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Preface

Mechanics of non-Newtonian fluids has fascinated the researcher due to its
tremendous applications in technology and industry. Flow of such fluids
present a major challenge for researcher in fluid dynamics: examples are
polymers, slurries, mixtures of oil-water and gas liquid and many biological
fluids (such as blood, synovial fluid and food stuffs).

There is no universal relation available in the literature like Newtonian fluids,
which can describe the rheology of all Newtonian fluids. Therefore, several
constitutive relations of non-Newtonian fluids have been proposed. These
constitutive relations are then used with the equations of continuity and
momentum to solve flow problems. It is important to mention that
consideration of the non-Newtonian constitutive equation in the mathematical
modeling give rise two types of difficulties: i) an increase in the order of
equation of motion ii) Paucity of boundary conditions. These critical issues
regarding some of the non-Newtonian fluids have been discussed by
Rajagopal [1] and Rajagopal and kaloni {2].

A simplest constitutive equation that captures some observed non-
Newtonian behavior is the generalized Newtonian fluid (GNF) constitutive
equation. In GNF constitutive equation the viscosity is a function of share
rate. Based on the functional form of viscosity several GNF constitutive
model may be found in literature [3]. Widely used GNF models for the study
of viscoelastic fluids are power -law model, Carreau model, Bingham model,
Ellis and Eyring-Powell models. A detailed discussion on GNF models may
be found in Bird et al. [4].

Flows of fluids in pipe/tubes are extensively studied in the literature because
of their practical applications and as a starting point of investigation. Fully
developed pipe flow gives an exact solution of Navier-stokes equations [5].
However, the possibility of getting exact solutions narrows down for non-
Newtonian fluids. For such case one has to relay on approximate methods.
Some recent studies on pipes flow of non-Newtonian fluids were performed
by Erdogan [6], Hayat et al. [7,8] and Khan et al. [9]. Pressure driven flow of
power-law and Ellis fluids can be found in [3].

Motivated by the above mentioned studies and facts we propose to study
magnetohydrodynamics (MHD) pipe flow of an Eyring-Powell fluid in this
dissertation. The dissertation is organized as follows. Introductory material
consisting of some definitions and governing equations is presented in
chapter 1. In chapter 2 MHD flow of fourth grade fluid in a pipe is



investigated by using Hybrid method proposed by Ariel [10). The same
problem was studied by Hayat et al. [7] using Homotopy Analysis method.
The results obtained by both the methods are compared. Effects of emerging
parameters on velocity profile are illustrated through graphs. Chapter 3
contains the study of MHD flow of an Eyring-Powell fluid in a pipe. Governing
equation is obtained for the fully developed flow. Numerical solution of the
problem is presented using hybrid method. Graphs are sketched to analyze
the effect of the material parameters of Eyring-Powell fluid on the flow
velocity.
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Chapter 1

Preliminaries

This chapter includes some basic definitions and governing laws relevant to the ma-

terial presented in the subsequent chapters.

1.1 Basic definitions

1.1.1 Fluid

A fluid is a substance that deforms continuously under an applied shear stress regard-

less of how small the applied stress may be.

1.1.2 Flow

It is a phenomenon in which the material deformation increases continuously without

limit when different forces act upon it.
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1.1.3 Fluid mechanics

It is a branch of continuum mechanics, which deals with the properties of stationary
and moving fluids. Fluid mechanics can be divided into fluid statics (i.e.the study of fluids at rest)

and fluid dynamics (i.e.the study of fluids in motion).

1.2 Some physical properties of fluids

1.2.1 Density
Density of a fluid is defined as the mass per unit volume. Mathematically, the density
p at a point py may be defined as
p= lim —,
V08V

where 6V is the volume of the fluid enclosing point py.

1.2.2 Viscosity

It is a property of fluid by virtue of which it offers resistance to the flow. Mathemat-

ically, it is defined as the ratio of shear stress to the rate of shear strain i.e.,

shear stress

Viscosity = 4 = )
y=H rate of shear strain

In above definition, p is called the absolute or dynamic viscosity.



