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PREFACE 

Arterial blood flow is defined by unsteady, pulsatile flow governed by the values of the 

Womersley number along with the ratio of inertial forces of the blood flow to viscous 

forces. For a normal flow, the flow is laminar, but with the occurrence of secondary 

flows due to disturbances such as arterial curves and bifurcations. Stenosis, which refers 

to the narrowing of the artery, can interfere with normal flow, induce turbulence, and 

result in severe conditions such as thrombosis. Increased shear stress at the site of 

stenosis has the potential to activate platelets, risking complete blockage. It is crucial 

to understand this hemodynamics for diagnostics, surgical planning, and medical device 

design. 

Understanding blood flow under diseases such as stenosis will be critical for guiding 

efficient diagnosis, treatment, and medical device development. This is because 

narrower arteries can cause circulation disruption, increase shear stress, and lead to 

consequences like thrombosis or heart attacks [1]. The research into blood flow 

dynamics of stenosed arteries has gained more attention from researchers over 

the last century. Jamil et al. [2] examined the flow of blood through a stenosed, inclined 

artery in a magnetic field by simulating blood as a Casson fluid. Patel and Patel [3] 

examined the blood circulation in a stenosed artery using the fractional derivative for 

time. A precise description of the temperature fields, magnetic particle velocity, and 

blood velocity is obtained by expressing the set of governing equations. Majeed et al. 

[4] observed heat and mass transfer by blood circulation containing magnetic particles 

through a cylindrical tube. Moreover, Jamil et al. [5] examined non-Newtonian 

magnetic blood flow with thermal radiation through an inclined artery. Tabi et al. [6] 

examined a mathematical representation of blood flow when magnetic particles are 

present. Luqman et al. [7] evaluated OHAM's performance in the analysis of how 
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thermal radiation and magnetic fields affect blood flow inside cylindrical arteries. 

Yakubu et al. [8] examined how the temperature distribution and blood velocity vary 

in a straight circular cylindrical tube. Kot and Elmaboud [9] analyzed the unsteady flow 

of a hybrid nano fluid, which is used to simulate blood dynamics, through a mild 

constricted artery. The work represented blood as a non-Newtonian fluid to capture the 

effects of gyrotactic microorganism motion in the bloodstream, providing a more 

accurate understanding of complicated biofluid behavior. Raju et al. [10] focused on 

examining the blood flow containing gold particles in two different geometries of 

stenosed arteries by taking the effect of periodic body acceleration. Abbas et al. [11] 

examined the unsteady circulation of blood in a constricted artery with body 

acceleration and an externally applied magnetic field. The biomathematical 

examination of blood flow in constricted tapering arteries was conducted by Akber, N 

S. [12]. To explore the important impacts of increasing blood velocity and associated 

hemodynamic stresses on the vascular endothelium (inner lining of arteries) in dogs, 

Fry, D. L. [13] employed an intra-aortic device to induce controlled increments in 

turbulence and shear stress. The researchers employed hydrodynamic modelling and 

histologic study to find a critical shear stress level of 379 ± 85 dynes/cm2, above which 

endothelial cells quickly exhibited evidence of structural injury, including cytoplasmic 

swelling, nuclear deformation, and erosion.  The findings emphasize how mechanical 

forces, such as turbulence and laminar shear stress, can disturb endothelial homeostasis; 

how hemodynamic factors play a causative role in vascular diseases such as 

atherosclerosis. 

Subsequently, physicians have been able to study blood flow in patients with clinical 

devices such as Doppler ultrasound and angiography.  These studies support earlier 

findings that plagues generally develop in areas of low shear stress instead of high shear 
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stress under conditions of steady flow. Ku et al. [14] indicated that significant 

oscillations in the wall shear direction may enhance atherogenesis. 

Early detection and treatment of heart disease depend on the understanding of blood 

circulation in constricted arteries. As a non-Newtonian fluid and examining how it 

behaves via the constricted arteries, the work provides significant understanding of how 

different physiological parameters affect flow characteristics. The findings can be 

utilized in the development of next-generation biomedical devices, such as MEMS-

based flow sensors, which could offer a non-invasive means of monitoring restenosis. 

This could significantly reduce repeated procedures and improve long-term patient 

care. 

The main objective of our research is to simulate and examine blood circulation in a 

constricted artery by considering Bingham fluid. The goal is to simulate the Bingham 

plastic fluid flow in a symmetric stenotic artery. Provide graphical visualization of the 

following parameters: flow rate, flow resistance, wall shear stress, axial velocity, and 

temperature distribution. Through the application of the finite difference method to 

model and visualize flow characteristics during variable physiological conditions, to 

analyze the physical effect of stenosis on blood circulation.  

This thesis comprises three chapters. Details are as follows: 

Chapter one deals with preliminarily that will be used in subsequent chapters. Chapter 

two treats computational biomedical simulations of hybrid nanoparticles on unsteady 

blood hemodynamic in a stenotic artery.  Chapter three is on numerical evaluation of 

blood flow and heat transfer of non-Newtonian fluid in a vertical artery with 

atherosclerosis. 
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Chapter 1 

Basic Definitions 

1.1 Introduction 

Fluids are usually classified in two categories one is Newtonian, and the other one is 

non-Newtonian fluids in fluid mechanics. For instance, gasoline, alcohol, and water are 

considered Newtonian fluids because they follow Newton’s law of viscosity. On the 

other hand, Paint, ketchup, honey, blood, and other non-Newtonian fluids do not have 

the linear relationship. Although exhibiting a fluid-like character, blood exhibits 

complex rheological behavior similar to that of a non-Newtonian fluid, especially upon 

variation in shear conditions, because it has suspended elements such as red and white 

blood cells. 

A fundamental understanding of blood flow is necessary in order to know how 

cardiovascular conditions impact human health. Arteries, veins, and the heart constitute 

the circulatory system, functioning together to facilitate the flow of oxygenated as well 

as deoxygenated blood. Blood from the body enters the right atrium through the 

superior as well as inferior vena cava.  After passing through the tricuspid valve and 

into the right ventricle, then it is pumped into the pulmonary arteries and after that into 

the lungs to receive oxygen.  After returning via the pulmonary veins to the left atrium, 

oxygen-rich blood enters the left ventricle by the bicuspid (mitral) valve.  Ultimately, 

the aortic valve and the aorta pump it to the remainder of the body. Any constriction of 

the arteries disrupts this critical mechanism, reducing blood flow and raising the risk of 

significant cardiovascular problems. 
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Coronary heart disease, particularly the formation of stenosis by atherosclerosis, 

disrupts blood flow and results in serious cardiac conditions such as heart attacks. 

Although a common treatment involves angioplasty with stent implantation, the issue 

of restenosis, wherein the artery again narrows following treatment, is still a serious 

problem. Current methods of detecting restenosis involve invasive procedures, which 

are accompanied by further health risks and cannot be used in real-time applications. A 

non-invasive, real-time, and reliable solution is required for improved patient outcomes. 

Effective design of these solutions requires an understanding of the circulation of blood 

in constricted arteries by considering the non-Newtonian behaviors of blood. 

The modeling of blood circulation in constricted arteries by utilizing the Bingham fluid 

model is our main research goal. The artery is supposed to be stenotic, simulating actual 

pathological situations. In the mathematical modelling of our problem, continuity, 

momentum, and energy equations are included for cylindrical coordinates. MATLAB 

is used for computational results and to analyze the outcomes in tabular and graphical 

form. It allows a comprehensive analysis of how different parameters affect blood 

circulation, especially when stenosis in the arteries is present. 

