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ABSTRACT:

AN A AN A A e

The notion of divisibility plays an important role in
Algebra. In 1991, Ahsan et al. [2] investigated the concept of
divisibility in the more genral case of monoids and their
representations, called S-acts where S is a monoid .
An S-act over a monoid S is a non additive generalization of modules
over ring and the theory of S-acts has led to the development of a
non additive and non commutative Homological Algebra.
Aim of the thesis is to study the divisibility for a monoid S and its
representation called S-act, in the context of fuzzy sets. As it has
been proved in [2] that the S-act M is divisible if and only if M is P-
injective. Now we study this result in fuzzy context and see whether
the investigation of divisible S-acts made so far can be extended to
the more genral context of fuzzy sets

Chapter 1 contains a brief discussion on Fundamental concepts in
semigroup, S -acts, basic definition and results on Fuzzy sets and
structures.

In chapter 2 we have studied the concepts of divisibilty and P-
injectivity forS -act.

Chapter 3 contains the basic definitions and results on fuzzy
divisibility and fuzzy P-injectivity. Also we prove the embedding of an
arbitrary fuzzy S-act into a fuzzy divisible S-act.

This chapter is basically a review of paper Fuzzy Divisible
Semigroups by J.Ahsan and M.Shabir [7].
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Chapter 1

Fundamental Concepts in Semigroups

Semigroup theory is a thriving field in modern abstract algebra. In
this chapter we give a brief introduction to the theory of Al-
gebraic semigroups, S-acts, Fuzzy sets and its structures and

Fuzzy S-acts.

1.1 Structure of semigroups

A semigroup is a generalization of the concept of a group
only one of the group axiom is retained- associativity; this is the
explanation of the term semigroup. Now we give the formal

definition of semigroup.

1.1.1 Definition: Let S be a nonempty set. A binary operation u on S is defined
as a mapping from S x Sinto S, i.e., u assigns to each pair (g, ) € §xSs exactly
one element u(a, b) € S. Instead of u(a, b) one generally writes a 4 & and
moreover, replaces u by symbols common to denote those operations, say,
a.b, a+b or an b for instance. Henceforth, we shall write ab instead of a x4 b, and

usually refer to the binary operation as “.» on S.

1.1.2 Definition: Let S be a nonempty set and “.” a binary operation on S.

Then (S, .) is called a semigroup if this operation is associative, that is,
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a (b.c)=(ab).c foral b ced
In particular, a semigroup (S,.) is said to be commutative if a.b = b.a for all

ab e S. In what follows, ab will denote a. b.

1.1.3 Definition: (a) Let S be a Semigroup. An element e € S is called a left
identity (right identity; identity) of Sifes = s (se =s; se =s =es) forall s € S.
(b) A semi group Sis called a monoidif S contains an identity element.

In the sequel, we will usually denote the identity element (if it exists) of a
semigroup S by 1. If § has no identity element then it is very easy to adjoin an
identity 1 to the set S by defining 1.8 = S.1 =S; for all s € S, andl.l=1
Then Su {1} becomes a semigroup with an identity element 1. We shall use
the notation S ! with the following meaning:

S if S has an identity element
s'=
Su {1} otherwise
and call §! the semigroup obtained from S by adjoining an identity element.

1.1.4 Definition: Let S be a semigroup. An element ze S is called a left zero
(right zero; zero) of S if zs=2z(sz = z; zs = z=sz) for all s € §.

A zero is often denoted by 0. If a semigroup S has a left zero and a right zero,
then they coincide. In particular § has at most one zero.

If a semigroup S with at least two elements contains a zero element 0 then S'is

called a Semigroup with zero. If S has no zero element then it is easy to adjoin



an extra element 0 to the set S, by defining 0.5 = 5.0 =0 and 0.0=0, for all

se S. This makes the set SU {0} a Semigroup with zero element 0. We shall

use the notation s°with the following meaning:

S if S has a zero element
§0=
Su {0} otherwise
and call $° the semigroup obtained from S by adjoining a zero ( if necessary).

If A and B are two nonempty subsets of a semigroup S, we write

AB= {ab: ac A, beB}.

1.1.5 Definition: An element s of a monoid S is called left (right) invertible if
there exists t € Ssuch that #s =1 (st =1).Ifthereexistst € § with ts=st=
1, then s is called invertible. |

If x is an element of a semi group’ S without an identity element, then xS or

Sx will not in general contain x. In this situation, we use the notation $’x for

Sx L {x}, xS’ for xS Ufx} and $'xs’ for SxS USx U x8 U {x}. Note that §'x, x 5’
and S'xS' are all sub sets of § (which do not contain 1).
For a semigroup S, if aS=Sand Sa=Sforall a e S, then it can be

shown that S is a group in the usual sense.

1.1.6 Definition:A nonempty subset T of a semigroup S is called a subsemi-
group of S ifabe T for all a, e T. Thus Tis a subsemigroupif T2=TTc T.
A subsemigroup T of a semi group S'is called a subgroup of Sif T'is a group.

A semigroup S is called a wninn of groups if each slement of S is contained in
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some subgroup G of S. If s is an element of such a semigroup S, then se G,

where G is a subgroup of §.

1.1.7 Definition: An element of a semigroup S which commutes with every
element of S is called a central element of S. The Set of all central elements of §
is either empty or a sub semigroup of S, and in the latter case, is called the

center Of S.

1.1.8 Definition: Let 4 be a subset of a semigroup S. The intersection of all sub

semigroups of S containing 4 is a sub semigroup of S, denoted by (A )
Clearly, {4 ) contains 4 and is contained in every other sub semigroup of S
containing 4; it is called the sub semigroup of S penerated by A. (A) may also be
described as the set of all elements of S which are expressible as finite
products of elements ol 4. If (4) = Sthen 4 is colled & set of generating elements
of S, or a generating set of S. If Ais finite, say, 4= {a,, a,,.., a,}, then
(A)=(a),a;,..a,). In parlicular, if 4= {a), then (d) < (@) - {q &’,d,....}.

{a) is called the cyclic sub semigroup of S generated by the element a.

S is called cyclic or monogenic if S = (a) for some a€sS, a is then called a

generating element of S.
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1.1.9 Definition: A subset M of generating elements of a semigroup S is called

a basis of § if every element of § can be uniquely presented as a product of

elements of M.

1.1.10 Definition: A serigroup is called free if It contains a basis. A monoid T'is

called free if T=S' fora free semigroup S.

1.1.11 Definition: A nonempty set K< & 4 called a lefi ideal of Sif SK < K, and
right ideal of S if KSc K, and an ideal or a two-sided ideal of Sif KS < K and
SKcK.

Clearly, S is an ideal of § and if S has a zero element 0, then {0} is an.ideal of
S. Anideal I of S different from these two ideals is called proper.

The definitions of right (left) and two-sided ideals of S generated by a non
empty set 4 of § are given in the usual manner. Note that the right ideal of S
generated by 4 is 4 U A4S = 48’ and the two-sided ideal of S generated by 4 is
AUASUSAUSAS = 548" If A s a finite subset of S such that I= $'45’, then I s

a finitely generated ideal of S.

1.1.12 Definition: A right (left or two-sided) ideal of § generated by one
element set {a} is called principal right (left or two-Sided) ideal generated by a,
and are denoted, respectively, by R(a), L{a) and J(a). Thus

R(a) = {a} waS = aS’, I(a) = {a} USa=S'a and

J@ = {a} vaSuSau SaS = S'as’.
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A semigroup S is called a principal right (left or two-sided) ideal Semigroup if

every right (left or two-sided) ideal in S is principal.

