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Preface

Interest il the flows of viscoelastic fluids has increased substantially over the past few

decades due to the occurrence of these liquids in industrial and engineering processes.

The equations of motion of non-Newtonian fluids are highly non-linear and one order

higher than the Navier-Stokes or boundary layer equations. Therefore, due to the

complexiry of the viscoelastic eqwrtions, finding accurate solutions is not an easy task.

Following the pioneering work in this area by Sakiadis [], a rapidly increasing number

of articles investigating the various aspects of Sakiadis problem have been found in the

literature. Chen [2] has investigated the effects of thermal buoyancy on flow past a heated

or cooled vertical continuously stretching surface. Ali and Al-Yousaf [3] studied the

effects of mixed convection adjacent to a continuously moving upward vertical plate with

suction/injection at the surface. Further, Ali [4] discussed the heat and mass transfer

characteristics of the self-similar boundary layer flows induced by a vertically stretching

surface. Again, Ali [5] has discussed the effects of temperature dependent viscosity on

mixed convection boundary layer flow and heat t ansfer on a continuously moving

vertical surface. Ishak et al. [6] presented an analysis for the steady two-dimensional

magnetohydrodynamic flow of a viscous fluid over a stretching vertical sheet. Recently

Ishak et al. [7] studied the mixed convection boundary layers in the stagnation-point flow

toward a stretching vertical sheet. Very recently, Hayat et al. [8] analyzed the effects of

radiation and magnetic field on the mixed convection stagnation-point flow over a

vertical stretching sheet in a porous medium. In this dissertation an attempt is made to

extend the analysis of ref. [8] for a second gra.de fluid. The dissertation consists of three

chapters. The brieflayout ofeach chapter is as follows:

Chapter one is introductory in natue. Basics equations, derivation of boundary layer

equations and introduction to homotopy analysis method is presented in this chapter.

Chapter two is based on the material of ref. [8]. The results presented in ref. [8] are

reproduced with all the details.

In chapter three, the flow analysis presented in chapter two is extended for a second

grade fluid. The goveming equations for the boundary layer flow ofa second grade fluid

are solved using homotopy analysis method. Tlre characteristics of the solution are



analyzed through a graphical study. An appropriate bibliography is presented at the end

of the dissertation.
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Chapter 1

Preliminaries

In this chapter we present basic equation in vector form. deriration of boundarl' layer equations

for viscous and second grade fluid and the illustration of homotopy analysis method. The

material on the boundary layer flow and boundary layer equation for viscous fluid in taken

from l9l.

1.1 Basic Equations

1.1.1 Continuity Equation

The lal'of conservation of mass for a compressible fluid can be *:itten as

**" (pv) :0, (1 1)

The above equation is also knom as continuity equation. In above equation V is the velocitl'

of the fluid. p is the density and I denotes the time. For an incompressible fluid p: constant

and above equatiol becomes

V.V:0. ( 1.2)

1.1.2 Momentum Equation

Neq,ton's second law of motion is also known as principle of linear momentum. The application

of this law to an arbitrary flon'ing element of fluid ;"ields the follou'ing equation. commonl.'-



known as momentum equation.

,# : -oo*divTrpb.

rr,:vx ":(- -4)u\dr 0y /

(13)

here p is the pressure. T is the Cauchy stress tensor and b stands for the body force vector.

1.1.3 Energy equation

The application of the first lau' of thermodynamics to an arbitrary fluid element give rise to

the enerry equation. Its mathematical form is as under:

:T.L+ aY2T, (1 4)

in t'hich

L: VV.

In above equation c, is the specific heat capa.ity. I is the temperature. and a is the the thermal

conductivity of the fluid.

L.2 Boundary Layer Flow

\Aie consider flows near solid surfaces knou'n as boundary layer flos's. One way of describing these

flows is in terms of vorticity d1'namics. i.e.. generation. diffusion. convection and intensification

of vorticity. The presence of vorticity distinguishes boundar-," layer flows from potential flows.

which are free of vorticitl'. In twodimensional flow along the zg-plane q'ith z and u as the

velocitv components in, and y directions respectively. the vorticity is given by

DT
P% Dt

(15)

and is a measure of rotation in the fluid. It is knoe'n that vorticity is generated at solid

boundaries. For example. if u: u(x.U) the plane y : 0 corresponds to an impermeable wall

u = 0 then along this u'all 0a/0r : 0. Due to the no-slip boundary condition. 1uf 0y is non



zero. aJrd thus vorticity is generated according to

,,: -*u.oa

on ono

(1.6 )

Vorticity difiuses away from the generator t'all at a rate of (uV2w) . and competes u'ith con-

vection at a rate of u.Vw. Fig. 1.1. Due to the effects of convection. the vorticity is confined

s'ithin a parabolicJike envelope l'hich is commonly knos'n as boundary layer. Therefore. the

area aE ay from the solid wall remains free of vorticity.The line separating boundary layer and

potential flou's. i.e.. the line s'here the velocity changes from a parabolic to a flat profile. is

defined by the orbit of vorticity "particles" generated at a solid surface and diffused at'ay to a

penetration or boundary layer thickness. d (o).

l,*,
1*
PI.AII

Fig. 1.1 : Generation. convection and diffusion of vorticity in the vicinity of a solid u'all.

Along the edge of the boundary layer. convection and diffusion of vorticity are of the same

order of magnitude. i.e..

(1 7)

=*,1 ^' ).
L6'(r)i

(1 8)

- -0u' ." 02u'
V ;- = k'u -;---; ,or dy.

here k is a constant and V is the velocitv of the free sream. Consequently.

