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Abstract

A natural avenue to further extend the Standard Model (SM} is to establish it
into a more symimetric framework. Hence, Left-Right (LR) Models have been
focused mainly, which treat Left- and Right-handed chiralities on identical
footing. Left-Right symmetric model has been taken into consideration where
the quark multiplets and scalar fields transform under the influence of an
additional family dependent global U(1) symmetry. The new charges have
been assigned, rendering masses for top and bottom quarks. A viable pattern
resulting in peculiar textures for up and down-type Yukawa matrices were
obtained. Analysis of the model has been provided using the kaon mixing.
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Chapter 1

Introduction

The Standard Model {SM) in particle physics is built upon top of primary
requirements such as Lorentz covariance and renormalizability, and offers
a trite framework for the explication of all known microscopic interactions
in terms of local gauged symmetries. This theory was the outcome for the
struggle of many generations of accomplished physicists, and is surely one of
the most magnificent achievements of sciences. For example, one has tracked
a long road to attain the formulation of the theory of electroweak interactions,
merging Electromagnetism and Weak processes. Actually, first the weak
interactions were presented as a new fundamental interaction in the 30's by
Fermi (1], originated at that time as a contact interaction. Later, as exactly
60 years ago, parity violation in weak decays was indicated [2], provoking
doubts about charge-conjugation and time reversion symmetries [3]. The
observation of parity violation [4-6] in the succeeding vear firmly established
such a hypothesis and was of utmost importance to understand the weak
interactions (see [7] for historical details). Following the exploration of parity
violation, they believed as a V — A = y* — 4#v; interaction [8,9], indicating
that the exchange of vector bosons was the underlying reason for the woak
force.

The exchange of heavy gauge bosons, was affectively interpreted as the low-
energy limit of a symmetric and fundamental theory, called the Electroweak
interaction of Glashow-Salam-Weinberg. The Electroweak (EW) symmetry
is immediately broken through vacuum expectation value (VEV) of a scalar
field ¢, which also introduces the Higgs boson of the SM. At the same time
that this mechanism, named Brout-Englert-Higgs (BEH) [10], illustrates the
short-distance nature of weak interactions by ceding masses to the W* and

2



Z® bosons, the particles which are responsible for the weak forces. It also
offers an origin for charged leptons and quarks masses, through their inter-
action with the similar scalar field ¢.

It is interesting to take account that the SM gives hints towards the possi-
bility of having something more fundamental beyond itself. Indeed, the hier-
archical structure of CKM matrix, together with strong hierarchy of masses
of the quarks and leptons, claim for a deeper understanding and questioning.
Moreover, the values of the gauge couplings g,, g1, gy are roughly similar. On
top of that, though very triumphant in describing comprehensively extensive
particle physics phenomena, the SM leaves unexplained some properties of
nature.

The class of models reinstating parity, the Left-Right Symmetric Models
(LRSMs), has been first perceived in the seventies [11-14], and since then
it is at the origin of some fruitful investigations. This is surely due to the
flexibility it has regarding its specific realization, a property exploited for
addressing a wide range of phenomenological problems, including the small-
ness of neutrino masses [15] and strong CP violation [16,17]. Meanwhile,
the LR Model may result from Grand Unified gauge groups [18], as part of
their instinctive breaking pattern. From these aspects then, investigating
the violation of parity symmetry may be a window for handling with other
questions in particle physics.

Left Right Symmetric Model {LRSM) renders a natural extension of the
Standard Model (SM) elucidating the Left handed form of the SM through
the presence of a larger gauge group i.e. SU(3)¢ x SU(2)L x SU(2)r x
U(1)y, that is broken initially at a scale px which is of the order of the TeV
{(instigating a distinction between Left and Right sectors) accompanied by an
electrowenk syminetry hreaking appearing at the scale uy. This extension
of SM initiates the existence of heavy spin-1 Z and W' bosons coupled
primarily to Right-handed fermions, originating a new Right handed CKM-
like matrix for Right-handed quarks in conjunction with charged and neutral
heavy Higgs bosons having a impressive pattern of flavor changing currents
[19,20]. When considering parity restoration in the LHC energy reach, the
mentioned framework is restored in recent years [18,21] for its potential
collider implications.

In the second chapter, a review of Electroweak theory and Higgs mech-
anism is provided. In chapter 3, the existing Left-Right symmetric models
(LRSMs) is extended further to construct a model with the application of



an additional symmetry, the so called horizontal symmetry. In chapter 4,
analysis of LR model is discussed by considering the K% — K% mixing.



Chapter 2

Standard Model (SM)

All kinds of matter that exists in the universe are formed of three tvpes
of elementary particles which includes leptons, quarks, and force mediators.
Quark and lepton are the fundamental constituent of matter. There are six
quarks also known as flavors, forming three families. The up {u) and down
(d) quarks are included in first family quarks whereas second family contains
strange (s) and charm (c¢) quarks while top (f} and the bottom (b) belong to
third family quarks. The first family have the lowest masses of all quarks,
more stability and are found most commonly in the universe as compared
with the other quarks, whereas the second and third family of quarks need
high energy collisions for production. The quarks carry fractional electric
charge and are alwavs confined in hadronic states. The up type quarks
possess +2/3 of the electronic charge while the down quarks are having —1/3
of the electronic charge. For every quark flavor there is a corresponding anti-
quark having electric charge contrary to analogous quark, i.e. reversed in
sign. The quarks and anti-quarks, cach carry three colors namely, green{g),
red{r) and blue(b). Taking into account charges and colors, it can be said
that there exists 36 quarks in the Standard Model.

Likewise there exists six leptons, forming three generations or families.
These leptons are categorized conforming to their electron number, muon
number, taun number and the electric charges. First family consists of elec-
tronic leptons, comprising the electron (e~} along with corresponding elec-
tron neutrino (v.). Muonic leptons are specified as the second family of
leptons, incorporating the muon (u~) and the corresponding neutrino {v,.)
and the third family consists of tauonic leptons, comprising the tau {(77)



and the corresponding neutrino (v,}. Among all the charged leptons, the
electrons possess minimmum mass. For every lepton, there is a corresponding
anti-lepton. There are six anti-leptons which have equal magnitude but pos-
sess a charge that is opposite to the commensurate lepton. i-e. positron, an
anti-particle of electron carries an electric charge +1 contrary to electron. In
this manner, there exist twelve leptons in the standard model.

Force between particles is mediated through force carriers. All the particles
interacts with each other through the mediators of the fundamental forces.
The electromagnetic (EM) force is mediated by the photons. Mediators for
weak nuclear force are the two W bosons. i.e. W having mass of 80.22
GeV/(c?), a neutral Z boson having mass of 91.187 GeV/(c?). Mediating
particle for strong force are gluons. Like quarks, the gluons do not exist
freely in nature and carries colors. There are eight gluons in the Standard
Model. Hence the SM contains tweleve mediators, two charged W bosons,
a Photon, one electrically neutral Z° boson and the eight gluons.

In the past few decades, The Standard Model is an ingenious theoretical
model that is developed by the particle physicists. This theoretical framework
gives the insight of the fundamental particles and the forces of nature. The
SM has a major ingredient, a hypothetical field, that is believed to render
masses to the particles. This field is recognized as the Higgs field and has
an associated particle recognized as the Higgs particle, as a consequence of
wave-particle duality. The Higgs boson has a spin zero and generates the
masses of all the SM fermions along with the masses for Z and W¥* bosons.
The Large Hadron Collider {LHC) has tested and confirmed almost all the
predictions of the SM with an eminent accuracy. There are a total of sixty
one particles in the SM. After the discovery of the Higgs bosons, all the
particles of SM are in our hands.

The SM being a Quantum Field Theory is having all elementary mat-
ter particles represented through fermionic fields with spin one-half covering
three fundamental interactions: under the symmetry group SU(3}¢ is the
strong interaction while under SU{2); it possess the weak interaction and
the electromagnetic interaction is possessed by the U(1)y group. The com-
plete symmetry group of the SM is then given by

SU@). x SU2)p x Ul)y (2.1)

in which the index C represents color, L stands for left, as only Left-handed
particles participates in weak interaction, and Y denotes hypercharge. The
SU(3)¢ has color quantum number, for SU(2); is the weak isospin, and for
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the U{1)y it is hypercharge.

The following subsections contains the two eminent features of the SM
which are evaluated in detail .

1. Electroweak theory (The Glashow-Salam-Weinberg theory)

2. The Higgs-mechanism

2.1 Electroweak Theory

Even though the electromagnetic and the weak force appear distinct from
each other at low energies, it was found that at a scale of around 246 GeV they
unify to a single force, known as the Electroweak(EW) force. In this theory
the symmetry is broken spontaneously ie. SU(2), x U{l)y — U(l)gm,
where gauge group SU({2}r x U(1)y, specifies the weak and electromagnetic
interactions. The electric charge @ is connected to Hypercharge (Y') and
third component of isospin I3 by Gell Mann-Nishijimaas relation as:

Q=Is+Y)2 (2.2)

The SU(2); symmetry distinguishes between fields with different chiralities
and plays a remarkable character in the Glashow-Salam-Weinberg model.
The SU(2) doublets are assigned to Left handed fields, whereas their Right
handed counterparts transform trivially under the EW synunetry. The three
copies of SU(2); doublets accommodates the charged leptons and neutrinos,
categorizing the Standard Model fermions in three generations or families.
Similarly, one down-type quark is paired with each up-type quark, forming
three generations or families of SU(2), doublets. Left handed SU(2) doublets
of fermionic fields are represented as,

v - (3) () (D :
w=(2), (1), (),

with third component of isospin f3 = +1/2 for up-type quarks and f3 = —1/2
for the down-type quarks.
The Right-handed particles acts as singlets and are represented as,

(2.3)

g _
’lJ["L =Up, dRa CR, SR, tR's bR1

(2.4)
v, = en, g, TR
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with third component of isospin I3 =0

Neutrinos are assumed massless in the electroweak section of SM suggested
by Abdus Salam, Glashow and Weinberg, so neutrinos do not have a Right
handed state but only the Left handed state.

The Langrangian for the free fermions can be written as

Ly = i{di "0, + Uy 8,0%) (2.5)

Mass term in not included in above equation because it explicitly violates
the gauge invariance by mixing the Left-and Right-handed fields.