1.1.13 Definition: Let (S, .) and (7, * ) be two semigroups. A function f: S > T
is called a semigroup homomorphism of S into T if
fla.b)=fa)*f(b)foralla, b eS8

If such a homomorphism is injective, surjective or bijective, it is called a
monomorphism, an epimorphism Of an isomorphism, respectively. Finally, a
homomorphism of (S, .) into (S, .) is called an endomorphism of (S, .), and an
isomorphism of (S,) onto (S,), an automorphism of (S, .). A semigroup
homomorphism between monoids S and T with £ (1s) = 17 is called a monoid

homomorphism.

1.1.14 Definition: A binary relation p on a set .4 is a subiset of the Cartesian
product 4 x 4. We will write apb and say that a and b are p-related if (a, b) € p
and will call p simply a relation.

Arelationpon 4is

Reflexive if apa forall acA4

Symmetric ifapb implies bp a,
Antisymmetric if apb and bpa implies a= b,

Transitive ifapband bpcimpliesapc for alla b, c e A

1.1.15 Definition: A reflexive, symmetric, transitive relation p is an

equivalence relation; its classes are p-classes and the p-class containing an



S

R 32

[

o

element a will be denoted by ap. The relation p on 4 for which apb if and only
ifa=bis the equality relationon A and will be denoted by €4 ; the relation p
on A for which apb for all a, be A is the universal relation on A and will be
denoted by w,. Both €, and o, are equivalence relations; an equivalence

relation on A is properif it is different from e and w,,

E

1.1.16 Definition: A relation pc S x S on a semigroup S is said to be right (leff)
compatible if for a, be S, apb implies that aspbs (sapsb) for all se Ss A congruence
on S is an equivalence relation that is both right and left compatible.

The universal congruence on S denoted by ws, is the equivalence relation
(a,b) € ws,for allabe S.

The trivial congruence on S denoted by ¢  is the equivalence relation

(@a,b)erse a=15b foralag b e S If pis a congruence on S, then Sp

denotes thé set of all equivalence classes of § determined by p.

If ap denotes the equivalence class of § containing the element a (ae S), then
S/p can be made into a semigroup by defining (ap)(bp) == (ab)p; S/p is called
the factor Semigroup of S modulo p. The function p*: 5— Sip deﬂnedAby

p* (@) = ap (aeS) is a (semigroup) homomorphism. Let I be an ideal of a
semigroup S. Define a relation p on §'by apb (a, be S) to mean that either a =5
or efse both a and b belong to I Clearly, p is congruence on S, called the Rees
congruence module /. The equivalence classes of S modulo p are I itself and
every one elemernt set {a} with ae &\ /. Wi shall write S/ Iinstead of S/ p, and

call §/1 the Rees factor semigroup of S modulo I, It can be noted that if
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f:8— T is a semigroup homomorphism, then
Ker f={(a, b) € §xS: fla) = fb)} is a congruence on § and is called the

kernel congruence of the homomorphism f.

1.1.17 Definition: A semigroup S is called left simple if S has no proper left
ideals, right simple if S has no proper right ideals, simple if S has no proper
ideals.

A semigroup with zero is called 0-simple if {0} and S are the only ideals
of S, and S% # {0}.

A semigroup S is called semi simple if K*=K for every ideal K of S.

1.1.18 Definition: An element se Sis called left cancelable if sr = st forr,te S
implies r = £; and right cancelable if rs = /v for v, ¢ € Simplies r =t; cancelable
if s is left cancelable and right cancelable.

The semigroup S is called lefi cancellativi , rioht vomcellitive or cancellative if all

elements of § are left cancelable, right cancelable or cancelable, respectively.

1.1.19 Definition: An element x of a semigroup S is called idempotent if
X =X X=X
S is called an idempotent Semigroup (also called a band) if each element of S is
idempotent. The set of all idempotents of S is denoted by E(S). Thus S is an
idempotent semigroup or a band if E(S) = S.

There is a wide variation in the number of idempotents a semigroup

may contain. For example, (N, . ) has the only idempotent 1, the semigroup
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(2N, . ) does not contain any idempotent, but in (N, ged) all elements are

idempotent, where N is the set of natural numbers.

1.1.20 Definition: An slement a of a semigroup S is called regular if a € aSa,
that is, there exists an element b in S such that a = aba. A semigroup S'is
called regular if every element of Sls reqjular {10, p.26].

An element x' € S is said to be an inverse of xe S if and only if xx' x = x and
x%x' = x'. A semigroup S is called an inverse semigroup if every element of S has
a unique inverse. A regular Sémigroup S is an inverse semigroup if and only if

its idempotent commute ([10], Lemma 1.16).

1.1.21 Definition: (i) A refiexive, anti-symmetric and transitive relation on a set
A is called a partial ordering on 4 and is usually denoted by <, one writes a<b
fora, b € Aif (a, b) € < and calls (4, <) a partially ordered set or simply a poset.
(ii) Let < be a partial order on a set 4. Then < is called a total order (or linear
order) if for each g, be A, eithera <b or b <a. If this is the case we say that

(4, <) is a totally ordered set. A totally ordered subset of a partially ordered set
is called a chain.

In a partially ordered set (4, <), an element ¢ € A4 is called a maximal element of
A if c<x impliesc=x forallx e A. Similarly, d € 4 is a minimal element of
A ifx <dimplies x = dfor all x € 4. Furthermore, an element a € A is a greatest
element of A if for all x € 4 we have x <a, and b € A4 is a smallest element of 4 if
b <xforall x € 4. Clearly, a partially ordered set has at most one greatest and

one smallest element. This however need not be the case with maximal or
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minimal elements. Now suppose, B is a subset of the partially ordered set
(4, <), then ae A is called an upper bound of Bifb<a for all be B. similarly,
ac A is a lower bound of B if a < b, for all be B. The greatest among the lower

bounds, whenever it exists, is called the greatest lower bound (g.Lb) or the

" infimum (inf B). Similarly, the least upper bound (l.u.b.) of B, whenever it exists,

is called fhe Supremum of B, denoted by Sup B. A totally ordered set

(4, <) is said to be well-ordered if every nonempty subset B of 4 contains a
(unique) minimal elementi.e. if there exists an element be B such that

b <x forallx € B. In other words, b is the smallest element of B. Thus (N, <) is
well ordered, but (Z, <) is not (N and Z are respectively, the sets of natural
numbers and integers, and < denotes the usual less than or equal to relation).
Recall that the important principle of set theory (known as Zorn's lemma),
states that if (4, <) is a partially ordered set such that every chain of elements

in A has an upper bound in 4, then A has at least one maximal element.

1.1.22 Definition: A partially ordered set (L, <) is called a lattice if each subset
of, two elements of L has both a supremum or "join" denoted by x v y and an
infimum or * meet" denoted by x A y. Thus for all x, y in L, x< y if and only if
sup{x, y} =y if and only if inf{x, y} = x. If (L, <) or simply L, has a smallest
element with respect to <, then this element is called zero element of (L, <) and
is denoted by 0. It is easy to show that zero of L, if it exists, necessarily
unique. Similarly, the greatest element of L with respect to <, whenever it
exists, is called the unit element of L, and it is denoted by 1. The unit element

of L, if it exists, is unique. The elements 0 and 1 are called thé universal

10
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bounds of L and we have 0 <x < I for all x € L. It is easy to show that every
finite lattice has a 0 and a |.

A lattice is complete if not only every finite but also infinite subset has a
supremum and infimum.
If (E, <) is a lower semi lattice, thén E may be characterized as a commutative
idempotent semigroup by defining the product of two elements to be their
greatest lower bound. Thus for e, f € E e < fif and only if ef = fe = e.
Conversely, a commutative band S with the partial order x <y < x =xy forx,

ye Sis a lower semi lattice.

