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Preface

The most vital mechanism observed for transportation for biofluids in human beings is
the peristaltic mechanism. According to this mechanism, the contents in the vessel or
tube are transported due to the sinusoidal motion of the boundary. The initial studics
regarding the fluid mechanics of this mechanism were performed by Latham [1], Shapiro
et al. (2], Jaffrin and Shapiro [3], Fung and Yih [4], Yin and Fung [5] and many others.
Later on, it was realized by the researchers that in investigating peristaltic motion. it is
not always appropriate to consider the nature of the fluid as Newtonian. This fact was
first realized by Raju and Devanathan [6] and they studied penstaltic flow of a power-law
fluid and obtained the solution for the stream function as a power series in terms of the
amplitude of deformation. In another paper, they analyzed the peristaltic motion of a
viscoelastic fluid with fading memory in a tube [7]. After that a number of investigators
attempted to analyze peristaltic flows of different non-Newtonian fluids under various
assumptions. Some important contributions in this area can be found in refs. [8-18].

In all the above mentioned studies, the peristaltic flow is considered in a straight channel
or tube, However, this is an assumption and in reality the tube or duct may be curved.
Therefore, one has to incorporate the effects of curvature in analyzing peristaltic flow.
Motivated by this fact, Sato el al. [19] discussed two dimensional peristaitic flows in a
curved channel. Following them, Ali et al. {20] studied penstaltic flow In a curved
channel in wave frames of reference. They have used the no-slip condition at the upper
and lower walls of the channel and obtained the expressions for stream function, axial
velocity and pressure gradient.

Peristaltic flows in a straight channels/tubes employing slip condition has been studied by
a number of authors. Mention may be made to the works, Chu and Fang [21], El-
Shehawy et al. [22], Hayat et al. [23. 24] and Al et al. [25].

To the best of my knowledge, no attempt has been made yet to study the peristaltic flow
in curved channel when no-slip condition is inadequate. Therefore, the main aim of this
thesis is to provide such a study. The brief layout of thesis is as follows. It consists of
three chapters. Basic definitions and governing equations (i.e. continuity and momentum
equations) for a viscous fluid in curvilinear coordinates are included in chapter 1. Chapter
2 presents the detailed review of ref [20]. In chapter 3, the work of ref [20] is extended by
taking the slip condition at the walls of the channel. The effects of slip parameter on
various features of peristaltic motion are discussed in detail.
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Chapter 1

Preliminaries

In this chapter, some basic definitions and equations are provided which will be used in the
next chapters. All the material of this chapter is based on the book by Resrick, Halliday and

Krane and web.

1.1 Flow

A material goes under deformation when certain forces acts upon it. If the Jdeformation exceed

continuously without limit. then the phenomena is known as flow.

1.2 Fluid

The word fluid comes from a Latin word meaning to flow. Fluid will flow. for example, to take
the shape of any container that holds them: in a fluid. the particles/molecules can move relative

to one another.

1.3 Fluid mechanics

Fluid mechanics is the study of fluids and the forces acts upon them (Fluids include liquids,
gases and plasmas). Fluid mechanics can be divided into fluid kinematics. the study of fluid

motion, and fluid dynamics. the study of the effect of forces on fluid motion. which can further



be divided into fluid statics. the study of fluids at rest. and fluid kinetics. the study of fluids in
motion.

1.4 Fluid kinematics

Kinematics is the branch of mechanics that deals with quantities involving space and time only.
It is used to describe the motions of particles and objects. but does not take the forces that

cause these motions into account.

1.5 Fluid dynamics

The fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid How and the

natural science of fluids (liquids and gases) in motion.

1.6 Fluid statics

Fluid statics is a sub-discipline of fluid mechanics that deals with fluids at rest.

1.7 Velocity field

In dealing with fluid in motion. we shall necessarily be concerned with the description of a
velocity field. If we define a fluid particle as a small mass of fluid of fixed identity of volume
du, then the velocity at point C is defined as the instantaneous velocity of the fluid particles
which. at a given instant, is passing through point C. At a given instant. the velocity field V
is a function of the space coordinates (x.y. z). The velocity at any point in rhe flow field might

vary from one instant to another. Thus the complete representation of velocity is given by

V =V(r.y. 2.t). (1.1)

o



1.8 Pressure
The magnitude of the normal force per unit surface area is called the pressure. Pressure is a
scalar quantity; it has no directional properties. Mathematically:

p= (1.2

F
e
where F is the magnitude of force acting in the direction perpendicular to the surface of the
fluid and A is the area of the surface of the fluid. Pressure has dimensions of force divided

by area. and common unit for pressure is N/m?. This unit is given the S designation Pascal

(abbreviation Pa: 1Pa = 1.N/m?).

