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ABSTRACT

Structural change can be considered by breaking up a sample into subsets and asking
if tbese can be aggregated or pooled. Literature on tests for structural breaks can be divided
into three categories. First category consists of test for structural brakes at known location.
Such as Chow, LR, Wald, MZ test. Second category consists of tests for structural breaks at
unknown location such as sup F, sup W, supMZ tests. Third category borrows tests from the
second category and then applies programming techniques to solve the problem of locations

of multiple structural breaks. Our study is concerned with the third category.

We are providing a programming alternative to much more complex testing strategies
currently being researched and developed in testing for structural change. We are using data
mining techniques. Data Mining is a common field of Statistics and Software Engineering,
Data Mining requires expertise in both statistical concepts and programming at the same time
which is probably the reason which makes data mining a rare skill in the world. Use of
programming skills in econometrics is still at preliminary level. Most of the econometrics
softwares do not provide computation for structural breaks of unknown time. Eveiws-9 and
Stata-14 have included options for computation of structural breaks at unknown locations.
Procedure used by EView9 involves sequential tests for structural breaks where test for
structural break is conducted in the full sample. If break is not found, full sample is split into
two halves and each subsample is tested for structural break. Practice continues until a break
is indicated. Statal4 does it by computing either Wald or LR test statistics at a set of possible
break dates. The intuition behind these tests is to compare the maximum sample test with
what could be expected under the null hypothesis of no break. We have developed
algorithms, which thoroughly scan data by swapping window and so pinpoint all breaks.

If we are able to find each and every structural break in different time series, we can
compare the locations of structural breaks in different time series. A lead and follow
relationship may indicate cause and effect relationship just like the logic used in Granger
causality. Granger causality checks for lead and follow relationship in actual data set and if
found concludes it as cause and effect relationship. Discovering such a relationship among
structural breaks of different time series may prove a second methed for defining the
causality. We have confirmed cause and effect with Granger causality test after observing

such pattern in structural breaks in KSE 110 index, bullion price and Treasury Bill rates.



1-Introduction

A structural break is a concept in econometrics. A structural break appears when we
see an unexpected shift in pattern of the data. This can lead to huge forecasting errors and
unreliability of the model in general. Usually things change in economy as an evolutionary

process but if a shock occurs, everything changes abruptly.

In economics, a structural break might occur when there is a war, or a major change in
government policy, or some equally sudden event in financial sector. But that is not very
often, and we know about the occurrence time of these events, We know that there was a
structural break in world economy in 1945 due to World War IT and we can easily test our
hypothesis about structural break at this point. Things become trivial when we do not know if
structural break has occurred or not. Even if we know that structural break has occurred, we

do not know the exact location.

For a linear model with one known single break in mean, the Chow (1960) test is
often used. This test needs information about the possible break point. Data is split in two
groups and F statistics is used to test the hypothesis about structural change. Quandt (1960)
proposed taking the largest Chow statistic over all possible break dates. Bai and Perron
(1998) develop tests for multiple structural changes. Their method is sequential, starting by
testing for a single structural break and then sequentially extending the search for structural

break throughout the data set unless all possible breaks are indicated.

Various techniques have been developed in late 1990°s for structural breaks of
unknown timing by using complex algorithms and coding. In this study we have tried to
present an improvement over the existing programming skills for computation of structural
brakes at unknown locations. We are using Data Mining Techniques. Data Mining is a
complex field of research which requires a combination of Statistics, Programming and
Domain knowledge at the same time. When we apply data mining techniques on a field of
specialization, we need domain knowledge in that specific field of specialization. In this
thesis field of specialization is Economics. We are applying our technique to find structural
breaks on real time series data sets, which are KSE 100 index, bullion price and treasury bill

rates.



1.1 Research Objectives

Objective of this research is to find out the exact location of structural breaks within
the data by analyzing intermediate result obtained from regression on data set along with the
conventional F statistics. We want to present some improvement in contemporary techniques

for computation of structural breaks at unknown locations.

In contemporary techniques, we first guess about the point where we suspect a structural
break and then we go for testing our hypothesis of no structural break against the existence of
structural break. If calculated F value is smaller than Cntical Value, we don’t reject the null
hypothesis of no structural break meaning that there is no structural break in the data set at
the suspected point. If calculated value is more than critical value then we reject the null
hypothesis meaning that structural break is actually present and we cannot run a single
equation on the whole of the data set. If structural break is known, things become simpler.
Among other techniques, we may use quadratic or cubic spline functions. Spline functions
are a simplification of polynomials. In spline functions we have knots at break points and
distance between any two knots is a straight line. If structural breaks are unknown then we

can neither define location of knots, nor can we use spline functions.

Techniques mentioned in this thesis do not require a prion information about the
structural breaks., We have developed an efficient algorithm. Program written on the basis of
this algorithm can do all the calculations about the structural breaks. We have tested our
program on simulated data before applying it on real time series data sets. Data generated by
DGP consists of 300 observations. We have swapped widows of different size over the data

sets. A criterion for selection of window size is discussed in next chapter.

Our programs give the results from simulated data as expected, so we apply them to
the real data sets. Three econometric time series are selected. These are Karachi Stock Index
(KSE 100 index), Bullion Price and Treasury Bill rates. Data on KSE index and Bullion Price
is originally obtained as daily data. This data is converted to fortnight data as data available

on Treasury Bill rates is only fortnightly.



1.2 Usefulness of research:

Research is useful on different ground. Some of which are discussed below one by

one.
1.2.1- Accuracy in Forecasting:

An important reason for estimating regression parameters is forecasting. Accuracy in
forecasting depends on accuracy in estimating regression parameters. Intercept or slope or
both may change causing it impossible to get valuable or useful forecast. Forecast for one sub
sample of the data may be quite different than from the forecast from the other sub sample of
the data, Due to structural breaks, inferences about economic relationships can go astray,

forecasts can be inaccurate, and policy recommendations can be misleading or worse.

Clark and McCracken (2005) found that structural breaks can severely affect the out-
of-sample predictive performance of econometric models. Researchers should be very careful
in how they set up the out-of-sample forecasting experiment, paying close attention to any
evidence of breaks. When interest lies in forecasting time-series with regression models that
are subject to structural breaks, one might think that the parameters of the forecasting model
should be estimated exclusively on data available after the most recent break. However, such
an approach ignores two important facts. First, in choosing the estimation window, it is
generally advantageous to include (some) pre-break information. Second, it can be difficult to
precisely estimate the timing of one or multiple breaks, particularly when these are small

and/or occur close to the boundaries of the data sample.

Our programming techniques compute structural break anywhere in data, be it in the
beginning or at the end of the data set. For forecasting, we can give more {or sometimes all) of

the weight to the data set after the structural break.
1.2.2- Simulation and Bootstrapping:

For the purpose of simulation and bootstrapping, we have to use the random numbers.
These random numbers are generated by the computer according to some algorithm which is
applied on a particular seed value. Seed value is a positive integer like 1, 2, 3 etc. This seed

value gives the same set of random numbers from worksheet to worksheet for the purpose of



analysis where same set of random number is required. Without seed value list of random
number changes whenever we generate even a single random number, Even with seed value,
the randomness of random numbers generated by any program like Excel, Oxmatrics, SPSS,
Eviews etc. is questionable. Random numbers generated by a PC may not be purely random.
It is quite possible that the numbers are having slight trend which may affect the conclusion

and predictions obtained from the data set.

Programs written for this thesis can also be used to check the validity of random
numbers generated by the computer. Suppose we generate a series of 500 random numbers
which are uniformly distributed. We should expect the average of these numbers to be same
anywhere in data set. If average of sample deviates too much from population average, then
random numbers are not trust worthy. Qutput of the code can be helpful in deciding whether
random numbers are reliable or not. What we need is to handover the data file containing
random numbers to the program. If structural break points are discovered in the data then
there is something wrong with the random numbers generation process. As a consequence
randomness of random numbers may not be reliable. A small window size may help in this

regard and random numbers can be checked for their consistency.
1.2.3- Dynamic View of change in Parameters:

The output of the codes is helpful in viewing the changes in intermediate results of
regression analysis as we move the window over the entire data. We have swapped the
window and so jumps are avoided as is the case in algorithms usually used in conventional
tests for detecting structural breaks of unknown timing. So we can analyze regression
parameters (intercept and slope) as new data is introduced. We can dynamically view changes
in ESS and RSS and so can obtain important information about the changes in the data
pattern. Use of simple statistics along with F value can provide additional help in predicting
the starting point of structural break as well as the period of disturbance. The dynamic view
can tell us if the data resumed original pattern after structural break or it adjusted to a new

pattern.
1.2.4- Advantage over Contemporary Techniques:

EViews8 can estimate break points at unknown locations, Procedure used by EView8
is borrowed from Bai (1997), Bai and Perron (1998). Critical values for these tests are

4



provided by Bai and Perron (2003).This procedure involves sequential tests for structural
breaks. Test for structural break is conducted in the full sample. If break is not found, full
sample is split into two halves. Each subsample is tested for structural break and practice
continues until a break is indicated. Once structural breaks have been indicated by sequential
procedure, refinement procedure is started. In refinement procedure, structural breaks are re-
estimated if previously obtained structural breaks belong to a sample which has multiple

structural breaks.

Statal4 too can estimate structural breaks at unknown locations. Statal4 does it by
computing either Wald or LR test statistics at a set of possible break dates. Possible break
dates can be predicted on the basis of change in regression parameters as Statal4 can
compute recursive estimates of the regression parameters. A change in the consistency of
parameters is a possibility of the candidate break date. After calculating test statistics at all
the possible break dates, their Supremum can be taken. Specifically, the supremum Wald test
uses the maximum of the sample Wald tests, and the supremum LR test uses the maximum of
the sample LR tests. The intuition behind these tests is to compare the maximum sample test
with what could be expected under the null hypothesis of no break (Quandt [1960], Kim and
Siegmund [1989], and Andrews [1993]).

Another feature available in econometric softwares is rolling window methods.
STATA has a command for rolling estimation. An example of this command is “rolling,
window (24) clear: regress XL(1/3).X.” In this command: window (24) sets the window
width w=24 . The number of observations for estimation will be 24. Clear command clears
out the data in memory. The data will be replaced by the rolling estimates. The part regress
XL(1/3).X is the command that STATA will implement using the rolling method. An AR(3)
will be fit using 100 observations, rolling through the sample X. For example suppose we
have fortnightly data, 2001-I through 2016-24 having total 384 observations, Using window
size = 24, the first estimation window is 2001-1 to 2001-24, The second is 2001-2 to 2002-1,
third is 2001-3 to 2002-2 and so on. There are 384-24+1 = 361 estimation windows. Now we

can plot the estimated coefficients against time. We can use separate or joint plots.

As an alternative to rolling estimation, sequential or recursive estimation uses all the data up
to the window width First window is [1,w]. Second window is [1,w+1]. Final window is

[1,T]. With sequential estimation, window is the length of the first estimation window. We



can use rolling and recursive estimation to investigate stability of estimated coefficients. We

look for patterns and evidence of change and we try to identify potential hreak dates

Everything was fine up to this point. Now suppose that we want to find the break
points, We can consider picking multiple possible break dates r*=[71,£2,...,fm]. For each
break date #*, we can estimate the regression and compute the Chow statistic F(#*). Finding a

break date is similar to searching for a big (significant) Chow statistic.