1.1.23 Definition: If a lattice L satisfies anyone of the following identities:
NxAavd=XaAy)v (X AZ);
@Qxvyardd=(xvy)axva,foralixyzel,
then it is called a distributive lattice.

Any linearly ordered set or a chain is a distributive lattice, and the lattice
of all subsets of a set is distributive. We say that a lattice L is modular if for all

abcela> bimplies an (bv c)=bv (anc).

1.2 Fuzzy Sets: Basic Properties

In 1965, Lotfi A. Zadeh first introduced the concept of a fuzzy set. In his classic
paper [29], Zadeh defined fuzzy subset of a nonempty set as a collection of
objects with grade or degree of membership, each object being assigned a
value between 0 and 1. So, a fuzzy set is a generalization of characteristic

function wherein the degree of membership of an element is more general

11
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than 0 or 1. Each fuzzy set is completely and uniquely determined by a
particular membership function. Fuzzy set theory was mathematically
formulated by theAassumption that classical sets were not appropriate or
natural in describing the real-life problems. Fuzzy set theory has greater
richness in applications than the ordinary set theory.

This theory has attracted the attention of researchers in a wide variety of
fields. The subject is growing enormously and finding applications in such
diverse areas as computer science, mathematics, artificial intelligence, pattemn
recognition, robotics, medical science, social science, engineering, and many
other disciplines. In this section, we give some definitions and properties of

fuzzy sets which pertain to algebraic operations.

1.2.1 Definition: Let X be a nonempty (usual) set. A fuzzy set (subsef) u of the
set X'is a function u : X — [0,1]. |

It can be mentioned here that Goguen [13] has generalized the fuzzy
subsets of X to L-fuzzy subsets, as a function from X to a complete distributive
lattice L. If L is the unit interval [0,1] of real numbers, L-fuzzy subsets are

fuzzy subsets in the sense of Zadeh, as above.
1.2.2 Definition: A fuzzy subset u of X is empty if and only if 4 is identically zero
on X. Thus u is nonempty (or proper) if it is not the constant function which

always takes the value of 0.

1.2.3 Definition: Two fuzzy subsets p and 1 of a set X are said to

12



be disjoint if there exists no x € X such that u(x)= A (x). If 1 (x) = p(x) for all

x € X, then we say that 4 and u are equal and write 1= p.

1.2.4 Definition: Let A and u be fuzzy subsets of X. Then A is said to be

contained in u, writtenas A < u,iff A (x) < u(x)forall x e X,andA c puiff

A C pand A #p, thatis, 1 is properly contained in u .

1.2.5 Definition: The union of two fuzzy subsets A and u of a set X, denoted
by 2 U g, is a fuzzy subset of the set X defined as :

(A v p)x)=max { A (x), u(x) } foreveryx € X.

The union of any family {u;: i € I} of fuzzy subsets of X is defined by

('U/ #;)(x) = sup{y;(x)} forallx e X

ief
it can be noted here that the union of 1and u is the "smallest" fuzzy subset
containing both A and u. More precisely, if §is any fuzzy subset of X which

contains both A and x#, then § also contains the union.

1.2.6 Definition: The intersection of two fuzzy subsets A and p of a set X,
denoted by A n u, is A ji:zy subset of X dolinid nn
(An WE)=min {1 (x), u(x)} forallx € X.

The intersection of any family {1,: i € I} of fuzzy subsets of X is defined by
(0 4;)(x) = inf(4; (x)} forallx € X.

iel

It can be shown that the intersection of A1and u is the "largest" fuzzy subset

13
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which is contained in both Aand 4.
1.2.7 Definition: The complement of a fuzzy subset u of a set Xis denoted by
u ©and is defined as:

pe(x)=1-pu (x)forallx €X

1.2.8 Proposition:Let 1, x4 and v be any fﬁzzy subsets of a'set X. Then the
following properties are immediate:

(a) Commutativity : AU u=pUA and ANp=uNA.

(b) Associativity : AU (uUv)=Q@QUmUvand ANuNv)=ANwNo

(c) ldempotent: AUAl=4 and ANA=41

(d)Distributivity: AU (uNv) =AU x)N(AUv)and

Aﬂ(,u.Uv) =(ANwU@no)

(e)Absorption: uN(uUA)=x and pUuNA)=u

(f) Demorgan's taw: (uNA)¢ =xUA° and (uUA) =pu°NA°

(g) Involution: (,uc)c =u.

NOTE: The following properties which are true in ordinary set theory are, in

general, no longer valid in fuzzy set theory:
(i) AnA® =¢ but unu® # x,, empty Fuzzy set

(i) AUA® =X but uUu® # xy, where 4 is any subset of a set X and i is any

fuzzy subset of X; of course yy(x)=1, forall x € X.

14
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1.2.9 Definition: Let s be any fuzzy subsol ol u sel X and let t€ [0,1]. The set
u={x € X: u(x)>t},iscalleda level subset of .

Clearly, u,c uswhenever t>s.

~ 1.2.10 Definition: A fuzzy subset y of Xis said to be a normalized fuzzy

subset if there exists x e X'such that u (x)=1.

1.2.11 Definition: Let “.” be a binary operation on a setXand A, ¢ any two
fuzzy sub sets of X. Then the product, iou is defined by

sup {min (}L( ), ,u(z))} for x=y.z, y,z €X

xX=Yy.Z

(Aopu)x)=

0, if x is not expressible as x=y.zfor all y,z ¢ X
EXAMPLE
(a) Let X be the set R of réal numbers and let u be a fuzzy set of real
numbers which are "much greater" than 1. It is possible to give a subjective
characterization of u by defining a function 4 on X. Representative values of
such function might be

A0)=0,41)=0,4(5=01,1(10)=0.2; A (100)=0.95, A (500)=1.
(b) Let N be the set of natural numbers and consider the fuzzy subset of

“small” natural numbers;

A ={(, 1), (2,0.8), (3,0.4), (4,0.2), (5,0), (6,0),.. .}

15
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1.2.12 Proposition: Let S(X) be the set of all fuzzy subsets of X. Then

(S(X), <, N) is a complete distributive iattice with least and greatest elements

Xg and Yx.

Proof: It follows from Definitions 1.2.5 and 1.2.6 and Property 1.2.8 (d)

1.3 Fuzzy Algebraic Structures: A Brief Review

The concept of fuzzy set was applied to generalize different algebraic
structures, like other branches of mathematics. In this connection the first
attempt was made in 1971 by A. Rosenfeld [27], when he defined the fuzzy
subgroupoid and fuzzy subgroups of a group. Several other authors continued
the investigation of such concepts (P.S.Das [11], P. Bhattacharya and N.P.

Mukharjee [9], J.M. Anthony and H. Sherwood [8]).

1.3.1 Definition: [27]. Let S be a groupoid. A fuzzy set u: S — [0,1] will be
called a fuzzy subgroupoid of § if, for x, yeS,

p (xy) 2 min(p (x), p ())-
If Sis a group, a fuzzy subgroupoid u, of S will be called a fuzzy subgroup of S if
u (x> u (x) for all xes.
In [20, 21], Wang-Jin Liu introduced and developed basic results concerning

the notions of fuzzy subrings as well as fuzzy ideals of a ring.

1.3.2 Definition: [20,21]. A nonempty fuzzy subset x,of a ring Ris called a

16
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fuzzy subring of R, if, for all x, y € R, the following conditions hold:

() g x-yyzmin(u (x), ¢ (), and

(i) 4 )2 min(p (), 1 B)-

It will be called fuzzy left ideal if u (xy)>u (y); afuzzy right ideal it p(xy)>u (x);
and a fuzzy ideal if it is a fuzzy left and right ideal or equivalently, if

H )z max (u (x), 4 ().

