0098 Y

Architectural Framework for Active &W(g}s
T F5¥%

Developed By
Adnan Igbal

Supervised By
Dr . M.Sikandar Hayat Khiyal
Dr. Muhammad Sher

Department of Computer Science
Faculty of Applied Sciences
International Islamic University, Islamabad.

(2004)

.-

In the name of Almighty Allah,
The most Gracious,
The most Merciful.

Department of Computer Science
International Islamic University, Islamabad.

Final Approval Dotz 19,/&,/0,41

It is certified that we have completely read the thesis, titled “Architectural framework

for active networks” submitted by Adnan Igbal under uniVersity registration number

36-CS/MS/01. 1t is our judgmen@ that this thesis is of sufficient standard to warrant its

acceptance by International Islamic university, Islamabad, for the degree of Master of

Science.
Committee
Extern.al Examiner Q’ W/
Dr. Abdul Sattar —_— —

Internal Examiner

Dr. Tauseef-ur-Rehman
Assistant Professor,

Department of Computer Science,
International Islamic University,
Islamabad.

Supervisors

Dr. M. Slkand.ar ‘Hayat Khlyal

Head,

Department of Computer Science,
International Islamic University,
Islamabad.

Dr. M. Sher

Assistant Professor,

Department of Computer Science,
International Islamic University,
Islamabad.

Architectural Framework for Active Networks Dedication

Dedication

Dedicated to my Parents.

Architectural Framework for Active Networks Dissertation

A dissertation submitted to the
Department of Computer Science,
International Islamic University, Islamabad
as a partial fulfillment of the requirements
for the award of the degree of
Master of Science

ii

Architectural Framework for Active Networks Declaration

Declaration

1 hereby declare that this software, neither as a whole nor as a part thereof has been
copied out from any source. It is further declared that I have developed this software
entirely on the basis of my personnel efforts made under the sincere guidance of my
teachers. No portion of the work presented in this report has been submitted in support of

any application for any other degree or qualification of this or any other university or

institute of learning.

Adnan Igbal
36-CS/MS/01

11t

e .

Architectural Framework for Active Networks Acknowledgments

Acknowledgments

All praises to Almighty Allah, the most Merciful, the most Gracious, without whose help
and blessing, I was unable to complete the project.

Thanks to my parents who helped me during my difficult times. And it is due to their care
and love that ii am as this position today.

Thanks to my project supervisors Dr. M. Sikandar Hayat Khiyal and Dr. M. Sher, their
sincere efforts helped me to complete my project successfully.

I acknowledge all the persons for their help in this project.

Adnan Igbal

v

Architectural Framework for Active Networks Project in Brief

Project In Brief

Project Title:

Objective:
Undertaken By:

Supervised By:

Technologies Used:

System Used:
Operating System Used:
Date Started:

Date Completed:

Architectural Framework for Active Networks

To develop a software based router that could serve as
Active Router.

Adnan Igbal
36-CS/MS/01

Dr. M. Sikandar Hayat Khiyal
Head,

Department of Computer Science,
International Islamic University,
Islamabad.

Dr. M. Sher

Assistant Professor,

Department of Computer Science,
International Islamic University,
Islamabad.

Microsoft® Visual C++ 6.0

Pentium® 1V

Microsoft® Windows 2000 Professional
1* December, 2002

20™ August, 2003

Architectural Framework for Active Networks Abstract

Abstract

The networking now a day is not simply the connection between multiple computers and
the goal is not only the data transfer from one location to another. Day by day new
services are being introduced in the networks. The problem is that these services are not
easy to implement. These services require standardization that is a lengthy process. We
have tried to find out a way to eliminate this standardization process. This can be done by
using active approa;:hes to networking rather than classical passive approach. In this
model we have emphasized that the computations performed by the intermediate nodes
are not standard but the standard is computing environment where multiple types of
computations can take place. As a proof of concept, we have developed software
simulating active routers and hosts. It is successfully tested and it provides option to
create different type of active applications and test them.

vi

Architectural Framework for Active Networks Table of Contents

1 IDETOAUCIION. ...ttt e e e ae e s e s e nmaasseessennseseesnsaeaseansaensaesnsan 1
1.1 ACHVE NEIWOTKS ... it eeeecttee e eecaesesaesaeensessassmnassesasaesnanesseasssasanrn 1
1.2 Approaches in aCtVe NEEWOTKS...........coc.oiueieireiececercteeseeeere e seeseeeeeeesaassessesnessesaas 2
1.3 APPHICALIONS. ..ottt e ecme e et eae e e s e st smn e s mceeene 3
TAREIAIEA WOTK ...ttt te e e e ve i s e enme s e sassaseansansesnssnasens 8
LS OUF WOTK ...ttt eee et e et sea e e e e e s eae s e sesnn e s ansasansnnanes 8

2. ANALYSIS oottt ettt b et e e en e e eaeesesebeasbresneae s eaea s sese s eeaeeere s aetann 10
2.1 IMPOTLANt QUESTIONSc.ceevereeieiereriiererecctemeaeeeeraeseeeeesessnssaesessesnssseas e eesereseneans 10
22 ANSWETS ...ttt er et e ees s s aessaeaassaesaesmsnmsamanenaeasesnsennenssnssanennannesnens 11

2.2.1 What are the differences between Passive Networks and Active Networks? ..11
2.2.2 What are the ingredients an Active Network?............coevevcereeeieeencncncecreneencn. 13
2.2.3 What is the purpose of building an Active Network?..............ccoovcccmnnnnnennn. 14
2.2.4 In what scenario it Will be used?.............c.oooviiiiiieeeeeeeeereeeeeeee e eaens 15
2.2.5 Should we develop an Active Network absolutely orthogonal to current
DEEWOTKS? ..ottt ettt ettt er st esa e sae s e aas et easesbenmseessessnermneneesseananane 15
2.2.6 How can we build an Active NetWOrk?cocoovieeemmeeeereeeeereeeeeeerneereeenee 17
2.2.7 What tools should be used?cooooeeeieeeeeeeeeeeeaeeaen eeteceme et e 17
2.3 Analysis Methodologycccoviiirriiririnieeiie e eerneasssassssassssesssssasessnsesasesssnnes 17
2.2.1 USE CSES........eeeeeeeeeeieee ettt eeeteseteeseeseeseesesse e e e eesesssesmsasssass e saasanensanseensesnns 17
2.2.2 Use Case DESCIIPHON.........cc.curriecieiriiririesee et ereassesesesesae s e sassssssasasesnes 18
2.2.3 ActiVity DIQGIAMS.............cooveeieiieieeeeeaeeeeee e s seassaesasseesesnesasansssssensensas 20

B DESIBIL.oeveteetctee ettt a e e s e en e sasense et e reresereres s rr et e seaeas 28

B L CIASSES ..ttt et te e seme st e e s ene e e s nee e s eenaneneaesanentine 28
B BUITCT ...ttt ettt s 29
BUL 2 SENAET ...ttt ettt e st a e e e et st s nenn e e e e e ranesann 30
BB RECIEVET ...ttt s e s ee s se e tensenensasesseansaseasenssansensassansensen 30
314 TSEIACT ...ttt tes s es e seess e e esan e s esmessasssensesseennan 30
3L1.5 TRECIGVET ...ttt saeesesssesseesenmsesennsess e e beb e s neanaesenssenrnenes 30
B3O TINBULTET ...t e e v s e ses s e sssseesmeen s e s ne s sras e seennan 30
3.7 TOWBUITET ...ttt es s st an e s reseansesaneensansesneanns 30
B LB TINMIUALIZET ...ttt et e s e e esaee s e s e e s s eaensesaesansenasensnennen 31
B IO RCONIOIET ...ttt v e e sa e ea s ebensesaensseessasaasnan 31
3.1.10 RROULINGRECOTcocerrericteiereeeee e csesae e sesaesasansssasmenssssennsas 31
3111 RROULNGTADIE . ..ottt e e s a e aeeren s e bessenean 31
B LIZ RSENAET........c.coeeeeeeeceee et ee e ees e sesasmeases e s esansrsseessensessasesssareess 31
B L I3 RRECIGVEToveeereeeeeeeeetreeeressesessssssessessesssssnsasesrsesenssnsensssseesesasassassaessesbes 31
B T4 RINBULTET ...ttt ee s e e s st s sens e e s re e csmeeesennesnsaarass 32
BLISROUWBUIIET ...ttt e sae s s e snsesssessaseaeansesrensessaeanes 32
B LTO6 RINANZET ...t erssaeseesseeas e e seesmness e e aasssesansnrassnas 32
3. 117 RPIOCESSOTc.eeoneeeeeeeeeeriseeeseeeveeesesseesanseressesssss s snsstestessaseensessesaensans 32
B I8 RIFUNCHON ...t es e s se s s s ensssnsesmes e e s resemasneanscnserses 32
311G REXECULADIE ...ttt eiervena e ee s ees s sssssssesaensassessenssasnsenss 33

3.2 Sequence DIAZIAINScccooieuiirreeceeie st seeresetes e e essesasaesesaresme e aesenseseneecs 33

4. IMPICMENALION...........ooveeeeeeeeereeeeceteeeeteece e eeseesvesessstssrssssssssesenassassensessaseassessansans 37
4.1 The Platform... ...t eeete e s aesess e s as e aessnsssansssnsssmnnsen 37
B2 TRE TOOL......cooeeeeeeeeeeeeeeeeeeeeree et te et e e e sseense s see e sasae s s serassassans sensenanansansanasen 37

vii

Architectural Framework for Active Networks Table of Contents

4.3 The TEChNOIOZYc.oueieieieiiiitce ettt c e st se e e cneae b e ene 38
4.4 Transmission Entities (Packets)..........co.oovoueieieiiieeeieieeeecce e ee e 38
4.4.1 Capsule FOMMALSc.oovieiiieiieeceee et eeeteetesvesse e esn s nsssssessensenssssssans 38

4.5 COMPONENLScooveeereniiuereaeereieeeeeeeseeeesesesesesrssesessstssassssssnesesssssesensasessssessstnsaneane 41
4.5 1 ThE ROULET......cooiviiiiiieeeeitecttere et se e e s e ens e eeaenessssessensesnsens 42
4.5.2 The TermINAHOSL..............c.ovoveeeveeeieeceeeeeeeceeeeeeaeeeeeesesessssnessensnesneseasesesesseans 45
4.5.3 The APPHCALION.........ccoiieiiiieeeetee ettt eve e s sasne s sasesasesesananes 45
Appendix A (USer Manual)coouiiiiouieeee et e eems et eeesen e ersnnne 46
APPENdiX B (GLOSSATY)oeieeiierieeeetee et eess et asesenesse et s aenasasseansnene 54
REFETEIICES. ...ttt et s st tseeme st s s e s s s s s s amanessnasasenes 56

viti

Introduction

Chapterl Introduction

1. Introduction

1.1 Active Networks

The term active networks is considered as relatively new term but it is not as new
as it is considered but as a matter of fact it is being given reasonable consideration now a
days. The concept of active networks emefged from DARPA]S)] meetings. The term
active network means that a network has the capability of executing code inside
intermediate nodes. Current networks are essentially passive networks as intermediate
nodes are not capable of executing coed being brought up by the data packets going
through them.

