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Preface

Semirings, which are regarded as generalizations of associative rings,
were first introduced by Vandiver (44} in 1934. Semirings have been used for
studying optimization, graph theory, theory of discrete event dynamical systems,
matrices, determinants, generalized fuzzy computation, theory of automata,
formal language theory, coding theory, analysis of computer programmes.
Additively commutative semirings with zero element are called hemirings.
Hemirings, appears in a natural manner, in some applications to the theory of
automata, the theory of formal languages and in computer sciences
[5.6,10,11,12].
Ideals play an important role in the study of semirings and are very useful for
many purposes. But they don’t coincide with ring ideals. Thus many results of
ring theory have no analogues in semirings using only ideals. In order to
overcome this deficiency, Henriksen [13] defined a class of ideals in semirings,
called k-ideals. These ideals have the property that if a semiring R is a ring then
a subset of R is a k-ideal if and only if it is a ring ideal. A more restricted class of
ideals in semiring is defined by lizuka [17], called h-ideals. La Torre [23]
thoroughly studied h-ideals and k-ideals and established some analogues ring
results for hemirings.

The concept of fuzzy subset introduced by Zadeh [50), is a useful tool to
describe situation in which the data are imprecise or vague. Fuzzy sets handle
such situations by attributing a degree to which a certain object belongs to a set.
The concept of fuzziness is widely used in the theory of automata, studying
matrices, determinants, set theory, group theory, optimization theory, measure
theory, coding theory and topology [2,22,34,35,39,45,46,52]. Rosenfeld [40]
initiated and defined fuzzy subgroups. In [1] J. Ahsan initiated the study of fuzzy
semirings (see also {2]). Many researchers worked on fuzzy ideals of semirings,
for example [41,42]. Fuzzy h-ideals in hemirings are studied in [8, 9, 20, 47,48,
51].



v
On the other hand Biswas [7] introduced the concept of anti fuzzy subgroup of a
group. Hong and Jun [14] modified Biswasis idea and applied it to BCK-algebras.
They defined anti fuzzy ideals of a BCK-algebra. In [4}, Akram and Dar defined
anti fuzzy h-ideals in hemirings.
Soft set theory is a generality of fuzzy set theory, that was determined by
Molodtsov [31], to deal with precariousness in a non-parametric style.
Furthermore, soft sets have been applied in several fields [32, 33, 36]. In 2001
Maji, et. al. [29], proposed the concept of the fuzzy soft sets. In 2002 Maji, et. al.
(28], applied soft set theory in decision making. In recent years many researchers
applied soft set in several fields and notably in decision making.

The membership degree for a fuzzy set expresses the degree of
belongingness of elements to a fuzzy set. Sometimes, the membership degree
means the satisfaction degree of elements to some property of constraint
corresponding to a fuzzy set (see [25]). Keeping in view the satisfaction degree,
the membership degree 0 is assigned to those elements which do not satisfy
some property. In the usual fuzzy set representation the elements with
membership degree 0 are usually regarded as having the same characteristic.
However it is interesting to note that among such elements some have irrelevant
characteristics to the property corresponding to a fuzzy set and the others have
contrary characteristics to the property. Consider a fuzzy set "young" defined on
the age domain [0, 100]. Now consider two ages 50 and 95 with membership
degree 0. Although both of them do not satisfy the property "young”, we may say
that age 95 is more apart from the property rather than age 50 (see [24,26)). In
such cases the usual fuzzy set does not help to differentiate between irrelevant
elements and contrary elements. Hence if a set representation could express this
kind of difference, then it would be more informative and helpful than the usual

fuzzy set.
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Jun et at. [19] introduced the notion of bipolar fuzzy subalgebra and bipolar fuzzy
ideal in BCH-algebras. In [18] Y. B. Jun, C. H. Park, introduced Filters of BCH-
Algebras Based on Bipolar Valued Fuzzy Sets. In [3] Akram et. all introduced
bipolar fuzzy K-algebras by using bipolar valued fuzzy sets. In [26] K. J. Lee,
used the notion of bipolarvalued fuzzy sets and worked on bipolar fuzzy
subalgebras and bipolar fuzzy ideals of BCK/BCI- algebras. In [27] T. Mahmood
et al. discuss bipolar fuzzy subgroup. In [30] Min Zhou and Shenggang
introduced applications of bipolar fuzzy theory to hemirings. In [38]
homomorphism and anti homomorphism on a bipolar anti fuzzy subgroup are
introduced. Nagarajan etal. [37], presented a socialistic decision making
approach for bipolar fuzzy soft h-ideals over hemirings.

In 1981 a multi-criteria decision analysis method known as "technique for order
preference by similarity to ideal solution (TOPSIS)" was established by Hwang
and Yoon [18). The main concept of TOPSIS technique is that the chosen
alternative should have the shortest distance from the positive ideal solution and
the longest distance from the negative ideal solution [16,49]. In [43), Comparative
analysis of SAW and TOPSIS based on interval-valued fuzzy sets, discussed by

Ting-Yu.



Chapter 1

Preliminaries

In this chapter, we recall some basic definitions and notions. These definitions will
help us in later chapters. For undefine terms and notions, wa reffer to [2, 11, 12, 13,

17, 41, 47, 48, 50, 51, 52].

1.1 Hemirings

In this section, we review some defnitions and notations regarding hemirings.

1.1.1 Definition

”non
.

A set R # ¢ together with two binary operations addition " +” and multiplication
is called semiring if (R, +) and (R, ) are semigroups and multiplication distributes
from both sides over addition. An element 0 € R satisfying the condition, 0.2 =
z0=0and 0+ zxz=1+0=2z forall z € R, is called zero of the semiring (R, +,).
An elememt 1 € R satisfying the condition, 1.z = 2.1 = «, for all z € R, is called

1



identity of R.

1.1.2 Definition.

A semiring with commutative multiplication is called commutative semiring.

1.1.3 Definition

A semiring with zero element and commutative addition is called hemiring.

1.1.4 Examples

1. 1. All rings are hemirings.

9. The set of non-negative rational numbers are commutative hemirings under

usual addition and multiplication.

3. Let R* be the set of all positive real numbers. Then R* is a commutative
hemiring with identity under the binary operations of ordinary addition and multi-
plication of numbers.

4. Unit interval [0, 1] of real numbers is a semiring with + = maz and . = min.

5. Let B = {0,1}, Define "+” and ".” on B as follows:

+ (011 {01
0101} G|101{0}
1111 110(1

Then (B, +, .) is a semiring called Boolean semiring.

6. The set R = {0, z, 1} with the following binary operations



+{0|=z|1 0lz|1
0(0|z|l 0gr1ojo0}o
zjx|z| ’ z|(0|z iz
11121 1(0|=z|1

is a commutative hemiring.

1.1.5 ‘ Definition

A non-empty subset A of a hemiring R is called subhemiring of Rifa+b € A, ab € A,

foralla,be Rand 0 € A

1.1.6 Examples

1. All rings are hemirings with subrings as subhemirings. The set of non-negative
rational numbers are commutative hemirings under usual addition and multiplication.
The set of whole numbers is a subhemiring of the set of non-negative rational numbers.

5 Let R* be the set of all positive real numbers. Then R* is a commutative
hemiring with identity under the binary operations of ordinary addition and multi-
plication of numbers. Then Np the set of non-negative integers is a subhemiring of
R+ with identity under the binary operations of ordinary addition and multiplication
of numbers.

3. Let (S,) be a semigroup and P(5) the power set of §. Then for A, B € P(S},
AU B may be considered as an addition on P(S5) and A-5 = {ab:a€ Aand b € B},

as a multiplication on P(S)/9, where @ denotes the empty set. Then it is easy to check
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that (P(S),U,) is a semiring. This semiring has an identity E if and only if (5,-} has
an identity e, namely, E = {e}. If one applies the rule AB={ab:ac AbeE B}
also to empty sets, one obtains A.B = @ for A = @ or B = @. Then the system

(P(S),U,) is a semiring with @ as an absorbing zero. The finite subsets of S form a

subsemiring of {P(S),U,}.

1.2 Ideals in hemirings

Ideals play a vital role in the theory of rings and it is therefore natural to study them

also in the theory of hemirings. In this section, we defined ideals in hemirngs.

1.2.1 Definition
A non-empty subset I of a hemiring R is called left {resp., right} ideal of & if I is

closed under addition and RI G I (IR € I). Furthermore, [ is called an ideal of R if

it is both left and right ideal of R and I # R.

F

1.2.2 Definition

A non-empty subset I of R is called interior ideal of R if it is closed under addition

and rar € R, foralla€ I, r € R.

1.2.3 Definition

An ideal P of a commutative hemiring R with unity is called prime ideal if ab €

P—acPorbec P forallae, beR.



1.2.4 Definition

An ideal $ of a commutative hemiring R with unity is called semiprime ideal if

leS=aecS forallac R.

1.2.5 Definition

A non-empty subset I of a hemiring R is called bi-ideal of R if I is closed under

addition and satisfying JRI C I.

1.2.6 Definition

A non-empty subset [ of a hemiring R is called quasi-ideal of Rif [ is closed under

addition and RINIRCT.

1.3 h-ideals of hemirings

In this section, we review some defnitions regarding h-ideals.

1.3.1 Definition

A subhemiring (resp., left ideal, right ideal, interior ideal, prime ideal, semiprime
ideal, bi-ideal) J of & hemiring R is called a h-subhemiring (resp., left A-ideal, right
h-ideal, interior h-ideal, prime h-ideal, semiprime h-ideal, h-bi-ideal) if forall 7, z € Rt
and for any a, b€ I, fromz+a+z=>b+zit follows z € [.

It is not necessary that every left (right) ideal of R is a left {right) h-ideal of R.
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1.3.2 Example

Let R = {0,¢,b} be a hemiring with addition "+" and multiplication ". " defined by

the following table:

+|0|al|b J0jaltb
0|0|ajb 0;010]|0
a aOb’ a.UOO.
b1b|b|0O b{0|0|b

Then I = {0,b} is an ideal of R but it is not an h-ideal of R, since a+0-+b=0+b

because a ¢ 1.

1.3.3 Lemma

The intersection of any number of lefé (right) h-ideals of a hemiring Ris a left (right)

h-ideal of R.

1.3.4 Definition[47]

The h-closure A of a non-empty subset A of hemiring R is defined as

A={zeR|z+a+z=b+z forsomea, bE A4, 7€ R}

1.3.5 Definition[47]

A quasi-ideal I of a hemiring R is called an h-quasi-ideal if RINRIC I and for all

2, 2€ Rand forany a, be I, fromz+a+z=>b+zit followsz € I.



1.3.6 Remark

Every left (right) A-ideal of R is an h-quasi-ideal of R and every h-quasi-ideal of R is

an h-bi-ideal of R but the converse is not true,

1.3.7 Example[47]

ap 12
The set R of all 2 x 2 matrices is a hemiring with usual addition and

az) 4z
multiplication of matrices, where a;; € Ny, Ny is the set of all non-negative integers.

a 0
Consider the set @ of all matrices of the form (a € Np). Evidently @ is an

00
h-quasi-ideal of R but not a left (right) h-ideal of A.

1.3.8 Lemmal[47]

Let R be 2 hemiring. Then for any left (right) h-ideal, A-bi-ideal and A-quasi-ideal,

we have A = A.

1.3.9 Definition[48]

A subset " A” of a hemiring R, is called h-idempotant if A = Az,

1.4 h-hemiregular and h-hemisimple hemirings

In this section, we review h-hemiregular hemirings and h-hemisimple hemirings,

see(d1, 47, 48).
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1.4.1 Definition[48]

A hemiring R, is called h-semisimple if every h-ideal of R is h-idempotant.

1.4.2 Lemmal[48]

A hemiring R, is h-semisimple if and only if one of the following holds:
(1) For all z € R, there exist c;, di, € fi c, d; ¢, f; € R such that z +

£ audiessfi + 2 = Bl cadieiafi + 2.

(1) Forallz € R, x € RxRzR.

(445) For all AC R, A C RARAR.

1.4.3 Example

Let Qo denotes the set of all non-negative rational numbers. Then (Qo, +, Jis an

h-hemisimple hemiring.

1.4.4 Definition[47]

A hemiring R, is called h-hemiregular if for each = € R, there exist a, b, 2 € R, such

that z + zaz + 2 = zbe + 2.

1.4.5 Example

Let R = {0,a,b} be a hemiring with addition "+" and multiplication ". " defined by

the following table:



+|0|atbd 0la]bd

0|10§{0)0 0]0(010

a|lalalb | all0jaja

b |b|blbd blO0fala
Then R is h-hemiregular hemiring.

1.4.6 Lemmald7]

A hemiring R, is h-hemiregular if and only if for any right h-ideal I and any left

h-ideal L of R, we have JTL = INL.

1.4.7 Lemmal47]

The following conditions for a hemiring R are equivalent:
(1) R is h-hemiregular.
(151} MRM = M for every h-bi-ideal M of R.

(¢4) TRL = L for every h-quasi-ideal L of A.

1.5 Fuzzy sets

The theory of fuzzy sets was popularized by L. A. Zadeh in [50), as a generalization of

the conceptual set theory. In this section, we will give a review of some basic concepts

of fuzzy sets.
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1.5.1 Definition

Let X be a non-empty subset. Then for any A C X the characteristic function of A

1 fze A
is denoted by Cx defined by Cy4 (z) =
0 if z¢ A

for z € X.

1.5.2 Definition

Let X be a nonempty set. A fuzzy subset A of the set X is & fuction A: X —[0,1].

A fuzzy subset A : X — [0, 1] is non-empty if A is not & constant function forever

taking the value zero.

1.5.3 Definition

A fuzzy subset of X of the form

t if z=2x
A(z) = :
0 if z#£¢z
is called the fuzzy point with support z and value ¢, where ¢ € (0, 1}. It is usually

denoted by x..

1.5.4 Remarks

1. Two fuzzy subsets A and u of a set X are said to be disjoint ifthereisnoz € X

such that A(z) = u(z). If AM(z) = p(z) for each z € X, then we say that A and z

are equal and write A = p.
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2. Let A and u be two fuzzy subsets of non-empty set X. Then ) is said to be
included in p i.e., A C g if and only if A(x) € p(z) forall z € X,

3. Let A and u be two fuzzy subsets of non-empty set X. Then A is said to be
properly included in p i.e, A C p if and only if A (z) < plz) forall z € X.

4. The union of any family {; : i € §} of fuzzy subsets A; of a non-empty set X
is denoted by (ignki) and defined by (egn'\‘) (z) = supA; (x) = igrz'\i (z),forallz € X,

i€}

Moreover (_gn)ni) is smallest fuzzy subset which containing A:.
5. The intersection of any family {}; : i € @} of fuzzy subsets Ai of a non-empty
set X is denoted by (ign/\,-) and defined by (;'Qn)“') (z) = ;!él‘f; Mi(z) = ié\ﬂ)&i (z), for all

z € X. Moreover ('Q-; X:) is largest fuzzy subset which is contained in ;.
1

1.6 Fuzzy hemirings

The concept of fuzzy set has been applied by many authers to generalize some of the
basic notions of algebra. In this section, we will give a review of some basic concepts

of fuzzy ideals of hemirings.

1.6.1 Definition

Let A and u be two fuzzy subsets of a hemiring B. Then product of X and p is defined

as (M) (2) = sup {A(zm)Ap(ze)} forallze R.

r=ry1+r2
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1.6.2 Definition(47]

Let A and x be two fuzzy subsets of hemiring R. Then the h-intrinsic product of A

and u is defined as

(Ao () = | oL

i=1 i=]

J=1 =1

forallz € R.

1.6.3 Proposition[47]

Let R be a hemiring and A, g, v and ¢ be any fuzzy subsets of R. f A< pand v £ ¢

then AQnv < pOné.

1.6.4 Lemma[47]

Let R be a hemiring and A, B € R. Then we have
(i) AC Bifand only if Ca < Cp.
(ii) Ca A Cp = Cans-

(iii) Ca®rCg = CE

1.6.5 Definition.
A fuzzy subset A of a hemiring R is called fuzzy h-subhemiring of R if for allz, y € R
(i) Mz +y) = M=) A AMy),

(i) Mzy) 2 Az} A Ay)-

sup (min{A (m,-),u(yj),)t(zg),p(y;) 1 7=1,2,.miji=1,2,.n}}

Fil ) n
0 ifxca.nnotbeexpr%sedasx+zxjyj+z=zx5yi+z

b
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(ii)) 2 + o +z =b+ z — Az) 2 Ma)} A X(b) for all 2,2,a,b € R.