1.9 Density

The density p of a small element of any material is the mass dm of the elemnent divided by its

volume 6V

dm
= lim - |. 1.3)
P av—>a1" (0" ) 11.3)

where 6V is the small volume over which the substance can be considered as a continuum. If
the density of an object has the same value at all points. the density of the object is equal to

the mass of the entire object divided by its volume:

7171
=T

1.10 Viscosity

Viscosity in fluid flow is similar to friction in the motion of solid bodies. The measure of
resistance to the motion of the fluid is called viscosity. It is also known as absolute or dynamics

viscosity. Mathematically. viscosity is the ratio of shear stress to the rate of shear straiu.

Shear stress

y (1.5)

" Rate of deformation’



1.11 Kinematic viscosity

Kinematic viscosity is the ratio of absolute viscosity u to the density p. It is denoted by v and
given by

= 'E {1.6)
p

1.12 Curvature

The curvature of a curve at a point is a measure of how sensitive its tangent line is to moving

the point to the other nearby point.

1.13 Peristalsis

Successive waves of involuntary contraction passing along the walls of hollow muscular structure

{as the esophagus or intension) and forcing the contents onward.

1.14 Coefficient of viscosity

The ratio between stress and strain in the fluid is called the coefficient of viscosity of the fluid.
It is denoted by Greek letter n (eta).

& futm

where F is the magnitude of force acting in the direction perpendicular to the surface of the

fluid. A is the area of the surface of the fluid and dv/dy is velocity gradiens.

1.15 Types of flow
1.15.1 Uniform flow

It is a flow in which the velocity of fluid particles are same at cach layer.

1.15.2 Non-uniform flow

It is a flow in which the velocity of Huid particles are different at different layers.



For a uniform flow, by its definition, the arca of the cross section of the How should remain
constant. For example. the uniform flow is the flow of a liquid through a pipeline of constant
diameter. And contrary to this, the flow through a pipeline of variable diameter would be

necessarilv non-uniform.

1.15.3 Steady flow

We describe the flow in terms of the values of such variables as pressurc. density and flow
velocity at every point of the fluid. If these variables are constant in time. the flow is said to

be steady. Mathematically:

dn
5 =0

where 1 represents any fluid property and ¢ is the time.

1.15.4 Unsteady flow

If these variables (pressure, density and flow velocity at every point of the fluid} are the functions

of time, the flow is said to be unsteady. Mathematically:

)

5 * U (1Y)

1.15.5 Rotational flow

If an element of the moving fluid rotates about an axis through the centre of mass of the

element. the flow is said to be rotarional. Mathematically, for rotational Aow
V xV #0Q. (1.10)

1.15.6 Irrotational flow

If an element of the moving fluid does not rotate about an axis through the centre of mass of

the element. the flow is said to be irrotational. Mathematicallv. for irrotational flow



V xV=0. (1.11)

1.15.7 Laminar flow

Fluid flow in which the speed varies laver-by-layer is called laminar flow. In laminar flow. viscous
shear stresses acts between these lavers of the fluid which defines the velocity distribution among

these layers of flow.

1.15.8 Turbulent flow

Fluid flow in which the velocities vary erratically from point ro point as well as frony time to
time is called turbulent fow.

In a viscous fluid. the flow at low speed can be described as laminar. which suggests layers
sliding smoothly over one another. When the flow speed is sufficiently large. rhe motion becowes

disordered and irregular: this is turbulent flow.

1.15.9 Compressible flow

If the density p of a fluid is a not constant. dependent of r. y. = and ¢, its flow is called

compressible flow.

1.15.10 Incompressible flow

If the density p of a fluid is a constant. independent of x. y. = and #. its flow 1s called incom-
pressible flow.

Liquids can usually be considered as flowing incompressibly. But even for a highly com-
pressible gas. the variation in density mav be insignificant. and for practical purposes. we can
consider its flow to be incompressible. For example. in flight at speeds much lower than the
speed of sound in air (described by subsonic aerodynamics), the flow of the air over the wings

is nearly incompressible.



1.15.11 Couette flow

It is a flow between two plates. in which one plate remains at rest and otlier plate is moving
with uniform velocity,

1.15.12 Poiseuille flow

A flow between two plates produced by a constant pressure gradient in the irection of the fow
is called Poiseuille flow.

1.15.13 One dimensional flow

A flow for which the velocity field depends only on one space variable is called one-dimensional
flow.

1.15.14 Two dimensional flow

A flow for which the velocity field depends upon two space variables is called two-dimensional

flow.

1.16 Classification of fluids

1.16.1 Ideal fluids

A non-existent. assumed fluid without either viscosity or compressibility is called an ideal fuid
or perfect fluid. In nature. this tyvpe of fluid does not exist. Furthermore. a gas subject to
Boyle's-Charle's law is called a perfect or an ideal gas. It is the hypothetical form of fluids.

However, the fluid with negligible viscosity may be considered as an ideal fluid.