Left-and Right-handed components are transtormed under the gauge SU(2),
transformations as,

oY, = 9o 5y Vr—h = YR (2.6)

with o regarded as pauli matrices.
Similarly, fermions transforms under the U(1)y gauge transformation given
below,

Yooy = €FDE g gl = TP Ty (2.7)

Coupling parameters g and ¢ are real numbers and describe the strength
of the interaction associated with gauge transformation. For having the
Lagrangian to be also invariant under local gauge transformations, letting
the « and 8 depend on position i.e. o = a'(z) , 8 = B{z). This symmetry
requirement is satisfied by changing the fermion derivatives with the covariant
objects, so covariant derivative for Left handed fermion is,

8, = Dy =8, + iga-Wp(z) +ig'Y B,(z) (2.8)
and the covariant derivatives for the Right handed ferinions is written as,
8, > D, =08, +1ig'YB,(z) (2.9)

Since four gauge parameters are present, o*{z) and 8(x), four distinguished
real gauge fields are introduced W;(z), Wﬁ(z), Wﬁ(z), and B, (z).

From the condition of gauge invariance, these gauge fields transforms like
By(z} — BF(I)p = By(x) — 0,8(x)
We ()W, (x) = Wa(z) — due®(z) — ea’(z)Wi(x)

H

(2.10)

The mass term of gauge bosons are precluded by the gauge symmetry. Also
the masses for fermions are unattainable, because they would communicate
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with Left-handed and Right-handed fields, possessing unalike transforma-
tion properties, hence explicitly breaks the gauge symmetry. Thus the EW
Lagrangian only contains massless terms owing to the fact that by insert-
ing mass terms in Lagrangian will give rise non invariance. So in terms of
mussless particles, the EW Lagrangian can be written as,

4 i, T 1o L rany
Lpw = v Dyipy + ihpy* Dyt — ZBF (@) Byw(z) — ZW Ha)W()

The last two terms in the Lagrangian describes the self-interaction terms for
gauge fields. For constructing gauge invariant kinetic term for the new gauge
fields, the strength tensor gauge fields are defined as follows,

B*(z) = *B*(x) — 8° B*{z)

2.11

Wos (1) = W (z) — W () — gel W (2)W*(z) (2-11)
In the Langrangian of Eq.{(2.11) the fields are unphysical. The physical fields
of charged vector bosons W are superpositions of the W (z) and W3(z)
fields as given below,

Wir(z) = —=(W,(z)  iWl(z})) (2.12)

Rotation of the gauge fields W3 (z) and B*(x) with the Weinberg angle also
called mixing angle f gives the neutral vector boson field Z,(z) and the
photon field A,(z).

Weak mixing angle, elementary charge and gauge coupling ¢’ and g are
related as,

!
3 2‘0089"”: / ::;q 3’

’

sinf,, =
g ot -
tanfd, = —,e = ¢ cosf,, e = gsinf,
g

In electroweak theory, for the local invariance the masses of all gauge bosons
in addition to fermionic mass are instructed to be zero, but experimentally
all particles actually are pretty massive except for the gluons and photon.
So for the generation of fermionic and bosonic masses without violating the
EW theory, one needs a fundamental process which is recognized as Higgs
mechanism.
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2.2 The Higgs Mechanism

The disclosure of massive Z and W bosons tackled the notion of local gauge
invariance with a problem. The introduced gauge fields for making the La-
grangian invariant under a local gauge transformation have to be massless
for the reason that, a mass term for the gauge fields in the Lagrangian is not
gauge invariant. Hence, the Higgs mechanism is the simplest and the best
possible solution for generating the fermionic and bosonic masses. For Higgs
sector [23-25] a complex scalar doublet is specified and is written as,

& = (ﬁ;’) Y = -1 (2.14)

where ¢° and ¢+ specifies the complex neutral and charged fields. Now for
a complex gauge invariant spin zero particle field ¢, the Lagrangian can be
written as

Liigys = (D*®)(D,2)! + V(d2") (2.15)

where V is the Higgs potential which is invariant under SU(2);, transforma-
tion, and is written as

V(®®h = Vol + A(2d)? (2.16)

For the potential energy density V' to be bounded from below to have a
ground state, A must be greater than zero (A > 0}. Also, when u? < 0, scaler
field possess a vacuum expectation value (VEV) which is non-vanishing.

2 2
@3ty = -2 =2 5 ¢ (2.17)
where % is the VEV of the Higgs field.

Due to SU(2); symmetry, there is a continuum of non-vanishing absolute
minima for the Higgs potential. By choosing one specific value as ground
state, the symmetry gets broken spontaneously. After the SSB, the expanded
value of the Higgs field around this chosen VEV yields

o () 0
b(z) = 7 (wjg)) (2.18)
2

where ©;(7 = 1,2,3) represents the Goldstone bosons which have three de-
grees of freedom.
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Figure 2.1: The potential energy density Eq.(2.17), {a) for u® > 0 (b), u2 <0,
for vacuum ground state corresponding to point labeled as P on the circle

However, by inserting the Higgs field into the Lagrangian with covariant
derivatives, illustrates that gauge bosons gain masses by absorbing these
degrees of freedom. The Goldstone bosons can be completely removed by an
SU(2) gauge transformation as,

. 0
O(z) + & = T (z) = ( vt(z) ) (2.19)
2

The remaining field is the Higgs field.

The EW symmetry is broken concurrently through Higgs mechanism to
U{1)gas at low energies, while photon remains massless.

2.2.1 Fermion masses

By introducing an additional scaler higgs doublet SU(2}, an SU(2) invariant
interaction of fermions could possibly be written accompanied by Higgs field,
so the Lagrangian plngged with interaction term for the fermions is

Cint = g{Pr®ly + ¢Tl-p3r) (2.20)
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Now ¢ is substituted by
0
é = ( v+ H ) (221)
V2

where v is VEV and H is neutral physical Higgs partitle. In the unitary
gauge, the Yukawa type Lagrangian attains the simpler form

Ling = %(MR +IglL) + %(Z—Llﬂ + Il ) H (2.22)

so the SSB mechanism generates leptonic mass

-

my =
V2

It is speculated that, there exists no Right-handed neutrino state vg so one
can not write corresponding mass term Ppyy leading neutrino mass to be
zero, m, = (.

(2.23)

Yukawa coupling of Left and Right handed fields introduces mass term to
SU(2), Higgs doublet. The interaction term added to the Lagrangian for
first generation of quarks is

Lyukave = —3a(3rPar + d.®'qr) — §u(GLPour + ipdha) + he  (2.24)

Gu,Ja in above equations are couplings of Higgs field. The field ®¢ represented
48

vtg(x)
Do(z) = —10p®' (z) = 02 (2.25)
By using the relations of Higgs field in the above Lagrangian one gets,
v -, .U _ _®(z);, . O(x)_
Lokowe = —Ga—=00 — §y—=1% — jg—="dd — @, TE] 2.26
vuk gdﬁ g \/ﬁ 84 \/5 g \/E [ )

The first two terms in the above equation gives masses to quarks, while
the other two terms specify the quark and Higgs coupling with a coupling
strength that is proportional to the quark masses. So the term giving the
quark masses is

. v
Mg = gqﬁ (2.27)

The mass generating interactions of scalar field ¢ with gauge fields arises
from the extra terms in kinetic energy part of the Higgs Lagrangian. These
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terms generate ‘spin one’ bosons masses. In terms of VEV of Higgs field and
couplings, the W and Z bosons masses are written as

Mz = %\/(9’2 T My= % (2.28)

Term like nA,(x)A*(x) in not present, so the mass of photon is zero.
M, =0 (2.29)

Electro-weak mixing angle are written as,
(2.30)

Remaining terms in the Higgs Lagrangian represents the kinetic energy and
self-coupling of Higgs. Mass of Higgs boson obtained is,

My = /=242 = V2, v = 246GeV (2.31)
The Higgs boson mass is described by the parameter A.

In spite of so much success of the SM, there exist still many unanswered
questions left by SM like CP. Hence its compulsory to extend the SM for
having better understanding of the features which are not explained by the
SM. For physics beyond SM a number of influential extensions of the SM have
been proposed, and among them is Left-Right symmetric model analyzed in
third chapter.

2.3 The flavor sector of the SM

The Lagrangian of the SM, Lg, can be splitted in three parts:
Lsr = Lyinetic + LHiggs + Lyukowa (2.32)

The Yukawa part of the Lagrangian is splitted into the baryonic and leptonic
parts. The lepton-Yukawa interactions, at the renormalizable level are given
by the equation: B

—[leptons YiLpoEg; + he {2.33)

Yukaeuwa

These terms gives the masses to charged lepton after Higgs acquires a VEV.
As the SM perceives massless neutrinos so the three physical parameters that

13



are involved in lepton-Yukawa terms, usually specified as the masses for the
three charged lepton.
Likewise, the quark-Yukawa interactions could be written as

— Lok = Y;;!Q:Liﬁf)p}zj + K?QL@&'U;zj +h.c (2.34)

Yukauwa

with Y¢ and Y™ representing complex yukawa coupling constants. This part
of yukawa Langrangian permits quarks masses and flavor. Ten physical pa-
rameters illustrates quark-yukawa interactions and are specified as the six
quark masses and the four CKM matrix parameters.

2.3.1 The CKM matrix

When the Higgs doublet is introduced, the Yukawa interactions result in the
mass terms:

— Ll = (Ma)y Dy Dy + (MU Up; + he M, = %

here g represents quarks as only quark term from the langrangian is taken.

Ye  (2.35)

One can diagonalize the mass matrices using unitary transformation ma-
trices, Vg1 and Vygr as

‘ m, 0 0
Vo M,Vor! = Mg‘“g =10 my, 0 ¢g=ud (2.36)
0 0 my

The mass eigenstates for quarks are recognized as
as = (Vor)iqry,  ar = Var)uyqry ¢=1u,d (2.37)
Furthermore, the charged current interactions could be written as

Ll = %ﬁLi’Y”(VuL@L)ijdLjW: + hc (2.38)

The unitary matrix is 3 x 3 matrix and defined as
V = VoV, (Vvi=1) (2.39)

is the Cabibbo-Kobayashi-Maskawa (CKM) or quark mixing matrix. The fla-
vor changing interactions of quarks within SM is provoked through coupling

14



of W* gauge bosons to mass eigenstates quarks of non-identical families. The
CKM 1natrix contains one physical phase known as the Kobayashi-Maskawa
phase, mainly denoted by dgas.