1.6.6 Definition[20]

A fuzzy subset X of a hemiring R is called fuzzy left (resp., right) h-ideal of R if for
all z,ye R
(i) Mz +y) 2 M=) A My)
(i) Mzy) = My) (resp., Alzy) 2 A3))
(#55) T +a+z=b+z— Mz) 2 Ma) A A(b) for all z,2,0,b € R.
A fuzzy subset A" of a hemiring R is called a fuzzy h-ideal of R if it is both

fuzzy left and right h-ideal of R.

1.6.7 Remark

If A is a fuzay left (right) h-ideal of a hemiring R, then A (0) > A(z) for allz € R.

1.6.8 Example

Let A be a fuzzy subset of the hemiring No defined by

1 if = is even,
Aln) =
0.2 otherwise,
Then A is a fuzzy h-ideal of the hemiring No.

1.6.9 Proposition

Let A and u be two fuzzy left(resp., right) ideal of a hemiring . Then A and Au

is fuzzy left (resp., right) h-ideals of R.
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1.8.10 Definition

A fuzzy h-ideal of a commutative hemiring R with unity is called fuzzy prime h-ideal

if AMx) v My) = May)-

1.6.11 Definition

A fuzzy h-ideal of a commutative hemiring R with unity is called fuzzy prime A-ideal

if A(z) = Ma?).

1.6.12 Example

In Example 1.6.8, A is a fuzzy prime h-ideal of R.

1.6.13 Definition{47)

A fuzzy subset ) of a hemiring a R is called fuzzy h-bi-ideal of R if for all z,y € R
(@) Mz + )2 Mz) A A
(1) Mazy) 2 Mz) A Ay),
(i) Mazy) = Mz) A M),

(iv]:t:+a+z=b+z—+)x(a:)zA(a)/\,\(b)forallz,z,a,beR.

1.6.14 Definition[47]

A fuzzy subset X of a hemiring a R is called fuzzy h-quasi-ideal of Rif forallz, y € R
@) Mz +y) 2 A=) A Ay

(i5) (AOwCr)A(CrORA) S A,
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(i) s+a+z=b+z—A(z)2 Aa) A M) for all z, z, a, b € R.
Note that if A is a fuzzy left h-ideal (right h-ideal, h-bi-ideal, h-quasi-ideal), then

A0} = A(z) forallz € R.

1.6.15 Example

Consider the hemiring No:
Let r,s € [0,1] be such that r < s. Define a fuzzy subset A of Np by

Az) = s if ze(3),

r otherwise
for all z € Np. Then X is both a fuzzy h-bi-ideal and a fuzzy h-quasi-ideal of Np.

1.6.16 Definition[4]

For any fuzzy set ¢ in R and any o € [0, 1] we define the set L(u; o) = {z e X|uz) <

a}, which is called lower level cut of p.

1.6.17 Definition

A fuzzy subset A of a hemiring a R is called anti fuzzy h-subhemiring of R if for all
T,y € R

(i} Mz +y) < Mz)V My

(i) Mzy) < M=)V My)-

(Giyz +a+ 2 =b+ z— Az) < Aa) Vv A(b) forallz, 2z, 6, b€ R.
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1.6.18 Definition[4]

A fuzzy subset A of a hemiring a R is called anti fuzzy left (resp., right) h-ideal of R
ifforall2, y€ R
(B} Mz +y) <A}V AQY)
(5) Mey) < My) (resp., Mzy} < A(2))
(1) z+a+z=b+z—A2) < Aa) V A(b) forall z, z, @, b € R.
A fuzzy subset X" of a hemiring R is called a anti fuzzy h-ideal of R if it is

both anti fuzzy left and right h-ideal of .

1.6.19 Example

Consider the hemiring Np:
Let 1, s € [0;1) be such that r 2 s. Define a fuzzy subset A of Np by
s ifze (3},

Mz) =
v if otherwise,

for all € Ny. Then X is a anti fuzzy A-ideal of R.

1.7 Fuzzy soft sets

Throughout this thesis, U refers to an initial universe, E is a set of parameters,

L. M C E, and P(U) is the set of all fuzzy sets of U.
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1.7.1 Definition(29]

A pair (G, L) is called a fuzzy soft set over U, where G : L — P(U) is a mapping

from L into P(U).

1.7.2 Definiton|29]

Let I/ be a universe and E a set of attributes. Then the pair (U, E) denotes the

collection of all fuzzy soft sets on U with attributes from £ and is called a fuzzy soft

class,

1.7.3 Definition[29]

For two fuzzy soft sets (G, L) and (G, L) in a fuzzy soft class (U, E), we say that
(G, L) is a fuzzy soft subset of (H, M), if

(i) LS M,

(i) For all e € G, G(e) < H(e),

and is written as (G, L) € (H, M).

1.7.4 Definition[29]

The complement of a fuzzy soft set (G, L) Is denoted (G,L)° and is denoted by
(G, L) = {G°,1 L) where G s L — P(U) is mapping given by G°(%) = (G (%)),
for all % € L.

Union of two fuzay soft sets is defined by Maji et al. [29] as follows.
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1.7.5 Definition[29]

Union of two fuzay soft sets (G, L) and (H, M) in a soft class (U, E) is a fuzzy soft

set (I', N), where N = L U M, and for allee N,
4
Gle) ifecl-M

MMe)=< H(e) if eeM-L

{ GleUH(e)iflzeMNL
and it is written as (G, L) V(H, M) = (T, N).

1.8 Bipolar-valued fuzzy sets

In this section, we will give a review of bipolar-valued fuzzy sets and some basic

definitions about bipolar-valued fuzzy sets.

1.8.1 Definition[25]

Let X be a universe. Then a bipolar-valued fuzzy subset B of X is an object having

the form
B={{z,ut(@),p 2z X}

where pt : X — [0,1] and g7 X — [-1,0].

The postive membership degree function p* {z) denotes the satisfaction degree of
an element z to the property corresponding to the bipolar-valued fuzzy subset B =
{{z,ut (@), p(z)):2z€X } and the negative membership degree function u~ ()
denotes the satisfaction degree of an element x to some implicit counter-property

corresponding to the bipolar-valued fuzzy subset 5 = {z,p* (2),p~ (2)) ;2 € X }.
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If u* (x) # 0, p~ () = 0, then it is the situation that z is regarded as having only
positive satisfaction for the bipolar-valued fuzzy subset B = {{z, u* (z), p-(2)):x€X}.
If u* (2) = 0, 4~ () 5 0, then it is the situation that = does not satisfy property
of bipolar-valued fuzzy subset B = {(z. gt (z),p () : 5 € X }, but some what
satisfies the counter-property of B = {{z, 4" (2),p" (@)} :z € X }. It is possible for
an element z to be pt (z) # 0, ¢~ (z) # 0, when the membership function of the
property overlaps that of its counter-property over some portion of X [24]. From now
to onward for the sake of simplicity, we shall use the symbols B or B =(u*.p"),
for the BVF subset B = {(z,p* (z), 4 (z)) : 2 € X }. The set of all bipolar-valued
fuzzy subsets of R is denoted by F (B). We use BVF set in place of bipolar-valued

fuzzy set in rest of chapters.

1.8.2 Definition[27]

Let X be a universe and A € X. Then BVF characteristic function is given by

Ca= (GI,C;) , where

1 if z€6 A
Ct (x) = 4 ,
0 it x¢A
-1 if ze A
C7 (z) = .
0 if 24 A

.

1.8.3 Definition

[et z be an element of a non-empty set X and ¢ € (0,1]. Then a BVF subset

B=(\* A")of X of the form
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. tt if z==x
AE =0 if z;éa:}’
o _Jtif z=2

M=\ i z;éa:}'

is called BVF point with value #' = (¢*,¢7) where ¢’ € {0, 1} x [-1,0) and support
« or BVF singleton subset of X. It is denoted by zy = (zf,3Z,). A BVF point zy is
said to belong to BVF subset B, written as oy € B if B(z) 2t ie, A (z) 2t
and A~ (z) < t~. A BVF point z is said to not belong to BVF subset B, written as

rEBif B{z) <t ie, A (z)<ttand A (x) 21",

1.8.4 Definition

Let By = (A*,A7), By = (u*, 17 be two BVF sets of R. Then we write By £ By if

At(z) <pt(z) and A" (x) > p” (z) forallz€ R.

1.8.5 Definition

Let R be a hemiring and B; = (A%,)”) and B, = {s%,47) be two BVF subsets of

R. Then we have ByA By = (At Apt, A" v u~) and B1 V By = (Atvpt AT AR

1.8.6 Definition

A BVF subset B = (A%, A7) of a hemiring R is called BVF subhemiring of R if it
satisfies

(E1) At (z+y) 227 (@AM,

(E2) A (z+9) <A (VA (),

(E3) A {(zy) = AT () A DT (y),
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(B4) A (zy) <A™ (z)vA~(y),

forall z, y € R.

1.8.7 Definition

A BVF subset B = (A*,17) of a hemiring R is called BVF left(resp., right) ideal of
R if it satisfies (E1), (E2) and
(BS) A*(zy) = A*(y) (resp., A¥ (xy) = A" (),

(E6) A~ (wy) < A7 (y) (resp., ™ (zy) £ A7 (2)).

1.8.8 Definition

Let B = (u*, u~) be BVF subset of a hemiring R and (o, 8) € [-1,0] x [0,1], then
(1) The set By = {z € R: u* (z) > B} is called positive f-cut of B .
(2) The set B = {z € Ry~ (z) < «} is called negative a-cut of B.

(3)The set Bl p) = {z € R: p~(z) < @ and u* (x) > B} is called (a, f)-cut of B.

1.8.9 Remark

(3) B} nBZ, is called v-cut of B.

(4) Tf+ # (0,0) then B N BZ, is called BVF point of B.

1.9 Bipolar-valued fuzzy soft set

In this section, we define some basic definition about BVF soft set.
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1.9.1 Definition[37]

Let I be an initial universe, E be the set of parameters, L is subset of E'. Define & : L
— BV FU, where BVFU is the collection of all BVF subsets of /. Then (G, L) is said
to be a BVF soft set over a universe U. It is defined by (G, L) = {(z, A} (z) , A ():

forallz € U and e € L}.

1.9.2 Example{37]

Let U = {e1,63,¢3,24} be the set of four houses under consideration and E = {&
= cheap, es = beautiful, e3 = good location, e, = modern } be the set of parameters

and L = {e;, ez, €3} is subset of E. Then
(c1, 0.2, —0.4), {(cs, 0.4, —0.3),
G LD =Fl)={

(cs, 0.1, —04), (cq 0.4, —0.7)
;
(c1, 0.5, —0.7), (e 0.3, = 0.1},
{ (G, LY=F{(e) = > Y.
(63: 091 _0‘3)1 (04, 0'?! - 0‘8)

? {
(ci, 04, —03), (cz 0.4, —0.8),
(G L)= Fes) =4 ?
(Ca, 0.4, —0'7), ((24, 08, - 02)

“ \

1.9.3 Definition[37]

Let U be a universe and E a set of attributes. Then, (U, E) is the collection of all

BVF soft sets on U with attributes from £ and is said to be BVF soft class.
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1.9.4 Definition[37]

A bipolar fuzzy soft set (G, L) is said to be a null BVF soft set denoted by empty set

@, if for all e € L,G(e) = €.

1.9.5 Definition{37]

A bipolar fuzzy soft set (G, L) is said to be an absolute BVF soft set, if forall e € L,

G(e) = BVFU.

1.9.6 Definition

The complement of a BVF soft set (G, L) is denoted (G, L)® and is denoted by

(G, L)Y = {(z, 1 - 2}(z), 1 - A(z) Ve e U}

1.9.7 Remark

Throught the thesis, we will use BVFS sets in place of bipolar-valued fuzzy soft sets

and we denote hemiring R by simply £.
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Chapter 2

Bipolar-valued fuzzy h-ideals of

hemirings

In this chapter, we define BVF h-subhemiring . In [30], M. Zhou and Shenggang
popularized BVF h-ideals. We analysed some basic definitions of BVF h-ideals and

some basic properties of BVF h-ideals.

2.1 Bipolar-valued fuzzy h-ideal of hemirings

2.1.1 Definition

Let B = (AT, A") be a BVF subset of R. Then B is called BVF h-subhemiring of £
if it satisfies
(1) zv€B,ys € B = (54 Vminges € B,

(2) Ty & B, Uet € B = (xy]min{!‘,r’) € B’

25
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(3) z4+am+z=ar+2z (0)y€B (a8 = () minger oy € Bs

V4,206,060 €R&=0t),r=>C"rT)¢E (0,1] x [-1,0).

2.1.2 Definition

Let B = (A*,A”) be a BVF subset of R. Then B is called BVF left (resp. right)
h-ideal of R if it satisfies (1), (3) and

(4) 2y € B=> (yz), € B (resp. (5} (ay)y € B)Va,ye R&t = (t7,17) €
(0,1] x [-1,0).

B is called a BVF h-idesl if it is both left and right BVF h-ideal of R.

2.1.3 Example

Consider hemiring R = {0, 1,p,p*} defined by

+]0 |1 jp |p . |0{l|p|P
010 |1 [p |P 0 (of0]O]O
1 (11 |p [P} 1 fof1]|1]1
p|pjp PP p{oj1f1]|1
pr|pt PP | P priofj1|t]!

We define BVF set B as follows

r

Q 1 P jz

pt 052 (052 032 |0.32

u | -073 | —0.73 | —0.23 | —0.23
Clearly, B is a BVF h-ideal of f.
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2.1.4 Definition

Let B = (A*, ") be a BVF subset of R. Then B is called BVF interior h-ideal of R
if it satisfies (1), (2}, (3) and

(6) ywe&B={zye)y € BVr,y,2¢€ R& ¢t e(0,1} x[-1,0).

2.1.5 Definition

Let B = (A*,A") be a BVF subset of . Then B is called BVF h-bi-ideal of R if it

satisfies (1}, (2), (3) and

(7) Iy € B: Y (=3 B = (I'Zy)min(t;‘,,) e B V.Ta'. < < R & t’,f"’ = (0, 1] X ['—1,0)

2.1.6 Example

Consider hemiring Np with respect to the usual "+" and ™.". Let t;, ¢, € [0,1) be

such that & <t i.e, (t1, —t) < (2, —t2). Define BVF set B = (A*,A") by

ti if v€ (3)

A (@) = .
t, if x¢&(3)

and

- (3:) _ t]_ if z€ (3) 1
—t; if z & {(3)

vz & Np. Then B = (A*,27) is BVF h-bi-ideal of No.

2.1.7 Definition

Let B = (A*, A7) be a BVF subset of a commutative hemirig & with unity. Then B

is called BVF prime h-ideal of R if it satisfies (1}, (3) , (4), (5} and
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(8) (zy)reB=(z), € Boryy€BVr,y¢c R&t €(0,1] x [-1,0).

2.1.8 Definition

Let B = (A*, A7) be a BVF subset of a commutative hemiring R with unity. Then
B is called BVF semiprime k-ideal of R if it satisfies (1), (3), {(4),(5) and

(9) (})yeB=—=zy€eBVZER&IE(D, 1) x [-1,0).

2.1.9 Remark

In rest of the thesis, we denote set of all BVF left h-ideals of R (resp. BVF right
h-ideals of R, BVF h-ideals of R, BVF interior h-ideals of R, BVF h-bi-ideals of
R, BVF prime h-ideals of R, BVF semiprime h-ideals of R) by BVFLhI (R} (resp.

BV FRAI(R), BVFRI(R), BVFIRI (R), BVFhbI (R), BVFPhI(R), BVFShI(R)).

2.1.10 Theorem

Let B be a BVF subset of R. Then (1) to {9) are equivelent to (1) to (9)’ respectively,
Vz,y, 271,72 Where:

(1) A (= + g} > min (AT (@), AT (@)}, A (2 4+9) S max {A7 (=) A7 W)} -

@) A* (zy) 2 min {A* (2) A" (@)}, A () < max{X™ (2}, 47 W}

@Y z4+n+z=rn+z = At (z) 2 min {AT(r;), A" (re)}, A7 {(z) <
max { A~ (r1) , A7 (r2) } .

(@) X (zy) 2 AT (), AT (3y) SAT ().

(5 A*{zy) = A (z), 2 (zy)} A7 (%)
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(6)' At (zyz) 2 AT (y), A (zp2) €27 ().
(7 A (zzy) > min {AF (2), A% (1)}, A (@2y) S max {7~ (2,47 ()}
(8) A (ay) 2 max {A* (2), A% (1)}, X (p) < min {A” (=), A" (1)}
(9) AT (%) 2 A (z), A" (2T} < A7 (2).
Proof. First we prove (1) is equivallent to (1)’

(1) = (1) . Suppose (1) fasle. ThenVz, y € R, so that A (z+y) < min{A*(z), AT (9)}
and A~ (2 + ) > max{A~(z),A"(y)}. Then 3 ¢ = (t*,t7) € (0,1) x [—1,0) such that
Az +y) < tt < min{A*(2), AT (Y} & Az +y) >t~ > max{A™(z),A™(y)}, Here
At(z) > t+, AT (y) >t & A7 (z) < 7, A~(y) < t=. This implies, zy € B, yv € B but
(z + y)p€B. Which is contradiction. Hence (1)" holds.

