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Preface

Interest in the flows of viscoelastic fluids has increased substantially over the past few
decades due to the occurrence of these liquids in industrial and engineering processes.
The equations of motion of non-Newtonian fluids are highly non-linear and one order
higher than the Navier-Stokes or boundary layer equations. Therefore, due to the
complexity of the viscoelastic equations, finding accurate solutions is not an easy task.
Following the pioneering work in this area by Sakiadis [1], a rapidly increasing number
of articles investigating the various aspects of Sakiadis problem have been found in the
literature. Chen {2] has investigated the effects of thermal buoyancy on flow past a heated
or cooled vertical continuously stretching surface. Ali and Al-Yousaf [3] studied the
effects of mixed convection adjacent to a continuously moving upward vertical plate with
suction/injection at the surface. Further, Ali [4] discussed the heat and mass transfer
characteristics of the self-similar boundary layer flows induced by a vertically stretching
surface. Again, Ali [5] has discussed the effects of temperature dependent viscosity on
mixed convection boundary layer flow and heat transfer on a continuously moving
vertical surface. Ishak et al. [6] presented an analysis for the steady two-dimensional
magnetohydrodynamic flow of a viscous fluid over a stretching vertical sheet. Recently
Ishak et al. [7] studied the mixed convection boundary layers in the stagnation-point flow
toward a stretching vertical sheet. Very recently, Hayat et al. [8] analyzed the effects of
radiation and magnetic field on the mixed convection stagnation-point flow over a
vertical stretching sheet tin a porous medium. In this dissertation an attempt 1s made to
extend the analysis of ref. [8] for a second grade fluid. The dissertation consists of three
chapters. The brief layout of each chapter is as follows:

Chapter one is introductory in nature. Basics equations, derivation of boundary layer
equations and introduction to homotopy analysis method is presented in this chapter.
Chapter two is based on the material of ref. [8]. The results presented in ref. [8] are
reproduced with all the details.

In chapter three, the flow analysis presented in chapter two is extended for a second
grade fluid. The governing equations for the boundary layer flow of a second grade fluid

are solved using homotopy analysis method. The characteristics of the solution are



analyzed through a graphical study. An appropriate bibliography is presented at the end
of the dissertation.
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Chapter 1

Preliminaries

In this chapter we present basic equation in vector form, derivation of boundary layer equations
for viscous and second grade fluid and the illustration of homotopy analysis method. The
material on the boundary layer flow and boundary layer equation for viscous fluid in taken

from [9].

1.1 Basic Equations

1.1.1 Continuity Equation

The law of conservation of mass for a compressible fluid can be written as

dp .
5 * V- (V) =0, (1.1)

The above equation is also known as continuity equation. In above equation V is the velocity
of the fluid, p is the density and t denotes the time. For an incompressible fluid p = constant

and above equation becomes
VvV =0 (1.2)
1.1.2 Momentum Equation

Newton'’s second law of motion is also known as principle of linear momentum. The application

of this law to an arbitrary flowing element of fluid vields the following equation. commonly



known as momentum equation.

p% = —Vp+ divT+pb, (1.3)

here p is the pressure. T is the Cauchy stress tensor and b stands for the body force vector.

1.1.3 Energy equation

The application of the first law of thermodynamics to an arbitrary fluid element give rise to

the energy equation. Its mathematical form is as under:

pcp% =T.L+aV?T, (1.4)

in which

L=VV.

In above equation ¢, is the specific heat capacity, T is the temperature, and « is the the thermal

conductivity of the fluid.

