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Preface

The knowledge of flow in slider and journal bearing systems is quite useful for proper
functioning of these instruments. Numerous studies are available where Newtonian model is
used to analyze the flow. However, due fo the use of additives in lubricating fluids, the flow
in the bearing systems becomes non-Newtonian. In this dissertation idealized geometrics are
used to study the flow in slider and journal bearing systems. The geometry of slider journal
bearing system consist of a fixed surface inclined at an angle over a horizontal sliding
surface, while the geometry of the journal bearing comprises of two eccentric cylinders one
of which is rotating at constant angular speed. Some specialized literature on flow in a slider
and journal bearing systems is reviewed in the next paragraph.

Some of the relevant studies on non —Newtonian lubrication in bearing are as follows:
Ng and Saibel [1] used a special third grade fluid (second grade terms neglected) and studied
the flow occurring in a slider bearing. Hamoy and Hanin {2] and Hamoy and Philippoff [3]
studied the flow of a second grade fluid in a journal bearing. Bourgin and gay [4] used a
similar model with that of Ng and Saibel [1] to investigate the behavior of flow in a journal
bearing. Buckholz [5] used a power-law model as a non-Newtonian lubricant in a slider
bearing. Kacou et al [6] studied the flow of a third grade fluid in a journal bearing and
constructed a perturbative solution. The work is extended by the same author (Kacou et al
[71) by including thermal effects. Yiiriisoy and Pakdemirli [8] studied the flow of a special
third grade fluid in a slider bearing. Lot of work has also been done on various shapes of
slider bearings. For instance Lin er al. [9] performed linear stability analysis of a wide
inclined plane slider bearing. An analysis of dynamic characteristics for wide slider bearing
with an exponential film profile was carried out by Lin and Hung [10]. The characteristics of
parabolic slider bearing and tapered land slider bearing were also studied by Lin et al
[11,12].

Motivated by above studies, we in this dissertation review two impoﬁént articles on
flow in shider and journal bearing systems by Yiiriisoy [13] and Beris et al. [14]. The
dissertation is based on three chapters. Chapter 1 is introductory and includes some basic
definitions and equations. In chapter 2, the work of Yiiriisoy [13] is reproduced with full
details. Here pressure distribution in a slider bearing is studied which lubricated with second
and third grade fluids. In chapter 3, the flow in a journal bearing system is studied using
constitutive equation of upper convected Maxwell fluid. This paper is review of work by
Beris at al. {14]. The velocity and pressure field are computed using domain perturbation
method and discussed in detail.
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Chapter 1

Preliminaries

The purpose of this chapter is to introduce the readers with some of the basic terminologies of
fluid mechanics. We start with some basic definitions and then present the classification of
fluids and their flow. Different non-Newtonian models slider and journal bearing systems and
some dimensionless numbers are also introduced in this chapter. The chapter ends up with 2

being account on solution methodology.
1.1 Some basic definitions

1.1.1 Fluid

A substance which deforms continuously under the application of shear stress is called fluid.
It moves and flow under the action of the force. Fluids are conventionally classified as

either liquids or gases.

1.1.2 Fluid mechanics

Fluid mechanics deals with the study of the motion of fluid and the forces acts on i, ie.
liquid and gases. Velocity and acceleration are the two basic field variables in the study of

fluid mechanics.

1.1.3 Fluid dynamics

Fluid dynamics deals with the study of the effect of forces on fluid flow and the natural
sciences of fluid.

1.1.4 Kluid kinematics

Fluid kinematics referred the study of quantities involving space and time only. It describes
the motion of particles and objects.

1.1.5 Hydro-statics or Fluid statics

Fluid statics deals with the study of fluid at rest. Any force developed is only due to normal

stresses 1.€. pressure.



1.2 Flow

When a force is applied on a material, it goes under deformation, if the deformation exceeds
continuously without limit, this phenomena is called flow, Flow is also described as

movement of gases and liquids in a medium.

1.3 Types of flow

On the basis of the flow parameters the fluids flow can be classified as:

1.3.1 Uniform flow

Flow is said to be uniform, if velocity has the same magnitude and direction at any point in
the fluid.

1.3.2 Neon-uniform flow

Flow is said to be non-uniform if velocity is not the same at any point in the fluid (every fluid

that flows near the boundary of a solid will be considered as non-uniform as the fluid speed is

zero).

1.3.3 Steady flow

Flow is steady if the fluid’s velocity and pressure at a particular fixed point remains constant

with time. Cross section area is constant through the flow path.

1.3.4 Rotational flow

In a flow if every fluid’s particle rotates about its own axes the flow is called rotational flow.

VxV=z 8, (1 ) I)
where ¥ 18 the velocity field.
1.3.5 Irrotational flow

In a flow if the fluid particles do not rotate about its axes, the flow is called irrotational flow.

VxV=0. (1.2)



1.3.6 Turbulent flow

In turbulent flow, fluid particles do not flow parallel to the path in the form of layers. In this

flow velocities vary erratically from point to point as well as time to time.

1.3.7 Inviscid flow

An ideal fluid flow showing no viscosity is called an inviscid flow.

1.3.8 Viscous flow

Viscous flows are always rotational because of shear stress that is exerted on the fluid

element due to viscosity.

1.3.9 Compressible flow

Flow in which density of a fluid is not constant during the flow is called compressible flow.

1.3.10 Incompressible flow

Flow in which density remain constant is called incompressible flow. Flow of liquids usually

be considered as incompressible.

1.4 Lubricant

A substance which reduces the friction, if introduced between moving surfaces, is called

lubricant.

1.4.1 Lubrication

For preventing the friction and wear, introduction of a lubricant between moving surfaces is

called hubrication.

1.5 Types of lubrication

Qut of the many types of lubrication, we introduce the following three relevant types:

1.5.1 Hydro-dynamic lubrication

When moving loaded surfaces are separated by thick film of lubricant for prevention from



contact is called hydrodynamics lubrication.