1.2 Medical background and terminology 

In this chapter an essential background of this work is provided. This chapter includes 

biological experiments of terminology, literature surveys, general equations, and 

solution methodology.  This research purpose is to model the motion of blood in 

constricted arteries as a result of stenosis, when the buildup of plaque influences 

effective blood flow.  The plaque comprises fat, cholesterol, and other chemicals and 

blocks blood from flowing into the heart. Chronic plaque deposition, also called 

atherosclerosis, can narrow the inner diameter of the artery, leading to serious 

impairment of blood flow. Heart attacks are the major cause of mortality in US adults, 
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primarily due to blockage of coronary arteries through atherosclerosis. Here, the plaque 

ruptures or becomes dislodged, creating a blood clot (thrombus) that blocks the artery. 

Acute occlusion may lead to a lethal heart attack. Understanding of blood circulation 

in constricted arteries is significant for the prediction and development of disease as 

well as identify effective diagnostic and treatment techniques. The outcome of this 

research will contribute to the biomedical engineering field by incorporating principles 

from fluid dynamics, with the implications to stent design, and surgical planning. 

Angioplasty is one of the most common treatments for reopening clogged arteries that 

have narrowed. In this minimally invasive surgery, a balloon catheter is inserted and 

expanded to reopen the artery, and a stent or a mesh tube is usually put in to keep the 

artery open. Restenosis (re-blocking of the arteries) can occur after stent insertion, 

particularly in those with underlying disorders. Restenosis is often discovered by more 

invasive testing, which increases the danger and pain. A more realistic method is to 

combine MEMS with stents. A tiny tracker can be attached to the stent to wirelessly 

send information to medical staff about things like blood pressure or flow rate. 

Repeated procedures would not be necessary if restenosis were to be identified early 

because of this non-invasive monitoring. Nevertheless, there are major engineering 

challenges in creating such a device. In order to be inserted into the artery without 

obstructing blood flow, the sensor would have to be small enough. Additionally, due to 

their size and safety issues, traditional battery-powered devices are complex. Utilizing 

the blood flow itself to power is a more realistic approach. Saving energy aside, a 

passive sensor design that would only report back when it senses an external signal will 

make the system simpler, safer, and more reliable. 
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1.3 Governing equations for incompressible fluid flow 

To learn more about how blood moves through constricted arteries, scientists began 

utilizing mathematical models in the 1970s and 1980s. These models made assumptions 

about Newtonian fluid dynamics, vessel walls, and steady flow. They also used simple 

designs, such as tubes with circular or elliptical narrowing. By using this method, 

researchers were able to develop practical equations that characterize blood flow 

patterns [15,16]. Blood is frequently represented as an incompressible fluid, which 

means that its density does not change while it flows.  Such fluid motion is governed 

by the following basic equations: 

1.3.1 Continuity equation for incompressible fluid 

According to the continuity equation, across a control volume, the total mass flux is 

equal to the rate of mass change within that volume [17]. 

𝛻 ∙ 𝑽 = 0. (1.1) 

Where 𝑽 is velocity, under the assumption of incompressibility, this holds for 

Newtonian and non-Newtonian fluids. 

1.3.2 Momentum equation for incompressible fluid  

Sum of all forces acting on fluid is equal to its rate of change of momentum. 

𝜌 ቀ
డ𝑽

డ௧
+ (𝑽 ∙ 𝛻)𝑽ቁ = −𝛻𝑝 + 𝜇𝛻ଶ𝑽 + 𝑓.  (1.2) 

𝜌 ቀ
డ𝑽

డ௧
+ (𝑽 ∙ 𝛻)𝑽ቁ is inertial force, pressure gradient is presented by 𝛻𝑝, 𝜇𝛻ଶ𝑽 is 

viscous forces, and 𝑓 is a body force. 

Because of its nearly constant viscosity and linear shear-stress-strain-rate connection, 

blood is frequently considered a Newtonian fluid when flowing in large arteries. While 
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in a diseased artery, blood behaves like a non-Newtonian fluid due to its variable 

viscosity in diseased region. 

1.3.3 Energy equation for incompressible fluid 

In bioheat modelling and fluid dynamics, the energy equation controls the temperature 

change in a flowing fluid. When there is incompressible Newtonian flow, such as blood 

in large arteries, convection and conduction cause changes in thermal energy.  

𝜌𝑐௣ ቀ
డ்

డ௧
+ 𝑽𝛻𝑇ቁ = 𝑘𝛻ଶ𝑇.  (1.3) 

Where 𝑇 is temperature, density is 𝜌, specific heat is 𝑐௣, 𝑘 represent thermal 

conductivity, and 𝑽 is velocity. This equation illustrates the conservation of thermal 

energy; conduction and internal heat creation from viscosity are on the right side, while 

unsteady and convective heat transfer are on the left. 

1.3.4 Bingham plastic model and papanastasiou regularization 

Fluids that act like rigid bodies under low stress but flow like viscous fluids when a 

yield stress is exceeded are described by the Bingham plastic model. 

൝
𝐴ଵ = 0,                     𝑆 ≤ 𝜏௬

𝑆 = ቂ𝜇௢ +
ఛ೤

ఊ
ቃ 𝐴ଵ,   𝑆 > 𝜏௬

 . 

 

(1.4) 

when 𝑆 ≤ 𝜏௬ this introduces singularity, which complicates the numerical simulation. 

To address this, Papanastasiou, T. C. [18] proposed regularization which is  

𝑆 = ൤𝜇௢ + 𝜏௬
൫ଵି௘ష೘|ം|൯

ఊ
൨ 𝐴ଵ. (1.5) 

Where 𝑚 is a regularization parameter (𝑚 = 100~1000), this model ensures 

numerical stability.  
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1.4 Numerical techniques 

For those situations where analytical solutions are impossible, numerical methods play 

a key role in modeling blood flow in representative approximations of vascular 

geometries. Through these methods, complex, pulsatile, and the Navier-Stokes 

equations can be solved to analyze non-Newtonian flow using discretization of the 

domain. One of the early methods that can be used for simple geometries with 

structured grids is the Finite Difference Method (FDM). To understand wall shear stress 

and pressure distribution, it has been effectively applied to simulate blood circulation 

in stenosed arteries under pulsatile flow conditions [19]. 

1.5 Significance of blood flow modeling 

A number of studies show the significance of blood circulation modeling in the arteries 

to understand cardiovascular physiology and analyze disease development. It is 

commonly known that complicated geometries and different vessel wall characteristics 

affect arterial blood flow, which is unsteady. Mathematical models can capture these 

dynamics, and they can provide us with information on wall shear stress, pressure 

gradient, as well as flow rate. Such modeling facilitates the creation of medical 

equipment and diagnostic tools while offering an easy method to study circulatory 

activity. 
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Chapter 2 

Computational Biomedical Simulations of Hybrid Nanoparticles on 
Unsteady Blood Hemodynamic in a Stenotic Artery 

2.1 Introduction 

In this chapter, we discuss how hybrid nanoparticles (Ag–Al₂O₃) affect blood 

circulation within a constricted artery. First, the governing equations for blood flow are 

converted into a dimensionless form and then solved numerically using a finite 

difference method, considering the assumption of mild stenosis. From our analysis of 

the hybrid silver–aluminum oxide nanoparticles, we observed that these particles help 

lower resistance to flow. We also examine the effects of other factors, such as the slip 

parameter (wₛ), variable viscosity (η₀), and the nanoparticle shape factor (m), on the 

velocity and temperature profiles of blood. Further, source/sink parameter also affects 

the flow and discovers that they can significantly impact blood dynamics. Through this 

study, our simulations will help us to understand how these nanoparticles might 

improve blood flow in patients with artery blockages. 
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2.2 Geometry of the problem 

 

We model blood moving through the artery as unsteady, laminar, incompressible, and 

axisymmetric. To describe the artery’s geometry, we use cylindrical coordinates 

(𝑟, 𝜃, 𝑧). The artery’s radius 𝑅(𝑧) is defined by a piecewise function so that it covers 

both the normal and aneurysmal sections. 