1.2 Boundary Layer Flow

We consider flows near solid surfaces known as boundary layer flows. One way of describing these
flows is in terms of vorticity dynamics. i.e.. generation. diffusion. convection and intensification
of vorticity. The presence of vorticity distinguishes boundary layer flows from potential flows,
which are free of vorticity. In two-dimensional flow along the ry—plane with v and v as the

velocity components in x and y directions respectively. the vorticity is given by
v 0
'w=qu=(—L——u)k (1.5)

and is a measure of rotation in the fluid. It is known that vorticity is generated at solid
boundaries. For example, if u = u{z.y) the plane y = 0 corresponds to an impermeable wall

v = 0 then along this wall 8v/dr = 0. Due to the no-slip boundary condition. du/dy is non



zero, and thus vorticity is generated according to
w=——k. (1.6)

Vorticity diffuses away from the generator wall at a rate of (¢¥V?w), and competes with con-
vection at a rate of v.Vw. Fig. 1.1. Due to the effects of convection, the vorticity is confined
within a parabolic-like envelope which is commonly known as boundary layer. Therefore. the
area away from the solid wall remains free of vorticity.The line separating boundary layer and
potential flows. i.e., the line where the velocity changes from a parabolic to a flat profile, is
defined by the orbit of vorticity "particles” generated at a solid surface and diffused away to a

penetration or boundary layer thickness. § (x).

— > Convection of vorticity

Fig. 1.1 : Generation. convection and diffusion of vorticity in the vicinity of a solid wall.
Along the edge of the boundary layer, convection and diffusion of vorticity are of the same

order of magnitude, i.e..

dw O
Vs~ kfv— 1.7
Or v Ay?’ (17)
here & is a constant and V is the velocity of the free srream. Consequently,
v v
—| ~ kz \ 1.8
==+ l75] as



where z is the distance from the leading edge of the plate. Therefore the expression

§(z) = k\/g, (1.9)

provides an order of magnitude estimate for the boundary layer thickness. Consider the flow
past a submerged body. as shown in Fig. 1.2. Across the boundary laver, the velocity increases
from zero-due to the no slip boundary condition-to the finite value of the free stream flow. The
thickness of the boundary laver flow, é (z}, is a function of the distance from the leading edge
of the body, and depends on the local Revnold number. Re = pVz/%; é () can be infinitesimal
finite or practically infinite. When Re <« 1 (which leads to creeping flow), the distance & ()
is practically infinite. In this case, the solutions to the Navier Stokes equations for creeping
flow holds uniformly over the entire flow area. For 1< Re < 10%, & (z) is small but finite. i.e..
§(zr) /L <« 1. For higher Reynold numbers, the flow becomes turbulent leading to a turbulent
boundary layver. Under certain flow conditions, the boundary layer flow detaches from the solid
surface. resulting in shedding of vorticity that eventually accumulates into periodically spaced

traveling vortices that constitute the wake.

Approach velocity
M 1 (%8 (x))
—_— Edge of boundary ¥ oot
> ] flow
—
— —
y g o e
- - Tﬁ{x} | —» Boundary layer
—— " - r>
‘\ X L
—_— .
................................
—
—jen

Fig. 1.2 : Boundary layer and potential flow regions around a plate.
From the physical point of view, the boundary layer thickness & (z) defines the region where

the effect of diffusion of vorticity away from the generating solid surface competes with convec-



tion from bulk motion. A rough estimate of the thickness é (z) is provided by Eq. (1.9). The
presence of vorticity along and across the boundary layer is indicated in the schematic of Fig.
1.1. From a mathematical point of view. the solution within the boundary layer is an inner
solution to the Navier Stokes equations which satisfies the no-slip boundary condition. but not

the potential velocity profile away from the body.

1.3 Boundary layer equation for viscous fluid

Boundary layer flow of Newtonian fluids can be studied by means of the Navier Stokes equa-
tions. However, the characteristics of the flow suggest the use of simplified governing equations.
Indeed. using order of magnitude analysis. a more simplified set of equations known as the
boundary layer equations, can be developed. In reference to Fig. 1.2. the Navier Stokes equa-
tions are made dimensionless by means of characteristic quantities that bring the involved terms

to comparable order of magnitude:

