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PREFACE

Arterial blood flow is defined by unsteady, pulsatile flow governed by the values of the
Womersley number along with the ratio of inertial forces of the blood flow to viscous
forces. For a normal flow, the flow is laminar, but with the occurrence of secondary
flows due to disturbances such as arterial curves and bifurcations. Stenosis, which refers
to the narrowing of the artery, can interfere with normal flow, induce turbulence, and
result in severe conditions such as thrombosis. Increased shear stress at the site of
stenosis has the potential to activate platelets, risking complete blockage. It is crucial
to understand this hemodynamics for diagnostics, surgical planning, and medical device

design.

Understanding blood flow under diseases such as stenosis will be critical for guiding
efficient diagnosis, treatment, and medical device development. This is because
narrower arteries can cause circulation disruption, increase shear stress, and lead to
consequences like thrombosis or heart attacks [1]. The research into blood flow
dynamics of stenosed arteries has gained more attention from researchers over
the last century. Jamil et al. [2] examined the flow of blood through a stenosed, inclined
artery in a magnetic field by simulating blood as a Casson fluid. Patel and Patel [3]
examined the blood circulation in a stenosed artery using the fractional derivative for
time. A precise description of the temperature fields, magnetic particle velocity, and
blood velocity is obtained by expressing the set of governing equations. Majeed et al.
[4] observed heat and mass transfer by blood circulation containing magnetic particles
through a cylindrical tube. Moreover, Jamil et al. [5] examined non-Newtonian
magnetic blood flow with thermal radiation through an inclined artery. Tabi et al. [6]
examined a mathematical representation of blood flow when magnetic particles are

present. Lugman et al. [7] evaluated OHAM's performance in the analysis of how
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thermal radiation and magnetic fields affect blood flow inside cylindrical arteries.
Yakubu et al. [8] examined how the temperature distribution and blood velocity vary
in a straight circular cylindrical tube. Kot and Elmaboud [9] analyzed the unsteady flow
of a hybrid nano fluid, which is used to simulate blood dynamics, through a mild
constricted artery. The work represented blood as a non-Newtonian fluid to capture the
effects of gyrotactic microorganism motion in the bloodstream, providing a more
accurate understanding of complicated biofluid behavior. Raju et al. [10] focused on
examining the blood flow containing gold particles in two different geometries of
stenosed arteries by taking the effect of periodic body acceleration. Abbas et al. [11]
examined the unsteady circulation of blood in a constricted artery with body
acceleration and an externally applied magnetic field. The biomathematical
examination of blood flow in constricted tapering arteries was conducted by Akber, N
S. [12]. To explore the important impacts of increasing blood velocity and associated
hemodynamic stresses on the vascular endothelium (inner lining of arteries) in dogs,
Fry, D. L. [13] employed an intra-aortic device to induce controlled increments in
turbulence and shear stress. The researchers employed hydrodynamic modelling and
histologic study to find a critical shear stress level of 379 = 85 dynes/cm2, above which
endothelial cells quickly exhibited evidence of structural injury, including cytoplasmic
swelling, nuclear deformation, and erosion. The findings emphasize how mechanical
forces, such as turbulence and laminar shear stress, can disturb endothelial homeostasis;
how hemodynamic factors play a causative role in vascular diseases such as

atherosclerosis.

Subsequently, physicians have been able to study blood flow in patients with clinical
devices such as Doppler ultrasound and angiography. These studies support earlier

findings that plagues generally develop in areas of low shear stress instead of high shear



stress under conditions of steady flow. Ku et al. [14] indicated that significant

oscillations in the wall shear direction may enhance atherogenesis.

Early detection and treatment of heart disease depend on the understanding of blood
circulation in constricted arteries. As a non-Newtonian fluid and examining how it
behaves via the constricted arteries, the work provides significant understanding of how
different physiological parameters affect flow characteristics. The findings can be
utilized in the development of next-generation biomedical devices, such as MEMS-
based flow sensors, which could offer a non-invasive means of monitoring restenosis.
This could significantly reduce repeated procedures and improve long-term patient

carc.

The main objective of our research is to simulate and examine blood circulation in a
constricted artery by considering Bingham fluid. The goal is to simulate the Bingham
plastic fluid flow in a symmetric stenotic artery. Provide graphical visualization of the
following parameters: flow rate, flow resistance, wall shear stress, axial velocity, and
temperature distribution. Through the application of the finite difference method to
model and visualize flow characteristics during variable physiological conditions, to

analyze the physical effect of stenosis on blood circulation.

