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Preface 
The study of magnetohydrodynamic (MHD) natural convection flow and heat transfer of an 

electrically conducting fluid past a heated semi-infinite vertical solid surface is important fiom 

application point of view. It is applicable in many engineering problems such as 

magnetohydrodynamic generator, nuclear reactors, geothermal extractions and the boundary 

layer control in the field of aeronautics and aerodynamics. It serves as the basis for 

understanding some of the important phenomena occurring in heat exchanger devices as well. 

Since thermal radiation effects are important in context of space technology and processes 

involving high temperatures therefore Ozisik [I], Sparrow and Cess [2], Elbarbary [3] and Cess 

[4] and Arpaci [5] first studied the interaction of thermal radiation and natural convection but 

their analysis was confined to the case of a vertical semi-infinite plate. 

The aforementioned problems are modelled mathematically through Navier-Stokes 

equations. The governing partial differential equations are solved directly or by transforming 

them into ordinary differential equations. There are mainly two approaches, namely, the 

analytic and the numerical in literature to tackle the arising differential equations. Most 

problems are so complicated that their analytic exact solution is hard to find. Therefore many 

researchers are always interested in approximate methods, such as perturbation methods, 

numerical methods and integral methods etc. In order to obtain approximate closed form 

analytic solution one best choice is the integral method because it have much less limitations 

in term of their geometry and boundary conditions. It can also be applied to both laminar and 

turbulent flow situations. It easily provides an accurate approximate solution to complex 

problems. Using the integral method, one usually integrates the conservative differential 

boundary layer equation over the boundary layer thickness by assuming a profile for velocity, 

temperature and concentration as needed. The better the approximate shape of the profile is, 

such as velocity and temperature, better is the prediction of drag force and heat transfer (friction 

coefficient or heat transfer coefficient). The integral methodology has been applied to a variety 

of configurations to solve transport phenomena problems. 

This dissertation is divided into three chapters. Chapter 1 includes some basic definitions. In 

chapter 2 integral solution for laminar natural convection flow for similar and non-similar cases 

is discussed whereas chapter 3 considers the natural convection flow or viscous fluid near a 

vertical plate with sinusoidal magnetic field applied normal to the plate by taking into account 

the radiative heat transfer. Integral method has been applied to obtain the approximate solution 

and the results are discussed through graphs. 



Contents 

1 Introduction and Preliminaries 4 

1.1 Introduction . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . .  4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 Basic Definitions 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2.1 Fluid 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2.2 Fluid Mechanics 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2.3 Flow 6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2.4 Deformation 6 

1.2.5 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 Characteristics of Fluid 7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3.1 Density 7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3.2 Stress 7 

. . . . . . . . . . . . . . . . . . . . . . . .  1.3.3 Absolute or Dynamic Viscosity 7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.3.4 Kinematic Viscosity 8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4 Classification of Fluid 8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.1 Newtonian Fluid 8 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.4.2 Non-Newtonian Fluid 9 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5 Types of Flow 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.1 Internal Flows 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.2 External Flows 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.3 Uniform Flow 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.4 Non-Uniform Flow 10 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1.5.5 Steady Flow 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.6 Unsteady Flow 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.7 Compressible Flow 10 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.8 Incompressible Flow 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.9 Laminar Flow 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.10 Turbulent Flow 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.5.1 1 Inviscid Flow 11 

. . . . . . . . . . . . . . . . . . . . . . .  1.5.12 R.otationa1 and Irrotational Flow 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6 DimensionlessNumbers 11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6.1 Reynolds Number 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6.2 Prandtl Number 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6.3 Grashof Number 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.6.4 Rayleigh Number 13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.7 Basic Governing Equations 13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 1.7.1 Continuity Equation: 13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.7.2 Momentum Equation 14 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.7.3 Energy Equation 14 

2 Similar and  Non-Similar Solutios t o  Na tu ra l  Convection F low 16 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Introduct. ion 16 

. . . . . . . . . . . . . . . . . . .  2.2 General Equations for Natural Convection Flow 17 

. . . . . . . . . . . . . . . . .  2.3 Integral Form of Momentum and Energy Equations 18 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.3.1 Self Similar Solution 23 

2.3.2 Boundary Layer Thickness, Nusselt Number and Skin Friction . . . . . .  26 

. . . . . . . . . . . . . . . . . . . . . . .  2.4 Non-Similar Solution (General Solution) 27 

2.4.1 Boundary Layer Thickness, Nusselt Number and Skin Friction . . . . . .  28 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5 Graphical Results and Discussion 29 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.5.1 Conclusion 31 

3 .Na tu ra l  Convection Boundary  Layer Flow U n d e r  t h e  Influence of Sinusoidal 

Magne t i c  Field 33 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.1 Mathematical Formulation 34 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2 The Integral Method Solution 36 

3.2.1 Integral Form of Governing Equations . . . . . . . . . . . . . . . . . . . .  36 

3.2.2 Velocity and Temperature Profiles . . . . . . . . . . . . . . . . . . . . . .  38 

. . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.3 Boundary Layer Thickness 42 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.2.4 Nusselt Number 42 

3.2.5 Skin Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Graphical Results and Discussion 43 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.3.1 Conclusion 50 



Chapter 1 

Introduction and 

. ". 
The objective of this chapter is to give brief introduction of the work presented in this dis- 

sertation. Relevant definitions and fundamental governing laws are introduced here which will 

provide background for the subsequent chapters. The frequently used dimensionless numbers 

are also defined. 