€

+

+

n
n

of

l.t_l
L,l



where , is the distance from the leading edge of the plate. Therefore the expression

6(x)=11 (1 e)

provides an order of magnitude estimate for the boundary layer thickness. Consider the flow

past a submerged body. as shown in Fig. 1.2. Across the bounda.ry layer, the velocity increases

from zero-due to the no slip boundarl' condition-to the finite value of the free strearn flou'. The

thickness of the boundar.,- layer flor-. 6 (r). is a function of the distance from the leading edge

of the body. and depends on the local Reynold number. Re : pVtlq; d (o) can be infinitesimal

finite or practically infinite. \4rhen Re << 1(which leads to creeping flow). the distance d (r)

is practicallf infinite. In this case. the solutions to the Nar.ier Stokes equations for creeping

flow holds uniformly over the entire flos' area. For 1<< Re < 104. d (z) is small but finite. i.e..

6 (x) /L << 1. For higher Reynold numbers. the flow becomes turbulent leading to a turbulent

boundary'layer. Under certain flow conditions. the boundary layer flow detaches from the solid

surface. resulting in shedding of vorticit;- that eventually accumulates into periodically spaced

traveling vortices that constitute the }'ake.

Appach vclocity

v+ Edge of bouodry
hyrr

ur(1,6 (i)

+

+

\
..\-.-.

Potedhl
flfl

Bodry laytr6(z)

Fig. 1.2 : Boundary layer and potential florr regions around a plate.

From the physical point of view. the boundary layer thickness d (z) defines the region l'here

the efiect of diffusion of vorticity au'ay from the generating solid surface competes u,'ith convec-



tion from bulk motion. A rough estimate of the thickness d (z) is provided by Eq. (1.9). The

presence of vorticity along and across the boundary layer is indicated in the schematic of Fig.

1.1. From a mathematical point of view. the solution within the boundar_v laver is an inner

solution to the Navier Stokes equations which satisfies the ncslip boundar)' condition. but not

the potential velocitv profile away hom the body.

1.3 Boundary layer equation for viscous fluid

Boundarl' layer flow of Nestonian fluids can be studied by means of the Na!'ier Stokes equa-

tions. However. the characteristics of the flow suggest the use of simplified governing equations.

Indeed. using order of magnitude anall'sis. a more simplified set of equations knortn as the

boundary layer equations. can be developed. In reference to Fig. 1.2. the Nar.ier Stokes equa-

tions are made dimensionless by means of chara.teristic quantrties that bring the involved terms

to compa.rable order of magnitude:

lo"l,
+ u * r'- !, =i=.. =-ftez.

De:fr,
where Re : V L/u is the Reynold number. For stead,v flow. the resulting dimensionless equa-

tions are:
0u* 0r'
6r-+ *=r't:

.0u' .0u' 0p' . 02u' | 02u'
' dF - L a{ = - ar, * aF * R"aF'

t / ,01' ,0r'\ 0p' I A2u' I A2t
R" ('-a. ''' ao- ): -# + R"AtF * R"a,7

If Re ) 1, these equations reduces to

0u- 0t'
-+-:0.dr' dA*

I

(1.10)

(1.11)

(1.12)

(1.13)



.0u' .0u' 0p- 02u*

'ar*u av-=-ar-- aF' (1.14)

and

p =p \r ). (1.15)

The appropriate, dimensionless boundary conditions to Eqs. (1.13) to (1-15) a.re: at g" : 0.

u* : u* :0 (no-slip) i at a* -- 1, u* : 1, 0u' /0y- : 0 (continuity of velocity and stress) ; at

r* -- O, u* : u* : 0 (stagnation point) .

The pressure gradient. dp' f dr- identical to that of the outer. potential fl"*,(#)r,

# = (#),= (-"#), ('6)

Thus the only unknorms in Eqs. (1.13) and (1.1a) are the two velocity components. z* and

u*.The latter is eliminated by the means of the continuity equation.

- fou',-L" :- I 
-tlu 

.Jdr""

leading to a single equation.

(1.17)

(1.18)

(1.le)

(1.20)

The corresponding dimensional forrns of the boundary layer equations for laminar flon' are

*#*#C I'#*.):-#.#

0u 0u

- 
-l- 

- 
: lltu' ov

0u 0u I Ap 02u
-0r' -0u pfu ' - 0y'

L.4 Boundary layer equation for Second grade fluid

For two.dimensional flow. let the velocity field be

v= [z (c, s) , u (2, s) , 0] . (1.21)



In a second grade fluid the Cauchy stress tensor is defined as

f:-pI+S. (r.22)

where p is pressure. I is identitl' tensor and extra stress tensor S is obtained through the

follo*'ing relation

S: pAr * a1A2 * a2Al. (1.23)

In above relation p is dynamic viscosity. ot. and 02 are material constants and A1 and A2 are

first and second Riylin-Ericksen tensors given as

After usual manipulation. one can easily obtain.