1.2.3 Kinematic viscosity

The ratio of dynamic viscosity to the density of the fluid is known as kinematic

viscosity and is denoted by v. Mathematically,

v="E
p

1.3 Classification of fluids

1.3.1 Ideal fluids

Ideal fluids are those which have zero viscosity. Gases are usually treated as an ideal

fluid for engineering purposes. Ideal fluids are also known as inviscid fluids.

1.3.2 Real fluids

Real fluids are those which have finite viscosity. These fluids may be compressible
or incompressible. Depending on the relationship between the shear stress and the
rate of shear strain, real fluids are further divided into two main classes, namely

Newtonian and non-Newtonian fluids.

1.3.3 Newtonian fluids

Newtonian fluids are those fluids for which the shear stress is directly and linearly pro-
portional to the rate of deformation. These fluids obey the Newton’s law of viscosity,

which is defined as

Tyz = /J‘E'y'v



where 7, is the shear stress acting on a plane normal to y—axis and u is the velocity

in the z—direction. Water is a common example of a Newtonian fluid.

1.3.4 Non-Newtonian fluids

Non-Newtonian fluids are those for which the shear stress is not linearly proportional

to the rate of deformation. These fluids obey power law model, which is given by

Tyz:k(j_’;) ’ n'#]-a

where k is the consistency index and n is the flow behavior index.

For n = 1 with k = u, the above equation reduces to the Newton’s law of viscos-
ity. Examples of non-Newtonian fluids include ketchup, tooth paste, blood, paints,

greases, biological fluids, polymer melts etc.

1.4 Types of flow

1.4.1 Laminar and turbulent flow

A flow in which paths taken by the individual particles do not cross one another and

each particle moves along a well defined path is known as a laminar flow.

A turbulent flow is one in which each fluid particle does not has a definite path

and it moves randomly.
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1.4.2 Steady and unsteady flow

A flow in which fluid properties at each point in the flow field does not depend upon

time is called steady flow. For such a flow, we can write

where 7 represents any fluid property and £ is the time.
A flow in which fluid properties at each point in flow field depend upon time is

called unsteady flow. For such a flow, we can write

on
5 70

1.4.3 Incompressible and compressible flow

A flow is said to be incompressible if the density remains constant throughout the
motion. Therefore, the volume of every portion of fluid remains unchanged over the
course of its motion when the flow is incompressible.

Mathematically, incompressibility is expressed by saying that the density p of a

fluid particle does not change as it moves in the flow field, i.e.,
p# p(z,y,2,t) or p= constant.

or

do _

=0
dt ’

where d/dt is the substantial (total) derivative, which is the sum of local and convec-

tive derivatives and has the following form:



10

d 8
=5t (V.V). (1.1)

In the above expression V is the velocity of the fluid and V is del operator. All liquid
flows are generally incompressible.
A flow in which density of the fluid varies during the flow is termed as compressible

flow i.e.,

p=p(z,9,21).

1.5 Magnetohydrodynamics

Magnetohydrodynamics (MHD) deals with the mutual interaction of fluid flow and
magnetic fields. Magnetohydrodynamics is the academic discipline which studies the
dynamics of electrically conducting fluids. Examples of such fluids include plasmas,

liquid metals and salt water.

1.5.1 Magnetism

The study of nature, and cause of magnetic force fields and how different substances

are effected by them is called magnetism.

1.5.2 Magnetic field

The region or space around a magnet in which it exerts a force on other magnet, is

called its magnetic field. It is strong near poles.
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1.5.3 Electric field

A region in which a force would be exerted on an electric charge. It is completely
defined in magnitude and direction at any point by the force upon a unit positive

charge situated at that point. It can be produced by electric charge.