The philosophical difference is that current networks have standardized the
computations performed on the packets data and active networks do not standardize these
computations instead the intent is to standardize the execution environment.

Active networks are packet-switched networks in which packets can contain code
fragment that are executed on the intermediary nodes. The code carried by a packet may
extend and modify the network infrastructure. The goal of active network research is to
develop mechanisms to increase the flexibility and customizability of the network and to
accelerate the pace at which network software is deployed. Applications running on end
systems are allowed to inject code into the network to change the network’s behavior to
their favor.

Most networks currently have a topology where ‘smart” hosts sit at the edges of
the network, and are connected by dumb switches. |

Adive nodes

E Active node

Figure 1.1 (a) Current Networks (b) Active Networks

Architectural Framework for Active Networks 1

Chapterl Introduction

In reality, these switches are not so dumb: they are computers just as powerful as
the hosts, but this computing power is mostly used to push packets around. The switch
managers decide what software should run on the nodes, so adding new features to the
network requires the agreement of all the switch manufacturers and managers.

An alternative model is to allow users access to the computing power in the
switches, and to run their own software. The network has some dumb switches and some
smart switches, and we can run a virtual network to hide the dumb switches from the

Uscr.

1.2 Approaches in active networks
Until recently, active networking research concentrated on two distinct

approaches: “programmable switches” and “capsules”. These two approaches can be
viewed as the two extremes in terms of how program code is injected into network nodes.
Programmable switches typically upgrade by implicit injection of code by a network
administrator. Research in the area of programmable switches focuses on how to upgrade
network devices at run time, on upgrades introduced by administrators which support end
system applications (e.g. congestion control for real-time data streams), or on a
combination of both.

Capsules, on the other hand, are packets carrying small amounts of program code,
which is transported, in-band and executed on every node along a packet’s path. This
approach introduces a totally new paradigm to packet switched networks. Instead of
“passively” forwarding data packets, routers execute the packet’s code. The result of that
computation determines what happens next to the packet. Applications include simple
proof-of-concept ping' applications, network diagnostic tools, active multicasting and
more. This approach has the potential for an enormous impact on the future of
networking. However, in the near future, security constraints will cause severe
performance problems for capsule-based solutions. Capsules commonly make use of a
virtual machine that interprets the capsule’s code to safely execute it on a node.

Recently, convergence between the pure “programmable switch” and the pure
“capsule” approach became visible. Most of the research groups involved agree that some

sort of code caching makes a lot of sense. The main motivation for this convergence is

Architectural Framework for Active Networks 2

Chapterl Introduction

the realization that potential capsule code is more application specific than user specific.
In the same way, users usually do not write their own applications but use off-the-shelf
software. They are not expected to inject their own programs into the network, but use
code from a set of code modules written by specialists. This allows for various
optimizations in the form of caching. We will also show how our appfoach aggressively

builds upon this same realization.

1.3 Applications

Active networking is relatively new -concept and its importance is not well
understood. Therefore its applications are currently very limited although research is
being done rigorously to find out the areas where active networks can be applied
successfully.

Different areas are identified where active networks can be used for example,
Network management, Web caching, Congestion control etc. the details of all these
applications are described in “Applications of Active Networks”.

Example applications include self-learning web caches, congestion control, on-
line auctions, and sensor data mixing. Since the code is injected out-of-band,
programmable switches provide no automated, on-the-fly upgrading functionality.

Another very important observation is that the deployment of multimedia data
sources and applications (e.g. real-time audio/video, IP telephony) will produce longer
lived packet streams (flows) with more packets per session than is common in today’s
Internet. Especially for these kinds of applications, active networking offers very
promising possibilities: media gateways; data fusion and merging; and sophisticated
application specific congestion control. Both our hardware and sofiware architectures
support the notion of flows. In particular, the locality properties of flows are effectively
exploited to provide for a highly efficient data path.

Active Networks can also be used to enhance security and to cope with absolutely
unseen and unpredictable events. Bemnard Cole has described the need of Active
Networks in the scenario of unforeseen events very well.

Currently, network management is achieved by using a polling mechanism. In this

‘method management stations routinely poll the managed devices for data, looking for

Architectural Framework for Active Networks 3

Chapterl Introduction

anomalies. This technique has served us well in the past. However, due to the increase in
the number and complexity of nodes in the network, now it has become problematic.

Management centers become points of implosion, busy with large amount of
information. This information is very often redundant, as the packets that arrive may
simply report that there was no change in the state of the monitored part of the network.
Also, in case of a problem, the round-trip delay that is needed for the information to reach
the management center and the reply to return back to the affected part of the network is
sometimes significant and the action undertaken is not up to date any more. It is essential
that network management employs techniques with more immediate access and better
ability to scale.

Active networks are the natural answer to the above problem. By making the
internal nodes of the network active we can move the management centers right in the
"heart" of the network and thus reduce both delays from responses and bandwidth
utilization for management purposes. Also, we can inject special code in the packets that
can act as "first aid" in case they encounter a problematic node. This code can be
executed in the affected node and change its state automatically instead of waiting for a
reply from a management center. Other packets can act as patrols, constantly looking for
anomalies as they trace the network. Finally, since a management center sends programs
to the managed nodes, it can request real-time tailoring of the information to be returned
~ in order to meet its current needs. This will reduce the back traffic and processing time of
the information after it is received by the management center. To sum up, by using active

networking for network management:

o Problems are tracked quickly or are reported automatically without the need of
polling.

e Management centers can be in the "heart” of the network, thus delays from
responses and bandwidth utilization for management purposes are reduced.

o "Patrol" and "first aid" active packets can respectively track a problem and deal
with it at once.

o Information content returned to the management centers can be tailored to the
current interests of the center so that back traffic and processing time are reduced.

Architectural Framework for Active Networks 4

Chapterl Introduction

e Management policies can change easily as administrative requirements change,
thanks to the inherent flexibility of active networks technology.

Packet switching networks are network of queues. At each node, there is a queue
of packets for each outgoing channel. If the rate at which packets arrive and queue up
exceeds the rate at which packets can be transmitted, the queue size grows without bound
and delay experienced by a packet goes to infinity. All this process is called Congestion.

This problem is unlikely to disappear in the near future. Therefore, it is essential
to find efficient algorithms to deal with it. Congestion is a prime candidate for active
networking. Also, it often takes a considerably long time for congestion notification
information to propagate from the point of congestion to the user, so that the latter can
self-regulate in order to reduce congestion. As a result, either there is a period of time
during which congestion is augmented -- since applications have not learned about it -- or
the notification arrives so late that there is no longer any congestion and self-regulation is
not needed. On a descriptive level, one can find many examples where the added
functionality of active networks can help in dealing with congestion control. Here are

some examples:

e An active node can monitor the available bandwidth and control the rate of a data
flow accordingly. Of course, buffering is needed in this case, so instead of putting
the buffers in the switch, we can put them in the active node.

o In case of many data flows with different congestion requirements, an active node
can control the relevant rate of each flow in addition to the total rate. Also, it is
possible to adapt to dynamic changes of the requirements.

o The transformation of data at a congestion point is also a powerful capability. In
fact, applications sometimes produce data according to the congestion situation if
they are aware of it. Therefore, we can perform the above transformation right in
the place where it is needed and only if it improves the performance. However,
we should expect that from a computational point of view, a transformation may
have a significant cost.

o Selective dropping of units, packets or cells can be held very efficiently. In case
of congestion, we prefer to drop less important units than more important ones.

Architectural Framework for Active Networks 5

Chapterl Introduction

The importance of a unit depends on the amount of information it carries. A
classic example here is the case of MPEG compressed video where if we lost an 1
frame; there is no point in keeping the P and B frames that depend on the lost I
frame.

o Finally, we can have a multi-stream interaction in the following sense: e.g., if a
user is receiving video and audio and there is a loss in the video, audio units

should receive extra priority to assure that the user will still get some information.

A substantial fraction of network traffic in the Internet comes from applications
like the World Wide Web, where information is retrieved by clients from servers located
anywhere in the network. The caching of objects at locations close to the clients can
decrease both the network traffic and the time needed to retrieve the information. Active
networks can be used to provide a smart caching scheme wherein smaller overall storage
capacity is needed and higher reduction in network traffic and latency can be achieved.
Traditional approaches to network caching are to place large caches at specific points in
the network. The key point in these schemes is how to choose these specific points. One
option is to cache at transit nodes (transit-only caching). Since a large fraction of paths in
the network have to go through transit nodes, they are prime candidates for caching.
Another policy is to cache in stub nodes that are connected to transit nodes because the
former have to be traversed in order for a node inside a stub domain to access the rest of
the network. Therefore, cache nodes can be located near the edge of the network or at
strategic points within the network organized with a hierarchical scheme wherein clients

are manually configured to access a particular cache in the hierarchy.

An interesting idea would be to balance the hierarchy by repositioning not only
the cached information but also the cache nodes. In this scheme, each node or a set of
nodes decide whether to cache the information that returns from the server to the client.
Obviously, the effective organization of the location and the content of the caches are not
trivial. Nodes should be smart enough to cache objects that nearby clients will request in
the future and to coordinate with each other to avoid caching the objects that are already
cached in neighbor nodes. Active netwofks technology may help deploy a mechanism of
coordinating the nodes. Also, because a significant fraction of Web pages are

Architectural Framework for Active Networks 6

Chapterl Introduction

dynamically computed, active technology may support the storage and execution of
programs that generate these pages in nodes near the clients. Recent work at the Georgia
Institute of Technology considers the benefits of associating caches with nodes
throughout the network, and self-organizing cache contents in an active way. The
proposed scheme, called Self-Organizing Wide-Area Network Caches, yields round-trip
latencies that are smaller than or equal to the more traditional approaches, while requiring
much smaller caches per node. The basic idea is to obviate the need to decide where to
place caches by considering that all nodes of the network can cache objects and relying
on active technology to maintain a uniform distribution of caches within the network.
Nodes make local decisions in a way that resources are used effectively overall.
* The first approach described is called modulo caching. A distance measure, called cache
radius, is defined, measured in transmission hops. The caching policy uses the radius as
follows: on the path from the server to the requesting client, information is cached in
nodes that are cache radius apart. We therefore end up with a distribution of caches
located a "cache radius" away from each other. The second approach uses some of the
cache space in each node to store locations of information objects. Each node's cache is
divided into levels. Level O contains locally cached objects; level 1 contains objects
cached in nodes one hop away, etc. When a request message for an object is processed,
the levels are searched in sequence beginning with level 0. This approach is called look
around algorithm. The number of levels of adjacent caches maintained and checked in
this algorithm is a parameter of the policy and, as with the cache radius, might be set
globally, on a per-object basis, or even locally.