This thesis comprises three chapters. Details are as follows:

Chapter one deals with preliminarily that will be used in subsequent chapters. Chapter
two treats computational biomedical simulations of hybrid nanoparticles on unsteady
blood hemodynamic in a stenotic artery. Chapter three is on numerical evaluation of
blood flow and heat transfer of non-Newtonian fluid in a vertical artery with

atherosclerosis.
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Chapter 1

Basic Definitions

1.1 Introduction

Fluids are usually classified in two categories one is Newtonian, and the other one is
non-Newtonian fluids in fluid mechanics. For instance, gasoline, alcohol, and water are
considered Newtonian fluids because they follow Newton’s law of viscosity. On the
other hand, Paint, ketchup, honey, blood, and other non-Newtonian fluids do not have
the linear relationship. Although exhibiting a fluid-like character, blood exhibits
complex rheological behavior similar to that of a non-Newtonian fluid, especially upon
variation in shear conditions, because it has suspended elements such as red and white

blood cells.

A fundamental understanding of blood flow is necessary in order to know how
cardiovascular conditions impact human health. Arteries, veins, and the heart constitute
the circulatory system, functioning together to facilitate the flow of oxygenated as well
as deoxygenated blood. Blood from the body enters the right atrium through the
superior as well as inferior vena cava. After passing through the tricuspid valve and
into the right ventricle, then it is pumped into the pulmonary arteries and after that into
the lungs to receive oxygen. After returning via the pulmonary veins to the left atrium,
oxygen-rich blood enters the left ventricle by the bicuspid (mitral) valve. Ultimately,
the aortic valve and the aorta pump it to the remainder of the body. Any constriction of
the arteries disrupts this critical mechanism, reducing blood flow and raising the risk of

significant cardiovascular problems.



Coronary heart disease, particularly the formation of stenosis by atherosclerosis,
disrupts blood flow and results in serious cardiac conditions such as heart attacks.
Although a common treatment involves angioplasty with stent implantation, the issue
of restenosis, wherein the artery again narrows following treatment, is still a serious
problem. Current methods of detecting restenosis involve invasive procedures, which
are accompanied by further health risks and cannot be used in real-time applications. A
non-invasive, real-time, and reliable solution is required for improved patient outcomes.
Effective design of these solutions requires an understanding of the circulation of blood

in constricted arteries by considering the non-Newtonian behaviors of blood.

The modeling of blood circulation in constricted arteries by utilizing the Bingham fluid
model is our main research goal. The artery is supposed to be stenotic, simulating actual
pathological situations. In the mathematical modelling of our problem, continuity,
momentum, and energy equations are included for cylindrical coordinates. MATLAB
is used for computational results and to analyze the outcomes in tabular and graphical
form. It allows a comprehensive analysis of how different parameters affect blood

circulation, especially when stenosis in the arteries is present.

1.2 Medical background and terminology

In this chapter an essential background of this work is provided. This chapter includes
biological experiments of terminology, literature surveys, general equations, and
solution methodology. This research purpose is to model the motion of blood in
constricted arteries as a result of stenosis, when the buildup of plaque influences
effective blood flow. The plaque comprises fat, cholesterol, and other chemicals and
blocks blood from flowing into the heart. Chronic plaque deposition, also called
atherosclerosis, can narrow the inner diameter of the artery, leading to serious

impairment of blood flow. Heart attacks are the major cause of mortality in US adults,

2



primarily due to blockage of coronary arteries through atherosclerosis. Here, the plaque
ruptures or becomes dislodged, creating a blood clot (thrombus) that blocks the artery.
Acute occlusion may lead to a lethal heart attack. Understanding of blood circulation
in constricted arteries is significant for the prediction and development of disease as
well as identify effective diagnostic and treatment techniques. The outcome of this
research will contribute to the biomedical engineering field by incorporating principles

from fluid dynamics, with the implications to stent design, and surgical planning.

Angioplasty is one of the most common treatments for reopening clogged arteries that
have narrowed. In this minimally invasive surgery, a balloon catheter is inserted and
expanded to reopen the artery, and a stent or a mesh tube is usually put in to keep the
artery open. Restenosis (re-blocking of the arteries) can occur after stent insertion,
particularly in those with underlying disorders. Restenosis is often discovered by more
invasive testing, which increases the danger and pain. A more realistic method is to
combine MEMS with stents. A tiny tracker can be attached to the stent to wirelessly
send information to medical staff about things like blood pressure or flow rate.
Repeated procedures would not be necessary if restenosis were to be identified early
because of this non-invasive monitoring. Nevertheless, there are major engineering
challenges in creating such a device. In order to be inserted into the artery without
obstructing blood flow, the sensor would have to be small enough. Additionally, due to
their size and safety issues, traditional battery-powered devices are complex. Utilizing
the blood flow itself to power is a more realistic approach. Saving energy aside, a
passive sensor design that would only report back when it senses an external signal will

make the system simpler, safer, and more reliable.