The properties of fuzzy ideals and fuzzy prime ideals of a ring have heen
further studied by many authors, among others (Mukharjee and Sen [25],
Zhang [30], Malik and Mordeson [23, 24], Dixit et al. [12]).

The concept of fuzzy module was introduced by Negoita and Ralescu
(Applications of Fuzzy Sets to System Analysis [26]), In 1979, N. Kuroki laid
the foundation of a theory of fuzzy semi groups in [16].
Subsequently, among others, Kuroki himself (see [16, 17, 18, 19]), Ahsan et al.
[3], Ahsan and Saifullah [5], M. Shabir [28 ] have characterized many classes

of semigroups using their various fuzzy ide:als.

1.4 S-acts: Essential Definitions and Properties

Let S be a monoid, that is, a semigroup with an identity element 1. In the

following S is a monoid with a two-sided zero element and S -acts are

representations of S.

1.4.1 Definition: A right unitary S -act M, denoted by Ms is a nonempty set M

and a function : MxS — M such that if ms denotes the image of (m, s) for

17
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m e Mand s e S, then the following conditions hold:
(i) (msyt=m(st)forall me Mands, ted

(i) ml =mforallme M.

From the above definition it follows that the monoid S is a right S-act over itself,

denoted by S;. More generally, if 7 is a right ideal of S, then Iis a right S-act

through the action (a, 5)— as (ael, se8), which is induced by the multiplication

in S. One can define left S—acts ¢S similarly.

1. 4.2 Definition: An elementd e Mswith ds =d for alls € Sis called a fixed
element of M. Let D denote the set of all fixed elements of M. A right S-act M is
called centered if Sis a semigroup with a two-sided zero element 0 and |D| =1.
Thus M is centered if and only if there is a fixed element (necessarily unique)
denoted by & such that

(i) @s =0 forall s € S; and

(i) m0= @ forallm e M;

@ will be called the zero of M.

1.4.3 Definition: A nonempty subset N of a right S-act M is called an S-subact

of Mwritten as Ny< Mg, if NS © N, thatis, nse N, forallne Nand s € S.

We note that {#} and M are improper S-subacts of M. Thus the subacts of

S-act Sg (resp.sS ) are right (resp. left) ideals of S.

18
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1.4.4 Definition: An equivalence relation p on an S-act M is called a (right)
congruence on M if apb (a, b € M) implies aspbs forall s € S, thatis, (a, b) € p
implies (as, bs) € p.
The set of all congruences on Ms form a lattice with universal congruence
denoted by w, and identity congruence iy (as defined in semigroups). Let p be
a congruence on Ms, then the set of all equivalence classes of M determined
by p is denoted by M/p. Then Mip is a right S-act if we define (mp)s = (ms)p
form eMands e S; M/ pis called the factor S-act of M by p. If Ms is centered,
the zero of M/p is 6p. If Bis an S-subact of an S-act 4, then B determines a
congruence p on A as follows:

For a, b € A, apb if and only if a = b or both a and 5 belong to B. In this
case we write 4 / B instead of A/p and call it Rees factor S-act of A by B. If I is an
ideal of a semigroup S, then the Rees factor of S modulo I will be denoted by

S

The equivalence classes of S/ I are I (the zero of S/I) and every single

element set {a} with acS-1

1.4.5 Definition: A right S-act M is called totally irreducible if Ms # 6and the
only right S-congruences are the universal congruence wy and the identity
congruence iy. Thus if Ms is totally irreducible, then Ms has no proper S-

subact.

19
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1.4.6 Definition: An S-act Mis called cyclic if there exists x € M such that
M = xS U {x} where xS={xs: s € S}; x is called a generator of Ms.

M is called strictly cyclic if there exists x e M such that M = xS and in this case
x is called strict generator of Ms. If S = S' then, of course, the difference

between the strictly cyclic and cyclic disappears.

1.4.7 Definition: A function f: Ms — Ns between right S-acts M and N is cailed
an § -homomorphism if foreach me Mands € S,

fims) = fm)s.
S-monomorphism, S-epimorphism, S-isomorphism and S-endomorphism are defined

as usual.

1.5 Fuzzy S-acts: Preliminary Results

Using the basic concepts of fuzzy set occurring in Zadeh [29], we develop
some fundamental resuits regarding fuzzy S-subacts and apply them to
generalize some of the results mentioned in [4]. First we recall the definition of

fuzzy S-subact of an S-act.

1.5.1 Definition: [1]. Let § be a monoid with a two-sided zero, and Ms a right
S-act with a zero element 6, A functon A4 : M — [0,1] is called a fuzzy
subact of M if the following condition hold:

A (ms)> A (m) forall m e M, seS



Similarly, one can define a fuzzy S-subact of a left S-act sM. If Ms = S;, then

fuzzy S-subacts are just fuzzy right ideals of S. Analogously, the fuzzy

S-subacts of ¢S are fuzzy left ideals of S. A fuzzy subset of the monoid S,

which is both a fuzzy right ideal and a fuzzy left ideal of S, is a fuzzy ideal of S.
We pay special attention to the fuzzy S-subacts M and ® of Ms defined,

respectively, as follows:

M(@m) =1forallme M, and

O(m = _
I ifm= 6y

1.5.2 Lemma: Let { n,.i ¢ 2} be a family of I'uzzy S-subacts of a right S-act M.

Then

(a) (ieQ (1,) Is i yirz2y S-subact of AL
\% )i
(b) (ieQ a,) is a fuzzy S-subact of M.

Proof: (a) As (1, E/\Q ) (ms) = 2Ly (@ m)z A aim) forallme M

and for all ssS.

Hence ( i eAQ a,-) is a fuzzy S-subact of M
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Vg = V. (ams)2 V_ (a(m))forall m e Mand for all
as (Y, @) m)= YV (alm)z VY (a(m) m
ses.

Thus (i:Q a,-) is a fuzzy S-subact of M

1.5.3 Proposition: Let FA(M) be the set of fuzzy right S-subact of M. Then
(FA(M), <, A, v) is dittribiitive complete lilti:e.
Proof: Leta, B € FA(M). Then by considering Lemma_l1.5.2, we see that

(FA(M), <, A, V) is a lattice.

To show FA(M) is complete , let {ai}ica & FA(M). Define a and B in

FA(M) as follows:
a(x) = ( ieAQ a,») (x) and fBx)= (ieVQ a,-) (x) forall x e M.

By Lemma 1.5.2, ae FA(M) and it is the greatest lower bound of {&; };eq In
FAM).

We note that

(i) an(Bv¥) =(arB)v(a Ay),

(i) (Bv VAo = (Bra)v(yra)

is true for fuzzy sets o, f and v.

1.5.4 Definition [1]: Let A be a fuzzy S-subact of a right S-act M and u be a

fuzzy right ideal of S. Then the prodict Aou s the fuzzy subset of M defined
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1.5.4 Definition [1]: Let A be a fuzzy S-subact of a right S-act M and u be a
fuzzy right ideal of S. Then the product Aop is the fuzzy subset of M defined

by

(Aou)(m)= . \—/xs (A (x)A u (s)) forall meM(xeM,seS).

The contents of this chapter have been paraphrased from the following

sources.
1. N. Kuroki; On Fuzzy semi groups, Infor.Scin.53(1991) 203-236.
2. Mati Kilp, Ulrich Knauer, Alexander V. Mikhalev; Monoids, Acts and
Categories, Walter de Gruyter . Berlin . New York.

3. Kbhalid Saifuliah; Ph.D Thesis (supervised by J. Ahsan) August 2005.
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Chapter 2

Divisible Monoid

In this chapter we discuss the concept of divisibility in the more general case
of monoids and their representations, called $-acts where S is a monoid.
Where S-act over monoid S is a non additive generalization of modules over
ring. Aim of discussing this chapter is to study the concept of divisibility of S-
acts over monoids S in a fuzzy context in next chapter. Most of the contents

are taken from [2].