 𝑅ത (𝑧̅)

=  

⎩
⎪
⎨

⎪
⎧

(𝑎 + ƺ∗𝑧̅)  ቌ1 − ൬
𝛿∗

2𝑎
൰ ቆ1 + cos ൬

2𝜋

𝑙௜
൰ ൭𝑧̅ − 𝑑ଵ௜ − ൬

𝑙௜

2
൰൱ቇቍ , 𝑑ଵ௜ ≤ 𝑧̅ ≤ 𝑑ଵ௜ + 𝑙௜

(𝑎 + ƺ∗𝑧̅),                                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  

, 

 

(2.1) 

here, 𝑑ଵ௜ is the axial location of the center of the 𝑖௧௛ aneurysmal region, length is 𝑙௜  of 

the aneurysmal region, normal artery radius is 𝑎, the tapering parameter is ƺ∗, height of 

the aneurysm 𝛿∗. Stenosis (𝛿∗ > 0), and Aneurysm (𝛿∗ < 0). 

2.3 Governing equations 

In an artery with stenosis and aneurysms, the temperature and velocity fields for the 

unsteady blood flow are as follows: 

 

 
 

Fig.2. 1: Geometry of the problem. 
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𝑽 = [𝑢(𝑟, 𝑧, 𝑡), 0, 𝑤(𝑟, 𝑧, 𝑡)] , 𝑇 = 𝑇(𝑟, 𝑧, 𝑡) . (2.2) 

Here, 𝑢(𝑟, 𝑧, 𝑡) is the radial velocity component and 𝑤(𝑟, 𝑧, 𝑡) is the axial component. 

డ௨ഥ

డ௥̅
+

௨ഥ

௥̅
+

డ௪ഥ

డ௭̅
= 0, (2.3) 

𝜌௛௡௙ ቀ
డ௨ഥ

డ௧̅
+ 𝑤ഥ

డ௨ഥ

డ௭̅
+ 𝑢ത

డ௨ഥ

డ௥̅
ቁ = −

డ௉

డ௥̅
+ ൬

డ

డ௭̅
(𝑆௥௭തതത) +

ଵ

௥̅

డ

డ௥̅
(𝑟̅𝑆௥௥തതത)൰, (2.4) 

𝜌௛௡௙ ቀ
డ௪ഥ

డ௧̅
+ 𝑤ഥ

డ௪ഥ

డ௭̅
+ 𝑢ത

డ௪ഥ

డ௥̅
ቁ = −

డ௉

డ௭̅
+ ൬

డ

డ௭̅
(𝑆௭௭തതത) +

ଵ

௥̅

డ

డ௥̅
(𝑟̅𝑆௥௭തതത)൰ +

(𝜌𝛾)௛௡௙g(𝑇 − 𝑇ଵ) , 

(2.5) 

൫𝜌𝐶௣൯
௛௡௙

ቀ
డ்

డ௧̅
+ 𝑤ഥ

డ்

డ௭̅
+ 𝑢ത

డ்

డ௥̅
ቁ = 𝑘௛௡௙ ቀ

డమ்

డ௥̅మ
+

ଵ

௥̅

డ்

డ௥̅
+

డమ்

డ௭̅మቁ + 𝑄଴ . (2.6) 

where  

𝑆௥௥തതത = 2
డ௨ഥ

డ௥̅
𝜇௛௡௙, 𝑆௭௭തതത = 2

డ௪ഥ

డ௭̅
𝜇௛௡௙, and 𝑆௥௭തതത = 𝜇௛௡௙ ቀ

డ௨ഥ

డ௭̅
+

డ௪ഥ

డ௥̅
ቁ. 

The heat absorption or generation constant parameter is 𝑄଴, hybrid nanofluid viscosity 

is 𝜇௛௡௙,  𝑘௛௡௙ present thermal conductivity, the density is 𝜌௛௡௙ , thermal expansion 

coefficient is   (𝜌𝛾)௛௡௙, and heat capacitance is ൫𝜌𝐶௣൯
௛௡௙

. 

The above equations are converted into dimensionless form using the following 

transformations: 

𝑟 =
௥̅

௔
, 𝑧 =

௭̅

௟బ
, 𝑤 =

௪ഥ

௎బ
, 𝑅 =

ோത

௔
, 𝑝 =

௉௔మ

௎బ௟బఓబ
, 𝑢 =

௟బ௨ഥ

ఋ∗௎బ
, 𝜃 =

்ି భ்

்ೢ ି భ்
, 𝑆௥௥ =

௟బ

௎బఓబ
𝑆௥௥തതത, 𝑆௭௭ =

௟బ

௎బఓబ
𝑆௭௭തതത, 𝑆௥௭ =

௔

௎బఓబ
𝑆௥௭തതത, 𝑡 =

௎బ௧̅

௔
, 𝐺𝑟 =

୥௔మ௥ఘ೑

௎బఓ೑
(𝑇௪ − 𝑇ଵ), 𝑃𝑟 =

஼೛ఓ೑

௞೑
, 𝑅𝑒 =

௎బ௔ఘ೑

ఓ೑
, 𝛽 =

ொబ௔௞೑

்ೢ ି்
, 𝑤ഥ௦ =

௪ೞ

௎బ
 . 

 

(2.7) 
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When we put these dimensionless variables into the equations, while assuming 
ఋ∗

ோబ
≪ 1 

and 
ோబ

௟బ
≈ 𝑂(1), the resulting system becomes: 

డ௪

డ௭
= 0 , (2.8) 

డ௣

డ௥
= 0 , (2.9) 

ఘ೓೙೑

ఘ೑
 𝑅𝑒

డ௪

డ௧
= −

డ௉

డ௭
+

ଵିఎ೚ఏ

(ଵ ି థభ)మ.ఱ(ଵ ି థమ)మ.ఱ ቀ
ଵ

௥

డ௪

డ௥
+

డమ௪

డ௥మ ቁ +
(ఘఊ)೓೙೑

(ఘఊ)೑
𝐺௥𝜃, (2.10) 

𝑃𝑟 𝑅𝑒 
൫ఘ௖೛൯

೓೙೑

൫ఘ௖೛൯
೑

௞೓೙೑

௞೑

డఏ

డ௧
= ቀ

ଵ

௥

డఏ

డ௥
+

డమఏ

డ௥మቁ +
௞೑

௞೓೙೑
𝛽. 

(2.11) 

The pulsatile pressure gradient is defined as 

−
డ௉

డ௭
= 𝐴ଵଵ + 𝐴ଶଶ cos൫𝜔௣𝑡൯  ,   𝑡 > 0. (2.12) 

Here, 𝐴ଵଵ is the constant (steady) component of the pressure gradient, 𝐴ଶଶ represents 

the pressure oscillation that raises systolic and diastolic pressures, and pulse rate 

frequency is 𝜔௣. When converted to dimensionless form, this same pressure gradient 

becomes, 

−
డ௉

డ௭
= 𝐵ଵ[1 + 𝑒 cos(𝑐ଵ𝑡)]. 