1.3 Governing equations for incompressible fluid flow

To learn more about how blood moves through constricted arteries, scientists began
utilizing mathematical models in the 1970s and 1980s. These models made assumptions
about Newtonian fluid dynamics, vessel walls, and steady flow. They also used simple
designs, such as tubes with circular or elliptical narrowing. By using this method,
researchers were able to develop practical equations that characterize blood flow
patterns [15,16]. Blood is frequently represented as an incompressible fluid, which
means that its density does not change while it flows. Such fluid motion is governed

by the following basic equations:

1.3.1 Continuity equation for incompressible fluid

According to the continuity equation, across a control volume, the total mass flux is

equal to the rate of mass change within that volume [17].

V-v=0. (1.1)
Where V is velocity, under the assumption of incompressibility, this holds for

Newtonian and non-Newtonian fluids.

1.3.2 Momentum equation for incompressible fluid

Sum of all forces acting on fluid is equal to its rate of change of momentum.

p(5e+ WV -VIV) = —Vp+uv2v +f. (1.2)
p (% +V-V) V) is inertial force, pressure gradient is presented by Vp, uV?2V is

viscous forces, and f is a body force.

Because of its nearly constant viscosity and linear shear-stress-strain-rate connection,

blood is frequently considered a Newtonian fluid when flowing in large arteries. While



in a diseased artery, blood behaves like a non-Newtonian fluid due to its variable

viscosity in diseased region.

1.3.3 Energy equation for incompressible fluid

In bioheat modelling and fluid dynamics, the energy equation controls the temperature
change in a flowing fluid. When there is incompressible Newtonian flow, such as blood

in large arteries, convection and conduction cause changes in thermal energy.

pey (5 +VVT) = kP2T. (1.3)
Where T is temperature, density is p, specific heat is c¢,, k represent thermal
conductivity, and V is velocity. This equation illustrates the conservation of thermal

energy; conduction and internal heat creation from viscosity are on the right side, while

unsteady and convective heat transfer are on the left.

1.3.4 Bingham plastic model and papanastasiou regularization

Fluids that act like rigid bodies under low stress but flow like viscous fluids when a

yield stress is exceeded are described by the Bingham plastic model.

A, =0, S<t, (1.4)
S = [HO+%]A1, S>1,°

when § < 7,, this introduces singularity, which complicates the numerical simulation.

To address this, Papanastasiou, T. C. [18] proposed regularization which is

(1_e—mlvl)] 4 (1.5)
14

S=|u +7 1-

Where m is a regularization parameter (m = 100~1000), this model ensures

numerical stability.



1.4 Numerical techniques

For those situations where analytical solutions are impossible, numerical methods play
a key role in modeling blood flow in representative approximations of vascular
geometries. Through these methods, complex, pulsatile, and the Navier-Stokes
equations can be solved to analyze non-Newtonian flow using discretization of the
domain. One of the early methods that can be used for simple geometries with
structured grids is the Finite Difference Method (FDM). To understand wall shear stress
and pressure distribution, it has been effectively applied to simulate blood circulation

in stenosed arteries under pulsatile flow conditions [19].

1.5 Significance of blood flow modeling

A number of studies show the significance of blood circulation modeling in the arteries
to understand cardiovascular physiology and analyze disease development. It is
commonly known that complicated geometries and different vessel wall characteristics
affect arterial blood flow, which is unsteady. Mathematical models can capture these
dynamics, and they can provide us with information on wall shear stress, pressure
gradient, as well as flow rate. Such modeling facilitates the creation of medical
equipment and diagnostic tools while offering an easy method to study circulatory

activity.



Chapter 2
Computational Biomedical Simulations of Hybrid Nanoparticles on

Unsteady Blood Hemodynamic in a Stenotic Artery

2.1 Introduction

In this chapter, we discuss how hybrid nanoparticles (Ag—Al:Os) affect blood
circulation within a constricted artery. First, the governing equations for blood flow are
converted into a dimensionless form and then solved numerically using a finite
difference method, considering the assumption of mild stenosis. From our analysis of
the hybrid silver—aluminum oxide nanoparticles, we observed that these particles help
lower resistance to flow. We also examine the effects of other factors, such as the slip
parameter (ws), variable viscosity (o), and the nanoparticle shape factor (m), on the
velocity and temperature profiles of blood. Further, source/sink parameter also affects
the flow and discovers that they can significantly impact blood dynamics. Through this
study, our simulations will help us to understand how these nanoparticles might

improve blood flow in patients with artery blockages.



2.2 Geometry of the problem

Fig.2. 1: Geometry of the problem.
We model blood moving through the artery as unsteady, laminar, incompressible, and
axisymmetric. To describe the artery’s geometry, we use cylindrical coordinates
(r,0,z). The artery’s radius R(z) is defined by a piecewise function so that it covers

both the normal and aneurysmal sections.