We have made an improvement over the algorithms and coding used by the
contemporary softwares. These softwares can swap window for regression parameters but not
for F statistics. So these softwares cannot give us a dynamic view of F statistics as we move
towards or away from the break point. We have used Chow F statistics to judge about the
structural break. Instead of taking Chow test only at possible break points, we have taken
Chow test at all the points throughout the data set. We have devised a way to swap different
windows on the data set and to get another type of data which is data of parameters and
intermediate results. Then we swap next stage windows on the data of parameters. In other
words we work on metadata. We generate data which depicts properties of the original data
set. Various nested loops swap various windows over the data and so we can observe changes
in Chow F statistics as we move towards the break point or away from break point. We get all

the intermediate results too, which are regression coefficients (intercept, slope) and RSS.

Our algorithms and coding techniques will lessen the burden of econometricians to a
large extend. Econometricians do not need to check the data manually for the existence of
structural breaks. What is needed is merely hand over the data file to the program, set
window size and run the program. For a data set of 300 observations and 40 window size,
542 (261+281) regression equations are run, results are obtained, compiled and conclusions
displayed on screen only within 5 seconds. Detail about selection of window size is given in

next chapter,

This study includes the comparison of results obtained by using different window
sizes on the real econometrics time series. So that we get a fairly good idea of how results

change when we swap a window of smaller or larger size over the data set.



2-Literature Review

Structural stability is of prime importance in applied time series econometrics.
Estimates derived from unstable relationships erroneously considered as stable are not
meaningful. Inferences can be severely biased, and forecasts lose accuracy in case of

structural breaks.

By now classical approach to the detection of structural changes attempts to detect
breaks ex post, see Hansen (2001) for a state of the art survey. Starting with the pioneering
work of Chu, Stinchcombe and White (1996) a second line of research has emerged: given
that in the real world new data arrive steadily it is frequently more natural to check whether
incoming data are consistent with a previously established relationship, i.e., to employ a

monitoring approach.

Tests for structural change can be divided into two classes which are F tests and
Fluctuation Tests, F tests are designed for a single-shift (of unknown timing) alternative

(Hansen 1992; Andrews 1993, Andrews and Ploberger 1994).

Fluctuation tests do not assume a particular pattern of structural change. Fluctuation
tests can in turn either be based on estimates of the regression coefficients or on regression
residuals (recursive or OLS), both from a widening data window or from a moving window
of fixed size. The probably best-known test from the fluctuation test framework is the
recursive (or standard} CUSUM test introduced by Brown, Durbin, and Evans (1975), later
extended by Kr amer, Ploberger, and Alt (1988) to dynamic models. A unifying view on

fluctuation-type tests in historical samples is provided by Kuan and Hornik (1995).

These tests are commonly used to detect structural change ex post (historical tests).
The class of fluctuation tests can be extended to the monitoring of structural changes, i.e. for
detecting shifts online. Chu et al. (1996) introduced the first fluctuation test for monitoring by
extending the recursive estimates test of Ploberger, Kr'amer, and Kontrus {1989). Leisch,
Hornik, and Kuan (2000) generalized these results and established a class of estimates-based

fluctuation tests for monitoring,.

Consistency of population parameters like mean, variance and covariance is required

for the accuracy of forecasting in applied time series. This consistency is what is called

7



stationarity of data in technical term. In case of non stationary data, our analysis is redundant
and same is the case of analysis in presence of structural breaks. In case of structural break,
parameters change even if data is stationary before and after the structure break. In other
words concentration on stationarity while ignoring presence of structural breaks can lead to

the same situation of redundant results.

The econometrics of structural change means searching for methods and models which
can detect and locate structural breaks. Various aspects of this narrow field of econometrics

can be described as follows.
2.1 Structural Breaks at Known Locations

The history for detecting the structural breaks goes back to early 1960°s. Chow (1960)
suggested a procedure to test the structural break by splitting the data in two parts. Famous
Chow F test uses the logic that RSS changes with additional data. This logic is briefly

described as follows.

Logic behind Chow F Test; Chow F test takes its foundation from the changes in
residual term with inclusion or exclusion of the data. If newly added data has the same
pattern as the previous data then vartance of residual term does not change. Variance of
residual term is RSS divided by degree of freedom. Now if structural break has occurred,
then new data causes the residual term to scatter at a larger distance from the fitted line. So
variance of residual term increases. If such data is split in two parts, then we can run three
regressions. First regression is run on first part of data, second regression on second part and
third regression on whole of the data set. Here we will observe that sum of variances of
individual data sets can never exceed variance of the overall data set. In other words we say
that, RSS/df > RSS1/df + RSS2/df. Chow F statistics checks for the difference between
RSS/df and RSS1/df + RSS2/df. This difference is divided by the sum of variances of
individual data sets. The calculated value is now known as Chow F statistics. If this value is

more than the tabulated (critical) value, then a structural break is indicated.

Chow test remained popular for detection of structural breaks. This test was extended to

cover many of the econometrics models. Examples can be found in Andrews and Fair (1988).



Namba (2014) conducted double bootstrap methods on Wald test statistics to test for
equality of regression coefficients between two linear regression models. This procedure can
be used when disturbance variances are not equal as well as when there is structural break in
the data set. Method is used for structural break of known timing, Wald statistics suffer size
distortion in small samples. Namba has shown that his method can improve size distortion.
He suggested for further research on the same lines to use the same method for multiple

structural break at unknown locations.

In most of the tests including Chow test, equality of means and heteroscedasticity is
pre-assumed. Thursby (1992) has presented a comparative study of this type of tests.
Econometricians like Toyoda (1974), Schmidt and Sickles (1977) and Koschat and
Weerahandi (1992) have shown that Chow type tests perform poorly in case of
heteroscedasticity. In the fact Structural breaks may be indicated if there are changes in
samples’ means or variances over a given data sets. We can use two approaches here. In first
approach known as MV strategy, we first test for equality of means and then for equality of
variances. In second approach known as VM strategy, we first check for equality of variances

and then for equality of means.

Maasoumi et al. (2010) developed MZ test by jointly testing restrictions on mean and
variance. EM and EV are jointly (J) tested against UM and UV, which are unrestricted
alternatives. This approach 1s uncommon. This approach resembles the tests for whole

distribution changes which are represented by Li et al (2009).

Above mentioned tests assumes that break point is clearly known and task of the
researcher is only to confirm if computed statistics at this point is significant or not. A
researcher can use two approaches here. (1) Select a break date on his subjective judgment
such as middle of the data or break after one third of the data. (2). Select a break point on the
basis of some external event such as emergence of war or on the basis of technological

revolution etc.

In the first case, test may mislead us as we can test the data at a point where it is quite
stable. So an actual break point may be ignored. In second case, we may conclude a structural
break while there might be none. It is possible if data changes sharply at the guessed break
point and then stables again. So we actually had a few outliers at the break point. The result

being that Structural break is indicated while actually there was none. Outlier is detected is

9



window size around the outlier is small. When window size around outlier increases,
indication of structural break vanishes. While a real structural break is indicated in case of
both small and large window size around the structural break. In both cases different
researcher can find conflicting results. So these choices of break points do not qualify for the

sound scientific research.

The above mentioned two approaches lead us to a third approach. That is to think of

structural break point as unknown.
2.2 Single Structural Break at Unknown Locations

The idea to detect structural break at an unknown location was given by Quandt (1960).
He proposed to take the largest Chow F statistics out of all the possible calculated values. The
necessary solution is to treat the break date as unknown. Quandt gave the solution and
suggested to imagine all the possibilities of structural break in the data set. Then get all the
Chow F statistics on these candidate break points. The worst case will have the largest F

value and so this is the Quadt’s statistics.

The simple method to estimate break date by selecting the date which can produce largest
Chow F statistics can prove a good method in case of linear regression models only.
Moreover these models must be homoscedastic as well. Another method is to split the
sample at predicted break date. Now run regression on both the samples. Get estimates by
ordinary least squares, calculate and store sum of squared errors. Now sum the stored values.
Repeat procedure with different possible break dates. The break date is the one which

minimizes the sum of squared errors for overall data set.

Another approach is to systematically plotting F statistics at all the suspected break point
against the break dates. Chow F statistics is taken on Y axis and break dates on X axis. To
compute Chow statistics, we split data in two parts around the suspected break date. We run
regression on sub samples. If data is consistent, the estimates (intercept, slope) from both sub
samples will almost be the same. If data is inconsistent then, regression estimates are
different and this difference of regression estimates (in both the sub samples) is reflected in

the Chow F statistics.
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Next task is to use some critical value to judge about the significance of the Chow
statistics. If we are sure about the break date, we can use chi square critical values. If
calculated value lies below the critical chi square value then test is insignificant and we do
not have structural break. If calculated value is high then test is significant meaning presence

of structural break.

If break date is unknown, we do not use chi square value. In the early 1990’s many
authors suggested for critical values in case of unknown break dates. Andrews (1993) and
Andrews and Ploberger (1994} prepared tables of critical values for Chow statistics in case of
unknown break dates. Hansen (1997) suggested calculations for p values. The critical values
suggested by these authors were larger than the corresponding chi square values. These

values depended on many factors including number of parameters in the model.

Sup F test proposed by Quandt (1960) and many other like proposed by Kramer et al.
(1988), Tran K. C. (1999) and Hayashi (2005) do not cover case of heteroscedasticity. To fill
this gap in literature MZ test was further improved and extended for structural breaks of
unknown timings by Ahmed et al. (2016) Supremum MZ test was introduced. MZ test
statistics is calculated at different possible break point and then maximum of the MZ test is

selected as an indicator of the unknown structural break.

The problem with this method is that we cannot have more than one break point in the
data though in actual there may be multiple break points. In other words we have to switch

over to another method if there can be more than one structural breaks in the data set.
2.3 Multiple Structural Breaks at Unknown Locations

Work on multiple structural breaks started in late 1990’s. Bai and Perron (1998)
suggested the methods in case of more than one structural break. They suggested to check for
the structural break at the estimated break date of data set. It structural break is detected, split
the data in two sets and apply the procedure on both the sets. This procedure is continued

until all the sub samples do not reject the hypothesis of no structural breaks.

We can find a number of examples for detection of multiple structural breaks in the
data. Stock and Watson (1996) have tested 76 time series for structural breaks. They used

monthly data. Both univariate and bivariate regressions were run by them. More than half of
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the time series indicated for structural breaks at 10 percent level. Ben-David and Papell
(1998) analyzed 74 time series, which were consisting of Summers-Heston GDP data of 74
countries. They tried to find if there 1s a decrease in the trend of the GDP data set over the
time, They found that 46 countries have shown slowdowns or decrease in trends. Out of these
46 countries, 21 showed that trend actually became negative after the structural break.
McConnell and Perez- Quiros (2000) tried to find if volatility of GDP growth rates in United
States is stable or not. They found that volatility of GDP growth rate actually decreased after
1984 in United States.

Multiple break dates have been estimated by Chong (1995) and Bai (1997b) in a
sequential manner. Here to fundamental principle is that in case of multiple break dates, sum
of squared errors can have a local minimum near the predicted break date. The global
minimum point is taken as an estimate of the break date. All the other local minimum points
are taken as potential break dates. Now sample is split at the estimated break date and
practice continues with the sub samples. Work of Bai (1997b) proves that improvements in
estimation of break date can be obtained by iterative refinements. It means re-estimating the

break dates from the refined samples.