«_ T o Yy 1
= —, :—R 2:|
xT L,y I e
u*=%,v*=%Re%,
«_ P
p _pV:_)J

where Re = VL /v is the Revnold number. For steady flow, the resulting dimensionless equa-

tions are:
our  Ov*
=0 1.10
dx* + dy* ‘ (1.10)
ou* Ju* op* w1 P
* > - - —_— -_— N 1.1
Yo TV oy T "o 3p”  Redo’ (1.12)
1 SO ovT op* 1 8% 1 9%
Re (u dz* T By*) - —By* + ﬁéay*’ Re 9z (112)
If Re > 1, these equations reduces to
ou* v



LOur o JGut  Op” O?u*
Yo U ey T Tar Tt (1.14)

and

P =p(z"). (1.15)

The appropriate, dimensionless boundary conditions to Egs. {(1.13) to (1.15) are: at y* = 0.
uw* = v* = 0 (noslip); at y* = 1, u* = 1, 8u’ /8y = 0 (continuity of velocity and stress) ; at
z* =0, u* = v = 0 (stagnation point).

*

The pressure gradient, dp” /dx~ identical to that of the outer. potential ﬂow,(%) ,
P

dp* dp” du” |
_ (. 11
dz* (d;c*)p ( 4 dz*)p (1.16)

Thus the only unknowns in Egs. (1.13) and (1.14) are the two velocity components, v* and

v*. The latter is eliminated by the means of the continuity equation,

ou*
‘* [ k‘ 1-1
v Ere dy”, (1.17)

leading to a single equation.

* * * * 2, *
Lour Ou ( Bud*):_dp & u (1.18)

"o "oy ") o dzr " oy
The corresponding dimensional forms of the boundary layer equations for laminar flow are
Ou Ov
— 4+ — =0, 1.19
or Ody (1.19)
U + Vo = == =— + V. {(1.20)
1.4 Boundary layer equation for Second grade fluid

For two-dimensional flow, let the velocity field be

V=[|u(z,y),viz,y),0. (1.21)



In a second grade fluid the Cauchy stress tensor is defined as

T=—-pl+8S.

(1.22)

where p is pressure, I is identity tensor and extra stress tensor S is obtained through the

following relation

S =uAj + oAy + arAl.

(1.23)

In above relation u is dynamic viscosity. aq, and a9 are material constants and Ay and A, are

first and second Rivlin-Ericksen tensors given as

A= (VV)+(VV)T,

dA
Ag:-———l

dt

in which

dA;

dt

For steady flow

+ A (VV)+(VV)T Ay,

|

=+ V.V) A,

Ar= (VYA + A (VV)+(VV)T A,

After usual manipulation, one can easily obtain,

A=

2 ,
v2 () 2

A=
2 9y

+36u6u Su v

2udy + 20 L8 + 4 (%

2%v ,0%u
u_a.ray + ua—zf + 1-3;5 =+ 3

Su
25;

du
S+

)2

2
X

Budv |,
50y T oyoy T oxoe T Voay

3;+3;
& 2%
ufht +uly + o3y + 38R
+3qudu p Guln | Quin 4o 2
2058 + 2uh +4 (%)2

2
+2(g) +2222

-

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)



Al= (1.30)
pgudu 4 oudy 2 2
z By 9z 9z 4(@) +(@+@)
By 8y 8z
+28udv 4 9dudy
L By By 3z By _
Thus
i, , \ -
du 82 2 (% + gL_I) + o {ui?zgy +“g2_xg
2'“'61: + o 21[5;2’
+v22y 4 gfudv | 30udu
8% uy2 Va2 az dy 3z By
+2uE + 4 (§E)
Y z +0udy L Gudy 4, 8%
42 (@)2+221_16‘L Sydy T 5z 3z T Varay
dx y Oz
+ag {28udu | gdudy
ou gu . Bu)2 2145z By 3z 9z
+az$4 (%) + (L + &)
oo\ +202 %2 4 92 2e}
Bu | Bv & 97 )
n(Ge+8e) +on {udiy +u 202 + o {2053
8%u v Jv Su du 2
+&@+@QL+U 8% 2
Oy By dzr oz dzdy +2 (@) +2@i
Budu | odu dv oy Oy 0=
+o {2@@'}‘2%% 50 2 B . 9
+2@@+2@@} ve2(4(%) + (5 + %)
L dy dy 9z By i
The z and y component of momentum equation are
du Ou 10p 1/ o
Uee UV — = —— = 4 = Spx+ —S2y |, 1.32
dr Oy pOx  p (8 = 9y my) (1.32)
o v 19p 1/ 0 d
— At tvte—=—-—-—+-| =5 5 1.33
Yoz Lay pOy  p (63: L yy) (1.33)
Using the values of 5;; and Sy in z momentum equation we get
2 2
o , o 2 (135 + 2% ) +u (2 + 2%)
_u _’U. ___p, H __u _E Eﬂ. Pu Fu v 8%v Fu
“sz T Vay por T o (83:2 + a;;?) R (5% + b)) + 23 (25 + 52)
du { 82 fia
Ju §? & 92 3%
o [ 125+ 5 (L& +5)
22 o (1.34)
! u T
p tor (Ezay + 5:7)