2.1 P-injective and divisible S-acts.

2.1.1 Definition: Let M be a fixed right S-act. Then an S-act ¢ is called PM-
injective if each right S-homomorphism from a cyclic S-subact 4S (a e M) of

M to 0 extends to an S-homomorpiism from A7 to Q.

2.1.2 Definition: An S-act @ is called P-injective § -act. If O is “PS-injective”.

An S-act all of whose factor S-acts are PM-injective is called completely PM-

injective S-act.

2.1.3 Definition: Let () be an S -act over a monoid § then () is called divisible
or S-divisible if for allxe Q and geS there exists y e Q such that x = ya. The

S-act Q is called S-divisible it Qa=Q forall,; e §.

24
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2.1.4 Definition: We can define G-act over a groupoid G as follow:
Let G be agroupoid and Let A be a set then a G-act is a mapping

. M x G - G,such that the image of the pair (m,g) (meM,geG) is
denoted by mg. Thus every groupoid G isa G -act.

The concept of divisibility is not true in case of groupoid (G-act).

2.1.5 Example: Let 4={,0,x} be agroupoid with following table.

Then 1 € A is not divisible by x e 4 because there does not exist y e 4

suchthat 1 = yx

From this example wo cin also conclude that divisibilly cannot be defined in
finite structures. Also in case of some infinite Groupoid. structure divisibility

can not be defined.

2.1.6 Example: Z is a groupoid G (and therefore aG -act) then the G-act Z
does not admit divisibility because 2eZ is not divisible by3eZ as there do

not exists ye Z such that 2 =3y.
2.1.7 Proposition: IfQ is §-divisible thenQ is P -injective.

Proof: Suppose that @ is §-divisible. We show that O is p-injective. Let
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aS (aeS) be any principal right ideal of § and let ¢:aS —» Q bean

S-homomorphism determined by the element (1) =x e () thatis g(as)=xs
foralls € S. Since () is S-divisible, there exists an element y ¢ @ such
that: x=ya -»(*).

Define y : § — @ by y (1)= y thatis, y (s)= ys forall seS. Then
w(as)=w()as = yas = xs = g(as) for sc 8. This shows that y isan

extension of ¢. Thus @ is P -injective.

2.1.8 Proposition: If A is a retract of an S-divisible S-act Q, then A is
S-divisible.

Proof: Let p be the retraction and 4 the coretraction such that pog = is. Let
xed and ges, then ¢(x)eQ. Since Qis s-divisible, there exists y e 9 such

that g(x)=ya. Then x=pog)=pg()=pd=p(a and p(y)e 4. This

shows that A4 is § -divisible.

2.1.9 Definition: A right §-act 4 is said to be right s-cancellative if 4 has
the following property:

xs = x's forall x,x'e A and seS§ impliesthat x =x’ Thus S is right
cancellative if Sg is right S-cancellative. And 4 is said to be left S-cancellative if
xs = xs'for xed4 ands,s' e S implies that s = s'. Thus S is left

cancellative if S is left S -cancellative, that is, S is left cancellative as a left

S-act.
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2.1.10 Proposition: If 4 is a retract of a right S -cancellative (left § -cancellative)
S -act B, then A is right S -cancellative (left S -cancellative)

Proof: Let p be the retraction and g the corectraction such that pog =i, .
Let xs=xs for x ' e 4 and seS then g(xs)=g(x's). This implies that
g()s=q(x)s. Thus g(x)=q(x), since Bls S -cancellative. As pog=ia
Hg))=pigod))- This implies x = x". Hence 4 is S-cancellative. Similarly, if
xs=xs' then g(xs=q(xs). This implies thatg(x)s=q(x)¢. Butsince B is left

S -cancellative, s = s'. Hence 4 is left §-cancellative.

2.1.11 Proposition: For a left cancellative monoid §, the following assertions

are equivalent:

(1) Q is a(completely) P -injective right S -act.

(2) ©Q is a(completely) S -divisible right S -act.
Proof: (2) = (1): This follows from Proposition 2.1.7

(1) = (2): Let xeQ and aeS Defineamap ¢ : aS—Q by ¢las)=xs for
all seS. Since § is left cancellative, ¢ is a well defined § -hémorphism.
Also, since O is P -injective, there exists an extension y from § to Q.

Then x=¢(a)=y(a)=y(l.a)=y()a and y(l)eQ, this shows that Q is §-divisible.

2.1.12 Proposition: The following assertions are equivalent:

(1) Ali right s -acts are S -divisible.
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(2) All right ideals of § are S-divisible.

(3) § is S-divisible.

(4) s is a group.

(5) All right S-acts are P-injective.

(6) S is P-injective.

Proof: (1) = (2) = (3) are clear.

(3) = (4): Let abe an element of §, Then, since S is divisible, there exists
an element b of Swith1 = pa. Thus g is left invertible. It, then, follows that g is
invertible. This shows that § is a group.

(4) = (1) Let abe an element of S. From (4), there is an element p e § with
l1=ba. Thus x=x 1=x(ba)=(xb)a. Hence Q=0a. Thatis Q is §-divisible.
Therefore, (1) o (2) © (3)  (4):

Now suppose S is a group and so, in particular, cancellative.

Hence by Proposition 2.1.11, (1) < (5) and (3) < (6). This completes the

proof of above proposition.

2.2 EMBEDDING Of AN ARBITRARY S~ACT INTO A
DIVISIBLE S-ACT.
We construct an S-divisible §-act Q(4). from a right §-act4 under some

conditions. Consider the set AxS={ (x,a):xe¢ 4 and acS }, we define
S-action on this set as follow:;

(x,a)s = (xs,a) for ally ¢ §.Then the set 4x 5 together with this S-action,
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is a right §-act and we denote it by Q(4). Now we define a relation = on

o) as, (x,a) =—=(x',a')<:> xa = x'a .

2.2.1 Lemma: If S is a commutative monoid and 4 is a right S -cancellative
S-act then the above relation = is an §-congruence on Q(A4).

Proof: To prove that = defined above is an S -congruence we show that the
relation = is an Equivalence relation and is compatible.

a) By definition, the relation = is reflexive

b) Also symmetric

c) To show that = is tramsitive, Let (x,a)=(x',a') and (¥,d)=(x",a") for
xx' x"e A and q,4',a" ¢ S. Since by assumption x/=xaq and x'a"=x"4 and
S is assumed to be commutative, we have

xa"a' =xa'a" = x'an" = Va"a=x"a'a=x"w'. Thus xa"a’ = x"aa’.

Since 4 is right S-cancellative, we have xa” = x"a this shows that (x,a)=(x",d")

Thus = is an Equivalence relation.

Finally, compatibility with § follows directly from definition and commutativity

of §. Thus the relation = is an §-congruence onQ(4).

Note: From this [emma we are able to construct a factor §-act 9(4)/= which
is denoted by O(4). For each element (x,a)e O)(4), we shall denote by (x,q)

the corresponding element of O(4). Moreover the S-action on Q(4) is defined

by (x,a)s = (x,a)s = (xs,a) for seS.
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2.2.2 Proposition: Let S be a commutative monoid and 4 a right
S-cancellative S -act. Then Q(4) has tho following properties:
1) O(A4) is right S-divisible with 4 considered as an S-subact of Q(A).

2) 0(4) is aright S-cancollative.