2.4 Confidence Intervals for structural breaks

Sometimes it becomes necessary to know about the exact or nearly exact location of the
structural break. We think of the date of structural break or break-date as an unknown
parameter. Now our problem becomes how to estimate the exact break-date and how to make

confidence interval for the estimated break date.

Efforts to construct such confidence intervals can be traced back to Hinkley (1970),
Hawkins (1977), Worsley (1979, 1986) and Bhattacharya (1987). Work on constructing
confidence intervals by using standard econometric methods can be found in Bai (1994). This
work was further improved by Bai (1997a, 1997b), Bai et al (1998), Bai and Perron {1998)
and Bai (1999) Methods proposed by them are suitable for structural breaks of moderate and
large interval. Elliot and Muller (2007) found that previous work for constructing structural
breaks is not suitable when applied on small samples for small or moderate structural breaks.
They have used the technique to construct confidence sets by inverting the sequence of tests

and thus obtained a valid confidence interval.
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As long as confidence interval for break dates is concerned, Bai (1994, 1997a) has given
the asymptotic distribution of the break date estimator. He has constructed confidence
intervals for the break date. Method to calculate these confidence intervals is easy. These
confidence intervals tell about degree of estimation accuracy and so they are useful in
econometrics applications. Bai, Lumsdaine and Stock (1998) have used the same
methodology for multiple time series. Whereas these time series have simultaneous structural
breaks. It is proved by them that estimation accuracy is improved by using multiple time
series. Similarly Bai and Perron (1998) have given simultaneous estimation for multiple

break dates.

There are two methods to construct confidence interval, First method demands for
expected value and standard deviation, According to level of significance we have lower and
upper bounds of confidence interval as E(x)-t and E(x)+t. Second method is of simulation.
We simulate possible values of x. Suppose we get 10,000 values by simulation. Now for 95%
confidence interval, we select middle 9500 values. Minimum of these values is lower bound

while maximum is upper bound.

Here in our case, we have relied more on software techniques as compared to
econometric techniques. We have swapped the window over the data set due to which we get
all possible values of Chow F statistics. We can observe that confidence sets exist when we
move either toward or away from the break point. This is clear from all the graphs of
computed F statistics. Somewhat similar intervals can be seen for the Residual Sum of

Squares (RSS)..
2.5 Power of the Test

Power of a test is one minus type 1 error. Type Il error occurs when we do not reject the
null hypothesis which was actually false. So power of the test 1s our ability to reject the null

hypothesis when it is actually false.

Maasoumi et al. (2010) have computed power of MZ test. MZ statistics is chi squared
distributed. Powers of three tests are compared for the given structural break points in their

bl

study. They have taken a measure of heteroscedasticity ‘H’ and Departure of regression

coefTicients ‘D’. By computing powers of the tests, they showed that VM test has high power
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at low and intermediate H. The MV test has high power at low and intermediate D. While J

test has high power along the diagonal where both discrepancies are almost equal.

Hansen (2012) has described that Sup Wald tests are more powerful when conducted in
the middle of data set. While sup Wald tests have less powers near the beginning and end of
the samples It is difficult to measure structural break from the beginning or at the end of the -
data set. Data is trimmed by a factor A, so that sample lies between An and (1-A)n.
Hansen(2012) suggested 2=0.15. So that sample ¢ (0.15n, 0.85n).

Ahmed et al. (2016) have compared the size and power of Sup F test and Sup MZ test.
They have proved that Sup MZ test is more powerful as compared to Sup F test when there is

heteroscedasticity in the data.

Piehl et al. (2003) have pointed out that power of a structural break is not an issue at all if
we are able to find a very clear evidence of the presence of structural break. In this thesis we
have used Chow F statistics. Instead of using Sup F methodology, we have switched over to a
software solution for the problem. We have swapped the window over data set and calculated
atl Chow F values along with all the intermediate results. We analyze the results and find out
that Chow F test increases sharply when we move towards the break point. So in our case
computing power is not an issue as break point is very sharply recognized. If even then
someone is interested in computing power, algorithms and coding can be done for computing
the power of the test as window is swapped. This exercise is beyond the scope of this thesis

and is left for further research for those who are interested in the field of data mining.
2.6 Distinguishing Random Walk from Structural Change

A common characteristic of almost all of the time series is that they have a trend along
the time. They may also include a cycle. Third possibility of no trend but only ¢ycle can also
be encountered. It was a common misperception that trend in time series is linear. Nelson and
Plosser (1982) were the first ones to prove that any Macroeconomic time series have random
walk. It means that time series do not have fixed trend during business cycles. The trend has
random shocks. These random shocks create disturbance in the trend and time series may

adjust at a new level unless disturbed by another random shock.
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Discovery of movement of trend required its explanation. One plausible argument was
presented by Perron (1989). According to him, movement of trend can be explained by a
single structural break in the constant linear trend. Due to the trend break, serial correlation is

produced and this serial correlation resembles the random walk.

Many authors like Christiano (1992), Zivot and Andrews (1992), Banerjee, Lumsdaine
and Stock (1992) and Vogelsang (1992) criticized the argument of Perren (1989). These
authors rejected the assumption that break date is already known. They argue that selection of
break date is dependent on data and that it is not an appropriate selection, They offered an
alternative procedure which was more appropnate. According to them we should select the
break date which can give highest t value, so that we have maximum evidence against the
random walk. The procedure proposed by them produced almost the same results as those of
Perron’s as break dates were again 1929 and 1973, Yet it is true that test was conducted using
a different procedure. This test had different sampling distribution. In this case critical values
were quite high due to which rejection of null hypothesis of no random walk was rarely

rejected. So for the most of the time evidence of random walk was confirmed.

Perron (1997) revised the whole procedure by extending the data up to 1991:1lI. He
wanted to check if longer data can give different results. Selection of lag order of
autoregressive scheme was made with different methods. Although result became slightly
more favorable for existence of structural break, but even then existence of random walk
could not be ignored. If annual data is taken then there 1s over prediction for 1970 to 1990
period. If quarterly data is taken then there is under prediction for 1987 to 2000 period. This

type of behavior is in favor of existence of random walk.

Lumsdaine and Papell (1997) conducted some more test for the same data set and tried to
prove two break dates instead of one. This was evidence against random walk. But due to two

break dates, distinction between trend break and random walk was narrowed.

The idea presented by Perron (1989) about structural break in time trend has changed the
empirical analysis of time series. Now there is more focus on different properties of the trend.
It is actually number of shocks which make trend breaks different from random walk
hypothesis. If we have very few shocks, we may talk of trend breaks. If frequency of random
shocks is high then we talk about random walk phenomenon. We may still discover methods

which can narrow difference between trend break and random walk.
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There are several applications of the idea presented by Perron (1989). Fernandez (1997)
tried to find out if output can be predicted with the help of changes in money supply even
when several lags of output are included. Earlier literature on the subject gives evidence that
nature of results depend on inclusion of interest rest and detrending of time series. Time
series is detrended by including a trend variable in the regression. Fernandez showed that
output is a stationary process around the trend with a single trend break. He detrended the
output by using estimated broken trend function. He was able to find robust results for the

data before 1985 but not so for data after 1985,

Papell, Murray and Ghiblawi (2000) used Perron-Vogelsang (1992) tests to distinguish
between time trend break and random walk. They checked hysteresis in unemployment rates,
According to theory of hysteresis, any shock in unemployment can permanently change other
macroeconomic variables. In other words, according to this theory, we may have either trend
break or random walk in unemployment rate. They collected data of 16 OECD countries.
Using the data, they showed that 10 out of 16 countries have one time trend break instead of

random walk.

2.7 Programming for Structural Break at Unkown Locations

Programming for structural breaks is still very uncommon. A research work on these lines
can be seen by Basci et al. (2000), where a program is written in Gauss to find structural
break of unknown timing. A brief critical analysis of this algorithm is given here. The
program is written in Gauss to find structural break of unknown timing. The algorithm is

gives as follows.

10 Let START=1;

20 Let T=1;

30 If T-START>=51, test for the null of no structural break on the most recent 52 return data;
40 If rejected set START=Estimated change-point;

50 MEAN=Average of returns from START to T;

60 Obtain the following week’s returm;

70 Let T=T+1,;

80 Go to 30,

Results were obtained for 5% level and 10% level. Let us quote here only results for

5% level and point out some shortcomings of the code written on the basis of this algorithm.
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The estimated change points and their signaling times for the period
January 5, 1989 — Qctober 29, 1998

At 5% significance Level : At 10% Significance Level
Estimated Change Point | Signal Time | Estimated Change Point | Signal Time

58 99 58 98
149 151 149 151
153 201 153 201
-—- -—- 165 213
212 216 212 217
264 265 264 265
265 316 265 316
268 319 268 319
278 320 278 320
329 330 329 330
420 421 420 421
421 472 421 472
--- --- 500 504

Now let us have a ook at the actual working of the code while producing results.

iteration | Start T= Estimated | Signal Unchecked points
Start+51 Break=Start | Time From | To | Count
0 | 52
1 43 99 38 99
2 58 109 149 151 99 | 109 10
3 149 200 153 201 151 | 200 | 49
4 153 204 212 216 201 | 204 3
5 212 263 264 265 216 | 263 | 47
6 264 315 265 316 265 | 315 50
7 265 316 208 319 316 ;316 0
8 268 319 278 320 319 | 319 0
9 278 329 329 330 320 | 329 9
10 329 380 420 421 330 | 380 50
11 420 471 421 472 421 1471 50
Total 356
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Different between above research and our thesis goes as follows,

1.

It is impossible to get signal between unchecked points. The reason is that when our
first window (consisting of 52 observations) is rebuild, observations below the upper
bound of window and above the last signaled point are skipped. Total 356 potnts are
skipped. These points cannot be checked for structural breaks and so these points are
never shown as signaled point. We have overcome this shortcoming in our thesis by
checking each point in our data above the upper bound of very first window and
below the lower bound of last window. If we have 300 observations and window size
is 20 then all the points from observation number 20 to 280 are checked for structural
breaks.

First signal point is declared according to some critical value and then maximum F
value is observed in previous points and it is declared as break point. In our thesis, we
have just inverted the basic idea. We are first taking the maximum F value out of a
predefined segment of F values and then we compare it with ¢ritical value. If
maximum value is greater than critical value, only then it is declared as break point.
Algorithm takes an initial window of 52 observations and then goes on comparing it
with date above the upper bound of this window. Algorithm expands the window
unless signal 1s received. So in a sense it tries to calculate break point globally and not
locally. In our thesis, instead of expanding the window, we are moving the window
which gives us a break point with respect to the neighborhood of the data. This
eliminates the chance of skipping closely situated breakpoint. Closely situated break

point can be easily found out by reducing the window size.

We have tried to offer a way to calculate structural breaks of unknown time using

traditional Chow Test statistics automatically (without manual interruption) and with

accuracy. Accuracy is checked as we get exactly same structural break by out technique,

which were generated by our data generating process (DGP). Our study can prove an

improvement on conventional coding techniques.

Calculations of structural breaks of unknown timing are a new field and there is

dearth of literature on the topic. This is because of the reason that a fair command on

programming skills on some relevant higher level language (HLL) like C++, R, Python or

Ox-Language is required for the purpose. This thesis is using Ox-Language for coding.