1.16.2 Real fluids

Real fluids are those in which fluid friction has significant effects on the fluid motion. In other
words, we can not neglect the viscosity effects on the motion. Real fluids are further classitied
into two classes on the basis of Newton's law of viscosity. According to this law. “shear stress

is directly proportional to the rate of deformation™. For one ditnensional flow. it can be written

10



du

Tyr = H—.
yr }dy

where 7, is the shear stress and du/dy is the rate of deformation.

1.16.3 Newtonian fluid

A Newtonian fluid {named after Isaac Newton) is a fluid whose stress versus strain {deforiation)
rate curve is linear and passes through the origin. i.e., Newtonian fluid obeys Newton's law of

viscosity, Water, gasoline and mercury are some examples of Newtonian flnids.

1.16.4 Non-Newtonian fluid

A non-Newtonian fluid is a fluid whose flow properties are not described by a single constant

value of viscosity, i.e.. it does not satisfy Newton's law of viscosity. For noi-Newtonian fluids

du n ’ .
Ty_TZk(@) ) n#l (1.13)
or
du
Tyl.z?] (a) (114)
where 1
di n—
7;:k(d—;) . (1.15)

is the apparent viscosity. Examples of non-Newtonian fluids are tooth paste. ketchup. gel.
shampoo, blood, soaps etc.

1.16.5 Time independent non-Newtonian fluids

Such fluids where apparent viscosity does not depend upon time are knowu time independent
non-Newtonian fluids. These are further sub-divided in the following types.

1.16.6 Time dependent non-Newtonian fluids

Such fluids where apparent viscosity depends upon time are known time dependent non-

Newtonian fluids. These are further sub-divided in the following types.

11



1.16.7 Thixotropic fluids

Such fluids show a decrease in  under a constant applied shear stress. An example of such a

fluid is vogurt.

1.16.8 Rheopatic fluids

Such fluids show an increase in 4 with time under a constant applied shear stress. An example

of such a fluid is blood.

1.16.9 Viscoelastic fluids

After deformation when applied stress is released. some fluids partially come to their original
shape or position, such fluids are called viscoelastic fluids. The examples of sich fuids are nvlon.

flour dough etc.

1.17 Equation of continuity

The mathematical form of the law of conservation of mass for a fluid is known as equation of

continuity. It has the following form

98

5 + V- (pV) =0. (1.16)

and for an incompressible fluid, it reduces to the form

vV-V=0 (L.17N

1.18 Equation of motion

The motion of fluid is governed by law of conservation of momentum. The application of this
law to an arbitrary control volume in flowing fluid yields the following equation commonly

known as equation of motion

hY
pfﬁz—Vp—%divT—i-pb. (1.15)

12



In above equation. T is Cauchy stress tensor and b is body force per unit mass.

The above equation can be written in a more convenient form as

5V 2
o) %—f*Vx(VXV)—rV(I )}:pk-@-di\'TA (1.194

1.19 Curvilinear coordinates

Fig. (1.1). Cylindrical coordinates system with

coordinates (r.#. z).

An orthogonal system is a system for which the coordinate surfaces are mutnally perpendicular.
For the evlindrical system (Fig. (1.1}, the coordinate surfaces are r = constant. # = constaut
and z = coustant. These three coordinate surfaces intersect through a given point av righr
angles. The three curves of interscction of the coordinate surfaces in pair intersect at right
angles. These curves are called coordinate lines or directions. We draw unit basis vectors
tangent to the coordinate directions. For the cylindrical systern (Fig. (1.1)). we might call them
e,, g and e.. These unit vectors form an orthogonal triad like i. j and k. We refer to such
a coordinate systems as curvilinear coordinate systems when the coordinate surfaces are not
planes and the coordinate lines arc curves other than straight lines.

We consider the curvilinear orthogonal coordinates g;. 2. ¢3. which can be calculated from

the cartesian coordinates (x).r3.r3) as:

13



q = qilx).x2.73).

gy = gqa(zy. ra2.x3).
g3 = qalxy.r2.03).
or in short
¢ = qi(x;).

We assume that Eq. (1.23) has unique inverse:

Ir; = -ri(q_,' ).

or

x = x(g,).

(1.

(1.24)

23)

If ¢ and g3 are kept constant. the vector x = x(q;) describes a curve in a space which is the

coordinates curve q;. dx/dq; is the rangent vector to this curv

in the direction of increasing ¢; reads:

x
e = g1
ax
gy
If we let |9x/0q1| = b;. then we see that
ax
_— = e]bl.
dq;
and in the same way
ax
- = e2bs.
992
dx
- = e3b3.
9q3

with (X, Ugy, = by and X, dyy, = by

Since x = x{g;). we can write the line element as

14

:. The corresponding unit vector

267

.29)



ax g% ox
dx = —dg, + z—dgy + ——dgs.
* 0@1@1 dg2 i BQqus

or

ax = b]dqlel + bzdrne-_) = b:;dq;;e,:,.

and the square of the line element is
dx - dx = bfd‘ﬁ) hl bﬁdqﬁ + bédqg.
Further, the volume element (Fig.(1.2)) is given by

dV' = b1bybsdgrdyadgs.