Where 𝑒 =
஺మమ

஺భభ 
,and 𝐵ଵ =

஺భభோబ
మ

ఓబ௎బ
. Below are the equations for volumetric flow rate, wall 

shear stress, and flow resistance. 

𝜏௦ = −𝜇௙ ቀ
డ௪

డ௥
ቁ

௥ୀோ
  , (2.13) 

𝑄ி = 2𝜋 ∫ 𝑤 𝑟 𝑑𝑟
ோ

଴
  , (2.14) 

𝜆 =
௅ቀ

ങು

ങ೥
ቁ

ொಷ
  , 

(2.15) 

where 
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𝑅(𝑧) = (1 + 𝑧 𝜁  ) ቆ1 −
ఋ

ଶ
൬1 + 𝑐𝑜𝑠2𝜋 ቀ𝑧 − 𝑑௜ −

ଵ

ଶ
ቁ൰ቇ , 𝑑 ≤ 𝑧 ≤  𝑑 + 1 , 

(2.16) 

with 

𝑑௜ =
ƺ೔

௟೔
, 𝜁 =

఍∗௟೔

௔
 . 

To utilize the effect of geometry we used transformation ቀ𝑥 =
௥

ோ(௭)
ቁ. 

ఘ೓೙೑

ఘ೑
 𝑅𝑒

డ௪

డ௧
= 𝐵ଵ[1 + 𝑒 cos(𝑐ଵ𝑡)] +

ଵିఎ೚ఏ

(ଵ ି థభ)మ.ఱ(ଵ ି థమ)మ.ఱ

ଵ

ோమ ቀ
ଵ

௫

డ௪

డ௫
+

డమ௪

డ௫మ ቁ +

(ఘఊ)೓೙೑

(ఘఊ)೑
𝐺௥𝜃 , 

(2.17) 

𝑃𝑟 𝑅𝑒 
൫ఘ௖೛൯

೓೙೑

൫ఘ௖೛൯
೑

௞೓೙೑

௞೑

డఏ

డ௧
=

ଵ

ோమ ቀ
ଵ

௥

డఏ

డ௥
+

డమఏ

డ௥మቁ +
௞೑

௞೓೙೑
𝛽 . 

(2.18) 

 

𝜏௦ = −
ଵ

ோ
ቀ

డ௪

డ௫
ቁ

௫ୀଵ
 , (2.19) 

𝑄ி = 2𝜋 𝑅ଶ ∫ 𝑤 𝑥 𝑑𝑥
ଵ

଴
 , (2.20) 

𝜆 =
௅ቀ

ങು

ങ೥
ቁ

ொಷ
 , 

(2.21) 

where, 

𝑅(𝑧) = (1 + 𝑧𝜁  ) ቀ1 − ൬1 + 𝑐𝑜𝑠2𝜋 ቀ𝑧 − 𝑑௜ −
ଵ

ଶ
ቁ൰

ఋ

ଶ
ቁ , 𝑑 ≤ 𝑧 ≤  𝑑 + 1 , (2.22) 

with 

𝑑௜ =
ƺ೔

௟೔
, 𝜁 =

఍∗௟೔

௔
 . 

2.4 Numerical approach 

The FTCS approach, is used to compute the partial differential equations numerically. 

FTCS is utilized because it is simple and reliable in computational fluid dynamics; the 
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procedure first discretises the spatial domain. Subsequently, for each node 𝑥௜  at time 𝑡௝, 

the velocity component 𝑤 is computed. The method uses central differencing for the 

spatial derivatives (second-order accurate) and forward differencing for time to ensure 

stability and efficiency. 

డ௪

డ௧
≅

௪೔,ೕశభି௪೔,ೕ

௱௧
 , (2.23) 

  

డ௪

డ௫
≅

௪೔శభ,ೕି௪೔షభ,ೕ

ଶ௱௫
 , (2.24) 

  

డమ௪

డ௫మ ≅
௪೔శభ,ೕିଶ௪೔,ೕା௪೔షభ,ೕ

௱௫మ  , (2.25) 

  

ఘ೓೙೑

ఘ೑
= 𝜙ଶ

ఘೞమ

ఘ೑
+ ቆ(1 −  𝜙ଵ) +  𝜙ଵ

ఘೞభ

ఘ೑
ቇ (1 −  𝜙ଶ)   , 

(2.26) 

  

(ఘఊ)೓೙೑

(ఘఊ)೑
= 𝜙ଶ

(ఘఊ)ೞమ

(ఘఊ)೑
+ ቆ(1 −  𝜙ଵ) +  𝜙ଵ

(ఘఊ)ೞభ

(ఘఊ)೑
ቇ (1 −  𝜙ଶ)  , 

(2.27) 

  

൫ఘ௖೛൯
೓೙೑

൫ఘ௖೛൯
೑

= 𝜙ଶ

൫ఘ௖೛൯
ೞమ

൫ఘ௖೛൯
೑

+ ൭(1 −  𝜙ଵ) +  𝜙ଵ

൫ఘ௖೛൯
ೞభ

൫ఘ௖೛൯
೑

൱ (1 −  𝜙ଶ)  , 
(2.28) 

 

௞೓೙೑

௞೑
=

௞ೞమା(௠ିଵ)௞೑ି(௠ିଵ)థమ൫௞೑ି௞ೞమ൯

௞ೞమା(௠ିଵ)௞೑ାథమ൫௞೑ି௞ೞమ൯
 

௞ೞభା(௠ିଵ)௞೑ାథమ൫௞೑ି௞ೞభ൯

௞ೞభା(௠ିଵ)௞೑ି(௠ିଵ)థమ൫௞೑ି௞ೞభ൯
 , (2.29) 
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𝑤௜,௝ାଵ = 𝑤௜,௝ +

௱௧ ቈ஻భൣଵା௘ ୡ୭ୱ൫௖భ௧ೕ൯൧ା
భషആ೚ഇ೔,ೕ

(భ ష ഝభ)మ.ఱ(భ ష ഝమ)మ.ఱ 
భ

 ೃమ൬
భ

ೣ೔
௪ೣା௪ೣೣ൰ାቆ

(ഐം)೓೙೑

(ഐം)೑
ቇீೝఏ೔,ೕ቉

ቆ
ഐ೓೙೑

ഐ೑
ቇோ௘

  , 

 

(2.30) 

  

𝜃௜,௝ାଵ = 𝜃௜,௝ +
௱௧ 

ೖ೓೙೑

ೖ೑
ቈ

భ

ౌ౨ ೃమ ೃ೐
൬

భ

ೣ೔
ఏೣାఏೣೣ൰ା

ೖ೑

ೖ೓೙೑
ఉ቉

൫ഐ೎೛൯
೓೙೑

൫ഐ೎೛൯
೑

 . 

(2.31) 

Boundary conditions are: 

𝑤௜
ଵ = 𝜃௜

ଵ = 0 𝑎𝑡 𝑡 = 0 , 

𝑤௜ାଵ
௝

= 𝑤௜
௝
, 𝜃௜ାଵ

௝
= 𝜃௜

௝
 𝑎𝑡 𝑥 = 0, 

𝑤ேାଵ
௝

= 0, 𝜃ேାଵ
௝

= 1, 𝑎𝑡 𝑥 = 1  . 