) j’(a o) <1 _ (g_a) <1 + cos (Zl—l") <z—— dy; — (%)))).du <zsdy+l @.1)
|
L

(a+132), otherwise
here, d;; is the axial location of the center of the i‘" aneurysmal region, length is [; of
the aneurysmal region, normal artery radius is a, the tapering parameter is 3", height of

the aneurysm 6*. Stenosis (6* > 0), and Aneurysm (§* < 0).

2.3 Governing equations

In an artery with stenosis and aneurysms, the temperature and velocity fields for the

unsteady blood flow are as follows:



= [u(r,zt),0,w(r,zt)] , T=T(,zt). 2.2)

Here, u(r, z, t) is the radial velocity component and w(r, z, t) is the axial component.

ou, w, 0w _ 23
a7t itz = 0, (2:3)
CL VLU N 19 (24)
Phnf (af twaEtu ar‘) ==t (az‘ (Sr2) +- For (TSrr))
2wyl = 2 2.5)
Phnf (af twozt af) =TT ( - (Sz) + = ~57 (T5r2)>
V) rns8(T = T1),
_ 9T , _ 9T T 19T , 8%T 2.6
G p)hnf( twotu ) khnf( +;§+§)+QO_ (2.6)
where
ou ow ou | oW
S = Za_;fﬂhnfa Sz = za_gﬂhnf» and Srz = Upns (a_bzf—i_a_‘;/)'

The heat absorption or generation constant parameter is Q,, hybrid nanofluid viscosity

IS Upns, kpny present thermal conductivity, the density is pp,f, thermal expansion

coefficient is  (p¥)pns, and heat capacitance is (p Cp)hn P

The above equations are converted into dimensionless form using the following

transformations:

7 z w R Pa? Lo T-T,
T'=—,Z=—,W=—,R=—,p= YU = - ,9= ,Srr=
a lo Uy a Uoloﬂo [ Uy Tw—T1
l l a Uot ga’rp
—— —— 577, S22 ° Sz Sr2 = ——Srz U = —,Gr = . (Tw —T1), Pr = 2.7
Uoto Ut Uoto a Uons
Cpuf R anpf ﬁ Qoaky _ Wg
k Uy Tw=T" ' 5 Uy



. . . . . . .8
When we put these dimensionless variables into the equations, while assuming =< 1
0

and % ~ 0(1), the resulting system becomes:
0

™ _o, (2.8)
0z

»_o , (2.9)
or

Phnf 0w _ _ 0P 1-106 1ow | o?w\ | (PVnns (2.10)

Pr Reoe =% (1-¢1)25(1 - ¢2)?5 (r or 6r2) (pv)f Gr9,
Pr Re —(pcp)h"fkh_"f% — (l% 62_9) iﬁ (2.11)
(pcp)f ke ot “\ror or2 Kpng'
The pulsatile pressure gradient is defined as
A Y t), t>0 (2.12)
5, = A 22 cos(a)p ) , t>0.

Here, A, is the constant (steady) component of the pressure gradient, A,, represents
the pressure oscillation that raises systolic and diastolic pressures, and pulse rate
frequency is w,. When converted to dimensionless form, this same pressure gradient

becomes,

—Z—}ZJ = B;[1 + e cos(c t)].

A Ay1R3 . .
Where e = Aﬁ,and B, = ﬁ Below are the equations for volumetric flow rate, wall
11 oYo

shear stress, and flow resistance.

- _ ow 2.13
Ts = Mf (ar)T=R 5 ( )
Qr =2m fonr dr , (2.14)
4= U 2.15)
Qr
where
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2.16
R(z):(1+ZZ)<1—g(1+0052n(z—di—%))>,dst d+1, (2.16)
with
_ % 'y
d;, = L -
To utilize the effect of geometry we used transformation (x = R(TZ)).
Phnf Ret = Lm0 1 (1w | 0w 2.17)
s Re e = Bill +ecos(e)] + a5 e (x x 6x2) +
(PYInng
vy 77
(Pt ns knng 06 _ 1 (106 | 926 kf (2.18)
FrRe Ge), Tk ot - G Rl
—_1(w 2.19
TS - R (6x)x=1 ’ ( )
Qr =2m R* [, wx dx, (2.20)
5 = U5 2.21)
Qr
where,
R(z) =(1+2¢ )(1 - (1 +c052n(z—di —l))é),d <z<d+1, (2.22)
2/) 2
with
_ % Tl
dl - li )] ( a

2.4 Numerical approach

The FTCS approach, is used to compute the partial differential equations numerically.

FTCS is utilized because it is simple and reliable in computational fluid dynamics; the

11



procedure first discretises the spatial domain. Subsequently, for each node x; at time t;,

the velocity component w is computed. The method uses central differencing for the
spatial derivatives (second-order accurate) and forward differencing for time to ensure

stability and efficiency.