(1) = (1). Let ¢, y € Rforall ¢ = (t¥,¢7) and ¢ = (rt,r7) € (0,1 x
(=1,0). Such that =y € B, y» € B. Here X*(z} 2 t*, A7(z) < ¢~ and A(y) =
r* A(y) < r-. Then by (1) M(z +9) 2 min{X*(z),A*(y)} and (v +3) <
max{A~(z},A ()} So that A¥(z +y) 2 min{A*(z), \*(y)} = min{t*,r*} and
A (z4y) < max{A~(2) A (¥)} < max{t7,r7}. 80 (AT +y), A (@ + y)) > (min{t*, r*}, max {t
This implies (% + ¥)minrry € B This proves (1).

Similarly, we can prove other conditions of theorem. m

2.1.11 Theorem

A BVF set B = (A, A") € BVFLAI(R) (resp. BVFRAI(R), BVFRI(R),
BVFIRI(R), BYFRbI(R), BVFPhI(R), BYFShI (R)) iff it holds following sets

of conditions {(1)', (3)', (4)'}resp. {(1)',(3)', (8)'}, {(1)".(3)', (4}, (&)}, {0y,
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(31, (6)} {0, 3 (M H {0, (3) . (&), (8, BY1 {()'. (3)', (&', (5)', ().

2.1.12 Remark

If B = (A\*,A") € BVFLhI(R) (BVFRAI(R), BVFhI(R), BVFIRI (R), BVFhbI (R),

BVFPhI(R), BVFShI(R)) = A*(0) > A* (z) and A™ (0) € A~ (z) Ve € R.

2.1.13 Theorem

Let ¢ # I C R. Then C; € BVFLhI(R) (resp. BVFRAI(R), BVFRI(R),
BVFILI(R), BVFRbI(R)) iff I is a left A-ideal (resp. right h-ideal, h-ideal, in-
terior h-ideal, h-bi-ideal) of R.

Proof. Straightforward. m

2.1.14 Theorem

Let @ £ I C R, where R is a commutative hemiring with unity. Then C; =
(C}.C;) € BVFPhI(R) (resp. BVFShI (R)) iff 1 is a prime h-ideal (resp. semi-
prime h-ideals) of R.

Proof. Straightforward. =

2.1.15 Theorem

If & BVF set B = (A*,\") € BVFAI(R) then B= (A*,X") € BVFIhI(R).
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2.1.16 Remark

Generally, converse of Theorem 2.1.15, is not true.

2.1.17 Example

Consider hemiring R = {0, p, ¢,7} defined by the following operations

+|0lplaqlr L0 ptelr
of(olplg|r ojlo|o|o]0O
plp|0|r|gp p|l0|g|0fg}
g19|7|0]|p g|0{o|o|0
rlrigip|0 r(Gle[0]|q

Define B as follows

0 P q r

pt 041 (042 1011 |0.10

u | 0721 —071 | —0.31 | —0.33

Then B = (u*, ) € BVFIRI(R) but it is not a B = (u*, u™)EBV FRI(R).
As B (pgr) = B{0) = (0.4,~0.7) and B(g) = (0.1,—0.3), this shows u* (pgr) >
4t (g) and u~ (pgr) < p~ (g). On the other hand B (pp} = (0.1,—0.3) and B(p) =

(0.4, ~0.7), this shows u* (pp) # u* (p) and s~ (pp) £ ™ (p).

2.1.18 Theorem

If B=(u*,p~) € BVFPRI(R) then B = (u*,u~) € BVFShI{R).
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Proof. Suppose B = (A*,A”} € BYFPhI(R). Then by definition A*(zy) <
max{A*(z), A" (y)} and A(zy) 2 min{A~ (@), A" (1)} Fory =3z A(z) 2 At (z?)

and A~{z) < A~(z?). Hence B € BV FShI (R). This complete the proof. =

2.1.19 Remark

Generally, converse of Theorem 2.1.18, is not true.

2.1.20 Example

Let Np = {0} UN and p1, P2, Pa, - be the distinct prime numbers in Np. If J°=Ng
and J' = pipaps.-.piNo, where [ =1, 2, 3,.... then PoSroRs . DJYD
As every non-zero elememt of Ny has unique prime factorization, for I = 2,

3, .. J'is a semiprime h-ideal but not a prime h-ideal. Then by Theorem 2.1.14,

Cp= (C}',,C;) € BVFShI(R), but Cpn = (Ch,C7) EBVFPRI(R).

2.1.21 Theorem

A family of BVF set B; = {(¥}, A7) : i € O} € BVFLhI (R} (resp. BVFRAI(£),

BV FhI(R), BVFIRI(R)). Then B= A B; € BVFLAI (R) (resp. BV FRhI (R},
BVFhI(R), BVFIhI(R)) where B = (A*,A7) that is A = A A and AT = V.

A7 AP AR AT 2 AT Yie

1
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2.2 Bipolar-valued fuzzy h-intrinsic product

2.2.1 Definition

Let By = (A*,A7) and By = (u*,47) be two BVF set of B. Then the h-intrinsic
product of By and B, is denoted and described as (B; On Ba) () = (A ©n p*) ()
(A~ O u7) (2)) Yz € R, if z can be signified as & + D aibi + 2 = Lhacidi + 2, 80
that

(AT On p*) (@) =

o pen (B @) (R 00) 2 (Rar ) » (R )

(A" Oap ) (z)=

VA~ (& @‘b,- n/\_‘V\r:'_d‘ .
z+£}’;,a,—b,-+';\=2;.= 1&idi+z (\{;\1 (a,]) v (££1 ( )) v (\§=1 (c,)) (J'gl ( j))

=

(B, O Ba) (x) = (0,0} Vz € R, if & cannot be signified as = + TRab+z =

E;"=1dej ‘|" 2.

2.2.2 Theorem

Let Mi, My be h-ideals of R. Then we have
(i) M, C My, iff iy, < Copy, Cyy 2 Chgy-
(‘”’) C;\-"}l A c;-'fz = C;rl:flﬁMgi Oﬂ_vfl V O;ffg = Cﬂ-lflUMg'

(i18) Oy, ©n Cfp, = Corgm Con O Coty = O

Proof. (i), (1) Straight forwad.

(i3} Let Cyray = (Cﬁ,cm). Suppose z € R and x € M1 M; so C‘;'m

1, Oy = —1. Now, let = + TR it + 2 = B, 7585 + 2 for some p, 7 € Ay and g,

SEMg
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(Cr, On Clyy) () =

[(}’\‘ G (@) AR iy D) A (R C (e) A (R (dm]

v .
s+ L obi+a=T] 6, djt+z | =1 J=
> [(iglc;;. (2 A (A Ol ) A (ACH, ) A (O, (sm] -1
(Cir, On Cip) () =

m T )
V Crp, (@ v (B V (V. Cig, (&) V (VO (d;
42 ai +¢=2;=1cj 4ie [(‘.glcm (@)} V(Y Cn (54)) (J.=1 ' (6)) J_(=1 M ( :))]

< (0 eV (T 00 @)V (I 0 () v (UG, ts,-))] =-1

Hence (i4%) is proved. =

2.2.3 Theorem

A BVF subset B = (A*,A™) € BVFLAI(R) (resp. BVFRAI(R)}iff it holds (1),
(3)' and (Cf O X*) (2) < X (2}, (CF O A7) (2) 2 X (2) (resp., (* 5 CR) (@) <

A" (z), (A Oa Cg) (3) 2 A7 ().

2.2.4 Lemma

Let B, = (A*,A") € BVFRAI(R) and By = (u*, ™) € BVFLhI(R). Then A™ Ox

pt< X Aptand A" @™ > A7 VT,
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2.3 Bipolar-valued fuzzy h-quasi-ideals of hemir-
ings

2.3.1 Definition

Let B = (A*, ") be a BVF subset of R. Then B is called BVF h-quasi-ideal of R if
and only if it satisafied for x, y,2,71,72 € &,

(1) M (2 +3) 2 min {X* (@), A7 (1)}, A~ (2 +3) Smax{X™ (),37 (9)}

3 z4+rm+z=r+2z = () 2 mn{d* (r), A" (r)}, A7 (3) <
max {A7 (r1),A” (r2)} -

(20) (A @n CE)N(CE ©n A%) < AF, (A" On CR) U{CR On AT = AT

2.3.2 Remark

In rest of thesis, set of all BVF h-quasi-ideal of R is denoted by BV Fhel (R).

2.3.3 Example

In Example 2.1.6, B = (A", A7) € BV Fhql (No}.

2.3.4 Theorem

Let B = (A*, A7) is a BVF subset of R. If B = (A*,A\") € BVFhql (R) iff all level

subsets U (B, ¥’} # D are h-quasi-ideal of R.
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2.3.5 Theorem

Let @ # I C R. Then C; € BVFhgl (R) iff I is a h-quasi-ideal of R.

2.3.6 Lemma

Let B = (A*,A7) € BVFRRI{R) and B' = (u¥,4) € BVFLhI(R). Then BNB' €

BVFhgl (R).

2.3.7 Lemma

If B={A*,A") € BVFhgI (R) then B = (A*,A”) € BVFhbI (R).

Proof. Let B = (A*,A™) € BVFhgI(R). It is sufficient to prove A (zyz) >
min{A* (z), A* (2)}, A™ (2y2) < max{A™ (z), A" ()} and A* (zy) > min{A* (z) , A* ()},
A (zy) € max{A™ (z),A” (y)} Vz, y, z € R. Now, we have

A (zy2) 2 (AT Ou CF) N (CF ©n X)) (zy2)

=min{(A* ©p, CF) (zy2), (C} ©x A*) (zy2)}
v AGenenaonen).

zyz+ ﬁ aby b= Zl e dy+m
im] J=1
mo n
v {Remenaden @
Tyz +i§=:1 ady +z=J§1cj dj 411 = 7

> min{mil;{)\'*' (0),27F (z)}, min{A* (0}, A* (2)}}

3

= min <

/

= min{X* (z), A% (#)}.
Analogously, we have
AT (zyz) < (A7 Ox Cg) N{Cg 04 A7) (zy2)

= max{{A~ @ CR) (zyz), (Cx ©x A7) (zy2)}
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o A {Eeev e},
33’+‘_§lﬂiﬁ-+3=j§1cjd5+zl - =

A {@omnv@enen]

n n
zys+ Y by tz=Y cjditn
i=1 =1

= max ¢

L3

< max{max{3~ (0)," (2)), max{A~ (0), A" (2)}}
= max{A” (z), A" (2)}.
Similarly, we can prove A* (zy) > min{A* (=), A* ()}, A™ (zy) < max{A™ (z), A" (3)}.
Therefore B € BVFAbI (R). =

Converse of Lemma 2.3.7, is not true.

2.4 Characterization of hemirings by their bipolar-

valued fuzzy h-ideals

First we recall the definition of hA-hemiregular and h-semisimple hemiring. In this

section we characterize h-hemiregular and A-semisimple hemirings by using their BVF

h-ideal (interior h-ideal).

2.4.1 Definition

Let By = (A",A7), By = (u*, ) be two BVF subsets of R. Then we say A*[€]u*,
g€, if 20 € By => zp € Byie, AV (z) 2t = ut(z) 2t and A7 (2) <

U =pu(z)<t forallz e Rand ¢ = (t+,¢7).
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2.4.2 Theorem

Let By = (A*,A7), By = (g*, #7) be two BVF subsets of R. Then we sayA* ~ pt,

po o~ AT A AT [€]ut, pm[€]A and pF(e]AT, AT[elum.

2.4.3 Lemma

The relation * « " is called equivalance relation on BVF subsets of R.

2.4.4 Theorem

Let By = (A", A7), By = (u¥,p7) € BVFRI(R). Then A¥[€)u*, p~[€]A™ iff A* <
ptoum < AT, Vre R.

Proof. Let us assume A¥[€]u*, u~[€)A™. To prove At < ut, u~ < A7, for all
z € R. Suppose on contrary for x € R, A* (z) > pt (z), A™(z) < g~ (z). Then 3
¢ = (¢t*,t7) € F(B) such that A*{z) > t* > p¥ (2}, and A7 (2) < t7 < p~ (2}.
Which implies AT (z) > ¢+ = pt(z) > t* and A7 (z) <t” # p~ (z) <t Which is
contradiction. Hence AT < pt, = < A7,

Conversely, assume AT < pt, u= < A7, for all z € R. To prove A*[g|u?,
u~[€]A™. Suppose A¥[€]ut, 4 [€]A™ does not hold. Then there exists z € R and
¢ = (t*,&7) € F(B) such that At {z) > t* » pt(z) > tt and A7 (z) < &7 »

4~ (z) < t~. Which is a contradiction. Hence A*[€]u™, p7[€]3™. m
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2.4.5 Theorem

If B, = (\*,A”) € BVFRAI(R) and By = (u*,4~) € BVFLRI(R), then (At On
p) ~ (AT Apt), (A7 Oy p7) ~ (A7 v uT) iff R is A-hemiregular.
Proof. Suppose R is h-hemiregular. Let B, € BVFRhI(R) and By € BVFLhI (R).

Then Vs € R by Lemma 2.2.4, (\* @ gt (s} < (AT Ap®)(8), (A O p) (s} 2

(A~ v ") (s) and so by the Theorem 2.4.4, (A* Qa u*} (s) [e] (AT A pT) {(8), (A7 V

57) () [€] (A" @np") (3) . Now, since R is h-hemiregular, so Vs € R, 3 p, ¢, z € R such

that s+sps+2z = sgs+z. Thus A\ *@up*) (s) = A QZ‘;"* (P:)) A (élm @) A,

> min{A" (sp) , A* (s9), 47 (s}}

= (AT Apt)(s)

(AT On p*) (8) 2 (AT A L) ()

and
(A" OwpT)(s) =
s+2?=1?=¢:+l;\=2}“=lfﬁj+s (ii}l'\_ (pi)) v (iill‘u_ (q‘)) v (ng)‘_. (Tj)) v 3(2#- (tJ))

< max{A~ (sp), A~ (59) , 4™ {8}
= (A" vpu){s)
(AT Onpt) (s) < (A" V) (s).
Hence (AY O p?) ~ (AT A ™), (AT Q™) ~ (A7 V7).
Conversely, let 7 be a right and J be a left h-ideal of R. Then Cy = (Cf,Cy) €
BVFRhI(R) and C; = (G‘;‘ Gy } € BVFLhI(R). Then, we know that from The-
orem 2.2.2, O = Cf @4 CF and from (1) CH = Cfon Ct ~ Cf ACJ and from

Theorem 2.2.2, O = C} @, CF ~ CHACT = Chy = [T = InJso Ris
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h-hemiregular. m

2.4.6 Theorem

If Be BVFRM (R) then AT S (AT QR CE O AT, A" 2 (A 0aCr O A7) if Ris
h-hemiregular.

Proof. (i) = (i4) Suppose (¢} hold.

(AT On CF On AT) (2)
(A O 0n CE) (@)
= .V 4 (A (AYOu CE) () »
"y‘+‘§lﬁ-°i+‘=j§1‘:dJ+‘l =1 )
[ MARD) B A (AT () |

L] (Fench e,
| (A 0 CF) (29), A" (2)

4 b

v {@erena@onen),

] " {=
T+ 3 abitz=3 ejd;+n
i=1 =1

— min ¢ v { (i/:{l(,\*) (b)) A (j/:}l(h+) (dj))},

L)
T+ 3 abitz= 3 cdi+n
oy’ =

o

A (3)

> min{min{ A" (zaz), A" (zex)}, min{A* (zaz), AT (zea)}, AT (2)}

(since xa + zaza + za = rcra + za and z¢ + zazc + z¢ = rexc -+ 2¢)
= min{A* (x), A" (2}, A* (2)} = A* ().
Similarly, we have

(A Ok Cxp @n A7) (z)
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(VO on CR) (e

- oA, Gorace

) n =1
T+ Y eibitz=3 cid;+z
i=1 =1

| V(T ) @) v (00 ()
(A" @4 Cp) (za)),
(X" ©n C7) 2e)), A~ (=)

( A {@eevgent,

m
o+ abti=3 ¢yd, 2
=1 i=

< max
A

— max v {@eenvgeoe)

AL ) i=1
T+ L aibhz=3 cjdy+2 I
i=] I=]

AT (z)
\ J
< max{max{A~ (zaz), A~ (zc2)}, max{A~ (zax), "~ (zex)}, A (7)}

(since Ta + raza + za = rcza + za and zc+ zaxc+ z¢c = Tcrc + zc)
= max{A~ (z}, A" (z), A" ()} = A~ (z). This prove (#).