1.5.2 Hydro-static lubrication

At high pressure when a lubricant is introduced into a ioaded bearing region, it is called

hydrostatic lubrication.

1.5.3 Boundary lubrication

When lubricant is introduced at the boundary for increasing velocity, it is called boundary

lubrication.

1.6 Fluid properties
1.6.1 Pressure

Pressure is the magnitude of normal force acting on a unit surface area. It is a scalar quantity.

F
P, . 1.3
y (1.3)

where, F is the magnitude of force acting in the direction perpendicular to the surface of the
fluid and 4 is the area of the surface of the fluid.

1.6.2 Density

The mass of unit volume of the fluid at a certain temperature and pressure is called the
density of the fluid.

1.6.3 Viscosity

The viscosity is a measurement of resistance to the motion of the fluid. Viscosity is the ratio

of shear stress to the rate of shear strain.

1.6.4 Zero-shear viscosity

When shear rate approaches to zero, the measured viscosity is called zero-shear viscosity.

1.6.5 Kinematic viscosity

The kinematic viscosity (also called momentum diffusivity) is the ratio of the dynamic

viscosity 4 to the density of the fluid. It is usually denoted by the v and is given by
7



(1.4)

<
i
® Ix

1.6.6 Visco-Elasticity

Viscoelasticity is the property of a material to demonstrate both viscous and elastic properties
under the same conditions when it undergoes deformation. Viscous materials present
resistance to shear flow and strain linearly with time when a stress is applied. Some common
and well-known viscoelastic materials include paint, blood, ketchup, honey, mayonnaise,

polymer melt, polymer solution and suspension, shampoo, and corn starch.

1.7 Classification of fluids

Following are the types of fluids
1) Ideal fluid.

2) Real fluid.

3) Newtonian fhuid.

4) Non-Newtonian fluid,

1.7.1 ldeal fluid

An Ideal fluid is non-viscous and offers no resistance u = 0 whatsoever to a shearing force.

An ideal fluid really does not exist. One example of this is the flow far from solid surfaces. In
the region of the flow field far away from the boundaries the viscous effects can be neglected
and the fluid is treated as inviscid (ideal fluid). In an ideal fluid, there is no existence of shear

force because of vanishing viscosity.

1.7.2 Real fluid

All the fluids in the nature have viscosity x>0 and hence they are known as real fluid and

viscous flow is called their motion.

1.7.3 Newtonian fluid

Fluid is said to be Newtonian if shear stress linearly proportional to deformation rate. This
fluid obeys Newtonian law of viscosity, molten semiconductors, pure water, mercury, molten

metals, and many molten salts are the examples of Newtonian fluids. Let us consider a flow



of Newtonian fluid between two parallel plates one of which is in motion with constant
velocity and denote u as x-component of velocity of fluid and y the direction perpendicular to

the flow, then the shear stress is related to the velocity gradient by the following equation.

=—pu=. 1.5
=p (1.5)

Eq. (1.5) is also known as Newtonian law of viscosity. Viscosity may depend on temperature
and pressure but not on the force acted upon it. Generally, the stress tensor T and strain rate
tensor A, are related by the following equation:

T =—pl+8, (1.6)

where 1 is the identity tensor, 8 = yA, and A, is given by

A, =VV4+VVI, an

in which T denotes the transpose.

1.7.4 Non-Newtonian fluid

Fluids for which shear stress and deformation rate are non-linearly related. Non-Newtonian
fluid viscosity can be change by adding additives, and flow properties are different from
Newtonian fluid. The viscosity of non-Newtonian fluid is dependent on shear rate. Non-
Newtonian fluid 1s a fluid whose flow curve (shear stress versus shear rate) is nonlinear. In
practice, many fluid materials exhibit non-Newtonian fluid behavior such as, salt solutions,
molten polymers, ketchup, custard, toothpaste, starch suspensions, paint, blood, and shampoo
ete. For such fluids the analogue of Eq. (1.5) is
duY
T=p {;’;} , (1.8)

where 7 is the consistency index and » is the flow behavior index.

1.8 Some non-Newtonian fluids models

1  Second grade fluid.
2 Third grade fluid.
3  Maxwell fluid.




1.8.1 Second grade fluid

A model (second-grade) for viscoelastic fluids were given by Rivlin and Erisksen with the

following constitutive equation:
Te=w pl+uA +0, A, +e,A L, (1.9)

where, 1 is the dynamic viscosity, &, and a, are the non-Newtonian fluid parameters and A,

is defined by

A;%‘?t-ami (w)+(vv)  A,. (1.10)

1.8.2 Third grade fluid

The constitutive relation for a third grade fluid is

T=-pI+S§, (1.11)
where
S=pA, +a A, +o, Al +B(rA DA, (1.12)
and i1s /3 called third grade parameter,

1.8.3 Upper convected Maxwell model

The constitutive equation for upper-convected Maxwell fluid from Eq. (1.11), where §
satisfies

\%
S+2, S=uA,. (1.13)

The upper convected derivative of § in above equation is defined as

%
§= %qv.v)su(vv)? $-8(VV). (1.14)

10



1.9 Some dimensionless numbers

1.9.1 Deberah number

A dimensioniess number used in rheology, equal to the relaxation time for some process
divided by the time it is observed. It characterizes the fluidity of materials under specific flow
conditions. For smaller relaxation time all materials are fluids but for large time of

observation all materials are solids. Deborah number is expressed as:

De=", (1.15)
“9

where, 7_ is the characteristics time, ¢, is the time of observation.

1.9.2 Weissenberg number
A dimensionless number used in the study of viscoelastic flows. The weissenberg number is
the ratio of the relaxation time of the fluid and a specific process time. In simple steady shear,

it is often abbreviated as Wi or We.