W Wijr1mWij (2.23)
ot — At >

W Witrj"Wi-1j (2.24)
ax 24x ’

Pw  Wir1,j=2Wij+Wi—yj (2.25)
ax2 — Ax? ’

Dhn s s (2.26)
%:¢2&+<(1_¢1)+ ¢1ﬂ>(1_¢2) ,
f pr Pr
OVans _ . (PY)s2 _ (PY)s1 _ (2.27)
(P)/)f - ¢2 (p]/)f + <(1 ¢1) + ()bl (PV)f) (1 ¢2) 5
(Pe0) s (pcp)., (pcy) (2.28)
no— S2 4 1 — + s1 1 — ,
(pcp)f ¢2 (Pcp)f ( (:bl) ¢1 (Pcp)f ( ¢2)
kg _ kst (n—Dky—(n-Da(ks—ksz) _ ksa+(n—Dky+$a(ks—ks1) (2.29)
kg k52+(m—1)kf+¢2(kf—k52) k51+(m_1)kf_(m_1)¢2(kf_ks1) p
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Wij+1 = Wi +

. 1-100; j 1/(1 PV g (2.30)
At [By[1+e cos(cqt;)]+ A= P025G - 5975 F(x—iwx+wxx)+< wny Gr6;j
Phnf ) pe ’
Pf
Knnf| 1 (1 kg 2.31
st Re(x—iex+exx)+—khnfﬁ] (2.31)
i,j+1 i,j (pcp)hnf .
(pcp)f
Boundary conditions are:
wl=6=0att=0,
J ., gl —npJ — 2.31
Wi, =w;, 0, =06 atx =0, (231)

i _ i _ _
Wy =00y, =Latx=1.

2.5 Stability Criteria

Numerical method starts with spatial domain discretising into N + 1 grid points, by
taking step size of Ax = 1/(N + 1). Velocity component is computed over specific
instances t; at each of these spatial positions, where t; = (k — 1) At and At denotes the
time. Stability of this method is highly sensitive to choice Ax and At. Ax = 0.025 and
At = 0.00001 were chosen after various numerical experiments, as these step sizes

ensure a consistent and stable solution.

2.6 Results and discussion

Velocity profiles for various values of § and 7, are shown in Figs. (2.2) and (2.3). The
plots indicate the same behaviour for both parameters: the velocity increases for both
parameters 8 and 1. This indicates that the velocity is increasing both parameters.

Physically, this means that increased values of f and 7, decrease the blood's viscosity,

13



or in other words, reduce the internal resistance between particles. Figs. (2.4) and (2.5)
show how the slip parameter (w,) and nanoparticle shape (m) affect velocity profiles.
The findings indicate, velocity increases by increasing wg as well as m, e.g., from bricks
to cylinders or platelets. Such properties can be useful in the optimization of blood

circulation during medical interventions.

Figs. (2.6) and (2.7) show how f and m influence the temperature profiles. They exhibit
a similar trend; temperature rises as either § or m rises. Physically, a greater f means
that there is stronger internal heat generation (source) or weaker heat absorption (sink),
resulting in higher temperatures. The shape parameter m characterizes the geometry of
nanoparticles that are dispersed in blood. When m increases, meaning that particles are
more complicated, non-spherical, thermal conductivity increases, and temperature
profiles increase. This shows how the shape of nanoparticles is essential in increasing
the transport of heat, particularly in areas of unusual arterial structure such as stenoses

and aneurysms.

Fig. (2.8) demonstrates how wall shear stress effected by variations in . Graph shows
wall shear stress increases significantly with increasing . In Fig. (2.8), this trend is
easily observable. Physically, the flow near the artery wall is enhanced by raising S,
especially in a stenosed region. Wall shear stress increased due to enhancing velocity
gradients. In Fig. (2.9), the impact of f on blood particles' volumetric flow rate is
displayed. The graph shows a similar as the velocity profiles show an increasing

function.

Fig. (2.10) illustrates the outcomes of resistance to flow. In equation (2.21), relationship
of impedance and flow rate is defined, revealed the inverse relationship of resistance to

flow with flow rate, and that is why these data are moving in the reverse direction of

14



flow rate as predicted. Each outcome is calculated for hybrid nanofluid. It is well
understood that with any increase in any of the parameters (f,n,, and Gr), the

impedance data follow a decreasing trend that is contrary to flow rate.
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2.7 Conclusion

In this research, parametric impact of hybrid nanofluid flow (Ag — Al,03/blood)
through a stenosed artery is examined. Here are some significant findings about

hemodynamic and thermal dynamics under varying physical conditions:

e The hybrid nanofluid's velocity profiles are positively impacted by an increase
in the slip parameter (ws), variable viscosity (7o), source/sink strength (), and
nanoparticle shape factor (m). The flow performance is improved by platelet-
shaped particles.