1.1 Introduction 

In 1905 Prandtl gave t,he first description of the boundary layer concept. Prandtl showed that 

the flow past a body can be divided into two regions, a very thin layer close to the boundary 

where the viscosity is important and the remaining region where the viscosity can be neglected. 

Outside the boundary layer the flow was essentially that which had already been studied for the 

previous two centuries. With the help of this concept he explained the boundary layer theory. 

Initially boundary layer theory was develop mainly for the laminar flow of an incompressible 

fluid where stokes law of friction could be used as an ansatz for the various forces. The objects 

might be of different shapes on which boundary layer develops. The simplest geometry on which 

the boundary layer is formed is an infinitely long plate along which a viscous incompressible 

fluid flows. If the surface is curved then the boundary layer structure would be more complex. 

The thickness of the boundary layer grows along the surface from the leading edge to the rear. 

At the leading edge of a flat plate the thickness is zero and it grows continuously towards rear 

end of plate. 



The study of magnetohydrodynamic (MHD) natural convection flow and heat transfer of an 

electrically conducting fluid past a heated semi-infinite vertical solid surface is important from 

application point of view. It is applicable in many engineering problems such as magnetohy- 
.-- 

drodynamic generator, nuclear reactors, geothermal extractions and the boundary layer control 

in the field of aeronautics and aerodynamics. It serves as the basis for understanding some of 

the important phenomena occurring in heat exchanger devices as well. Since thermal radiation 

effects are important in context of space technology and processes involving high temperatures 

therefore Ozisik [I], Sparrow and Cess [2], Elbarbary [3] and Cess [4] and Arpaci [5] first studied 

the interaction of thermal radiation and natural convection but their analysis was confined to 

the case of a vertical semi-infinite plate. 

The aforementioned problems are modelled mathematically through Navier-Stokes equa- 

tions. The governing partial differential equations are solved directly or by transforming them 

into ordinary differential equations. There are mainly two approaches, namely, the analytic and 

the numerical in literature to tackle the arising differential equations. Most problems are so 

complicated that their analytic exact solution is hard to find. Therefore many researchers are 

always interested in approximate methods, such as perturbation methods, numerical methods 

and integral methods etc. In order to obtain approximate closed form analytic solution one best 

choice is the integral method because it have much less limitations in term of their geometry 

and boundary conditions. It can also be applied to both laminar and turbulent flow situations. 

It easily provides an accurate approximate solution to complex problems. Using the integral 

method, one usually integrates the conservative differential boundary layer equation over the 

boundary layer thickness by assuming a profile for velocity, temperature and concentration as 

needed. The better the approximate shape of the profile is, such as velocity and temperature, 

better is the prediction of drag force and heat transfer (friction coefficient or heat transfer 

coefficient). The integral methodology has been applied to a variety of configurations to solve 

transport phenomena problems. 

This dissertation is divided into three chapters. Chapter 1 includes some basic definitions. 

In chapter 2 integral solution for laminar natural convection flow for similar and non-similar 

cases is discussed whereas chapter 3 considers the natural convection flow or viscous fluid near a 

vertical plate with sinusoidal magnetic field applied normal to the plate by taking into account 



the radiative heat transfer. Integral method has been applied to obtain the approximate solution 

and the results are discussed through graphs. 

1.2 Basic Definitions 

1.2.1 Fluid 

A fluid is a substance that deforms continuously when subjected to a shear stress (i.e., tangential 

forces) no matter how small that shear stress may be. In simple words, a fluid is a substance 

which is capable of flowing and which conforms to the shape of containing vessel. Fluids are 

usually divided into two groups, namely, liquids and gases. 

1.2.2 Fluid Mechanics 

Fluid mechanics is a well known branch of continuum mechanics. It usually deals with the 

behavior of fluids (liquids and gases) in the states of rest and motion. Fluid mechanics may be 

divided into three categories: fluid statics, fluid kinematics and fluid dynamics. Fluid statics 

deals with the study of fluids at rest, while fluid kinematics is the study of fluids in motion 

without considering the forces which cause or accompany the motion. On the other hand, fluid 

dyna.mics is the study of fluids in motion considering the forces acting on the fluids. 

1.2.3 Flow 

Since the deforms continuously when different forces act upon it. If the deformation continu- 

ously increases without limit, this phenomenon is known as flow. 

1.2.4 Deformation 

It is a relative change in position or length of the fluid particles. 

1.2.5 Velocity Field 

Velocity is the rate of change of the position of an object. It is the vector quantity whose 

magnitude is the speed and whose direction is the direction of motion. The velocity of the fluid 

a.t a given point is defined as the instantaneous velocity of the particle, which is passing through 



that point at  a given instant. It is denoted by V = V(x,  y ,  2, t ) .  In vector form V = [u,u,  w], 

where u,  v and w are three scalar components of the velocity in z, y  and r directions and t is 

the time. 

1.3 Characteristics of Fluid 

1.3.1 Density 

The density of the fluid is the mass of unit volume of the fluid at given temperature and pressure. 

If the density of the fluid varies then the density at  the point is given as 

677% 
p =  lim 

6"-6V' (SV') 

where 6V' is the small volume over which the substance can be considered as a continuum. 