The elements of V could be written as
Ve Vis Vi
V=1[Vu Vo Va (2.40)
Vie Vis Va

There are uncountable ways of expressing V but the standard parametriza-
tion of the CKM-matrix [26], with three rotational angles (6,;) and a complex
phase {6} is given as

€12€13 512€13 S13€ "
_ 5 5
V = [ —812003 — C12823513€™ 12023 — 512523513€"  523C13 (2.41)

i i5
—812803 — C12C23813€™ (12523 — 512C23513€"  C23C13

with ¢;; = cosf;; , s;; = sinfl;;. The sind;; are the three real mixing param-
eters while & denotes the Kobayashi-Maskawa (KM)-phase.

A strongly hierarchical pattern is exhibited by off-diagonal clements of
CKM matrix. The elements {V| and |Vi,| are of the order of 0.22, while
|Vis| and |Vig| are close to 4 x 1072 and |V, and |V.4| approximately equal
to 5x107%. The expansion of the CKM matrix elements in powers of the small
parameter A = |V,|= 0.22 is pointed out by the Wolfenstein parametrization
[27] to evince this particular hierarchy in a more straightforward way.

— 3‘; A AX(p—in)
V= —A - AN + 00N (2.42)
AN (1 —p—in) —AN 1

with four mixing parameters (A, 4, p,n), and 5 representing CP violating
phase.

The unitarity of CKM matrix suggests following relation among elements
3
Y ViV =68;  fori,j=1,2,3 (2.43)
k=1
This relation is a distinguishing feature of the SM, in which the only origin
of quark flavor mixing is the CKM matrix. Such relations are six in total
and

VadV3 + VedVih + VidV = 0 (2.44)
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Figure 2.2: Unitarity Triangle

for ¢ # j requiring sum of three complex quantities to become zero. Hence,
their geometric representation could be done as a triangle in the complex
plane which is known as “unitarity triangles”. All unitarity triangles are
having equal areas which is termed as a major attribute of the CKM matrix.
Among the relations for 7 # 37, the one obtained for 2 = 1 and 7 = 3 is of
unique interest for the reason that it involves the sum of three terms all of
the comparable magnitude in A and is normally represented as a unitarity
triangle in the complex plane.

Now defining the rescaled unitarity triangle by specifying a phase conven-
tion such that (VgV}) is real and dividing lengths of all sides by |VVJ}|.
This rescaled form of unitarity triangle is almost identical to the unitarity
triangle and has two vertices exist at (0,0) and (1,0). The remaining vertex
co-ordinates correlates with the Wolfenstein parameters {p, ). The unitarity
triangle is given in Fig.(2.2}

VidVip ViaVip _ .
VaVs +1+ Va2 0 (2.45)
The three angles are defined as below
ViaVi
a=arg| —
[ VﬂdK:ﬁ]
VeVl -
ﬁ:arg‘:— C]T 2.46
ViVt (2.46)
y = arq[_ Vi ’;}
L VaVg
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Flavour Changing Neutral Currents (FCNCs)

In SM, the W* bosons mediates the flavour changing charged currents, which
is solely origin of flavor changing interaction specifically of generation chang-
ing interaction. It is known already that the two interactions of flavor chang-
ing charged current can give the outcome as FCNC interaction.

The flavour changing neutral current (FCNC) processes like certain rare
and radiative meson decays, particle-antiparticle mixing, and also CP violat-
ing decays rendered an eminent role in constructing the SAI and are governed
by the Glashow-Iliopoulos-Maiani (GIM) mechanisin [28] ensuring that these
processes are suppressed naturally which is an experimentally observed fact.
As a outcome of this mechanism, FCNC processes existence at tree level is
abrogated and the major contributions result due to the one-loop diagrams,
the box diagrams and the penguin diagrams.

Parity, Charge conjugation and CP violation

In particle physics, C'P violation is contravention of the combined conser-
vation laws linked with charge conjugation (C') and parity {F) by the weak
force, accountable for reactions such as the radioactive decay of atomic nu-
clei. The particle-antiparticle conjugation operator ' acting on one particle
state transforms the particle into its antiparticle, allowing space coordinates,
time and spin unaltered. A parity operation connects and object and its
mirror image. The elementary processes involving the the strong and weak
forces and electromagnetic force were assumed to exhibit symmetry concern-
ing both parity and charge conjugation {these two properties were always
conserved in any particle interactions).

In 1949 Powell spotted a cosmic ray particle disintegrated into three pions
which he dubbed “the tau meson”. Another particle called the “theta meson”
was also detected which disintegrated into two pions. Both of the particles
disintegrated via the weak force.

0t > atn™

N (2.47)

TR e

An evident deficit of parity conservation in decay of theta and tau into two
and three pi-mesons prompted the physicists to inspect the experimental
basis of parity conservation. In 1956, it was showed that there was no af-

firmation supporting the invariance of parity in weak interactions [2]. It
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was demonstrated conclusively from the experiments conducted the follow-
ing year that parity was not conserved in particle decays, including nuclear
beta decay that occur through the weak force. This allowed the identification
of both 6* and r* with the K meson.

The Glashow, Iliopoulos, and Maiani mecha-
nism (GIM)

An immediate consequence of the Cabibbo theory is the presence, in the
Lagrangian, of the termn

EL'yﬂ_dL = cos? Ocdyvadr + sin? 8c3 7,51 + cos o sinfe [JL'yasL + Sr7adL]
(2.48)
which describes neutral-current transitions. In particular, the last term im-
plies neutral currents that change strangeness {(SCNC, strangeness-changing
neutral currents) because they connect s and d quarks. However, the corre-

sponding physical processes are strongly suppressed. For example, the two
NC and CC decays

Ktsat4+uv.+2, Ktoat4+uv +e" (2.49)

should proceed with similar probabilities. On the contrary, the former decay
is strongly suppressed.

S. Glashow, 1. Iliopoulos, and L. Maiani observed in 1970 [28] that the d
and u states can be thought of as the members of the doublet (;) Now,
they thought, a fourth quark might exist, the ‘charm’ ¢ as the missing partner

of s', to form a second similar doublet (;

Since s is orthogonal to d we have
s = —dcosfc + scosfc. (2.50)
Clearly, the relationship between the two bases is the rotation

(7) = (Zoms, i) () 251
From historical point of view this was the prediction of a new flavour.
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To see how the ‘GIM’ mechanism succeeds in suppressing the strangeness-
changing neutral currents, in addition to the terms Eq.(2.48) now one has,

E}J'}«asl = sin® fodry,dr + cos? B3 YasL — cos B¢ sin fc[dr Va1 + F17ad L]
(2.52)
summing the two. one gets

EL’)‘QSL + JL’Ydd'L = JL'TGSL + §LﬁfadL (2.53)

The SCNC cancel out. However, a NC term remains in the Lagrangian,
namely the NC between equal quarks or, in other words, the strangeness-
conserving neutral current. It is observed here that the Cabibbo rotation is
irrelevant for the NC term. In other words this term is the same in the two
bases.
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Chapter 3

Left Right Symmetric Model

Regardless of the fact that the SM stays unchallenged by the effect of impres-
sive body of precision electroweak measurements. It lacks those attributes
which are pointed out as deficient by the Physicists. As it lacks the recogni-
tion of the number of generations, the root of quantum number assignments
and also there exist some complications like the strong CP-violating param-
eter and the small CKM matrix off-diagonal elements is one of the rmost
important question and also the lacking of its leptonic counterpart PMNS,
Hence it is compulsory to look beyond SM to answer all the ambiguities.

Success of the gauge theories have highly influenced the theoretical thoughts
regarding physics beyond the SM. For example, GUTs (grand unified theo-
ries) has been contemplated as Standard model’s natural extension but to
take into consideration the three families GUTs still simply triplicate the par-
ticle content. Apart from the fact that fermions are termed as constituent
of the mated multiplet of the group that is utilized for the grand unification,
hence at GUT Scale their masses have to be equal. It is not possible to get
any ansatz that might give the answers to all or at least some of the above
questions from these theories.

Super Symmetric theories (SUSY) are the other most eminent theories
to consider and explore the physics beyond Standard Model which are ex-
tensively used to signify the high energy physics data. Concerning to the
mixing of favors and symmetry-breaking sector, the condition in a super
symmetric theory happens to be much detrimental than in SM. Except the
fact that three families are established through hand conforming to SM hence
the scalar sector must be expanded further to cope up with super syminetry.
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In addition when the SM particles introduces its existing, super symmetry
particles contributes many more sources of CP violation and flavor mixing,
hence its necessary to reconcile the theory to be consistent with data. Above
all, these noted small CP violations which are only noticed in the charged
secetors are not capable enough to be introduced into a super symmetric the-
ory in a natural way. Through all this understanding it is possible to consider
that super symmetry undoubtly has flavor problem.

While considering Physics bevond the SM, an idea of siniply extending
existing SM is drawn without even disturbing its structure. There exists
numerous concepts considered and discussed in the literature regarding how
to acheive the extension of SM, one out of those is Left Right Symmetric
Models [13,29,30]. SM gets to so called Left Right symmetry because LRSMs
are based on the notion that along with the Left handed doublets Right-
handed ones should also be present. The most astonishing feature of LRSMs
is the existence of the Right handed neutrinos consisting Yukawa couplings,
can generate small neutrino masses through see-saw mechanism. One more
distinction of LRSMs is that they can be unilied together in the form of
grand unified schemes.

3.1 Left Right Symmetric Models (LRSMs)

SM does not have the Left Right symmetry of basic Lagrangian as only Left
handed neutrinos are introduced without any exemplary elucidation then
the phenomenological fact that neutrinos are mass less or very light. The
gauge group on which the LRSMs are just based is SU(3)¢ x SU(2)p x
SU(2)g x U{1)p_p, with the symmetric treatment of both Left and Right
handed fermion fields. A parity-violating theory like SM at the low energies
is generated by breaking Left Right symmetry at a high scale.

When SM is protracted further to the LRSMs, the hypercharge quantum
number Y now turns out to be the difference between the baryonic and
leptonic number [25,31]. Two special postulated scenarios in the weak sector
have generally been discussed historically.

o The first one “the manifest LR symmetry” [13} assumes that CP viola-
tion do not arise from the spontaneous symmetry breaking. The mass
matrices for quarks are thus hermitian and the Right- and Left-handed
quark mixing come to be identical.
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s The other is known as “pseudo-manifest LR symmetry” [32] suggests
that violation of CP arises utterly from the spontaneous symretry
breaking of the vacuum and the entire Yukawa couplings are real. Fur-
thermore, it assumes the quark mass matrices are symmetric and com-
plex, suggesting that the right handed gnark mixing is proportional
to the complex conjugate of CKM matrix multiplied by the additional

phases.