(#) = (¢) Assume that (i¢) holds. Let M be any h-bi-ideal of R. Then by the
Theorem 2.1.13, Cy € BVFhbI(R) . Now, from (3i) C3; C CJ, O C} Ou Ciy, from
Theorem 2.2.2, Ci; € Cy; On C On Cpy = Cyzmp and M C MEM. On the other
hand, since M is h-bi-ideal of R so that MAEM C M. This imlies MRM C M,

and from 1.3.8, MRM C M = M. Therefore MRM = M. Hence from 1.4.7, R is

h-hemiregular. =

2.4.7 Theorem

The following conditions for R are equivalent:

(¢} R is A-hemiregular hemiring,
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(id) min{3*,p*} < AT On p* On A%, max{AT,u"} 2 X7 On pt” On A for every
B = (3*,A7) € BVFhbI (R) and for every B’ = (u*,u~) € BVFhI(R).

(iis) min{A*,p*} < A On ™ O At max{)\", 5"} = A7 Op p~ On A” for every
B = (A*,A7) € BVFhqI (R) and for every B’ = (u*,p~) € BVFhI(R).

Proof. (i) = (i%) Suppose (¢) hold.

(W ©n 4+ O AT ()
(RA* O ) (@)
- v Gotewme) |
zyz+‘§d b,,+z-2c,d 51 . = .
| AR OH G A A @)
| (A On 1) (20)),
2 min

(X O u*) (20)), A ()

) (RN @) AR @) |
r+£:-§1ﬂb‘+!=3§1qdj+n T A(igl(p+) (b‘)) A ( E\ (p‘.+) (d_.'.)) ) |
— min { ("’5‘1()#) {a)) A ( f_\l()«*) (i) (

”m V kil ﬁ " J_- } ’
o+ 3 oibits= 3 cidita A(;g1(“+) (b)) A ( E ) :)

A" (x)

> min{min{A* (z), u* (aza), p* (cza}},
min{A* (2}, ut (azc), A (cxc)}, M (z)}
since za + zaxa + za = reza+ za and

Te + TALC + ZC = XCxc -+ zC

= min{min{A* {z),p* (2)}- min{A* (z),p* (2)}}
= min{A* (z), #* (2)}.

Similarly, we have
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(A~ Op g~ Or A7) (2)
(V7 0np7) (@)Y
= A { (oo

m L3
o Y aibi+E= YT edits
i=l

iml

R IR ACIC)

=1

(A~ ©n 57} (2a))y

(A~ On p~}ae)), A7 (2)

< max

(Vo) @) v (L0 )

A 1
z+i)=:la‘bi+z=JE]cjdj+x T\ V(:\jl(p_) (b‘)) v (jil(p-) (d_,)]
= max 4 (O @DV |
A ¢ = )

et FamsmBodts | V(T W) 0DV (76 @)

A (2)

< max{max{\~ (2}, 4~ (aza}, 4~ (cza)},

max{\~ (z),A” (azc) , 4~ (cze)}, A~ ()}

since za + roxra + ze = 2cIa + 20 and

re + razc+ z¢ = xexc+ ze

= max{max{ A\~ (2}, &~ (2)}, max{A~ (z), s~ (z)}}
= max{A~ (2), #~ (#)}. This prove (ii).
(i1} = (i4d). This is straightforward by Lemma 2.3.7.
(#44) == (¢). Assume that (443} holds. Let M be any h-quasi-ideal of R. Then

by the Theorem 2.1.13, Cn € BV Fhgl (R) . Since Cr € BVFhI (R). Now, from

(ii6) C}, € CF O C4 @ Cfy, from 222, Cy € Ciy On Ch On Cfy = Crgar 20d

M C MRM. On the other hand, since M is h-bi-ideal of R so that MRM C M. This

imlies MRM C M, and from 1.3.8, MRM € M = M, Therefore MRM = M. Hence
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from 1.4.7, R is h-hemiregular hemiring. »

2.4.8 Theorem

Let R be a h-hemisimple and B be a BVF subset of R. Then B € BVFAI(R) iff
B e BVFIRI(R).
Proof. By Theorem 2.1.15, every B = (A*,A™) € BVFhI(R) is BVF interior
h-ideal of R.
Conversely assume B = (A*, A7) € BVFhI(R). Let p, g€ R. By 1.4.2, 3 a;, by,
G, i, €, fi, @i, ; € R such that p+ £, a:pbicipd; + 2 = 2?=13jpfjgjphj + z. Which
implies pg + 5, aipbicipdiq + 2q = X}..8;0f;9;ph59 + 24.
Thus A* (pg) > min {A* (S, aipbiespdig) , A (Siie;pfi;pha) ,0.5)
X (pg) 2 X ().
And X~ (pg) < max {2~ (S0, aipbicipdig), A~ (Shaeipf5950h59) , 0.5}
A™(pg) < A7 (p).
Thus B € BV FRAI (R). Similarly, we can show B € BV FLRI(R) . Hence proved

the theorem. =

2.4.9 Theorem

If B, = (A*,A") € BVFIAI(R) and By = (u*,u") € BVFIRI(R), then (X* On
)~ (AT ApY), (A @wuT) ~ (A7 vu) iff R is h-semisimple.
Proof. (i) => (i) Suppose forany By = (A*,A"), B; = (u*,u™) € BVFLhI(R)

of B. Then by the Lemma 2.2.4 (AT @y pt) < QY Ap™), (A Gpp™) 2 (A7vp7).. And
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by the Theorem 2.4.4 (A* @) [€] (A" Ap*), (A7 v~ €] (A7 Onp7). Since, Ris h-
hemisimple, so Vs € R, 3 i, di, &, fi, &, &), €, f; € Rsuchthat s+ET cisdieisfitz =
ET ¢sdje)sf; + 2. Thus
(XF On u*) (5) =
T+EP by +2=E], 0k, +2 @;V (a:)) A (.-31“ Fe)A (j§1A+ (&) A J(i\"]“+ &)
> min{ At (csdi) A (isdl) , ut (essfi) ¥ (€)51])}
> min{A* (s}, u* (s)}
= (A" Apt)(s)
(AT @n ) (s) 2 (W Apt)(s)
and
(A On ) (8) =
z+srglam+'?=z;=1a;a;+z (31)'- (@) v (‘_Zp‘ (D) (1\21A_ (e5)) v ﬁﬂ_ )
< max{A~ (eisd), A7 (), wt (ess i) w* (€5 57)}
< max{A™(s), 4~ (s)}
={(A"vpT)(s)
(A" Onp7)(8) (A7 VpT)(s).
Hence (i) is proved.
(i) => (i) Let I be a h-ideal of R. Then from Theorem 2.1.15, [ is an interior
h-ideal of B. Then from Theorem 2.1.13, C; = (Cf,Cr) € BVFIhI(R). Then we

have CF = CF A C7F and from (i) CF = CF ©, Cf ~ Cf A Cf and from 2.2.2,
I 1 i ! I I

Cf = C‘;'—, —» [ = I? Therefore R is h-hemisimple. w
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Chapter 3

Bipolar-valued anti fuzzy h-ideals

of hemirings

In this chapter, we define bipolar-valued anti fuzzy h-subhemiring and bipolar-valued
anti fuzzy h-ideals. We analysed some basic definitions of bipolar-valued anti fuzzy k-
ideals and some basic properties of bipolar-valued anti fuzzy h-ideals. We characterize
h-hemiregular and h-semisimple hemirings by using their bipolar-valued anti fuzzy h-
ideals (h-bi-ideals, h-quasi-ideals and interior h-ideal). Also we use notion BVAF

h-ideals in place of bipolar-valued anti fuzzy h-ideals.

3.1 Bipolar-valued anti fuzzy h-ideals of hemirings

In this chapter, we define BVAF h-subhemiring . We also popularized BVAF h-ideals.

We analysed some basic definitions of BVAF h-ideals.

47
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3.1.1 Definition.

Let M be a non-empty subset of R. A bipolar-valued fuzzy subset Cpc = (Crye: Cre)

is described by

'8

0 ifzeM
G;:}a (:E) =4
1 otherwise
\
and ,
0 ifze M
Che (T) = 4
-1 otherwise

\
is called bipolar-valued anti characteristic function.

3.1.2 Definition

A BVF subset B = (3*,17) of R is called BVAF h-subhemiring of R if it satisfies
(W1) 2¢€B, y»€B = (Z + Y)max(rm} €8
(W2) 2,€B, y.€8 = (wy)mu{t,ﬂ_,} €B
(W3) z+sy+2=83+2 (5)€B, (52)€E8 = (a:)m“{t,‘?,} €BYz,z,5,2 € R

and ¢ = {¢t+,£7), " = {r*,r7) € {0,1] x [-L,0).

3.1.3 Definition

A BVF subset B = (A*, A™) of a hemirig R is called BVAF left (resp., right) A-ideal
of R if it hold (W1), (W3) and

(W4)  2,€B — (yz),EB (resp., (W5) (zy),€B) Vz, y € R and t =
(t+,t7) e (0,1} x [-1,0).

B is called a BVAF h-ideal if it is both left and right BVAF h-ideal of A.
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3.1.4 Example.

Let us consider hemiring R = {0,1,¢1,q2,¢s} with zero multiplication and addition

defined by,

+ 0|1 |q1|q2| 0

00 (1l |a|%)|9

L1 |1 |¢a|2|%

QN | BI1B|DB|D

Rl | BIGB|{DB|DB

Bl | BB DD

We define BVF B = (A%, ™) as follows

0 1 ¢ qz q3

3013 (063 |0685 (064 |0.66

A" {—044| —-0.24}-025} —-0.25 | -0.26
Then B 18 a BVAF h-ideal of K.

3.1.5 Proposition

Let § % M C R. A BVF set B = (uf;, tay) is defined by

€1 ifzeM
pae (%) =
€y oOtherwise
and
B 51 ifre M
b (T) =

Jo otherwise
where 0 < ¢ €< ¢ < 1and 0 > §; > 82 > —1, is a BVAF h-ideal of R iff M is

h-ideal of R.



a0

3.1.6 Definition

A BVF subset B = (A*,A\”) of R is called BVAF interior h-ideal of R if it holds

(W1),{W2), (W3} and

(W6) y&B —> (ay2), EB ¥z, y, 2 € Rand ¢ = (t*,¢7) € (0,1] x [-1,0).

3.1.7 Definition

A BVFsubset B = (A*, A7) of Ris called BVAF h-bi-ideal of R if it holds (W1) ,(W2),(W3)

and

¥

(W7) 24€B, yv€B => (22¥)paxw. €B V& ¥, 2 € R and ¢’ = (¢h,t7), 7' =

(r*,r7) € (0,1) x [~1,0).

3.1.8 Theorem

Let B be & BVF subset of R. Then (W1) to (W7} are equivelent to (W1}’ to (W7)’
respectively, Y, y, 2,71, 72 Wwhere:

(W1) X* (2 +y) < max {A* (2),A* (1)}, A~ (2 +9) 2 min {37 (). A~ W)}

(W2) A* (ay) < max {X* (z), A" ()}, A~ (ay) = min {X™ (2),A™ (®)} -

(W3Y y+m+z=r+z = A <max{d(n), ()}, A W) 2
min {A~(r),A7 (r2)}.

(W) A*(zy) <27 (), A7 (zy) 2 A~ ().

(Ws) At (zy) < AY (@), A (zy) 2 A7 (@)

(WoY A" (ayz) € 27 (y), A" (zp2} 2 A7 (3)

(WT) A (z29) < max {A* (), A" ()}, A~ (z2v) 2 min {A~ (), A" (y}}-
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Proof. (W1} > (W1

Suppose (W1)' is false. Then there exist z, y € R, such that X" (2 +y} >
max{A*(z), A* ()} and A~ (z+y) < min{x"(z),A"{y)}. Then for some ¢’ = (t*,¢7) €
F(B). So that A*(z + y) > t+ > max{A*(2),AT(y}} and A" (z + ) < ¢~ £

min{A™{2),A"(y)}. Here A*(z) < t¥, AT(y) < tt and A7(z) 2 ¢7, A7 (y) 2 ¢~

This implies, z«E€B, y¢&€B but {x + ¥)y € B. Which is contradiction. Hence { Ww1)

held.

Conversely, let ¢, y € R for ¢ = (t7,t") and v = (r*,77). Such that z,.€B,
y~EB means B (z) < ¢ and B (y) < . Here A*(z) < t*, A {(z)} > ¢~ and A*(y) <
r+, A(y} = r~. Then by (W1) At(z +y) £ max{A*{z},A"(y)} and X7{z +
y)} > min{A~(2),A"(¥)}. So that A*(z + y) < max{A*(z},A*(y)} < max{t*,r*}
and A7 (z +3) > min{A"(2),A (&)} > min{¢t",7"}. So (A +y) A (z+y)) <
(max{t*,r*}, min{t~,7"}) i.e, Bz +y) € max {t','} . This implies (z + ¥) au(er -} €B-

This proves (W1} .

In addition, we can prove other conditions similarly. m

3.1.9 Remark

In rest of the thesis, we denote set of all BVAF left h-ideals (resp. BVAF right h-ideals,
BVAF h-ideals, BVAF interior A-ideals, BVAF h-bi-ideals) of R by BVAFLRI (R)

(resp. BVAFRAI(R), BVAFRI(R), BYAFILI (R), BVAFhbI (R)).
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3.1.10 Theorem

A BVF subset B = (A, A7) € BVAFLAI (R) (resp. BVAFRLI(R), BYAFRI(R),

BV AFIhI(R), BV AFhbI (R)) iff it holds following sets of conditions {{W1)", (W3)
(W4Y'} (resp.-{(W1)', (W3)', (W5)'}, {(W1) ,(W3) , (W), (WS)}, {(W1), (W2,

(W3Y, (W6)'}, and {(W1),(W2)' ,(W3)',(WT)'}).

3.1.11 Remark

If B = (\*,A") € BVAFLhI(R) (BVAFRhI(R), BVAFhI(R), BV AFIhI (R),

BVAFhbI(R)) then A* (0) < A*(z) and A~ (0) > A~ {z) Yz € .

3.1.12 Theorem

Let® # 7 C R. Then Cy. € BVAFLhI(R) (BVAFRhI (R), BVAFhI{R), BVAFIhI(R),
BVAFRSI (R)) iff I is a left h-ideal (resp. right A-ideal, h-ideal, interior A-ideal, k-
bi-ideal) of R.

Proof. Straightforward m

3.1.13 Theorem

If B=(A*.A7) € BVAFRI(R) then B = (A*,X7) € BVAFIRI(R).

Proof. Straightforward w
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3.1.14 Theorem

A family of BVFset B; = {(A},A]) : i € 2} € BVAFLAI(R) (resp. BVAFRAI(R),
BVAFhI (R), BV AFILI(R)). Then B = v B, € BVAFLI (R) (resp. BVAF R (R},
BVAFhI(R) and BVAFIAI(R)) where B = (A*,A7) that is A* = v Al and

A= AN (M 22 <A YieQ)

3.2 Realation between BVF h-ideals and BVAF h-

ideals

In this section, we analysed some realation between BVF h-ideals and BVAF h-ideals

of R.

3.2.1 Definition

Let B = (A+, )\_) be a BVF subset of R. Then complement of B is define by B¢ =

{(/\+)c1 (/\—)c) ={1- ’\+1 —1- A_)

3.2.2 Proposition

Let B = (A%, A7) beaBVFsetin R. Then B € BVAFLhI (R) (vesp. BVAFRhI(R))

iff B° € BVFLhI(R) (resp. BVFRhI(R)).