1.3.2 Stress 

The stress is defined as the force per unit area of the surface on which it acts. The stress at 

any point P in the fluid is defined as 

A? 
Stress at  any point P = lim - 

AS-o A S  ' 

4 
where A F is the force acting on an element of surface area A S  enclosing the point P. The 

strkss in the direction of the normal to the surface at  P is said to be the normal stress, while 

the stress in the direction of the tangent to the surface at P is called the shearing or tangential 

stress. For a closed surface, the stress exerted by the inner fluid on the outer (surrounding) 

fluid is taken as positive, where the stress exerted by the outer fluid on the inner fluid is taken 

as negative. 

1.3.3 Absolute or Dynamic Viscosity -, 

Viscosity is defined as the measure of resistance of a fluid to deformation by shear stress or 

tensile stress. It is usually taken as "thickness or resistance to flow" and is related to the internal 

friction of a moving fluid. For unidirectional motion of a fluid between two long parallel plates 



one of which is at rest, the other moving with a constant velocity parallel to itself under the 

action of a constant force, it can be shown that 

here u is velocity component in the direction of flow and y is distance measured normal from 

the lower plate. The law of fluid friction given by (1.3) is known as Newton's law of viscosity. 

From (1.3), we can write 

T s h e a ~  stress p = - =  
du/dy rate of shear strain '  

eqs. (1.4) can be regarded as the definition of viscosity. 

1.3.4 Kinematic Viscosity 

Kinematic viscosity is stated as the ratio of absolute viscosity p to  the density p and is given 

The units of kinematic viscosity is m2/s or Stoke (St) 

1.4 Classification of Fluid 

Generally, fluid are classified in two main branches. 

1.4.1 Newtonian Fluid 

Newtonian fluid are those which possess a linear relation between shear stress and rate of strain. 

Generally, they are defined as fluids for which Newton's law of viscosity holds. The graphical 

representation of shear stress versus velocity gradient is a straight line which passes through 
-_* 

the origin. Fluids that exhibit Newtonian behavior are water, gasoline, air and glycrine, etc. 



1.4.2 Non-Newtonian Fluid 

Non-Newtonian fluids are those fluids in which shear stress is directly but non-linearly propor- 

tional to deformation rate. For such fluid shear stress and rate of deformation satisfy power-law 

model i.e, 

where k is called the consistency index which is a measure of the consistency of the fluid, 

and n is called the flow behaviour index and is a measure of how the fluid deviates from a 

Newtonian fluid. For k = p and n = 1 it reduces to Newton's law of viscosity. The shear 

stress versus velocity gradient plots for non-Newtonian fluids are non-linear, in general, some 

of them pass through the origin while others do not. Thus the viscosity p of a non-Newtonian 

fluid at a given temperature and pressure is a function of the velocity gradient. Examples of 

non-Newtonian fluids includes toothpaste, blood, honey, ketchup, shampoo, gels, paint, drilling 

muds and biological fluids etc. While studying flow of non-Newtonian fluid the following two 

characteristics are technically important. 

Shear Thinning Effect 

Shear thinning is an effect where viscosity deceases with increasing rate of shear stress. Materials 

that execute shear thinning are called pseudoplastic. There are certain complex solutions such 

as lava, ketchup, whipped cream, blood, paint and nail polish, which describe such effects. 

Shear  Thickening Effect 

A shear thickening effect is one in which viscosity of a fluid increases with the rate of shear 

stress. Fluids which describe such effects are termed as dilatant. Mixture of cornstarch and 

water can easily be seen to understand this effect. 



1.5 Types of Flow 

1.5.1 Internal Flows 

Flows that are bounded completely by solid surface are known as internal flows. Internal flow 

can be compressible, incompressible, laminar or turbulent. Examples are flow in pipe or in 

duct. 

1.5.2 External Flows 

Flows over bodies immersed in an unbounded fluid are known as external flows. Examples are 

flow over an aeroplane, cars and ships. 

1.5.3 Uniform Flow 

Uniform flow is defined as flow in which the velocity of the fluid is of the same magnitude and 

direction at every point in the fluid. 

1.5.4 Non-Uniform Flow 

If the velocity of the fluid does not have the same magnitude and direction at  every point in 

the fluid is termed as non-uniform flow. 

1..5.5 Steady Flow 

Steady flow is defined as the type of flows in which fluid characteristics like velocity, pressure, 

density etc. at a point do not change with respect to time. 

1.5.6 Unsteady Flow 

If a t  any point in the fluid, the conditions change with time, the flow is described as unsteady. 

1.5.7 Compressible Flow 

Compressible flow is the flow in which the density of the fluid changes during the flow. Flow of 

gases is usually considered as compressible. 



1.5.8 Incompressible Flow 

The flow in which the density of the fluid does not change during the flow is known as incom- 

pressible flow. Liquids flow are generally incompressible. 

1.5.9 Laminar Flow 

When fluid flows in parallel layers such that there is no disruption then flow is said to be 

laminar. In laminar flow, the velocity of the fluid at each point does not change in magnitude 

as well as in direction. Examples include flow of air over an aircraft wing. 

1.5.10 Turbulent Flow 

It is a flow in which fluid undergoes irregular fluctuations as compared to laminar flow. In 

turbulent flow, the velocity of fluid at  each point continuously changes both in magnitude and 

direction. Examples are flow over a golf ball and smoke rising from cigarette. 

1.5.11 Inviscid Flow 

An inviscid flow is the flow of an ideal fluid that is assumed to have no viscosity. 