1.9.3 Reynold number

It is a dimensionless number that establishes the proportionality between the fluid inertia and
the sheer stress as a result of viscosity. In the simplest form, it can be described as

Re= pVI/u, where p is the density in kilograms per cubic meters (1.2250) for air at sea

level}, ¥is the velocity of the fluid in meters per second, / is the linear dimension of the body

(chord length, in airfoils), and g is the coefficient of the viscosity of the fluid.

1.10 Bearing

A bearing is a machine element that constrains relative motion to only the desired motion,
and reduces friction between moving parts. The design of the bearing may, for example,

provide for free linear movement of the moving part or for free rotation around a fixed axis. |

11



1.10.1 Slider bearing

The hydro-dynamically lubricated bearing is able to separate two slhiding surfaces working
against load acting on the bearing. Slider bearing is a system of stationary block and a

horizontal surface (moving with a velocity U)) in positive x-direction, separated by a varying

heights, {5,,5,B,) containing non-Newtonian fluid between the surfaces.

1.10.2 Journal bearing

Joumnal bearing is a system of circular cylinders, inner cylinder rotates while outer cylinder is
stationary. The parallel axes of the two cylinders are separated by a distance e . Lubricant is

used between the cylinder, either Newtonian or non-Newtonian.

1.11 Solution methodology

The most powerful technique to solve nonlinear partial differential equations is perturbation
method. Perturbation method leads to an expression for desired solution in term of power
series in some small parameter called perturbation series. The leading term in this power
series is the solution of exact solvable problem. In this technigue we assume a very small
physical parameter, expend the dependent variables in power series of small parameter and
then put this series into original eqziation(s) and conditions (boundary and initial). After
equating the terms corresponding to powers of small parameter, one get system of linear
differential equations. Solving such system sequentially one gets the solution of the originai'
probiem. In this work we non-dimensionalize the equations of motion, then construct the
solution for velocities and the pressure distributions by perturbation technique and finally
construct the parameters on various flow characteristics. Perturbation method is used to
compute analytically, the two dimensional velocity and stress fields for the creeping flow
between two slightly eccentric cylinders separated by a small gap. The flow associated with
the constifutive equation of Maxwell fluid examined. Construct the graph of radial velocity,
tangential velocity, also construct the contours of the tangential normal stress and for the
absolute pressure for upper convected Maxwell model. For the construction of graphs and
other difficult mathematics work we use “Mathematica™ software, which is easy to handle

and produces good results,

12



Chapter 2

Non-Newtonian flow in a slider bearing system

In this chapter, flow in a slider bearing system is analyzed using the constitutive equation of
third grade fluid. We first derive the equation of motion for second and third grade fluidina
slider bearing under thin film or lubrication approximation. Perturbation solution will be
developed assuming second and third grade effects to be small compared with the viscous
effects, The pressure calculated on the base of non-Newtonian connection is explained

through various plots. This chapter 1s a detailed review of work by Yiiriisoy [13].

2.1 Formaulation of the problem

“ ; »
Fig. 2.1, Geometry of slider bearing system.

A typical slider bearing system is explained in Fig. 2.1. The equations governing the flow

inside the slider bearing system are:

divV =0, (2.1}
- av
= divT, 2.2
p - =div (2.2)
T=-pl+8. 2.3

For a third grade fluid 8 is given through Eq. (1.13). In component form Egs. (2.1) and (2.2}

for a two dimensional flow can be written as:

du v
FYRr " 2.4
[ 6u) op 85, 0S,
P b P {5 iy —i o il
ax oy & ox oy 03
p[ms%)@ﬁaa
ox Oy &y & Oy 26



since flow is two-dimensional, therefore,

2u,  u, v, .
1= " 2v 3 ( * )
VX u}' ¥
and
" , , -
2un, +2u v+2u” tuy +v, uu, Vi A v tuv, +2u
ul+ruy +v? UV, FVY, Fuu, Uy, 20y
Az = * ¥y x , (28)

uu, +vu}y Uy, *i"Wx}, +uxu}, +

UV F 2V R U, Uy VY

2 2
2uv, +2vw, +2u " +u v +2v

2 2
+2u,” +u v, +2v,

where u and v are velocity components in x-and y-directions, respectively and subscripts

denote differentiation. Let us scale various quantities to be non-dimensionalize as

X L

_}j’ym

i

U?

2
b’

if = Vo

U’

= b=

S.b Re
pUL

pb; , 5. =SahRe
pUL

b
L 2.9
A 2.9

with the help of above defined variables, Egs. (2.4)-(2.6) after using the expression take the

form of various stress components as:
du oy

=), 2.10
5x+ay (2.10)
6u+ du ﬁﬁg+ 1 &u AN 6’3u &u 6u52u 3:462
o ) 5 Red O\ oy lamdy a0 oy oudy @.11)
+2(2;V]+)’2) &u M ol &uf du ’ ‘
62 &xayay 54 ayz ?
bl ug.v.;.i.v.gx =ﬁ£+zw&%+zﬁ _a_ﬁ 2 5211 + %w@w@ (2.12)
ox 3y, o oy & o S\ xdy wdyot)
where
pUL a, a, pU 1 L
Re=PYL , .4 , & AU 1 L 2.13
© 7 4 pl 72 pl? : pB’ 8 b, ( )

and bars are removed for brevity. The subsequent analysis we consider that I/Re,y,and y,is

of order § and y, of orderd*. With these assumptions the major terms in Eqgs. (2.10)-(2.12)

are:
%-%?ﬁw 2 (2.14)
& &y
AT T YR T A
i ay2+ ’V@3+u&r 53 o 6K P, ayz, (2.15)

14



P _, 2.16
o (2.16)

2
where p’ = p~(2K, +K2)(g;-?~] andy, /8,7, /S andy, /& are replaced by K,,K, and K,
respectively. The above equations are subjected to the following boundary conditions

w(©) =1, u(p) =0, (2.17)
v(0) =0, w(b) = 0. (2.18)

