we have used the fact that r = r and 8 = 6 at s = 0 . Eq. (3.20) will be used in the later 

analysis. Once the relation between partial derivatives is developed, the next step is to expand 

the dependent variables in original domain in series in E calculated in the reference domain 

keeping F, 3 fixed: 

The choice of above expansion rather than the one in original domain is basically derive by 

fact that in reference domain the boundary conditions are much simpler. However, despite the 

simplicity in the boundary location, the expression for the "substantial't derivatives $1, etc., 

are not easy to obtain. A remedy of this difficulty can be made by expressing the derivatives 

vl.1 (F, 8; 0) in terms of the dn) (r, 0; 0) by using chain-rule as explained in Eq. (3.2 1). 

Now, taking the partial derivatives a " / d ~ "  of the governing equations given by Eqs. (3.1)- 



(3.3), keeping in mind that v(r, B; E )  I v(O)(r, B; E )  and then evaluating these at E = 0 yield the 

following determining equations for v(")(r, 8; 0) .  

v.v(") = 0, (3.23) 

where all dependent variables are evaluated at E = 0. It is pointed here the explicit form of 

these equations for a fixed value of n can be readily obtained from Eqs. (3.1)-(3.3) by 

substituting series expansion in E for dn),  p(n) and s(") and equating equal order in E . In 

order to determine boundary conditions for v'") ( r ,  8,O) , we substitute the series expansion for 

- 
v given through Eq. (3.22) into Eqs. (3.1 1)-(3.12). In this way at r = r = r, we have: 

From now onward all v:) are evaluated at E = 0 ,  therefore in favor of vi(") ( r ,8 ) .  

A comparison of v, and v, in Eq. (3.27) with Eq. (2.1 1 )  gives 

In a similar fashion at the outer cylinder r = r, + B(8) or F = r2 , we have 

vr (rr , 8) = v,(O) (r,, e) + E v!) (r ,  e) + (l - q) cos e +..., 
dr 

r=rz 



Comparison of Eq. (3.29) with Eq. (3.12) gives the following boundary conditions at 

r = r 2 ,  

3.4 Solution of the zeroth-order problem 

The explicit form of Eqs. (3.23)-(3.26) for n = 0  is given by 

v.vCO) = 0, 

vp") + (vs") ) = 0, 

The component forms of these equations are given through Eqs. (3.4)-(3.9). In view of the 

prescribed boundary conditions on v,(9 and v:) we can assume, v,(O) = 0, v,") = v,") ( r )  , 

(0) - (0) 
S - S, ( r ) ,  and p(0) = p(0) ( r ) .  This choice of solution makes the continuity equation 

satisfied identically. The expression of velocity gradient takes the form 

The above equation of w(O) in combination with the constitutive equations for s,") , s,") , 

and s,(') gives 

s,'" = 0, 



The component forms of equation of motion yield 

r-component: 

In the subsequent analysis, we shall develop solutions to the above equation for small 

dimensionless gap p , defined as: 

p=c/y,. (3.40) 

In this context it is appropriate to define the following dimensionless variables and groups: 

In terms of the dimensionless variables the 8 -component of the equation of motion can be 

written for small p as: 

Z p ( < )  = c1 ( T i  -2c(5+...). 

The solution of above equation twns out to be 



q/) ( (r  = c0 +p(C1 -2c0g)+..., (3.47) 

where Co andClare constants. The above solution when substituted in the constitutive 

equations of qs(O) gives an ordinary differential equation for ?:) i.e . 

The solution of above differential equation together with conditions c?(o) = I  and 

+,")(l) = 0 leads to: 

Having i,(O) in hand, the other components of stress and velocity at leading order become 

where 4, is an arbitrary reference pressure. It is noted fiom Eq. (3.50) that T,(') is singular 

and thus the dominant terms for p -, 0. 

3.5 Solution to the first order problem 

The first order system results from Eq. (3.23)-(3.26) by taking n=l, we get: 

(v.v(')) = 0, (3.51) 

v.~( ' )  + v.s(') = 0, (3.52) 

v(Oi J7si1) + v(') .vs"i - (w(~))f $) (w")) - (vV~l))f S(0) - S" (p.V~li)t) = -$ 0 * 1 (I) a(3.53) 

The above equations are subjected to boundary conditions given by Eq. (3.28) and Eq. (3.30). 

In the conditions the term i?~,(~)/i% is evaluated using Eq. (3.30). Equating the terms which 

are second order in ,u , we get 



Due to the periodic nature of the boundary condition, it is instructive to choose a solution of 

the form 

ve(') = Re -~'(r)e'c . { 1 (3.56) 

In view of Eqs. (3.55)-(3.56) the continuity equation is satisfied identically. With the help of 

Eq. (3.7), the vr-component of the Eq. (3.53) reduces to 

which is view of Eq. (3.50) takes the form 

Let us define dimensionless variables through Eq. (3.50) and a dimensionless stream function 

f by 

Moreover, assume the following periodic solutions for stresses and pressure: 

p(l) = Re{P(')(<)eje}(qo f). 
In this way, stress and pressure are functions of 6 alone. Now Eq. (3.59), Eq. (3.55) and Eq. 