 

(2.31) 

 

2.5 Stability Criteria 

Numerical method starts with spatial domain discretising into 𝑁 + 1 grid points, by 

taking step size of 𝛥𝑥 = 1/(𝑁 + 1). Velocity component is computed over specific 

instances 𝑡௝ at each of these spatial positions, where 𝑡௝ = (𝑘 − 1) 𝛥𝑡 and 𝛥𝑡 denotes the 

time. Stability of this method is highly sensitive to choice  𝛥𝑥 and 𝛥𝑡. 𝛥𝑥 =  0.025 and 

𝛥𝑡 =  0.00001 were chosen after various numerical experiments, as these step sizes 

ensure a consistent and stable solution. 

2.6 Results and discussion 

Velocity profiles for various values of 𝛽 and  𝜂₀ are shown in Figs. (2.2) and (2.3). The 

plots indicate the same behaviour for both parameters: the velocity increases for both 

parameters 𝛽 and 𝜂₀. This indicates that the velocity is increasing both parameters. 

Physically, this means that increased values of 𝛽 and 𝜂₀ decrease the blood's viscosity, 
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or in other words, reduce the internal resistance between particles. Figs. (2.4) and (2.5) 

show how the slip parameter (𝑤௦) and nanoparticle shape (𝑚) affect velocity profiles. 

The findings indicate, velocity increases by increasing 𝑤௦ as well as 𝑚, e.g., from bricks 

to cylinders or platelets. Such properties can be useful in the optimization of blood 

circulation during medical interventions. 

Figs. (2.6) and (2.7) show how 𝛽 and 𝑚 influence the temperature profiles. They exhibit 

a similar trend; temperature rises as either 𝛽 or 𝑚 rises. Physically, a greater 𝛽 means 

that there is stronger internal heat generation (source) or weaker heat absorption (sink), 

resulting in higher temperatures. The shape parameter 𝑚 characterizes the geometry of 

nanoparticles that are dispersed in blood. When 𝑚 increases, meaning that particles are 

more complicated, non-spherical, thermal conductivity increases, and temperature 

profiles increase. This shows how the shape of nanoparticles is essential in increasing 

the transport of heat, particularly in areas of unusual arterial structure such as stenoses 

and aneurysms. 

Fig. (2.8) demonstrates how wall shear stress effected by variations in 𝛽. Graph shows 

wall shear stress increases significantly with increasing 𝛽. In Fig. (2.8), this trend is 

easily observable. Physically, the flow near the artery wall is enhanced by raising 𝛽, 

especially in a stenosed region. Wall shear stress increased due to enhancing velocity 

gradients. In Fig. (2.9), the impact of 𝛽 on blood particles' volumetric flow rate is 

displayed. The graph shows a similar as the velocity profiles show an increasing 

function. 

Fig. (2.10) illustrates the outcomes of resistance to flow. In equation (2.21), relationship 

of impedance and flow rate is defined, revealed the inverse relationship of resistance to 

flow with flow rate, and that is why these data are moving in the reverse direction of 
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flow rate as predicted. Each outcome is calculated for hybrid nanofluid. It is well 

understood that with any increase in any of the parameters (𝛽, 𝜂௢ , 𝑎𝑛𝑑 𝐺𝑟), the 

impedance data follow a decreasing trend that is contrary to flow rate. 
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Fig.2. 2: Velocity profile for β. 

 

 

Fig.2. 3: Velocity profile for η. 

 

 

Fig.2. 4: Velocity profile for wୱ. 

 

Fig.2. 5: Velocity profile for m, β = 0.5. 
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Fig.2. 6: Temperature profile for β. 

 

Fig.2. 7: Temperature profile for m, β = 0.5. 
 

 

Fig.2. 8: Wall shear stress for β. 

 

Fig.2. 9: Flow rate for β. 
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2.7 Conclusion 

In this research, parametric impact of hybrid nanofluid flow (𝐴𝑔 − 𝐴𝑙₂𝑂₃/𝑏𝑙𝑜𝑜𝑑) 

through a stenosed artery is examined.  Here are some significant findings about 

hemodynamic and thermal dynamics under varying physical conditions: 

 The hybrid nanofluid's velocity profiles are positively impacted by an increase 

in the slip parameter (𝑤ₛ), variable viscosity (𝜂₀), source/sink strength (𝛽), and 

nanoparticle shape factor (𝑚). The flow performance is improved by platelet-

shaped particles. 

 The addition of hybrid nanoparticles helps improve flow dynamics, as indicated 

by the rise in wall shear stress with β and Grashof number (Gr). 

 Increasing β results in a significant increase in blood flow rate, suggesting that 

source-driven acceleration may positively impact flow behavior in stenotic 

regions. 

   

 Fig.2. 10: Resistance impedance. 
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 As 𝛽, 𝜂₀, and 𝐺𝑟 increase, the resistance to flow decreases, showing an inverse 

pattern with flow rate and helping to promote smoother circulation. 

 The rise in temperature profiles with 𝛽 and nanoparticle shape factor (𝑚) 

highlights how non-spherical nanoparticles can improve thermal conductivity. 

These findings support the possibility of improving blood flow and temperature control 

through the optimization of nanoparticle shape, viscosity fluctuation, and boundary slip, 

providing new information for biological applications in cardiovascular treatments.  
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Chapter 3 

Numerical Evaluation of Blood Flow and Heat Transfer of Non-
Newtonian Fluid in a Vertical Artery with Atherosclerosis  

3.1 Introduction 

In the biological sciences, it is crucial to experimentally and theoretically predict blood 

flow in stenosed arteries. Although humankind has greatly benefited from the 

groundbreaking discoveries and advancements in medicine and medical sciences, 

cardiovascular illnesses continue to be the leading cause of death, even in developed 

countries. Atherosclerosis promotes due to low-density lipoprotein, a chronic 

inflammatory reaction in the artery walls caused by the accumulation of macrophage 

white blood cells. Plaque, therefore, develops in the arterial blood vessels' interior 

walls. The current work examines the unsteady blood flow by using Bingham fluid in 

a vertical stenosed artery with effect of magnetic field. Flow equations are investigated 

in a cylindrical coordinate system. Governing equations are computed numerically by 

explicit finite difference approach. The effects of different parameters are shown 

graphically and discussed in detail.   

3.2 Problem formulation 

We study the unsteady, incompressible, pulsatile flow through vertically artery. The 

Bingham fluid model is used to analyze blood flow. Cylindrical coordinates (𝑟, 𝜃, 𝑧) 

are used to express radial, circumference, and direction of flow. In Fig. (3.1) geometries 

are shown. 
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Fig.3. 1: Geometries of the problem. 
 

Smooth stenosis is shown in figure. A. 

𝑅(𝑧) =  ൝
𝑅௢ − ቀ1 + cos ቀ

ଶగ

௟೚
ቁ ൬𝑧̅ − 𝑑̅ − ቀ

௟೚

ଶ
ቁ൰ቁ ቀ

ఋ

ଶ
ቁ , 𝑑̅ ≤ 𝑧̅ ≤ 𝑑̅ + 𝑙௢

𝑅௢,                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
.  

 

(3.1) 

Irregular stenosis is shown in figure. B. 