Knowledge of structural breaks has implications in many areas. One is comparing structural
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breaks with stationarity of time series data. Again very few research papers can be found on
the comparison of structural breaks with unit root or random walk. In cur research, we have
confined ourselves to the computations of break points. The codes written are fully
commented in order to facilitate those who want to work in this field. We have tried to write
code in such a way that minute changes in code can give us resuits according to our

specification of data size and window size.

2.8 Selection of Optimal Window Size

Practically neither location of the structural break in data set, nor size of the
disturbance is known. We have to use some techniques to resolve the issue of uncertainty
about these structural breaks. Selection of size of the Windows in techniques used for
detection of structural breaks of unknown locations is important. Practically smallest possible
window size can be equal to number of regressors plus one. Pesaran et al (2006) suggest
minimum size as 2 or 3 multiplied by number of unknown parameters. To decide about
optimal window size, they use cross-validation technique for selecting window size. In this
technique, they reserve last few observations for forecasting purpose and then selects the
window size which gives least mean squared forecast error (MSFE) value. They select
different combinations of pre break and post break window size at 25%, 50% and 75% of the

data set.

Basci et al. (2000) tried different window sizes but faced the problem of indication of
too many breaks when small window size was selected. They finally settled at window size of
52. Tt is worth noticing that they were using weekly data spread over about 10 years and there

are 52 weeks per year.

A small window size causes indication of false structural breaks while a large window
size may skip many important structural breaks. Selection of window size in case of
swapping the window over the data is a matter of data type. If we are taking weekly data and
we have information that break occurs on yearly basis, we can take a window size of 52
observations. If we are taking monthly data and breaks are suspected after an interval of one
or two months, we can take a window size of 30 observations. In our case data is fortnightly.
If we suspect a break each year, then window size may be selected around 26. If we are sure
that interval between two structural breaks is never less than one and half year (18 months or

39 fortnights), we can select window size 40 (approximately 39) for fortnight data set. We
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have used different window sizes ranging from 20 to 76. The reason for selecting 38 or 76
window size is that we have 380 observations and window size must be an exact multiple of
data size to run the code written by us. Selection of small window size indicates more

structural breaks as compared to large window size.

Number of samples is defined as soon as we select the window size. Suppose we are
using a window of 40 observations over a data of 300 observations will mean creating 261
windows/samples. We cannot go above observation 261 as our fixed window size will go
below 40 after observation 261. Similarly using a window size of 20 observations on same
data set of 300 observations will mean creating 281 windows/samples. So we are running

regression lines on 261+281= 542 samples.
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3-Methodology and Model

Different tests are available to test for structural breaks of unknown time in the
literature. These models can be used to find out structural break point. Here we have prepared
an algorithm which is able to depict changes in sample statistics as new data is introduced.
Based on this algorithm a program is written in Higher Level Language (HLL), which is able
to calculate the structural breaks in the data.

We are concerned with the calculation of structural breaks with the help of
coding/programming constructs available in programming languages. For the purpose Ox
Language is used, Three algorithms are prepared to find the structural breaks in different
types of data. With the help of these algorithms, programs are written in Ox Editor and run in
Ox Matrics. Results obtained confirm the working of the programs as these results match the
visual inspection of the data.

As mentioned in previous chapter, a small window can trace structural breaks of small
magnitude more readily as compared to a large window. Here initially a window size of 20
observations is be used. Coding is done in three independent stages. Each stage consists of
several nested loops capable of calculating intermediate results and then finally Chow F
statistics. We have repeated the procedure with changing the size of data set for windows of
various sizes starting from size of 20 observations.

We have generated data for three types of data sets which are given as follows.

3.1 DGP for Structural Breaks with Constant Term only

DGP for structural break with constant tern only start with the equation,
Yi=a+uy
Sothat E(Y;)=a
We take 300 Y; values. We introduce breaks from value Yo to value Y 00 by introducing a
constant ¢ in this range of values such that Y; = (at+c) + u

Data is generated in MS Excel. First of all pseudo random numbers are generated in
data analysis tool. The exact sequence of commands is Data > Data Analysis > Random
Number Generation > normal, A seed value of 2 is used, so that same set of data is produced
every time, but it is a matter of choice. If data is purely random then seed value does not
matter,

After getting the data we have to introduce structural break in it, If date is saved in
cells Al to A300 and we introduce break from A101 to A200 equal to 3 units. In the
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regression, we have only betal {constant term) and no beta2 (coefficient). In other words our

3.2 DGP for Structural Breaks with Time Trend

Yi=a+bT+uy

We take 300 Y, values. We introduce breaks from value Y10, to value Y 200 by introducing a
constant ¢ in this range of values such that Y, = (atc) + bT +u,

Data generation process is same as explained in previous case. Here structural break is
introduced equal to 6 units. As we want to introduce trend in data then we first of all write 1
to 300 in column C. Next we write D1=B1 +0.03C1. We drag it down up to D300. Now our
D column has data with trend. Matrix X will be of 2 columns where first column is consisting
of all ones and second column is consisting of numbers starting from 1 up to n. where

n=sample size.
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16 -
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12
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Data after introducing break, depicts following diagram,

...................... Y-Variahle....

-

After getting data from DGP, we write our code according to our own algorithms.
Results are obtained by running the programs on the data sets. Intermediate results and Chow
F statistics can be obtained by swapping the windows on simulated data set. Finally whole
process can be applied on real econometrics time series. We take three time series, which are
KSE Index, T-Bill rate of interest and Gold prices. Data covering recent 16 years (2001 to
2016} is taken.

3.4 Cause and Effect Relationship

On the basis of our analysis of results, we try to make cause and effect relationship
between econometrics time series. We know that Granger Causality is used to confirm Lead
and Follow pattern among the data point of time series, If we are able to sharply pinpoint
structural breaks in different time series, it is quite possible that Lead and Follow relationship
exists among structural breaks of different time series. Structural break in one series can
cause a similar structural break in another series and so on. We check if our established
relationships are in accordance with Granger Causality or not. In either case (weather
confirmed or not by Granger Causality), we can present the logic for harmony or
contradiction of the results in two approaches. By establishing the relationship between
structural breaks among different econometrics time series, we want to show that it is a
second method to reveal the cause and effect relationship. Granger causality is briefly

described as follows.
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3.5 Granger Causality

The Granger causality test is a statistical hypothesis test for determining whether one
time series is useful in forecasting another. This test was first proposed in 1969 by Clive
Granger. He argued that causality in economics could be tested for by measuring the ability

to predict the future values of a time series using prior values of another time series.
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We run Granger Causality for all of three possibilities. Which are as follows,

Causality between TBill rate and KSE Index:

KSE = £, 2i KSEu + X, 8i TBilly + py, 1
Thill, = X%, @i KSEu + £, fi TBill; + 2

Causality between KSE Index and Gold Price:

KSE, = 27, ai Golduy + X7, fi KSE.;j + uyy 3
Gold; = ?___1 Al Gold; + 2?;1 5i KSE-l_j + My 4

Causality between Gold Price and TBillrate:

Gold, = T, ai TBills + £, Bi Gold,; + py, 5
Toill, = X7, Al TBilles + I7., 81 Goldy + pue 6
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1. Unidirectional causality from Thill to KSE is indicated if the estimated coefficients on the
lagged Thill in (1) are statistically different from zero as a group (i.e., Zaé #0) and the set of
estimated coefficients on the lagged KSE in (2) is not statistically different from zero (ie,,

%4j = 0).

2. Conversely, unidirectional causality from KSE to Thill exists 1f the set of lagged Tbill
coefficients in (1) is not statistically different from zero (i.e., Zai = 0) and the set of the

lagged KSE coefficients in (2) is statistically different from zero (i.e., ZJj # 0).

3. Feedback, or bilateral causality, is suggested when the sets of Thill and KSE coefFicients

are statistically significantly different from zero in both regressions.

4. Finally, independence is suggested when the sets of Tbill and KSE coefTicients are not

statistically significant in both the regressions.

All of the above mentioned equations from equation (1) to equation (6) represent unrestricted
regression. These equations can provide us quick indication of Granger causality. A more
technical way to assess Granger causality is to compute F statistics and compare it with

critical F value. This method is described as follows.

1. Regress current Y on all lagged Y terms and other variables, if any, but do not include the
lagged X variables in this regression. This is the restricted regression. From this regression

obtain the restricted residual sum of squares, RSSR.

2, Now run the regression including the lagged X terms. This is the unrestricted regression.

From this regression obtain the unrestricted residual sum of squares, RSSUR.
3. The null hypothesis is that is, lagged X terms do not belong in the regression.

4. To test this hypothesis, we apply the F test,

__ (RSSR — RSSUR)/m
~ RSSUR/(n—k)

26



This test follows the F distribution with m and (m— k) df. In the present case m is equal to the
number of lagged X terms and % is the number of parameters estimated in the unrestricted

regression.

5. If the computed F value exceeds the critical F value at the chosen level of significance, we
reject the null hypothesis; in which case the lagged X terms belong in the regression. This is

another way of saying that X causes Y.
6. Steps 1to 5 can be repeated to test the model, that is, whether Y causes X.

In EView, we can check for Gnager causality by using the “Granger Causality Test”
option in value. Only F values calculated in this way are displayed on the screen. We have

used E View to decide about Granger causality in chapter 5 of this study.

3.6 Idea behind Algorithms

Idea behind algorithm is to use several nested loops repeatedly in such a way that structural
break is calculated at each and every point of data set. It does not matter how much large is
the data. This is done in three stages. Each stage is independent of the other and starts only
when previous stage has completely saved its data. So output of one stage is input of next
stage.

In first stage, we first of all get estimated ¥1 of dependent variable Y;. Calculation of
regression estimates is not a problem. Almost in every language which is used in statistics,
OLS function is given in library of the language from where it can be imported. We nun
several nested loops to calcutate RSS which is sum of squares of 2 = Y; - V1. RSS tables are
made twice, once for whole of the sample and then for sub sample. For example if window
size 1s 40, then a table for all samples of window size 40 is prepared and then a second table

of all samples of window size 20 is prepared.

In second stage, we run another pattern of nested loops to calculate ore test statistics,
which in our case is Chow F statistics. A table of test statistic for all structural breaks is
calculated and saved in a table. In third stage we are concerned with pinpointing the structural
break point whereas there may be such multiple points. We define a window on the table of
test statistic and use several loops as well as built-in functions from the library of the

tanguage for our purpose. These three algorithms are given as follows.
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3.7 Algorithm for the Regression Coefficients and RSS:

1 | StructuralBreak(int N, n, X, Y)

2 maV € dbase->GetAll();

3 mX € ones(2*n,2);

4 for i € 0to N-2*n

5 do forj € Oto2*n

6 do  mY[j] €maV[j+i][0];

7 mX[j][1} €maV[j+lll);
8 OLS(mY, mX, &b);

9 mB[i][0] €b[0];

10 mB[i[1] € b{1];

11 mYE €mX*b ;

12 forh € 0to 2*n

13 do  me[h] €mY[h] - mYE[h];
14 for h € 0to 2*n

15 do  RSS €RSS+ (mefh])'2
16 mRSS[i] €RSS

17 mX € ones{2*n,2});

18 fori € 0 to N-n

19 do forj€Oton

20 do mYs[j] €maV[j+i][0];

21 mXs[j][1] €maV[+][1];
22 olsc(mYs, mXs, &b);

23 mBs[i][0] €b[0];

24 mBs[i][1} € b[1];

25 mYsE €mXs*b;

26 forh€ Oton

27 do  me[h] €mYs[h] - mYsE[h]
28 forh€ Oton

29 do  RSSs €RSSs+ (me[h])"2
30 mRSSs[i] €RSSs ;
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3.7.1 Explanation of the Algorithm:

e R R e = V. T =Y

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Data size is N and Sample size is n. Matrix Y is to be regressed on matrix X.