{1.30)

1131

11324

11.33)

The expression of g; surface element of the volume element dV (i.e. the surface element per-

peudicular to the ¢; direction) is

dS; = bobzdgadys.

and similarly the other surface elements are:

dSy = b1bydg dygs.

dS3 = bybadgdga.

15
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{q3+dq3fLe.

i

f (a2rduline.

[ 1%

e

ai (@l dqlrr.

Fig. (1.2). Volume element in the curvilinear coordinate

system.

1.19.1 Gradient, Divergence and Curl! in curvilinear coordinates

In this subsection. we will discuss the components of gradient and curl of a vector. divergence of
a tensor and rate of deformation tensor along with the expression of the divergence of a tensor,

If @ is a scalar function. then the components of vector V@ are:

1 84
Along q, (Vo) = = o% (1.37)
b Oy
1 Jgd .
Along ¢ - (Vd)p = ——. {1.38)
by d¢2
1 g
Along g3 (V3= ——. (1.39}
b3 dq;;

The divergence of a vector V (here considered as fluid velocity) having components u. us and
u3 in the direction of the increasing ¢;. g» and g3 is given bv

1 d

V.V = —
bibabs | 9

b} a
(babzuy) + 8—[;,2(63511.:‘,2) + a—qs(blbgu(;)} ) (1.10)

16



The components of curl ¥V x 'V are:

Along ¢1: (V x V)

Along g2: (V x V)

Along ¢ : (V. T),
Along ga : (V.TY
Along g3 : (V. T3

The Cauchy-stress tensor in symbolic form is

T =(-p+A+V.V)I+ 2uE.

which for an incompressible fluid reduces to

where I is the identity tensor and E the rate of deformation tensor.

T = —pl + 2uE.

(1.11)

(1.42)

11.43)

{1.44)

{1.13)

{1.46)



The components of the rate of deformation tensor in curvilinear coordinates are given by

1 aul )

u) db]

u3 6()1

_low | oup Ob  oug Oby L&)
o by O, N biby g T biby iy (
o _ 10wy w Oy uz Oy (1.49)
BT 5 8q | bibydqy | baby Oy3 '
¢ 1 Bug i 6b3 1751 (%3 (l "U)
3= o e — —— ——, D
BT by 0gs T bib3 g1 baby O
b] d Ul bg (9 Uz -
TP DIl I I A (1 R VN 1.51
e12 by Jg2 ( 1) TN °! Hab
by & [up by d [uy .
2ezp = —— | — |+~ — ] " Z2ea. 1.52
2 O (b_;) 5 Jqn (b:; o s
bl d u) bg g u3 —
2 = — = _— _—— —_— = 2 - 1.: tj
T b dgs (51) T by g1 \ b3 e13 (23)

1.20 Equation of continuity in curvilinear coordinates

Using the formulas given in section (1.19.1). we can write the equation of continuity (1.16) in

terms of curvilinear coordinates as

dp 1 7} é] 17 -
- — (babgpuy) + o (b3b1pu; —{bibepuz)| = 0. 1.54
Bt T bibabs Bql( 2bpu ) 8q-;g( sbrpuz) + 6:;3( 1bppus) (1.54)
If p is constant, then we get
d d o .
— (bab ——=(bsbyuz) + — (b1 b; = 0. 1.95)
6,qu( ab3ur) + 3q2( 3b1142) BQ3( 1bau3} (1.55;

Eq. {1.55} is counterpart of Eq. {1.17) in curvilinear coordinates and valic for incompressible

Hows.

1.21 Equation of motion in curvilinear coordinates

In the same manner, the application of results in section {1.19.1) vields the following components

of equation of motion in curvilinear coordinates ¢;. g2 and ¢3.

18
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Chapter 2

Long wavelength flow analysis in a

curved channel

2.1 Introduction

r

This chapter is wholly based on the material of a paper published by Ali et al. [20i. All the
mathematical derivations and graphical results given in this paper are reproduced by the author
of this thesis. The aim of this chapter is to understand the phenomenon of peristalsis in a curved

channel and to provide the necessary material on which the contents of chapter (3} are basced.

2.2 Flow geometry and governing equations

Let us consider a curved channel of half width a coiled in a circle with conter O and radius
R* {(Fig. (2.1)). We choose curvilinear coordinates R. § and Z such that 7 is along the radial
direction. § is along the axial direction and Z perpendicular to both R and §. The geometry

of the upper and lower walls is given as:

Y]

Hi(

¥ 51

2r . -
) = a-+bsin [%(S - ct)} . upper wall. (211

il

_ﬁ(

>| 5§
[R]
[R]

f) = —a-bsin [ (S — Cf):| . lower wall. (2.