Bu 9 du v
255 T 2555

Bu Bu dv Bv




Similarly using the values of 5,; and S, in ¥y momentum equation we arrive at

focs 9% | &7 & &y
2 (1355 +Z5) +u (B + 5%
u@.}.y@ = _l@ o &_}_& +ﬂ . 2% &Fu 98u 232u+ et
dr  dy ~ pdy p\Oz? Oy? T (W + arzf’y) o ‘a2 Bzav)
+331; v + 32y
oz \Bzdy T By
v v 8 8y 8u
jo0 | 455+ % (5 +5) 13
P 4 (2% | 8% ' ’
5z \ 828y " 8y
Now applying boundary layer approximations i.e..
u=0(1), v=0(), z=0(1), y=0(8),01 =0 (6%}, ay =0 (6?), {1.36)
the equations (1.34) and (1.35) will take the following form
8u+|6u _ 1op L3211,’%041 u63u +6_u?32+ @3211 +t'@
Yo " 8y  pdz T Oyr  p | OxzOy?  Ox Oy Oy oxdy Oy
ay Ou 0%u
—— \ 1.37
p Oy d0zdy’ (1.37)
op =0. {1.38)

dy

In view of the thermodynamic constraints proposed by Fosdick and Rajagopal [10] i.e.. (a1 + a2) =

0, Eq. (1.37) reduce to

du  Bu 18p Fu o Py Oudu _Ou Pu By

= Rl e i3l L. 1.
dx tay p61+16y2+ I} uaway2+8z6y2+ 6y6x3y+16y3 (139)

Eq. (1.39) is the required boundary layer equation for a second grade fluid.

1.5 Homotopy analysis method

A kind of analytic technique, namely the homotopy analysis method { H AM} was proposed by
means of homotopy. a fundamental concept of topology. It is an analytic method to approximate
the solutions of nonlinear problems with strong nonlinearity. Traditionaly solution expressions

of a non linear problem are mainly determined by the type of non linear equations and the

10



employed analytic techniques, and the convergence regions of series solution are strongly de-
pendent on physical parameter. It is well known that analvtic approximations of non-linear
problems often break down as nonlinearity becomes strong and perturbation approximations
are valid only for non-linear problems with weak nonlinearity.

In short. the homotopy analysis method is based on the concept of homotopy and is very

simple and straightforward. For example, consider a differential equation
AV (t)] =0, (1.40)

where A is nonlinear operator. ¢ is time and V (¢) is an unknown variable. Let Vj (¢), denotes

an initial approximation of V' () and L denotes an auxiliary linear operator with the property
Lf =0, when f=0. (1.41)

We introduce a non-zero auxiliary parameter A to construct the so-called homotopy.
H [V (tp)iph] = (1=p) L[V (t:p) - Vo (8)] +pha [V (t:p)] . (1.42)

where p € [0,1] is an embedding parameter and V (t; p) is a function of ¢ and p. When p = 0,

and p = 1. we have

H [17 (t:p);p, h] =1 [17' (t:p) — Vo (t)} (1.43)
p=0
and
H [f/ (£:p) : D, h] = hAV (t:p). (1.44)
p:
respectively. Using Eq. (1.41). it is clear that
V{(t:0)=Vu(t). (1.45)
is the solution of the equation
HV(tp)iph] =0, (1.46)
p=0