A matrix maV is declared and it is assigned all the values of all the variables of database
In matrix mX first column will remain as it is. Independent variable will be introduced in
second column of matrix mX.

Here for loop is used to create N-2n windows and statistical analysis of each window
Nested for loop ts used to populate each window

Combined window mY is populated with data

Combined window mX is populated with data

OLS is run on each window

First column of mB matrix is populated with Beta (intercept) of respective sample
Second column of mB matrix is populated with Beta (slope) of respective sample
Matrix of Y Explained is populated.

Here for loop is used to populate matrix me of error terms where,

¢ =Y actual - Y explained

Here for loop is used to calculate RSS for given sample i.

RSS for each sample is calculated

Value of RSS is put at respective index in column matrix mRSS.

Matrix mX is defined and all entries initialized to ones. First column will remain as it is.
Data of variable X will be introduced in second column of matrix

Here for loop is used to create N-n windows and statistical analysis of each window
Nested for loop is used to populate each window

Sub Sample window mYs is populated with data

OLS is run on each window

Matrix mBs is populated with Beta of respective sample

Matrix mB is populated with Beta of respective sample

Matrix of Explained Y for sub samples is calculated

Here for loop is used for computations for Residual Sum of Squares

Matrix me of residual term is populated where, e = Y actual - Y explained

Here for loop is used to get RSS for given sub sample i.

RSS is calculated.

Value of RSS of sub sample is put at respective index in column matrix mRSSs..
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3.7.2 Explanation of the Code for above Algorithm:

Codes are written for the above algorithm in Ox Language. These codes are given at
the end in the appendix. There are some critical lines in the program/code. These lines can

change the results. Here a brief explanation is given to change the values in these lines.

First of all data is loaded from hard disk drive like “dbase.Load("D:/datal.in7")”. The
file name may change to data2 or data3 for additional data sets. Then n and N are defined
where n=20 and N=300 determines the data size and sample size for the Chow Test. Data size
is 300 while Sub sample consists of 20 observations. Two sub samples are combined to give

a sample of 40 observations,

Regression is run on combined data of two sub samples. Here declaration of X matrix
is important. If program is meant to detect the structural breaks in data where there is no
coefficient then X matrix consists of only one column all of the entries consisting of ones.
This happens when we are concerned about change in the average value. For example if
inflation rate is fluctuating around some mean value then this type of analysis is relevant. If
program is meant to find structural break with trend in the data then X matrix consists of two
columns. First column is of ones and second column consist of trend variable starting from 1
up to N in case of combined data of two sub samples. If we have two variables Y and X and
X itself have different values then we need to load another database just like we did for Y
variable. This makes program a little complex as X matrix may consists of more than two

columns according to the econometric model.

We have to run regression on sub samples too along with combined data of sub

samples. Data runs from 1 to n instead of from 1 to 2n in this case.

3.8 Algorithm for the Chow F Statistics:

31 fori € 0to N-2*n+1

32 do mRSSss [i] € mRSSs[i] + mRSSs[i+n];
33 mRSSd [i] € mRSS[i] - mRSSss{i] ;

34 mF[i] € mRSSd[i}/(mRSSss[i}/((2%n)-2)):
35 BrkPoint € <20:300>";

36 Return € BrkPoint ~mRSSs~mB~mRSS~mF
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3.8.1 Explanation of the Algorithm:

31 | For loop is used to get F values for all samples

32 | Matnix of RSS for sum of RSS of sub samples calculated

33 | Matrix of difference of RSS (combined data) and summed RSS sub samples of previous
step calculated

34 | F value is calculated and put in respective index in matrix ¥, Matrix mF is populated.

35 | Anindex is prepared to help in reading results stored in different matrices

36 | Values of different matrices populated so far are displayed.

3.8.2 Explanation of the Code for above Algorithm:

In this stage, we calculate Chow F statistics from the matrices of RSS which were
populated by running regression on N-n+1 samples and N-2n+1 sub samples. We are not sure

about the exact location of break point, so we calculate and display all the F values.

An index is defined which makes it easy to read the results on the screen. The index
starts from n where n is sub sample size. For example if n is 20 then first F value from Chow
test indicates possibility of break point at observation number 20. We are going to display all
the RSS values also, so that if someone tries to check for the correctness of computation of

Chow test, he can do so at any level/observation by using a simple calculator.

Last value in our index is N which is data size. The index is declared by using library
function of range so it is necessary to write numerical values of n and N like 20 and 300. If
we want to use n and N instead of using numerical values, then we can make index by using
“for” loop but it will increase number of lines in the program and will increase its

complexity. In the last stage break point are indicated as is given in next algorithm,

3.9 Algorithm for the Break Points

37 fori € 0to 13

38 do forj € Otow

39 do  mz[j][0] = (*w)+j+21;
40 mz{j][1] = mF[(i*w)+j];
41 max = maxc( mz[][1]);

42 forj € Otow
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43
44
45
46
47
48
49

ifimax == mz{j][1])
then mF1[i][0]= mz[j][0] ;
mF1[i][1]=max ;
fori € 0to 13
do  if{ert <mFl[i][1])
then  Return mF1[i][0]);
Return mF1[i][1], ™n");

3.9.1 Explanation of the Algorithm

37
38
3%

40

41
42
43
44
45
46
47
48
49

For loop is used to make windows in the matrix of F values

Nested for loop is used to populate window with F values.

First column of matrix mz of respective window out of F matrix is populated with
possible Break point

Second column of matrix mz of respective window out of F matrix is populated with
respective F value

Maximum F value out of chunks of consecutive n F values is computed

Here for loop is used for matrix mF1 consisting of only max F values

If condition use to extract max values from matrix mz

First column is filled with break point where max F vaiue occurs

Second column is filled with respective max F statistics

Here for loop is run on matrix F1.

Each F value in matrix F1 is compared with critical F value

Estimated break point 1s displayed

Chow F statistics at estimated break point is displayed.

3.9.2 Explanation of the Code for above Algorithm

Last stage is the most complex and important stage of the program. Here we analyze

the matrix consisting of all the F values from previous stages. We have 261 F values and

obviously a lot of them are above critical value, We use our logic. Our sub sample was of 20

observations. If structural break occurred between 100™ and 101* observation, then F value

starts accelerating as we move towards this point. It means that f value is less than critical

until we are analyzing data below 100" observation or our lower subsample is below 80

th

32




observation. As soon as observation number 101 is included in regression, F value starts
rising. It keep on rising unless one subsample is below and one above this point. After this
window of subsample keep on moving forward and as a consequence F value starts to
decline. As soon as lower subsample has completely passed from observation number 101, F
value again becomes less than the critical value. We do not need to display all the high F
values. From the logic presented so far we select only highest F value from the neighborhood

of the structural break,

Now the trivial part starts. We are working on structural breaks of unknown time. We
are blank about the possible structural break and so have to use some trick. We set a segment
or window on the all F values and select highest F out of each segment. Now question is
about size of segment. Here we are using segment size equal to sub sample size. The logic
behind it is that RSS values in one segment can be used only in one consecutive segment. If
segment size is half of sub sample size then RSS values of one segment are overlapping with
RSS values of three consecutive segments. If segment size is double of the sub ample then R
in one segment cannot be used in another segment but it will make our analysis somewhat

conservative.

After selecting maximum F value from each of the segment we place all the
maximum value in matrix mF!. Now we compare each maximum value against the critical
value. If it is more than the critical value then break point is indicated and results are

displayed on the screen.
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4- Results for Simulated Data

Results obtained by running the programs on the data sets mentioned in previous
chapter are explained here one by one.

4.1 CASE 1: Structural breaks for constant term only

As explained in previous chapter data is univaiate normal iid with mean value of zero
and unit SD. Data set is given in Appendix section. This data can be graphically viewed as
follows.

A LN A o RN

As we have 300 observation with sample size 40 and subsample size of 20, so we
obtain 261 samples (281 sub samples) and same number of different parameter values
obtained from 261 regression equations on samples and 281 on sub samples, We can see all
the results in oxmatrix window. Here only results from observation number 80 to 120 are
reported as rest of the results can easily be seen with the help of graphs given below. The

thing worth noticing is the sharp rise in F value as we move towards 100™ observation,

Point no. RSS5(20) Intercept RSS(40) F-Chow
90 17.315 0.71626 108.67 16.242
91 17.052 0.77628 107.54 - 18.554
92 14.857 0.88525 104,93 22,530
93 17.638 0.93886 109.66 41817
94 15.125 0.97504 112,71 61.551
95 12.306 1.0928 106.14 76.361
96 14.326 1.1905 111.52 75.436
97 16.926 1.2663 119.09 71,729
98 16.730 1.3701 112,66 71.079
99 16.680 1.4604 117.47 96.451
100 16.585 1.5480 122.24 136.13
101 25,866 16475 129.27 92.091
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102 347 1.7244 131.15 70.298
103 36.310 1.7981 122.20 54.794
104 37.402 1.8640 119.51 54.443
105 47.698 220 116.58 36.280
106 56.371 2.0785 114,93 26.433
107 56.233 2.1816 107.93 22.668
108 57.335 2.2994 110.61 21.072
109 59.399 2.3402 107.98 17.451
110 58.818 2.4437 100.75 14.093

Maximum F values from each segment of 20 F values are given as follow.

observation Max F
24 2.4891
53 1.5735
09 1.0879
100 96.451
101 136.13
138 1.5307
145 1.1839
171 1.4752
200 93.028
201 100.37
221 0.85524
253 3.8542
265 52184
281 33723

Conclusion after comparing each of above F value against critical F value is given as follows.

Structural break occurred at observation number100. F value at this point is 96.4508
Structural break occurred at observation numberl01. F value at this point 15 136.13
Structural break occurred at observation number200, F value at this point is 93.0276

Structural break occurred at observation number201. F value at this point is 100.366

Change in Beta for sample size of 20:

Beta is fluctuating around average value of zero up to observation number 100. Then
Beta starts rising and after observation 120 it becomes stable around average value of 3. After
observation 200, beta starts to decline. After observation 120, beta again becomes stable

around the average value of 220.
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Change in Beta for sample size of 40

Now let us observe change in value of Beta as sub sample window of size 40 swaps
across the 300 observations. First value of Beta is obtained at observation number 40. First
structural beak occurred at observation 100 and second at observation 200. Beta values are

almost constant (near to zero) before 100 and after 240.

3
25 -
2 :

This is just in accordance with our data generating process. After observation 100,
beta starts to rise due to inclusion of higher value in sample from observations above 100.
Samples from observation 100 to 140 have a mix of two data sets, one having mean value of
zero and other having mean value of three. Beta is constant from cbservation 140 to 200 at
the value near to three. After observation 200, sample starts taking values from data set of
mean value zero. So Beta goes on declining up to observation 240. After it Beta again
assumes a constant value approximately equal to zero. We can see that after observation

number 285 Beta moves upward steadily and then downwards , making a local maximum .
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This is probably because of the non randomness of the random numbers produces by the

computer.