1.5.12 Rotational and Irrotational Flow 

A flow is said to be rotational if the fluid particles go on rotating about their own axes during 

the flow, i.e. the particles have some angular velocity. Mathematically, for such flow 

On the other hand, a flow is said to be irrotational if the fluid particles does not rotate about 

their own axes during the flow. i.e., V X V = O .  

1.6 Dimensionless Numbers 

A dimensionless quantity is a quantity without an associated physical dimension. It is thus a 

"pure" number and as such always has a dimension of 1. Dimensionless quantities are widely 



used in mathematics, physics, engineering and economics. Definitions of some dimensionless 

quantities that are involved in our work are given here. 

1.6.1 Reynolds Number 

Reynolds number is defined as the ratio between inertial forces and viscous forces. Reynolds 

number is usually denoted by Re. When the Reynold number is small then flow is treated as 

creeping flow and when it is large i t  becomes turbulent. Mathematically, it can be defined as 

where U is the characteristic velocity and L is a characteristic linear dimension, associated with 

the flow under consideration. 

1.6.2 Prandtl Number 

The Prandtl number Pr is a dimensionless number, named after the German physicist Lud- 

wig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal 

diffusivity. That is, the Prandtl number is given as: 

v viscous diffusion rate C p p  P r = - =  -- - 
a: thermal diffusion rate k ' 

Where: 

v =kinematic viscosity,~ = , (SI units: m2/s) 
P 

cr =thermal diffusivity, a: = ~ , ( s I  units : nx2/s) 
(PC,) 

p =dynamic viscosity, (SI units : P a s  = ~ s / n z ~ )  

k =thermal conductjvity, (SI units : W/(mK) ) 

C, =specific heat, (SI units : J/(kgK) ) 

p = density, (SI units : kg/nr3). 

1.6.3 Grashof Number 

The Grashof number (Gr) is a dimensionless number frequently used in the areas of fluid 

dynamics and heat transfer which approximates the ratio of the buoyancy to viscous force 



acting on a fluid. It frequently arises in the study of situations involving natural convection. It 

is named after the German engineer Franz Grashof. 

where L indicate the length scale basis for the Grashof Number, 

g = acceleration due to Earth's gravity, 

,B = volumetric thermal expansion coefficient, 

T = surface temperature, 

T, = Temperature of the ambient fluid, 

L = chamcteristic length, 

u = kinematic viscosity. 

1.6.4 Rayleigh Number 

The product of the Grashof number and the Prandtl number gives the Rayleigh number, a 

dimensionless number that characterizes convection problems in heat transfer. 

Rai = (Grl ) (Pr) , 

1.7 Basic Governing Equations 

In this section the general form of equations governing the flow and heat transfer phenomena 

are presented in usual notations. 

1.7.1 Continuity Equation: 

Continuity equation is the mathematical expression of law of conservation of mass and it is 

described as 

ap - + div(pV) = 0' 
at 

(1.11) 



If density remains constant with respect to time and space then flow becomes incompressible 

and eq. (1.11) reduce to 

d ivV = 0, 

where div denotes the divergence operator. 

1.7.2 Momentum Equation 

The momentum equation or the law of coservation of momentum under the influence of magnetic 

field and bouncy effects is given by 

The utilization of magnetic field in the momentum equation also requires the satisfication of 

following physical laws: 

. Ohm's law 

(1.14) j = a [ E + V  x B], 

Maxwell's equation 

V x E = O , V . B = O , V x B = p o j ,  

in which 

v = (u, 'L', w), 

is the velocity vector, j the electric current density, B represents the magnetic induction vector, 

p the density of the fluid, v the kinematic coefficient of viscosity, g identifies the gravtational 

vector ,L3 is the coefficient of thermal expansion and V is the gradiant operator. 

1.7.3 Energy Equation 

The energy equation is given by 



where T is the temperature, a is thermal diffusivity, k is thermal conductivity and q, radiative 

heat flux is given by 

in which a0 is the Stefan-Boltzmann constant, .a, is the scattering coefficient and a is the 

Rosseland mean absorption coefficient. 



Chapter 2 

Similar and Non-Similar Solutios to 

Natural Convection Flow 

2.1 Introduction 

In this chapter we consider steady two dimensional boundary layer flow of a viscous incom- 

pressible fluid near a vertical wall. The wall is supposed to be at  rest and the flow is due to 

temperature gradiants. The problem has already been studied by Bejan and Lage [6]. Many 

other authers have studied the problem like McAdams [7], Warner Arpaci [8], Jackson [9], and 

Chbrchill and Chu[lO]. They used integral method to  solve the governing system of equations 

by assuming suitable forms of the velocity and temperature functions. They made a selection 

of the arbitrary free stream of self similar form and accordingly boundary layer thickness b(x), 

we also make a selection of the same form, that is, 

where cl and cz are independent of z. Using these transformation they calculated the boundary 

layer thickness, Nusselt number and skin friction. The apporach they adopted is quite specific 

to the self similar form of the free stream velocity. However, we have also dealt this problem for 

the non-similar flow by making no prior assumptions for the functions U(x) and b(2). In this 

way this chapter includes the review work concerning the self-similar flow and also includes the 



analysis for non-similar flow. 

2.2 General Equations for Natural Convect ion Flow 

The two-dimensional boundary layer equations as considerd by Bejan and Lage [6] are given 

as: 

Continuity equation: 

Momentum eauation: 
d u  d u  d 2 u  

u- + v- = v- + gP(T - T,), 
d x  d y  dy2  

Energy equation: 

Subjected to the boundary conditions 

where u and v are the J: and y component of the velocity vector, v is the kinematics viscosity, 

g is acceleration due to Earth's gravity. Integrating the continuity equation with respect to y 

in the interval (0, Y), where Y > S & St, one obtains: 



This is known as integral form of continuity equation. 