Simulation results show that active mechanisms outperform traditional
methods in case of correlated accesses. By correlated accesses, we mean that an initial
access will cause future accesses involving the same client and server pair. In case of
uncorrelated accesses, transit-only caching performs a little better than active
mechanisms, but this sort of caching fails to adapt to correlated accesses

Architectural Framework for Active Networks 7

Chapterl) Introduction

1.4 Related Work

Active networking research has been ongoing for several years. Various research
labs have described and implemented interesting approaches. In this section, we give an
overview of some of these efforts. Related work is going on in many universities of the
world. Following universities are doing reasonably useful and prominent research in the
field of Active Networks.

MIT, BBN, Georgia Tech, University of Pennsylvania, University of Arizona and
Columbia University are some of the universities carrying out research about active
networks and most of the research about active networks is funded by DARPA.

This work is in different dimensions. Both the approaches are being researched
i.e. programmable switches and capsule based approach. Different supporting
technologies are being developed like operating systems supporting Active Networks and
compilers supporting Active Networks.

1.5 Our Work
Our work is a step by step procedure. The objective to start this project is to create

a culture of Active Networks at International Islamic University. Of course we started
with zero. The steps followed or will be followed to fulfill main objective are given
below.
1- To study the basics and underlying philosophy of Active Networks.
2- To study current work being carried out about Active Networks at
international level.
3- To study the applicability of Active Networks.
4- To propose a practically usable Active Network.
5- To implement proposed Active Network prototype.
| 6- To study, compare and analyze different thoughts and propose new thoughts.
7- Enhance that prototype in a step by step procedure and to introduce more
features in it.
8- Use developed prototype to provide different services, using it as a building
block.

Architectural Framework for Active Networks 8

Chapterl Introduction

All these tasks are to be done in a step by step procedure; we have decided to
complete first four tasks in this particular project and to keep on building on these steps

in the next coming projects.

Architectural Framework for Active Networks 9

Analysis

Chapter?2 Analysis

2. Analysis

2.1 Important questions
When we start analysis then we come to know that in case of an Active Network,

manual system is the network infrastructure available commonly and we can name that
network infrastructure as passive networks at the start of analysis we face different
questions and answers to these questions are the key to clear and fruitful analysis phase.

Some of the possible questions are given as.

e What are the differences between Passive Networks and Active
Networks?

¢ What are the ingredients of an Active Network?
e What is the purpose of huilding an Active Network?
¢ In what scenario it will be used?

 Should we develop an Active Network absolutely orthogonal to
current networks?

e How can we huild an Active Network?

e What tools should be used?

Our analysis phase is based on these questions and we tried to find out clear,
precise and well defined answers to these questions. This document is based on these
questions and their answers and the design of the software depends upon the answers
given to these questions. Next section of this chapter discusses these questions in detail

and provides answers to these questions.

Architectural Framework for Active Networks 10

Chapter?2 Analysis

2.2 Answers

2.2.1 What are the differences hetween Passive Networks and Active
Networks?

A passive network is a network in which data packets pass through intermediate
nodes without being altered or even without being examined. For example an IP network
has different devices such as personnel computers, routers, switches etc. personnel
computers are at terminals and switches, hubs and routers are intermediate devices.
Whenever a packet is generated from one terminal computer for another terminal
computer, this packet has to go through different intermediate nodes like routers and
switches. These routers, switches or hubs can perform different operations on this packet
for example a hub does not perform any operation and just passes the packet opaquely to
all connected nodes other then the sender. A switch finds out destination requested by
sender and just passes the packet towards destination. A router does a similar job. It finds
requested destination and forwards the packet towards destination. Some devices perform
more computations and the can restrict the forwarding of packet to other destination.
Even then the scope of computations is very limited. Number of computations that an
intermediate device supports and is allowed to do are very limited and all these
computations are based on the header of packet and none of the computation is performed
on the data of packet itself.

Working of Hub

Computer a sends data, Hub performs no operation and
blindly forwards the data to other computers in the network.

Figure 2.1 A Hub broadcasts data to other devices

Architectural Framework for Active Networks 11

Chapter?2 Analysis

Working of Switch

Compuler a sends data, Switch performs small operation on
the header of data, finds out destinatination and forwards the
data to requested computer.

Figure 2.2 A switch unicasts data to intended destination.
Active Networks follow a totally different approach. In a passive network, number and
type of computations are standardized and none of the vendor can deviate from these
computations. In an Active Network neither number of computation and nor the type of
computations are standardized instead it is being tried to standardize the computing

environment.

Working of Router

Routers perform more complicated tasks. Routers receive a packet, find its required destination and
search a suitable path and then forward the packet towards that suitable path.

Fig 2.3 Routers are internetworking devices.

Architectural Framework for Active Networks 12

Chapter?2 Analysis

Current Intermediate Nodes

incoming)) QOutgoing
Data Limited Computations data
[> All computations only on header
No maodification in the data of Packet

Active Intermediate Nodes

Incoming Large number of Computations Outgoing
[Data > Changeable computations {__data
Computations on data
Modification in the contents of Packet

Fig 2.4 Difference between Active and Passive routers

In an Active Network computations performed by an intermediate node can be
user specific, application specific or the vendor specific as well. Intermediate devices
allow the packets that go through them to have executable code or some kind of
mechanism that could initiate some action from the intermediate devices. So the packets
in active network do not only have passive data, they can also have executable code as
well and that code can be executed by the intermediate devices.

2.2.2 What are the ingredients an Active Network?

A passive network consists of terminal devices and intermediate devices.
Similarly an active network consists of terminal and intermediate devices. Terminal
devices can be the personnel computers or any device that can send data end to end.

Intermediate devices are not the end points of the network. These devices lie in the
middle of the network and a packet has to go through at least one of them to reach the

destination.

Architectural Framework for Active Networks 13

Chapter?2 Analysis

Ingredients of Active Networks

Aclive Intermediate devices

Active Terminal devices
Fig 2.5 Active intermediate devices and terminals make an Active Network
The most important thing is that the terminal devices must be capable of creating
packets that contain executable code and intermediate devices must provide the facility of
executing that code when packets pass through them.

2.2.3 What is the purpose of building an Active Network?

There can be many reasons to develop an active network. it can be developed for
network management, caching, congestion control, multicasting and many other things.
Our reason to Build an active network is to provide a platform for next coming
researchers so that they may not start from zero instead they take up the work done and
build on it.

It is basically being developed as a proof of concept system. Our attempt is to
create a simplest possible architectural framework for active network and then to enhance
it step by step. Very small work is done in this field and especially in Pakistan almost no
work is done before. Most of the work done is in USA, Japan and Canada.

The Active Network created will be able to support newer services required by

Architectural Framework for Active Networks 14

Chapter?2 Analysis

the user of the network and as a matter of fact user will not require to standardize the
services instcad he will have to create only the functionality required and incorporate that
functionality inside intermediate nodes.

2.2.4 In what scenario it will be used?

As it is discussed earlier that active networks can be used in different scenarios.
Active Networks can solve many problems and @y active applications can be written
to take benefits from active networks.

It is not in the scope of this project to write any of such applications as the target
of this particular project is to make an active network infrastructure that can be used to
develop such applications.

Even then we will try to make at least one application that will elaborate a
scenario where it can be used. We will write an application that will be used to manage

the network by obtaining current network information in the form of routing tables.

2.2.5 Should we develop an Active Network absolutely orthogonal to
current networks?

Answer to this question is not a straight forward one. It is a lot easier to develop
an active network absolutely orthogonal to current networks. On the other hands such
kind of network can only be used for research purpose it is far from expectation that such
a network will ever replace the current networks because current passive networks have
spread over the world and it is absolutely impossible to shift them to absolutely new
paradigm.

Active Networks Orthogonal to Current Networks

All Active Terminals, No non-active Terminal
All Active Intermediate Devices, No non-active Intermediate devices

Fig 2.6 Orthogonal Active Networks consist of active devices only.
A better approach can be to use existing network infrastructure as a building

Architectural Framework for Active Networks 15

Chapter2 Analysis

block and to provide the functionality of active networks. In this case newly bomn
network will exhibit the properties of both the networks passive as well as active. The
advantage is obvious; we can shift to such kind of networks without lot of major changes.
it will allow the use of existing networks and there will be no or little impact on current
applications and services. As the active networks grow in demand and become better and
better in their functionality, existing network will keep on changing their shape into
active networks. This is slow but an acceptable approach and because of this flexibility

we have adapted to use this second approach.

Active Networks Compatible with Current Networks

Some Active Terminals, Some non-active Terminal |
Some Active Intermediate Devices, Some non-active Intermediate devices
Both kinds of traffic at the same time

Fig 2.7 Active Networks can also work with current networks

Ingredients of Active Networks

Active intermediate
devices

Actlive Intermediate devices /
Non-Active Terminal devices

Active Terminal devices
Fig 2.8 A non orthogonal Active Network

Architectural Framework for Active Networks 16

Chapter2 Analysis

2.2.6 How can we build an Active Network?

N Answer to this question demands us to study the requirements for the active
networks in detail. If we want to develop an active network then there can be multiple
.-ways and requirements. Some requirements and methods are consistent with each other
and others totally opposite and cannot be used with each other at all. Let us define these
requirements and the methods.

The most important part of an active network is the intermediate device. This
intermediate device can easily be called as the heart of active network. This intermediate
device is most probably a router but it can be a switch as well. These routers are called
active router because these provide the functionality of code execution and computation
of different kinds.

Another part of the active network is active terminal. This is an end device or
terminal computer that has the capability of creating packets that are in accordance with
active router and contain executable code along with data.

2.2.7 What tools should be used?

Different tools can be used for the development of an active network. The most
- appropriate one is the C++. The platform used is Microsoft Windows 2000. The compiler
used is Microsoft Visual C++.

2.3 Analysis Methodology
The methodology used to analyze active networks architecture is object oriented

analysis technique. Object oriented analysis offer many advantages over structured
analysis technique therefore it is proffered over structured analysis methods.

2.2.1 Use Cases
Many use cases were found during the course of analysis. Description of all the

use cases is given below.

Architectural Framework for Active Networks 17

Chapter2 Analysis

% App Recy \ O %
N\ ~
Active Apphcm.m\CD\ ConnEct.mAdne Apglication

\\

App Make Capsule

%/ =32

*- Parse Caps 7 Active Terminal

e
Active Rouler\\\

Rir Send
% \b@eﬂpuﬁnghbb '

N

A ™.,

Execute O
.