1.6 Maxwell’s equations

In electromagnetism, a set of four partial differential equations is given by James
Clark Maxwell. These equations show the interrelationship between electricity and

magnetism and are as follows:

a. Gauss’s law

This law relates electric charge contained in a close surface to the surrounding electric
field i.e.,

V.E= ’E’—e, (1.2)

where E is the electric field, p, is the charge density and ¢, is the permittivity of the

free space.

b. Gauss’s law for magnetism

It states that the total magnetic flux through a close surface is zero i.e.,
V.B =0, (1.3)

where B is the total magnetic field.
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c. Faraday’s law of induction

This law explains that how an electric field is generated by changing magnetic field.

Mathematically,

VxE=-22 (1.4)

d. Ampere-Maxwell law

It states that magnetic field can be generated in two ways, firstly by electric current
and secondly by changing electric field. The mathematical statement of this law is

given as

VX B = o + ot

5 (1.5)

where J is the current density and p, is the magnetic permeability.

1.7 Generalized Ohm’s law

In 1827 George Simon Ohm introduced a law according to which current in a con-
ductor is directly proportional to the voltage drop. The generalized Ohm’s law for

an electrically conducting fluid has the form
J=0(E+V xB), (1.6)

where o is the electric conductivity of the fluid.
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1.8 Governing laws

1.8.1 Law of conservation of mass

According to the law of conservation of mass (also known as continuity equation),
mass can neither be created nor destroyed in any classical system. For a

moving fluid it can be written in vector form as

Jp B
5 T V-(V)=0. (1.7)

For an incompressible flow, the density is constant and thus it becomes

V.V =0. (1.8)

1.8.2 Law of conservation of momentum

Every particle of fluid at rest or in steady or accelerated motion obeys Newton’s
second law of motion which states that, the sum of all external forces acting on
a system is equal to the time rate of change of linear momentum of the

system.

In vector form, it can be written as

dVv
oy = V.T+pb, (1.9)

where b the body force per unit mass and T the Cauchy stress tensor.



14

1.9 The Hybrid method

Hybrid method is an explicit numerical method proposed by Ariel [10] for solution
of ordinary differential equations. It is a combination of the shooting and the finite

difference methods. It is useful for the solution of problems:
e with sigularity.
e where the order of differential equation is higher than the number of available
boundary conditions.
e where the higher derivative gets vanished for certain values of the parameters

involved in the equation.
The detailed procedure of the implementation of this method can be found in the

next chapters.
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Chapter 2

MHD Pipe Flow of Fourth Grade

Fluid

2.1 Introduction

The present chapter deals with the study of steady MHD flow of fourth grade fluid
in a pipe. This work was previously undertaken by Sajid et al. [7] by employing
an analytical technique known as homotopy analysis method (HAM). Here a hybrid
numerical method proposed by Ariel [10] is used to study the same problem. Details
of the implementation procedure are provided and a comparison of solution reported
in ref. [7] is made with present one. The effects of emerging parameters on the flow
velocity are explained graphically at the end of the chapter.

15
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2.2 Governing equations

Consider the steady flow of an electrically conducting, incompressible, fourth grade
fluid in a non-conducting circular pipe. The z-axis is taken along the axis of the pipe.
A constant magnetic field of strength B, is applied transverse to the flow direction.
The electric field assumed to be zero. The flow is induced due to a constant applied
pressure gradient in the z-direction. For the flow under consideration the governing
equations are the continuity and momentum given by Egs. (1.8) and (1.9). The body
force term in Eq. (1.9) for an applied magnetic field shall be derived through Egs.
(1.2) — (1.6).