A1 : (vv) + (vv)r

A, = + + A1 (v,V) + (VV)r"A1.'dt

+:(2+vv)e,dt \4, /

A2 : (v.v) A'1 + Ar (vv) + (vv)rAl

I ^a.A,: I za;
' la" ^\La -r a-"

in which

For steady flow-

Lz=

(1.24)

(1.25)

(1.26)

(1 27)

(1.28)

(1.2e)

zu{} +2,$6 + +(ft)'z

+2(*\2 +2**\or/ olor

"eou*+"fr+rfi+tfifi
, o0ror 0r& 0r &t , - 02t*oa1&- a - aia; -r tdta

aL a.1a;1-a;l
oQ I'au )

,{5 + "{p +,{; + 2fffi
+2ftft+*fr****,#&

, ^ l22tff +2uffi*41fr)
,. '2L,t lglt\ L cQtt4!''\au) ''ovot



A?:
q(*)'+(H**)'

q?t Ott , qdu &t

, ^At Aa ^Aa Ax-r.6ia t z6ia

oOrL 0t ^Ar Ar
or o! or or

, q&t tu aou Ol
' oyo! drou

,- \2 r2nlfr) * lfr* *)
(1.30)

(1.31)

Thus

S:

zpfr+u{2"fu
+2u !! + I I*\2' oro! \or,

-, I@\2 1qor,&\'-\ ) '-?utu(( " , 1 ,zl
+o, 

{a 1*tu1'. (#. #)'}

,(***)+",{"$6+"u4;
+,fi +tfffi+sff;ft
, 0r dt: tu1r' a'?" Iiaa 'r d; ai -r L aia J

, - [ ^a"a" ^a"a'-f .12 \zdia t .a;a7

1j0t, dt 19& & \''atfu''a,atJ

,(** *) +",{"ffi+"fu
-.3u,c1r'dt,oOr0u'1- u 6i, 'f "di4 - "*,

*******,a-,*\
+",{2ftfi +2*H

-1jdu &u 19At & \'fuAs''AtAvJ

2pH + ", {2,'#
+2r' P1*:- + 419!l' orog \o! / -

*r(*)'*r**l
+", 

{a 
(ff)'* (r* * #)'}

The z and y component of momentum equation are

"**,*: )#. i (**. . &'*),

"**,#: -)#.)(*".* &'*)
Using the ralues of .9,, and S,, in r momentum equation we get

,6u62u , 3" I a2" 02t\+did? 1' d \AiAt 
-r 

AV )
, a,' / a2" a2,\-r ai \a;Te t a7 )

(1.32)

(1.33)

,**.* - -:*. i(#.#).? { .lHT ;;':,Jt;%, }ox oa por p \uJ_ us_/ , 
[ 

\,y 
;;H,Gk_#j 

-.-., 
)

)
,o' I'n 

\
(1.34)



,# *,H = -;H. i (#. #) . T{ -? (#T #} :,:;Ft#, }
[ *r#@il-gi) 

)
( ,a,az, tu / d2,. a2"\ )

^a2 l1afr -r A \a;@*.tr) \ (1.35)'71 .*@**#) I

Similarly using the values of S* and .5r, in g momentum equation we arrive at

Not' applf ing boundary layer approximations i.e..

u:O(1), u:o(6). r:o(r), u:o(6),at :o(6'), or:o(6'). (1.36)

the equations (1.34) and (1.35) s'ill take the follouing form

0u 0u 1 0o 02u a' I d, 0u 02u 0u 02u 83u1
"tu''0y pAx''Aa2 p l" Afiy2 ' 0t 1yz ' " 0v 0r0y ' ' 7st )

a., 0u 02u)-') --= - 
-

'- p 0y 0z0y'
(1.37)

(138)? --ooa

In vieu'ofthe thermodvnamic constraints proposed by Fosdick and Rajagopal 110] i.e.. (a1 + 02) :
0, Eq. (1.37) reduce to

0u 0u 10o 02u or [ 03u 0u02u 0r 02u 03 u1u^ +t^ :-:--r'j+rlr;-;;+=--3=--r'. 
"1. (1.39)ox da por oy' p L oxoy' or oy' oa oroy da" )

Eq. (1.39) is the required bounda,rl'layer equation for a second grade fluid.

1.5 Homotopy analysis method

A kind of analltic technique. namely the homotopy analysis method (HAltf) u'as proposed by

means of homotopl'. a fundarnental concept of topolog,'. It is an analltic method to approimate

the solutions of nonlinear problems u'ith strong nonlinearity. Traditionaly' solution expressions

of a non linear problem are mainly determined by the type of non linear equations and the

10



employed analytic techniques. and the convergence regions of series solution are strongl]' de.

pendent on physical parameter. It is well known that aralltic approximations of non-linear

problems often break down as nonlinearity becomes strong and perturbation approximations

are lid only for non-linear problems l'ith weak nonlinearity.

In short. the homotopy analysis method is based on the concept of homotopy and is I'ery

simple and straightfors'ard, For example. consider a differential equation

,4 [v (r)] = 0. (1 40)

s'here ,4 is nonlinear operator. t is time and y (i) is an unknonn rariable. Let tr/6 (t) , denotes

an initial approximation of V (l) and tr denotes an auxiliary linear operator p'ith the property

tr/ :0, when / = 0. (1.41)

\ e introduce a non-zero auxiliary parameter h to construct the so-called homotop-'-.

u lv 1t, e1, e, h] : (1 - d L lv o: e) - v. (,)l + ehA lv e, e)) . (1.42)

where p € [0. 1] is an embedding parameter andV (t:p) is a function of t and, p. \4rtren p: Q.

and p : 1. we have

u lt a, et, r. h],=o = tll n, e1- vo (r)l

and

a 
lV 

g,et,, h)r=,: hAV u:p).

respectively'. Using Eq. (1.41). it is clear that

(1.43)

(1.44)

(1.45)

(1.46)

71r: o1 = vo 1t; .

is the solution of the equation

n lv v,e\,p.n) = o.
I ) p=O

11



? (til) : v (t) ,

is therefore obviously the solution of the equation

(1.47)

u llt p,e1;p,n] _ = o. (1.48)
L .l p=]

As tbe embedding parameter p increases from 0 to the solution V 1t: p) of the equation

nltp;p1'r,ol =o (1.4e)

depends upon the embeddjng parameter p and varies from initial approximation l'6 (t) to the se

lutionV(t) ofEq. (1.a0). In topologr such a kind ofcontinuous variation is called deformation.