11



Vi) =V, (1.47)

is therefore obviously the solution of the equation

H [V (t:p)sp, ’Ll =0 (1.48)

As the embedding parameter p increases from 0 to the solution V' (¢:p) of the equation
HW@mygﬂ=o (1.49)

depends upon the embedding parameter p and varies from initial approximation V4 (¢) to the so-
lution V' (t) of Eq. (1.40). In topology such a kind of continuous variation is called deformation.

Now let us solve the simple problem

df

_ r2
S Tf=1t>0 (1.50)

f0)=1 (1.51)

L==+1. (1.52)

The initial guess of the problem is obtained by applyving the auxiliary linear operator (1.52) on

unknown function fy (¢) along with boundary condition (1.51) and is given by
folty=e" (1.53)
We now introduce a non-zero auxiliary parameter /i to construct the homotopy as follow
(l—p}L[J_’(tp)—fo(t)] = ph {%—Z:-!-J_’-J_’Q], (1.54)

f(Oip) =1, (1.55)

12



where p € [0,1] is the embedding parameter and f (t; p) is a function of £ and p and Eqgs. (1.54)
and (1.55) are known as zero-order deformation problem.
For p =0, and p = 1. we have
F#:0) = fo(d). (1.56)

and

Fen=10). (157)

Note that the zero-order deformation equation (1.54) contains the auxiliary parameter h. As-
sume that /i is properly chosen so that the zero-order deformation problem (1.54), and {1.55),

has solution for all p € [0, 1] and that there exist the derivative

1877 (t:p)

()= =gt (121, (158)

p=0

Thus, using Taylor’s theorem , we expand f (f;p) in power series as follows

oo
Ftip)=fol)+>_ fult) . (1.59)
k=1
Furthermore, assuming that f is so properly chosen that the power series is convergent at p = 1.
we have
o
Fi&y=fo(+> fi(®) (1.60)
k=1

Now differentiating zero-order deformation problem (1.54) and (1.55) , with respect to p. we get

(l_p)L|:g_£:|"L[.?_f0] = l-h[?a%+?—?] (1.61)

8’ f of ,-9f
+ph[8t8 "o fa_}

From Eqgs. (1.56) and (1.58)

18f

F(0)=0. fi(t) = o5 (1.62)

p=0

13



Setting p = 0, in Eq. {(1.61), and using above relations we arrive at

LA ()] 35[%4'1’0—}'02}, (1.63)
d d,
£+f1=ﬁ[£+fo—f§], (1.64)
f (@) =0. (1.65)
Using Eq. {1.53) in(1.64), we arrive at
dfl — _Ea—2 ’
= th=-he ? (1.66)

Solving (1.66) subject to condition (1.65) we get
hH)=~h (e_zt - e”t) (1.67)

Now differentiating zero-order deformation problem (1.54) and (1.55) with respect to p twice.

we arrive
&F of] .. [eF oF .07
8 | &*f af _-0f
+pha—p Ii%-F'gg—Q -3—];] .
&F(0:p)
T =0 (1.69)

Setting p = 0, in above equations and dividing by 2! having in mind relations (1.56) and (1.58).

we get the second order deformation problem as,

%+f2=(1+h) [%+f1] — 2hfof1 (1.70)

f2(0)=0 (1.71)

Using Egs. (1.53) and (1.67) we arrive at

14



% + fo=h(1—h)e % - 2he™¥ (1.72)

Now solving nonhomogeneous differential equation (1.72} subject to condition (1.71). we get

the second-order deformation solution as:
fo(t)y=h[e™™ - he™® - he™"]. (1.73)

Thus, the three terms solution (up to second order of approximation) of the problem given in
{(1.50) and (1.51) is _
f@)=fot)+ fr (t) + f2 (1) (1.74)

fy=el+h(eX—e ) +h[e™ - (1-h) e - he'] (1.75)
which is the exactly same as the perturbation solution for A = —1.