In the above equations. ¢ is the speed. A is the wavelength. b is the amplitude of the wave and
t is the time. Having described the geometry of the problem. we will now move to derive the
flow equations. In deriving the flow equations. the result of sections (1.19 and (1.20) will be
used.

Identifving g1 = R, ¢2 = § and g3 = Z and flow as two-dimensional. we can write the
velocity field V as

V- [P(R.5.5). T(R.5.9). 0]. (231

where V is the components of velocity along the R—direction and U is along the S—direction.
The appropriate transformations between curvilinear coordinates (R.5.Z) and cartesian

coordinates (X.Y.Z) are:

X = (R —r}_?)cos(—}%) (2.4
Y = (R +ﬁ)sin(%). (2.5
Z = Z. (2.6)

Using the transformation (2.4) — (2.6) and results in section (1.19}. the following values of

b1. by and b3 are obtained.

b=1. (2.7
R*+R
by = ( T ) (2.8)
and
b3 =1. {2.9)

Having in hand, the scale factors b;. b and b3 and taking u; = V. uy = U and u3 = 0. the

continuity equation (1.16) takes the form

{(R*+E)F}+R‘€(;=U. (2.10)



Similarly the components of the rate of deformation tensor are:

av
811=£. {2.11,
R \aU v
oy — =, 2.12)
“ (R‘+R) 98 TR ~R ‘
R* \dV (R'+R\ & RN =
2e10 = ==+ | — ] = = | | = 2es;. 2.13
°1 (R‘+R) asf( R’ )aR[(R'—R) ] . s
and thus the components of T become
T = —p-ﬁ-Q?]dE. (2.1d)
oR
T-z'z:—P;?ﬂ[( i _) ov, 1t _W (2.15)
}JuS R - R
Tiz =Ty =n(R +R)—= ( ) ( )i {2.16)
12 21 =1 R+ R+ R/ a5 <10

After substitution of b;. b and b3 and the components of T in Eqs. (1.36) and ({1.57). the

results are given in the following equations for the flow under consideration in absence of body

forces.
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In the laboratory frame (R.S). the flow in the curved channel is unsteady. However. we can

treat this system as steady in the wave frame (¥.3) moving with the speed of wave. The

o
(3]



transformations relating the two frames are:

§s=S-ct.7F=R a=U-c. 7=V. (2.19;

where ¥ and % are the velocity components along the 7 and ~—directions in the wave frame.

Utilizing transformations (2.19). Eqs. (2.10), (2.17) and {2.18) can be castod as

a Ju
— T+ Rt +7—==0. (2.20}
S A BTy 47 ‘
o e = 1)
v R*(u+ v {u 10p A2 o
_C3_?+___v+ 7(u+6)i_(_u+c) N _,_(73 ‘) L (2.21)
d T rT+R* 05 TF+R* n OF TR s
v e sl
(F+ R T {7+ R7)Z 85
L2 (7 B %)
u | —du |, R (u+c) ga . o F+R" OT oo
gc?: + 'Ug + F+R* Bs _ R QE 'y + ( R )2 E)_?lr {') )))
4 (Ehe)T p(T +R*) Os TR s ' T
T+ H* (u+c) . 2R 9w
TR T FR I0s
Defining the dimensionless varlables and stream functions as:
275 T u v pca
§ = —_— .=~ u=-—-, = - RQ —_
A a C c M
27a’ H 2ra R
= =—. d=—,  k="—. (2,23}
P Apte P a A 1 (
v k ov
U= — e = {2.24)

on’ v n+k s

Egs. (2.21) and (2.22) can be written in the following form
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In above equations. Re and ¢ are Reynolds number and wave number respectively. Note that
the definition of stream function makes the continuity equation (1.16} identically satistied.
Now applying long wavelength and low Revnolds number approximations. the above equa-
tions reduce to
dp

)
S8
=1

k op 1 9 {(kﬂ)‘?—“}_—(”” ~0. (2.28)

~k+1]g+k+n3_n an (k+7n)?2

Differentiating Eq. (2.28) w.r.t. 7 and using Eq. (2.27). we get

o* gy d 1 v :
k) ey — Ay e} 2
an? {(A "o } o {k sl (1 U’i)} ! 220

The dimensional volume fiow rate in laboratory frame is define as

F_ —_—
Q= f_ UdR. (2.30)
-H

in which H is a function of § and t. The above expression in wave frame becomes

H
F:] udr. (2.31)
-H

where H is a function of 5 alone. From Egs. {2.19) and (2.31). we can write



Q=F+2H. (2.32)