Nou'let us solve the simple problem

,t>o

/(0):1

using homotopy' analysis method (HAI[). Let us choose the auxiliary linear operator

t:!+r
d.t

( 1.52)

The initial guess of the problem is obtained by applying the auxiliarl- linear operator (1.52) on

unknou,n function /6 (i) along nith bounda"ry condition (1.51) and is given by'

fo(t) = e-t (1.s3)

\l'e nog introduce a non-zero auxiliary pararneter h to construct the homotopy as follos,

dJ,t2
dt- t - t (1 50)

(1.51)

' ,luj-7-7'?1\1 - p\ L lf tt:n) - /ott)l : ro 
l=;i 

*, - t 
)

(1.54)

(1.5s)7(o;p): t,

72



s'here p € [0. I] is the embedding parameter and ] (t: p) is a function of t and p and Eqs. (1.54)

and (1.55) are knou'n as zeroorder deformation problem.

For p : g, ard p : 1. we have

7 (r:o) : /o (,) , (1.s6)

and

i (t;t): J @. (1.57)

Note that the zero-order deformation equation (1.54) contains the auxiliary parameter E. Ar
sume that h is properly cbosen so that the zereorder deformation problem (1.5a) , and (1.55) ,

has solution for all p < [0, 1] and that there exist the derirative

r^t ) = +a"i:\!p\l ,, , ,;. (1.s8)
nl oD" I

lp:u

Thus. using Tavlor's theorem . we expand 7 (f;p) in power series as follows

€
j (t;p): IoQ) +L[k(qpk (1 ss)

k:1

Furthermore. assuming that lh is so properly chosen that the power series is convergent at p = l.
we have

I@:fo(')+i/&(') (1.60)
k=1

Nou' differentiating zero-order deformation problem (1.54) and (1.55) . q'ith respect to p. we get

tl-p)Ll#l -.ll-r.l = ,ol**j-jl (161)
lop) L r lot j

^ -_ 'l
, -,10,1_ *u _*ul+en 

latae- ap - " ap)'

From Eqs. (1.56) and (1.58)

7(t;o):0. i,(r): +#l (162)
t: op

rP=u

13



Setting p = O. ln Eq. (1.61). and using above relations we arrive at

rv,$)t=^l*-k- fi|,

**o=^l*-^-r;],
/l(0):0

Using Eq. (1.53) in(1.64). we arrive at

* * t' -- -*-"
Solving (1.66) subject to condition (1.65) r'e get

Jr(t): h("-" - "-')

Nou,' differentiating zero.order deformation problem (1.5a) and

we arrive

(1.63)

(1.64)

(1.65)

(1.66)

(1.67)

(i.55) *ith respect to p tEice.

(1 68)

(1.6e)

(t-p)Llfl ,,lH) ",1a'j , aj "raj)- '"1d6- ap-" ap)

*ooll!! *aJ -*!-)''"0p 
l0t0p 

' ap -' ao)

Setting p : 0, in above equations and dividing by 2! having in mind relations (1.56) and (1.58) .

we get the second order deformation problem as.

a2j Q:p) _ naf

* * r: o. Dl* + 1,)-zn1oy,

.fz (o) : o

(1.70)

(1.71)

Using Eqs. (1.53) and (1.67) u'e arri\e at

l4



*+n:hfi-tt)e
dT

Nou' solving nonhomogeneous differential equation

the second-order deformation solution as:

-2t _ 2he-3t

(1.72) subject to condition

(1.72)

(1.71). t'e get

l2(t): hle-st - ne-x - ne-tl (1.73)

Thus, the three terms solution (up to second order of approximation) of the problem given

(1.50) and (1.51) is

I ft): Jo(t) + fl(t) + J2ft)

I (t) : e-' + lt (e-2t - "-') + /t [e-st - O - D e-2t - ha-t)

which is the exactly same as the perturbation solution for h: -1.

(1.7 4)

(1.75)

15



Chapter 2

Effects of radiation and permeability

of the medium on MHD

stagnation-point flow over a vertical

stretching sheet

The aim of this chapter is to review the work of Hayat et al. [8]. They have studied the

efiects of radiation and magnetic field on the mixed convection stagnation-point flou' through a

porous medium bounded by a stretching vertical plate. The homotopl' analysis method is used

by them to obtain the solution expressions for the velocity and temperatures fields. Follori ng

their approach we have verified the mathematica.l equations and reproduced all the graphical

results. This exercise is helpful in extending their analysis u'hich is to be presented in Chapter

3.

2.L Formulation of the problem

We consider the steady two-dimensional florr of a viscous incompressible fluid near a stagnation-

point at a vertical surface coinciding s'ith the plane y : 0. the flov,' being in the porous region

y > 0. The surface at I : 0 is stretched along r-axis with te'o equal and opposite forces

16



keeping the origin fixed. A constant applied magnetic field Bo is applied in the g-direction.

For small magnetic Rel.nolds number. the induced magnetic field is neglected. Further the

velocity 2.,. and the temperature 7i, of the stretching sheet is proportional to the distance c

from the origin. \{oreover, [" > 7-. r-here 7t is the uniform of the ambient fluid. The

governing equations for the flow under consideration are Eqs. 7.2 - 7-4. These equations #ter

using the constitutive relation for a Neutonian fluid and the boundary layer approximation

reduce to
0u 0t
- + -:0.dx dy

(21)

(2 3)

(2.6)

AT AT a A2T 7 0s,
- fu ' 0y p% 0a2 pcerAy'

where o is the electrical conductivity. K is the permeability of the porous medium . o is the

porosity. 9 is the gravitational acceleration. pa is thermal expansion coefficient. and g, is the

radiative heat flux. and the "+" and "-" signs in Eq. (2.2) correspond to assisting buoyant

flow and opposing buoyant flow respectively.