2.2 Solution of the problem

In this section, we shall employ perturbation method to solve the above equations for the case
when second and third grade effects are smaller compared with the viscous effects. Therefore

we shall assume

K =gk, i=123, 2.19)
where ¢ is the small parameter. We now expand various quantities as follows:
U=, + &Y, {2.20)
vV, + &y, (2.21)
r =p, +EP, (2.22)

substituting Egs. (2.19)~(2.22) into Eqgs. (2.14) - (2.15), we get the following systems at

various order of z,

2.2.1 System of order 1:

Ou,, % _

. =0, (2.23)

Ou, dP, :

e (2.24)

1, (0) =0, u, () =0, (2.25)

v (0) =0, v, (8) = 0. (2.26)
2.2.2 System of order of ¢:

Ou, o

Al 227

&+® 2.27)
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2 . 3 2 2 z
i‘%w-‘i’i—i[% Tty 2t 4 2a T 3‘@”“] oF, 5‘1(%] . e®
ax o edy &y oy oy A\
1,{0)y=0, 5, (b)=0, (2.29)
v(0)=0,v,(8)=0. (2.30)
1t is noted that Egs. (2.23)~(2.26) yield well known Newtonian problem whose solution is
1dB 1 )

= P by ] —y -1 2.31
=5 =y -by) (by @231)

d 3 2 2z
vemmi,i a |y b 4 .:X,; , (2.32)

2dxl {3 2 dxi 2b

The differential equation of zeroth-order pressure is obtained by using the condition

b
J.uady ={ i.e.
Y

d dp‘} B e db. 2.33)
ax\ dx dx

Eq. (2.33) is subjected to the following conditions:
pu‘ 0= pn‘ D=0 (234)

In a similar manner, the solution of first order system reads

dr'{y’ yb dap, FEIE 1,, dr Y 2y dr' (¥ vy
= | o | K -8 3y’ ~yb 1431
52| F) (5o H }( For-wpai{-3
REICA . bsydf’ AL
R YO B 2oL S0t X (239)
& )48 & 4 RETERETEN R
’ ™
AL AN A 1B BN dbf1 (dBYD
Dodel dEL2 2 ‘ 2 E 4wy &)
Iy
_ NI/ o 222 3 » 2 3 N/ 2
P R A Byb yb d" ywyb+3y FETON PaN )
x|l dx )1 4 i )\b b

Utilizing the constraint _[:uzdy = 0the following differential equation evolves for the first

]«» (2.36)

order pressure
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¥

. . 2 3 *
S EREC A ECTCRS
il & R24 & 48] |dvii & ;48 12 400N & & J?

The above equation is subjected to the conditions
2 0)=p 1)=0. (2.38)
Inserting the expressions of u,and u,in Eq. (2.20) and making use of substitution £K, =K,

A )
24
504

. 2
P\ bydb|dP, (y Jdb
el s el B I Dl ) 2.39
{a‘x] 8 dx( dx 26° J dx @39
Similarly

by d dp{l* ui.ﬁ. dp{;* “5'3’23 d]* 8 2 dpl* +K 33) dpﬁ ......3K.}_f, @Q:_
4 al & ) 6al | 2 T e

* 2 3 s
+3K3by(d£z] _31(3),2[%] 2K3yb(dpo] e [dpa] Kb’ ( ] 3;;:3},;,

b
3 3

dp, dp, a" Y 3K.yb 3K ( d
£ (8] ol 0] 0] g o

2 2
R wﬁ&%{%} X *‘fi(dﬁ; }-%~§(%J-

g 2 dp  \d dp ), ¥ (dpy \d (dp) ) db )’
o LS Py g AL W A
8 | ax Jax| & 8 Ude jax\ & ) ax2b

2.3 Pressure field

{
i
{

B,
&5,
S,
=
-+
Sd

By,
&%
~—
KCM
i
.
-|<
sttt
£,
&5
Msesrie
[ %]
p———
ol%
S

The solution of Eq. (2.33) subjected to the boundary condition gives
. 6x (b w r)

° T (1er)’ (241)

where



bm(%(l——r)x) and r=4,/b, (2.42)
b=(r-1)x+1. (2.43)
In a similar manner, one can obtained the expression of p,” . Finally, p, is given through

p* = P‘e '*‘8}7‘;. (2.44)

. 6x(b-r)} 8 . 8K 87K, ¥k . _ 8K
? m[bz(iw) (=1 (1+7)’ 3;3(r-1)3(z+r)“ (r=1) (t+7) b‘*(r ) (+r) (-1 (14r)
8r°K, 16r'K, 16r'K, 8K, 8r°K, 8K,
L ) i 2 Tt 2 ri 3 4 12 3 i 2 4
Plr-1y(1+r) (= {14r) B-1y (147} (r~1) (1+r) (-1 (14r) (r-1)(+7)
8°K, _ 8°K, 8°K, 2K 2K, &K,
TR (=1 (1) (o) B -1 ) (=) B (-1 (r-1)(4r)

: 87K, . 6r°K, " 6r'K, _ 8K, n 8K, " 8K, _— (45)
B(r=1)(1+r) (r=0)(1+r) B (r-1){14r) (r=1)(1+r) 8 (r=1)(1+r) (r-1)(1+r)
'K &K 8K 0r7xK, 20K, N 28r'xK,
bé(?'“*l)(i'i“?‘)} bé(rmi)(iw]} &:‘5(r~~l)(b{rr’)3 ?)‘5(1'-—1)(I-i~r)3 bé(rwl)(i+r)3 1?3‘5(1"~-2)(I~$-r}3
8r°xK, N 12r°%K, 36K 18-%°K, " 36K, 36r'%°K,
Br=11+r) B (=1)(1+r) B (r=1)(147)’ b‘s( Nt+r) Br-)(1+r) B (r-1)(147)

. 6r'c’K, &K N 20m°K, 36rY'K 24r°2°K, . 12r°x°K,

Fr-0+r) B{r-1)(t+r) 2 (r-D){1+r) B (r-1){1+r) 8 (r-1)(14r) B (r-1)(14r)