Proof. Let B = (A*,A™) € BVAFLRI(R) (resp. BVAFRhI(R)). For s,
33 € R, we have

(AH) (s + 52) =1 = At (s + 59)
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> 1—max{A* (), A" (s2)}
= min{{1 - A% (s1)), (1 = A" (22))}
= min{(A*)* (1), (A")* (s2)}
and
(¥ (14 s2) =—1-A" (51 + %)
< —1-min{A™ (s1), A7 (s2)}
= max{(—1 —~ A" (&1)), (=1 — A" (52))}
= max{(A7)%(s1), (A7)* (s2}}.
Now, (A*)°(s281) = 1 — A™ (s251)
21-2"(s)
= (s)  (resp., (M) (mis) 2 (A)¢ (s1))
(A7) (s3s1) = =1 = A7 (s231)
S-1-2"(s1)
={A7)°(s1) (resp., (A7) (s182) < (A7)°(s1))-
Let us suppose, for y, z, 8y, 8, € R, so that y + s; + z = s, + 2 this implies
()W) =1-2* ()
> 1~ max{}* (), A" (s2)}
= min{(1 = A* (s1)), (1L - A¥ (s2))}
= min{(A*)* (s1), (A*)¢(52)}
Suppose, for g, , 51, 8; € R, o that y+5;+2 = 5 +z thisimplies  (A7)*(y) =
~1=A"(y)
< —1—min{A~ (s1),A™ (52)}

=max{{—1 = A" (s1)}), (-1 — A7 (s2))}
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= max{(A7)¢ (st} , (A7) (82)}
Hence B° € BVFLAI (R) (resp. BVFRhI(R)).
Conversely, let B® € BVFLhI (R) (resp. BVFRAI(R)). Let for z, y € R, we
have
M (s1+82)=1-(2") (81 + 52)
< 1—min{(A*)*(s1),, (AT)° (s2)}
= max{(1 ~ (A")*(s1)), (1 — (A7) (s2))}
=max{A* (s1),A* (s2)}
and A7 (s) +83) = —1 = (A7) (81 + 82}
2 ~1—max{(37)*(s1) . (A7) (s2)}
= min{(~1~ (A7)?{s1)), (~1 — (A7)* (s2))}
=min{A” (81}, A7 (s2)}
AT (s281) = 1= (A*)° (5231)
<1-(A")(s1)
= At (s)) (resp., At (s152) < AT (1))
and A™ (s251) = 1 — (A")¢ {(s251)
21— (A7) (=)
= A" (s1) (vesp., A (s182) = A~ (51))
Let us suppose, for ¥, 2, s1, s2 € R, so that y + s, + z = 52 + z this implies
(A1) (1) =1 - (W) (y)
< 1-min{(A*)*(s1), (A*)°(s2)}
= max{(1 — (A*)"(s1)), (1 — (A*)"(s2))}
= max{(A*} (s1), (A") (s2)}
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Suppose, for , 7, 81, S € R, so that y+s51+z = sp+z thisimplies  (A7)¢ () =
—1=A"(y)
> -1 - max{(A7)" (s1), (A7)" (s2}}
= min{(—1 — (A7) (1)), (=1 = (A7) (s2))}

min{(A7) (s1), (A7) (s2)}

fl

Hence B € BVAFLhI(R) (resp. BVAFRAI(R)). »

3.3 Bipolar-valued anti fuzzy h-intrinsic product

3.3.1 Definition

The anti h-intrinsic product of BVF subset By = (AY,A7} and By = (p*,p") Is
denoted and defined as (B, ®, Bz) () = (At @ p*) (z) , (A" @ p7) (z)) Yz € R, if

it is possible to express as  + 52 a:b; + 2 = T7_j6;d; + 7, 50 that
(A @n pt) (2) =

m + . m + . n ¥ ) 1] + ]
z+2_!';1a.b‘+‘:\=2;‘=1cid,+z l:(\fil (a‘)) v (\{51 (b‘)) v (\1;\1 (CJ)) v (\jfl (dj)):l
(A @ pT)(2) =

m__ m no_ L
:+E:"=,a,b.'+¥=£;-‘=,c,-dj+z l:(/:;\l (ai)) A (/:51 (bi)) A (AJ;\I (CJ)) A (/};:1 (d‘,))] )
(B,®4 Ba) (z) = {1,1) ¥z € R, if it is not possible to express x as r+ IR, 00,42 =

E}':lcjafj + z.
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3.3.2 Theorem

Let A, B be the subset of R and Cy., Cp- be the anti characteristic functions of A

and B. Then we have

(1) CI v CE = Chus O3V C5 = Chup-

(#) Ch. @n Ch- = Chpe, Cpe @4 Cp = Ce.

Proof. Proof of () is straghtforwad.

(i) Let Cyge = (Ce, Oz ) Supposes € Rond = & AB"s0 O = 1, Cgpe =
—1, then there Az so that = + Z2 pigi + 2 = YR 78+ 2z forsomep;, 7; € A and
g, 5; € B. Therefore, C'}. ®, Ch. = 1, C1 ®), Cge = —1.

Now, suppose z € Rand 2 ¢ AB soz € A5 and Oz = 0, C35 = 0, then there
exist o + T2 piq + 2 = L}_yr;8;+ z for some p;, r; € Aand g, 55 € B.

(Ch. & CL) (z) =

(9 Che ta) v (Y C (8)

A
2+EL aibi+a=E00;d 42 v v
VIivOele))viv d;
(9Ch eV @G (@)

(VS 00) VAT Che (4)
<| = = =0
v(j\} Ct(r,)) V (VCE (5,))
=1 j=l

(Ca- @ Cpe) (2) =
(A Cxe @) A (A Gz (b))

v
I+E‘-=laib‘l+z;sj=lc.fd}+z A( RIC;‘: (CJ)) A (KCEL (d_?))
i= i=1

(ACae 0:)) AR C5- (@)
1= = = 0

/\(jz\lclc (ril} A _(%Cﬁc (s;))
= =
Therefore (22) is proved.

Hence Cf, @ Ch. = Cpe, Cro ®, Cpe = O W
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3.3.3 Theorem

A BVF subset B = (A\*,A") € BVAFLhI(R) (resp. BVYAFRhI(R)) iff it holds
(W1)',(W3) and Ch@pr* 2 XY, CR@®@pA™ < A (resp, AT @Cp. < AT, A @ Ci <

7).

3.3.4 Lemma

Let B, = (A*.A7) € BVAFRAI(R) and By = (u*,u”) € BVAFLRI(R). Then
Moyt dvutand A" @ u- <A Au.

Proof. Let B, = (A", A7) € BVAFRhI(R)and B, = (4%, u7) € BVAFLhI(R).
Then, we have from Theorem 3.3.3, A* @, Cd, > A" and A~ @, C5. < A7 we have
A@ppt > AT @ Ch > At and A" @pp™ < A7 @, Cs. < A7, Moreover, M @ppt >
Cr@put>ptand X" @, p~ < Cg. ®, u~ < 7. Hence AV @, pt > AT vt and

AT ®rp” SATAL. m
3.4 Bipolar-valued anti fuzzy h-quasi-ideals of hemir-
ings

3.4.1 Definition

Let B = (,\"', A7) be a BVF subset of R. Then B is called BVAF h-quasi-ideal of R
if and only if it satisafied for p, ¢, 2, 51, 52 € R,

(W1 A (p+¢) < max {A* (), AT (2)}, A" (p+¢) = min {A~ (»),A7 ()}
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(W3) p+sr+z=s+z = +(p) < max {A* (s,), 37 (s2)}. A (p) =

min {A7(s1),27 (s2)}

(W10)' (A* @ Ch) U (Ch @n AY) Z 2%, (Cre @ AT) N (A7 @1 Che) S A7

3.4.2 Remark

In rest of the thesis, we denote set of BVAF h-qusai-ideal of R by BV AFhql (R).

3.4.3 Theorem

Let § 3 I C R. Then Cr. € BVAFhql (R)iff I is & h-quasi-ideal of R.

3.4.4 Lemma.

Let B = (A*,)") € BVAFRRI(R) and B' = (u*,u”) € BVAFLRI(R). Then

BUB' € BVAFhel (R).

3.4.5 Lemma.

If B = (A*,A”) € BVAFhqI (R) then B = (A", A7) € BVAFhbI (R).

Proof. Let B = (3*,A7) € BVAFhgI (R). It is sufficient to prove M (zyz) <
max{A* (z), A (2)}, A™ (zy2) 2 min{A™ (z),A™ (2)} and A* (z3) < max{A* (2), A" ()},
A (wy) > min{A™ (z), A (y)} ¥z, 3, 2 € R. Now, we have

A (zyz) < (A @a CF) U (CF @ A1) (222)

= max{(A* ®» Cg) (zyz}, (Ch @y MY (zyz)}
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A {Fon v o @]

W:+_§a.bi+z=i &d;4n
= max < =1 =1
" A u {(i\-fl(/\-i-) (b.‘))v ('YI(XF) (d_;))}
aye+ 3 apbite= }:lc,-d,+n = i=
im] i=

< max{max{X* (0}, 3* ()}, max{A* (0),A* ()}

= max{A* (2},AT (z}}.
Similarly, we have
A {eyz) 2 (0 @ CR) N {(Cr @ A7) (zyz)

= min{(A~ SD;, Cr) (wyz), (Cr @ A7) (zyz)}

.V, {(‘.»_"\‘I(r)(a,-nA(.f_f\l(r)(c,-n},
Iyz+ Eaab;-i-m Y cidita . J
= min { =t = ,
. v EeensGeen)
J-‘II'Z‘l"'g:l .y +t=j§l cjdj+a1 B 7= )

> min{min{A~ (0}, A~ ()}, min{A~ (0), 4~ ()}
= min{A" (z), A~ ()}.
Hence A* (zyz) < max{A* (z), A" (2)}, A~ (eyz) 2 min{A~(z), A" (2)}. Simi-
larly, we can prove A* (ay) < max{A* (a), A* ()}, A™ (2g) = min{A (2), A ()}
Therefore B € BVAFhql (R). w

Converse of Lemma 3.4.5, is not true.

3.5 Characterization of hemirings by their bipolar-

valued anti fuzzy h-ideals

In this section, we provide the concept of A-hemiregular and A-semisimple hemirings

and provides their characterizations in term of BVAF h-ideals.
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3.5.1 Theorem.

Let B, = (A*,A7), Bo = (u*, 17) be two BVF subsets of R. Then we say By «~ B
if and only if A*[elu™, u~ [€] A and p*[€]AT, AT [€] w7

The relation " « " is called equivalance relation on BVFE subsets of R.

3.5.2 Theorem.

if B, = (\*,\") € BVAFRRI(R) and B, = (u*,4”) € BVAFLAI(R), then
Meppt~dtvat, AT @~ ApTiff Ris h-hemiregular.

Proof. Let R be a h-hemiregular. Let By € BVAFRAI (R) and B; € BVAFLhI (R).
By Lemma 3.34, ( A* @xp*) 2 (AT vpt), (A @ap) € (AT Ap")and so by Theorem
2.4.4, (A*Vt) [€] (AT @nrat), (A" @np7) [€] (A7 ApT). Now, since R is h-hemiregular,
soVs € R, 3 p, g, z € Rsuch that 5 + sps + z = s¢s + 2. Thus (A* @ u7) (s} =

.9+E{‘=1P;q.+lz\=$}’;lrjtj+z (4:1A+ (ph v (igru Ha))v (El,\* )V J.-.—Ir.“{ﬂ+ (1))
< max{X* (sp), A" (sg) ., " (5}
< max{X*(s), u* (s)}
= (X" v ur) (s)
(@ pt) () S (T VT (s)
and
(A~ @n ™) (8) =
ot e | BT BV A (Ao~ (@) AR () A Rum (8)

at+En J=1
> min{ A~ (sp), A” (sq), 17 (5]}

=]

> min{A~(s), 4" ()}
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= (AT ApTHs)

G @np)(e) 2 (A vp)(s).

Hence ( A* @, p*) ~ (A* v ¥}, (A" @ap7) ~ (A7 ApT).

Conversely, let L be a right and M be a left h-ideal of R. Then e = (Ct.CL) €
BVAFRhI (R) and Cppe = (Cfye,Cipe) € BVAFRAI(R). Then by Theorem 3.3.2,
Ctoe = Cf. @ Cyc and Crppe = Ct. @4 Cize ~ O V Cfye and from 332, i =
Ct. @) Chy ~ CLV Cie = Clopye = I = FUM® = LM = (LN M)
—» LM = (L N M) so R is h-hemiregular.

This complete the proof. ®

3.5.3 Theorem.

If B e BVAFRLI(R), then (A" @4 Ch @ A*) £ A7, (A7 @ Cp. @ ATy z AT R
is h-hemiregular.

Proof. Straightforward. =

3.5.4 Theorem.

If By=(A%,A7), By =(p",07) € BVAFIRIs(R), then (3" @p p*) ~ (3 v pt),
(V@ u)~ (AT ApT)f RIS h-semisimple.

Proof. Let B, = (\* , X7}, Bo = (u* ,p7) € BVAFIhIs(R). By Lemma
334, Ao pt) = (AT vut), (M @pT) £ (A~ A 7). And by Theorem 2.4.4,
(AT v ) €] (AT @ uT), (A7 B p)[€] (A A p7). Now since R is h-hemisimple,

soVr € R, 3 e, di, &, fi ¢, d; e, f; € R such that = + L2 grdiesfi + 2 =

tRERE
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czdjelxf; + z. Thus

L2
(A @ pt) () =
AT a bt e Tt 4 (T x* @)V (Tt @ v (I @) G )
< max{)T (qzds), A" (djad)) , u* (e fi) w7 (1)}
< (X vpt)(a)
and
(A~ @ p7) (2} =

THED 0,014 7=, 05012 ¢ /-\ AT@) A A W (6) A (551/\- (&0 A EE\]P- (&)
> min{A~ (cizds), A~ (cjad;) , u* (esz fi) u* (€zf)}
2 (A" Ap7) (=)
Hence (A* @ u) ~ (AT V i), (A7 @ 27} ~ (A7 AT)
Convesely, let M be a h-ideal of R. Then from Theorem 3.1.12 & 3.1.13, Cppe =
(Ciy-,Ciye) € BVAFIRI(R). Then, we have Cjlye = C.VCiy. and from (it) Cie =
Cly. ®nCly. ~ C eV Ciy. and from Theorem 3.3.2, C = Ch NV Gl ~ Cly @1 C

=CL.= M= = M¥ — M = MZ. Hence R is h-hemisimple. =

3.6 Cheracterization of bipolar-valued anti fuzzy
h-ideals in term of positive anti f-cuts and neg-

ative anti a-cuts

In this section, characterizations of BVAF h-ideals are investigated by means of pos-

itive anti-cut and negative anti-cut.
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3.6.1 Definition.

Let B = (u*, u~) be BVF subset of a hemiring R and (e, 8) € [-1,0] x [0,1], then
(1) The set E; ={z € §: pt (z) € B} is called positive anti S-cut of B.
(2) The set By = {z € S: p~ (z) > &} is called negative anti a-cut of B.
(3)The set E(a,g; ={z€S:p (z) > aand g* (x) < B} is called anti (e, B)-cut
of B.

For every v € (0,1} and §.‘:' N §:.f is called anti 4-cut of B.

3.6.2 Theorem.

A BVF subset B = (u*, u~) € BVAFRI (R) iff the followings hold:
(i) B3 is non-empty this implies B is an h-ideal of R, V8 € (0,1].
(i¢) B is non-empty this implies 5; is an h-ideal of R, Vo € [-1,0].
Proof. Let B = (u*,p~) € BVAFRI(R). Forr,y € R and z, y € §; SO
p* (z) < B, wt (y) < B where § € {0,1). Now as p* (z +y) < max{u” (z)., " (¥)}
< max{#, 5}
= 8.
Sothat s +y € B;‘
Also for,r ¢ R,z € ﬁg, we have
pt (rz) < pt(2)
<8
So that rz ¢ By, similarly, rz € §;

Now, let y, 2 € Rand 81, 5 € B withy+s+2 = s2+2 = p¥(y) £
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max{g* (1), 4% (s2)} < B, this means that y € ﬁg. Hence §; is an h-ideal of R.
Likewise, we can prove (i) .

Conversely, suppose (i) and (i) are hold. Suppose for any = € R, if ut{z) =2,
g (z) = o x € §; N §;. Thus 53' # @ and B: 5 0. Suppose on contrary
B = (u*,u”)EBVAFhRI(R), for y, 7, 51, 52 € R, such that y + 81 + 2 = s2 + 2,
ut () > B > max{pt (51}, ut (s2)} and p () < @ < min{u~ (51}, p~ (s2)}. This
implies, 81, 83 € 53', but y ¢ §;’ and s, 87 € é;, but y ¢ §;. Which is a
contradation. Hence B = (u*,u~) € BVAFhI(R). B

As critical importance of Theorem 3.6.2, we have to show more results regarding

positive anti-cut and negative anti-cut. Which are discussed as follow:

3.6.3 Corollary.

If B = (u*,u~) € BVAFhI (R) then, Y7 € [0, 1] the anti y-cut of B is an h-ideal of
R.

Proof. Suppose B = (ut, p~) € BVAFhI(R). Then we have to prove that the
set

é(,,_.,, ={s;eR:p (s1) = —vand p*(s)) £ ~} is h-ideal of R. Let s, 51 € R
and 81, 52 € Bry—yy- AS p¥ (81 + 82) < max{p? (1), 1% (s2)} < max{y, 7} =,

and p~ (51 + 83) = min{p=(s1) 4~ (s2)} 2 min{—y, —y} = —. Therefore s; +
82 € By—y-

Now, let s, € 5’(.,,_.,), r € 8 so that u*(rs)) € pt{s)) € v and p~ {rs;) =

pm(s) = =7 pt (&) £ pt(s)) <vand g~ (817} 2 4~ {s51) > -7



66

Now, let z, t € R and s1, 52 € §(T._.,; , T+ 8 + 2 = 83 + z this implies pt(z) <
max{u* (51}, 6% (s2)} <7

and p~ {2) > min{p" (81), g~ ($2)} 2 —. Therefore z € By, Hence By i
a h-ideal of R.