2.3 Integral Form of Momentum and Energy Equations 

In order to obtain the integral form of momentum and energy equations, we integrate momen- 

tum a.nd energy equations over the boundary layer thickness 6 and 6t respectiely. First we 

Consider the momentum equation which can be rewritten as: 

du2 d ( u v )  d2u 
- + - = v- +g/3(T - T,). 
d x  d y  dY2 

Integrating the momentum equation with respect to y in the interval of (0 ,  Y), where Y is 

greater than both 6 and &, one obtains: 

After integrating the 2nd term on L.H.S. and using boundary condition ( u  = v = O), eq. (2.10) 

yields 

since 

Therefore 



The eq. (2.12) is known as integral form of momentum equation. 

The energy equation (2.4) can also be rewritten in the following form 

By incorporating the continuity equation it takes the form 

d ( u T )  d ( v T )  d 2 T  + - = a-. 
d x  dY dy2  

Let us integrate the above equation with respect to y in the interval (0, y) to get 

As from continuity equation we have 

subsituting this in above equation we have 

Following a similar procedure as above the integral form of energy equation is given below 



For obtaining the solution of a natural convection flow, the appropriate velocity and tem- 

perature profiles must be utilized together with the integral equations (2.12) and (2.17). The 

velocity and temperature profiles depend on the momentum and thermal boundary layers thick- 

ness, which in turn depends on the Prandtl number. Assuming the velocity profile as the third 

degree polynomial function of y in the boundary layer and using the boundary conditions to 

determine the unspecified quantities. The velocity profile is assumed of the form 

where U is the characteristic velocity that is a function of x. Similarly, the temperature profile 

can be obtained by assuming a second degree polynomial function of the form 

Substitution of velocity and temperature profiles into eq. (2.12) we have 

d 2 

- dx u2 . lY (;)2 dy = du2 IY (( (1 - ;)2) dy. 
dx . 

Let us make a substitution 
Y -=r l=+y=6rl ;dy=dr$,  
6 

So that 

which further simplifies to 



Following the same procedure for integral energy equation 

and assuming that 
Y - = n ; y  = nbt ==+ d y  = d n & ,  
6t 

the integral form of energy equation takes the form 

Upon further integrationthe the above equation simplifies to 

Since the shear stress is defined as 

which due to  eq. (2.18) comes out 

Substituting (2.22), (2.23) and (2.24) in momentum integral equation (2.12) we get 

Now consider the eq. (2.17) energy integral equation 

which can also be written as 



Here we assume that 

Y - - 6t -72;-=p+ Y 
~t 6 (t) (%) = n ,  3 = n p ,  

and substitute it into eq. (2.26) to get 

T - T )  (1 - ) I = - [ ] , (2.27) 
PCP 

and finally 

Upon further integration we obtain the simplified result as under 

1 d -- 2a  
(Ud)  = -. 

30 dx st 

At, the leading edge of the vertical plate, the boundary layer thickness is zero and the charac- 

teristic velocity U is also zero 

-1 

Equation (2.29) serves as the initial condition for eqs. (2.25) and (2.28). 



2.3.1 Self Similar Solution 

Substituting eq. (2.1) in eq. (2.25) we get 

Substitution of eq. (2.1) into eq. (2.28) gives 

The above two relations (2.31) and (2.32) can be true for all x only if the indices of x for all 

terms in the same equations are the alike, that is, when the following equations hold: 

and 



Solving eqs. (2.33) and eq. (2.34) we get the values of m and n as 

This suggests that this is an agreement with the result of the scaling analysis. Substituting 

back the values of m and n into eqs. (2.31) and (2.32)' one obtains 

which after further simplification yields 

Similarly eq. (2.32) becomes 

and finally simplifies to 

Solving for Cl and C2 we have 

2 84vcl c1c2 = -- + 28gP(Tw - T ~ ) c z ,  
c2 

and 

Comparing eqs. (2.38) and (2.39) to get 



4 80a = -84v + 28gp(Tw - T,)-. 
c1 

Upon further manipulation we get 

Since from eq. (2.39), we have 
800 

c 1 = .  
4 

Therefore substitution of eq. (2.40) in eq. (2.41), gives 

Thus from eq. (2.1) 

6 = czxn, 

where n = a. Inserting eqs. (2.35) and (2.40) in eq. (2.43), we have the expression for boundary 

layer thickness 

20 v g/3(Tw - T,) 
b = I ( $ ) : ( 2 1 + - - ) i  [ v2 X 4 ,  



2.3.2 Boundary Layer Thickness, Nusselt Number and Skin Fkiction 

The boundary layer thickness in its compact form is given as 

The local heat transfer coefficient at the surface of the vertical plate can be obtained by 

which reduces to 

The local Nusselt number is defined as 

h,x 2x Nu, = - = - 
k 6 '  

1 
pr2 4 1 

Nu, = 0.508 (0.952 + Pr ) Gr'' 

Since 

therefore 

Tlrie skin friction is defined as: 

Since from eq. (2.24) 



and finally, 

Substituting eq. (2.51) in eq. (2.50), we get 

2.4 Non- Similar Solution (General Solution) 

In this section we again consider the eqs. (2.25). and (2.28) without taking into account the 

assumption made in eq. (2.1) 

where U is characteristic velocity and in general we assume that U = U (x) , thus 



Since 

and 

using eq. (2.54) in eq. (2.53),  we have 

similarly equation (2.28) takes the form 

d ( ~ 5 ) ~  120a 2d2 dU -=---- 
U d x  U d x '  

Comparing eq. (2.55) and eq. (2.56) we have 

which after some rearrangements takes the form 

and finally we have 

where Pr is the Prandtl number. 