3) Forevery {x,a)e 0(4), (x,a)a=(x1)

Proof: (1) Define q: A—»dA4) by g(x)={(x,1). Then 4 is an injective

S -homomorphism, thus we may consider 4 as an §-subact of @'(,_4) Let
(x,a)eg4) and seS. Since § is commutative, xas=xsa. This shows that
(x,a)= (xs,as) and (x,a)=(x,as)s this meansthat Q(4) is S-divisible.
(2) Suppose that {(x,a)s={r,a")s then (xs,a)=(x's,a’) Thus xsa’ = x'sa.

Since § is commutative, xa's = xas and since 4 is right §-cancellative,

we have xa'=xa .Thismeansthat (x,q)= (x',a') Hence Q(4) is

right S-cancellative.

(3) Forevery (x,a)e 0(4), (x,a)a=(xa,a)=(x,1).

2.2.3Corollary: Let § bea commutative and cancellative monoid. Then
0(S) is s -divisible and § ¢ Q(S). In this case, (XS) is a commutative group
with the following multiplication:

(b,a) b',a")=(bb',aa")

30



L)

Lol

2.2.4 Proposition: Let § be a commutative monoid and 4 a right

S-cancellative S-act. Then the following assertions are equivalent:

(1) Ais S-divisible.
(2) Ais retract of O(4).

Proof: (2) = (1), this follows from Proposition 2.1.8 since QZ Aj is S-divisible.

(1) = (2): In order to define a retraction p : O(4)— 4, let{x,a)e 0(4). Since

A is S-divisible, there exists y ¢ 4 suchthatx = yq. Since 4 is right
S-cancellative, y is unique. Then we define p Sy p(x,a)=y forall

(x,a)e 0(4). Now suppose that(x,a)= (x',a') withx = ya and x'=y4d.
Since xa'=x'a and yaa'= y'a'a, yaa'= y'aa’, by the commutativity of S.
Also, since 4 is right S-cancellative, y = »’. Thus the map p is well
defined.To show that p is an S-homomorphism, let p{(x,a)=y with x = ya,
and p(xs,a)=y' Withxs = y'a. Then yas = y'a. Since S is commutative,

we have ysa = y'a.Since A isright S -cancellative, it follows that y'= ys.

Hence p((x,a)): p(xs,a)z y': s =p-x’a s= pix,a ;;'— This ShOWS that
pis an S-homomorphism. Let ¢ : 4— Q(4) be the inclusion defined by
g (x)=(x,1). Then pog(x)= p(x,1)=x because x = x1.Thus 4 is

retract of O(4 )

2.2.5 Corollary: Let S be a commutative and cancellative monoid then the

following assertions are equivalent:
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(1) S is a commutative group.

(2) S, considered as an § -act, is P-injective.

(3) S, considered as an S -act, is S -divisible.

(4) Sis a retract of Q_(S').

Finally, we prove the following universal property for O(4):

2.2.6 Theorem: Let S be a commutative monoid and A a right
S-cancellative S-act. Then there exist an §-act A and an
S -homomorphism f: 4 —» 4 satisfying the following four conditions:

(1) f is injective.

(2) Each element of (4) is S -divisible in 4.

(3) 4 Iis right S-cancellative.

(4) Foreachye 4 ,thereexist g ¢ S and x € 4 suchthat ya=f(x).
If 4’and 7' satisfy the conditions (1) through (4) then there exists a
unique S-isomorphism ¢ :4 — 4' such that f'=gof .

Proof: Since ((4) satisfy conditions (1) through (4), we need only to
prove the last part. To define a map ¢- 4 — A', let y be an element
of 4. By condition (4), there exist ae § andxe 4 such thatya= f(x). For
f'(x)ed' andge S, there exist ' ¢ 4° wuch that y'a = £'(x), by condition
(2). Now let ya’= f(x') and y"a’'= f'(x') be another expression. Then
yad = f(x)a' = f(xa') and yda=f(x)a=f(»). Honce we have xa'=x'a by

the commutativity of s and injectivity of 7 .Thus it follows that:
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yaa' = f'(x)a’ = f'(xa’)= f'(x'a)= f'(x)a= y"a'a. By the commutativity of S
and right S-cancellativity of 4", we have y'=y". This shows that y'e 4' is
uniquely determined from ye 4 bytherule: ya=f(x) and y'a = f'(x).
Thus we may define a mapping ¢:4 —» 4’ by ¢ (y)a = f'(x). forall

ye A. Toshow that ¢(ys)=g(v)s, let g(y)=y' and ¢ (ys)= y" Since
ya= f(x), ysa = yas = f(xs). Therefore, y"a= f'(xs)= f'(x)s=y'sa.
Since A4’ is S-cancellative, y”= y's. Thus we have an S- homomorphism
¢:4 — A'. By the definition of ¢, we may ensily check that ¢ is an

S-isomorphism such that f'=go 1.

Finally, suppose that s'=¢'c f and yo == f (¢). Then ¢'(y)a= f'(x)=¢y)a-
Since 4' is right S—qancéllative. we have ¢'(y)= ¢(y).This establishes
the uniqueness of ¢ with the property thatl /' ¢ o 1.

Remark: If 4 satisfy condition (1) through (4), then 4 is §-divisible
( and, therefore, P-injective). To see this, suppose ye 4 and g e S .
By condition (4), there exists » ¢ § and xe 4 suchthat 5 = f(x).
By condition (2), for f(x)e f(4)and abe §, there exists ze 4 such

that fix)=zab. Hence yb=zab. By condition (3), it follows that y=za. This

shows that 4 is S -divisible.

2.3 Characterization of Monoids by P-injective S-act.

2.3.1 Definition: A right S-act M is called regular if, for each age M, there
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exists an S-homomorphism fe Hom;, (aS,S) such that g =af (a). A

monoid § is called repular if S, is regular as an §-act An §-act Mis called

von Neuman regular if, for eachae M, there exists an S-homomorphism

g€ Hom, (S.5) such that a = ag(a). Thus l Ny 18 von Neuman regular, then

for each ae s, there exists ge Flom, ($,S) such that a=ag(a) = ag(l)a

and g(l)e S. Hence s is von Neuman regular in the familiar sense.

2.3.2 Definition: Let M and Q be the right §-acts. Q is called M-Projective if
for each S-epimorphism g: M — M and each S-homomorphism #:Q - M
there exists an S-homomorphism k:Q — M such that gok=h. Thus Qis

projective if O is M-Projective for each S-act M . We notice that every monoid

Sis always Projective.

Dually, Q is M-injective if, for each S-monomorphism g:N — M and each
S-homomorphism k: N — Q there exists an S-homomorphism k: M — Q such

thatk o g = K. Thus Qs injective if Q is M-injective for each §-act M.
2.3.3 Definition: A right §-act Mis called a right PP S -act if each cyclic

S -subact a5 of M with g e Mis projective. § is called a right PP monoid if all

its principal right ideals are projective as right §-acts.
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2.3.4 Proposition: For an § -act M, the following are equivalent:
(1) M is regular S-act.
(2) Mis PP S-act.
2.3.5 Corollary: For a monoid s the following are equivalent:
(1) S is regular.
(2) § isa PP-monoid.
(3) Every projective s -act is regular.
For a right §-act M and g e M, we may always define an S-epimorphism
71§ — a§ defined by z(s) = as, for all se S, and also we have an inclusion

k:as > M.

2.3.6 Proposition:  The following conditions for an § - act M are equivalent:
(1) M is regular.
(2) Foreachg e M, asS is retract of S .
(3) For eachge M, 7:5-—>aS defined by z(s)=as, for alises, is
retraction.

Also, a monoid § is von Neumann regular if and only if the inclusion

k:aS— S is coretraction foreachae S .

2.3.7 Proposition: For an §-act M the following assertions are equivalent:
(1) M is von Neumann regular.
(2) M isregularand S is PM-injective.