Change in RSS for sample size of 20:

It can be seen in the graph that RSS for sub samples take extra ordinarily high value
twice over the whole range of RSS wvalues. Fist time it occurs near observation 100 and
secondly near observation 200. At upper limit of 110, we have a peak or maximum value.
The reason is that as sample size is 20, so 10 observations 90-100 belong to one data set and
other 10 observations 100-110 belong to second data set and so with upper limit 110, we
observe maximum disturbance in the RSS. Same applies to second maximum or peak at the
sample having upper limit 210. In other words plotting RSS against upper limit of selected
sample can reveal important information about structural break. Extra ordinarily high value

is an indication of the break in the middle of the sample.
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Change in RSS for sample size of 40:

Here RSS of the window size 40 is given. Tt can be seen that RSS changes its usual
pattern after observation number 100 indicating a structural break at this point and same for
observation 200. First extra ordinarily high value occurs at observation number 120 and
second at 220 indicating structural break in the middle of the sample (of size 40). That is at

observation number 100 and 200.
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Change in F statistics:

F value proved very decisive in deciding about the structural beak. As compared to
previous parameters, here we have very sharp peaks in case of the structural breaks. These

two peaks occurred at observation number 100 and 200 as window size is 40,
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4.2 CASE 2: Structural breaks for constant term and trend

This data can be graphically vied as follows. First of all normally distributed data of

300 observations with mean zero and unit 8D is produces. Then trend having slope 0.03 is

introduced and finally a beak is introduced at points 100 and 200, where data is shifted nine

point high for each observation between 200 and 300.
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All the results for 281 samples are given in appendix, When program is run all 281

rows are displayed on the screen. Only 40 results for sub samples having upper limit 180 and

220 are shown here. We can see how parameters change at value 200 and 201 when the

structural beak occurs. This 1s explained graphically one by one.

Point RSS(20) Intercept Slope RS8(40) F Value
190 15.765 17.293 -0.23537 242 84 48.261
191 16.017 17.359 -0.24841 237.29 44,161
192 15.842 17.391 -0.26271 238.09 46.211
193 13.209 17.260 -0.26811 236,72 42.135
194 13.181 17.363 -0.28244 223 .86 33.947
195 11.723 17.466 -0.29485 205.70 23.042
196 11.468 17.493 -0.30705 195,54 20.874
197 11.237 17.514 -0.32002 186.04 22.307
198 11.138 17.231 -0.31475 194.04 27.287
199 8.6553 17.093 -0.31323 197.3% 58.587
200 8.1426 16.752 -0.30750 202.67 232.20
201 50.713 16.605 -0.30900 200,58 70.491
202 82.106 16.332 -0.30771 201.43 36.274
203 96.356 16.025 -0.30247 207,29 29.380
204 105.86 15.727 -0.30100 207.83 22.626
205 109.75 15.304 -0,29206 213.18 22.368
206 107.06 14.870 -0.28028 225.05 27.455
207 101,94 14.371 -0.26589 235.54 33.233
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208 08.185 13,900 -0.25218 24572 39.248
209 90.889 13.425 -0.23546 265.57 50.083
210 91.210 12.780 -0.21501 265.44 49815
211 93.730 12.236 -0.19718 270.77 50.019
Maximum F values from each segment of 20 F values are given as follow.
Observation Max F

35 5.5102

46 3.6705

73 2.5440

100 73.717

101 388.79

129 53174

145 3.0142

180 3.1285

200 58.587

201 232.20

238 51213

247 6.0242

275 6.8196

Structural break occurred at observation number 100 F value at this point is 73.7173
Structural break occurred at observation number 101 F value at this point is 388.79
Structural break occurred at observation number 200 F value at this point is 58 5869

Structural break occurred at observation number 201 F value at this point is 232.204

Change in intercept for sample size of 20:

First, we will analyze beta for sample size of 20, disturbance starts after observation
number 100. Intercept declines due to sudden rise in data after observation 100. Intercept
declines, reaches a minimum and starts to rise up to observation 120. After it intercept
becomes stable up to observation 200. After observation 200, intercept rises initially, assumes
a maximum value and then starts declining, after observation 220, intercept again becomes
stable.

20 e

15 -




Change in intercept for sample size of 40:

Intercept term takes an abrupt change near observation number 100 and 200 for the swapping
window of sample size 40, Change in intercept for sample size 40 is depicted in graph below.

153

After observation number 100 intercept term starts to decline, the reason that some of
the values to be included in sample data set belong to very high values. It causes intercept to
decline. Intercept approaches to a minimum value up and then it starts to rise upto
observation 140. Then intercept rises with almost constant rate of 0.03 upto observation 200.
Then it starts rising after observation 200 due to inclusion of low values in the sample. It
reaches to its maximum and then starts declining up to observation 240. After 240 it increases
at almost constant rate of 0.03.

Change in slope for sample size of 20:

Slope fluctuates around a stable value of 0.03 upto observation number 100. After
observation 100, slope starts to increase due to inclusion of data after sudden jump. At
observation 110, it reaches to a maximum value and again starts to decline upto observation
120. After observation 120, slope again starts to fluctuate around a stable value of 0.03 upto
observation 200. After observation 200, slope starts to decline due to inclusion of data from
lower values after observation 200. Graph below depicts values of slope according to upper
limit of the data sample of size 20. Slope reaches to a minimum at observation 210. Then it
starts to rise and become stable again at observation 220. .
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Change in RSS for sample size of 40:

Change in RSS in samples each consisting of 40 observations is shown below.
Disturbance in data occurs after observation 100 and 200 indication possibility for structural
beak. RSS is quite stable below 100 and after 240 and same for 140 to 200. Data assumes

values with constant mean and SD in these intervals
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Change in F statistics:

Change in F statistics in chows test is shown below. F statistics has very sharp peaks
at values exactly 100 and 200 indicating structural break at these points. Each peak of Chow
F value has a local maximum at left and right side. The reason for these local maxima is the
disturbance ctreatedd in the RSS of sub samples size 20 each. RSS of subsamples start to
disturb after lower limit of 80 or in other words after upper limit of 100. Same logic applies

to relative maxima around second F value peak at observation 200.
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93 10.424 17.003 92.892 24.656
94 11.119 18.544 86.105 20.145
95 11.153 18.604 86.147 23.259
56 11.277 19.118 82.978 13.871
97 11.783 20.401 76.395 15.876
98 11.289 19.478 82.612 36.971
99 11.120 19.299 83.244 62.540
100 10.303 17.566 95.115 50.202
101 9.8994 16.721 58.895 34.456
102 9.6971 16.320 100.16 27.172
103 9.4964 16.186 9R 051 50.471
104 5.4096 15.899 $0.£19 40,912
105 9.0586 14.998 55.354 45.302
106 8.9255 14.670 99.777 57.633
107 8.5747 13.603 96.593 61.101
108 8.3119 12,793 95.101 58.252
109 7.9471 11.652 52.734 48.420
110 7.6722 10.786 91.992 38.056
111 7.5457 10.290 90.112 34.604
112 7.1877 9.1852 52.610 30.870
113 6.8960 8.1388 50.315 27.288
114 6.5917 7.1282 92.023 29.297
115 6.1384 3.3076 81.464 22.082
116 6.1970 5.1046 77.872 8.4935
117 6.0077 3.9590 63.420 5.7383
118 5.7363 2.4468 45.123 1.1708

Maximum F values from each segment of 20 F values are given as follow.

Observation Max F

31 2.9978
51 46783
70 6.1304
88 62.635
107 61.101
135 8.7310
149 10.052
160 6.0545
188 39.445
208 75.220
230 3.4107
256 4.5799
263 3.0012

Structural break occurred at observation number 88, where F value at this point is 62.635
Structural break occurred at observation number 107, where F value at this point is 61.101
Structural break occurred at observation number 188, where F value at this point is 39 445

Structural break occurred at observation number 208, where F value at this point is 75.220
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Chanege in intercept for sample size of 20:

Intercept is fluctuating around a mean value of 2 units up to observation 100. Then

intercept starts rising sharply, reaches a maximum at around 110, start to decline then and

assumes normal fluctuation after 120. Same pattern can be seen between observations 200

and 220. It indicates a structural break at observation 100 and 200.

Change in intercept for sample size of 40:

Values of intercept term for a window of size 40 swapping over the data set are given below,
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In DGP, we assumed intercept to be 2. It can be seen that intercept remains almost

stable around the value of 2 units up to sample with upper limit 100. Then disturbance starts

due to structural break. After observation 140, intercept again takes a stable value around 6
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units which is just in accordance with our DGP, Disturbance again starts after 200 and then
intercept gains a stable value of 2 units after observation 240. We get two peak values at

approximately 100 and 200 indicating the point of structural break in the data.

Change 1n slope for sample size of 20:

We can note a change in pattern of beta fluctuation as compared to previous cases.
Here fluctuations are more violent. The reason may be that in previous cases only Y variable
was random while X or T variable was not random. But in this case both Y and X variables

are random.

Besides relatively high fluctuation, a sharp rise can be seen after observation number
100 which reaches to a maximum at around 110 and then starts declining. After 120 beta
again starts fluctuating around a mean value of 3 units. After 200, beta starts to decline,
reaches a minimum at 210 and starts to rise again and assumes normal fluctuation a after 120,

It indicates that a structural break occurred around the points 100 and 200.

Change in slope for sample size of 40:

Change in lope of the regression line is depicted in the graph below. Slope assumes
almost stable value of 3 units throughout the data except around the structural break at point
100 and 200. Explanation for a maximum peak at 100 and minimum trough at 200 is same as

given in the case 2 (changes for trended data) of this study.
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Change in RSS for sample size of 20:

RSS for the sample size of 20 are given below. In initially we have somewhat high

values of RSS. This may be due to outliers in the data as it is understood that pseudo random

numbers generated by the built-in algorithm of the computer are not purely random We

observe two peak values around observation 100 and 200 indicating presence of structural

break.

218

Change in RSS for sample size of 40:

Changes in RSS for sample size of 40 are given below. Here we can predict structural

break at point 100 easily but it is not the case if we think of the peak value after point 200. It

shows that bigger window size ids more helpful if we want to predict the structural break in

data by observing RSS only. Anyhow in this case too disturbance starts after point 200. So if
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Day Month Year Index
] January 2001 1518
17 April 2005 12274
11 August 2005 6971
14 April 2006 12137
27 June 2006 9029
21 April 2008 15655
26 January 2009 4813
6 August 2015 36229
23 February 2016 30364
20 October 2016 41546

We observe that during past sixteen years, the first crash occurred in April 2005,
when Index fell from 12274 to 6971 within four month. Second crash was relatively less
sever but even then index fell in April 2006 from 12137 to 9029 within two and half months,
Third crash actvally shocked the market. KSE 100 index fell in April 2008 from 15655 to
4815 in January 2009,

We want to check if similar shocks (though less sever) occurred in other time series
and if there is some lead and follow relationship among the shocks of different econometrics
time series. Now we apply our algorithm to find out changes in different characteristics of
data. We use window size of 19, 38 and 76. Window size must be divisible to our data size
380, so that we have integral number of windows as in order to run loop number of widows

must be an integer. This analysis is given below.

A closer look at the 2008 shock is given as follows.
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Now we will see how closely our algorithms can detect the structural breaks.

51




Change in Intercept (KSE 100 Index)

With the increase of window size, indications for structural break decreases. If we

want to know about structural break in short time period, we may use small window size as

large window size will skip many short period fluctuations. This is depicted as follow.
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Change of slope is more informative as compared to change in intercept. If slope is

negative, it means that market is declining, otherwise it is rising. For short period structural

breaks, small window size is appropriate.