The LRSM constructed originally by an SU(2); x SU(2)g x U(1)p_r, gauge
syminetry. The couplings of SU(2); and SU(2)x are equal, because the L— R
invariance is considered, i.e. gy = gr = ¢g. The quarks are allocated in the

below doublets

Uir V 1
QéL = (diL) = (2! l! §)

U _ 1
QiR = (d%:) = (1121 g)

or leptons it could be written as

Lip = (““L) =(2,1,-1)

€irL

Lin= (vm) = (1,2,-1)

Eirn

with ¢ = 1,2, 3 representing generation index.

Two triplets are introduced for gauge bosons:

L
WF'L = ZHL = (3,1,0)

Woe=| 2% | =130

and one singlet
B, = Bﬂ ={1,1,0)
The charge introduced in LRSMs is given below
B-L

Q=13L+Isn+T
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where (B— L) specifying gauge symmetry of LRSMs. At E > My, charge(Q)
and I3, remain preserved, so local B — L invariances and parity are broken
extemporaneously. The symmetry breaking intelligible form can be written
as:

SU@)e x SU2) x SU2)r x U(1)pot
1 My,
SU(3)e x SU@)L x U(L)y
1 My,
SUB)e x U(l)em

One of the salient subject in the LR models has been the scale at which
Right handed current interactions become notable. The constraints on the
Right handed W bosons mass My, has been explored in [33]. The present
experimental bound on My, in direct collider search is about 800GeV [34].
(Given these values, it could be relevant enough to have a Right handed gauge
boson with mass of order 1 — 2 TeV,

For the extension of gauge sector, the number of scalar particle are ex-
tended further to apply the symmetry breaking mechanism. A bi-doublet
scalar boson is needed to implement symmetry breaking process because
both leptons and quarks are present in doublets. The doublet iutroduced
comprises Higgs doublet of SM and is Left Right symmetric.

Ry Rt - . o
H~(220~(.1 41, H=nH'mn~(220 (3.6
hy  hy
However one needs to have some additional Higgs multiplets to arrive at

a satisfactory symmetry pattern. The simplest possibility is to choose a
doublet [29].

x5
xa~ (1,2,1) ~ ( g;f) 3.7)
Xr
Due to LR invariance Left handed doublet is introduced as well
Xt
xr ~ (2,1, 1) ~ ( ‘6‘) (3.8)
Xr

The Right doublet (SU(2)g), then broken at the My, (Right handed scale)
by the VEVs of x g and VEVs of H breaks EW symmetry. Same masses and
similar charges for both Left-and the Right-weak bosons is rendered by H
(bi-doublet) hence it is beneficial to consider x .
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Higgs doublets xp and xg introduced are singlets of either Left or Right
gauge groups. In order to overcome the problem of giving masses to neu-
trinos, two Higgs triplets are introduced which is very useful to explain the
couplings of leptons with triplets. Hence the outcome is that neutrinos be-
come Majorana particles [15,24, 35]. The two more triplets introduced are

given as
(5+/\/§ ot T )
Ap~(3,1,2)~ | % L .
c~ena~ (B G

(3.9)
Y AVO R I
Due to LR invariance the symmetry requires
QL ¢ Qr, Heo H (3.10)
Ap & Ap, XL € XR (3.11)

By this means that g7 = gg 8s it was declared above. So its clear that [13,36]
if exactly symmetric potential exists for Higgs with reference to the discrete
transformation, one can chose the vacuum as vg » wp explaining parity
violation at low energies as an outcome of SSB. One can also define it as;
smallness of neutrino masses and parity non-conservation at low energies has
same origin in a Left-Right symmetric model.

While discussing the two cases about break symimetry impulsive, it is sig-
nificant to give the reference about most of the literature about LRSMs. The
first choice which specified a Higgs bi-doublet and triplet, and the second in
which Higgs doublets x, xr are noted along with bi-doublet . Nonetheless
both form of LRSMs which are discussed makes significance of a bi-doublets
H, two doublets xp. xg and two Higgs triplet Ay, Ag.

A special case of LRSM will be discussed in coming section with an ad-
ditional family symmetry to give the importance of using so many scalars.
Symmetry breaking scales could be altered to make it stay away from FC-
NCs existence at tree level (to replicate the SM like texture) even though it
is very difficult to achieve.

One can write the most common scalar potential as below as below [37-40]
V=Vy+ Vx + Va + VHX + Via + ng + VHXQ (3.12)

It is beyond the point of discussion to take into the consideration, correspond-
ing potential for spontaneous symmetry breaking. It is thoroughly mentioned
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in [13] (taking into consideration only one H and two xp,xr }. The VEV
for the scalar field consistent with the Higgs potential minima, requisite for
L — R symmetry breaking are given below accompanied by certain imposed
assumptions on them.

(5 0N (90 8w
Similarly

o= (y) tw={y) 514

(AL) = (:,1 8) {Ag) = (Bq g) (3.15)

v is the SM Higgs VEV, since SU(2); is broken through vy which in the
first step of symmetry breaking is kept preserved so with this constraint one
essentially has to specify vy >» v which infact provides really heavy masses
to the Right handed weak boson Wy, W7, and Z}. [41] suggests further that
vr ought to be not less than 2.7 x 107 GeV to match the experimental re-
strictions from neutrinos [34,39]. Furthermore, Ay is a triplet under SU{2),
8o vy, ought to be much less than vg not to spoil the eminent condition
from experiments M3, /M3, =~ cos’fw,p = 1 relation. In the same way,
Arig = O(v?) and tan 5 >» 1 which is contemplated for unraveling the mass
difference between the third family (top,bottom) quarks.

3.2 LRSMs with additional U(1)¢4ni;, symme-
try

Among the foremost aims to go beyond SM is acquiring some perception
concerning hierarchy between the quark masses. It is enticing to use the
symmetry arguments for elucidating the flavor structure of SM. A family
symmetry on the LRSMs is applied here to get some understanding of flavor
physics. However there is neither a predictive nor an approved framework for
flavor till now. Certain constraints have to be satisfied by the applied family
symmetry. The general inference is that the observed structure to the quark
mass matrices is given by such a symrnetry. Among the significant aspect
of this symmetry, one is that it cannot be exact, so it need to be broken.
Furthermore, the scalar sector needs to be enlarged because this symmetry
cannot be spontaneously broken by the VEV (vacuum expectation value)
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U d s
g [1.5 — 3.3|MeV | [3.5—6.0|MeV | [70 — 135]MeV
log, (mg /) 7—8 6—-7 4-5
c b t
- [1.16 — 1.34)GeV | [4.13 —4.37|GeV | ~172GeV
logy (mg/my) 34 2-3 1

Table 3.1: Quark masses in SM with imprecise scaling with Wolfenstein
paramcter A ~ 0.2

of single scalar field. This has been elucidated before in foregoing section
considering more than one scalar Higgs specifically, two Higgs doublet, one
bi-doublet, and triplets.

The gauge group under consideration is SU(3)e x SU(2)p x SU(2)r X
U(l)p-L X U(1) famity. Quark multiplets and scalar fields are contemplated
to undergo a marked change under an additional family-dependent global
U(1l) symmetry. Accompanied by necessity of values assigned to the new
charges, the attainable patterns giving rise to distinct textures for masses of
up and down type quarks can be obtained.

By applying the befitting U{1} jama, charges, intention here is to permit or
disallow definite entries in Yukawa matrices to attain the observed hierarchy
in the CKM elements and quark mass matrices.

The approximate scaling of quark masses with the Wolfenstein parameters
“A ~ " are stated in Table.{3.1). The right handed quarks exists as doublets
under the SU(2) 4 gauge group in LRSM, therefore an analogous CKM matrix
exists for Right handed V£, consonant to SM CKM matrix V%, As
LRSM is set up with axial U(1) fgma, charges, the same power counting i.e.
Ve = Véw is expected for Left Right CKM matrices.

1 ¢ €
V(J,-?KM lad V(?KM [ 53 12 f2 (310)
e ¢ 1

The power counting which is used for the effective SM Yukawa-matrices and
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the CKM elements for the up-type quarks is |

Yy = VLdia.‘?[yu-. Ye, yt] VI‘;
~ Vidiagle”. €', 1]V}

JRANE R (3.17)
~ et B g2
S €2 1

and for the down-type quarks one can write

YD - f/;_,dia-g[yua Yea yt]f/fi
~ f/Ldz'ag[ET, €, 1]17;2

ST 56 5 (3.18)
~ | 58 s 4
S

with the assumption that generically not only Vogar ~ Vi ~ Vg but some of
the elements of Yy and Yp could also be small then the represented value or
it can even be zero.

3.2.1 Viable Gauge Couplings

The L — R gauge symmetry strongly constrains the possible scalar couplings
to fermionic fields. All the viable operators that are satisfying the L — R
symmetry to the dimension-8 are contemplated and are analyzed one by one
as follow.

Dimension-4

The Higgs bi-doublet H, H couples with the quarks and gives the dimension-
4 terms given below,

OW = (QLHQRg) = vsmfB(ULUg) +veosf(DDpg), ('3 19)
OW = (QLHQR) — veosB(ULUr) + vsinB{D; Dg) '

The contributions from Yukawa couplings rendered to the up and down type
quarks from the dimension—4 are eminent by condition tan /3 >3» 1. Taking
into account the viable power counting, it could be written as

sin § = O(1), cos B = O(e%) (3.20)
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such that the 3 — 3 elements of the Yy end Yp (ie. m, = vsinf and m, =
vecos 8) could be generated from the operator (%, while O operator is not
permitted.

Dimension-5

Coupling of doublets x; and x g with the quarks gives dimension—5 .

ALAR

vA
- 1~ ALAR , =
0 = +(Qrx2) (xjQr) = v~ (DDx)

(L?LUR)a

0% = %(QLXE) (XRQr) = v
(3.21)

where x% denotes transposed fields including anti-symmetric tensor in dou-
blets (SU(2)), i.e. xk = €:;x4Q%. Here it is mandatory to note that contri-
butions from the dimension—5 to quark mass matrix are all suppressed by
the O(3).