The boundarv conditions of the problem are

u-- u-(r): cLi L^ --0, T = 7:-(t) =7,-+bx: at y= 0. (2.4)

(2 5)u: u (x) : ax. T : I_ as g--- cc.

in which a. b and c are the positive constants and t/ (z) is the velocity of the flou- external to

the boundary layer.

In vieu' of Rosseland approximation $€ can write.

"*-,*:uY*,!*nr,q, - rx7+!4g' -,1 - !1u - u1.drOUOrOy'-p^

4o* ?Tas': - 3k oa'

where a' is the Stefan-Boltzmann constant and ,t is the mean absorption coefficient. To express

L7



the term Ia as a linear function. we expand it in a Taylor series about ?- and t'rite

f = nrlr -zr!.

\{aking use of (2.6) and (2.7) in (2.3) we get

AT AT a &T 1,6o'Tx3 dT

(2 7)

(2 8)

lZ T -Tx.
n : \f L:A. 

1Y : '1n'tJlnl. a\4) = Tu _ Tx.

' 0r ' " 0y pcp 0y2 lp%k 0y''

\!'e define the non-dimensional quantities

(2 s)

where r/ is the stream function satisf ing

0u An'u: 
*at:.dr=- 0r.

Using above equation, the continuity Eq. (2.1) is satisfied automatically and Eqs.(2.2) and

(2.8) reduce to

f"'+f f" - f'" *^I'(i- l)+.\,(:- f')*5+)d=0, (2.10)

/(0) :0, /'(0) : 1,/'(0.) = 
g. (211)

( ' \
r,*iRr,) o"+Pr(J|'- f0):0 (2.r2)

Similarly the boundary conditions (2.4) and (2.5) take the folloring form

e(0) :1, d(r) :s. (2.13)

where primes denote differentiation n'ith respect to dimensionless variable 4. and the constants

) (> 0) is the buoyancy or mixed convection parameter defined by

, Gr,): Re. (2.r4)
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The Hartman number M. the porosity number )1. the local Reynold number Re,, the Prandal

number Pr, the radiation parameter P6 and the local Grashof number Gr" are respectively.

defined a.s

^rz _ oBZ , _ u@ n_ gA7lT. - T-)t3
^l -':':-. urt - 

__---- r .pc'Kc-L'z (2.15)

Re" : 19.. ,r=T,ro=nt'{f'.

It should be pointed out that for ) : 0. a/c:7 and,\/ : )r : 0. the solutions of Eqs. (2.10)

and (2.11) is given by Ishak et al. [7] i.e.

IOr) :,t.

The expressions of skin friction coefficient and the Nusselt number. are given as

(2.16)

n r tr ., IQt:
Lf - 

_----=. -t(1r--- J pu.?,' ' -' o(I", _ I_)' (2.r7)

q'here the shear stress r., at the u'all and the heat flux 9.,. at the wall are given by

,"=,(*),=o,u = - ((".*#{)H)"=, (2i8)

Utilizing Eqs. (2.9) and (2.18) into Eq. (2.17). r'e obtain

cr (n"i) : /"(0). ,v," Re?1 : -(1 + 
f 

n,ya'10y. (2.1e)

In the next section the solution of the boundary ralue problem consisting of Eqs. (2.10)-(2.13)

is provided by employing HA\I.

2.2 Homotopy analysis solution

Choosing the base function

{nk "*v?nd/k > o.n > o} .

19
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the velocity and temperature distributions .f (l) and 0 (q) can be expressed as

f h): "3o*LLot,-."r* exp(-n4),
a=0 k=0

--
atrl = I I aL .nr1k exp(-nr),

n=0 ir=0

(2.21)

(2.22)

in which al, and, D[.,, are the coefficients. The rule of solution expressions allows us to choose

the follon'ing initial guess approximations tor J Ol) and I (Z)

JoOl):!,1 +(1 -9)(1 -exp(-?)),cc (2.23)

(2.24)

Besides that u'e select

as our auxiliary linear operators satisfoing the following properties:

Lt lCt + Czexp(\) + C3exp(-a)l :9.

Ls lCa exp(Tt) + Gexp(-a)l :6,

where Q. r:1- 5 are arbitrary constants . If p(< [0. 1]) and fu(i:1,2) are the embedding

and non- zero auxiliary parameters respectivelv. then the zeroth- order deformation problems

are

(t - p) L ilf1t; d - /o('r)l : ptuN i??,r d).

(1 - p) Leii (,t: d - ao ('r)l : phz N eid kt; d, f h; d),

i1o,p) : 0. f(0:p) : 1. ,P(:<,p) : 9.
c

0(0:P) :1' 0(x;P) : A,

oo(ry) : exp(-r).

Lru) =y - +' d71J dtl,

)2t
Le\f)="-4-t,

dn"

(2.25)

(2.26)

(2.27)

(2.28)

(2.2e)

(2.30)

(2 31)

(2.32)

20



in which we define the non-linear operators N; and .\rp are

wilf(n;d): W*f1t,ptqp_raig,etyz
+$ + tt2ti - 9t#\* .r,(l - aP\ * 

^A 
or:p).

ue(i(,t; D, f1t:d):
(t+ig@

+e,(fh:r)qff -qffOo;11)
Obviousll' for p: g and for p: 1, the above zeroth- order deformations Eqs.

have the solutions

i(,r;o): JoOi. f1rr)= /(,r)

?(rr; o) : lo(il,6(11;r) : 0(q).