The Cauchy stress tensor T appearing in Eq (1.9) for a fourth grade fluid is given

by
T = —pl+pA;+o01Az+ aA? + B, Az + 8, (AzA; + A1Ay) (2.1)
+B; (trA) A1+ 71A4 + 72 (AsAr + AAg) + 73A2 + 7, (AxAT
+A2A,) + 75 (trAs) Az + v6 (trA2) A2 + (y,trAz + veir (AgAL)) Ay,

where p is the pressure, I the identity tensor, a/s, S/s and ~/s are the material

constants and A;_4 are the Rivlin-Ericksen tensors defined by
A =L+1L7, (2.2)

and

_ dAn—l

An dt

+ An—lL + LTAn_.l, (TL > 1) (23)

where

L=VV. (2.4)
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For the problem under consideration, the velocity field has the following form
V=(0,0 u(r), (2.5)

in which u(r) is the z-component of velocity in the pipe. It is noted that using Eq.
(2.5) the continuity equation (1.8) is satisfied identically. Now we proceed to obtain

the full form of T for the velocity field (2.5) and write

L=|ogool|-L"=]00 0|,

ngoo_ |00 0 |
r e
Ou
00 &
Ay=L+L7 = oo o |, (2.6)
|5 00 |
r62’ ] r62 ]
(35)" 00 (35)" 00
AL=| o o0, L"Ai=| o o0 o0/, (2.7)
0 00 0 00
2(2)° 0 0
Ay = 0 00/, (2.8)
0 00
2(Z)" 00f{| 000 000
AL = 0 00 0 00(=({000]=0, (2.9)
0 oo0f|2Zo0o0 000
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[ 1T sz ]
0 00 2(%)" 00
L'A;=|0 0 0 0 00
_% 00j | 0 00|
0
A3—_—A2L+LTA2= 0
K
0
A4:A3L+LTA3= 0
0
L
2(2)* 0 0 00 &
AA; = 0 00 0 0 0
0 00 % o 0
L J Lar o
0 0 2| |2(2)?° 00
AlAs=1 0 0 0 0 00
du
Kz 0 oj i 0 0 oj
» I r 7

du
%0 0]|l000

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



-

- -

A,A% =

AZA, =

traceA? = trace

traceA, = trace

traceAs A = trace

Y

)
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(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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and
23 00| [2@7 00| 4@ o0
Ai=| o 00 o ool=| o o00]- (2.24)
I 0 00-L 0 00_ I 0 00_

T=
0 —p 0
nge+28, (%) +285 (3)° 0 —p+az(3) +2v(5)

(2.25)

In the presences of body force the law of conservation of momentum is given by Eq.
(1.9). Using the definition of substantial derivative it takes the form

p [%+ (V.V)V] = V.T+pb. (2.26)

For steady flow 9V /8t=0 and

(V.9)V = [(0, 0,u(r). (8%, %;%, 5;) v] —0, (2.27)

therefore Eq. (2.26) reduce to

V.T+pb = 0. (2.28)

Using Maxwell’s equation’s (1.2) — (1.5) and generalized Ohm’s law we get
pb =J x B = (0,0, —0 B2u). (2.29)

Upon making use of Eq. (2.29) and taking the divergence of stress tensor given by

Eq. (2.25), Eq. (2.28) in scalar form becomes
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Op 18 ou\? 18 ou\*
0——E+(2a1+a2);5;[r(5)] 2[2(73+74+75)+76];5;[r<5)],

(2.30)
op
2 = 0, (2.31)
op pd [ du\ (Bat+By) d | (u\®| .
% T o (Tdr) +2 — 2 "\ 5 oBiu = 0. (2.32)

Note that the induced magnetic field is neglected which is valid assumption for small
magnetic Reynold’s number. Now first the velocity field is determined from equation
(2.32) and then the pressure field can easily be calculated using equation (2.30).
It is interesting to mention that the governing equation of velocity field for third
and fourth grade fluids is similar. However, the expression for pressure differs. The

relevant boundary conditions are:

du

?d—r‘ =0atr= 0, (2'33)
and

u=0atr=R. (2.34)

Introducing the non-dimensional variables

_ T e
¢= 7 f= @) ok (2.35)
we find that
du Op ROf
dr — 024 0C’ (2.36)
2 1
du_p&f 1 (2.37)

dr2 ~ 8202 " 4u
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Thus Eq. (2.32) and boundary conditions (2.33) and (2.34) take the following form

"+ 1 =[P+ 3¢ () 1] - MAf =, (2.38)
f(0)=0,f(1) =0, (2.39)
in which
5B+ B3) o (P’
A=2 ?16;1, TR (dz) ’
and
M2 = oBZR?
==

is the Hartman number and prime denotes differentiation with respect to ¢.