Change in Slope (KSE 100 Index):
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Change in RSS (KSE 100 Index):

Change in RSS is also a good indicator of structural changes. RSS cannot be negative
s0 we cannot predict about change of slope of regression line from data of RSS. Still RSS

indicates structural breaks more sharply as compared to data of slope of regression line.
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4.00E+07 -

g

3.00E+07

2.50E+07 4
2.00E+07
5.00E+06 -+
0.00E+00

. ST-923-T

+I-8ny-1
#1-994-1

. £T-Bny-T
. £T-q24-T

Z1-8ny-g
219341

. TT-3ny-T
L TT-494T
] or-3ny-1
. 0T-924-T
. 60-3Ny-T

60-92d-1

. 80-3ny-T
. 80-93-T
. L0-3ny-T
- L0-994°T
. 90-3ny-T
. 90-924-T
. 50-8ny-1
. S0-984-T

y0-8ny-1

- ¥0-924-1
. E0-3ny-T
- E002J-1

Z0-8ny-T

Window size 38

1.60E+08

)

1.40E+08 i
1.20E+08
1.00E+08

B.OCE+07

6.00E+07 -
4.00E+07

L ST-923-T
. pT-8ny-T
- ¥T-994-T
- ETEny-T
L £T-094T
W, L ZT-BNy-T
¢ TI9esT

. TI-3ny-1

L L oTT-ge4-T
- OT-8ny-T
- OT-924-T
L. 60-3ny-T

60-924-1

. 80-3ny-T
. 80-994-T

2.00E+07 erereereerinenins
0.00E+00

. £0-8ny-T
. L099d-T
. 90-3ny-T

90-934-1

. GQ-3ny-T
. §0-994-T

: t0-8ny-T
¥0-323-1
. EO-3ny-T
. E0-924-T

70-8ny-T

Window Size 76

4.00E+08 -

T

3.00E+08 -

0.00E+00 -

ST-924-1

~ pi-8ny
- vI-aRdT
LT
£1-094-T

Z1-8ny-T
ZT-084-T

T1-3ny-1
; 11341
01-3ny-1
- 0T-934-T
. 60-3nv-T

60-924-T
80-8ny-T

- 80-0°4-T
. L0-8ny-T
- L0441
. 90-3ny-T
90-994-T
So-2ny-T
. S0-q94-T
. vO-3ny-T
. POraR4-T

£0-3ny-T
£0-934-T
70-8ny-T

54



L]
*

Chow F statistics is the ultimate source to measure change in characteristics of data set. A
high value of F statistics indicate structural break. Like RSS and unlike Slope, Chow f

statistics cannot tell about increasing or decreasing trend along with the time, but F statistics
points to the structural break more sharply as compared to any other statistics. Here change in

data of F statistics is depicted as we change window size from 19 to 38 and then to 76.

Change in Chow F Statistics (KSE 100 Index)
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4850,

5.2 Analysis of Gold Price

In January 1995, price for 10 grams of gold was Rs, 3760. In November 1996, it was
Rs 4890, With fluctuations, it remained almost constant November 2000 when it was Rs

In January 2001 price was Rs 5049. Then it started to rise with fluctuation and
reached to Rs 37400 in January 2011, Within an year it rose to Rs 50830 in February 2012. Tt
gained its peak value Rs 535835 in October 2012.

Then price started to decline and got lowest value of Rs 35991 in December 2015.
Then it started to rise and it was Rs 44040 on 30™ September 2016. This information is given
in tabulated form as follows.

Month Year Price
January 1995 3760
November 1996 4890
November 2000 4850
January 2001 5049
January 2011 37400
February 2012 | 50830
QOctober 2012 53585
December 2015 35991
September 2016 44040
Graph of gold price in Pakistan is given below.
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Change in Intercept (Gold Price — 10 grams)

Change in data for intercept for gold price covering 16 years period from 2001 to

2016 is depicted below. Explanation is same as is given on page 41.
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Change in data for slope for gold price covering 16 years period from 2001 to 2016 is

depicted below. Explanation is same as is given on page 42.

Change in Slope (Gold Price — 10 grams)

Window size 20
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Change in data of F values for gold price covering 16 years period from 2001 to 2016

is depicted below. Explanation is same as is given on page 44.
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Change in Intercept (T-Bill Rate):

Change in data for intercept for T-Bill rates price covering 16 years period from 2001

to 2016 1s depicted below. Explanation is same as is given on page 41.
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5.4 Analysis of T-Bill Value

Treasury Bill value is calculated according to rate of interest. It is assumed that we
have Rs 100 in January 2001.Treasury Bill rate may increase or decrease but its value must
always decrease. If rate becomes low then value increases at decreased rate and if rate in
increasing over time then value increases at increasing rate. In the upper graph T-Bill rates
and in the lower graph T-Bill value over time is depicted.

., B 4 . VRt W e

%

~ =N Mmoo 0w~ o O Q «W N 21} = W W o W
§2928388388888883 50495345493
C oW e 3§ > 2 35 0 0k > £ C b= B o> 9 T O - -~ R
T 3 0 m o 2 2 &2 35 87 3 &8 ¥ & @ 3 2 p 35 8 3 &8 ¢
T EZ2z9Q9s03¢fEagz2 22 d=29s0ifd 2230
AR TR I T BT e e T IR o B o TR Tt
Now its value over the years is given as follows,
QDD -coereememmesmess e eeessrrmreceeea oot 7RSSR AR RS SRR 1R AR AR oA a8 R RS eer s
350 i e Mﬂ'”«}w
e
s““-’w“
p L0 i SR st RS
200 & L M,s«f‘ﬂ”ﬂm
-
150 S et et
-,.f.fa.@a\*‘*ww
L0 -
L2 0 S e U OO PP PO PP PRSPPI
L B, | m  m =+ u W M~ B~ S g OO 9~ o m = = v 0
5283883383855 838 %300 d4333 33
= - U == [ o = - U = = =
§ 5§ ¥858 58 39 39 g8 5§55 ¥s8 e3¢ a3 586
T T 242 QSO0 e wdz ST a2 Q0 e gz D
— = & 5 - . T =~ I A — . R LT o R
_— - e sseioe o "

66










Change in RSS (T-Bill Value)

Change in data of RSS for T-Bill value covering 16 years period from 2001 to 2016 is

depicted below. Explanation is same as is given on page 43.
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Change in Chow F Statistics (T-Bill Value)

Change in data of F Statistics for T-ill value covering 16 years period from 2001 to

2016 1s depicted below. Explanation is same as is given on page 44.
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For window size 20, we have lot of structural breaks. At small window size we have

maximum of information about structural change but it becomes difficult to compare the

5.5 Comparison of Chow F Statistics for all Variables
structural breaks in one time series with other time series.
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we observe that data of F statistics has

fewer peak values. It becomes somewhat easier to compare change in the F statistics of

different time series but we lose information about the short run fluctuations.
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covering a very wide time period and regression line is fitted on a large data set embedding

of F statistics of different time series. The problem here is that f value does not immediately
the break point in it,

Window size 76
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5.6 Granger Causality

From the graphs above we see that all time series have structural breaks. We want to
know about lead and follow relationship among structural breaks. In other words we say that
different time series may have cause and effect relationship. We use Granger Causality test to
find out cause and effect relationship between different variable.. We use F test calculated
according to the formula

_ (RSSR — RSSUR)/m
~ RSSUR/(n—k)

Theory of Granger causality has very briefly been explained in chapter3 Granger
causality tests from two to six lags are performed as follows.

Granger Causality for two Lags:

This Granger Causality test for two lags is conducted in EVIEWS. Tabulated value at
5% prob (for given 4 df of numerator and 374 df of denominator) is 2.42.

Pairwise Granger Causality Tests
Observation; 378

Lags: 2

Critical F statistics: 2,42

Null Hypothesis F-Statistics prob Decision
Gold does not Granger Cause TBill 1.37034 0.2553 | Don’t Reject
TBill does not Granger Cause Gold 421510 0.0155 | Reject
KSE does not Granger Cause TBill 1,98760 0.1385 | Don’t Reject
TBill does not Granger Cause KSE 5.03576 0.0070 | Reject
KSE does not Granger Cause Gold 0.81205 0.4447 | Don’t Reject
Gold does not Granger Cause KSE 2.79185 0.0626 | Reject
Conclusion :

1- T-Bill is Granger cause for both KSE and Gold
2- Gold is Granger cause for KSE

Granger Causality for three Lags:

This Granger Causality test for three lags is conducted in EVIEWS. Tabulated value at 5%
prob (for given 3 df of numerator and 371 df of denominator) is 2.65.
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Pairwise Granger Causality Tests

Observation: 377

Lags: 3
Critical F statistics: 2.65

Null Hypothesis F-Statistics prob Decision
Gold does not Granger Cause TBill 1.18727 0.3144 | Don’t Reject
TBill does not Granger Cause Gold 3.41512 0.0176 | Reject
KSE does not Granger Cause TBill 2.07511 0.1031 | Don’t Reject
TBill does not Granger Cause KSE 3.56937 0.0143 | Reject
KSE does not Granger Cause Gold 0.51294 0.6736 | Don’t Reject
Gold does not Granger Cause KSE 1.96539 0.1187 | Don’t Reject
Conclusion:

T-Bill is Granger cause for both KSE and Gold

Granger Causality for four Lags:

This Granger Causality test for four lags is conducted in EVIEWS. Tabulated value at 5%
prob (for given 4 df of numerator and 368 df of denominator) is 2.41.

Pairwise Granger Causality Tests
Observation: 376

Lags: 4

Critical F statistics: 2.41

Null Hypothesis E-Statistics prob Decision
Gold does not Granger Cause TBill 0.92081 0.4518 | Don’t Reject
TBill does not Granger Cause Gold 2.41878 0.0482 | Reject
KSE does not Granger Cause TBill 1.51917 0.1959 | Don’t Reject
TBill does not Granger Cause KSE 2.65774 0.0327 | Reject
KSE does not Granger Cause Gold 1.13000 0.3420 | Don’t Reject
Gold does not Granger Cause KSE 1.85139 0.1184 | Don’t Reject
Conclusion:

T-Bill is Granger cause for both KSE and Gold
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Granger Causality for five Lags:
This Granger Causality test for five lags is conducted in EVIEWS. Tabulated value at 10%

prob (for given 10 df of numerator and 365 df-of denominator) is 1.88.