𝑅(𝑧) =

 ൝
𝑅௢ − 2𝛿 ቂ𝑐𝑜𝑠 ቀ2𝜋 ቀ

௭̅ିௗത

ଶ
−

௟೚

ସ
ቁቁ −

଻

ଵ଴଴
 cos ൬ቀ𝑧̅ − 𝑑̅ −

௟೚

ଶ
ቁ 17𝜋൰ቃ , 𝑑̅ < 𝑧̅ < 𝑑̅ + 𝑙௢

𝑅௢,                                                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
.  

 

(3.2) 

In these equations, 𝑅௢ is radius of artery without stenosis, axial coordinate is presented 

by 𝑧̅, 𝑅(𝑧) is radius, 𝑑̅ is region where stenosis starts, height is 𝛿, and length of stenosis 

is 𝑙௢. As flow is axisymmetric, the circumferential direction is neglected.  

We have used the Bingham fluid model to analyze blood flow. Cauchy stress tensor is: 

𝑇 = −𝑝𝐼 + 𝜏 . (3.3) 

Where 𝑝𝐼 is spherical and 𝑆 is deviatoric part of 𝑇. A simplified rheological relationship 

for Bingham fluid is, 
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൝
𝐴ଵ = 0,                     𝑆 ≤ 𝜏௬

𝑆 = ቂ𝜇௢ +
ఛ೤

ఊ
ቃ 𝐴ଵ,   𝑆 > 𝜏௬

 .  
(3.4) 

If 𝜏௬ ≥ 𝜏 then 𝛾 = 0 and there will be a 
଴

଴
  form generate. But in our model, we are 

using only the case when 𝜏௬ ≤ 𝑆 but we will face a singularity in our problem when 

𝜏௬ = 𝑆, To address this problem, we used Papanastasiou's regularization to resolve the 

singularity in the model. 

𝑆 = ൤𝜇௢ + 𝜏௬
൫ଵି௘ష೘|ം|൯

ఊ
൨ 𝐴ଵ . (3.5) 

When 𝑚 → ∞, our problem becomes the 𝑆 = ቂ𝜇௢ +
ఛ೤

ఊ
ቃ 𝐴ଵ, but we won't take m so large 

that it makes our problem one from the past when singularity will occur. We will take 

m so large that it will have a significant enough effect on our problem to address the 

singularity with little difference to the results. 

Rate of strain and deformation tensor are: 

𝛾 = ට
ଵ

ଶ
 𝑡𝑟൫𝐴ଵ

ଶ൯ , 𝐴ଵ = (∇𝑉)் + (∇𝑉)  respectively. 

Governing equations are: 

డ௨ഥ

డ௥̅
+

௨ഥ

௥̅
+

డ௪ഥ

డ௭̅
= 0 , (3.6) 

𝜌 ቀ
డ௨ഥ

డ௧̅
+ 𝑤ഥ

డ௨ഥ

డ௭̅
+ 𝑢ത

డ௨ഥ

డ௥̅
ቁ = −

డ௉

డ௥̅
+ ൬

డ

డ௭̅
(𝑆௥௭തതത) +

ଵ

௥̅

డ

డ௥̅
(𝑟̅𝑆௥௥തതത)൰ , (3.7) 

𝜌 ቀ
డ௪ഥ

డ௧̅
+ 𝑤ഥ

డ௪ഥ

డ௭̅
+ 𝑢ത

డ௪ഥ

డ௥̅
ቁ = −

డ௉

డ௭̅
+ ൬

డ

డ௭̅
(𝑆௭௭തതത) +

ଵ

௥̅

డ

డ௥̅
(𝑟̅𝑆௥௭തതത)൰ + 𝜌g𝛽(𝑇 − 𝑇ଵ)  −

𝜎𝐵௢
ଶ𝑤ഥ   , 

(3.8) 

൫𝜌𝐶௣൯ ቀ
డ்

డ௧̅
+ 𝑤ഥ

డ்

డ௭̅
+ 𝑢ത

డ்

డ௥̅
ቁ = 𝑘 ቀ

డమ்

డ௥̅మ +
ଵ

௥̅

డ்

డ௥̅
+

డమ்

డ௭̅మቁ −
డ௤ೝ

డ௥̅
+ 𝜎𝐵௢

ଶ𝑤ഥ ଶ . (3.9) 
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Associated boundary conditions are: 

𝑤ഥ(𝑅, 𝑡) = 0,
డ௪ഥ (଴,௧)

డ௥̅
= 0, 𝑤ഥ(𝑟, 0) = 0, 

𝑇(𝑅, 𝑡) = 1,
డ்(଴,௧)

డ௥̅
= 0, 𝑇(𝑟, 0) = 0 . 

 

(3.10) 

𝑆௥௭തതത, 𝑆௭௭തതത, and 𝑆௥௥തതത are tangential, axial, and radial stress of Bingham fluid respectively. 

𝑆௥௥തതത = 2
డ௨ഥ

డ௥̅

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜇଴ +

ఛ೤

⎝

⎜
⎛

ଵି௘
ష೘ඨ൬

ങೠഥ
ങ೥ത

శ
ങ ഥೢ
ങೝഥ

൰
మ

శమቆ൬
ങೠഥ
ങೝഥ

൰
మ

శቀ
ೠഥ
ೝഥቁ

మ
శ൬

ങ ഥೢ
ങ೥ത

൰
మ

ቇ

⎠

⎟
⎞

ඨቀ
ങೠഥ

ങ೥ത
ା

ങ ഥೢ

ങೝഥ
ቁ

మ
ାଶ൬ቀ

ങೠഥ

ങೝഥ
ቁ

మ
ାቀ

ೠഥ

ೝഥ
ቁ

మ
ାቀ

ങ ഥೢ

ങ೥ത
ቁ

మ
൰

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 , 

 

 

(3.11) 

𝑆௭௭തതത = 2
డ௪ഥ

డ௭̅
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(3.12) 
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(3.13) 

Where 𝑃, 𝑘, 𝜌, 𝑇, µ, g, 𝑡, 𝐶௣, 𝜎, 𝑎𝑛𝑑 𝛽 represents pressure, thermal conductivity, density, 

temperature, dynamic viscosity, gravitational acceleration, time, specific heat capacity, 

electrical conductivity, and thermal expansion. 

Here, 𝑞௥ = −
ଷఙ∗

ସ௞∗ ቀ
డ்ర

డ௥̅
ቁ is radiative heat flux.  
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The nondimensional variables are introduced by Tripathi et al. [20] 

𝑟 =
𝑟̅

𝑅଴
, 𝑅 =

𝑅ത

𝑅଴
, 𝑑 =

𝑑̅

𝑙଴
, 𝑤 =

𝑤ഥ

𝑈଴
, 𝑝 =

𝑃𝑅଴
ଶ

𝑈଴𝑙଴𝜇଴
, 𝑧 =

𝑧̅

𝑙଴
, 𝑢 =

𝑙଴𝑢ത

𝛿∗𝑈଴
,  

𝜃 =
்ି భ்

்ೢ ି భ்
, 𝑆௥௥ =

௟బ

௎బఓబ
𝑆௥௥തതത , 𝑆௭௭ =

௟బ

௎బఓబ
𝑆௭௭തതത , 𝑆௥௭ =

ோబ

௎బఓబ
𝑆௥௭തതത , 𝑡 =

௎బ௧̅

ோబ
. 