16r°x’K, s 4K, . 2K, 'K, 4k . 12r'x*K,
F(r-1)(1er) B (r-14r) B (r-1)(1r) B (r-0)(1+7) B (r=1)(14r) B (r-1)(14r)

12¢°x°K, . 4r'x*K, _ 648r°'K, : 648r°K, _ 312r°K,
F(r=-D(+r) B(r-1){1+r) 25 =1 (1+r) 256 (r=1) (1+r)" 25(r=1)°(1+7)’

Sor'k, 168K, 168K, @K, . Tk, 648K
258 (r=1) (1+7) S(r=D){142) SB(r-1{147Y S(r-D+r) SH(r-1)(1+7) 25(r-1)(1+r)
68K, 31K, 3Pk, SOK, M4k
2586 (r=1)(1+r)  25(r=1)(1+7) 258°(r=1)(1+r) 5B (r-1)(1+7)’ S (r=1)(147)

1872r°xK, N M4r°xK,  eA8r'xK,  504x°K, N 2K,
256°(r=1)(1+r) 5B (r=1)(147) 258°(r-1)(147)  SBE(r-1)(14r) S°(r-1)(+7)
1008°x°K, 4r's’K, 2r*xK, 648K, 648K, 312K,

S (r=1){1+7) 8¢ (r=1){147) bé(rwi)(i-i-rf+25(r-1)2(1+r)4“25b3(r~—2)2(1+r)‘“25(r-1)2(1+r)4

312K, K, Tk 72r°K, 727K,

2552(;" (14 s(r=1)(14r) sz(rwi)z(ﬂr‘f+5(r——1)2(i+r)4MSIJZ(P—})E(HI‘)‘
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144r'x°K,  504r'’K, N 72r'¢K, N 1685°K,  504r’x'K,
s (r=1)(47) 3B (r=1)(1+r) S (r-D)(1+r) S (r-D)(1+r) 5 (r-1)(1+r)
504K, 168-°x°K,

58 (r=1)(1+r) 6% (r=1)(147)"

2.4 Graphical results

v g h
1.5} //,_,\\\\ '
Ao/ //" '''' \\\\\
% l«‘}'E / //II \\\\
A, \
0.5¢ N
)
K1=0,0.1,0.2,0.3 \
0.0 " " ™ =
00 02 04 06 08 1.0

X

Fig. 2.2: Profiles of pressure versus x for #=0.5when X =0. Solid line corresponds to

Newtonian case (K, = K, = 0).

2.5p v . v . "

<~ 7N
2.0} Lo
A7 T \\\\
1.5 0 / \‘\\\ )
E« /, 4 “‘}\
1.0f 0y 3
0.5 1
K1=0,0.1,0.2,0.3
0-0 ™ ¥ - & M
00 02 04 06 08 1.0

X

Fig. 2.3: Profiles of pressure versus x for » =0.5when K, =0.04. Solid line corresponds

to Newtonian case (X, = K, =0).
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1.0
x

Fig. 2.4: Profiles of pressure versus x for r =0.5when X, =0.1. Solid line corresponds
to Newtonian case { K, = K, =0),
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/ i
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X

Fig. 2.5: Pressure distribution in the bearing corresponding to different clearance ratios
for X, =K, =0.1.
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2.5 Results and discussion

The plots of pressure field for various values of second and third grade parameters are shown
in Figs. 2.2-2.5. Fig. 2.2 shows the effects of second grade parameters on pressure
distribution taking third grade parameters equal to zero. The comresponding curve of
Newtonian fluid is also included for comparison purpose. It is observed that pressure
increases with increase the second grade parameters. The manner in which pressure varies

with K, for non-vanishing values of X is illustrated in Fig. 2.3. It is observed that as before
by increasing K, the pressure increases. However, the pressure for non-Newtonian third
grade fluid attains significantly higher values than that for a second grade fluid. The plots of
pressure for different values of K, are shown in Fig. 2.4 for a fixed value of X, =0.1. Here

again it is noted that pressure inside the bearing increases by increasing third grade fluid
parameters. The effect of clearance ratio on magnitude of pressure inside the bearing is
shown through Fig. 2.5. It is evident from Fig. 2.5 that pressure rises in the bearing for lower

clearance ratios.
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Chapter 3

Non-Newtonian flow in a journal bearing system

The famous model of the journal bearing consists of two eccentric cylinders with a stationary
outer cylinder and a rotating inner cylinder. In this work, we discuss the flow of upper
convected Maxwell fluid in the journal bearing and explore the influence of visco-elasticity
on both the velocity field and pressure. We assume the flow to be steady and two-
dimensional. To obtain an analytical solution both gap and eccentricity are considered to be
small. Due to complicated nature of the Maxwell constitutive equation the velocity, stress and
pressure variables are computed employing domain perturbation technique. The effects of
Deborah number on radial and tangential velocity, tangential stress and pressure are

illustrated graphically. This chapter is based on the paper by Beris at al. [14].

3.1 Geometry of the problem

L J

B(8) = ¢(1+ ¢ cost)
Fig. 3.1. Geometry of journal bearing system

Fig. 3.1 shows a journal bearing consisting of two cylinders of radii # and », respectively.
Let the inner cylinder be rotating with angular velocity 2 so that the linear velocity is
V =142 . Let the center of the inner cylinder be the origin of cylindrical polar and Cartesian
coordinates system. The local gap with between the cylinders is given by
B(8)=c(l1+scosB), where ¢ =7, —7 is the average gap and £=a/c is the dimension less
eccentricity. Here « is the distance between the axes of the cylinders. The gap inside the

cylinders is filled with lubricant whose rtheological behavior is represented by the constitutive

equations of Maxwell fluid.
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3.2 Formulation of the problem

Neglecting the gravitational and inertial forces, the governing, continuity, momentum and

constitutive equations are given by

V.V =0, 3.1)
Vp+VS=0, ey )
S+4 (V.VS—WTS ~s.vv) =-7,A,. (3.3)