2.4.1 Boundary Layer Thickness, Nusselt Number and Skin Riction 

The boundary layer'thickness (2.57) in dimensionless form read as 



where 
Ux 

Re, = -, GrX = 
g P ( T w  - T a x 3  

v v2 

The local heat transfer coefficient at the surface of the vertical plate can be obtained from eqs. 

(2.46), (2.47) and (2.48),  we get the local Nusselt number of the form 

After substituting the necessary information in above equation we have 

0.571 + Pr -- 
Nu. = 1.1547 ( pr ) : [6'- - -- 

Re, 35v dx  

Skin Friction in this case becomes of the form 

2(0.5747) ( o . s ; ) : " ) - ~  [e - & E] ' pvU 
Cf = 

pU2x , 

which in the form of dimensionless parameters takes the form 

0.571 + Pr 
c j=1 .1494 (  pr ) R.ex 35v dx (2.60) 

It is important to mention here that the results presented in eqs. (2.58) - (2.60) are valid 

for all forms of the function U ( x )  and the results presented in the previous section can also be 

recovered if one considers eq. (2.1) . 

2.5 Graphical Results and Discussion 

In this section the result have been presented graphically. A comparision between integral 

solution and similarity solution is also presented through graphs in figure 2.1. It can be seen 

that the integral solution under predicts the local Nusselt number for low Prandtl number but 

over predicts the local Nusselt number for high Prandtl number. At Pr = the integral 

solution yields N U , / R ~ :  = 0.051, which is 13% lower than the value of 0.059 obtained from 

the similarity solution. At Pr = 0.72, which is the Prandtl number for air, the result obtained 



by the  integral solution ( N U , / R U ~  = 0.412) is 6.8% higher than the similarity solution. I t  can 

also be seen that the agreement between the integral and similarity solutions is the best at high 

Prandtl number values. When Pr = lo4, the difference between the integral and similarity 

solution is only 1.5%. In fig. 2.2 the skin friction is plotted against Pr. By increasing the 

Prandtl number Pr the skin friction increases but at lo0 and after this value the skin friction 

becomes smoot,h and there are no variations in the skin friction curve. Figure 2.3 shows the 

boundary layer thickness behaviour on increasing the value of PI,. The boundary layer thickness 

decreases but at the point lo0 the boundary layer thickness becomes smooth and no further 

significant variations are obscened in the boundary layer thickness plot. 

Fig. 2.1: Comparision between integral and similarity solution. 



-Integral Solution 

Fig. 2.2: Skin friction plotted against Prandtl number. 

Fig. 2.3: Boundary layer thickness plotted against Prandtl number 

2.5.1 Conclusion 

This chapter represents an  approximate solution (integral solution) for laminar natural convec- 

tion flow. The governing laws are transformed into integral form and velocity and temperature 

profiles are ass~~med.  Self similar integral solution is obtained by assuming special form (scal- 

ing type) of the free stream velocity and the boundary layer thickness. A general approach 



is adopted to get the integral solution that is useful for all types of the free stream velocity. 

The integral method enabled us to obtain the analytic expression for boundary layer thickness. 

With the help of boundary layer thickness expressions the expressions for local nusselt number 

as well as for local skin friction coefficient are also obtained. 



Chapter 3 

Natural Convection Boundary Layer 

Flow Under the Influence of 

Sinusoidal Magnetic Field 

Magnetohydrodynamic natural convection periodic boundary layer flow of an electrically con- 

ducting and optically dense gray viscous fluid near a heated vertical plate has been studied by 

various authors. Although this problem was discussed in detail by several investigators such 

as Sparrow and Cess [ll], Riley [12], Kuiken [13], Wilks [14] and Hunt and Wilks [15]. Vari- 

ous other authors analyzed the influence of MHD in connection with a number of important 

physical phenomenon. Very recently, Siddiqa et. al. [16], Hossain et. al. [17] and Makinde 

[18] investigated the problem of conjugate effects of heat and mass transfer on magnetohydro- 

dynamic free convection fluid flow in a strong cross field. For instance, Pop and Watanabe [19] 

investigated the effects of Hall current on the MHD free convection flow about a semi-infinite 

vertical flat plate. 

J n  this chapter we revisit the problem studied by Siddiqa et. al. [16]. They considered 

natural convection boundary layer flow of an electrically conducting fluid near a vertical plate. 

The magnetic field is assumed to be sinusoidal in longitudnal direction. Siddiqa et. al. (161 

obtained numerical solution of the problem using finite difference method direct numerical 

approach. We consider the same problem and obtain analytic solution using the integral method 



as it is done in chapter 2. 