Conversely, suppose B(y,—y) is an h-ideal of R. Assume that B = {(ut,u")EBVAFAI(R),
fory, z, 8,52 € R sothat y+ sy +z=s+2,5"(y) >71> ut(s1) V p* (s2) and
u (y) < =y < g~ (51)Ap~ (s2) . This implies s, 52 € g{.,,_.,], but y ¢ §(.,,_.,). Which

is a contradation. Hence B = (u*,u~) € BVAFhI(R). =

3.6.4 Corollary.

If B = (u*,u~) € BVAFhI(R), then B(ap) is an h-ideal of £V (a,f) € (—1,0] x
[0,1].

Proof. Straightforward by using Corollary 3.6.3. =

3.6.5 Theorem.

If B = (u*, ") € BVAFAI(R) and p* (2) + p~ (z) < 0 Vz € R, then BrubBz,is
an A-ideal of R, ¥ v € [0,1].

Proof. Suppose B = (u*, =) € BVAFRI (R} and pt (z) + 47 (2) S 6. Assume
éj,' and B, are non-empty ¥y € [0,1] and from Theorem 3.6.2, both are A-ideal
of R. Let 51, 52 € J‘B';ué:., and y, z € R with z + s, +y = sz + y. Here we have
following cases to prove the theorem:

() s, € By, s;€ B, (i) € B, s € B-,, (i) s € Bf, ;€ BY, (i)
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s €B, seB,
Case {1) 8y € ﬁ.:,‘, 3y € E:.,, ie, p*(5)) < v and y~ (s2) = —7. Since ut(sa) +
4~ (52) < 0, 5 (52) € —p~ (s2) € 1,50 that wehave ut (51 + 52) < max{u* (1), 4% (s2)} £
max{p* (1), -4~ (82} € p* (zsy) < pt(s1) < v (resp., ¥ (512) £ ¥ (a1} £ 7)
and p* (2) < max{u* (1), u* (s2)} € max{pu* {81), —p~ (s2)} < . Therefore s1+59,
551, 812, 2 € E’.‘:‘ c §:,* U E‘:_f this prove the ().
Similarly, we can prove (%) .
Now, we can prove (iii) s, € B_j‘, $9 € g.j’ ,ie, wr(s)) <vand pg¥ (s9) S . As
B = (u*,u) € BVAFRI(R), u* (51 + s2) < max{u™ (1), 4% ()} S m o* (zs1} <
Ut (s1) < y (resp., pt (12) < ¥ (81) < ) and p* (2) < max{p* (1), 47 (s2)} S 7
Therefore s; + 83, 281, 512, Z € 5;' C gﬁ; U 5:., this prove the {i7i) . Similarly we can

prove (iv). Therefore é;" U E:., is an h-idealof K. =

3.7 The anti image and anti pre-images of bipolar-

valued anti fuzzy h-ideals

In this section, we introduce the notion of anti image and anti pre-image of BVAF

h-ideal, and discuss its properties.

3.7.1 Definition,

Let 9 : By — Ry be a maping of hemirings. If B = (ut,u~Yand V = (uF,v7) are

BVF subset of R, and A, respectively. Then the anti image of B under ¢ is a BVF
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subset Y, (B) = ($,(p*), $alu™)) of Ry, given by for each = € Ry

if 7 (z) #0

A +
e (v)

1 Otherwise

voout(y) if 97 (2) #9

vey (=)

~1 Otherwise

for all z € Ro, ¥~ (z) = {2 € R1 19 (z) = 2}. Also the anti pre-image P~ (V) of

V under ¢ is a BVF subset of Ry defined by for y € Ry, %7 ((v1)(y)) = v (¥(¥),

Hum (@) = v (¥(y))-

3.7.2 Theorem.

Let ¢ : Ry — R; be a homomorphism of hemirings. If B = (u¥,px")and V = (vt,v™)

are BVF subset of R; and Ry respectively, then

@ [ V=97 (V)
(i} [ (BY° = ¥ (B°).

3.7.3 Theorem.

Let 1 be a homomorphism from a hemiring R, into a hemiring Rz, and V = (v*,v7) €

BV AFhI (R;) , then the anti pre-image > (V) = (¥~' (v*), %~ (v7)} € BVAFM (Ri).

Proof. Suppose that V = (v*,v~) € BVAFAI(Rz). Then ¥p, ¢ € Ry, we have

v e+ =vt{P{p+ )=

= vt (¥ (p) +¥(q)
< max{vty (p)), v* (¥ (9))}
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= max{y™ (v*} (), ¥ (V1) (@)}
P () (p + ¢) S max{y (W) (p), ¥ (VD) (@)
and
P e+ o) =vT (o +9)
=v” (¥ (p) +¥(9)
> min{v™ (% (P} v~ (¥ (9))}
=min{y~" (v7) (®), ¥ (v7) (9)}
v (v7) (p+¢) = min{y ™ (vT) (p), ¥ (07N}
Now, let 81, 52, ¥, z € Ry with y+ 81 +2 = s2+2, therefore ¥ (y) +9 (1) +¥ (2) =
h{s2) + ¥ (2) and
7 () () = v (@ (V)
< max{v*y (51)), v (¥ (32))}
= max{gp™! (v7) (81}, ¥ (v*) (s2)}
B (v} () < max{y™ (w*) (1) ¥ (vF) (2},
and similarly, ¥~ (v7) (v} > min{p ™' (V™) (1), 7" (v7) (s2)}-

Moreover, for y, s € Ry, ¥~ (") (sy) = v*(¥(sy)) = v (B (N @) <
V() = ¥ (*) (), and ¥ (v*) (ys) <97 (v?) (). Similarly, ¥ (v7) (sy) =
v (B () = v (W () (W) 2 v @) = ¥ (vT){y), and T HvT) (ys) 2
(v ().

Hence the anti pre-image %~ (V) = (™' (v*) 4™ (v7)) € BVAFRI(R,). =
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3.7.4 Theorem.

Let 4 be an anti homomorphism from a hemiring Ry into a hemiring Rz. If V' =
(v*,v~) € BY AFRhI (R;) then the anti pre-image pH (V) = (7 (o), ¢ (V7)) €
BVAFLhI (Ry).
Proof. Let V = (vt,v™) € BVAFRAI (R;). Then Vp, g € R, we have
p (W) (p+g)=vt (H(p+4)
= vt (¥ (g) + ¢ (p))
< max{v*¢ (p)), v+ (¥ (a))}
= max{y™! (v) (1), %7 (%) ()}
p () (p+ @) < max{y™ (¥ (), 97 (vF) ()}
and
p W) o+ =v W (p+q)
=v" (¥ (q) + ¥ (p)
> min{v™9 (p)), v~ (¥ (9))}
= min{y~" (v7) (1), ¥ () (@)
»H ) (p+q) 2 min{y™ (v7) (@), ¥ (v7) ()
Now, let sy, 83, £, ¥ € Ry withz+s1+y = 52+, therefore ¥ (z) +4 (1) +¥(¥) =

P (s2) + ¢ (y) and

< max{v*{P (s1)), vt (¥ (s2))}
= max{~" (v*) (s1), 97" (v1) (2]}
P (vF) (2) < max{y~T (vF) (51}, %7 (vF) (s2)}
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and similarly, $~* (u7) (z) 2 max{y ™" () (1) , 97" (v7) (8a)}-
Moreover, let for z, r € B and
P~ v*) (rz) = v* (¥ (rz))
= v+ ({4 (2)) (@ ()
< vt (p (=)
=9~ (v¥) (a).
Similarly ™! (v7) (rz) = v~ (¢ (rz))
= v {(y (z)) (¥ (7))
2 v (¥ (x))
=9~ (v7) (=),

Hence the anti pre-image ¥~ (V) = (¥7' (V) W (V) € BVAFLRI(Ry). ®

3.7.5 Remark.

From Theorem 3.7.4, if V = (v+,u™) € BVAFLRI(R,) then the anti pre-image

e (V) = (@t (), 97 (7)) € BVAFRAI (Ry).

3.7.6 Theorem.

Let ¢ be an anti epimorphism from a hemiring R; to a hemiring Ry, A= (pt,pu7) €
BV AFhI (R;), then the anti image of A, %, (4) = (¥, (u*), 1, (1)) € BVAFhI{Rs).
Proof. Let 1 be an anti epimorphism from a hemiring R, to a hemiring Rz,
= (p*,p”) € BVAFAI(R)) . Leta € [~1,0] and 8 € (0,1]. Let B # 1pa(gf,'), 0 #

$.(AZ) C By Let 71, 72 € $,(A}) 50 P, (p* (21)) = min{u* (¥) 1y € P Hm)} <8
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and P, (u* (22)) = min{p* (y) : v € ¥~ (@)} < B. Therefore, y1 € ¥ (z1) and
yo € ¥~ (xg). Then

(it (21 +22)) = min{ut () 1y € 7' (21 + 72)}

Lu* (1 + 1)
< max{p* (), 4" (1)} < 5.

This implies 2, + 22 € ,(A}). Now let %o € $a(AY), then ¥,(u* (20)) =
min{u*{y) : ¥y € ¥~ (z0}} < B, which implies there exists yo € »~ (o) such
that u*(yo) < B. As A = (u*,u™) € BVAFRI(R)). For all z € Ry, since ¥
be an anti epimorphism from a hemiring Ry to a hemiring Ry, then 3 y € By
such that ¥, (y) = = Let p* (yge) < wt(ve) and p¥ (30y) < #* (10)). Therefore
W(u* (z20)) = min{iet (y) : y € ¥ (woz)} < p* (yy0) < u* (vo) < B. Therefore,
TTg € 1&(5}') (resp., mz € w(gs]). Now let any z, z € R, and 2, 25 € w(ﬁ;), then
2+, + 2 = ¥ + 2. This implies, (4" (&) = min{y* () : y € ¥~ (w1)} < f and
Dot (2)) = min{u* (y) s y € 7 (53)} < B. Let 97 e + 2} +2) = 97 =y + 2),
i, v7Ha) + 97N + ¥N(z) = ¥ Hah) + 97N (2). So g € ¥ (2) € YT (),
v € ¥Hzy), ys € P1(2), such that yo + 11 + y3 = v+ ysand 4¥ (1) < B,
ut{v) < 6.

Therefore,

Yalu* (2)) = min{p* () :y €Y7 (2)}

< B (1o)

< max{{u*) (y1), ("} (¥2)} < 5.

Thus y € t{!a(g;). Therefore, d:n(,;f;) is an h-ideal of R,. Similarly, we can show

that 4,( A7) is an h-ideal of R,. Hence from Theorem 3.6.2, ¥, (A) = (, (¥}, (w7)) €
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BVAFhI(R)).

3.7.7 Theorem.

Let % be an anti epimorphism from a hemiring B) to a hemiring Rz, 4 = (u*,47) €
BV AFRI(R1). Then anti image of A%, [, (A)]° € BVAFhI(R;).

Proof. Let 4 be an anti epimorphism from a hemiring 7, to a hemiring Rs. Let
A = (ut,p”) € BVAFhI(R,). Then by Proposition 3.2.2, A° € BVAFRI{R)).
Now by Theorem 3.7.6, w, (A%) = (%0, ({s)*},#a{(15)7)) € BVAFAI(Rp). Hence
by Theorem 3.7.2,

[, (A))E € BVAFRI(Ry). =

3.8 Equivalence relations on bipolar-valued anti

fuzzy h-ideals.

In this section, we defined some realation on BVAF h-ideals by using positive anti-cut

and negative anti-cut.

3.8.1 Definition.

For any (o,8) € [0,1] x [~1,0]. Define two binary relations P? and N® on BVAF
h-ideals of R as follows:
(A, B)e PP & A4 = B} end (A, B)e N®« A, =B v A=(*2") and B =

(p*,p”) € BVAFRI(R). It is easy to check PP and N* are equivelance relations on
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BVAF h-ideals of R. We have [A]p» express the class of modular P# and [A] . express
the class of modular N¢ denoted by BVAFAI (R) /P? and BVAFhI{R) /N®. Let

I{R) be the family of all h-ideals of R. Define maps
g3 : BVAFRI(R) — I(RyU{0}, A — Aj
hy : BVAFRI(R) — I(R)U {0}, A — A

YA = (A*.A") € BVAFhI (R). Then gs and h, are well-defined:

3.8.2 Theorem.

The maps gz and h, are surjective for any (5} € [0, 1] x [-1,0].

Proof. Let O = (C, C;.) be a BVF set in R, for P # #in (R}

[ g if xrechP
Oy = ¢
{ 1 if otherwise
'3
0if zelP
Cr =
—1 otherwise

“

from Theorem 3.1.12, Cpe = (Cf:, C:) € BVAFhI(R). We have

0 (Cr) =(Crls = {z € PICh(z) < f) = {z € P| C} (2) =0} = P and

he (C) = Oy, = {2 € P|Ca(a) 2 a} ={z € P| Cplz) =0} = P,

Now, as 1 = (1+,17) € BVAFAI(R), where 1¥ (z) = 1 and 1~ (z) = —1. Then
g2 (1) = (D = {v€ R|1%(2) < B} =0, and ha (1} = (), = {z € R| 1" (z) 2 0} =

0. Therefore, gz and b, are surjective. =
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3.8.3 Theorem.

The sets BVAFAI (R) /P? and BVAFRI(R) /N® are equipotent to I (R) U {8} for
all (a,3) € [0,1] x [-1,0}.

Proof. For all (o,8) € [0,1] x [~1,0] and let A = (u¥, 2~} € BVAFhI(R}. Let
us suppose gh : BVAFARI(R) /PP — I(R)U {8}, [A]ps — 92(4),

K. : BVAFRI (B) /N® — T(R)U{0},[Alpa — halA).

respectively. For every A = (pt,p"},and B = (A*,17} € BVAFhI(R), if u* =
A% and g~ = A~, then (4, B)e P? and (A, B)e P*. Therefore, [A]ps = [B]pn and
[Alpe = [Blpe , 50 g and h, is injective, By Theorem 3.8.2, g and h;, are surjective.

This completes the proof. m

3.8.4 Theorem:.

Let 0 <« < 1, then the map g, : BVAFAI(R) — I (R)U{@}, define by g¢,{4) —
A,, is surjective,

Proof. Let 0 < 7 < 1, we have g, (1) = 15 N1; = 0. Let Cpe = (Can Co)
be a BVF set in R, for P # @ in I{R). By Theorem 3.1.12, Cpe = (C5,Cie) €
BVAFRI(R). We have

e gt
9y (Cpe) = (Cpe), N(Cyr)_,

={z€ PICF @) <v}n{ze P|Cr(a) 2 -1}

= P. Therefore, g, is surjective. This completes the proof. w
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3.8.5 Theorem.

Let 0 < o < 1, then the quotion set BV AFhI(R) /R is equipotent to [ (R} U {@}.

Proof. Let 0 < v < 1,and ¢, : BVAFhI(R) /R" — I (R)U{8} is a map defined
by ¢, ({Am]) = gy(A) for all [Ap] € BVAFAI(R)/R". Let ¢ ([Ar]) = ${[Br)
for every |Aps|, [Brs) € BVAFRI(R) /R, then g,(A) = ¢,(B), ie, A, = B,.
Therefore, (A, B)e B Hence [Arr] = [B] 50 ¢, is injective.

Now, we have ¢ ([1]z) = g, (1) = I} N1 = 0. Now, suppose for any non-empty
Pin I(R), consider a BVF set Cpe = (Cgt, Cz). By Teorem 3.1.12, Cye = (G, Gr) €

BVAFRI (R). We have

P

9, (Colr) = 9 (Ce) = (C), N (Crr)_,
={zeP|CL(x)<1}n{zeP|Cr(z)2 -}

= P. Therefore, g, is surjective. This completes the proof. m

3.9 Normal bipolar anti fuzzy h-ideal

In this section, we introduced and characterized normal BVAF h-ideals in £. By
Definition 3.1.1, we have Cye = (C},c, Cyyc) 16 2 normal BVAF h-ideals of A giving
that Ci.c (z) = land C} s = —~1forallz ¢ M. However, asa general rule, Cic (x) =

1 and Cfjc = ~1 may not always true. Therefore it is necessary for us to define

following definition.
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3.9.1 Definition.

Let B € BVAFhI(R). Then B is called normal if 3 an element x € R such that

B(z)=(1,-1).

Set of all normal BVAF h-ideals in R is denoted by NBVAFhI (R).

3.9.2 Proposition.

Let B € BVAFRI(R). Then B is called normal iff B(0) = (1,-1). i.e, pt(0) =1

and g~ (0) = —1.