 

(3.14) 

Using the variables mentioned above and the hypotheses 
ఋ∗

ோబ
≪ 1 and 

ோబ

௟బ
≈ 𝑂(1), the 

pulsatile pressure gradient presented by Handford, S. W. [21] is: 

−
డ௉

డ௭
= 𝐴ଵଵ + 𝐴ଶଶ cos൫𝜔௣𝑡൯ , 𝑡 > 0 . (3.15) 

In which 𝜔௣ is the pulse rate frequency, 𝐴ଵଵ represents steady pressure gradient, 𝐴ଶଶ 

represents pressure oscillation that raises systolic and diastolic pressures.  

In dimensionless form Pressure gradient is: 

−
డ௉

డ௭
= 𝐵ଵ[1 + 𝑒 cos(𝑐ଵ𝑡)] . (3.16) 

Where 𝑒 =
஺మమ

஺భభ 
,and 𝐵ଵ =

஺భభோబ
మ

ఓబ௎బ
. The flow equations in dimensionless form are 

expressed as follows: 

డ௪

డ௭
= 0 , (3.17) 

డ௣

డ௥
= 0 , (3.18) 

𝑅𝑒
డ௪

డ௧
=

ଵ

௥

డ

డ௥
൭𝑟 ቆ

డ௪

డ௥
+ 𝐵௡ ൬1 − 𝑒

ିெቚ
ങೢ

ങೝ
ቚ൰ቇ൱ + 𝐺௥𝜃 − 𝑀௔

ଶ𝑤+𝐵ଵ[1 +

𝑒 cos(𝑐ଵ𝑡)]  , 

(3.19) 

డఏ

డ௧
=

ଵ

୔୰ ோ௘
ቀ

ଵ

௥

డఏ

డ௥
+

డమఏ

డ௥మቁ +
ே௥

୔୰ ோ௘

డమఏ

డ௥మ +
ா௖ ெೌ

మ

ோ௘
𝑤ଶ , (3.20) 

𝑆௥௭ = ቆ
డ௪

డ௥
+ 𝐵௡ ൬1 − 𝑒

ିெቚ
ങೢ

ങೝ
ቚ
൰ቇ . 

(3.21) 
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In non-dimensional form geometry is: 

𝑅(𝑧) = ൝
1 − ൬1 + 𝑐𝑜𝑠2𝜋 ቀ𝑧 − 𝑑 −

ଵ

ଶ
ቁ൰

ఋ∗

ଶ

1,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑑 ≤ 𝑧 ≤ 𝑑 + 1 . 

(3.22) 

To utilize the effect of geometry we used transformation ቀ𝑥 =
௥

ோ(௭)
ቁ. 

𝑅𝑒
డ௪

డ௧
=

ଵ

௫ ோమ

డ

డ௫
൭𝑥 ቆ

డ௪

డ௫
+ 𝑅𝐵௡ ൬1 − 𝑒

ି
ಾ

ೃ
ቚ
ങೢ

ങೣ
ቚ൰ቇ൱ + 𝐺௥𝜃 − 𝑀௔

ଶ𝑤+𝐵ଵ[1 +

𝑒 cos(𝑐ଵ𝑡)]  , 

(3.23) 

డఏ

డ௧
=

ଵ

୔୰ ோమ(௭) ோ௘
ቀ

ଵ

௫

డఏ

డ௫
+

డమఏ

డ௫మቁ +
ே௥

୔୰ ோమ(௭) ோ௘

డమఏ

డ௫మ
+

ா௖ ெೌ
మ

ோ௘
𝑤ଶ . (3.24) 

Or  

𝑅𝑒
డ௪

డ௧
=

ଵ

௫ ோ
ቆ

ଵ

ோ

డ௪

డ௫
+ 𝐵௡ ൬1 − 𝑒

ି
ಾ

ೃ
ቚ
ങೢ

ങೣ
ቚ൰ቇ +

ଵ

ோమ

డమ௪

డ௫మ +
஻೙ெ

ோమ

డమ௪

డ௫మ  𝑒
ି

ಾ

ೃ
ቚ
ങೢ

ങೣ
ቚ +

𝐺௥𝜃 − 𝑀௔
ଶ𝑤+𝐵ଵ[1 + 𝑒 cos(𝑐ଵ𝑡)]  , 

 

(3.25) 

డఏ

డ௧
=

ଵ

୔୰ ோమ(௭) ோ௘
ቀ

ଵ

௫

డఏ

డ௫
+

డమఏ

డ௫మቁ +
ே௥

୔୰ ோమ(௭) ோ௘

డమఏ

డ௫మ
+

ா௖ ெೌ
మ

ோ௘
𝑤ଶ. (3.26) 

The transformed boundary conditions are: 

𝑤(𝑥, 0) = 0, 𝜃(𝑥, 0) = 0, 𝑎𝑡 𝑡 = 0 , 

డ௪(଴,௧)

డ௫
= 0,

డఏ(଴,௧)

డ௫
= 0, 𝑎𝑡 𝑥 = 0, 

 𝑤(1, 𝑡) = 𝑤௦, 𝜃(1, 𝑡) = 1, 𝑎𝑡 𝑥 = 1. 

 

(3.27) 

 

The equations for volumetric flow rate, wall shear stress, and flow resistance are: 

𝜏௦ = ቆ
ଵ

ோ

డ௪

డ௫
+ 𝐵௡ ൬1 − 𝑒

ି
ಾ

ೃ
ቚ
ങೢ

ങೣ
ቚ
൰ቇ

௫ୀଵ

 , 
(3.28) 

𝑄ி = 𝑅ଶ2𝜋 ∫ 𝑤 𝑥 𝑑𝑥
ଵ

଴
  , (3.29) 

𝜆 =
௅ቀ

ങು

ങ೥
ቁ

ொಷ
 . 

(3.30) 
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3.3 Finite difference approximation 

The forward time central space (FTCS) approach is used to compute the partial 

differential equations numerically. FTCS is utilized because it is simple and reliable in 

computational fluid dynamics; the procedure first discretises the spatial domain. 

Subsequently, for each node 𝑥௜ at time 𝑡௝, the velocity component 𝑤 is computed. The 

method uses central differencing for the spatial derivatives (second-order accurate) and 

forward differencing for time to ensure stability and efficiency. 

డ௪

డ௧
≅

௪೔,ೕశభି௪೔,ೕ

௱௧
 , (3.31) 

డ௪

డ௫
≅

௪೔శభ,ೕି௪೔షభ,ೕ

ଶ௱௫
 , (3.32) 

డమ௪

డ௫మ ≅
௪೔శభ,ೕିଶ௪೔,ೕା௪೔షభ,ೕ

௱௫మ  , (3.33) 

𝑤௜,௝ାଵ = 𝑤௜,௝ +

௱௧൥஻భ൫ଵା௘ ୡ୭ୱ൫௖భ௧ೕ൯൯ା
భ

ೣ೔ ೃ
൭

భ

ೃ
௪ೣା஻೙ቆଵି௘

ష
ಾ
ೃ

|ೢೣ|
ቇ൱ା

భ

ೃమ௪ೣೣା
ಳ೙ಾ

ೃమ ௪ೣೣ ௘
ష

ಾ
ೃ

|ೢೣ|
ାீೝఏ೔,ೕିெೌ

మ௪೔,ೕ൩

ோ௘
, 

 

 

(3.34) 

𝜃௜,௝ାଵ = 𝜃௜,௝ + 𝛥𝑡 ቂ
ଵ

୔୰ ோమ ோ௘
ቀ

ଵ

௫೔
𝜃௫ + 𝜃௫௫ቁ +

ே௥

୔୰ ோమ ோ௘
𝜃௫௫ +

ா௖ ெೌ
మ

ோ௘
𝑤௜,௝

ଶቃ . (3.35) 

With boundary conditions  

𝑤௜
ଵ = 𝜃௜

ଵ = 0 𝑎𝑡 𝑡 = 0 , 

𝑤ேାଵ
௝

= 𝑤ே
௝

, 𝜃ேାଵ
௝

= 𝜃ே
௝

 𝑎𝑡 𝑥 = 0, 

𝑤ேାଵ
௝

= 0, 𝜃ேାଵ
௝

= 1, 𝑎𝑡 𝑥 = 1  . 