2.3 Solution of the problem

2.3.1 Casel (M =0)

The governing equation (2.38) in absence of applied magnetic field has the following

form:

She-en (@) (2 9
C2+C 4c+/\[dC + 3¢ i) i@

After some re-arrangements this can be written as

LD Qi@ om

Integrating above equation once and using the boundary condition
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we get

¢f =2+ X [P =0. (2.41)

Following the procedure as describe by Sajid and Hayat [11], we note that equation
(2.41) is a cubic equation in f’ having one or three real solutions. However, since A
is positive therefore Eq. (2.41) has a unique real solution [12]. Solving this equation

for its real root using Mathematica we obtain

F()=9(), (2.42)
where
) (9A2< V3 ¥ 27/\4@)%
9(Q)=- T+ 2 , A>0.
3% (922 + VBVNT+ 200 334

(2.43)

Integration of Eq. (2.43) we get

¢ N

= d ,0< (<1 2.44
0= [o(¢)dt+a,0<cs (244

By using second condition of (2.39) we obtain

o= — /0 1 g (g) dé. (2.45)

An exact solution can be obtained by evaluating the integral in Eq. (2.44) numerically.

2.3.2 Case II (M #0)

In the presence of applied magnetic field the solution of the problem consisting of equa-
tion (2.38) and boundary conditions (2.39) is not possible in a manner as described

in section (2.3.1). Further, it is noted that the higher order term gets vanished at
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¢ = 0. Therefore, the application of shooting method with Runge-Kutta algorithm
is not possible. Therefore we proceed to find the solution of problem using a hybrid
method proposed by Ariel [10].

We rewrite equation (2.38) by substituting

y=f,yr=fryn= fn,

' +y =4+ N)’ +3¢ ()] — MPy¢ =0. (2.46)
Introduce a mesh defined by
¢;=jh:5=0,1,2,3,.N,

where N is sufficiently large number and h is the step size.
We now replace the first and second order derivatives in equation (2.46) by the

following formulae:

P et i 2.4
J+l _ 90 —1
g =Y - Ty (2.48)

With the help of Eqgs. (2.47) and (2.48) , Eq. (2.46) has the following discritized form:

RV RS QR R j g1 _
C,(y ’:,/2 y )+y hy e

+A l:(yj __hyj—l)3 + 3Cj (yj _hyj—1)2 (yj+1 - 2hy2] +yj~1):| - M2yj€j =0,

or
. . , , -1 Qi yd —¢gi—1 §_qyi—1 ; i1\ 3
it (g 9 (v yf-1)2> | e e e ()

+

h h2 h ) N2 — o
=3\ (y’—g’ 1) (—2y”j;y’ 1) + M2yi¢d

(2.49)
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and the boundary conditions (2.39) become

(¥°)' =0, y" =0. (2.50)

then by using Taylor series we can write
1_.0 0y/ h’2 0}/ 2 51
v =y +h(y)+§!—(y)+..., (2.51)
h2
y' =s+hf (0)+ Ef” 0)+ ... (2.52)
With the help of first boundary condition in (2.50) , we have

1 h? "

The value of f” (0) can be obtained from Eq. (2.46) . We differentiate Eq. (2.46) with

respect to ¢ and set { = 0 to get

4+ M?
£(0) = i_2_xf (2.54)
Inserting the values of f” (0) in Eq. (2.53), we obtain
h2
yl=s+ T (4+ M3s). (2.55)