e The addition of hybrid nanoparticles helps improve flow dynamics, as indicated
by the rise in wall shear stress with  and Grashof number (Gr).

e Increasing [ results in a significant increase in blood flow rate, suggesting that
source-driven acceleration may positively impact flow behavior in stenotic

regions.
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o As f3,m0, and Gr increase, the resistance to flow decreases, showing an inverse
pattern with flow rate and helping to promote smoother circulation.
e The rise in temperature profiles with  and nanoparticle shape factor (m)
highlights how non-spherical nanoparticles can improve thermal conductivity.
These findings support the possibility of improving blood flow and temperature control
through the optimization of nanoparticle shape, viscosity fluctuation, and boundary slip,

providing new information for biological applications in cardiovascular treatments.
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Chapter 3

Numerical Evaluation of Blood Flow and Heat Transfer of Non-
Newtonian Fluid in a Vertical Artery with Atherosclerosis

3.1 Introduction

In the biological sciences, it is crucial to experimentally and theoretically predict blood
flow in stenosed arteries. Although humankind has greatly benefited from the
groundbreaking discoveries and advancements in medicine and medical sciences,
cardiovascular illnesses continue to be the leading cause of death, even in developed
countries. Atherosclerosis promotes due to low-density lipoprotein, a chronic
inflammatory reaction in the artery walls caused by the accumulation of macrophage
white blood cells. Plaque, therefore, develops in the arterial blood vessels' interior
walls. The current work examines the unsteady blood flow by using Bingham fluid in
a vertical stenosed artery with effect of magnetic field. Flow equations are investigated
in a cylindrical coordinate system. Governing equations are computed numerically by
explicit finite difference approach. The effects of different parameters are shown

graphically and discussed in detail.

3.2 Problem formulation

We study the unsteady, incompressible, pulsatile flow through vertically artery. The
Bingham fluid model is used to analyze blood flow. Cylindrical coordinates (r, 6, z)
are used to express radial, circumference, and direction of flow. In Fig. (3.1) geometries

are shown.
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Fig.3. 1: Geometries of the problem.

Smooth stenosis is shown in figure. A.

- - (e (D e-a- () sz,

R,, otherwise (3.1)

Irregular stenosis is shown in figure. B.

R(z) =
{RO - 26 [cos (21r (Z_%a - %")) - ﬁ cos ((z_— d— %") 1771)],6? <z<d+l, (3.2)
R,, otherwise '

In these equations, R, is radius of artery without stenosis, axial coordinate is presented
by Z, R(z) is radius, d is region where stenosis starts, height is &, and length of stenosis

is l,. As flow is axisymmetric, the circumferential direction is neglected.
We have used the Bingham fluid model to analyze blood flow. Cauchy stress tensor is:

T=-pl+r. (3.3)
Where pl is spherical and S is deviatoric part of T. A simplified rheological relationship

for Bingham fluid is,
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A; =0, S<rt, (3.4)
S = [yo+f7y],41, S>1,°
If 7, = 7 then y = 0 and there will be a % form generate. But in our model, we are
using only the case when 7,, < S but we will face a singularity in our problem when
7, = §, To address this problem, we used Papanastasiou's regularization to resolve the

singularity in the model.

S =|uo+1, w] A, (3.5)

14

When m — oo, our problem becomes the § = [,uo + T—y] A, but we won't take m so large
14

that it makes our problem one from the past when singularity will occur. We will take
m so large that it will have a significant enough effect on our problem to address the

singularity with little difference to the results.

Rate of strain and deformation tensor are:

V= /% tr(4,%), Ay = (V)T + (VV) respectively.

Governing equations are:

ou, 0w _ 3.6
ar‘+f+az‘_0’ .

o o Lo 3.7
(G g+ n30) =~ %+ (S5 + 15 65)). -

p(Z+w+all)=-L+ (%(sﬁ) +li(r'5r—z)> +pgp(T—T) — GF

£ o7 0z 7 oF
oBZw ,
oT |, _ 0T , _ 9T\ _ %T 19T 82T aqr 2—2 3.9
(o) (G + W55+ u57) =k (S + 355 +552) — S5 + oBIW? 39)
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Associated boundary conditions are:

w(R,t) = 0,6”_”;;"” = 0,W(r,0) = 0,
(3.10)
T(R,t) =122 =0,T(r,0)=0.

S#, Sz, and S are tangential, axial, and radial stress of Bingham fluid respectively.