Expanding f(q:p) and 0(q:p) in Taylor series u'ith respect to p. we can n'rite

f\n, p) :/o{a) + i l^tn)p^.
,n=1

olry: p) : oo(n) - L o-h)p-.

| 0^ 0(n: p) 
|, an\\) = _,. ap^ lr:o

f iil: kh)+ i r-rrl,
n=1

-
0(n) :qoh\ + L0-(n).

(2 33)

(2.34)

(2.2s) and (2.30)

(2.35)

(2.36)

(2.37)

(2.38)

(2.3e)

(2.40)

(2.4r)
tu:7

Differentiating the zeroth order deformation Eqs. (2.29) and (2,30) m times with respect to p.

then setting p : 0, and finall1' dividing by m!. the mth- order deformations problems can be

I 0^Jh:dlt^rrt: ;. 6o^ lr_o

The convergence of the series in Eqs. (2.29) and (2.30) is dependent upon h1 and lh2. Assumrng

that Jh.r and ih.2 are selected in such a way that the series in Eqs. (2.29) and (2.30) are convergent

at p:7. then due to Eqs. (2.35) and (2.36) we have
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expressd as

rrV,"Ot) - x^J,"-t?i): rl.RtOt),

Lel9,"(rr) - x*0 ^-t(q)) = r,zRa\t),

/-(0) : /,1(0) : L"@:) = o, and 0,"(o) : d-(oc) : s,

X',.:
0, m( 1

1, m > 1

areThe general solutions of Eqs. (2.a2) - (2.aa)

(2.42)

(2.43)

(2.44)

RrQt) : f;-,pi - W'i* x,l)f:^-, + (t - y)e,r29 +$ + >,,91

n_1
J,Ao,,.-t * llf--r-rfi - f^-r-r|'i,

k=0

r -.-l
Ra(r) : r1+ lnrla-_,ra) + e,lv'-_t_rh-0^-t-*1il.

(2.45)

(2.46)

(2.47)

(2.48)

where /) (q) and 0i (4) denote the special solutions of Eqs. (2.42) - (2.43). and the integral

constants Ci, (i:7 - 5) are deterrnined by the boundary conditions Q.aa) *

I^Ot)

0," (q)

fi.Ot) + C1 + C2exp(n) + C3 exp(-ry),

0i" (n) + C a exp(;q) + C5 exp(- q).

(2.4s)

Therefore. it is easy to solve the Iinear non-homogenmus Eqs. Q.a2) and (2.43) bl using the

\{athematica. one after the other in the order m -- 7.2.3-..-

2.3 Convergence of the HAM solution

\['e observe that Eqs. (2.40) and (2.41) consist of the auxiliary parameters hr and fir. Liao in

his book (1992) sho*'n that the convergence and rate of approximation of such series depend

cz = c:,: ., cr: aJ*o)l ct : -ct- /;(0). ca: -li.e)on la=o
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the values of h1 and ft2. Herc to see the admissible values of h1 and fi2. the /l-curves are plotted

for l5th-order of approximation for both assisting and opposing flow in Figs. 2.1 and 2.2 for

different values of the parameters of interest. It is clearly noted from Fig. 2.1 that for /(4). the

range of admissible values of lh1 for assisting flow is -1-3 < hr < -0.25 and for opposing flou'it

is -1.3 < h < -0.2. Fig. 2.2 depicts that for 0(4), the rarge of h2 are -1.18 < h2 < -0.2 for

both assisting and opposing flow. Obriously our calculations show that the series (2.a0) and

(2.41) converge in the whole region of 4 when h1.2 : h: -0.7.

2.4 Results and discussion

This section describes the graphical results of some interesting parameters for velocity' and

temperature profiles. For this purpose. Figs. 2.3 - 2.14 are prepared in order to see the

influence of the Hartman number M. porosity parameter ,\1. the buoyancy parameter .\. the

Prandal number Pr and a/c on the velocity /', temperature d. the skin friction coefficient Ref cy

and the local Nusselt number Nr, R"i, respectively. Also the values of skin friction coefficient
!

Rn! c1 are computed in Tables 2.1 - 2.2 for sundry parameters. The comparison of the present

results has been made ruith the existing numerical results. An agreement between the results

is noted in the limiting sense.

Figs. 2.3 - 2.8 depict the variations of ,tf. )1. .\. Pr. and afc on the velocity // and the
1

skin friction coeficient Re3 c1. respectivell*.

Fig- 2.3 shows the influence of ,7[f on /'. It is noted that for assisting flon' the velocity //
decreases as M increases but for the opposing flow it shows the opposite results. The boundarl-

layer thickness is decreased bf increasing trf. Fig. 2.4 indicates the effects of 11 on /'. It can

be seen from this Fig. that // has the similar behavior as in Fig. 2.3. However. the change

in velocity' is smaller in Fig. 2.4. The boundary layer thickness decreases for large values

of ,\1. Fig. 2.5 indicates the variation of ,\ on /'. It is observed that for assisting flow the

velocity increases at the beginning until it achieves a certain ralue. then decreases until the

ralue becomes constant. that is unity. at outside the boundary layer. The results of velocit-,-

are noted to be more pronounced for large ). This is because. Iarge values of ) produces large

buoyancy force which produces large kinetic enerry. Then the energ--'- is used to overcome the



resistance along the flow. As a result. it decreases and becomes constant far away from the

surface. The results for the opposing flow case are opposite. The variation of Pr on /' is seen

in Fig. 2.6. It is noted that the velocity of fluid decrease in case of assisting flon by increasing

Pr but the opposite trend is noted in the opposing flor'. Fig. 2.7 and,2.8 give the effects of

afc.Pr andthe skin friction coefficient Rej cy. respectirely. Fig. 2.7 suggest that skin friction
I

coefficient ReJ c1 increases in both cases by increasing the values of a/c. Fig. 2.8 depicts that

skin friction coefficient increases in both cases by decresing the ralues of Pr .