Rir Recy

A \‘
%/’ Tem intiakze / :():~
. e Active Router

Active Term nal

Term Send
Term recy

Fig 2.9 Use Case Diagram

2.2.2 Use Case Description

2.2.2.1 Terminal Initialize

This use case describes the working that how a terminal is initialized. First of all a
terminal finds out the port, from where it can get data or send data to an application. It
then finds out the interface with the network link. It initializes the buffers. It sends its
information on the network and starts the receiver to continue working.
2.2.2.2 Terminal Send

This use case is used when the terminal wants to send a capsule to the network or
to the local application. To send the data first it picks a capsule from buffer and finds out
the requested destination and then sends data to requested destination.

Architectural Framework for Active Networks 18

Chapter2 Analysis

2.2.2.3 Terminal Receive

This use case describes the working that how a terminal continues to receive data.
It waits for data to arrive from any of the interface, when data arrives; it copies that data
to an appropriate buffer.
2.2.2.4 Router Initialize

This use case describes the initialization phase of a router. First the router finds
number of interfaces available to it. It initializes all the buffers available to it. It sends its
information to all of the requested links and it also initializes the routing tables. It
initiates receiver and controller. |
2.2.2.5 Router Send

This use case describes the procedure of sending data from router to the routers
and terminals associated to it. It is invoked by a controller or by processor. In either cases
it is given with the capsule and destination. The sender finds out the path to the
destination by using routing tables and forwards the data as found.
2.2.2.6 Router Receive

It is responsible for receiving all kind of data. Data can arrive either from routers
or from any terminal. It is initialized by the initializer and waits for data. When it receives
data it copies that data into appropriate buffer.
2.2.2.7 Router Update Routing Table

This use case describes the procedure of updating the table when a change occurs
in the neighboring routers. Neighboring devices can send a specific message to this
router. That message is received by receiver and store din the buffer. Controller picks the
message, gives it to updating module and it updates the routing table. It also sends new
routing entries to its neighboring devices.
2.2.2.8 Router Parse Capsule

This use case describes the process by which a received capsule is converted into
a meaningful thing for a router. It gets data from controller and divides the data into
different meaningful parts by separating data and executable code.
2.2.2.9 Router Execute Capsule

This capsule describes the execution of a capsule. The parsed capsule has two
parts data and code. These parts are taken by the execution manager and executable part

Architectural Framework for Active Networks 19

Chapter?2 Analysis

is divided into function and these functions are executed. After execution the capsule is
reassembled and sent to the required destination.
2.2.2.10 Application Make Connection

Every application that wants to use activeness needs to make a connection with
the terminal. It cannot send or receive directly from the network. It makes a connection
from the terminal by sending request and terminal acknowledges the request.
2.2.2.11 Application Make Capsule

Every application is responsible to send data in proper capsule format. It is not the
responsibility of the network to convert the data into proper capsule format therefore
every application should have a procedure to make data into proper capsule format and
then transfer it to the terminal.
2.2.2.12 Application Send

After establishing a connection with the terminal the application can send
capsules to the network using terminal. For this purpose only requirement is that the
capsule should be proper.
2.2.2.13 Application Receive

Every application can receive data from the terminal and for ths purpose they

must have a receiving module.

2.2.3 Activity Diagrams
2.2.3.1 Activity diagram of Initialize Terminal

< Find interface >
'S

Create Communication
' Channels e

Stant recr (Send info)

! o

Fig 2.10 Initialize Terminal

Architectural Framework for Active Networks 20

Chapter?2

Analysis

2.2.3.2 Activity diagram of Terminal Send Data

$

Get Data

ind Destmatlon

Destmatlon

Send

@

Fig 2.11 Terminal Send Data
2.2.3.3 Activity diagram of Terminal Receive Data

4

C
C
< Veny
C

¢ Wait For Data ™\ _

\i(.
< Arrival of Data)
(~ Accept Data >
W

< ‘Store Data _
’ /

Fig 2.12 Terminal Receive Data

Architectural Framework for Active Networks

21

Chapter?

Analysis

2.2.3.4 Activity diagram of Update Routing Table

Get New
Routing Data

(Parse New Data>

(Make Records

N,

)
< Update Table)
®

Fig 2.13 Update Routing Table
2.2.3.5 Activity diagram of Execute Capsule

(Get Parsed
" Capsule

Find ‘
. Exscutables
N'd
. Prepare :
- Parameters
< Execute code >

®

Fig 2.14 Execute Capsule

Architectural Framework for Active Networks

22

Chapter2 Analysis

2.2.3.6 Activity diagram of Make Capsule

(Calculate size j
' v
< Collect Data)

Find Executable

(" . Ana\%\ge >

N

o
®

Fig 2.15 Make Capsule
2.2.3.7 Activity diagram of Application Connection

“Request to
© terminal

)
- ~Acceptance

Fig 2.16 Application Connection

Architectural Framework for Active Networks 23

Chapter?2

Analysis

2.2.3.8 Activity diagram of Parse Capsule

Get Capsu'e)

¥
(Find Data

f—
Fin
Executables

Q.

(
D
G
)
(owiises)

< Make Ob;ects >

(Combme >
®

- Fig 2.17 Parse Capsule

Architectural Framework for Active Networks

24

Chapter?2 Analysis

2.2.3.9 Activity diagram of Application Receive Data

Request to
Recv Data

Wait For Data
Avrrival

Y

(Arrival of Data >

1

Acceptance of
Data

¢

Fig 2.14 Application Receive Data
2.2.3.10 Activity diagram of Application Send Data

T~ 758

" Request to
send data
‘ .
< Make Capsule >
<Find Destinatiqn)

v s ’

‘Connection
~ “Verification

=
®

Fig 2.18 Application send Data

Architectural Framework for Active Networks 25

Chapter?2 Analysis

2.2.3.11 Activity diagram of Initialize Router

?
.CFind Interfaces >

Imtllalze
addresses

D

Routmg Table

lnmallze
Recrever _

(
(
(e
('c";:::zf,,z, D
C)

Cnmahze Buffers)

Fig 2.19 Initialize Router

Architectural Framework for Active Networks 26

Chapter2

Analysis

2.2.3.12 Activity diagram of Router Receive Data

Wait For Data
Arnval of Data

Accepatance of
Data

Fig 2.20 Router Receive Data
2.2.3.1 Activity diagram of Router Send Data

Get Data From Get Data From

Get Data From
Route Mangers

Fig 2.22 Router Send Data

Architectural Framework for Active Networks

27

Design

Chapter3 Design

3. Design

The importance of design is very clear to every one. The important question is
that what design methodology to be used. We have decided to use Object Oriented
Design because of many reasons. The most important one is that our work is of the nature
that it has to be extended by the successors and for this purpose design has to be
extremely extensible and this property is well satisfied if we use object oriented design.
Moreover the prototype developed by us has to be used by the people as a building block.
Therefore our application has to be highly reusable. This property is also well satisfied by
object orientation.

Next sections of this chapter describe different object oriented tools used to define
our design. These include core concepts, classes, description of classes and sequence

diagrams.

3.1 Classes
Classes are basis for object orientation. We have defined classes that can be used

in our design by finding concepts.

Architectural Framework for Active Networks 28

Chapter3 Design

Sender Reciever
TSend - e
encer) TReciever A
Buffer |/
______ TOutBuffer
" | Rsender
Tinitialize\ N
\ | TinBuffer
-
Rinitializer -7
- RReciever
™,
>< RProcessor
,__> \\\ RFunction
- PN
RController
K/ > RinBuffer
L\ }
ROutBuffer RExecutables

A

Fig 3.1 Class Diagram at initial level
During the analysis and early Design phase different concepts were identified.
These concepts were mapped to classes. A description of each class is described in the

following lines.

3.1.1 Buffer

This is high level class for every class used to store data in any form. It is used for
the buffering at input and output. The basic operations that it provides are to add records
and to get records. Different classes are derived from it depending upon the requirement

that whether these are used in terminal or in router.

Architectural Framework for Active Networks 29

Chapter3 Design

3.1.2 Sender

This is high level class for any class that is used to receive data either in the

terminal or in the router.

3.1.3 Reciever

This is high level class for any class that is used to receive data either in the

terminal or in the router.

3.1.4 TSender

This class is used to send data on a terminal. It has different attributes like IP
address to which it can transfer data along with its own IP address, the port through
which it transmits to applications and the port to which it has to transfer to the network.

Its major operations are to get data and to send them.

3.1.5 TReciever

This class is used to receive data on a terminal. It has different attributes like IP
address from which it can receive data along with its own IP address, the port through
which it receives from applications and the port from which it has to receive from the

network. Its major operations are to receive data and to store it.

3.1.6 TInBuffer

This class is storage for the data coming in from different locations like the
applications and the network. It has operations like data storage and data retrieval. It

stores full capsules along with its sender.

3.1.7 TOutBuffer

This class is storage for the data going out to different locations like the
applications and the network. It has operations like data storage and data retrieval. It

stores full capsules along with its intended receiver.

Architectural Framework for Active Networks 30

Chapter3 Design

3.1.8 Tlnitializer

This class has the functionality to start a terminal in a right fashion and it also has

all the data needed for the proper functionality of terminal.

3.1.9 RController

This class has functionality to control all the router functionality. It has
information about incoming buffers as well as outgoing buffers. It continuously monitors
the router. It can send data directly to sender and it can take data from a receiver buffer. It
also monitors the changes in the routing records received. It then asks routing table to be

changed.

3.1.10 RRoutingRecord

This class is basic building block for the routing table. It has format in which a
routing record can be received and kept. This format is the interface, destination and hop
count. In future implementations hop count can be replaced with the sum of weights of all
edges in the graph.

3.1.11 RRoutingTable

This is composed of routing records and has complete picture of the network. It
provides the operations of finding the path. It tells whether a path exists between current
node and the requested one or not. It also tells about the shortest path.

3.1.12 RSender

This class is used to send data on a router. It has different attributes like its
own IP addresses of different interfaces attached to it. Whenever it has to send data, it
finds the path using routing table. It itself has no information about the current picture of
the network. Its major operations are to get data and to send them.

3.1.13 RReciever

This class is used to receive data on a router. It has different attributes like IP

address from which it can receive data i;e., all directly connected nodes whether these are

Architectural Framework for Active Networks 31

Chapter3 Design

routers or terminals along with its own IP addresses. Its major operations are to receive

data and to store it in an in buffer.

3.1.14 RinBuffer

This class is storage for the data coming in from different locations like the .
terminal and the routers. It has operations like data storage and data retrieval. It stores full

capsules along with its sender.

3.1.15 ROutBuffer

This class is storage for the data going out to different locations like the terminals
and the routers. It has operations like data storage and data retrieval. It stores full

capsules along with its intended receiver.