Observation: 375

Lags: 5
Critical F statistics: 1.88

Null Hypothesis F-Statistics prob Decision
Gold does not Granger Cause TBill 0.66740 0.6484 | Don’t Reject
TBill does not Granger Cause Gold 2.21853 0.0519 | Reject
KSE does not Granger Cause TBill 1.85289 0.1019 | Don’t Reject
TBill does not Granger Cause KSE 2.11228 0.0634 | Reject
KSE does not Granger Cause Gold 1.11982 0.3493 | Don’t Reject
Gold does not Granger Cause KSE 1.70466 0.1327 | Don’t Reject
Conclusion:

T-Bill is Granger cause for both KSE and Gold

Granger Causality for six Lags:

This Granger Causality test for six lags is conducted in EVIEWS. Tabulated value
10% prob (for given 6 df of numerator and 362 df of denominator) is 1.80.
Observation; 374
Lags: ©
Critical F statistics: 1.80

Null Hypothesis F-Statistics prob Decision
Gold does not Granger Cause TBill 0.83195 0.5458 | Don’t Reject
TBill does not Granger Cause Gold 1.92585 0.0758 | Reject
KSE does not Granger Cause TBill 2.09084 0.0536 | Reject
TBill does not Granger Cause KSE 1.70489 0.1179 | Don’t Reject
KSE does not Granger Cause Gold 1.31329 0.2502 | Don’t Reject
Gold does not Granger Cause KSE 1.24039 0.2848 | Don’t Reject
Conclusion:

T-Bill is Granger cause for Gold
KSE is Granger cause for T-Bill
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We reject the null hypothesis that T-Bill is Granger cause for KSE index and Gold
Price at 5% level for two, three and four lags.  Although we cannot reject for five and six lags
at 5% level but we can do so at 10% level. Ganger causality is very sensitive to number of
lags. At six lags, KSE index is Granger cause for T-Bill value, although it is not so for lags
two, three, four and five. Six lags mean three months and a period of three months is too long
for the market where change can be realize fortnightly. So we conclude that T-Bill is the
cause of both KSE index and Gold price. It means that movement in interest rate leads to

movements in KSE index and Gold price.

5.7 Stationarity versus Structural Breaks:

Several studies including Perron (1989), Fernandez (1997), Lumsdaine and Papell
(1997), Perron (1997) have shown that in case of structural breaks data may appear to be non
stationary, though in actual it is stationary. It happens where a shock disturbs the trend and
trend settles to a new level after the shock. These studies have been briefly discussed in
Literature review.

Here in our case, we have checked for stationary for all the variables. KSE index, T-
Bill rate and T-Bill value appeared to be non stationary for the level. But their first difference
is stationary indicating that they all are integrated of order one. Gold prices showed a
different behavior. It became stationary at the level. The result is astonishing. Let us look at

the structural breaks in gold price

Month Year Price
November 2000 4850
January 2001 5049
January 2011 37400
February 2012 50830
October 2012 53585
December 2015 35991
[ September 2016 44040

We find three structural breaks. When we tested the data in between the structural
breaks, we found that data is non stationary at level and stationary at first difference. So our
discovery is that in presence of structural breaks data may appear stationary though in actual
it is non stationary. Our finding is in contrary to most of the studies given in Literature
Review where stationary data appeared to be non stationary. The reason for contradiction is
that in those studies a shock caused the trend to adjust to the new level permanently but in our

case trend returned to its original path after a second structural break.
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Results of Chow F statistics show that local maximum is not a solution to the problem
in case of single structural break. In case of single structural break, we have to search for
global maximum. In case of multiple structural breaks, global maximum too is not a solution
(page 43). We have to search the locations where F statistics is below the critical value. Then
in between first and second stable values, we may find a global maximum, which is first
break point. Then in between second and third stable F values, we find another global

maximum which is second structural break and so on.

Our approach points out the structural breaks with very strong evidence. Power is
calculated only if there is some insufficiency in evidence. Strong evidence of structural
breaks makes us free to calculate the power of the test. Similarly, confidence set can be
computed relatively easily by simply taking lower bound and upper bound. Lower bound is
the date when our test statistics rises above critical value and upper bound is the date when
our test statistics comes back to its normal value. By swapping the window, we can cover any
magnitude of the break. The confidence sets so obtained hence control coverage for a small

break too.

Our approach is useful to apply when there is false indication of non-stationarity of
data. Our study has proved that detection of structural breaks is necessary prior to testing the
data for stationarity. Gold price data appears to be stationary when fortnightly data of sixteen
years 18 used. But if we use data between two structural breaks, it appears to be non

stationary.

We have detected structural breaks and it appears that some lead and follow relationship
may exist between structural breaks of different time series. Structural break in first time
series is the cause of structural break in second time series and so on. To confirm our finding,
we use Granger Causality test which is used for cause and effect relationships. The

conclusion drawn is that

1. Changes in T-Bill rates Granger Cause the changes in KSE index.
2. Change in T-Bill Granger Cause the Gold prices in Pakistan and

We may present logic as if interest rate is high, then investors may prefer to give their
funds on interest based securities (though not an Islamic decision). It will cause crowding out
of the funds for gold market as well as for stock exchange market resulting in decline of stock

exchange index,
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RECOMMENDATIONS

Various tests are available for detection of structural breaks. We have used Chow F
statistics in our algorithms and coding. In the fact any test can be used while swapping the
window throughout the data set. Stage 1 will remain almost the same. Stage 2 of our

algorithm will completely be written for another type of test with minor changes in stage 3.

Algorithms can be written which can compute power of the test as window is
swapped. This is rather more complex task as compared to our work. No software in the
market can do it. We will have to use many built-in functions from the library of the

language. Coding may require object oriented programming in this case.

We may change data generating process in such a way that it accommodate for
disturbances. For example data can be generated with changing variances. Then we can test
the data by applying different type of tests such as Chow F, LR, Wald, MZ etc. We will have
to write algorithms and coding separately for each type of test. This will perhaps result in a
new software specific for detection of structural breaks at unknown location. This complex

task is left for future research.
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8-APPENDIX

Complete Program with Comments

/{/ Program begins from here !
//OX STANDARD LIBRARY HEADER FILE IS INCLUDED WHICH HAS VARIABLES
AND FUNCTIONS NECESSARY TO RUN THE PROGRAM
#include <oxstd.h>
// DATABASE CLASS IS IMPORTED
#import <database>

//main function of our program starts from here

main()

H/LOAD DATABASE FROM HARD DISK:

/f database is declared,

decl dbase;

// database object is derived from Database class

dbase = new Database();

//file loaded from Hard Disk Drive D

dbase Load("D:/data2.in7");

/{ data base information is displayed

dbase.Info(),

// maY Matrix consisting of all data of Y is declared

decl maY;

// maY is assigned all the values of database

maY = dbase->GetAll();

// Data size N and Sample size n is declared

decl n,N;

// Data size is defined

N=300;

// Sample size is defined

n=20;

// three variables are declared to run the for loops

decl i,j,h;
){}*********************t#**************1!.***t********************************
// STAGE 1 : DECLARE WINDOWS AND RUN REGRESSIONS ON SAMPLES:

// matrix X is declared

decl mX;

// Matrix X is defined and all entries initialized to ones.

mX = ones(2*n,2) ;

//Trend will be introduced in second column of matrix mX starting from 1.

mX[O][1]-1;
// matrix X is defined as consisting of all ones in first column and trend in second column
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// mYE is defined and initialized to all zeros
mYE = zeros(2*n,1);
// mYE is calculated
mYE = mX*b ;
// Matrix me of residual term is declared where, € =Y actual - Y explained
decl me;
// Size of matrix me is defined and matrix is initialized to all zeros.
me = zeros(2*n,1);
/{/ Nested for loop is used to populate me
for (h=0 ; h<2*n; ++h)
{ // Matrix me is populated.
me[h] = mY[h] - mYE[h] ;
¥
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//RSS is declared and initialized to a value of zero.

decl RSS=0;,

// for loop is used to get RSS for given sample and put the value in matrix of RSS at
respective index

}

for (h=0 ; h<2*n; ++h)
{ // RSS is calculated.
RSS =RSS + (me[h])"2 ;

}
// Value of RSS is put at respective index in column matrix mRSS.
mRSS[i] = RSS ;

print ("\n In this sample value of RSS=" ,RSS );
// RSS initialized to zero before starting the next sample.
RSS=0;

//**************#*************************************************#**t******

/{ DECLARE WINDOWS AND RUN REGRESSIONS ON SUB SAMPLES:

/f matrix X is declared

decl mXs;

// Matrix X is defined and all entries initialized to ones.

mXs = ones(n,2) ;

//Trend will be introduced in second column of matrix mX starting from 1.
mXs[0][1]=1;

/f martix X 1s defined as consisting of all ones in first column and trend in second column

for(i=1 ; i<n; ++i)
{

mXs[1][ 1 J=mXs[i-1][1]+1;
}

print{("\n X matrix for the samples is given as",mXs);

i e s P e L L e P L
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/f Matrix consisting of Y variable data for a specific window is declared.
decl mYs;
// Matrix Y for sub sample s is defined and initialed to all zeros.
mYs = zeros(n,1);
// Matrix mBs is declared to store values of betas from sub sample window.
decl mBs:
// mB is initialized to all zeros and size of mB is defined.
mBs = zeros (N-nt+1,2);
// Matrix mRSSs is declared to store values of RSS from sub sample window.
decl mRSSs;
// mRSSs is initialized to all zeros and size of mRSSs is defined.
mRSSs = zeros (N-n+1,1) ;
”***************************t************************************#*****#***
/ffor loop is used to create N-n windows and statistical analysis of each window
for (=0 ; i<=N-n; ++i)
{
// Sub sample ample information is displayed as follows
print ("\n \n Sub-Sample No.(", i+1, ") has Lower Limit = ", i+1, " and Upper Limit = ", i+n)

3
|
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//nested for loop is ued to populate each window

for (j=0;  j<n ; ++j)

{ // Sub Sample window mY's is populated with data ,

mYs[j] = maY[j+i];

}

//OLS 1s run on each window

olsc(mYs, mXs, &b);

//mBs matrix is populated with Beta of respective sample

mBs[i]{0] = b[0]; //mB matrix is populated with Beta of respective sample

mBs[i][1] = b[1]; |

print("\n In Sub Sample (",i+1, ") values of Betas are ", b[0], " and ", b[17);
ﬁ******#******************************************************************t
/{Computations for Residual Sum of Squares start from here

// matrix of Ys Explained is declared

decl mYsE,;

// mYsE is defined and initialized to all zeros

mYSsE = zeros(n,1);

// mYSsE is calculated

mYsE = mXs*b ;

/! Matrix me of residual term is declared where, e = Y actual - Y explained

decl me;

// Size of matrix me is defined and matrix is initialized to all zeros.

me = zeros(n,1);
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print (Index~mRSSs~mB~mRSS~mF);
//*#*#*******#*************t******#**************#*************************#
/f STAGE 3: ANALYSE RESULTS:

// Required variables are declared,

decl w, mF1 mz, max;

// Window equal to sample size is declared

w=n,
// Matrix mZ is declared and initialized to hold 20 adjacent F values out of each Chow Test F
statistics

mz = zeros(w,2) ;
// Matrix mF is declared and initialized to hold maximum value out of each of adjacent 20 F
Chow Test statistics.

mF 1 = zeros(13,2);
// Maximum F value out of chunks of consecutive n F values are extracted using outer for
loop.

for(i=0 ; i<13 ; ++1)

{ // Nested for loop is used to populate window with F values.
for(j=0; j<w ; +j)
{

// first column is filled with observation number from where a particular window for Chow
Test starts.
mz[j](0] = (iI*w)tj+21 ;
// Second column is filled with respective F statistics.
mz[j}[1] = mF[(i*w)+];
}
// Maximum F value is extracted from the recently filled mZ matrix.
max = maxce( mz[][1] ) ;
/Maximum F value extracted from mZ is put in mF1 along with the respective observation
number
for(j=0; j<w ; ++j)
{
ifimax == mz[j][1])
{
mF1[i][0]= mz[j][0] ;
mF1[i][1]=max
}

2

}
}

print(" \n Given below are the maximum F values at respective observation ‘n for each
segment of 20 regression lines");

print ("\n \n \t observation \t Max F ");

print(mF1);
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