The €2 contribution to the 2 — 3 element of Yy is assumed to arise via the
dimension—5 terms which restricts

% ~ O(e) (3.22)
with the further suggestion
VR ﬁ vrL /\L 3
A A Ole), AT O(e”) (3.23)
which gives )
05 s 05 ~ 62 (324)
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Dimension-6

The following operators contribute into dimension—6:

0 = QxS (xhArQr) — v R 2R (T,07)
0 = A_'(QLXL)(XRA Qr) — TALER (D Dg),
0\ = (QLA x£){(XrQr) = 1: AL‘:LR(ULUR)
O A2 (QLALXL)(XRQR) 1:: A:;iR (D1 Dp),
0 = (QLA HArQr) = vsin = (0.U),
O = F(QLALARQR) ~ vsin = (DLDR),
0f = i(QLA* HARQr) - vmﬁ%ﬁ—ﬂ(ﬁwn),
o) = (QLALHARQR) Y (D1Dg)

Also one gets

Ogﬁi = —(QLHQR [tT H*H-l- HTH)]

— v
= 1
O£6)= A—'

— v

1’sin2p3
A2

(Sil] ﬁ(ﬁLUR) + COSﬁ(DL.DR),

(QLAQR)r[H'H + H'H|
7 51112[)‘

(cos B(TULUr) + sin (D Dg)

(3.25)

(3.26)

Dim—6 operators also includes some contributions which are not appropriate
having same combinations as dim—4 and hence will not be able to create new
entries in the quark-Yukawa matrices. The analyzed power counting from
above thus can be given as

Osa ~ C_)ﬁﬂ ~ 63
Oﬁc ~ @ﬁc ~ 64

Ogs ~ Ogy ~ €

Oge ~ @ﬁe ~ e+ e

Oﬁd ~ Oﬁd o 66
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Dimension-7

Dimension—7 operators for Quarks are given as under

1, - ,
on = F(QLH Qr)(xkARXS + XL ALXL)
U‘Uﬂ/\?{ + ‘UL)\%
A3
o =—(QLH Qr)(hARXE + XA x1)
A2 ,\2 _
w&ws B(ULUR) + sin 8(D. Dg}),
A (3.28)
oy = =% (QLH Qr)(xTArxk + xLXRAR)
UR'\R'\L

(Sill ﬂ(L?LUH) + ¢os ﬁ(.D_LDR)),

————(sin A(ULUR) + cos f(D D)),
o =%(QLH Qr)(xfArxk + x1XRAL)

AgA } _
— u”—ﬂﬁ-i(cos B(ULUg) +sin (D Dg))

The terms arising in power counting due to the above mentioned operators

are _
Ora ~ O ~ € + €& + higher order terms

RN (3.29)
O ~ O ~ € + €” + higher order terms

Dimension-8

Dimension—8 operators for Quarks are given as under
o = —(QLH H'QR)(x} Arx%)

PURAR (it §(U,UR) + cost A(Dy D))
~ R (3.30)
O = (QLAH'Qr) (L AmS)
- o ZER2R (co B(UTU) + s B(D, D)

The terms arising in power counting due to the above mentioned operators
are

Oga ~ Oga ~ €' + higher order terms (3.31)
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giving the capability to reproduce the hierarchies in the quark muss ma-
trices. Also, for taking into the consideration all viable contributions from
quark masses to a given order €*, one has to contemplate all the operators
to dimension d = 4 + n. In short, the terms of the order ¢® or higher are not
considered.

3.2.2 Specifying appropriate U(1)emiy charges

Except for the power counting explained in previous section, for produc-
ing cminent hierarchies in mass matrices of quarks, below mentioned initial
suppositions are also applied:

e To break the discrete L-R symmetry, Z{Q}) = —Z(Q%) charges are
taken throughout.

e A charged Higgs bi-doublet H is taken and by means of this consid-
eration, H and H can be eminent, so the top-bottom splitting can be
described by tan 4 >» 1. Additionally, some terms will also be debarred
in the scalar potential . So the new U(1)f4mi, charges are fixed as

Z(HY= -Z(H) = +2 (3.32)

¢ With this assumption, the third family charges are confirmed as

Z(Q{") = +1, Z(Qy") = -1 (3.33)
and also the allowed diin—4 Yukawa term is,
yasQUTHQY + hee (3.34)

while QYTHQU! are debarred.

e For still existing inter-generational combinations do not participate at
dim—4 Yukawa terms, one needs that Z(QH) + Z{(Q'!!) # +Z{H)
due to which Z{Q1'!) # +1, 43 is obtained.

¢ which allows
ZQr)=0 Z2(@Qy)=0 (3.35)
a nominee for charge assignment for the second family. The charges
are established for the doublet fields xz g in such a manner, so that
dim—>5 terms give mass to second family. This gives

Z(xL)=0 Z(xr)=0 (3.36)
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and the termm of dim—5
v220 7 X1 xhQF + im0 xIXRQE + ke, {3.37)
is permitted.

o For the still available inter-generational combinations do not partic-
ipate at dim—4 or the dim-5, Z(Q') # +0,1,2,3 should be elimi-
nated, following from the comstraints Z(Q'} = Z(Q'!) # +Z(H)
and Z(Q") + Z(Q"MM) # £Z(xrxp) = 0
This leaves the simplest possible charge assignment for the first gener-

ation of quarks as:

Z(QL) =4, Z(Qp)=+4 (3.38)

e For fixing the charges for triplet fields Ay, Ag viable dim-6 contribu-
tions to up and down masses can be described now one of the simplest

choice is
Z(Ap) = -3, Z(Ag} =43, (3.39)

permitting B }
i {QLT HTP QL)AL (AL + hee. (3.40)

o It can be further incite generation-mixing terms at dim-6 level through
the operators

QL HP Q) AL (AR +yn (QY r* HT QR AL (AL +h.c+(L ++ R)

(3.41)
and
y3(QLx XA QR AL +ya1 (A X xEm QR (AR) +h.c+ (L & R)
(3.42)

Now the thing to observe here is that for this specific case, no off-
diagonal mass matrix elements exists between second and the third
generation. Likely the dim-7 and the dim-8 contributions can be taken
into account with noticing above mentioned constraints.

By using above mentioned constraints, different values to U(1) s,y charges
can be ascribed. The permitted values are given in Table.(3.2). It should be
noticed that examples are given for charges that are less or identical 4 and
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ZQi = —ZQJR ZQ;I = —-ZQLJ ZXL =—Zvn | Za, = —Zag
Case I +3 0 0 +1
Case 11 +3 0 0 +3
Case 111 4 0 0 1
Case IV -4 0 0 -3
Case V -2 +3 -3 +1
Case VI 0 3 -3 +3
Case VII 0 —4 —~4 -3
Case VIII 0 4 —4 +1
Case IX +2 +3 -3 +3
Case X 0 +3 -3 +1

Table 3.2: Viable charge assignments for quark and scaler fields, and its
classification.

also the cases where charges that differs trivially by relative signs are not
mentioned. The charges for third generation and the Higgs bi-doublet are

determined as Zy = +2 and ZQ{.” = —Zgu1 = +1. After taking all these

suppositions under consideration the possible values of U(1)samay, charges

can be shown in the Table.(3.2).
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Chapter 4

Phenomenology of the
Left-Right models

At tree level, the appearance of FCNC processes is prohibited because of
flavor diagonal structure in the basic vertices which includes Z, G and ~.
However, through flavor changing W*-vertex, the higher order diagrams and
the one-loop which mediate FCNC processes could be constructed. It is a fact
that such processes arises as loop effects only, forms them eminently fruitful
for the testing of quantum structure of the theory and also in exploring
physics beyond the SM. At the one-loop level, they can be elucidated through
a set of basic triple {penguin diagrams) and also quartic (box-diagrams)
effective vertices.

4.1 Effective Vertices

4.1.1 Penguin Vertices

The effective penguin vertices shown in Fig.(4.1) involve only quarks, where
the charge of ¢ and j is same but flavor is different and % signifies internal
gquark having unlike charge than ¢ and j. By making usc of elementary
vertices and propagators, these effective vertices can be calculated.
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Figure 4.1: The Penguin vertices

Figure 4.2: The Penguin vertices resolved in terms of basic vertices

4.1.2 Box Vertices

The box vertices mainly involve both the leptons and quarks and it could be
described as in Fig.(4.3) and i, j, m, n represents leptons or external quarks
and k, ! signifies leptons and internal quarks. The vertex {(a) shows the flavor
violation arises on both sides {left and right} of the box, while in (b} the right
hand side acts as flavor conserving. By using the elementary propagators
and vertices such effective quartic vertices can calculated. For example the
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vertices shown in Fig.(4.4) are contributing to B — B mixing and also to
K+ — mtob.

{a) {b)

Figure 4.3: The Box vertices

d W b
= t i +
b Wt d
d y dq w: oy
tie = t e
s w: v

Figure 4.4: The Box vertices resolved in terms of basic vertices
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4.1.3 The Effective Feynman Rules

Feynman rules regarding the effective vertices mentioned in [42] for the W=
propagator are,

G%

Bor(AS = 2) = M1 L M3 So(z) () -a(5d)v 4 (4.1)
BOI(Tg = 1/2) = GF -——“———[ 4Bg )](gd)v_A(DV)V_A (42)
\/_QTfSlnzew
G
Bou(Ty = —1/2) = A, \/i’m: Bo(e)(3d)v_alfp)y-a  (4.3)
N GF e 2cos @w _
- 2)57,(1 — v5)d 4.4
s7d = fw L Cala)o1 — ) 4.9
e
svd =~ L E DS - a0 - (45
e .. GFr g, _ "
sty = ‘_3/\1'_‘/%8?-‘90(:512)5&(@'7# — quf (1 — 1)1 55ds (4.6)
' T GF €
gyb= z)\,-\—/_ESNZD o(2:)3lioag* [y (1 + 5)])b (4.7)
/ G <
500 = \/E 89 = Eo(23)3alioud mas(1 + 5)|| T2sbs (4.8)
where ,
A= ViV i =ViVy (4.9)

In the above rules, g, indicates the momentum of outgoing gluon or of photon
and Tj shows whether (!~ or v¥ is leaving box diagram. Only quarks are
included in first rule and the last two rules iuvolves the on-shell gluon and
photon. These rules are written with the condition w, = 0.