3.1.16 Rinitializer

This class has the functionality to start a router in a right fashion and it also has all
the data needed for the proper functionality of a router. It has the operations to find out
available interfaces. It has operations to initialize all the buffers. It has functionality to

start controller and receivers.

3.1.17 RProcessor

This class is heart of the whole system. It is responsible to provide the
functionality of processing the capsules available inside the router. This class provides
multiple options like getting a capsule from the inner buffer. It has the functionality of

parsing the capsule as well. It also performs error checking on a capsule.

3.1.18 RFunction

This class has the functionality to convert code part of a capsule into recognizable
functions. It also sets the parameters of all the functions present inside the capsule. This

class is utilized by the processor class.

Architectural Framework for Active Networks 32

Chapter3 Design

3.1.19 RExecutable

This class has all the executable function. It can be said as the data base of
functionality available on a router. It provides the functionality of executing any of the
available function. It also provides operations to search a function whether it exists on the

router or not.

3.2 Sequence Diagrams
Sequence diagrams are important tools to describe a system. These describe

activities in a system time wise. Following are the sequence diagrams identified in our

system.

ActiveNode1 ActiveNode2 ActiveTerminal
{ Broadcastinfo : :
i | |
/LJ I
. |
T | 1
{ Broadcastl{tfo - {
Upda:teRoutingTable
T < l
i !
l Sendinfo T |
| | |
<]
Upd%leRoutingTable }
< I |
| I
] !
I |
| I
]]
Sendinfo !
L1 - ;]
| |
Upda}teRoutingTable : U
<— | |
] I
| I
! !
] !
! I
i !
! |

Fig 3.2 Establish Routing Table

Architectural Framework for Active Networks 33

Design

Chapter3

| | | | [{ |
“ ! I | _ | f |
| ! i i } _ _ _
{ | | ! ! f I i
{ _ n | [{ {]
l _ _ [! { |
_ _ I | i [
T i i i | | i
I | ” | " |
|
I | | |
“ ﬂA ﬁ i _ _ |
| | doHIXeN1#D | _ _ _
| | | omedeopues | | | “ “
| _ ! _» | _ _ “
_ |
" _ j \G | { |
| | | _.._o.Euoxm_.EEoo“ | “ "
| I | :
I | _ _ [
“ |] | 3\ i |
! | { | 1 | ! |
eECeprOId | | _
{ [{ [|
_ “ “ : >l) " _
_ Sl
| I —>> | eegsenbey | I {
“ { { T 1 | l i
| | i o_:&aOoSoaxm | | I
|
“ “ “ (e _ | " _
i f | | sinsdeeoNPoId | “ “ “
| | | |
“ | i | M _ | |
_ | I _ | _ [
| !] _ _ | _
! { | f —> “ " "
| | “ | eieqeusd ~ _
_ I _ | ﬁ ! |
_ _ ! | I
“ _ _ | }\ T _ |
_ | [_ D/usoovsen_ _ [|
_ _ | _ M : |
| > |
" “ “ _ | eeqsenbey || _
| | ! | |] BlegeIolS 1
" | | | | " L
i _ I | _ I o I
W _ i , _ il | Weaeues
CUETE AN KGEeLBURSH | BpUsS Iy 0 1 eonNodTY FrTGIENTRY] A STe JpuesSTL

Fig 3.3 Execute Capsule

34

Architectural Framework for Active Networks

Design

T1Reciever

T1Sender

T1RecwBuffer

FindIP()
P —

Chapter3

N f

E m T N

a1 3
% £
N
©

=

] S

2

0

<

uffer()

]

[SendBroadcast()

I

Fig 3.4 Terminal Initialization

35

Architectural Framework for Active Networks

Design

(1emaneyuels _

Qreondoopers

o“mmuumemucmm

ll!._.lll.v:

_
(uayngeziieny |

|

| —— 0
_ — :
“ OctiPua] |
|

s Qezien) 1

_ _

Tonoy BAY

Chapter3

%

Fig 3.5 Router Initialization

36

Architectural Framework for Active Networks

Implementation

Chapter 4 Implementation

4. Implementation

One of the final and very important stages in the development is implementation.
After a good analysis and design it is possible to implement the software using a variety
of tools. Even then the choice of good tool and platform is very important. Wrong choice
can make the life of developer very difficult. It is also possible that someone may opt for
a tool that never provides the required functionality. Following is the discussion of

selected platform and the tools.

4.1 The Platform

After a careful analysis we have chosen Microsoft Windows 2000 as a platform.
This is done to fulfill many requirements. One of the very basic reasons is that Windows
is the most common operating system in this part of world. Our ambitions are that our
software must be used by maximum number of persons. By making it available for
Windows means that it is available to most of the community.

We want substantial number of applications to be developed and more and more
work to be done on this software after completion by the successors. To fulfill this
property, the software has to be very easy to use. If we use an easy to use operating
system then half of the difficulty is gone right at the start and if we use a difficult
operating system then the difficulty is multiplied.

4.2 The Tool
We have chosen C++ as the language and Visual C++ as the compiler. The

language, C++ is chosen because of design constraints. We need an object oriented
language to implement because design is object oriented. There are multiple options. A
very obvious alternative is Java. But Java language is ruled out because of many reasons.
The most important reason is the speed. We are not implementing our software for a

| heterogeneous environment; instead our design goals specify only a single operating
system therefore for the time being we do not need the compatibility provided by Java.

The choice of Visual C++ as a compiler is obvious because it is without any

conflict the best available compiler for C++ in Windows. Not only it provides C++

implementation, it also provides many more options. To utilize maximum from the

Architectural Framework for Active Networks 37

Chapter 4 Implementation

operating system support it is necessary to use a tool that can grab every option provided

by the platform. Visual C++ does the same.

4.3 The Technology

As we have already described that it is necessary to utilize available options as
much as possible therefore we have used already available building blocks. We have used
WinSock for basic communication mechanism between routers and terminals. Winsock is
also used as a building block for inter process communication on the terminal between
the terminal and user application.

WinSock API provides many advantages for a programmer. Its specifications are
same for every vendor. Different vendors can develop different implementations. Only
limitation is that the implementation must adhere to the specification. More important it
also has socket APIs described as Berkeley sockets specification.

4.4 Transmission Entities (Packets)
As it is clear from the previous discussion that our software is a prototype active

network therefore most of its job is to send and receive packets. These packets are named
as capsules. There are different types of capsules possible in this system. We have
defined three types. These are control, routing and processing capsules. Control capsules
are used to manage only the network connections and other links related tasks. Routing
capsules are used to describe a change in the routing table. Processing capsules are the
one that are used to carry executable code in them.

4.4.1 Capsule Formats

First thing required is to define capsule formats. All above described capsules are
defined properly. Each type has its own well specified format. There is only one thing
common in a capsule i.e., its first byte, that defines the type of capsule and therefore
serves as the de multiplexing key for the capsule. Full format of each type is given below.

4.4.1.1 Process Capsule
The process capsule is the largest size capsule. It has following fields.
1- Type

Architectural Framework for Active Networks 38

Chapter 4 Implementation

2- Sub Type

3- Size

4- Source Address

5- Destination Address

6- Source Port

7- Destination Port

8- Data Length

9- Data

10- Number of Functions
11- Length of Function Name(s)
12- Function Name(s)

13- Number of Parameters
14- Type of Parameter(s) .
15- Value of Parameter(s)

As described earlier, Type field is common in all types of capsules. It can have
different values. In case of a processing capsule it should be used to identify capsule as a
processing capsule. The value of type field is ‘p’ in this case. Subtype field defines sub
type of capsule. Multiple sub types are possible for a capsule. These types are
a- Normal
b- Data less
c- Code less

Normal capsule describes that the capsule has both data and code. Data les defines
only the code in the capsule and code less defines the capsule as having the data only and
no executable in it.

Size field describes the size of capsule and it spans on two bytes. That means that |
the limit of size on a capsule is 64 KB. Source Address defines the address of the capsule
originator and Destination Address defines the intended destination. Size of both fields is
4 bytes. Each address is 32 bit IP address. Source Port defines the port of originator and
Destination Port defines the port of Destination. Size of each field is 2 bytes.

Data Length field defines the length of Data segment of the capsule in bytes. Its
size is 2 bytes. Data length can contain zero if the capsule type is code less. Data field

Architectural Framework for Active Networks 39

Chapter 4 Implementation

defines the data contained in the capsule. Its size is equal to number of bytes described in
the Data Length field.

Number of Functions field defines total executables in the capsule. Size of this
field is 1 byte. This field can have a value equal to zero in that case the capsule is a code
less capsule.

If Number of Functions field has value equal to n then following fields will repeat
n times.)

1- Function Name Length
2- Function Name
3- Number of Parameters

Function Name Length field describes the length of function name in bytes. Its
size is 1 byte; therefore maximum function name length is 255. Function name is actual
function name. Number of Parameters field describes total parameters involved in the
function. Its length is 1 byte. If number of parameter field has a value n then following
two fields will repeat n times.

1- Type of Parameter

2- Value of Parameter

Type of parameter defines the type and its size is 1 byte. Currently supported types
are byte, character, short, unsigned short, integer, unsigned integer, long, unsigned long,
float, double. Apart from these values it is possible to have previous functions return
value as parameter. '
4.4.1.2 Routing Capsule

The Routing capsule has following fields in it.

1- Type

2- Level

3- Sender Address

4- Number of Entries

5- Destination

6- Cost

First field of a Routing Capsule is Type that defines it to be a routing information
capsule. Its second field is Level. Its size is 1 byte. Level tells the receiver about the level

Architectural Framework for Active Networks 40

Chapter 4 Implementation

of information that it has inside the capsule. Third field is Senders address. This field
describes 4 byte IP address of the sender. Number of entries field defines number of
routing records in the capsule. If this field has a value n then there must be n records in
the capsule. Each record has following two fields.

1- Destination Address

2- Cost

Destination Address is 32 byte IP address and defines the address of router or
terminal that is reachable from the sender. Cost field defines number of hops of
destination from the sender.

Routing capsules are transferred only among the routers. Terminals do not
participate in these type of activities.
4.4.1.3 Control Capsule

Different control capsules are possible. For the time being only one such capsule
is defined. This capsule is for keep alive messages. It has following fields.

1- Type

2- Sub Type

3- From

First field is Type field. Second field Sub Type defines this capsule to be a keep-
alive capsule. Third field is 32 bit IP address of sender. This type of capsule is used to

communicate presence of a terminal or router in the network.

4.5 Components
The prototype is composed of different smaller modules, these modules work

successfully with each other. These are

1- The Router

2- The Terminal/Host

3- The Application

Router is the most important part. It is the heart. This software runs on the systems
that are designated as routers. To take benefit from our software one has to use at least
the Router part. The terminal part is also necessary and this software runs on the systems
designated as the host. Application is the part for which all this is done. All of our system
is to support applications. These applications are to be written by the user.