 

(3.36) 

3.4 Stability Criteria 

Numerical method starts with spatial domain discretising into 𝑁 + 1 grid points, by 

taking step size of 𝛥𝑥 = 1/(𝑁 + 1). Velocity component is computed over specific 
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instances 𝑡௝ at each of these spatial positions, where 𝑡௝ = (𝑘 − 1) 𝛥𝑡 and 𝛥𝑡 denotes the 

time step. The choice of 𝛥𝑥 and 𝛥𝑡 has a significant impact on the numerical method's 

stability. Step sizes of 𝛥𝑥 =  0.025 and 𝛥𝑡 =  0.00001 were selected after numerous 

numerical experiments to ensure a consistent and stable solution. 

3.5 Results and discussion 

Important simulation parameters is set to presenting the findings. These consist of the 

following: 𝑀 =  100 (regularization parameter), 𝑃𝑟 =  21 (Prandtl number), 𝛿 =

 0.1 (stenosis height), 𝑅𝑒 =  0.5 (Reynolds number), 𝐵𝑛 =  0.01 (Bingham number), 

and 𝐵₁ =  2 (mean pressure gradient). Additional values include: 𝑒 =  0.5 (amplitude 

of pressure), 𝐸𝑐 =  0.1 (Eckert number), 𝑀𝑎 =  0.5 (Hartmann number), 𝑁𝑟 =  1 

(thermal radiation), 𝑅₀ =  1 (normal artery radius), 𝐿 =  2 (artery length), and 𝛼 =

 90° (angle of the artery). The pressure frequency, 𝑐₁ =  2 𝜋, is time-related quantities. 

Up until time 𝑡 =  5, 𝛥𝑥 =  0.025 and 𝛥𝑡 =  0.00001. 

 
Fig. (3.2) shows the dependence of blood velocity on Grashof numbers (𝐺𝑟). As 𝐺𝑟 

increases, thermal forces overpower and enhance momentum transfer with enhanced 

overall fluid velocity. This illustrates how irregularities in the artery wall affect arterial 

blood flow: smooth stenosis promotes higher flow, whereas uneven stenosis decreases 

velocity because of increased resistance. With an increase in 𝐺𝑟, thermal buoyancy 

increases the velocity close to the arterial wall, resulting an increase in wall shear stress 

as shown in Fig. (3.3), smooth stenosis always produces more shear than irregular 

stenosis, showing to reduce resistance to flow and improved momentum transfer. The 

flow rate also improves with 𝐺𝑟 can be seen in Fig. (3.4), as smoother stenosis is less 

resistant as compared to irregular stenosis. On the other hand, Fig. (3.5) indicating that 

impedance is reducing with increasing 𝐺𝑟, as it varies in inverse proportion to flow rate, 
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thermal forces assist blood to overcome the constriction more effectively, particularly 

in smoother geometries. 

As the Hartmann number 𝑀𝑎 is higher, indicating greater magnetic field influence, the 

Lorentz force act as a resistive drag on blood flow. This causes the velocity to decrease, 

as well as reducing wall shear stress, indicated in the Fig. (3.6) and Fig. (3.7) 

respectively. The total flow rate reduce as the fluid motion dampened by magnetic 

damping, displayed in Fig. (3.8). As a result, impedance is increased, represented in 

Fig. (3.9), because the magnetic resistance contributes to the flow blockage, particularly 

in narrowed arteries, making it more difficult for blood to flow through, even more so 

in irregular stenosis. Fig. (3.10) and Fig. (3.11) show that as the Bingham number 

becomes larger, the blood is able to overcome its initial resistance to flow and flows 

more steadily. This results in increased velocity and less turbulent flow, decreasing 

overall resistance within the artery, even with stenosis. 

The Fig. (3.12) display impact of thermal radiation on blood temperature within a 

stenosed artery.  With the increase in radiation parameter 𝑁𝑟, temperature profile rises 

because there is increased radiative heat transfer, which enhances thermal diffusivity 

by contributing more thermal energy into the system. This temperature rise can also 

indirectly increase momentum diffusivity by decreasing fluid viscosity. Effect of 

change of Eckert number on temperature is demonstrated in Fig. (3.13). As indicated 

from the figure, by increasing 𝐸𝑐, temperature also increasing. In this respect, the 

Eckert number describes the self-heating of fluid (blood) due to the internal friction of 

the fluid and ultimately increasing temperature profile of fluid. 
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Fig.3. 2: Velocity profile for 𝐺𝑟. 

 
 

Fig.3. 3: Wall Shear Stress for 𝐺𝑟. 

 
 

Fig.3. 4: Flow rate for 𝐺𝑟. 

 
 

Fig.3. 5: Resistive impedance for 𝐺𝑟. 
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Fig.3. 6: Velocity profile for 𝑀𝑎, 𝐺𝑟 =

0.5. 

 

 
 

Fig.3. 7: Wall shear stress for 𝑀𝑎. 

 
 

Fig.3. 8: Flow rate for 𝑀𝑎, 𝐺𝑟 = 0.5. 

 

 
 

Fig.3. 9: Resistive impedance for 𝑀𝑎. 

 

 



 

31 
 

  
 

Fig.3. 10: Velocity profile for 𝐵𝑛. 

 
 

Fig.3. 11: Resistive impedance for 𝐵𝑛. 
 

 
 
 Fig.3. 12: Temperature profile for 𝑁𝑟. 

 
 

Fig.3. 13: Temperature profile for 𝐸𝑐. 
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3.6 Conclusion 

Effect of various parameters on flow dynamics in the artery with smooth and non-

smooth stenosed is explored in this study. The results show the critical roles that thermal 

and electromagnetic forces play in controlling the blood velocity, temperature, flow 

rate, wall shear stress, and impedance. The research also considers an unsteady part of 

the pressure gradient, making it into a more realistic model of blood flow dynamics.  

The key findings found while exploring them are: 

 Raising the Grashof number increases the thermal buoyancy, and this causes 

increased blood velocity, wall shear stress, and total flow rate, particularly in 

case of arteries with smooth stenosis. 

 Arteries with smooth stenosis are found to offer less resistance and allow for 

more efficient momentum transfer compared to those with uneven stenosis. 

 A more intense magnetic field, which is characterized by a higher Hartmann 

number, generates Lorentz forces that have the effects of decelerating the flow, 

decreasing velocity and shear stress, and increasing flow resistance. 

 By increasing the Bingham number blood velocity increases, this is because 

Bingham number helps the blood overcome initial yield stress, which supports 

a more stable flow through the constricted region. 

 Thermal radiation has significantly affected temperature inside the artery, which 

can reduce viscosity and promote easier blood flow through the stenosed region. 

These results help improve our understanding of abnormal blood flow and offer 

practical insights for doctors to diagnose and manage artery-related health issues.  
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