3.1 Mathematical Formulation 

We consider steady two dimensional natural convection flow of a viscous, electrically conducting 

and optically dense gray fluid along a semi-infinite vertical heated surface in the presence of 

magnetic field prescribed in the streamwise direction B,(x) of the form (see [20]): 

where Bo and X are the constants related to transverse magnetic field and wavelength of the 

applied magnetic field respectively. We proceed to find governing equation under the usual 

approximation for steady magnetohydrodynamic flow with Ohm'slaw and Maxwell's equations 

associated with thermal radiation may now be written as continuity: 

Momentum equation: 

1 1 v .VV = -- v p +  vv2v+ -(j x B)+gP(T - T,), 
P P 

Energy equation: 

Ohm's law 

Maxwell's equation 

where V = (u., 71,O) is the velocity vector, j the electric current density, B = (0, By,O) represents 

the magnetic induction vector, p the density of the fluid, v the kinematic coefficient of viscosity, 



g = (-g,, 0,O) identifies the gravtational vector, P the coefficient of thermal expansion, q, is 

the Radiative heat flux defined by 

in,which a0 is the St,efan-Boltzmann constant, a, is Scattering coefficient, a is the Rosseland 

mean absorption coefficient. The boundary layer equations for the conservation of mass, mo- 

mentum and energy for the flow past a heated vertical platein the presence of sinusoidal magnetic 

field become 

Continuity equation: 

Momentum equation: 

Energy equation: 

Boundary conditions are: 

where a: is thermal diffusivity, T, temperature at the surface and T, temperature of the ambient 

fluid. 



3.2 The Integral Method Solution 

3.2.1 Integral Form of Governing Equations 

The momentum equation can be written in the following form: 

du2 d(uu) - 02u aBi +- sin2(nx)u + gP(T - T,), 
dx dy 

(3.8) 

du2 ~ ( u v )  a2u aB8 -+-=v--- sin2 (nx)u + g/3 (T - T,) . 
dx dy dY2 P 

Integrating eq. (3.9) with respect to y in the interval of (0, Y) , where Y is greater than both 6 

and bt , we obtain 

Implementing the boundary data, we get 

which can also be rewritten as: 

-< 

Since the shear stress is defined by 

due to whch eq. (3.13) takes the form 



This is known as integral form of momentum equation. 

.Following the same procedure, the integral energy equation can be obtained by rewriting 

the energy equation (3.6) as 

1 d q  ' ( " T ) + W - T ( a U + E )  a x  dy ax ay 
k dY 

which on incorp0ra.tin.g the continuity equation (3.4) simplifies to 

d(uT) d(vT) a 2 T  1 dq,. +- ax a~ 
Let us integrate eq. (3.17) with respect to y in the interval (0, y )  

The term q, represents radiative heat flux in the y-direction. In order to reduce the complexity 

of the problem and to provide a means of comparison with further studies that might employ a 

more detailed representation for the radiative heat flux, here the optically thick radiation limit, 

known as Rosseland diffusion approximation (see [12]), is considered. Due to this assumption, 

the radiative heat flux q, is given as  

therefore cq. (3.18) takes the form 

As from continuity equation we have 



Substituting this in equation (3.20) we have 

which further simplifies to 

d T  cr 16T3ao d T  d [ u ( ~  - T w ) d y  = -&-I0 - - - ly=o. 
dx . d y  k 3(a + a,) d y  

This is known as energy integral equation. 

3.2.2 Velocity and Temperature Profiles 

For obtaining the solution of a considered problem, the appropriate velocity and temperature 

profiles must be utilized together with the integral equations (3.15) and (3.23). The velocity 

and temperature profiles depend upon the thicknesses of the momentum and thermal boundary 

layers, which in turn depend on the Prandtl number. We assume the velocity profile as a third 

degree polynomial of the form 

where U is a characteristic free stream velocity that is a function of x and b ( x )  is the momentum 

boundary layer thickness. Similarly, the temperature profile can be obtained by assuming a 

second degree polynomial function as 

where dt ( x )  is the thermal boundary layer thickness. Here we evaluate every term of the 

momentum eq. (3.15) separately, therefore first consider the first term on the L.H.S of eq. 

(3.15) 

d 'Y u 2 2 
dy = d u 2  lY (f (1  - :) 2, dy ,  E )  d x  . d x  + 

and assume that 

1 = , y = 611; d y  = dr$. 
b 



so that 

which finally simplifies to 

Second term on the R..H.S of eq. (3.15) evaluates as 

UB; U B ~  
- sin2 ( T X )  u d y  = - sin2 ( T X )  
f' F f' 

and finally 

Further we consider the 

and assume that 
Y  - = n ;  y = ndt =+ dy = dn&, 
6t 

so that we have 

Since 

which after consideration of eq. (3.24) takes the form 

Inserting eqs. (3 .28) ,  (3 .29) ,  (3.30) and (3.31) in eq. (3.15) we get 



Following the same procedure as we did above, the term by term evaluation of the energy 

equation is given as 

d d T  a 16T3ao d T  z ~ m [ e ( ~  - T,)~Y = - ~ - J o  - - - ly=0. 
dy  k 3(a + a,) dy  

In order to make the further calculation simple we make new assumption 

due to which we have 

d 5 U m 1 y :  ( 1  - : ) 2 ( ~ w - ~ , )  dndr = -- PCP 1 

which further reduces to 

and finally we get 

We now need to solve the eqs. (3.32) and (3.35) simultaneously in order to obtain 6. Since U 

is a reference velocity in this case and is assumed to be constant. Therefore eqs. (3.32) and 