Architectural Framework for Active Networks 41

Chapter 4 Implementation

4.5.1 The Router

As described earlier, this module works on the device designated as router. The
system starts with initialization phase. In the initialization phase first of all software tries |
to find out number of interfaces available. Following code can be used to find out number
of IP addresses on the system. This code works even if you have more than one ether net
cards and IP addresses.
struct hostent *phe=gethostbyname("localhost");

phe=gethostbyname(phe->h_name);
struct in_addr *pinaddr;
for(int i=0; ; i++)

{
pinaddr=(LPIN_ADDR)phe->h_addr list]i];
if (pinadd=—=NULL)
break;
AfxMessageBox(inet_ntoa(*pinaddr),0,0);
}

Note that in above code the address obtained are not being stored. Every newly
calculated IP address overwrites the previous one. To use this code rightly, each IP
address should be stored.

Initialization phase is not yet done. The router creates sockets for every IP address
found in previous step. These sockets are created using socket function call. An example
call is shown below.
int MySocket = socket(AF_INET,SOCK_DGRAM,PF_INET);

First argument AF_INET defines the address family, AF_INET defines internet
address family. Second argument describes type of service used. In this case we are using
SOCK_DGRAM. 1t is for datagram (UDP). Last argument is for protocol family, in our
case it is internet. If successful, function returns a positive integer otherwise -1.

The router then initializes buffers. These buffers are for both incoming and
outgoing data. The router sends its information to its nighbours. This is done by sending
its IP addresses. The call is completed using following function.

Architectural Framework for Active Networks 42

Chapter 4 Implementation

send(socket_identifier,data,size_of data)

First argument defines the socket on which data is to be sent. Second argument
defines the data that is to be sent. Third parameter defines size of data in previous
argument. On success function returns number o bytes actually transmitted.

Then router starts controller and receiver. Both these parts of router work in
parallel and continuously. So basically these are threads. To create a thread following
function is used.

Createthread(...);
4.5.1.1 Controller

This module keeps an eye on every part of router. It monitors incoming buffer and
if it finds some data in those buffers, gets it and performs appropriate action. Working of

controller can be described in following pseudo code.

If (DataFoundInIncomingBuffer)

{

GetDataFromBuffer();

FindDataType();

If (DataType = ControllerData)
{
OperateHere();
}

else if (DataType = RoutingData)
{
UpdateRoutingTable();
}

else if (DataType = Processing)
{
Parse AndExecuteCapsule();
}

}

When controller finds a capsule for itself i.e., Type of capsule is controller then it
parses the capsule further to find out sub type. Currently only keep alive sub type is

Architectural Framework for Active Networks 43

Chapter 4 Implementation

supported. If a capsule is found with a sub type keep alive than controller finds out sender
and sender port from the capsule. If sender and sender port already have a connection
with the router hen this capsule is discarded other wise a connection is established and an
acknowledgment is sent. Upon receiving the acknowledgment the sender completes the
connection. Along with this, an entry is passed to routing table as well.

4.5.1.1 Processor

This module is invoked by controller. When controller finds out a capsule in
buffer, it checks the type. If type is a processing capsule then processors parse function is
called. The processors parsing function works in the following manner.

GetType();

GetSubType();

GetSize();

GetSourcelP();

GetDestIP(),

GetSourcePort();

GetDestPort();

GetDataLength();

GetData(),

GetNumberOfFunctions()

GetFunctionsAndParameters()

When processor completes this task, it has separated the data and functions. Now
functions represent the code to be executed which is present inside the capsule. Before
execution certain other tasks are also done. First of all it is checked whether the function
exists or not. If function exists only then it can be executed other wise discarded.

After completion of execution it is possible that the end result capsule may be
differ from the original capsule received earlier. It is the reason that instead of sending a
copy of incoming capsule directly a new composition is generated and that new capsule is
sent on the link to next hop. To send this capsule, the processor finds out destination
using the routing table and sends it on the link.

Architectural Framework for Active Networks 44

Chapter 4 Implementation

4.5.1.1 Receiver

Just like controller, receiver also works full time but it is totally different from the
controller. There is only one controller in the whole router but there are more then one
receivers in the router. In fact number of receivers is equal to the number of interfaces on
the router. Each receiver waits for data on its port. As soon as it finds some data, it places
that data in an associated buffer. So number of buffers it also equal to number of
interfaces on the router. Now it is responsibility of controller to pick data from the buffers

and perform accordingly.

4.5.2 The Terminal/Host

This module works as a link between network and application. Applications can
not directly communicate with the router or the network. Each application will have to
send its data to the host running on local system and that host is responsible for sending
data to next hop that is if any router exists. In this way application developers have to do
very little work in terms of finding next hop. In fact application developer needs no such

information. It needs only to concentrate on core logic and capsule preparation.

4.5.3 The Application

An application is used as the building block of services to be used in the network.
The applications are to be developed by users on their own. Each application should have
some properties in common. The applications must be able to make proper format. The
format is defined in previous sections. Application must forward their capsules to locally
running Terininal/Host. Applications need not to communicate with the routers directly.

A sample application is developed by us. This application works like a route
tracing program. It is defined in appendix A in detail. '

Architectural Framework for Active Networks 45

User Manual

Appendix A User Manual

Appendix A-User Manual

Overview

The software is built as a simulator and it can serve as the basis for the

devélopment of Active Applications. The whole software comprises of three parts.

1- The Router
2- The Host
3- The Application

All these parts are described below one by one. The software assumes some
things from the network. These are described below.

1- All computers must be connected directly to each other using cross cables.

2- There must be at least one router computer.

3- Router should be in the middle and not on the edge.

4- Hosts should be on the edges and not in the middle.

5- Routers must provide more than one interfaces i.e., should have more than
one configured network cards.

6- There is no limitation, which system (Host or Router) is invoked first.
An Example topology is described below.

Router

This is the heart of system. It has different windows. These are main window,

configuration window, interface and routing window.

Main Window

When it is stated main window is displayed. Main window has following components.
1- Interfaces (List Box)
This list describes the number of interfaces (Ports) on a router. List displays an
information like 1f0..192.168.0.3, where 1f0 denotes interface and next is the IP
address of that interface. A node can have maximum 4 IP addresses.

Architectural Framework for Active Networks ' 46

Appendix A User Manual

2- Routing Table (List Box)
It describes current routing records available to the router. Each record has
following format. 192.168.0.3...192.168.0.5..1, where firs IP address is the
destination, second is the interface on the router through which destination can be
reached and third one is the cost. Cost denotes number of hops.
3- Activity (List Box)
This list box describes current activity. If some data is received or transmitted by
the router on any of the port, the activity will be shown in the list.
4- Capsule Buffer (List Box)
This list displays the information about all the capsules received by the router.
5- Capsule Activity (List Box)
This list shows the activity being performed on a capsule.
6- Configure (Button)
The router functionality starts with this button. By clicking this button,
configuration dialog box is opened.
7- Connection (Button)
This button displays information of connection on interfaces.
8- Routing (Button)
This button displays information of routing table.
9- Executable (Button)
This button displays information of currently available APIs for execution.
10- Statistics (Button)
This button displays some statistics..
11- Exit (Button)
This is used to exit the program.

Architectural Framework for Active Networks 47

Appendix A User Manual

Mh 1IU ANSiny (Router)

11U Active Network Simulator (Router)

5 5

Configuration Window

When configuration window is displayed, it shows following components.
1- IP Address 1

User provides IP address of first interface, the interface 0.
2- IP Address 2

User provides IP address of second interface, the interface 1.
3- IP Address 3

User provides IP address of third interface, the interface 2.
4- TP Address 4

User provides IP address of fourth interface, the interface 3.
5- Set Address (Button)

By clicking this, the addresses are set in the router.
6- OK (Button) '

It is used to exit from the window.

Architectural Framework for Active Networks 48

Appendix A User Manual

7- Cancel (Button)

It is used to exit without saving.

Configuration

Interfaces and connection Window

When configuration window is displayed, it shows following information..
1- All interfaces
1 It describes the interfaces available in the router.
2- Addresses of Interfaces
Every available interface has an IP address. It shows those addresses.
‘ 3- Logical port used by addresses
The port used for connection and to receive and transmit data is shown here. By
default, it is 4000.
4- Connection on the interface
If an interface has got a connection with peer, it will display yes other wise no. It
is not a TCP connection. It simply means that there exists a peer on this interface.
5- Peer Address
If a peer exists than it should have an address. This field describes the address.
6- Peer Port

Architectural Framework for Active Networks 49

Appendix A User Manual

Peer port describes the port which should be used to send data to the peer.
7- Peer Type
It describes whether the peer is a router or a host. If it is a router , it will be

provided with routing tables otherwise not.

 Interfaces and connec

Routing Table Window

When Routing Table window is displayed, it shows following information.

1- Destination
It displays the IP address that can be reached through this machine.

2- Interface
It describes the IP address of interface through which above mentioned
Destination can be reached.

3- Cost
It describes the cost of reaching destination through described host. The cost is in

terms of number of hops.

Architectural Framework for Active Networks 50

Appendix A User Manual

Routing Information

U Active Network Simnulator {Router;

Host

It is used on edge machines. It provides the facility to actual applications to use
active networks. It has only one window. This has following components.
1- IP Address
It is used to provide IP address of local system.
Set (Button)
This button starts all activity. It assigns address to the required variables and then

[\S)
)

starts searching for peer routers and waits for incoming data.
3- 0K

Architectural Framework for Active Networks 51

Appendix A User Manual

It is used to exit from the application.
4- Cancel

It is used to exit from the application.
~ [IU ANSim (Host} :

e it e A = b e e i A g AN AR b

H

IIU Active Network Simulator (Host) .

Application

Application development is a concern of user. Still we have developed an
example application that could help user to understand. The example application has a
behavior like trace route. It has two parts, Trace route sender and receiver. The receiver
application waits for data to arrive at him from any trace route sender. The sender makes
capsules. The capsule goes through host and routers. At each router it executes and as a
result, its data portion gets appended the IP of both interfaces through which it came in
and went off. Its both parts sender and receiver are described below.

Trace Route Sender

It has only one window. The window has following components..
1- Destination IP
It describes the IP address of Trace Route Receiver
2- Destination Port
It describes the port of Trace Route Receiver
3- Prepare
By clicking this button the capsule is prepared.
4- Send
By clicking this button the capsule is sent to Host running on this machine.

Architectural Framework for Active Networks 52

~

User Manual

Trace Route Receiver

It has only one window. The window has following components..
1- Sender
When data is received the application finds out the sender and displays it here.
2- Received data
It describes all IP addresses traced by the capsule in order.

Architectural Framework for Active Networks 53

Glossary

Appendix B Glossary

Appendix B-Glossary

Active networks: Packet switched networks that allow passage of packets having
executable code and intermediate nodes can process this code along with the header.
Broadcasting: Data transmitted by one sender is received by all receivers in a specific
domain.