S =25z |0 + , . 2 / ’ 1
ou , 0w ou u ow
sy oy ) G1

Sﬁ=22—j,u0+ — . . /:
e CRCRCS 6.12)

e G0 ) | 613

Where P, k,p, T, 1, g t, Cp, 0, and f represents pressure, thermal conductivity, density,

temperature, dynamic viscosity, gravitational acceleration, time, specific heat capacity,

electrical conductivity, and thermal expansion.

30" (0T

4
Here, q, = — e (?) is radiative heat flux.
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The nondimensional variables are introduced by Tripathi et al. [20]

. R 4 d w PR2 7 Iyl
r=—,R=—,d=—,W=—,p= ==, U = —,
R R [ U Uol [ o*U
0 0 0 0 oloto 0 0 (3.14)
_ TN _ oo ¢ __bo¢ ¢ _ R . _ U
0 TW—Tl’Srr ~ Uopo S77 S22 Uotto Szz) Srz Uotto Szt Ro "

Using the variables mentioned above and the hypotheses 2—* « 1 and % ~ 0(1), the
0 0
pulsatile pressure gradient presented by Handford, S. W. [21] is:

oP _

Py - A11 + Azz COS(a)pt) ) t> 0 . (3’15)

In which w,, is the pulse rate frequency, A;; represents steady pressure gradient, A,

represents pressure oscillation that raises systolic and diastolic pressures.
In dimensionless form Pressure gradient is:
]
—a—I; = B;[1 + e cos(c;t)] . (3.16)

A Ay,R3 . .. .
Where e = Aﬁ,and B, = ﬁ The flow equations in dimensionless form are
11 oYo

expressed as follows:

ow _ 0, 3.17)
0z
9 _ 0, (3.18)
or

d 19 d —_m|2w (3.19)
Rea—vtv = ;5<r <% + B, (1 —e M|6r|>)> + G0 — M>w+B;[1 +
e cos(cit)] ,
1 (100 sy w20 poud,; (3.20)
dt  PrRe \rdr ' 9r2 PrRe 072 Re we,

ow 321

srzz(";—”:+3n(1—e‘M|W)>. 3:21)
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In non-dimensional form geometry is:

— —_4-H)\& (3.22)
R(z)={1 (1+c0527r(z d 2))2,d£zsd+1.
1, otherwise
To utilize the effect of geometry we used transformation (x = $)

ow _ 1 @ ow _Mjow (3.23)
Reg = ma(x <a+ RB, (1 —e R|6x ))) + G0 — M§W+Bl[1 +
e cos(cit)] ,
L S € Ty S W (3.24)
dt  PrR2(z)Re \x dx = 9x2 Pr R2(z) Re 0x? Re we.
Or
ow 1 (10w _Mjow 1 82w B,M 92w MW
Rea—ﬁ(zaﬁn(l ~ 7Rl ))"’Eﬁ*’ a2 ool +
(3.25)
G0 — M2w+B;[1+ e cos(c;t)] ,
L S € T S W (3.26)
8t  PrR2(z)Re \x dx = 9x2 Pr R2(z) Re 0x? Re we.
The transformed boundary conditions are:
w(x,0) =0, 8(x,0)=0, att =0,
w0 _ 0, 26(0.t) _ 0, atx =0, 3.27)
0x ox

w(l,t) =w, 0(1,t) =1, atx = 1.

The equations for volumetric flow rate, wall shear stress, and flow resistance are:

19 _Mjow (3.28)
TS=<E£+Bn(1—e Rlox )> :
x=1
Qr = R?2m [} wx dx | (3.29)
PP ) (3.30)
Qr
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3.3 Finite difference approximation

The forward time central space (FTCS) approach is used to compute the partial
differential equations numerically. FTCS is utilized because it is simple and reliable in
computational fluid dynamics; the procedure first discretises the spatial domain.
Subsequently, for each node x; at time t;, the velocity component w is computed. The
method uses central differencing for the spatial derivatives (second-order accurate) and

forward differencing for time to ensure stability and efficiency.

W  Wijr1~Wij (3.31)
at — At ’

W  Wit1j~Wi-1j (3.32)
ax 24x ’

0w Wit1,j~2Wij+Wi—yj (3.33)
0x2 — Ax? ’

Wij1 = Wij+

1 (1 M), 1 BnM Ml 2
At|B1(1+ecos(citj))+— ZWx+Bn| 1-€ R +azWax+pz Wax € R % +Gr0yj—Miw

XiR
Re T (3.34)
_ 1 1 NT Ec M% 3.35
O 1 = 01+ 8¢ [y (560 + Bux) + gy O + " W] 9
With boundary conditions
wl=0}=0att=0,
wh. =wl6l  =6latx=0, (3.36)

joo_ ) - -
Wyy, =00y, =Latx=1.