(3.35) simplifying as 
-., 



and 

Since 

Therefore the above two equations take the form 

and 

Equating eq. (3.39) with eq. (3.40j we get 

which upon further simplification takes the form 

and finally 



Let us denote 

Invoking eq. (3.43) in eq. (3.42) we have 

3.2.3 Boundary Layer Thickness 

The boundary layer thickness in dimensionless form read as 

where 

is the Reynolds number based upon the wavelength X 

6 4 
1 -a GrA 1 

- X = 1.74 (F (1 + ?QI) + ~ r )  Re, [G - sin2(nz) . (3.47) I -+ 
3.2.4 Nusselt Number 

The local heat transfer coefficient at the surface of the vertical plate is defined as 

which under assumption (3.25) takes the form 



The local Nusselt number is defined as 

which upon insertion of the value of 6 takes the form 

3.2.5 Skin Friction 

The coefficient of skin friction is defined by 

where the shear stress is 

PU 
7, = - 

S ' 

Inserting the value of 6 in eq.(3.52) we have 

Finally the coefficient of skin friction is obtained after substitution of eq. (3.53) in eq. (3.51) 

3.3 Graphical Results and Discussion 

In this section we have displayed graphical results in order to understand the physics of free 

convection Iiow of electrically conducting and optically dense gray fluid near a vertical platie 

in the presence of sinusoidal magnetic field. Solutions of the governing equations are obtained 



by integral method for the entire range of X, for different values of the physical parameters, 

i.e., for magnetic field parameter (or Hartmann number) M, thermal radiation parameter (or 

Planck constant) Rd. The influence of magnetic field parameter M = 0.0,0.05,0.10,0.15,0.20 

is illustrated in figs.(l) - (3) for I& = 0.0 and Pr = 0.7 on coefficient of local skin friction, 
1 

Cf ~ e !  , boundary layer thickness and the local Nusselt number, Nu, Rei5  respectively. It 

can be seen from these figures that when the magnetic field parameter effects are absent, i.e. 

M = 0 then a straight line is obtained. That is the values of skin friction coefficient, boundary 

layer thickness and the Nusselt number become constant which is a self similar solution. As 

the values of M are increased the wavy nature of these quantities become visible. This is 

because of the reason that M represents the amplitude of applied wavy magnetic field and as 

the amplitude of the wavy magnetic field increases its effects become prominent as shown in 

figs. (3.1) - (3.6). The same graphs as plotted in figs. (3.1) - (3.3) are again plotted in figs. 

(3.4) - (3.6) for Rd = 2.O.It is obvious that in the presence of thermal radiation the skin friction 

is decreased and the boundary layer thickness is increased as shown in figs. (3.4) and (3.5) 

respectively. Further more for Rd = 2.0 the Nusselt number is also decreased. This is because 

of the reason that the thermal radiations enhances the temperature with in the boundary layer 

which in turn increases the layer thickness. On increasing the magnetic field strengths the skin 

friction decrease and become wavy as shown in figs.(3.1) and (3.4). On increasing the values 

of M the layer thickness increases and shown wavy pattern. The Nusselt number decreases by 

increasing the values of M. The wavy nature of the Nusselt number gets stronger for large 

values of the parameter M. The influence of Prandtl number on boundary layer thickness, 

nusselt number and skin friction is shown in figs. (3.7) - (3.9). From the graphs it can be seen 

that boundary layer thickness stays periodic on increasing Pr and the amplitude of the wavy 

patterns does not vary too much. However the layer thickness grows signigicantly by increasing 

the Prandtl numer. Same effects of Pr on Nusselt number and skin friction are observed in figs. 

(3.8) and (3.9) respectively. Radiation effects on boundary layer thickness, Nusselt number and 

skin friction are plotted in figs.(3.10) - (3.12). The boundary layer thickness is strongly effected 

by radiation parameter Rd and increases for larger radiation conditions. Large values of the 

radition parameter also lead towards increased nusselt number as well as skin friction. 



Fig. 3.1: Variation of coefficient of local skin friction with X. 

Fig. 3.2: Boundary layer thickness plotted against X. 



Fig. 3.3: Nusselt number graph at Rd = 0.0 for varied values of M. 

Fig. 3.4: Skin friction plotted against x at Rd = 2.0 different M. 



A 

Fig. 3.5: Graph of boundary layer thickness for M = 0.0,0.05,0.10,0.15,0.20. 
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Fig. 3.6: Nusselt number graph at Rd = 2.0 and different values of M. 



Fig. 3.7: Boundary layer thickness for Rd = 0.5,M = 0.5 and different values of Pr 

Fig. 3.8: Nusselt number for Rd = 0.5, M = 0.5 and different values of Pr. 



Fig. 3.9: Skin friction for Rd = 0.5, M = 0.5 and different values of Pr. 
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Fig. 3.10: Boundary layer thickness for Pr = 0.7, M = 0.5 and different values of &. 
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Fig. 3.11: Nusselt number for Pr = 0.7, M = 0.5 and different values of Rd. 

Fig. 3.12: Skin friction for Pr = 0.7, M = 0.5 and different values of Rd. 

3.3.1 Conclusion 

In this chapter, we have studied the non-similar magnetohydrodynamics flow with thermal ra- ./ 
diation effects near a vertical wall. The integral method has been utilized to solve the governing 

non-linear system. The obtained solution is valid for all values of the involved parameter. At 

Ad = 0.0 the self similar solution is recovered. The effects of magnetic field is quite significant 



upon the skin friction and the Nusselt number. The radiation effects are noted to be enhance 

the rate of heat exchange. 
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