The basic functions present in Egs.(4.1-4.9) were calculated by different
authors, in particular by Inami and Lim [43] given below ,

1 I Itllll';
Bo(ze) = —[ ] 10
o= =4 |1=, T @)y (4.10)
Ty If—ﬁ 3"2:"‘2
oo = 2 iz "
o(2e) = 3 Zi—1 (m—1p2 " (411)
4 1928 + 2522 «?(5x? — 2, — 6)
D —~ -3 ? t t\9Ly t In: 19
e =gt ge T T e ove e (412
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2 r¥(15 — 16z; + 42?)  1,(18 — 11wy — x2)

Bolo) = —3lne+ = e, T 20-a) (4.13)
Dy (1) = — (8.’53 24(-15?;) :’m;) 2@(‘3(332))4 I, (4.14)

Ej(z,) = —I‘(jl‘_‘%i:; 2) %(1 _"‘im In 4 (4.15)

Solzs) = 4I;4?11_1$i)—|; z B 23(;9?_111?33 (4.16)

So(ze) = {4.17)

Solire, 1) = Ic[lxlff -3 (13?%) - 43(?2_1“::;2} (4.18)

In the last two expressions only terms linear in z, <« 1 are kept, but
of course all orders in z;. The function Sy(z;) in Eq.(4.16} incorporate
box diagrams with simultaneous charm- and top-quarks exchanges.

The “0” in subscript shows that functions do not comprise the QCD
corrections to the related penguin and box diagrams.

The z;-independent terms are excluded having no contribution to de-
cays because of the GIM mechanism. Moreover

So(zy) = F(xy, 2} + Fzy, T} — 2F (24, Ty) (4.19)
Also
Solzi, z5) = F(zi,z;) + Fxy, xy) — F(2i,2.) — Flzj,2.)  (4.20)

with F(z;, z;) specifying the true function which corresponds to i and j
quark exchanges of a given box diagram. These distinct combinations
could be obtained by drawing all the attainable box diagrams {also
with u-quark exchanges), and taking m, = 0 and by using unitarity of
the CKM-matrix which suggests the following relation:

Aut Aot A =0, (4.21)

Hence for FCNC transitions, only summing over ¢ and ¢ quarks the
effective Hamiltonians is obtained [44,45].
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K® — K mixing So(z:), So(@e, T4)
BY% — BYmixing So(z+)
Konmi, B - Xg,v Xolze)
Ky = up, B =l Y{](It)
Kp — nlete” Ey(1), Zo(z:), Yo(z4)
B - X,y DATANAES)
B—= Xutu Eo(xy), E (xt) Yo(x:), Do(xt) Zo{z+),

In this manner, a set of gauge independent functions controlling the FCNC
process is written as

So(ze), Bo(ze), Xo(@e), Yo(ze), Zo(ze), Dolze), Ey(z:) (4.22)

There exist many decays depending only on a single function eg K+ —
71y, Yet, mostly various basic functions can contribute to a given decay.
More specifically, the correspondence exist among the most interesting FCNC
processes and the basic functions is shown in Table.(4.1.3).

4.2 K%— K9 mixing

The investigation of neutral Kaon mixing is highly significant to understand
the SM in particle physics. Initially, CP-violation was discovered in Kg
regeneration experiments [46] and small value of K — Kg mass difference
laid the foundation for predicting the charm quark at the GeV scale [28,
47]. Within the SM only W-exchange dominates the Neutral Kaon mixing
while beyond the SM, both Left handed and Right handed currents may
contribute in the K® — K° mixing process and the CP-violation parameter
is also sensitive to new CP violating phases which are generically predicted
by these models.

Except for he WW box found in the SM earlier, one important class of
contributions comprises the exchange of a single W' in a box together with
a W boson.

39



Figure 4.5: Diagram for kaon mixing in SM and LR models

4.2.1 SM

In SM, the single contribution for the kaon mixing is shown in Fig.(4.5) where
two W bosons are exchanged in a way that the internal flavors can be u, c, t.
The final expression is found for instance in [48], and is given below as

G4 M
Zﬂ_2w [/\c/\cﬂmS(Ic) + ’\t/\tnﬁ.S(It)

+ 22X M1 Sz, I:)] Q1+ hee,

HSM =
(4.23)

Tlees Tiit, e Specifies the QCD corrections. In the absence of QCD correction
Tees Tht, e = 1. In the above equation A; = V,,V} joins the two CKM matrix
element with s, d representing the external quark flavours. The functions
S(z;) are the related Inami-Lim functions [43] relying on the quark masses by
; = m}/Mg,. Using the unitarity relation 3,,_, ., Au = 0, the contribution
from box diagrams with exchange of i-th and j-th up-quarks calculated in
Appendix A can be written as,

GEMy
Hsy = 22 [ACACS(::C) + XA S(z) w2
-4 2’\c’\tS(IC: Eg)] Ql +h.c
with the only one operator mediating the transition is
Q1 = v P d5v,Prd (4.25)
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The functions S(z;), S{z;, z;) calculated in Appendix A are written as

S(xc) = X¢
1 9 3 37 oz 3
=z, = - — = —V1 .
S(ze) It(/-i + 41 —z) 2(1- -"Jt)z) 2 (1 - 331:) B (4.26)
ro(r? — 8r, + 4 3 =z
S{z,, z4) = —z.logz. + rel; 1 i )1 - $t)2 + 4_1(3: “t D
. —

The above three contributions alluded to charm-charn, top-top and charm-
top, subsequently.

4.2.2 LR Models

The Left-Right model generates the correction for kaon mixing compared to
SM casc. Except for he WW box found in the SM carlier, one important
class of contributions comprises the exchange of a single W' in a box to-
gether with a W. The other classes of diagrams found in LR models consist
of charged Higgs and tree level neutral Higgs exchanges [49, 50] shown in
Fig.(4.6). Considering the contribution from box diagrams of Fig.{4.6).

The contribution from WW box diagram of Fig.(4.5) calculated in Ap-
pendix A is written as,

GL M
Hip= 2E2W [ACACS(I,_.) + AheS(z)
am (4.27)
+ 2 AeS(ze, zt)} Oy + h.c
with the only one operator mediating the transition is
Q1 = 5y Pydsy, Prd (4.28)

The functions S(z;), S(z:, x;} calculated in Appendix A are written as

S(Ic) =TI,
1 9 3 3 Ty 3
S =z, = _ 8
{(z¢) :Et(4 + 1=z 201- ::::)2) 5 (1 — It) log z4, (4.20)
o (2 _ R -
—
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Figure 4.6: Diagrams showing kaon mixing in LR models

Except for the WW box, also WW’ boxes are present. The heavy character
of the W' suggests the need to consider only its right-handed coupling [51,52]
. The WW' box diagrams are calculated in Appendix B and thus written as

GEM3
472
+ (ERAFE 4+ XA S0 (a2, )|

Alboz) _ 28QL" [Ai‘RAfLS(b"I) (e, T, B) + ALENRLGO) (1 4, B)

(4.30)
The different handednesses of the main couplings of the W, W' apply chiral
fiips leading to the overall mass term, as seen in the first line of Eq.(4.30).
Note that the operator calculated in Appendix B consists a very different
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structure when comparing to the SM operator, QY*L and is defined as:

R = 5Prd - 5P,d. (4.31)

It is also to be noted that in literature, Eq.(4.30) also contains gauge cou-
plings comprised in % i.e. h = gp/gr but due to the L-R invariance here, this
factor goes to 1. Here the loop functions in the absence of QCD corrections
are calculated as,

§0) (5, 2, B) = m[ og(:) + log (8]

2
zt - 2'.':5 + 4 Ty — 4 (4.32)

Sy p By = :cc[4log (zc) + 4 +1og (3))

8= a4, 24, B) = 2,

Note that because of the overall mass factors, z,,, diagrams involving an up-
quark are much suppressed and thus can be ignored. The term log (3) is also
present in the above equations.

Other than the contributious given in Egs.(4.27-4.30), the last set of dia-
grams, shown in Fig.4.6(d) comprises of boxes WH; i = 1,2, where H* is a
heavy, electrically charged Higgs {as discussed in [53] [22]). In this case, the
hamiltonian calculated is written as,

or G M’2
Atrton) - CPUW QLR S7 NRAB ST (e 2y ), (433)
UV=ct

with the function

SEh(ze,2008) = (7 loalz.) + log(wh) ) + 5
SfR(wtswtawﬁ) = ( 2

oo losle) —at log(ws) ) (4.34)
SfR(wc: Loy U,B) =lo (w’ﬁ) + ﬁ

A concluding comment is in order. In all cases involving physical scalars,
when considering the limit where w goes to zero the contributions from the
particles H* go to zero and this scalar decouples from the meson-mixing
phenomenology.
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Chapter 5

Conclusion

Among the paramount problems of the particle physics, understanding the
flavour mixing in fermionic (leptons and quarks) sectors is one of the major
issue. The gauge symmetries put forward an effective way to understand
the basic interaction with respect to the coupling constants. The SM is a
fundamental and quiet sophisticated gauge theory developed to date. All the
parameters of SM have experimentally been confirmed. SM is formulated
on the spontaneously broken SU{3)¢c x SU(2)L x U(l}y gauge symmetry
grounds, where SU(3)c deals with the strong interactions and SU(2); x
U{1)y corresponds to electroweak sector. The electroweak theory assumed
the gauge bosons and the fermions to be massles for the gauge invariance.
Through the introduction of Higgs mechanism in the SM, the masses of
fermions and bosons are acquired. The SM has 12 generatros mediating the
strong, weak and electromagnetic interactions. These are eight gluons(g), a
photon(v) and three weak bosons (W=, Z%).

Regardless of the fact that the standard model stays unchallenged, it lacks
tbose attributes pointed out as unsatisfactory by the Physicists. A good ex-
ample is the violation of CP symmetry. Also the small off-diagonal elements
of CKM matrix is one of most important question. Hence it is compulsory
to look beyond the Standard Model for the better understanding of these
aspects of the SM. A class of extensions of the SM called Left-Right Models
is considered here. which not only extended the scalar sector but also gives
new gauge bosons Z W’'. The W' boson produces in LR model couples to
the right-handed fields with strengths described by a mixing-matrix corre-
sponding to the CKM matrix of the SM. This is particularly interesting due
to the possibility of introducing new sources of CP violation. In full general-
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ity, other CP-violating phases could also come from the VEV triggering the
spontaneous breaking of LR gauge group down to electromagnetism at low
energies.

A model is developed taking into consideration, an extra family symimetry,
U(1) famay- By applying the restrictions not to have very high quantum
numbers, few physically realistic connections of CKM matrix elements with
the VEVs of various Higgs fields are obtained. One can also develop the
connection between the observed power counting, CKM matrix elements and
VEVs by proceeding this work further and can obtain the quark masses.