3.4 Stability Criteria

Numerical method starts with spatial domain discretising into N + 1 grid points, by

taking step size of Ax = 1/(N + 1). Velocity component is computed over specific
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instances t; at each of these spatial positions, where t; = (k — 1) At and At denotes the
time step. The choice of Ax and At has a significant impact on the numerical method's
stability. Step sizes of Ax = 0.025 and At = 0.00001 were selected after numerous

numerical experiments to ensure a consistent and stable solution.

3.5 Results and discussion

Important simulation parameters is set to presenting the findings. These consist of the
following: M = 100 (regularization parameter), Pr = 21 (Prandtl number), § =
0.1 (stenosis height), Re = 0.5 (Reynolds number), Bn = 0.01 (Bingham number),
and B; = 2 (mean pressure gradient). Additional values include: e = 0.5 (amplitude
of pressure), Ec = 0.1 (Eckert number), Ma = 0.5 (Hartmann number), Nr = 1
(thermal radiation), Ry = 1 (normal artery radius), L = 2 (artery length), and a =
90° (angle of the artery). The pressure frequency, c; = 2 m, is time-related quantities.

Upuntiltimet = 5, 4x = 0.025 and At = 0.00001.

Fig. (3.2) shows the dependence of blood velocity on Grashof numbers (Gr). As Gr
increases, thermal forces overpower and enhance momentum transfer with enhanced
overall fluid velocity. This illustrates how irregularities in the artery wall affect arterial
blood flow: smooth stenosis promotes higher flow, whereas uneven stenosis decreases
velocity because of increased resistance. With an increase in Gr, thermal buoyancy
increases the velocity close to the arterial wall, resulting an increase in wall shear stress
as shown in Fig. (3.3), smooth stenosis always produces more shear than irregular
stenosis, showing to reduce resistance to flow and improved momentum transfer. The
flow rate also improves with Gr can be seen in Fig. (3.4), as smoother stenosis is less
resistant as compared to irregular stenosis. On the other hand, Fig. (3.5) indicating that

impedance is reducing with increasing Gr, as it varies in inverse proportion to flow rate,
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thermal forces assist blood to overcome the constriction more effectively, particularly
in smoother geometries.

As the Hartmann number Ma is higher, indicating greater magnetic field influence, the
Lorentz force act as a resistive drag on blood flow. This causes the velocity to decrease,
as well as reducing wall shear stress, indicated in the Fig. (3.6) and Fig. (3.7)
respectively. The total flow rate reduce as the fluid motion dampened by magnetic
damping, displayed in Fig. (3.8). As a result, impedance is increased, represented in
Fig. (3.9), because the magnetic resistance contributes to the flow blockage, particularly
in narrowed arteries, making it more difficult for blood to flow through, even more so
in irregular stenosis. Fig. (3.10) and Fig. (3.11) show that as the Bingham number
becomes larger, the blood is able to overcome its initial resistance to flow and flows
more steadily. This results in increased velocity and less turbulent flow, decreasing
overall resistance within the artery, even with stenosis.

The Fig. (3.12) display impact of thermal radiation on blood temperature within a
stenosed artery. With the increase in radiation parameter N, temperature profile rises
because there is increased radiative heat transfer, which enhances thermal diffusivity
by contributing more thermal energy into the system. This temperature rise can also
indirectly increase momentum diffusivity by decreasing fluid viscosity. Effect of
change of Eckert number on temperature is demonstrated in Fig. (3.13). As indicated
from the figure, by increasing Ec, temperature also increasing. In this respect, the
Eckert number describes the self-heating of fluid (blood) due to the internal friction of

the fluid and ultimately increasing temperature profile of fluid.
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3.6 Conclusion

Effect of various parameters on flow dynamics in the artery with smooth and non-
smooth stenosed is explored in this study. The results show the critical roles that thermal
and electromagnetic forces play in controlling the blood velocity, temperature, flow
rate, wall shear stress, and impedance. The research also considers an unsteady part of
the pressure gradient, making it into a more realistic model of blood flow dynamics.

The key findings found while exploring them are:

Raising the Grashof number increases the thermal buoyancy, and this causes
increased blood velocity, wall shear stress, and total flow rate, particularly in
case of arteries with smooth stenosis.

e Arteries with smooth stenosis are found to offer less resistance and allow for
more efficient momentum transfer compared to those with uneven stenosis.

e A more intense magnetic field, which is characterized by a higher Hartmann
number, generates Lorentz forces that have the effects of decelerating the flow,
decreasing velocity and shear stress, and increasing flow resistance.

e By increasing the Bingham number blood velocity increases, this is because
Bingham number helps the blood overcome initial yield stress, which supports
a more stable flow through the constricted region.

e Thermal radiation has significantly affected temperature inside the artery, which

can reduce viscosity and promote easier blood flow through the stenosed region.

These results help improve our understanding of abnormal blood flow and offer

practical insights for doctors to diagnose and manage artery-related health issues.
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