Where T denotes transpose. Since the flow is two-dimensional and steady therefore,
v =v (r,0), v,=v,(r,0) , and v, =0. With this choice of velocity field, the above set of

equations can be written in components form as:

...l...a )+I.§...v._—{}

ror > o0 (34)
op 85, (S nggJ 188,
et s o o il | A
o or ( ; > 00 G3)
i%+i~%+%+g§ﬁ=eg (3.6)

yof r 08 or ¥

GS v, aS Y v
w20 3.8 2k k 2 D, el
S,Wg( B Y 5,‘?; 20 (S, -8, ) (£, S,y +hS.q)- (k,es,,+kmsg,)) qﬁ(u&' +3w§; w_] G8)
¥ r

8899 y 1 Oy,
-2-48  -2(k k w2 —— R RY
+/‘iq( v, 8r Ry - S ( oS00 + rBSrB)) 7?0( 39+ r] (3.9)

where we use the abbreviationK m(VV)T. With this abbreviation (VV)*—*K? and for plane

flow under consideration we have

v,
— ekl 0
or or
1ov, v 1ov, v
YWi=K =) a8 L8200 o1 10
(Vv) (raﬁ r) [r69+r) _ (3.10)
0 0 0

The components of stress S, S, and S, are set to zero because of the invariance of the

flow in z-direction. The flow problem is subjected to the following no slip boundary

conditions
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v, =0,v,=V. on r=x, (3.11)

v, =0, v, =0 on r=r+B(6). (3.12)

The pressure and stresses are subject to the following periodicity conditions:
S, (r,8)=S,(r,6+2x), (3.13)
p(r.6)=p(r.0+2x). (3.14)

3.3 Solution of the problem

The set of Eqgs. (3.4)-(3.9) subject to boundary conditions Egs. (3.11)-(3.12) is solved by
domain perturbation technique. In this technique, the original domain is mapped to some

reference domain. For the present problem it is better to choose the reference domain to a
concentric cylinders geometry with coordinates (7,8}, The mapping is illustrated in Fig. 3.2.
The coordinates in eccentric domain (r,0) and concentric domain (7, @) are related by the

fransformation

(r.0) (r. e
Ty
Ve x
x .
» ry
c=p—r
B(8) = ¢(1 + € cos8)
Figure. 3.2. Transformation of eccentric cylinder to concentric cylinders.

r=r(7,8:6)=r=5+F ~n)(l+£c0s), (rsF<n) @315
0=0"F,8:¢)=8, (0<8<27).  (316)

In above transformation the superscript square bracket | | denotes the function of coordinates
(?35 ) In the later part we shall also use superscript angular bracket { ) to denotes functions
of the original coordinates (7,8). The purpose of this change of variable is to transform the

perturbation expression in eccentricity for the original eccentric problem to the concentric

cylinder shape. Now a perturbation expression in either coordinates system involve the use of
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partial derivatives of dependent variables with respect to &. The solution in the reference
domain can be transformed back to original domain only by having the relation between two

sets of partial derivatives. We now illustrate this relation for a function,
wr,0,6) = o (r.0,8)= o (¥,0:8). For such a function the two partial derivatives are given

by

u" (r,6,¢)=

. ) - n 10
86‘;,, ,u‘”l(F,a;a)ﬁaa‘;n . (.17

Now making use of chain rule the following relation between them can be developed

. n, n #. 0]
0,002 2 7,530 = 2, (3.18)

{0) o) =, (0 (@}
Mo T MO (3.19)

og Je oOr or

Eqn. (3.18), is analogous to the definition of substantial derivative. Thus «!) can be

interpreted as a “substantial derivative” following the mapping. In view of Eq. (3.15), factor

r" can be computed as

" Pl _ _
ri== =(F -7, Jcos b, (3.20)
i (7,§;0)m(rw§)6089, (3.21)

where we have used the fact that ¥ =rand § =@ ate=0. Eq. (3.20) will be used in the later
analysis. Once the relation between partial derivatives is developed, the next step is to expand

the dependent variables in original domain in series in ¢ calculated in the reference domain

keeping 7,8 fixed:

v(r,9;8) o o (?’9_;8)
S(r,6:6) |= Y=\ sMI(7,8:¢) | . (3.22)
n=ip e

The choice of above expansion rather than the one in original domain is basically derive by

fact that in reference domain the boundary conditions are much simpler. However, despite the

simplicity in the boundary location, the expression for the “substantial” derjvatives v, etc.,

are not easy to obtain, A remedy of this difficulty can be made by expressing the derivatives
W (7,8:0) in terms of the v (r,6;0) by using chain-rule as explained in Eq. (3.21).
Now, taking the partial derivatives §"/0¢" of the governing equations giveia by Egs. (3.1)-
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(3.3), keeping in mind that v{(r,8;¢) = v (r,8,¢) and then evaluating these at £ =0 yield the

following determining equations for e (r,6,0).

V.V =g, (3:23)
&'p oS
V V-_"""""‘ = 03
Be” +[ agﬂJ (3.24)
vpt +(v.8") =0, (3.25)
4 {n} L] ]
§0 .41, ((v.vsf '~((vs)'s)" - (s.(vs)) }) =", (3.26)

where all dependent variables are evaluated at £=0. It is pointed here the explicit form of

these equations for a fixed value of n can be readily obtained from Egs. (3.1)-(3.3) by

substituting series expansion in £ for v, 7™ and S* and equating equal order in &. In
order to determine boundary conditions for y {r.8,0}, we substitute the series expansion for

v given through Eq. (3.22) into Eqgs. (3.11)-(3.12). In this way at 7 =F =5 we have:

[-+3

- >
Fly

ﬂvf"i(?,é;o)

v, = ?
el Rl

or

@ (r g
"r*"f“’(3,9;0)‘*‘8["5‘)(n,9;9)+(f“fi)cos&%av' (M’O)] :

v, =v, % (1,6,0)+6v.% (r,6,0)+...,
1

(3.27)
vy = v, (1,6,0)+ &v," (1, 8;,0) +....