K9— K° mixing is considered to discuss the Left-Right model phenomenol-
ogy. Box diagram is the only contribution found in the SM for K% — Ko
mixing whereas the LR model possesses some other contributions apart from
the box diagram found in the SM: WW' box diagram, vertex diagram, self-
energy diagram, W H* box diagram, and a tree level neutral Higgs exchange
diagram. In all cases involving physical scalars, when considering the limit
where w goes to zero the contributions from the particles H*, H° go to zero
and this scalar sector decouples from the meson-mixing phenomenology.
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Appendix A

A.l

M [d‘k Z : zg 1- ’y_r,)(ig’”+ik“k"/Mﬁ,)x

(7 ) w5
V(S 1 o) x vy (S L)L R ()
-t — 5 m; £ m;
V(\/? 1\/j) [litm][kztmz]

M= f(z«)* i Gt ) el G )

oG 2 (B G (i
(g7 + kR M,
i* k2 — M2, )

(A.2)

X

M=% ]‘ d4k ZU.SV lejg%‘(ntl—-fa)ﬁ +'Y,,[1—2',5‘|m,-)
=4 TR R — (8 = MY - G)

wli=m) g, 5(m1-mﬁ + 7«(1-1'5ij) (1,{12—15}) d (A.3)
(k% — mZ)(k? — m2)(k? — M}, )(k* — M)
gho g + gh Rk I ME, + k“k"/M’ " + kKR RP
(k? ~ mi)(k? — m3)(k? — M%) (k? — M)




Taking terms with gamma matrices and solving one by one

(1— ) -(1_75)0!:0

G = §v, 5 YT 2
1- 1—
G =3,%( 275)%%_( 2"5)d —0
_ (1= 1- 1_
Gs =37|u( 275) E'Tv( 275)0" = 557}1(1 - 75)x7vd
_ (1~ 1-— 1_
G, =57, L) E’rp( 275)01 = 55%(1 = w)kd

(A.4)

Now putting Eqs.(A.4) in the amplitude M of Eq.(A.2) and solving it, one

gets

sg ls ‘G&‘Gd (E’Yuil_%lhvd * 57011_2J)‘x79d)
-4 [ &% ) =) (R — M) (= )
g7y + g#wwwﬁ Ay
(k2 —m2)(k? — m3) (k% = M} )(k2 - M%)

X

solving above equation further, one gets

1p o 94 iy VaVaaV3Vaa3,(1 = 2510 - 571 = 25)35%,)
16 (k2 —m?)(k? — m3)(k? - M{.)?
dk [k“kﬁg’”g"" + k“kﬂg""k"k"/Mw
(2m)¢ L (k2 — m2)(k? - m2)(k? — M3,)?
KokPkEke P [ M2, + kOKPKPKC KV K | MY,
(k? — m)(k? — m3)(k? — M}, )2 ]

Decomposing above equation and solving it

Ar = 37,1 — )12 W75 (1 ~ 75) 157, dk kP g g7
2

- _ k
=57 (Y Yo — Y% )45 (VoY — 'ra'ry)Td

_ - k?
=5 Ya (1 — %6 )43 Ya Y (1 = 75)dZ

=§(Smwa'ra - ispava'ra’r!)) (1 - 75)d§(Spava7a - iepcwa'ra'}'ﬁ)*
(1 —s)d
=k*(575 (1 — 75)d57° (1 — )d)
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Az = 571 — 1) Va7 d57: (1 — Y5 )75 7,8k kP ¢ K k? | ME,
4

=M_EV(§%(1 — ¥8)d37*(1 — s5)d)
As =37,(1 — 1)1 d5Ys (1 = Y5 )17, dk kP k k7 g2 | M3,
=ﬂ;’_:z(§’r»(l — 75)d57"(1 — 15)d) A9
As =571 = 1570059 (1 = )57, 4k BRI RO KV kP [ MYy
6

=M(§’Yp(1 = 75)d59"(1 — )d)

Hence complete M can be written as

= f_ﬁ ’Z‘J;Ai,\j[(é“'yp(l — 75)d57" (1 — 75)d)]

d*k { K? B
(2} L(k? — m3)(k? — m2)(k? — M}, )?
(A.9)
2k*
M (k? ~ mZ)(k? — m3) (k2 — M},)?
kﬁ
MY 2\ (k2 2\ (2 7] z}
Mg (K — mP)(k? — m)(k? — M3,)
Term wise power analysis
dat- k2 k51
a7 Rl R
at kKt i
416 Rl
P, = d 0 ~ K2

=TT T
applying unitarity of CKM matrix
> A [B(mg, m5) — E(0,ms) — E(my, 0) + E(0,0)]
ig
’ 1 1

= ;Ai)\j [(kg —m (R —m)(k2 - ME )2 RR(k? — md)(K? — MG, )2

1 1
R R T ey o]
mim?
—ZZ KA(KT — m) (K — m2) (K2 — M3, )2

1
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Now the Eq.(A.9) becomes

M = 53 (01 = w)dsy (1= 1))y
d'k m2m?
/ (278 MZ, (k2 — m?)(k? — m3)(k? — ME,)? X {A.11)

4 6
(4~ 3 +3ep)

Solving the integrals in above equation will give expression for M as below

M = % Z [(374(1 — 15)d&y" (1 — s )d)]Aid; %

—im? —T;T; [ln:r,- _ 3 Inz; 3 Inz; ]

= - = X
4 2z;—1 dx;— 1)

My, (2m)* z; — x (A.12)
em 13 m o, &
4I§Ij (Ii - 1)(Ij - ].) 2 I; — 1 ! 4
ng 3
+

4(z;— 1)  2(z; — 1)

with z; = m;/MZ%,. In above equation is the four-quark operator Q3 is
defined as,

1- 1-—
G2 = 37,.( Ws)d‘ v 275)1:! (A.13)
The effective Hamiltonian can be Wntten as
G2 M 2
Hj= E M) SiiQra (A.14)

It can be written as

GLM3
e [,\ AeS(Ze) + AereS(ze)

+ 22:05 (e, :rt)] Q1 + hoc

H =
M (A.15)
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Appendix B

B.1

d* =L 5\ (19" + 1Kk / M
v [ S ) (g )

. oy (M,
Via \;%L'Tyl 5 )d dVJd( \:'g;'r“l\/gs)z(g :;—vafw)

—igr 1=\ _[ k+m?pE+m]
x Vi \/% L, )S[szt m2] kztrfnﬁ]}Jr
A S o =

¢ ,&;"M’/M2
A A )

—3 E+ m3
xl@-s( \/%R :;—7) [:2 [kztm?]}

ddeJd(
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d

= [ S el v )
4L - }ﬁ U —igr — s
Xd**d(\/g_f'f"l\/_ )[ +m}v(\/~‘i 1\/_()

(R () )

o (g ) [ g 52

. d (zgn 1+vr){ﬁ+m] (zgn l+7r)

V2 o e\ A
i QIO o 2 vp v 2
=)

(B.2)

— g4f d*k ZZJSV‘ degE‘Gs(%(l_%)}é + T"‘(L—;ﬁ)m") y
(2

~ 4 ) @mp (R —md) (R — m?) (k2 — ME)(k? - M2,)

T (1- '75)03* 6(%(1—%);‘6 + Yo (2 2% m;)(‘rpil—-ro))d

(kz—m k2 —m2)(k? — M) (k2 — M)
R G + gk kP | M, + KRR [ MR g"* + KPRTK kP [ M3, M2,

2__m 2_m 2 2 2’
(& = mB)(k* = m) (¥ — M) (R = M3,) -

Q_4f d‘lk E;J‘SV Vd %&(M_FM) 5
4 ) (2m)t (k2 = mP)(k? — m)(k? — M )(k? — ML)

v(]+"rﬁjd ('Fa{l‘; .’5)& + "r'o'{]-+275)7”; )('Tp“;'fs\l )d

(k2 = 1nZ) (k2 — md) (k% — M) (K2 — M2,)
479" + gPRVRR M2, + KRKT [ M g" + KRR K M, M2,
(k% — m2)(k? — m2)(k? — M2,)(k* — M2,
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-£ f SV ViaViViex

(_ (1—%)# %1—75 )x( — 5 )d
2
(1 —1)F Y 1—% Yo l—'rs
- jatz=y

—r—

tn

+
2
((l+ 75)’5 '}ﬂu(l + Y5 )m; Yo (1 +5) N
R )X( )
(YAl + 75)& Yo (1 + 75)mj 'Yp(l +7s)
* S( 7 2 ) ( 2 )d}*
gl e + g““k”k"/M?V, + k*k? | M2, ¢"° + k”k"k”k”/M&,M;,;
(k% — m?)(k? — m?)(kz — MZ)(k? -~ va,)

Taking terms with gamma matrices and solving cne by cne

G1 =8 5 L > =
1— 1-
G2_3'Yd( > 5)79 :i( 275)‘1:0
(1), (=3, 1 (B2)
Gs =57, 75 s d = 55%(1 +1)Fnd
1— 1— 1_
G —s'ra( 75)& p( 275)d = 58%(1 —¥s)E7,pd
Similarly
G = m(l J;frs) ] :(1+75)d 0
G, =§’ra(1 ~ 75)%7”:‘ 4o 75)‘1 =0
(122, (=), 1 (B6)
G =3, 275 Evo 275 d= 55%(1 +75)kvnd
1— 1- 1_
Gy =§%( 7"’)%( _ )y - 55% (1 — w)Evd
2 2 2
Adding the above equation,one gets
1_ 1_
G = 3571 +w)fnd+ 557%(1 - Vs v+
(B.7)

1 : 1.
557;.(1 + ¥s)kvd + 53%(1 — ¥s)Ey,d

=57, (1 + vs5)fyd + 57.(1 — vs)Kpd
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Now putting Egs.(B.7) in the amplitude M of Eq.(B.4) and solving it, one
gets

oo / a2 VieVidViaVia (sqp(l +v6)Evd * 37, (1 — 1)k, )
1) Gmt - mh) (k- mi) (K - ME)(K® — M)
9*7 9" + g* K kP [M], + kK g | M, + KRRV P MR, M2,
(k2 = m?)(k? — m])(k? — M,)(k?* — M3,)

using the relation
E=Yke k= Yaks (B.9)

putting this in Eq.(B.8) and solving further one gets

EIJ V:: ViaV: jd jd(SFYu[l + 7 )nfcrd—]’u : 5*-),0_(1 - WS)P}STpd)
(K — ) (h2 — mB) (k2 — M)

/ kekPgrogrl 4 k"kﬂg“"k"k"/Ma,,

+

_9
M‘4

(2m)* k2 —m2)(k? — m2)(k? — M2,)(k? — M2) (B.10)

kT kOkeke g2/ MP. + koK Rk KV KP [ AL M2,
(k2 — m?) (k% — m2)(k? — A%, ) (k2 —M;i,) ]

Decomposing above equation and solving it

A= g’?’ﬂ-(l + 75)7u7vd§70(1 - %)'Tﬁ?pdkakﬁg’wgvp
2

=5%(Tam + %% 1)d57u (Y% — Y1) d
2
=5 YN (1 +1)d5% 20w (1 — m)d

using the property

VYoo = (Spave?’ = i€pooy’7®) (B.11)
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Al = g(spava’Ta - iEpava”TaFYs)(l + '}(5)d§(spauo"}'g - ?:Epauo"ya’ﬁ)*
(1—)d
=k (57, (1 + 75)d5y" (1 — 75)d)

Az =57,(1 + 15 )Y 1357 (1 — ¥ )V0v,dk kP g K K [ M
4

=2 (57 (1 + ¥5)d5v* (1 — 5)d)
wl’
Az =57, (1 + %)Y d57:(1 — ¥8) 37,8k "k kP k7 g*° | MG,
ktl
=W(§%(l + 75)d5v" (1 — v5)d)
W

Ay =57,(1 + 75)7a 050 (1 — 15787, dk K kKK K2 | Moy M0
]
=WM2W(§%(1 + 7¥5)d57" (1 — 5)d)

(B.12)

Hence complete M can be written as

M= % Z AiAj[(37u(1 + ¥5)d57" (1 — 5)d)]

ij

/ dk { k?