Now we have in hand the values of y° and y!. The integration process will proceed
as follows. By giving an approximate value ﬁo f(0) we calculate y? from Eq. (2.49).
Having the values of y! and y?, the values of y® can easily be obtained from Eq.
(2.49) . The cycle is repeated until the values of y have calculated at all mesh point.
The value of s is refined by any of zero finding algorithm i.e. Secant or Newton’s

method until the terminal condition y"V = 1 is achieved.
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2.4 Results and discussion

The purpose of this section is to analyze the effects of non-Newtonian parameter A and
Hartman number M on f (¢). Figure 2.1 presents the effects of A on non-dimensional
velocity f. Figure 2.2 illustrates the effects of M on f. It is clearly observed from
Fig. 2.1 that f is an increasing function of A. Further, as evident from Fig. (2.2),
large values of M increases f as a result of decreasing boundary layer thickness. In
fact the applied magnetic field provides some mechanism to control the growth of
the boundary layer thickness. This provides also a striking difference between the

hydrodynamics and hydromagnetic boundary layers. A comparison of the solutions

obtained by HAM [7] and Hybrid method is presented in Table 2.1.

Table 2.1 : Values of the velocity field when A = 0.2 and M = 0.2.

¢ | Anal. Sol. at 15th-order | Numer. Sol.
0.1 -0.797763 -0.800633
0.2 -0.769201 -0.771423
0.3 -0.722225 -0.724016
0.4 -0.658225 -0.659894
0.5 -0.578955 -0.580593
0.6 -0.486029 -0.487528
0.7 -0.380729 -0.381944
0.8 -0.264072 -0.264911
0.9 -0.136915 -0.137336




—————
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Fig. 2.1 : Variation of the velocity field f for different values of A (M = 0.2).

£()

Fig. 2.2 : Variation of the velocity field f for various values of M (A =0.2).
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Chapter 3

Numerical Solution for MHD Pipe

Flow of Eyring-Powell Fluid

In this chapter steady flow of an incompressible MHD Eyring-Powell fluid in a circu-
lar pipe is studied. The fluid is electrically conducting in the presence of an external
uniform magnetic field. Governing equations for velocity and pressure fields are de-
rived. Hybrid numerical method is used to solve the governing equation subject to
the appropriate boundary conditions. Graphs are plotted and discussed for various

values of the emerging parameters.

3.1 Problem formulation

The geometry and assumptions for the problem under consideration are similar as
described in the previous chapter. However, the fluid model considered in this chapter
is different. We consider an incompressible Eyring-Powell fluid flowing in a pipe due

29
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to a constant applied pressure gradient.

The governing equations for the flow problem are the well known equations of
continuity and momentum given by Egs. (1.8) and (1.9). The assumed form of the
velocity field is same as defined in chapter 2. Using this form of velocity field the

continuity equcation is satisfied identically and equation of motion in scalar form

read as:
0= —g’; + [%56; (rTp) — 3:2] + (I xB),_, (3.1)
0= —%gg + ;1556; (r’Tr) + (I x B),, (3.2)
0= -% + %% (rT,.) + (J x B),. (3.3)

Now our aim is to express the components of stress tensor appearing in Egs. (3.1)—
(3.3) in terms of velocity gradients. For this we need the constitutive relationship of

an Eyring-Powell fluid, which is given by

T =uyV + %sinh_1 (C%VV) . (3.4)

In above equcation 3 and ¢* are the material constants. We take the second order

approximation of sinh~! function as

11 1 1/1 *[1

and re-write (3.4) as:

1
T=puyV+ —VV—L

B 65 (VV)?. (3.6)

In index notation the above relation becomes

Ou; 1 Ou; 1 (au,»>3

—_ = 6_.13]

Ty =yt
g “ax,- +Bc* Oz; 60c*3

(3.7)
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where u; (i =1,2,3) denotes the velocity components and z; (j =1,2,3) are the
independent variables. For the velocity field given by Eq. (2.5) the only non-vanishing

component of T is

ou 1 . _,(10u
T,.z = u—a—r + Esmh (C—*E) s (38)
or
ou 1{106u 11 [ou\®
Ta=ig+5 [E—'E"EF (a—) ] ’ (39)
or
1\ou 1 [ou)®
- I e — | . 1
T <M+ ﬂc*) or 68c* ((97‘) (3.10)