From now onward all Vs(”} are evaluated at £=0, therefore in favor of vi{”> (r.6).

A comparison of v, and v, in Eq. (3.27) with Eq. (2.11) gives

v (r.6)=0, v (1,,0)= V}

v,(*> (r }9) =0, vg(z} (r., 9) =0. (3.28)

In a similar fashion at the outer cylinder » =»# + B(€) or 7 =v,, we have

{<0>}
v,(r,8)=v" (r,8) +¢ (v,m (r.0)+(r—7)cos QW] F ey

(<
v,{1,0)= y (rg,9)+£(v,m (5,6)»4«00058?&——6;'&&)]&",
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®
v, (1, 8)= vs({}) (7, 9) + & {vgm (?’2 ,8)+Ccos 9%@]4- - (3.29)

Comparison of Eq. (3.29) with Eq. (3.12) gives the following boundary conditions at

rer,
v, % (r,,6) =0, v (r,6) =,
v, B (r,8)=—c cosﬂw&r{agrpg) , v (r.0)==¢ cosé?————-—-—-—-mﬁva{a} (,6) : .30
r or
3.4 Solution of the zeroth-order problem
The explicit form of Eqgs. (3.23)~(3.26) for » = 0 is given by
V.V =, (331)
Vp” +(v89 =0, (3.32)

X
§ 4 4 (V<o>ys<e> ~(vv® )’ $0 -5 (vv¥) )m% Al (333)

The component forms of these equations are given through Egs. (3.4)-(3.9). In view of the

prescribed boundary conditions on v, and v, we can assume, v =0, v, =, (7},

S{.;.{G) = Sg{D> (r}, and P = p{(})(r). This choice of solution makes the continuity equation

satisfied identically. The expression of velocity gradient takes the form

By (0}
0 4 0
or
{©) “"5@ oy
\'AY 0 0|=k", (3.34)
r
0 0 0

The above equation of YV in combination with the constitutive equations for S,,(G) ) AS’J,‘Q{‘:|> ,
and S, gives
SN{O) =0, _ (3.35)

avg(f’)

o)
v
Sre(e} = _7?9‘413»9{0} =~y (? __...Q;m], (3.36)
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o o
N O _na | O ¥ ©
Seg = 2/?1??0(/41«9 ) “’2’?1('“&“‘ , ]Sﬂ? . (3.37)

The component forms of equation of motion yield

Y S
p-component: “‘z,;* = -fi s (3.38)
0 (o)
6 -component: “"f; :—25:’ : (3.39)

In the subsequent analysis, we shall develop solutions to the above equation for small
dimensionless gap y , defined as:

=¢fr,. (3.40)

In this context it is appropriate to define the following dimensionless variables and groups:

- (7 v/c)’ [ (3.41)

(0}
P ey

{>
n(o (g) (r)

(3.42)
=47
C

In terms of the dimensionless variables the & -component of the equation of motion can be

written for small u as:

dSﬁ{a} . 2 Sﬂg((’)

~ =0, (3.43)
Lou <> N ....._.......zw_........, <0
A O /Al O e
9} =
dg“ L&) (c¢+z) L." ($), (3.45)
T =C (n~2ef +..). (3.46)

The solution of above equation turns out to be
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7,%(£)=C, + u(C, —2C,¢ )+ (3.47)
where C,andC,are constants. The above solution when substituted in the constitutive

equations of 7,0 o ) gives an ordinary differential equation for ¥, ©ie.

dvg(‘}}( g)} ,qug(e
dé ¢

1
(g)(z w)= C(C{,+ #(C-2C8). (3.48)
The solution of above differential equation together with conditions {33((’) (©)=1 and
5.0(1) =0 leads to:
50 =(1-¢)+£(52~¢ )+ 0(w*) (3.49)

Having 69{0} in hand, the other components of stress and velocity at leading order become

3% =0,

r

7,9(¢)=0,
7, (4')mz+,u(3-2§]+o(p2),

(é)w—2“(i+0(# )):

PO =p - Mk§+0()

v

(3.50)

ACCas&lon No.

where F, is an arbitrary reference pressure. It is noted from Eq. (3.50) that fit’;ﬁ,{“> is singular

and thus the dominant terms for g —» 0.

3.5 Solution to the first order problem
The first order system results from Eq. (3.23)-(3.26) by taking n=1, we get:

(vv@)=o, (3.51)
v.p" +vSsY =0, (3.52)
g 4, (V{B}.VSG} +V{i}‘vs(“}_(vv(°})? sY_.g ( ) (VVG ] s, (V_V{’})z):_n nA:{}}‘ (3.53)

The above equations are subjected to boundary conditions given by Eq. (3.28) and Eq. (3.30).
In the conditions the term &v,” /ar is evaluated using Eq. (3.30). Equating the terms which

are second order in u , we get
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at ren y o,

: (3.54)

Due to the periodic nature of the boundary condition, it is instructive to choose a solution of

the form

v¥ = Re {iF(r)ef’g 5}, (3.55)
-

v, = Re{—F’(r)e"*c}. (3.56)

In view of Egs. (3.55)~(3.56) the continuity equation is satisfied identically. With the help of
Eq. (3.7), the rr-component of the Eg. (3.53) reduces to

0 1 1 1
Sﬂ<‘>+kl[v’{} aS”()_gavr{)S {2}}_ oy W

= 21, i,
PV RV o a (3.57)

which is view of Eq. (3.50) takes the form

va-Hes ) 2an v ov 0
s Wy A Pt PSS § DPRGTY § B g WP 2 e ) |
" %[( M-l %c( p(1=8) ) =21, (3.58)

Let us define dimensionless variables through Eq. (3.50) and a dimensionless stream function
J by

Fir
(&)= ;(/) : {3.59)
Moreover, assume the following periodic solutions for stresses and pressure;
; 14
Sg‘{i} = Re{y;(i} (é’)e 9}(;70 *;"], (3.60)
O = red P (A L
P =Re{PU({)e | o~ . (3.61)

In this way, stress and pressure are functions of ¢ alone. Now Eq. {(3.59), Eq. (3.55) and Eq.