The variations of the ,41. )1, Pr. -87 and on the temperature d and the local Nusselt number
!

Nu, Re! have been displayed in Figs. 2.9 - 2.14. From Figs. 2.9 and 2.10. it is observed that

the temperature 0 increases in both cases of buoyant assisting and opposing flou'b1, increasing

M and )r. But this increment in d is larger in case of an opposing flou'. The thermal boundary

layer increases as ,[1 and )1 increase in both cases. Fig. 2.11 shows the influence of Pr on d. It

is noted that d decreases when Pr increases in both cases of assisting and opposing flou's. The

thermal boundary layer also decreases as Pr increa.ses in both cases. Fig. 2.12 shoq's the affects

of -R7 on 0. As expected. the temperature d increases by increasing Ea in both cases of assisting

and opposing flor'. The thermal boundary layer increases n'hen E2 increases. Figs. 2.13 and

2.14 indicate the influence of alc and Pr on the local Nusselt number Nz, Rej . These figures

suggest that local Nusselt number increases in both cases by increasing the values afc andPr.

The ralues of the skin friction coefficient Rei cf are given in Tables I - 2. Table 1 is made

to shou'the present reults in case of the buoyancy term when )d. -tf and )1 are absent in Eq.

2.10 and compared \a.ith the numerical results reported by }{ahapatra and Gupta 1111. Nazar et

al. [12] and Ishak et al. [7]. It is seen from Table 2.1 that the preset ralues of Rei .f calculated

b1' HA\{ are in very good agreement with those of numerical results of \{ahapatra and Gupta

f11]. Nazar et at. [12] and Ishak et al. [7]. Table 2.2 is prepared to shou, the value Re] c1 for

af c. lI and,\1 nhen the buo-"-ancy term )g is absent. A similar observation is noted on R"i.1

by increasing afc in lhe presence of .tf and 11. The magnitude of the skin friction coefficient
l

Rej c; decreases when both ,t{ and ,\1 are increased.
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Fig. 2.1 : h-curve at 15th order approximation for /.
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1= 1, atc = 1),1= O.2, ft = 1, I = 0.5
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2.3 : Variation of M on the velocit-v- f at
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Fig. 2.4 : Variation of )1 on the velocitr' /'at
h : -0.7.
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Fig. 2.6 : Variation of Pr on the velocity f at

It : -0.7 .
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1 = 0.5 = a/c, [ = 0.5, Pr = 1,r= 1
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Table 2.1 : Va.lues of skin friction coefficient Rei.1 fo. difierent ralues a/c when the buo-vaucy

force term ,\0 is absent and M : ,\r : 0.

a/c \{ahapatra and Guptall 1] Nazar et al. [12] Ishak et al. [07] HAI'{ solution

0.1 -0.9694 -0.9694 -0.9694 -0.9694
0.2 -0.9181 -0.9181 -0.9181 -0.9181
0.5 -0.6673 -0.6673 -0.6673 -0.6673
2.0 2.0175 2.0176 2.017 5 2.0775

3.0 4.7293 4.7296 4.7294 4.7293

Table 2.2 : Values of skh friction coeficient R"i 
"f 

fo. difierent values of a/c, M and)1 nhen

the buovancy force term .\d is absent.

a/c M )1 Re? c.

0.1 0.1 0.1 -0.88358

0.2 0.1 0.1 -0.84926

0.5 0.1 0.1 -0.63382

2.0 0.1 0.1 1.98014

3.0 0.1 0.1 4.66643

0.5 0.0 0.2 -0.61091

0.5 0.2 0.2 -0.60168

0.5 0.5 0.2 -0.56036

0.5 1.0 0.2 -0.46563

0.5 2.0 0.2 -0.3t542

0.5 0.2 0.0 -0.65426

0.5 0.2 0.2 -0.60168

u.b 0.2 0.5 -0.51529

0.5 0.2 0.7 -0.49118

0.5 0.2 1.0 -0.46100



Chapter 3

Mixed convection stagnation point

flow of a MHD second grade fluid

over a vertical stretching sheet in a

porous medium with thermal

radiation

This chapter generalizes the result presented in chapter 2 for a second grade fluid. The mo-

mentum and the energy equations for the flo*- under consideration are reduced to a svstem of

coupled non linear ordinarl' differential equations under similarity transformation. Homotopy

analysis method is used to obtain the relocity and temperature distributions. The conver-

gence of the solution is established and the effect of pertinent parameters on the velocity and

temperature profiles are discussed in detail.

3.1 Problern staternent

The geometry of the flow problem was thoroughl."- explained in chapter 2 and to avoid repetition

we r,r'ill not restate it here. Similarly. the flow is taking place under the same assumptions as

.).f



used in chapter 2. The difference between chapter 2 and 3 lies in the fact that in chapter 2 the

flow analysis is performed for a Newtonian fluid. However. in this chapter second grade fluid

model is used for the florr'analysis. The boundary laver equation for a second grade is already

derived in chapter 1. This equation after taking into a.count buoyancy efiects. porous nature

of the medium and \{HD efiects can be s:itten as

0u 0u . -AU 02u o, | ffu 0u 02u 0u 02u du1uar+.ay : L ax+uau2* o l'u*r- uaor- ayaray-.a4l (3.1)

r,sgr(l: -rx1+"Jip - 4 +ff@ -,).

The enerry equation and the boundary condition remains similar to Eqs. 2.3 - 2.5. Emplol.ing

the same procedure to linearize the enerry equation and then non-dimensionalzing it along

with the Eq. (3.1) and the boundary conditions we get.