With T, as the only non-vanishing component of T, we can write Eqgs. (3.1) — (3.3)

as
op
5 = 0, (3.11)
Op
% = 0, (3.12)
du 4 r&y Hn+ T du)d _
_Bp +_1_ (dr dr2> ( Be ) 68c*3 (dr) —~0. (313)
62 r T du\2 d%u 2
s (&) G534} —oBur

The relevant boundary conditions are defined in (2.33) and (2.34) . With the help of
non-dimensional variables defined by Eq. (2.35) we obtain the following dimensionless

equation and boundary conditions for the problem under consideration

af  O%f 2 (rar\® %f (8f\?
(1+N) (8—<+C6_C2-) —4€—§-((52> +3Cb? (B?) ) —M2Cf=0, (3.14)

with
1

N=——,
upc*
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and
,\*___£2__ @ ’
T 32u3Be*3 \ 0z )

as non-dimensional parameters associated with Eyring-Powell fluid. An exact solution
of Eq. (3.14) subject to boundary conditions (2.39) for the special case M = 0 can

be obtained by a similar procedure as described in section (2.3.1).

3.2 Numerical solution of the problem

Employing the similar procedure as described in section (2.3.2) of chapter 2 for the

numerical solution, we obtain the following counterparts of Egs. (2.49) and (2.55)

—(1+ W) (222 -

(1+ N)a? (:2%&’“_‘) + 47+

J+l __ 1 N xJ A*:I‘J yJ—yJ—l 7™ A+ J—qi—1 3 —
VRN m TR ) | ¥ (o) + =
v i (=2 +yi? i_yi-1\2
o () () +
M2z
(3.15)
and
h? [ 4+ M3s
1_ —_— ———
y =s+ 5 (2(1+N))' (3.16)

After the implementation of the procedure described above in computational soft-
ware Mathematica, we have obtained the values of f over domain [0, 1] for different
values of the parameters. In the next section the results are presented graphically

and discussed in detail. A comparison of exact and numerical solutions is provided
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in Table (3.1).

3.3 Graphical results and discussion

In this section the non-dimensional axial velocity f ({) is plotted against ¢ for differ-
ent values of Hartman number M and non-Newtonian parameters A* and N in Figs.
3.1 — 3.3. A comparison of the exact solution (for M = 0) is made with the numer-
ical solution in Table 3.1. This table shows that both the solutions are in excellent
agreement. Figure 3.1 illustrates the effects of Hartman number M on f. As expected
an increase in M decreases the magnitude of f. This is physically admissible because
magnetic field causes a resistance to flow. The variation of f with ( for different
values of \* is depicted in Fig. 3.2. It is observed from this figure that magnitude of
f increases for large values of A*. The effects of N on f can be analyzed through Fig.

3.3. It reveals that the magnitude of f decreases rapidly by increasing N.

Table 3.1 : Values of the velocity field
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for A\=02, M =0, N=1.

¢ | Numerical sol. | Exact Sol.
0.0 -0.52558 -0.52558
0.1 -0.52058 -0.52058
0.2 -0.50555 -0.50555
0.3 -0.48041 -0.48041
0.4 -0.44504 -0.44504
0.5 -0.39922 -0.39922
0.6 -0.34270 -0.34270
0.7 -0.27511 -0.27511
0.8 -0.19596 -0.19596
0.9 -0.10457 -0.10457

Fig. 3.1 : Variation of the velocity field f with change in parameter M, (A\* = 0.5 and N = 1).
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Fig. 3.2 : Variation of the velocity field f with { for different values of A",

(M=05and N =1).

Fig. 3.3 : Variation of the velocity field f with ¢ for different values of N,

(\*=0.5 and M =0.5).
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