Proof: (1) = (2). Suppose that M is von Neumann regular. It easily follows that
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M is regular. We show that 5 is PM-injective. Let aS(ae M) be a cyclic

S-subactof M andlet f:a5 —» S bean s-homomc;rphism.

Since M is von Neumann regular and g e M, there existé an §-
homomorphism g: M — Ssuch thata=—ag(a). Define /: M — § by

f (x)= f(a)g(x), forallxe . Clearly, 7 isan §- homomorphism which

extends . Hence § is PM-injective.

(2) = (1) : Suppose that M is regular and § is PM-injective. Then, for
everyg e M, there exists an §- homomorphism 7 : a§ —» § such that

a == af (a). Since § is PM-injective, there exists an §-homomorphism

g:M — §, extending f. Hence g == ag(a). Showing that M is von Neumann

regular.
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Chapter 3
Fuzzy Divisibility and Fuzzy P-injectivity

In this chapter we shall define and characterize the fuzzy divisibility and
fuzzy P-injectivity for monoid (semigroup) S and its S-acts. We shall also
prove the embedding of an arbitrary fuzzy S —act into a fuzzy divisible S -acts for a
(Commutative) Cancellative monoid S.

3.1 Fuzzy Divisibility

3.1.1 Definition: Let me M and te(0,1], then the fuzzy sub-set of M

defined as

t if x=m
m,(x) = foranll xe M
0 otherwine

is called a fuzzy point with support rn: and value ¢. A fuzzy point m, is said to
belongs to a fuzzy sub-set A of M writtenas m, e A if

Am) >t (cf. [6] ).

3.1.2 Definition: A fuzzy sub-act A of aright S-act M is called weakly divisible if
for each m, e Aands e S there exists y, e 4 such that A(m) =A(ys).

3.1.3 Definition: A fuzzy subact Aof a right S-act M is called divisible if for

each m, e A and se S there exists y, € A such that m =ys.

Every divisible fuzzy sub-act ‘A’ of 'right S—act M is weakly divisible but the
converse is not true.
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3.1.4 Example: Consider the monoid S ={l,0,a,b}as a right S-act over it self

with calay’s table

b

>0 o -
RN D =
<
=

Here fora e S and b e S there do not exist any x e S such that a =xb .

This shows that S’ is not divisible as a right S-act but we can show that there

exists a fuzzy subact of S which is weakly divisible. A fuzzy sub-set

A:8—[0,1] isfuzzy subact of S if and only if
(i) 2(0)= A(x) forall xes,
(i) A(a)= A(b) and |
(i) A(x)> A(1) forall xeS.
as (1) = 4(0) =4(a)=21(p) =1
Then ¢ A’ is a weakly divisible fuzzy subact of S but not fuzzy divisible.

3.1.5 Lemma: Let M, be a right S-act and ‘A’ be a hon-empty sub-set of ‘M '

then the characteristic function §, of A is fuzzy sub-act of M if and only if A is
an S-subact of M .

3.1.6 Lemma: Let M be aright S-act and 4 be a non-empty sub-set of M. If 4
is a divisible S ~subact of M then the characteristic function &, of A is fuzzy
divisible.

Proof: Suppose that 4 is divisible S-subact of M. Then by Lemma 3.1.5, ¢, is a
fuzzy subact of M. Let m, € 5, for some te(0,1]] and seS. Then &,(m) >t>0.

Thus 6, (m)=1 and so meA. Since 4 is divisible so there exists y € 4, such that
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m =ys. Sinceyed, so y,ed, for eachpe(01]. Thus &, is a divisible fuzzy

subact of M .

3.1.7 Corollary: If 4 is a divisible S sub-act of M then &, is weakly divisible

fuzzy sub-act of M.

Proof: By above Lemma 3.1.6 &, is divisible and since every divisible fuzzy sub-

act is weakly divisible so é:., is weakly divisible but the converse is not true.

3.1.8 Example: Consider the same example 3.1.4, S is not divisible but
Ss (6, (D= 6,(0)=6,(a) =5,(6)=1) the characteristic function of S is weakly

divisible.

3.1.9 Proposition: Let M be a right S-act and 4 be a non empty sub-set of M

then &, is a divisible fuzzy sub-act of M if and-only if A is divisible.

Proof: Suppose that 5,4 is divisible fuzzy sub-act of M. Then by Lemma 3.1.5

A is an S-subact of M. Let ae 4 and se S thena, €8, forall ¢ € (0,1], so there
existsx, €5, such that a= xs. Sincex,ed,, so J,(x)2p>0 that is &, (x) =1,
Hence x e 4. This shows that 4 is divisible. -

Conversely, if 4 is divisible S-subact of M then by Lemma 3.1.6 &, is divisible
fuzzy subact of M.

3.1.10 Note: Let M be a right S-act and A a fuzzy sub-act of M, then the pair
(M,A) iscalled a fuzzy S -act.

3.1.11 Definition: Let (M ,1 )and (N, z) be two fuzzy S -act. An
S -homomorphism f:M —» N is called a fuzzy S-homomorphism from

(M, A)to (N,p) if u(f(m))=A(m) forall me M.
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3.1.12 Definition: A fuzzy S-act (M, )is called a retract of a fuzzy
S-act (N,u) if there exist fuzzy S-homomorphisms p (N, u)— (M,2 ) and

g :(M,A)— (N,u) suchthat- pog =1,

3.1.13 Definition: A fuzzy S-act (M, ) is called divisible (weakly divisible)
fuzzy S-act if M is divisible S-act and A is divisible (weakly divisible) fuzzy
subact of M.

3.1.14 Proposition: A retract of a divisible fuzzy S -act is divisible.
Proof: Let (M ,A ) be a divisible fuzzy S -act and (N, u) be a retract of (M A).

Then there exist fuzzy S-homomorphisms £ (N ,u)—(M ,4) and
g:(M,A)—(N,u) suchthat gof =1~ By Proposition 2.1.8 N is a S-divisible
S-act. Let x, € 4 andseS. Then u(x)2t. Asf(x)eM and A(f(x))2 u(x)21, so

(f(x)), € 4. Since ‘1’ is divisible fuzzy sub-act of M so there exists y, € 4

such that f(x) =ys. Thus gf(x) = g(ys) implies x = g(»)s. Also u((g(¥N21(y)z p
implies (g(»)), € 4. This shows that ‘ 4 * is & divisible fuzzy subact of N. Hence

(N, 1) is a divisible fuzzy S-act.

3.1.15 Definition: L.et / be a mapping fromaset X intoasetY and u ,y be

fuzzy sub-sets of X and Y respectively. The fuzzy sub-sets f(u) and f 1
of X and Y respectively are defined by:

\/{y(.\ booo X and f(x) = '.'.} if f Yys ¢ .
S = ' forall yeY
0 otherwise

@) =y(f(x) forall xeX are called, respectively, the image of ¢ under

f and the pre image of ¥ under f.
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3.1.16 Proposition: Let M and N be S-actsand f an S -

homomorphism from M into N. Then
a) If 1 isafuzzy subactof M, then f(1) isa fuzzy subact of N.

b) If 4 is a fuzzy subact of N, then [

Proof: Let ne N then

) is a fuzzy subact of M.

\/ {,u(m): meMand f(m)=nif f'(n)# ¢}

f(aXm=

otherwise

If £ (A)n)=0 Then f (A)ns)= f(AXn).

it f(A)m) = NV p(m), then f(m)=n andso f(ms)= f(m)s=ns

me £~ (n)

Thus f'(ns)# @ and mse /' (ns) forall me f~'(n).

Hence f(A)ns)= \V u(m)> V ./z(mS)é V

xef~ (ns)

Thus f (A)(ns) = f(A)(n). This shows that f (1) is a fuzzy sub-act of N.

me ™ (n) me S~ (n

Hlm)= 1))

b) Let x4 be afuzzy subactof N. Thenforall me M and se S,

S () (ms) = p(f (ms) = u(f(m)s) 2 p(f(m)=f""(u)(m). Hence f'(u) is a
Sfuzzy subact of M .