The time-averaged flow over a period T at a fixed position S is
- 1 /T
= = dt. (2.33)
2=z @
Invoking Eq. (2.32) into (2.33) and then integrating. one has
Q =F + %a. {2.34)

If we define the dimensionless mean flows ©, in the laboratory frame, and g. in the wave-frame.

according to

o= Q q:E. (2.35)
ca ca
Eq. (2.34) reduces to
Q=qg+2 (2.36)
in which
"o
g=— [ —S-dn=—(¥(h)—T(-h)). (2.37)
_p On

Selecting ¥(h) = —q/2, we have ¥(—h) = ¢/2 and the appropriate boundary conditions in the

wave frame are

oV
v = -1 Y g=ho1sdsns (2.38)
2 dn
25
v = g ﬂ—l at n=-h=-1-Gsins. (2.39)
2 an

where ¢ = b/a is the amplitude ratio.
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2.2.1 Solution of the problem

Eq. (2.29) can also be expressed in the following form

g o 1 0¥ 1
— < {k - : 5 — - = 2.10;
an {( ) dnt o on? k+nén TRy r;} 0 ( !
or
d o [9* 1 9¥ 1
— k) — |t 0————| = - 2.41
an {( T ”)(').') [01]2 (k-—n) 671] } (k+m)? { J
By three times integration of above equation w.r.t. n. we can write
ov k {k 1) ) | (k+1) 3 > 19
%71—k+n+cl 5 ln(k+n)—§ + 7 (.QTL.+J]. [2.42)

Eq. (2.42) multiplied by a minus sign represents the velocity component v as a function of 3

and k, i.e.

k (k+1n) 1 (h+ 1) <3 &
- _ | U . ) 2 4
U 1+ P a— {ln( +17) 9} 5 2y — (2.43)

Another integration of Eq. (2.42) results in the following expression for the stream function

k 2
U =g kln(k <) + ¢

k 2
{In(k +1n) -1} + ( zn) eo+eylnlk -n) —cy. {2.14)

where ¢1. ¢3. ¢3 and ¢4 are constants of integration. Using the boundary conditions. we get the

following values of ¢1. ¢, ¢3 and ¢4.
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From Eq. {2.28), the pressure gradient turns out to be

dp 1
- - 24
Js A (245)

The dimensicnless pressure rises over one wave length is defined by

R d[)

P 4s. 2.16
5 (2.46)

AP, =



2.3 Results and Discussion

This section is divided into three subsections. Flow characteristics are described in first sub-
section. Second subsection is devoted to the discussion of pumping characteristics. In the
last subsection. trapping phenvmenon is illustrated. The analvtical expressions of ¥, uin) and
dp/ds given in the previous section are used in this section to discuss these features of pen-
staltic motion. In the present analvsis. the extra parameter that comes into play in contrast

with previous attempts on peristalsis is the radius of curvature of the channel. ie.. k.

2.3.1 Flow Characteristics

The expression of u given by Eq. (2.43) can be used to discuss the flow characteristics. There-
fore, its variation with # for different values of k is plotted in Fig. (2.2}.

It is noticed that for large values of k (i.e. for straight channel}. the velocity profile is
symmetric about the axis of channel and the maxima occurs at 4 = (0. However. for small
values of & (i.e. for curved channel). the profiles are not symmetric about 7 = 0 and maxima
shifts towards the negative values of 1. Furthermore it is observed from the computations that

in the narrow part of the channel. the effects of the curvature are not pronounced.

2.3.2 Pumping Characteristics

The Pumping characteristics can be well described by studying rthe axial pressure gradienr dp/ds
given by expression Eq. (2.45) and the pressure difference over one wave lensth calculated from
expression Eq. (2.46).

The variation of dp/ds per wavelength for different values of k is seen in Fig.(2.3). This
figure depicts that the magnitude of dp/ds decreases in going from curved ro straight chiannel.

An interesting feature of peristalsis is pumping against the pressure rise. For such charac-
teristics. we have plotted pressure rise per wavelength AP, against dimensionless time mean
flow rate © (Fig. (2.4)) for different values of k. The maximum pressure rise against which
peristalsis works as a pump. i.c.. AP, for @ = 0. is denoted by Fy. When AP, > P,. then flux
is negative, i.e., against the peristaltic wave direction. The value of G corresponding to AP =1

(which is known as free pumping) is denoted by ©g. When AP, < 0. the pressure assists the
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flow and this is known as co-pumping. The following information can be cxtracted from Fig.
(2.4).

* Pp increases as one moves from straight to curved channel. This means that the peristalsis
has to work against greater pressure rise in curved channel as compared to flow in straight
channel.

+ The free pumping flux Oy increases in going from curved to straight channel.

* In co-pumping similar to free pumping. the pumping rate for straight channel is greater

in magnitude as compared to curved channel.