3.9.3 Theorem. \

Let B = (u*,u~) € BVAFhI(R). Let B = (2*,07) be a BVF set in R defined by
@) =pt@)+1-pr (0 and G @) =p (@) - 1-p (0 VT € R. Then B =
(8*,i") € NBV AFhI (R) which contains B.
Proof. Let B = (u*,u~) € BVAFRI(R). For 0, z, y € R, we have nr(0) =
(0 +1-pt(0)=tand Z(0) = p~ (0) -1 -4~ (0) = -1
Now, g% (z+y) =p* (z+y) +1-p7(0)
< max{p* (z),p* (1)} +1 -1+ (0)
= max{p* (z) + 1 — g+ {(0), p* (y) + 1 — p¥ (0}}
= max{#" (z),5" (¥)},
and B (z+y)=p (z4y)-1-p"(0)
> min{u~ (z), 4 (y)} —1- 4 (0)

= min{p~ (z) —1—p (0), 2~ () —1— 4 (0)}
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= min{a" (=), 7 ()}.

Now, let r, 2 € R,
ot (rz) = pt (rz) + 1 — ¥ (0)

<yt (z)+1 -7 (0)

=i (=).
Similarly, ii* (zr) < 77 ().
And i~ (rz) = p~ (ra) - 1 — = (0)

Su(z)~1—p(0)

Similarly, £~ (z7) < 5 (x).
Now, let 3, z, 81, s2 € R such that y + si + 2 = 52 + z. Then ity =ut(y)+
1—pu*(0)
< max{pt (81), 4% (s2)} + 1 — 1+ (0)
= max{p* (s1) + 1 — u* (0),p+ (s2) + 1= " (0)}
= max{@* (s1), B {s2)}
and 2 (y) =p~ (¥} —1-2 (0)
> min{u~ (81}, 47 (s2)} ~1— 4 (0}
= min{p~ (s1) = 1— p~(0), 4~ (s2) =1 — p7 (0)}
= min{fi~ (s1}, i (s2)}-

Hence B = (@*,7") € NBVAFhI (R) which contains B. m
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3.9.4 Corollary.

From the Theorem 3.9.3, if B € NBV AFhI (R), then B = B. Note that NBVAFRI (R)

is a poset under the set inclusion.

3.9.5 Definition.

A BVF set B in R is called a maximal BVAF h-ideal of R if it is non-constant and

B is a maximal element in (NBVAFRI(R),C).

3.9.6 Theorem.

let B € NBVAFhI(R) be non-constant such that it is a maximal element of
(NBVAFAI(R),C). Then it takes only values among (0,0}, (0,-1), (1,-1).

Proof. Suppose B = (u*,u~) € NBVAFhI(R) be non-constant and it is a
maximal element of (NBV AFAI (R),C). This implies B € NBVAFRI(R). Then
u*(0) =1 and g~ (0} = —1. We claim that for z € R, pt{z)#1and g (2} # -1
Then u*(z) = 0 and p~ (z) = 0. Contrarily, there exist z € R such that 0 <
pt(z) < 1and 0 > p~(2) > —1 . Now, we define BVF set V = (v*,v™) of R as
vt () = 3 (p* (2) + ¥ (2), V7 (z) = i~ (m)+u~(2)} for allz € R. Then, we have
surely V is well-defined. Therefore, for z, ¥ € R, have

u* (o + ) = bt (24 y) + 7 (2))

< Y{max{(p* (z), 6™ (Y} + 47 ()}

L=

= max{3((g* (2} + #+(2)), 3 (" W) + 47 (2D}

= max{v* (z),v" (1)}
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and v (z+y)=3 (z+y)+p(2))

> Y{min{(u~ (2), 4~ )} + 1 ()

min{3((s~ (2} + &~ (2)), 5 (0™ @) + 47 (2))}
= min{v™ (z},v” {y)}-
Now, v* (zy) = § (u* (23) + p* (2))
< Mot () + it (2)) = v* () (resp., v (ay) S v* (=)
and similarly, v~ (sy) > v~ (@) (resp., v™ (zy) 2 v~ (2))-
Futhermore, let , z, a, b € R such that z + a+ z = b+ 2, then
vt () = } (u* (2) + ¥ (2)

< J({maxf(p* (a), u* (B)} + 17 (2))

= max{3((u* (@) + u* (2)), § (¥ (0) + w* (1)}

= max{v* (o), v (b)}
and v- (z) 2 min{v~ (@), v~ (B)}-

Now, v* (0) = & (u* (0) + p* (2))

<3 (@) +pm(3) =v (%)

Hence this shows V = (v*,v") € NBVAFAI (R). By the Theorem 3.9.3, V=
(5%,97) is a maximal. Therefore Pt (@) = vt (@) + 1t (0) = (1 +u* {(z)) and

o (@) = v~ (@) = 1 —v (0) = § (=1 +p (2}}-
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Since % (z) = vt (@) +1-vt (0) = 2 (1 + 47 (z)) > p* (z) and U™ (z) = v~ (z)—
L= (@) = (=144~ (&) <4~ (3).

Hence B = (u*,u~) is proper subset of V=(0@"9"). Thus " (2) =v*(2) +
1—v+t(0) = 3(+p*(2)) < 1 =0%(0) and 97 (2) = v (z) =1 —v"(0) =
(=147 (2)) > =1 = 97 (0). Therefore V = (9,07} is non-constant and B =
(*, #~) is not a maximal element of (NBVAFQI (R),C) . Which is a contradiction.
Thus p* takes only two positive values, 0 and 1, also u~ takes only two positive val-
ues, 0 and —1, This implies B has four possible values, i.e., (0,0}, (0,-1), (1,~1},
{1,0} then

Bog={zcR:p*(z) <0}n{z€R:p (z) 20}

={zeR:p*(2) =0, p~(z} =0}

Boy={zeR:p (@ <0}n{zeR:p (z) 21}

={zeR:p"(z) =0}

Bu-y={z€R:pr (@) <}n{zeR:p" (@) 2 -1} =R

Buy={zcR:ut@<n{zeR:p (z) 20}

={reR: p (z)=0}

By Corollary 3.6.4, we have two cases:

(3) Boo S Bo-n € Ba-v (#) Bow € Buo € Bamy

From (%) according to the Proposition 3.1.5, a bipolar subset B’ = (v*,v7)}

0 if € B 0,-1 0 if z€ g{o_,n
vt(z) = Ol - (z) =
1 if = ¢ B(O,—-l) -1 if =z ¢ B(O‘—l)

Suppose T € B,-1y so vt (z) =0, v (z) =0 and p*{z} = 0, p~ (2} £ 0,

therefore B’ C B. Now, for all z & E(l,_” - §{o__1) sovt(z)=1 v (z)=-1 and
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pt(x) =1, = (z) 2 —1, therefore B C B'. If B take the value (1, -1} s.e, u* () = 1,
p~(z) = =1, then B = B’, and on the other hand gt (z) = 1, p~ (x) = 0, then
B c B’ which contradicts the fact that B is maximal element of (NBV AFhI (R),C).
Therefore B # (1,0). In addition let = € §(n,_1) - 5(0_0; sort(z)=0,v(z) =0
and pt (z) = 0, &~ (z) = -1, therefore B’ C B. Similarly, we have B # (1,0) from

(#4). Hence B takes the values (0,0}, {0, —1)and (1,-1). =

3.9.7 Remark.

A non-constant B € BV AFhI (R) is called a maximal element of £ when B defined

in Theorem 3.9.3, is & maximal element of (NBVAFhRI(R},C).

3.9.8 Proposition.

A maximal B € BV AFAI(R) is normal and takes a value amoung (0,00, (1,-1),
and (0, -1).

Proof. Suppose B = (u*,u~) € BVAFhI(R)isa maximal. Then B is a maximal
element of (NBVAFhI(R),C). By Theorem 3.9.6, B takes three possible values
{0,0), (1,~-1}, and (0,—1). Since B € B so B also takes a value amoung (0,0},
(1,-1), and (0,—1}. Now, we have to chow that B is normal. By Theorem 3.9.6,
i+ takes only two positive values, 0 and 1, also 5~ takes only two positive values,
0 and —1. Since B* (z) = p*(z) + 1 — p* (0) and ™ (z) = p~ (2} =1 — &7 (0},
therefore B (z) = 1 if and only if ¥ (z) = u*(0) and i* (z) = 0 if and only if

pt () = p*{0) — 1. Now, since B € B we have u* (z) < B (z) for x € R. Thus,
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it (z) = 0 implies g% (z) = 0. Consequently, g+ (0) = 1. Similarly, we can prove

4~ (0) = —1. Hence by Proposition 3.9.2, B is normal. ®

3.9.9 Proposition.

Let B € BV AFhI(R) be a maximal, then By -1) is & maximal h-ideal of R.

3.9.10 Corollary.

Let ¢ be an anti epimorphism from a hemiring R, to a hemiring R, A= (u*,p7) €
BV AFAI (Ry). Then anti image of A, ¢, (A) = (b, (1), %, (#7)) € BVAFhI (Ry)

if and only if 9~ (0) = 0.
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Chapter 4

Decision making by using
bipolar-valued fuzzy soft h-ideals of

hemirings

Decision making is observed as a psychological method emerging in the choice of &
conviction or a way of deal among various alternative prospects. A concluding choice
can be yeild in each decision making process, it may or may not an efficient deal.
Classification of alternatives in terms of principles and decision maker’s desires is
titled as decision making. Decision making has been applied in severval problems of
management, econornics, engineering and environment etc. Decision making problems
on various criteria are called Multi-Criteria Decision Analysis (MCDA) problems.
In conventional decision of our daily lives, we my be convenient with the results

of specific accords of perception and contemplate multiple criteria unquestioningly.

83
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However in case of high wagers, it is essential to make appropriate form of problem and
estimate multiple criteria explicitly. For example decision of make sure to construct
a nuclear power plant, and where to constract it, there are not only very complicated
concerns about multiple criteria, but there are also many parties who are seriously
stirred from the outgrowths. To gain preferable and knowledgeable decisions, it is
important that we consider multiple criteria precisely and organize compound problem
completely. In 1981 a multi-criteria decision analysis method known as "technique for
order preference by similarity to ideal solution {TOPSIS)" was established by Hwang
and Yoon.

In this chapter, we define TOPSIS method on BVF soft sets. Further, we apply
TOPSIS method on normal BVF and normal BVAF soft A-ideals to calculate maximal
BVF and BVAF soft A-ideals in R. Moreover, we denote set of BVF soft h-ideals

and set of all set of BVAF soft h-ideals by BVFSfhis(R) and BVAFSfhls(R)

respectively.

4.1 Bipolar-valued fuzzy soft h-ideals

In this section, we review BVF soft h-ideals of R which are defined in [30, 37].

4.1.1 Definition[30]

A BVFS set L (uf,u;) € BVFSfLAI(R) (resp. BVFSfRARI(R)) if it satisafied
for ry, ro, 5, t €

(1) st (11 + 7o) 2 min {f (n), 1} (ra)} s wg (n + ) € max {p (), 67 (r2)}
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(2) ritstry =ty = g} (r1) 2 min {uf (), 6f (O}, w7 () S max{pg (), 4y ()}
(3) uf (rire) 2 pif (r2), pp (mira) < p (r2) (vesp., ph(ryire) 2 g} (1), pg (mra) <

pr (1))

4.1.2 Example

Consider R = {0,1,p,p"} which is described in example 2.1.3. Let L is a BVF set

defined by

"

0 1 P P

uf 072 |02 |072 (022 |

7 | -0.82 | -0.82 | -0.82 [ -0.12
Clearly, I € BVFSfhI(R).

4.2 Bipolar-valued anti fuzzy soft h-ideals

In this section, we specify normal BVF soft h-ideals in R.

4.2.1 Definition

A BVFSset L (uf, ug) € BVAFSfLAI(R) (resp. BVAFSfRAI (R}) if it satisafied
for ry,73,8,t, 7€ R
(1) gf (1 + m2) < max {pf (), 6f (ra)}, pg (n+72) 2 min {pg (m),ng (r2)}
(2) ridstr = thr = pf (m) < max {uf (), s} (O}, g (r1) = min{uf (s}, 4 (0}

(3) 1 (ryra) < pf (ra), g (rira) 2 g (ra) (vesp., f (rir2) < p7 (1), g (1i7e) 2



#g (ri))-

4.2.2 Example

Consider & = {0,1,py, p2, ps} which is described in example 3.1.4. Let L be a BVF

soft set defined by

0 1 4| P )

pi{021 |041 [041 041 041

p7 | —061|-0.31 031} -031] -0.31
Clearly, L € BVAFSfhI(R).

4.3 BVF and BVAF normal soft A-ideals

4.3.1 Definition[37]

A BVF soft h-ideal or BVAF soft h-ideal L of R is said to be normai if there exits an

element 2 € § such that L{z) = (1, -1}

4.3.2 Proposition.

A BVAF soft h-ideal L of a hemiring R is called normal if and only if L (0) =(1,-1).

e, A (0)=1and A7 (0) = -1.
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4.4 TOPSIS on bipolar-valued fuzzy soft sets

In (15, 16, 37, 43], TOPSIS method was introduced. The main concept of TOPSIS
technique is that the chosen alternative should have the shortest distance from the

positive ideal solution and the longest distance from the negative ideal solution

In uncertainties from our daily life problems, BVFS set has several application.

Here we discuss such an application for solving a TOPSIS method. The TOPSIS

technicue based on BVFS sets carried out following steps:

Step-1

Create a decision matrix based on BVFS set. Suppose that there exists a set of

alternatives A ={A, Ag,..., Am}. Each alternative is determined on n criteria, which

are denoted by C = {C,C, ..., Ca ).

G G ... G
Ay Ly L ... L
D=1 Ay Ly Ln .. Il

Am Lml Lm? e Lmﬂ

Where L;; are BVFS sets, which are defined by Li; = {{p, p5) + 11 € (0,1] and

p; € (1,00}

Therefore, matrix D express as,



D=1 Ay (pd un)

C Cs
Ay (phoen)  (ehosn)
(d, um)

Am (}u’;lx p'f:sl) (#:12‘ ”;2)

Chn
(83 167

(13ns t12n)

(s Hhn) |

We can write matrix D in form of two matrices D# and D,

Ay

Anm

Step-2

for i =1,2,..m and j = 1,2,..n. Matrix D~ is normalized in form of matrix N-=

= 5/ (Z H5

(t;) i where 2

Step-3

Cy Ca
(#_ﬁ) (ﬁfb)
(651) ()

(ﬂ-ﬁ:) (-\u':.ﬂ]

i=1

-

Ca
(13)

(4%)

and D~ =

(1) |

Caleulation of weighted normilized decision matrix

L+ = (IF

— 4t
mxn (wj‘ ttj n? Where

+/ZW+ sothatZw =1, and

C1 Ca

A () (ki)

Ag (»”-51) (“52)

| An (b)) (#m2)

1/2
) fori=1,2,.mand j=1,2,.n

i=1

W} is origional weight given to the indictors v}, ¥ ¢ = 1,2,.m, i=1,2.n

L“ = (Ii_j)’ﬂi:!(ﬂ

(w.? tU)mx '

where w;

=W/ /ZW" sothatZw = 1, and

i=1

i=1

Wy is origional weight given to the indictors vy, ¥Yi=12,.m,j=12 n

Step-4

In this step we obtain the positive ideal best and negative ideal worst solutions

(Hmn)

1/
Matrix D* is normalized in form of matrix N+ = (¢8) = wheretl; = nil (Z #;)
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for L+ and L. The positive ideal and negative ideal solutions can be expressed as:

For L we heve

Vit = {max{lf/i =12, m}|jeJp,min{lf/i=1,2 m}|je ]}

v

= {min{l}/i=1,2,.m}|j€Jy, max{i/i=1,2,.m} | j € J-}-

For L~ we heve

~* = {min{{j/i=1,2,.m} | j € Jy, max{l;/i=1,2,.m} | J € J-}
Vi = {max{lj/i=1,2,.m} | J € Jy, min{lj;/i =1,2,.m} | j € J-}
j € J, is associated with beneficial attributes and
j € J. is associated with non-beneficial attributes.

Step-5

The separation measures, di.* and df,”~ , of each alternative from Vi and VT,

respectively, are gain as

1/2

d?;"' - (Z(V-H- - {+ )
™ /2
di = (Z(Vﬁ- - I:j)) ‘

i=1

The separation measures, d;.7 and d;; , of each alternative from V"% and V|77,

respectively, are gain as

m 1/2
dot = (Z(vﬁ - t;,j))

i=1

m 1/2
do = (Z(V;- - I;,j)) ‘

i=1

Step-6

The relative nearness of an alternative A; with respect to the positive ideal solution

is defined as the following general formula for each 2,

sf=dt/ (dim +d5t) and 7 = df/ (dF + i)



92
Where 0 < sf <tand0< sy <landi=1,2,.m.
Step-7

Rank of alternatives according to (s, s;) for each 4 = 1,2,...m.