{3.56), we can wrife
d d
—F()=v=1(¢). (3.62)
L d v
this implies p F(r)= z-f (&), (3.63)

where prime denotes the derivative with respect to § . In view of Eq. (3.63), we can write
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a
8;; = wcsinﬁ[g; F(r)%*%F(?‘))s (3.64)

or
oy ! ive 174
- 4 ("'2 —— £ ()] (3.65)
G
% i
similarly
o, cV
“—_8;9 =} —080 wmr—ee (&) 1, (3.66)
9
H
and
as m . Iy 7]6V
D Ho 3.67
26 sinb7,, - (3.67)

Using Eqgs. (3.63)-(3.67) in Eq. (3.58), we get

ces@ﬁ‘g:—?;,{’)-mx 4 (1-¢ ){usinﬂgﬁzf;(’}}(ié— p=pl +.)| = fV prcosd 4 2
R UC I
f b4 e =1 In} i+
h 4] h
WS Pl S 14 (3.68)

s P
’?Ll “*’f“g“J nl +E—€
AN n
A further simplification vield
7% +iDe(1- (;)(z w% e +....)T,,<‘> = wzg(ff' + Def) +O(%). (3.69)
From above equations T,,r<l> turns out to be

2(V'+Def)
O 2
= (I+iDe(1wé'))ﬂ+O(ﬂ ) e

Similarly
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2e(f + Def |
(1+iDe(1-<)}

T,0(1+iDe(1-¢))= 1 +2De’f + +o(p), (.71

T (1+iDe(1-¢)) = %ﬁ(ziﬂef f T )+ o). (7

1t is evident that T,,{‘} ~ i, we can develop T”(‘) as a series in g with leading term. Moreover,
70 o1 and T,,® ~1/ 4. Thus similar to 7, | 7,,% is singular and dominant. Now, we are
in a position to combine the constitutive equations with equation of motion. From Eq. (3.52),

we can write

r-component:

ﬂ(Tﬂ{I} ___Tw(*)) P

W Lo )
P 4T Vo4 (1+pé’) +(I~r~p§)

i\ =0, (3.73)

# ~component:
PV il O (14 )T, 42410 =0, (3.74)

t
Eq. (3.73) indicates PV ~1 , while Eq. (3.74) gives P~ 1/ 4. Thus the series representation
of pm is
o
2,
p ==—10(1). (3.75)
i
Eq. (3.75) implies that the pressure is constant across the gap at lowest order in u.
Elimination of pressure from Eq. (3.74) by taking d/d{ of this equation results in the
determining equations for stream function. Retaining the leading order terms in this
equations, we get
il +1, 0" =0, (3.76)
Inserting Egs. (3.71)-(3.72) and performing much tedious algebra, one find
(24 +i(1-¢7)) g™ ~(-207 +2i¢ ) g™+ 2i4 g - 4i¢ g+ dig =0, G

Where

"

£=De(1-C); 8()=S ()i € ()=-5-f (©)iand g ()=551 (€)  (TH)
The general solution to Eq. (3.77) is

g(&) = e + Be ™ £ CE 4 DE, (3.79)
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in which 4, B, C and D are integration constants. The relevant boundary conditions on g( &)

are g(O)mg’(De)xg(De)wO; gr ({))mgg.

Imposition of above conditions on Eq. (3.79) yields

De (biu-?m}e‘*"")”‘ +(1+i+w2~»Je*“"*"" +2
De De

D=2

/ «g#] P 4 (1 +i+ i)e*"")”" +2
De De

oE

3.6 Graphical results

"20.15}

Fig. 3.3: Profiles of correction to the radial velocity v,” = vf} / V 1 depends on the

dimensionless radial coordinate & =(r-r,)/c(1+ecos6) at @=3x/2 for

l—...._m.
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Fig. 3.4: Contours of tangential velocity v, ({,8) = (S(;e@#/ (77@ (V/e ))) De .
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Fig. 3.5: Contours of correction to normal stress S, = {Smm,u/ (z;@ (V/c)))De,
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Fig, 3.7 Variation of ¢, with De.

35



3.7 Results and discussion

The profiles of correction to the radial velocity v, = vr(z} / Vu at 6=3xn/2 for different values
of De are shown in Fig. 3.3. It is evident through Egs. (3.55)~(3.56) that at this position v,(’) is
proportional to the real part of F. Moreover, since v,(“} =0, therefore, v, gives the total radial

velocity up-to order & . Fig. 3.3 shows that v, increases with Deborah number with maximum

in it shifting towards the inner eylinder.

The tangential velocity in reference domain includes contribution from both v,;f[(’§ and

vl = 7 Veoss . The contours of dimensionless total tangential velocity v =v,” =v, /¥

are shown in Fig. 3.4. It is observed that for De=0.01 there is a flow separation at the outer

cylinder at @=0. An increase in De causes this secondary flow to disappear.

The contours of correction to normal stress S, for various values of De are shown in

Fig. 3.5. The contours predict the development of a boundary layer near the outer and inner

cylinders for large value of De. Moreover, away from the outer wall S, is nearly
independent of ¢ . The amplitude of dimensionless pressure P =P u/(n,(V/c)),
P*= |}g<‘>| Cos ((} +6, ) is plotted against De in Fig. 3.6. This figure depicts that amplitude of
pressure increases by increasing De. The variation of ¢, with De is shown in Fig. 3.7. The
phase angle ¢, determines the steady-state position of journal relative to the outer cylinder.

For Newtonian ¢, =-90". In convected Maxwell fluid the viscoelastic nature of the fluid is the

responsible for the shifting of pressure force towards the wide part of the gap.
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