Caching;: It is the process of storing data temporarily so that minimum requests could be
sent outside.

Capsule: A packet having executable code along with data.

Congestion: State of an intermediate node when it is unable to store more data coming
from network link.

Congestion control: Techniques used to remove and lessen congestion when it has
occurred.

Latency: Time taken by a packet to reach the destination from sender.

Look around algorithm: An algorithm used to cache objects inside intermediate
nodes. Objects are cached using a hierarchy having subdivisions called levels.

Modulo caching: An approach used to cache requested objects inside intermediate
nodes efficiently.

Multicasting: Data transmitted by one sender is received by all receivers in a specific
group, Mostly members of group are scattered.

On the fly up grade: It is the ability of intermediate node to upgrade its states
dynamically.

Passive Network: A packet switched network in which intermediate nodes perform
only header processing on the packets.

Programmable switch: A switch whose computations can be changed by the
administrator of the network.

Round trip delay: Time taken by a packet to come back to the sender after being sent
by that sender to any destination.

Architectural Framework for Active Networks 54

Appendix B Glossary

Stub node: The node not involved in the forwarding of packet. It is simply the node at
the edge.

Transit node: It is the node involved in the forwarding of packet. It is simply the node
in the middle.

Unicasting: Data transmitted by one sender is received by only one receiver.

Architectural Framework for Active Networks 55

References

Architectural Framework for Active Networks References

References

[1] David. D. Clark. The Design Philosophy of the DARPA Internet Protocols. In Proc.
SIGCOMM'88, pages 106—114, Stanford, CA, Aug. 1988. ACM.

[2] J. H. Saltzer. D.P. Reed and D.D. Clark, End-to-End Arguments in System Design.
ACM Transactions on Computer Systems, 2(4):277-288, 1984.

[3] D. L. Tennenhouse and D. Wetherall. Towards an Active Network Architecture. In
Mudtimedia Computing and Networking 96, San Jose, CA, Jan. 1996. A revised version
appears in CCR Vol. 26, No. 2 (April 1996).

[4] E. Nygren et al. PAN: A High-Performance Active Network Node
SupportingMultiple Code Systems. In 2™ Conf. on Open Architectures and Network
Programming (OPENARCH’99), pages 78-89, New York, NY, Mar. 1999. IEEE.

[5] Y. Yemini and S. da Silva. Towards ProgrammableNetworks. In /ntl. Work. on Dist.
Systems Operations and Management, Italy, Oct. 1996.

[6] D. J. Wetherall and D. L. Tennenhouse. The ACTIVE IP Option. In 7th SIGOPS
European Workshop, Connemara, Ireland, Sep 1996. ACM.

{71 D. Wetherall. Service Introduction in an Active Network. PhD thesis, Massachusetts
Institute of Technology, Feb. 1999.

[8] Bernard Cole. Active Networks and Cyber Terrorism, www.Embedded.com, October
2001.

[9] Jonathan T. Moore, Michael Hicks, Scott Nettlesy, Practical Programmable Packets,
Computer and Information Science, Electrical and Computer Engineering, University of
Pennsylvania. University of Texas at Austin.

{10] Danny Raz Yuval Shavitt, An Active Network Approach to Efficient Network
Management Bell Laboratories, Lucent Technologies.

[11] An Active Router Architecture for Multicast Video Distribution

Ralph Keller, Sumi Choi, Marcel Dasen, Dan Decasper, George Fankhauser, Bernhard
Plattner Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland
Applied Research Laboratory, Washington University, St. Louis MO, USA

[12] Adam Wolisz, Christian Hoene, Berthold Rathke, Morten Schlager. Proxies, Active
Networks, Reconfigurable Terminals: The cornerstones of future Wireless Internet.
Technical university of Berlin, Telecommunicat Networks Group.

56

Architectural Framework for Active Networks References

[13] Samrat Bhattacharjee, Kenneth L, Calvert, Ellen W. Zegura. Self Organizing Wide
Area Network Caches. Networking and Telecommunications Group, College of
Computing, Georgia Institute of Technology, Atlanta.

[14] AN Composable services working group, Composable Services for Active
Networks, September 1998.

[15] Samrat Bhattacharjee, Kenneth L, Calvert, Ellen W. Zegura. Congestion Control and
Caching in canes. Networking and Telecommunications group. College of computing,
Georgia Institute of Technology, Atlanta.

[16] Y Chae, S Merugu, S. Bhattacharjee. Exposing Network support for topology
sensitive Applications.

[17] Samrat Bhattacharjee, Kenneth L, Calvert, Ellen W. Zegura. On Active Networking
and Congestion. GIT CC 96/02.

(18] Danny Raz Yuval Shavitt, An Active Network for Efficient Distributed Network
Management Bell Laboratories, Lucent Technologies.

[19] David J, Wetherall and David L, Tennenhouse. The ACTIVE IP Option, Telemedia
Networks and Systems Group. Laboratory for Computer Science Massachusetts Institute
of Technology.

[20] Improving the Performance of Distributed Applications Using Active Networks
Ulana Legedza. David Wetherall and John Guttag. Software Devices and Systems Group.
Laboratory for Computer Science. Massachusetts Institute of Technology.

57

A simple practical Active Network architecture
Adnan Igbal, M. Sikandar Hayat Khiyal, M.sher
Department of Computer Science,
International Islamic University, Islamabad.

Abstract: Active Networks are programmable networks. These networks provide the
facility of executing code inside intermediate nodes. As compared to existing networks,

these networks make user more powerful.

User has the capability to perform

computations of his own choice during the transmission of data. In this paper focus is on
the simplest approach to develop an active network node. The design of node will
provide the facility of programmability to the node.

Keywords: Active Network, Active Node, Programmablhty, Capsules, Congestlon

control.

1. Introduction: In an active network,
the routers or switches of the network
perform customized computations on the
messages flowing through them. These
networks are active in the sense that
nodes can perform computations on
packet, and modify the packet contents.
Moreover, these computations can be
customized. In contrast, the role of
computation within traditional packet
networks, such as the Internet, is
extremely limited. Routers perform
computations on packet header and they
can change the header of packets
flowing through them but do not change
the contents of packets.

The computations performed by router
on packet header are fixed and
independent of applications that are
involved in communication. In an Active
- Network computations are not fixed and
not always independent - of the
applications.

Several problems with today’s networks
are identified for example the difficulty
of integrating new technologies and
standards into a shared network
infrastructure, poor performance due to
redundant operations at several protocol
layers, and difficulty accommodating
new services in the existing architectural
model. Several strategies, collectively
refemed to as active networking,

emerged to address these issues. Two
things motivate research in Active
Network: Increasing user requirements
in this regard and enhancing technology
day by day. User requirements are in the
form of firewalls, web proxies, multicast
routers, mobile proxies, video gateways
etc. For all above applications
computations of heterogeneous nature -
are required inside the network. Our goal
is to define rules and basic principles for
the development of a simple active
network and then to develop a sample
using same principles.

"~ Next section describes the issues related

to the development of Active Networks.
Third section describes our approach and
principles. defined by us. Fourth section
describes -an example implementation
and last section describes results of our
research.

2. Issues in the development of Active

" Networks: Active Network technology
. encompasses different fields of computer

sciences like networks, operating
systems and language processing. Many

~ different aspects must be kept in mind

while developing a new architecture for
active networks like security,
interoperability, code execution and
services - introduction. Our motive is
simplicity while fulfilling maximum

‘requirements.

[Crmrerms [ramrme]
Fig 1. Ideal Active Network

3. Simplest Possible Architecture: In
our approach the ingredients of an active
network are active intermediate nodes
and active applications. Active

intermediate node is a router that has the

capability of executing code contained in
a packet flowing through it. Active
application is a user program that
generates and transmits packets
containing executable code. Such a
packet is termed as capsule [1].

3.1 Capsule:

A capsule must have information like
executable code, data and address
information.

Different options are available about the
type of code to be transmitted and
obvious ones are machine dependant

object code, intermediate code and high

level language constructs. All have
different benefits and drawbacks. Object
- code is the easiest option to be used. If
we use it then there is no need to
compile or interpret the code at
executing machine, so. speed of
execution will be fast. There is no need

to develop any new compiler. Portability

is its major drawback. This type of code
will work only on one type of operating
system and on one type of architecture.
Another possibility can be to use any
High Level Language. This will provide
the benefit that the programs will
become smaller. Principal disadvantage
is that at every node program will be
compiled and then it will be executed so
speed of execution will be slower then
binary code. Speed of execution and
portability, both can be improved by
using intermediate code and on the fly
compilers. e

Address information describes the
addresses of sending and receiving hosts.
It is implementation dependant.

3.2 Active Applications

Active applications are user programs

_that - cominunicate with other user

programs. These applications generate
capsules, which have executable code.
Active applications can define the
behavior of intermediate node on these
capsules by putting code of their choice.
The flexibility in the behavior definition

_ is dependant on the type of code used in

the capsules.

3.3 Active Intermediate Node: It is the

device used to connect multiple active

applications with each other. We have

identified different activities associated

with an active intermediate device like

receiving and forwarding of capsules,

routing capabilities and most important

execution of capsule code. To perform

these functions active intermediate node

can be divided in different parts like link

manager, routing manager and
Processor. ’
Link Manager receives capsules from

network links and forwards capsules to

the network link with the help of routing

tables. Buffers must be maintained for

any kind of traffic through the node.
Buffers must have all currently available
capsules in the active node. It must have

. following knowledge, Source and

destination of capsule, position of
capsule in the active node and status of
the capsule. Status .will show whether -
the capsule is under execution or not.
Processor is responsible for execution. It
must have knowledge about the position
of executable code in the memory. After
processing it has complete information

-of capsule that has gone through the

execution cycle. It removes all such
information except some very limited
information kept as soft state.

[|

can work along with current IP
networks. '

Resource Manager has entry of all the

resources being used by the executing
transmission “entities. These resources
may be routing table or any hardware
resources.

When an active intermediate node -

receives a capsule then it places the
capsule in the buffer. After this
controller will find the vacant area of
memory so that it could place the code
there. If it finds that place then it will
place the code and execution will start.
During execution if code needs any type
of resources then these will be made
available to it and entries will be made in
resource manager. After the completion
of execution all resources will be
released and there entries will be
removed from the resource manager.
The capsule will be forwarded to the
next hop after completion of execution.