4.5 TOPSIS on normal BVFS and normal BVAFS

h—ideals

In this section, we introduced TOPSIS on normal BVF soft h-ideals. In [30], we

calculate maximal BVF soft h-ideals, Here we calculate maximal BVF soft h-ideals

and maximal BVAF soft. h-ideals by using TOPISIS method.

4.5.1 TOPSIS on normal BVFS h—ideals

Consider normal BVF soft A-ideals as follows. Suppose that a car dealer has a set of
cars U = {w, ug, us, Ug, us} which may be associated with £ = {21, 23, z3, 24} for j =
1,2,3,4 the parameters z; stand for in “heautiful”, “costly”, “modern technology”,
“fuel efficient”, respectively. Suppose that the pair , Mr. Y and Mrs. Y, come to the
car dealer to buy a car. If each partner has to consider their own set of parameters,
then we select a car on the basis of the sets of partners’ parameters by using BVFS
sets as follows,

Suppose that U = {u;, 13, us, %4, us} IS a universe and E = {z1, 22, 23, 24} set of
all parameters. Our plan is to find the appealing car for Mr. Y. Assume that the

hoping parameters of Mr, Y be L = {e, e, es} is subset of E.



Gley) ={(41,0,0), (A2, 1,0}, (A3,1,-1), (A4, 1, -1}

G(Bg) "_‘{[Al! 1:0): (A21 0, U): (A3! 0, "1)1 (A‘n L, U)}

G(eS) ={(Al1 11 _l)a (Ai'i 01 -1}1 (A3: 0: 0)1 (Adls- 01 _1)}
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Now, we can define TOPSIS method for Mr. Y to choose attractive car or bene-

ficial car

Step-1

We define decision matrix as follows

A
D= A,
As

Aq

0,0 (1,0)
(1,0) (0,0)
{1,-1) (0,-1)

(1,-1) (1,00 (0,-1)

In forin of two matrices

[
A
Dt = As
Az
Am
Step-2

C

0

&

]

Cr

=11

(11 Hl}

(01 -1)

(0,0)

Normalized matrices of D* and D~ are
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Cl Cz Cs Cl C2 CS
Ay 0 0707 1 Ay 0 0 -0.557

Nt=| 4, 0857 0 o0 .N'=|4 0 0 -0557

Ay 0557 0 0 Ay 0707 -1 0
|.A4 0.557 0.707 OJ Ay —-0707 0 -0.557
respectively.

Step-3

As there exist 1 and -1 in D* and D~ respectively, therefore there is no change

in case of weighted matrices.
Step-4

The positive ideal solution and negative ideal solution for N'* are V;** = [0.557,0.707, 1)

and V7~ = {0,0,0] respectively for all j = 1,2, 3.

The positive ideal solution and negative ideal solution for V'~ are V;+ = {-0.707, -1, 0.557)
and V"~ = [0,0,0] respectively for all j = 1, 2,3.

Step-5

The separation measures, dit and df,” , of each 4; from V* and V=, respec-

tively, are gain as

((0.557 - 0Y2 + {0.707 — 0.707)% + (1 — 1)%)}/2 0.557

o ((0.557 — 0.557)% + (0.707 — 0)? + (1 — 0)*)"/2 _ 1.225

S ((0.557 — 0.557)% + (0.707 — 02 + (1 — 0}%)"/? 1.225
((0.557 — 0.557)2 + (0.707 — 0.707)2 + (1 — 0)*)"/2 L




((0 = 0)* + (0 - 0.707)% + (0 — 1)%)"/?
wdgr— | (070 +O-0P 007
((0 — 0.557)* + (0 - 0)*+ (0 — 0)2)1/2

((0— 0.557)% + (0 — 0.707)% + (0 — 0)°)'/?

1.2247
0.557

0.957

0.8126
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The separati-cm measures, d_t and d_7 , of each A; from v;.'*: and V}'-", respec-

1 '

tively, are gain as

((—=0.707 — 0)2 + (—1 — 0)? + (~0.557 + 0.557)%) /2 1.2247
i ((=0.707 — 0)% + (=1 — 0)% + (—0.557 + 0.557)%)/2 1.2247
((=0.707 + 0.707)2 + (-1 + 1)% + (—0.557 — 0)%)1/2 0.557
((=0.707 + 0.707)% 4 (~1 — 0) + (—0.557 + 0.557)%)}/ 1
((0 - 0)2 + (0 — 0)% + (0 + 0.557)%)/2 0.557
4 ({0 — 0)2 4 (0 = 0)? + (0 + 0.557)%)1/? 0.557
an 4 = =
(0 +0.707)% + (0 + 1) + (0 — 0)&)*/2 1.2247
((0 + 0.707)% + (0 — 0)% + (0 + 0.557)%)'/2 0.9126
Step-6 i T i

The relative nearness of A; with respect to the positive

ideal solution _

0.6797 0.6797

0.3202 0.6797
st = and s7 =

0.3202 0.3202

0.4772 0.5228 J
Step-7 } )

We note that s} has maximal value 0.6797 and s has maximal vaue 0.6795. Hence

A, is a maximal result so that Mr. Y buy A,. Hence maximal BVF soft h-ideals are
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{0,0),(1,0),(1, —1).

4.5.2 TOPSIS of normal BVAFS h—ideals

1n case of BVAF soft h-ideals, Mr. Y need to choose non-beneficial car in 4.5.1. For
non-beneficial car there is no change in step-1, step-2 and step-3 of 4.5.1.

Step-4

The positive ideal solution and negative ideal solution of N* are

Vi =10,0,0) and V;*~ = [0.557,0.707, 1] respectively.

The positive ideal solution and negative ideal solution of N~ are V;™* = [0,0,0]
and V7~ = [-0.707, -1, —0.557] respectively.

Step-3

The separation measures, di¥ and di~ , of each A; from V;t* and V;*~, respec-

tively, are gain as

({0 — 0)2 + (0 —0.707)2 + (0 — 1))¥/2 1.225
I ({0 — 0.557)% + (0 — 0)2 + (0 — 0)%)1/2 ~ 0.557
S ((0 — 0.557)2 + (0 — 0)% + (0 — 0)%)/2 0.557
(0~ 0.557)2 + (0 — 0.707)% + (0 — 0)%)'/? I 0.913 |
((0.557 — 0)2 + (0.707 — 0.707)% + (1 - 1))1/2 0.557
i g = ((0.557 — 0.557)2 + (0.707 = 02 + (1 - OP)¥? | | 1.225
b ((0.557 = 0.557)% + (0.707 — 0)% + (1 — 0)*}}/? 1.225 ‘
((0.557 — 0.557)2 + (0,707 — 0.707)% + (1 — 0)3)/2 1

The separation measures, di" and d}” , of each A; from V;** and V'™, respec-

tively, are gain as
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({0 —0)2 + (0 — 0)® + (0 + 0.557)%)'/2 1 1 0.557

. ((0 —0)2+ (0 - 0) + (0 + 0.557)2)1/2 _ 0.557

‘ ((04+0.707)% + (0 + 1)% + (0 — 0)%)}/2 1.2247

i ((0 + 0.707)2 + (0 - 0)? + (0 + 0.557)%)/2 |1 0.9126 |
((—0.707 — 0)% + (=1 — 0)% + (—0.557 + 0.557)%)1/2 1] 1.2247
d g = ({=0.707 — 0)2 + (—1 — 0)% + (~0.557 + 0.557)%)}/2 - 1.2247
‘ ((=0.707 + 0.707)% + (=1 + 1)? + (—0.557 — 0)%)!/2 0.557
((~0.707 + 0.707)% + (=1 — 0)2 + (—0.557 + 0.557)%)/2 1
Step-6

The relative nearness of A; with respect to the positive

ideal solution _ _ .

(0.3202 0.3202

0.6797 0.3202
s:' = and 8; =

0.6797 0.6797

0.5228 0.4772

Step-7
Here s§ has maximal value 0.6797 and sj has maximal value 0.6797. We note

that A, is maximal result, so that A3 is non-beneficial car for Mr. Y. Hence maximal

BVAF soft h-ideals are (0,0}, (0, -1), (1, -1}




08

REFERENCES

[1] J. Ahsan, Semirings characterized by their fuzzy ideals, J. Fuzzy Math.
vol.6, pp.181-192, 1998.

(2] J. Ahsan, J. N. Mordeson, M. shabir, Fuzzy Semirings with Applications
to Automata Theory, springer, 2012.

[3] M. Akram, A. B. Saeid, K. P. Shum, B. L. Meng, Bipolar fuzzy K —algebra,
Int. J. of Fuzzy Systems, vol.12, no.3, pp252-258, 2010.

[4] M. Akram and K. H. Dar, On anti fuzzy left h — ideals in hemirings, Int.
Math. Forum vol.2, pp.2295-2304, 2007.

[5] L. B. Beasley, N. G. Pullman, Linear Operator strongly preserving
idempotent matrices over semirings, Linear Algebra appl.., vol.160, pp.217-

229, 1992.

(6] L. B. Beasley, N. G. Pullman, Operators that preserves semiring maetriz
functions, Linear Agebra appl..., vol.99, pp.199-216, 1988.

[7) R. Biswas, Fuzzy subgroups and anti fuzzy subgroups, Fuzzy Sets and
Systems vol.35, 1990.

[8] W. A. Dudek, M. Shabir, R. Anjum, Characterizations of Hemirings by
their k-ideals, comput. Math. Appl., vol.59, no.9, pp3167-3179, 2010.

[0] W. A. Dudek, Special types of intuitionistic fuzzy left h-ideals of
hemirings, Soft Comput., vol.12, no.4, pp.359-364, 2008,

[10] S. Ghosh, Matrices over semirings, inform. vol.90, pp-221-230, 1996.

[11] K. Glazek, A guide to litrature on semirings and their applications
in mathematics and in formation sciences with complete bibliography, Kluwer
Acad. Publ. Nederland, 2002,

(12] J. S. Colan, Semirings and their applications, Kluwer Acad. Publ., 1989.

[13] M. Henriksen, [deals in semirings with commutative addition, Amer.
Math. Soc. Notices, vol.6, no.1, p.321, 1958.

(14] §. M. Hong and Y. B. Jun, Anti fuzzy ideals in BCK — algebras, Kyung-
pook Math. J. vol.38, pp.145-150, 1998.

[L5] Hwang, C. L., Yoon, K., Multiple Attribute decision Making : Methods
and Applications, New York Springer-Verlag, 1981.

[L6] Hwang, C. L.; Lai, Y.J,; Lin, T.Y., " A new approach for muliiple objective
decision making”. Computers and Operational Research 20: 889-899 1993.



59

[17) K. Tizuka, On the Jacobson radicel of a semiring, Tohoku Math. J. vol.11,
no.3, pp.409-421, 1959.

[18] Y. B. Jun, C. H. Park, Filters of BCH-Algebras Based on Bipolar Valued
Fuzzy Sets, Int. Mathematical Forum, vol.4, pp.631-643, 2009.

{19] Y. B. Jun, S. Z. Song, Subaigebras and Closed Ideals of BCH-Algebras
Based on Bipolar-Valued Fuzzy Sets, Scientise Mathematicae Japonicae On-
line, pp.427-437, e-2008.

(20] Y. B. Jun, M. A. Ozturk and S. Z. Song, On fuzzy h-ideals in hemirings,
Information Science, vol.162, no.3, pp.211-226, 2004.

[21] Kapp, K. M. ,On bi — ideals and quasi— ideals in semigroups JPubl. Math
Debrecen 16, 179-185 (1969).

[22] M. Kondo, W.A. Dudek, On the Transfer Principle in fuzzy theory,
Mathware Soft Comput. vol.12, pp.41-55 2005.

[23] D. R. La Torre, On h-ideals and k-ideals in hemirings, Publ. Math.
Debrecen, vol.12, no.2, pp.219-226, 1965.

(24} K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic
fuzzy sets, and bipolar-valued fuzzy sets, J. Fuzzy Logic Intelligent Sys-
tems, vel.14, no.2, pp.125-129, 2004.

[25] K. M. Lee, Bipolar-Valued Fuzzy sets and their operations, Prac. Int.
Conf. on Intelligent Technologies, Bangkok, Thailand, pp307-312, 2000.

(26) K. J. Lee, Bipolar-Fuzzy Subalgebras and Bipolar-Fuzzy Ideals of
BCK/BCI-algebras, Bulletin of Malaysian Mathematical Sciences Society,

vol.32, no.3, pp.361-373, 2009.

[27] T. Mahmood and M. Munir, On Bipolar Fuzzy subgrops, World Applied
Sciences Journal, vol.27, no.12, pp.1806-1811, 2013.

28) P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets in a
decision making problem,” Computers & Mathematics with Applications, vol.

44, n0.8-9, pp. 1077-1083, 2002,

(20] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math.
Appl., vol 45, pp.555-562, 2003.

[30] Min Zhou and Shenggang, Applications of Bipolar Fuzzy theory to
hemirings, Int. J. of innovative comp., inf. and cont., vol.10, no.2, pp.767-781,

2014.

(31) D. Molodtsav, “Soft set theory— .. .rst results,” Computers & Mathemat-
ics with Applications, vol.37, no.4-5, pp.19-31, 1999.



100

[32] D. A. Molodtsov, The description of a dependence with the help of soft
sets, J. Comput. Sys.Sc. Int., vol.40, no.6, pp.977-984, 2001.

[33] D. A. Molodtsov, V. Yu. Leonov and D. V. Kovkov, Seft sets technigue
and its application, Nechetkie Sistemi I Myakie Vychisleniya, vol.1, ro., pp.8-
39, 2006.

[34] J. N. Mordeson, K. R. Bhutani, A. Rosenfeld, Fuzzy Group Theory,
Springer 2005.

[35] J. N. Mordeson, D. S. Malik, Fuzzy Automate and Languages,
Theory and Applications, Computational Mathematics Series, Chapman and
Hall/CRC, Boca Raton 2002.

[36]A. Mukherjee and S. B. Chakraborty, On intuitionistic fuzzy soft
relations, Bull. Kerala Math. Assoc., vol.5, no.1 pp.35-42, 2008.

[37) Dr. R. Nagarajan, Dr. K. Venugopal, Soctalistic decision making approach
for bipolar fuzzy soft h — ideals over hemirings, International Journal of
Science and Research, Vol., 3 Issue 8, August 2014.

[38] Palaniappan. N & K. Arjunan, The homomorphism, antihomomorphism
of a fuzzy and an enti — fuzzy ideals of a ring, Varahmihir Journal of
Mathematical Sciences, vol.6, 181-006, 2008.

[39] P. M. Pu, Y. M. Liu, Fuzzy Topology I, neighborhood structure of a
fuzzy point moore smith convergence, J. Math. Anal. Appl. vol.76, pp.571-

509, 1980,
[40] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. vol.35, pp.512-517, 1971.

[41) M. Shabir, T. Mahmood, Characterizations of Hemirings by Fuzzy
fdeals, Comp. and Maths. with Appl., vol.61, pp.1059-1078, 2011.

[42) M. Shabir, T. Mahmood, Characterizations of Hemiring by Interval
Vealued Fuzry Ideals, Quasigroups and Related Systems, vol.19, pp.317-329,

2011.

{43] Ting-Yu Chen, Comparative analysis of SAW and TOPSIS based on
interval — valued fuzzy sets, Discussions on score functions and weight con-
straints, Expert Systems with Applications, vol., 39, pp.1848-1861, 2012.

[44] H. 8. Vandiver, Note on o simple type of algebra in which cancellation law
of addition does not hold, Bulletin of the American Mathematical Society,

vol.40, no.12, pp.914-320, 1934,
(45} 2. Wang, G. J. Klir, Fuzzy measure theory, Springer, 1992.

[46) W. Wechler, The concept of fuzziness in automata and language theory,
Akademic verlog, Berlin, 1978.



101

[47] Y. Q. Yin, H. Li, The characterizations of h-hemiregular hemirings and
h-intra-hemiregular hemirings,Inform. Sci., vol.178, no.17, pp.3451-3464,

2008.

(48) Y. Q. Yin, X. Huang, D. Xu and H.Li, The choracterizations of h-
hemisimple hemirings, Int. J. of fuzy systems, vol.11, pp.116-122, 2009.

48] Yoon, K., Are conciliation among discrete compromise situations. Journal
of Operational Research Society 38. pp.277-286. d, 1987.

[50] L. A. Zadeh, Fuzzy sets, Inform. and Control, vol.8, no.3, pp.338-353,
1965.

[51) J. Zhan, W. A. Dudek, Fuzzy h-ideals of hemirings, Inform. Sci., vol.117,
no.3, pp-876-886, 2007.

[52) H. J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Ni-
jhoff Publishing, 1985.