(2n* (R = m) (&7 = m) (67 — M) (% — MZ,)
k4

M'?V' (k2 — mZ)(k? — m?)(k? — MZ,)(k? — M:,,)
k4

M3, (6% = ) (k7 = w2 )2 — M3, ) (7 — M3,)

+ &

AME M2, (K? — m2)(k? — m2) (k% — M3,)(K? — M;,,)}

7

+ (B.13)

Term wise power analysis

N SR A |
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RN (B.14)
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applying unitarity of CKM matrix
Z M\ [E(my, my) — B(0,m;) — E(my,0) + E(0,0)]

1

- Z“ [ 2)(k2 — m2)(k? — ME,)(k? — M%)
. 1
k2 (k2 — m2)(k% — M3 )(k2 — M2.)
1 1
S T AT ey e VERTI |
(k2 —mi)(k? — My, (k2 — M2} kA(k? — My ) (k2 — M)

2,2
mim;

= e e — M= ML)

Now the Eq.{B.13} becomes

M= %‘ > [Em( +15)dsy (1 = )d) A

2,02

fd% o e x  (B.15)
(27} M, (k2 — m?)(k2 — m3)(k? — M) (k2 — ML) '

(k2+ k4 N k4 + kﬁ )

M= Z [(37.(1 + 15)day’ (1 — vs)d) ] A

ij

L )

+

Bk k2mim?
f Gy e =m0~ (= M = )
kém?m?
NI, M, (% — )7 = m?-)sz yE—i,y T B
k“m m
(1) i) (FF — )k — Mg (% — 33,
kﬁmﬁ 2
I3, M, (I — ) (% — o) (2 — 303 ) )
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solving the integrals in above equation one gets,

M =L 5 (51 + )5y (L - 1)) A

4J

—im? z, — 4
Mg, ME, (22 Ve [:ct 7 l08(e) +log (5 )]+ (B.17)
Ty — 2z, +4 —4
(—“—(z, s (=) + Sy +1og(6)

+ z.(dlog (z.) + 4 + log (8))
The effective hamiltonian in this case is written as
A{boc) _ G%’MafzﬁQLR [,\LR,\RLSU"“}(I T )8) + ,\LR,\RLS(”O’](I T ﬁ)
- 41Tl2 — 2 o o [ ' + ty ity

+ (AERARE 4 \ERARL) 500 (7, 7,, )]
(B.18)
with 8 = M§, /M7, and the quark operator given by the equation

QiR = 5Prd - 3Pd (B.19)
containing both the left and right handed contributions.

Similarly the calculation for the box diagram including Charged nggs is
carried giving the effective hamiltonian given below

G2 M
A(Hib"‘}=%( 5 3 S E (v, zv, Bw) (B.20)
UV=ci

56



Bibliography

[1] F. L. Wilson, Am. J. Phys. 36, no. 12, 1150 (1968).
[2] T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
[3] T. D. Lee, R. Ochme and C. N. Yang, Phys. Rev. 106, 340 (1957).

[4] C.S. Wy, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson,
Phys. Rev. 105, 1413 (1957).

[5] R. L. Garwin, L. M. Lederman and M. Weinrich, Phys. Rev. 105, 1415
(1957).

[6] M. Goldhaber, L. Grodzins and A. W. Sunyar, Phys. Rev. 109, 1015
(1958).

[7] K. Nishijima, Fundamental particles, New York, USA: W. A. Benjamin
(1963) 408 p.

[8] R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
[9] E. C. G. Sudarshan and R. e. Marshak, Phys. Rev. 109, 1860 {1958).

[10] G.S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13,
585 (1964).

[11] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974) Erratum: [Phys.
Rev. D 11, 703 (1975)].

[12] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975).

[13] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12, 1502 (1975).
[14] G. Senjanovic, Nucl. Phys. B 153, 334 (1979).

[15] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 (1981).

o7



[16] K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 1286 (1990).

{17] S. M. Barr, D. Chang and G. Senjanovic, Phys. Rev. Lett. 67. 2765
(1991).

(18] A. Maiezza, M. Nemevsek, F. Nesti and G. Senjanovic, Phys. Rev. D
82, 055022 (2010)

[19] D. Chang, Nucl. Phys. B 214, 435 (1983).

[20] Y. Zhang, H. An, X. Ji and R. N. Mohapatra, Nucl. Phys. B 802, 247
(2008)

[21] D. Guadagnoli and R. N. Mohapatra, Phys. Lett. B 694, 386 (2011)

[22] S. Bertolini, A. Maiezza and F. Nesti, Phys. Rev. D 89, no. 9, 095028
(2014)

[23] W. Hollik, Proceeding of ICHEP 98, Vancouver (1980).
[24] T. Yanagida, O. Sawada, and A. Sugamoto (KEK, 79-18, 1979)..

[25] R. E. Marshak and R. N. Mohapatra, “Quark - Lepton Symmetry and
B-L as the U(1) Generator of the Electroweak Symmetry Group,” Phys.
Lett. 91B, 222 (1980).

[26] C. Amsler et al. [Particle Data Group], “Review of Particle Physics,”
Phys. Lett. B 667, 1 (2008).

[27) L. Wolfenstein, “Parametrization of the Kobayashi-Maskawa Matrix,”
Phys. Rev. Lett. 51, 1945 (1983).

[28] S. L. Glashow, J. Iliopoulos and L. Maijani, “Weak Interactions with
Lepton-Hadron Symmetry,” Phys. Rev. D 2, 1285 (1970).

[29] R. N. Mohapatra and D. P. Sidhu, “Gauge Theories of Weak Interactions
with Left-Right Symmetry and the Structure of Neutral Currents,” Phys.
Rev. D 16, 2843 (1977).

[30] R. N. Mohapatra and J. C. Pati, “A Natural Left-Right Symmetry,”
Phys. Rev. D 11, 2558 (1975).

[31] A. Davidson, “B~1as the Fourth Color, Quark - Lepton Correspondence,
and Natural Masslessness of Neutrinos Within a Generalized Ws Model,”
Phys. Rev. D 20, 776 (1979).

58



[32] S. Dawson, Int. J. Mod. Phys. A 21, 1629 (2006)

(33] Y. Zhang, H. An, X. Ji and R. N. Mohapatra, Phys. Rev. D 76, 091301
(2007)

[34] W. M. Yao et al. [Particle Data Group], J. Phys. G 33, 1 (2006).

[35] M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, ed. D. Fried-
man et al. 1979

[36] E. K. Akhmedov, M. Lindner, E. Schnapka and J. W, F. Valle, Phys.
Rev. D 53, 2752 (1996)

[37] P. Langacker, “Introduction to the Standard Model and Electroweak
Physics,”

[38] C. Quigg, Ann. Rev. Nucl. Part. Sci. 59, 505 {2009)

[39] S. L. Glashow, Science 210 (1980) 1319.

[40] S. Weinberg, Rev. Mod. Phys. 52, 515 (1980) [Science 210, 1212 (1980)].
[41] Y. Rodriguez and C. Quimbay, Nucl. Phys. B 637, 219 (2002)

[42] A. J. Buras, “Weak Hamiltonian, CP violation and rare decays,”

[43] T. Inami and C. S. Lim, Prog. Theor. Phys. 65, 297 (1981) Erratum:
[Prog. Theor. Phys. 65, 1772 (1981)].

[44] “Penguin box expansion: Flavor changing neutral current processes and
a heavy top quark,” Nucl. Phys. B 349, 1 (1991).

[45] G. Burdman, E. Golowich, J. L. Hewett and S. Pakvasa, “Rare charm
decays in the standard model and beyond,” Phys. Rev. D 66, 014009
(2002)

[46] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, Phys. Rev.
Lett. 13, 138 (1964).

[47] J. D. Bjorken and S. L. Glashow, Phys. Lett. 11, 255 {1964).

[48] G. Buchalla, A. J. Buras and M. E. Lautenbacher, “Weak decays beyond
leading logarithms,” Rev. Mod. Phys. 68, 1125 {1996)

[49] J. Baseeq, L. F. Li and P. B. Pal, “Gauge Invariant Calculation of the
K K5 Mass Difference in the Left-right Model,” Phys. Rev. D 32, 175
(1985).

59



[50] W. S. Hou and A. Soni, “Gauge Invariance of the K; Kg Mass Difference
in Left-right Symmetric Model,” Phys. Rev. D 32, 163 (1985).

[51] G. Ecker and W. Grimus, “CP Violation and Left-Right Symmetry,”
Nucl. Phys. B 258, 328 (1985).

[52] M. Kenmoku, Y. Miyazaki and E. Takasugi, “Gauge Invariant Sets Of
Diagrams For The PO Anti-p0 Mixing,” Phys. Rev. D 37, 812 (1988).

[53] Z. Gagyi-Palffy, A. Pilaftsis and K. Schilcher, “Gauge independent anal-
ysis of K — ep in left-right models,” Nucl. Phys. B 513, 517 (1998)

60