/" + tl'- J'" *M'ro -t)+^1(:- f)*5a.\d*e lrrt" * io - f f"f :0. (r2)

/(o) : o, /'(o) : r, f'(x) :9,
c

/ t \
Ir - iRa lo,, +tu(t0,- f,o\ -_0.\ r-,/

d(0) :1,4(rc):0,

where e : alcfpu is the non dimensionless second grade parameter. The expression

skin friction coefficient is modified due to the modification in r,,. *-hich is given b5,

'" = , (*) ,=,-'^ (#H) ,=, (3 6)

Using the 
'a.lue 

of r,., given above in expression (3.6) and then utilizilg the dimensionless

rra.riables given in (2.15) we obtain

(3.3)

(3 4)

(3 5)

for the

(3 7)c/ (Re;,) : ,f"(0).



Similarly the expression of Nusselt number is given as below

.nrz, Rei : -(1 + farla'lol

3.2 HAM solution

we start the HAM solution r*ith the same base functions. initial guess approimations and

linear operators as used in the previous chapter. The expressions which are modified are the

non-linear operators N1. Ns, R1(q) u"d n€ (4) . These are

(3.8)

.r. [.i(z;r)] : W +ftn;p)ry (+)'
+$+n(: __r_).^,(l ,p)
+io (n; p) -,lrrr#W + giPr - rr,,,tfl!),

uuPot;p),fh,,)l = (, .i*)0p*ru(frn,ot\f -*u,,,"r) , r,,or

(3.e)

Rt?t) = f ̂ -,h) - (u'9 + ;,,?) t',,-r + e - x^) (u' 9 * $ * x,l) L \0,,-t

'n-1
+ | lt^-.,-rri - f--r-*ix + zfLt-xfi' + f:-,-rl; - f,.-r-*rt), {s.tr)

i]-o '

(3.12)

The computer code is updated to take into account a.ll the modifications and then used to

produce the graphical results in the remaining part of the chapter.

/ I \ --l
&tr) : (r + |no) e.,-,1,tt * ,. I ld*-,-rf* - e*-,-*io)
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3.3 Convergence of the solution

In this section h-curves are plotted to demonstrate the convergence of the HA\{ solution

obtained in the previous section. One can see from Fig. (3.1) that the admissible range of h1

for /(4) in the case of assisting flou' is -1.25 < ,11 < -0.3. However. for opposing flow it is

-1.4 S hr S 0.2. Similarly the valid range of ralues of h2 for 0 (q) in the case of assisting flou' is

-1 < hz < -0.4 and for opposing flow it is -0.9 < h2 < -0.5. \\ie harc chosen fu: fir: -9.7

in the next section to observe the behavior of / (a) and 0 (4) for emerging Parameters.

3.4 Graphs and discussion

We briefly discuss bere the efiects of various emerging parameters on the velocity and tempera-

ture profiles of a second grade non-Neltonian fluid. It is observed that the qualitative behavior

of velocity' and temperature profiles for a second glade fluid do not alter much in comparison

B.ith Newtonian fluid. However there is a quantitative change. To observe this change we have

plotted Figs. 3.3 - 3.14.

Fig. 3.3 shows that the velocity decreases s'ith an increase in magnetic parameter M in

assisting flow while it increases by increasing .tf in opposing flon'. This is because of the

fact that magnetic force cause a resistance to the flow and hence decreases fluid velocity. The

boundary la.,*er thickness also decreases for large values of ,[f. The efects of buoyancy parameter

,\ on /' can be observed through Fig. 3.4. This figure depicts that ) has similar efiects on the

velocity profile /' of a second grade fluid as it has on the relocitl- profile of a Neq'tonian fluid

i.e. /' increases/decreases by increasing I in assisting flou,/opposing flou'. The inffuence of

the porosity parameter )1 on // is illustrated in Fig. 3.5. It is obsert'ed from Fig. 3.5 that

an increase in ,\1 decreases the velocity of a second grade fluid in the case of assisting flow.

However. the velocity is enhanced by increasing )1 in the case of opposing flow. The effects of

Prandta.l number Pr on f' are shorm in Fig. 3.6. This figure releals that velocity and boundary

layer thickness decreases for large values of Pr in the assisting flol'. r'here as opposite trend

is observed in the opposing flow case. The variation of f' for different ralues of second grade

paxameter e in both the cases of assisting and opposing flows is displayed in Fig. 3.7. It is noted

that in the case of assisting flov,. the velocity for a second grade fluid attains higher values in

36



comparison with the velocity for a Nev,'tonian fluid. It is further observe that the situation is

reversed in the case of opposing flow.

Fig. 3.8 - 3.12 shows the variation of M. \t, Pr. -Ra and the second grade parameter e

on the temperature profile d in both the cases of assisthg and opposing flows. These figure

demonstrate that the temperature of a second grade fluid increases by increasing all these

parameters including the second grade parameter € except the Prandtal number Pr. It is evident

from Fig. 3.10 that 0 (4) decreases for large ralues of Pr. Fig. 3.13 shows the 
'ariation of the

1

skin friction coefficient Re] cy for difierent rzlues ofe. Here it is seen that skin friction coefficient

is decreasing by increasing e in the case of assisting flow. N{oreover. its values are higher for

a second grade fluid when compared s'ith Nentonian fluid. It is further noted that Rej c1

increa.ses by increasing e in the case of opposing flow. The observation regarding the efiects of
f

Nusselt number Nz, ReB can be made through Fig. 3.14. This figure sho*'s the behavior of

Nusselt number is similar to that of skin friction coeficient.
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