3.1.17 Lemma: Let 4 be asubactof right S -actand 77 be a fuzzy sub-act

Beid

-y

of A. Then the fuzzy sub-set

of M defined by



[

e

i

77(m) it me A

7] (m) = forall meM

0 othnrwisa
is a fuzzy subact of M.

———

Proof: Let m eM if T1 (m)=0, then 77 (ms)> 77 (m).

If ﬁ(m)= 7 (m) Then me 4 and so mse 4 forallseS.

Thus 77 (ms)=17 (ms)= 77 (m)=TI (m). Hence 77, is a fuzzy subact of M.

We know that a right S-act Q is called PM-injective ( M is a fixed right S-act) if
each S-homomorphism from a cyclic S-subact aS (ae M) of M to Q

extends to an S-homomorphism from M to Q. In particular Q is called
P-injective S-act if Q is PS-injective.

3.2 Fuzzy P-injectivity

3.2.1 Definition: Let M be a P-injective S -act. A fuzzy S-act (M,A) is called
fuzzy P-injective If each fuzzy S-homomorphism f :(aS,u) > (M,A) can be

extended to a fuzzy S-homomorphism ¢ :(S,z1) > (M,A) forall aeS.

3.2.2 Theorem: Every weakly divisible fuzzy S-act is fuzzy P-injective. -
Proof: Let (M,u) be a weakly divisible fuzzy S-act. Then M is divisible right

S-act and uis a weakly divisible fuzzy subact of M. By Proposition 3.1.14 M is a
P-injective S-act. Let f :(aS,A)—> (M, p)be a fuzzy S-homomorphism that is
f : aS— M is an S-homomorphism and u(f(x))2A(x) forall x € aS. Since M
is P-injective so there exist an S-homomorphism ¢ : S > M which extends f.
This homomorphism ¢ is defined as, if f(a)=xeM then there exists ye M

such that x = ya. Define ¢ (1)=y and ¢ (s) = ys. We show that ¢ is a fuzzy

S-homomorphism thatis u (¢ (s)) > A(s).

42



&ty

e

If A(s)=0 then u (g (s)=A(s).
If A(s))=As then scaS so ¢(s)= f(s).

Hence H(#(s) = u (f()2A(s)= A(s).

3.2.3 Corollary: Every fuzzy divisible S-act is fuzzy P-injective.
Proof: Since every divisible fuzzy S -act is a weakly divisible fuzzy S-act, so by

above theorem it is fuzzy P-injective.

3.2.4 Definition: A fuzzy sub-act A ofaright S -act M is called right
S-cancellative. If A(xs)=A(x's)=> A(x)=A(x") forall x,x’eM and seS.

It is not necessary that if M is right S-cancellative then every fuzzy subact of M is

right S -cancellative.

3.2.5 Example:

Let N be the set of natural numbers. Then N under usual multiplication of
numbers is a cancellative semigroup. Consider N as a right N-cancellative right
N-act. Consider the fuzzyrsub-act A of N defined by

1 if x € 4N

AMx) = < 12 if x e 2N-4N

0 otherwise -

.
Then A is not aright N -cancellative because A(2.2) = A1(4.2) =1, but

A =10 +1=234)

3.2.6 Example: Consider the semigroup S ={0,l,a,b,c}
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S

01 a b c
010 0 0 0 0
110 1 a b ¢
al0 a a a a
b0 b a a a
c|l0 ¢ a a a

Then S is a commutative non-cancellative semigroup. Consider S as a right
S-act. A fuzzy sub-set A of S is a fuzzy subact of S if and only if

i) A0)=2A(x) forall xeS

i) A(a)=2A(x) foralinonzero x in S and

i)  A(x)=2A(Q) forall x in S

Consider the fuzzy subact A which maps every element of S on 1.Then 1 is

a right S -cancellative.

3.2.7 Definition: A fuzzy S-act (M,1) is called right S-cancellative if M is right

S-cancellative S -actand A is aright S-cancellative fuzzy sub-act of M.

3.3 EMBEDDING AN ARBITRARY FUZZY S-ACT INTO A FUZZY
DIVISIBLE S -ACT.

Concept used in the following is discussed in Previous Chapter. Q(4) denotes the
right S-act defined on tho set AxS and a1alation delhned on Q(4) as follows:

(x,a)=(x",a') < xa' = x'a.

we construct a factor S-act Q(4).= Q(AZ , the S-action on Q(A) is defined

as: (x,a)s = (xs,a) forall seS. |
Note: Let (A ,,1) be a fuzzy S-act we define a fuzzy subact A, of AxS (a right
S-act)by 4, :AxS —[0,1]] suchthat 4, ((a,5) =Ai(a)
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3.3.1 Lemma: A, is a fuzzy sub-act of AxS

Proof: Let (a,5)e AxS and teS then, 4, ((a.s))=4((at.s))=Mad2>A(a)=4(a,s).
So 1, is afuzzy sub-act of AxS.

3.3.2 Lemma: If § is a Commutative monoid and A is a right S-cancellative

S-actand A be afuzzy sub-actof 4. Then 1, : 0(4)-»|0,1] defined by

’12((;—’_(;)) B \/ ﬂ’l (y’ [)) = \/ ﬂ(y)
(y.b)e (x,a) (vob) e (v, a)
is a fuzzy sub-act of ((4).

P'roof: Let

(;,_a)= (;T:;])
lz(ix,ai)= \/ A(y). As (y,b)e x,i;)=ix,,a, ) (y,b)eix,,a,.)

(y.b)e (x,a)

Thus  4,((x,a)) = \/ o= \/ A =kGia)

(y.b)e (x,a)  (y.b)e (x,,a,)

Hence A4, is well defined.

Furthermore (x,a)s =(xs,a) if (3,b)e (x.q).
Then (»,0) = (x,0)
= ya=xb= yas=xbs= (ys)a=(xs)b

= (ys5,b) = (xs,a) = (ys,b)e (x,a)s

Thus \/ A(z) 2 \/ A(ys) 2 \/ A(y)

(z,c)e ix,a)s (y.b)e (x,a) (y.b)e (x,a)
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= A, ((x,a) ) = A, ((x,a)). Thus A, is a fuzzy subact of Q(A).

3.3.3 Lemma: A, is a divisible sub-act of ((A).

Proof: Let (x,a), €A, and seS then there exists (}—;s)e O(4) such that

(;,_c;)z (x,_ag)s because (x,as)s = (xs,as) an‘d x(as) =(xs)a SO (x,a)=(xs,as).
Thus (x,a) = (xs,as) = (x,as)s . Also A,((x,a))> ¢ , because (x,a), € 4;. Thus
(ke =/ Azt

(y,b)e (x,a)
But

nEa)= V  awz Voo
zc)e(as)  (r.b)e(xa)

Since if (y,b)e (x,a) then (,b)=(x,a) = ya=xb
= yas = xbs = (x,as) = (p.bs)
= (3,bs) & (x,as)

= ((;,E)), €l,

Thus A, is divisible sub-act of Q(A).

3.3.4 Theorem: If S is a Commutative monoid and A is a right S-canceliative
S -act. Then the fuzzy S-act (4,4) can be -embedded into a divisible fuzzy S-act

(O(4), 47).
Proof: The mapping q : 4 > Q(A4) defined by g(x)=(x,1) is an

S -monomorphism. Also
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M) =@ =\ 1) 24(x) because (x,1)e(xl).

(y,a)E(}ﬁ)
Thus ¢ isa fuzzsy S-monomorphism.
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