(3.56), we can write 

d d 
--F(r) = v-f  (c) ,  
dr dr 

this implies 
d V 

- F ( r ) = - f f ( c ) ,  (3.63) 
dr c 

where prime denotes the derivative with respect to 4 .  In view of Eq. (3.63), we can write 

3 0 



similarly 

and 

as,") -- - -sine? (1) 7701/ 
dB c 

Using Eqs. (3.63)-(3.67) in Eq. (3.58), we get 

A further simplification yield 

3 , +iDe(l-5)(1-Tpg+....)*(l) =-2p(g'+ ~ e f ) + ~ ( , u ~ ) .  

From above equations T,(') turns out to be 

Similarly 



It is evident that l,(') - ,u , we can develop T:) as a series in ,u with leading term. Moreover, 

' - 1 and T,(') - 1/p. Thus similar toT,(O) , T,(') is singular and dominant. Now, we are 

in a position to combine the constitutive equations with equation of motion. From Eq. (3.52), 

we can write 

v-component: 

Eq. (3.73) indicates P('/ - 1 , while Eq. (3.74) gives ~ ( l )  - l /p  . Thus the series representation 

of p(') is 

Eq. (3.75) implies that the pressure is constant across the gap at lowest order in ,u. 

Elimination of pressure from Eq. (3.74) by taking d/d<of this equation results in the 

determining equations for stream function. Retaining the leading order terms in this 

equations, we get 

~PT, ( I ) !  +T2)rr = 0. (3.76) 

Inserting Eqs. (3.7 1)-(3.72) and performing much tedious algebra, one find 

(-26 + i (1 - c2)) g(") - (-2c2 + 26) gW + 2ic2gN - 4icgt + 4ig = 0, (3.77) 

Where 

The general solution to Eq. (3.77) is 

g(<) = ~ ~ ( 1 - 9 C  + + c12 + 05, (3.79) 
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in which A, B, C and D are integration constants. The relevant boundary conditions on g(4)  

I I 

are 
1 

g(0) = (De) = g(De) = 0; g ( o ) = ~ .  

Imposition of above conditions on Eq. (3.79) yields 

3.6 Graphical results 

Fig. 3.3: Profiles of correction to the radial velocity vr* = vr(')/v ,D depends on the 

dimensionless radial coordinate 5 = ( r  - r, )/c ( 1  + ecose) at 8 = 3 n/2 for 

convected Maxwell model. 



(a) D e = O . O l  (b) & = l  

(c) De=4 (d) &=lo 

Fig. 3.4: Contours of tangential velocity v,' ( 6 , B )  = ( S , ( ~ ) , L L / ( ~ ( ~ )  ( v /c ) ) )  ~e . 

(a) D e = O . O l  (b) De=l 

(c) De=4 (d) &=lo  

e 8 

Fig. 3.5: Contours of correction to normal stress S,* = (S,('),U/(@) ( v / c ) ) ) ~ e .  



Fig. 3.6: Variation of I P , ( ' ) ~  with De. 

0 \ 

Convected Maxwell 
w 

-2.5 \ 

0 2 

Fig. 3.7: Variation of 4, with De. 



3.7 Results and discussion 

The profiles of correction to the radial velocity vra = v))/vP at 6' = 3 n/2 for different values 

of De are shown in Fig. 3.3. It is evident through Eqs. (3.55)-(3.56) that at this position vr(')is 

proportional to the real part of F. Moreover, since v,b) = 0, therefore, vr* gives the total radial 

velocity up-to order F, . Fig. 3.3 shows that vr* increases with Deborah number with maximum 

in it shifting towards the inner cylinder. 

The tangential velocity in reference domain includes contribution from both v:] and 

v,C1 = v,(') - C V C O S ~  . The contours of dimensionless total tangential velocity v* = v,' = v, /V 

are shown in Fig. 3.4. It is observed that for De=O.Ol there is a flow separation at the outer 

cylinder at 9 = 0. An increase in De causes this secondary flow to disappear. 

The contours of correction to normal stress see* for various values of De are shown in 

Fig. 3.5. The contours predict the development of a boundary layer near the outer and inner 

cylinders for large value of De. Moreover, away from the outer wall see* is nearly 

independent of g . The amplitude of dimensionless pressure P' = P"',u/(~ ( v ~ c ) ) ,  

P* = I ~ ( l ) l  COS (0 + q!p) is plotted against De in Fig. 3.6. This figure depicts that amplitude of 

pressure increases by increasing De. The variation of gl, with De is shown in Fig. 3.7. The 

phase angle #p determines the steady-state position of journal relative to the outer cylinder. 

For Newtonian eP =-go0. In convected Maxwell fluid the viscoelastic nature of the fluid is the 

responsible for the shifting of pressure force towards the wide part of the gap. 
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