2.3.3 Trapping

The analytical expression of ¥ due to Eq. (2.44) is plotted in Figs. (2.5 a) — (2.5 d) to discuss
the trapping phenomencn for various values of k. In general, the shape of streamlines is similar
to that of the boundary wall in the wave frame. However. under certain onditions. some of
the streamlines split and enclose a bolus, which moves as a whole with wave. We obscrve from
Figs. (2.5 a) — (2.5 d) that for small value of k. the bolus is not symmetric about # = {} and is
pushed towards the lower wall. However. as & increases, the results of seraight channel can be

recovered.
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Peristaftic wall
.‘." \

Fig. (2.1). Schematic diagram of the problem.

Fig. {2.2). Variation of u(n) for different values of & with

& =08and © =2.



dpfds

Fig. {2.3). Variation of dp/ds for different values of &
with & = 0.2 and © = 0.5.
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Fig. (2.4). Variation of AP, for different valucs of &k
with & =0.1.
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-1 o 1 2
Fig. (2.5 a). Streamlines for k = 3.5 with parameters

$®=08and O = 1.5.

Fig. (2.5 b). Streamlines for & = 5 with parameters
& =08and & =15
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Fig. (2.5 ¢). Streamlines for & = 10 with parametcrs

¢ =08and B =1.5

Fig. (2.5 d). Streamlines for & — o with parameters

P =08and O =1.5
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Chapter 3

Slip effects on peristaltic flow in a

curved channel

3.1 Introduction

The purpose of this chapter is to extend the analysis of chapter 2 by considering the slip at
the walls of the channel. The expressions of stream function. pressure gradient and velocity are
obtained analytically in terms of dimensionless slip parameter. A graphical study is performed
to analyze the effects of slip parameter on velocity. pressure rise per wavel ugth and trapping

phenomenon.

3.2 Problem Formulation

The geometry and governing equations of the problem which are to be atrempted in this chapter
are same as described in chapter 2. The only change comes through the boundary conditions
at the walls of the channel.

In chapter 2. no-slip boundary condition was used at the upper and lower walls of rthe chan-
nel. Here the no-slip condition is replaced by the slip condition. i.e.. Eqs. (2.38 b) and (2.39 &)

now become
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a*v 3 ] ov 3
—3— 1 - = 4+ 1 ¢ =-h=-1—-®3in(s). 3.
o +[ k+n] n P Latn ; 1-®sin(s) (3.1
3 3 ] ov -3
j—. - - = + 1 =h= - Si 5. 3.2
e [ A.+:1} o P at n 1+ &Sinis) (3.2

where 3 = b/a is the dimensionless slip parameter.

It is interesting to note that due to the slip at the walls. the dimensionless curvature radius
parameter k comes in the boundary condition and thus for the fixed values of 3. the velocity
will take the different values at the walls for different values of &.

Employing the same methodology as used in chapter 2, the solution of rhe boundary value
problem consisting of differential equation (2.29) and the boundary conditions Eqgs, (2.38 u).

{2.39 a). (3.1) and (3.2) is

(k+y)? k+ 1)

V=n—-Fklnlk+19)+c; {1n(k+n)—l}+(

ey +cylnlk ~ ) + ¢ (3.3}

*

where cj. ¢3 ¢3 and ¢} are the iutegration constants and are given as below.

ci = {(Bk(2r+q) (—h® +hE* + 3h%3 + K%3)) / (4hk* (=R — 2R3 + 2673 ~ h (K* + 13%))
A (R =k Ik - h® — gk (B2 — &) BInlk + k) + (A% — &) Injk + A2

_ (h.2 _ k2)21n[k —hl (—2kJ+ (h2 - kz) In & + h])) .

¢ = - (2(2h+q) ((h— K (kb 23)Inik - ki - (—k + L —24) .
(<2kh(k+h =230« (ho k) Inlk« 1)) /(4042 (13 2023 - 2623 h (k2 + 152
+ (R =k In(k - h* — 4k (B2 = &%) 3n [k + h) + (A% - &) Inik + A2

— (r? - kz)zln[k -k (-2k3 + (A* — k) InTk + h])) .
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¢y = 2k(2R°3 + 6hk'3 + gk*3 + A
(—2k2 + g3+ 2052 (12 + 3(—q+43)) + k(A2 = k) Inlk ~ h? -
- (h? - k%)° (2h3 ~20k% — hg - kP g - ANk + b+ k(h? = k) k-
+ (h? = k2)"Inik - hy (20 - 26k% + hPq - K (g ~ 43}~ (24° — 260) Injk ~ hj} )

(4hk? (=h® + 2023 + 2k23 — R (K2 + 43%)) — (B2 — k2 Itk — h® — 4k (K2 - &%) 3 7 -+

+ (R = k) [k + 07 = (B2 = ) Ik = B (=263 - (A2 = K2 k= 1)) )

¢i = (2h+q)(=2k+ (W = k) (=h® + 2R%3 + 2K%3 + R (K% + 43%))
—(h =k (b kP (ko= 23k — By (B2 — K k-
+{h— k)P (h+ k)2 (k+h—23)Ink+h + (A2 =k} Injk - h;'-’)
(2 (4rK? (=h® + 2023 + k23 + b (k2 = 432)) + (A2 = k%) In ik — 1° — 4k (W% 2)F 0 o

+(h? = £ Infk + A = (W = k%) Ink - ) (<243 = (R = k) Il + 1)) ) ).