4. Implementation: We have used
- above described rules to develop a
sample network. We have developed it
in such a way that it works over existing
IP networks. Such a methodology is

used because of testing purposes. We

have chosen to implement it on

Microsoft Windows 2000 and Intel
processor. The language that we have’

chosen is C++. The compiler used for
this purpose is VC++. '

An important issue is type of code. The
code used by us is in the form of high

level function names and their.

parameters. Each intermediate node

stores the executable code in the form of

functions and each capsule has different
function name and parameters values.

a— L‘i“‘l"“,cu e
? » C .] {1
o L[:E:;‘”.,._. o) || =

Fig 2. Active Network architecture that |

ReceiveCapsule();
FindType();
if (Type == executable)
Execute and_ Forward();
else
Forward();

Fig 3. Pseudo code for intermediate node

. The scenario of transmission is given as:

Active node will be running on a system
on a specific port. Applications using
activeness of the active node send data

‘to some other node on the network. That

data is in the form of capsule that is
combination of code and data. When
applications send capsule, it is received
by active node working on that system.
Active node of that system performs
necessary operations. In this way
activeness is achieved over passive
architecture. If any active node exists in
the mid way, it receives capsules. It
parses the capsule, separates data and
code and then executes the code. After
execution the capsule is reformatted and
transmitted towards next hop using a
link. ‘
4.1 Capsule Format: We have defined
the packet format having the following
fields. It is also described in figure 2.
- e Type
Sub type
Source IP
Source Port
Destination IP
Destination Port -
Length of Data
Data
Length of Code

e Executable Code
In this packet format executable code is
further divided into functions. Each

. function has three parts length of name,

name and parameters. The parameter
field is further divided in parameter type

[T<[en] s Jsp] o JopJLen] Data JL] code |

[LL Name [Param [..[.L[Nar;ne l Param l

[TJ Valua [[T [Value -]
Fig 4. Capsule Format

and value.

4.2 Active Applications: Every active
application that sends data to any other
active application makes use of sockets
to communicate with active node on the
same system. When data is transmitted
from an active application, it is given to
active node rather than to be transmitted
on the network link.

4.3 Active host

Active nodes receive capsules from
applications and from network link.
When capsule comes from a local
application then it is transmitted over the
network link. If it receives a capsule on a
network link, it forwards it to intended
application on a specific port.

This active host is necessary because we
are implementing . a totally new
architecture over an _ existing
architecture. By implementing active
host, it becomes very easy to run our
architecture without disturbing the
current one.

4.4 Active intermediate node

In the beginning it initializes itself by

setting up all interfaces on the system -

and buffers. After this it informs all
neighbors of its presence and gets ready

~ to receive capsules and other types of

packets. Other packets can be routing or
network control packets. .

As it receives a capsule, it parses the
capsule and separates code. Executable
code is in the form of functions and each
function contains names and parameters.
Each function is executed one by one.

After the completion of execution the -

capsule is reassembled and sent to next
hop after consulting the routing tables.

P P USER DATA

Headerj| aotion

Fig 5. IP options in Active Networks

. 5. Results

Different attempts have been made
previously to develop such an active
network that can accommodate in an
existing infrastructure. Such an attemnpt
is described in [4] named as Active IP
Option. The have used IP options of IP
data gram as a method to implement
activeness. There approach has different
drawbacks because of limited size of IP
options.

Our implementation of Active Networks
has provided with the great deal of
programming inside the network. It is
better then previously done work as it
provides generic facility of carrying the
code and not limited in terms of size.
Moreover, it can be applied inside
current networks without disturbing
them. We have developed a small
application that takes benefit of
activeness and works like route tracing
application. We plan to develop more
complex application as it has potential

even for applications like multicasting -

and protocols conforming to user
requirements. No portability problem as

-far as the type of code is concerned .

References:

1 Towards an Active Network
Architecture David L. Tennenhouse and
David J. Wetherall Telemedia, Networks .

"and Systems Group, MIT

2 A Survey of Active Network Research
David L. Tennenhouse, Massachusetts
institute of Technology Jonathan M.
Smith, University of Pennsylvania

W. David Sincoskie, Bell
Communications Research David .

‘. Wetherall, Massachusetts Institute of

Technology Gary J. Minden, University
of Kansas.

3 Practical active network, Nygren ,
Department of Electrical and omputer
engineering, MIT.

4 The Active IP Option David J
watherral and david L Tennenhouse.
Telemedia networks and System group,
Laboratory of CS, MIT. Sept 1996.

5 From Internet to Active Net David L .
tennenhouse, S J Garland, L sharira, M F
kashoek, Laboratory of CS, MIT.

6 A survey of semantic techniques for
Active Networks. Alan - Jeffrey
IanWakeman November 28, 1997

7 AN vision and reality,lessons from a
capsule based system David Wetherall
Department of Computer Science and
Engineering University of Washington

8 An architecture for active networking
Samrat Bhattacharjee, Kenneth L. alvert,
Ellen W. Zegura Networking and
Telecommunications Group College of
Computing, Georgia Institute of
Technology, -

9 Towards practicél programmable
packets, Jonathen T Moore, Scott M
Nettles.

This message is not flagged. [Flag Message - Mark as Unread |

Subject: @Cﬂ’ 2004 paper acceptance notific

From: BWemer@computer.org Piadd to Address Book

Date: Tue, 1 Jun 2004 15:05:24 —0700

Dear Author,

- Congratulations? Your paper has been accepted for publication by the
IEEE Computer Society Press in the Proceedings of the 2004
international Conference on Computer and Information Technology
(CIT 2004) to be held 14-16 September 2004 in Wuhan, China. Please
read these instructions carefully, and, importantly, remember to
fax your signed copyright form to us by the due date, filled out
correctly and legibly. Also, note you are no longer required to
submit an abstract of your paper.

Paper ID: 446

Paper title: A simple practlcal Active Network architecture A
Authors: Adnan Iqbal, M. Sikandar Hayat, M. Sher N

'IMPORTANT NOTE: A .
Please send a PDF or Postscript version of your paper, ONLY. If you
Prepare your paper using Latex (see below regarding macros), please
output your Latex file to postscript, and send the .ps version. Due
to 1ncompat1blllty problems we can no longer accept Word (.doc)
files. Thank you.

COPYRIGHT FORM:

n Please FAX your 51gned copyrlght release form to Bob Werner at +l
714 761 1784.

n We cannot publish your paper without this permission.

a PLEASE NOTE: The copyright form lS an attachment. to this e—mall

DEADLINES:

PLEASE NOTE: Your paper is due by 25 June 2004

PLEASE NOTE: A signed copyright release form is due by 25 June 2004.
Please put the conference name - CIT'04 - on all correspondence, on
the copyright form, and on any mailing envelope. This will assure
that your correspondence is directed immediately to my desk.

ELECTRONIC SUBMISSION: :

If using a web browser, please submit your paper electronically to
our FTP site.

a The paper should be uploaded, at: ,
ftp://ieeecs@ftp.computer.org/press/incoming/proceedings/cit04/

If you are uploading your paper using FTP transfer protocol
software, you will need to login into our ftp site at:
ftp://ftp.computer.org.

Logon as: leeecs

Password: benefit

FILE NAME: _ : _

Please refer to the attached author list text file for your paper
number,name, and paper title. Please name your conference paper file
per this sample: '

<paper ID number last name_ first initial.pdf>
ATTACHMENTS : ‘
There are some customized attachments to this author kit. They
contain:
n AUTHOR GUIDELINES

Instructions on formatting your paper for the proceedings.
n. COPYRIGHT RELEASE FORM

A copyright release form that MUST BE SIGNED AND RETURNED WITH
YOUR) :
PAPER. Note that you are stating
that the materlal in your paper is original and you have not
previously

released copyright to it. We cannot publlsh your paper w1thout
this .

properly fllled -out and signed form.
n REPRINT ORDER FORM -

To use if you wish reprints of your paper. Please make checks
for = '

reprints out to the IEEE Computer Society.

(The reprints.pdf attachment below will allow you to type your
information directly into the form before you print it out.)
There are three attachments -in Adobe Acrobat PDF file format. They

are instruct.pdf, copyright.pdf, and reprints.pdf.

If attached files become unusable during transmission for any
reason, you may also access uncustomized copies of them at our FTP
site. Available at: _ o
ftp://pubftp.éomputer.orgLPress/Outgoing/proceedings/

LATEX MACROS:
LaTeX formatting macros are also avallable on our FTP site.
a Proceedings 8.5 x 11 format - Filename: <LaTex macros.zip
Available at:
ftgﬁ/[pubftpﬁcomputer org/Press/Outgoing/proceedings/-
If you have any questions, please feel free to contact me.
Slncerely,
Bob Werner
IEEE Computer Soc1ety Press
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1264
Fax: +1 714 761 1784

Are you a member of the IEEE Computer Society? For membership
information,
visit http: //computer org/join

Attachments: ~ _

‘(See attached file: instruct.pdf) (See attached file:
reprints.pdf) (See attached file: FORMAT.pdf)

(See attached file: cit04 copyright form.pdf) (See attached
file: :

cit04 accepted papers.txt)

This message is not flagged. | Flag Message - Mark as Unread }

Date: Wed, 2 Jun 2004 20:03:45 +0900
To: ai_ hr2000@yahoo. com :
From:

hwang@u-aizu.ac.jp el .Add to Address Book .
CC: hwang@u-aizu.ac.jp o
Subject: CIT 2004 Author Notifications

Dear Adnan Igbal,

The IEEE Computér Society Press have already sent the
author kit to you. According to the schedule and
guidelines written in the author’s kit, please DIRECTLY
send the final version of your paper to IEEE CS PRESS
before the deadline.

The authors/presenters are likewise required to abide
by the following rules:

1. Each accepted paper should be registered and presented
at CIT 2004. The papef should be registered based on the
fees in the attached registration form. This applies to
all papers, regardless of whether the presenter is a
student or not. If the presenter is going to present
multiple papers, each paper should be registered as
required.

2. Each accepted paper should be registered by June 25,
2004. If we do NOT receive the paper registration on this
date, your paper will be automatically withdrawn from the
CIT 2004’ Proceedings.

3. A full paper can have at most Eight (8) pages. Only 8
pages will be printed even if the paper is longer than the
imposed limit. To some authors from China: the order of
your name should be- "Flrst _Name Family Name" as posted on
. the Program.

4. Please contact with Dr. Xuhui Li at Wuhan University (
Email address: lixuhui@whu.edu.cn) about the hotel
. reservation for CIT 2004 attendees, or book hotel online
by following' the link http://www,.sinohotelguide.com/wuhan/.

5. The conference Advanced Program -(Preliminary) has been
posted on the web. Any mistakes, email us.

An invitation letter will be sent to participant(s) who
wish to get such a letter for purposes of supporting the
approval of your business trip, visa application, etc.

Thanks all. We look forward to rece1v1ng your CIT 2004
registration soon.

Best regards,
CIT2004 Program Committee Chairs
Hui Wang, Zhiyong Peng, Atsushi Kara

The 4th International Conference on Computer
and Information Technology (CIT2004)

Wuhan, China, 14-16 September 2004,
http://smlsvrQl.u-aizu.ac.jp/~cit2004/