The dimensionless pressure gradient can be obtained with the help of Eq. (2.45) and is given

as:

<

1. -
— _ECI (._54‘

Qe
o

Using the above expression in Eq. (2.46) . one can discuss the effect of slip parameter J on the

pumping characteristics.

3.3 Discussion

In this section. the intention is to analyze the effects of emerging parameter- such as J aund & on
flow velocity. pressure gradient. pressure rise per wavelength and trapping plienomenon through
Figs. (3.1) — (3.15). Now the brief description of each figure and the resulis obtained from it.
Fig. (3.1) is prepared to see the cffects of dimensionless curvature radius k& on lengitudinal
velocity component u. It is seen that the flow is symmetric about the centre-line of the channel
for large value of k. However as & increases. the profiles of w are no more svmmetric about the

centre-line. This observation is in accordance with the one made in chapter (2). Interestiugly.
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due to the imposition of slip condition at the walls of the channel. the longitudinal velocity «
at the walls becomes a function of k. Therefore. as k increases. u decreascs at the lower wall
and increases at the upper one.

In Fig. (3.2). u(7) is plotted against 1 for various values of . by keeping k fixed. This figure
reveals that an increase in J increases the longitudinal velocity at both the walls.

The profiles of dp/ds for various values of & and for non-zero value of ¢ are shown in Fig.
(3.3). It can be inferred from this figure that the magnitude of gradient decreases by increasing
k.

The effects of 3 on dp//ds is similar to that of & (Fig. 3.4). Figs. (3.5} and (3.6) are plotred
to analyze the behaviour of pressure rise per wavelength for different values of 3 and & 1t is also
important to mention that in peristaltic flow. the peristaltic wave works azainst the pressure
rise to propel the fluid. Thus the agents which reduces the pressure rise can significantly affects
the performance of machinery which works on the principles of peristalsis. It is interesting to
note that the maximum values of AP, (i.e. AP, for @ = 0) decreases for large values of 4
and k. Thus the slip parameter 3 has significant effects on AP, and cannot be ignored in such
studies.

In order to see the effects of 3 and k on trapping phenomenon. Figs. (3.7) — (3.13) are
plotted. These figures demonstrate that on one hand the bolus is svmmetric about the centre-
line for a straight channel. However. it becomes unsymmetrical for small values of k (i.c. for
a curved channel) and splits into two halves. Further. the upper half pushes the lower one
towards the lower wall. It is also to be noted that the circulation of fluid in the upper half is
faster than the circulation of fluid in the lower one. On the other hand. the size and circulation

of bolus reduces for large value of 3.
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Fig. 3.1. Variation of u(n) for different values of & for

3=05with® =08 and 8 = 2.

u(7)

-10 -0.5 0.0 05 10

Fig. 3.2. Variation of u{n) for different values of 3 for

k=5 with® =08 and @ = 2.
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Fig. 3.3. Vanation of dp/ds for different values of k for
3 =10.25with ®=05and 8 =102

0.0
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Fig. 3.4. Variation of dp/ds for different values of 3
for k=3 with ¢ =0.5 and 8 = 0.2.
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Fig. 3.5. Variation of AP, for different values of J for
k=2 with ¢ = (.1.
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Fig. 3.6. Variation of AP, for different values of & for
3=0.1with®=0.1.
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Fig. 3.7. Streamlines for 3 = 0.1. & = 3.5 with ¢ = 0.3
and © = 1.5.
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Fig. 3.8. Streamlines for 3 =0.1. k = 5 with ¢ = (1.8 and
0=15

43



Fig. 3.9. Streamlines for 3 = (1.1. & = 10 with ® = 0.8 and
e =15

Fig. 3.10. Streamlines for 3 =0.1. £ — > with @ = 0.8 and
8 =15
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Fig. 3.11. Streamlines for £ =5, 4 =0.1 with ¢ = 0.8 anl
6 =15

Fig. 3.12. Streamlines for k = 5 3 =0.25 with & = 0.5 aund
Q= 1.5.
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Fig. 3.13. Streamlines for k = 5. 3 = 0.5 with ¢ = (.8 and
Q=15
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Fig. 3.14. Streamlines for k = 5. 3 = 0.75 with ® = 0.8 and
0 =15
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Fig. 3.15. Streamlines for £ = 5. 3 =1 with & = (0.3 and
© =1.5.
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