15



Chapter 2

Effects of radiation and permeability
of the medium on MHD
stagnation-point flow over a vertical

stretching sheet

The aim of this chapter is to review the work of Hayat et al. [8]. They have studied the
effects of radiation and magnetic field on the mixed convection stagnation-peint flow through a
porous medium bounded by a stretching vertical plate. The homotopy analysis method is used
by them to obtain the sohution expressions for the velocity and temperatures fields. Following
their approach we have verified the mathematical equations and reproduced all the graphical
results. This exercise is helpful in extending their analysis which is to be presented in Chapter

3.

2.1 Formulation of the problem

We consider the steady two-dimensional flow of a viscous incompressible fluid near a stagnation-
point at a vertical surface coinciding with the plane y = 0. the flow being in the porous region

y > 0. The surface at y = 0 is stretched along x—axis with two equal and opposite forces

186



keeping the origin fixed. A constant applied magnetic field By is applied in the y—direction.
For small magnetic Reynolds number, the induced magnetic field is neglected. Further the
velocity u,, and the temperature T,, of the stretching sheet is proportional to the distance x
from the origin. Moreover, T, > T, where T is the uniform of the ambient fluid. The
governing equations for the flow under consideration are Eqs. 1.2 — 1.4, These equations after

using the constitutive relation for a Newtonian fluid and the boundary layer approximation

reduce to
Ju Ov
Ou  Ou_ BU 3211 0 . vo
2
UQT_ +U8T a T 1 dq, (2.3)

oz By - ;c;;?? B Eray'
where o is the electrical conductivity. K is the permeability of the porous medium . ¢ is the
porosity. ¢ is the gravitational acceleration, S+ is thermal expansion coeflicient. and ¢, is the
radiative heat flux, and the “4” and “—" signs in Eq. (2.2} correspond to assisting buovant
flow and opposing buoyant flow respectively.

The boundary conditions of the problem are
u=sup(r)=cr, v=0,T=T.(r) =T +br at y=0, (2.4)

u=U(z)=ax, T=Tx as y— o, (2.5)

in which a, b and ¢ are the positive constants and U (z) is the velocity of the flow external to
the boundary layer.
In view of Rosseland approximation we can write.
40* 8T*

=T oy (26)

where o is the Stefan-Boltzmann constant and k is the mean absorption coefficient. To express

17



the term T* as a linear function, we expand it in a Taylor series about Toc and write
T = 4T3T - 3TL. (2.7)

Making use of (2.6) and (2.7) in (2.3) we get

ar or a T 160*Tx? 8T

oy == ) 2.8
”ax tv oy pep Oy? + 3pck  Oy? (28)
We define the non-dimensional quantities
c T—-Tx
= /= = : \ = e 2.9
1=/ Su v = Va6 = 29)

where ¥ is the stream function satisfving

Using above equation, the continuity Eq. (2.1) is satisfied automatically and Eqs.(2.2) and
(2.8) reduce to

2
i - MR (% — )+ ,\1(% — I+ “g £ A0 =0, (2.10)
f0) =0, F'(0) = 1.f(x) = =, (2.11)
(1 + %Rd) 6" +Pr(f0' — f'8)=0. (2.12)

Similarly the boundary conditions (2.4) and (2.5) take the following form
8(0) =1, f{x) =0, (2.13)
where primes denote differentiation with respect to dimensionless variable 7, and the constants

A (> 0} is the buoyancy or mixed convection parameter defined by

_ Gr,
"~ Re?’

I

A (2.14)
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The Hartman number M, the porosity number Ay, the local Reynold number Re;, the Prandal

number Pr, the radiation parameter Ry and the local Grashof number Gr; are respectively,
defined as

M?

oB? o _ 98Ty — T)2?
- pc ] A]. - KC, GrI - ’U2 k3 (215)
w 40*Toc?
Re, = U;;I’ Pr ﬁ,Rd=&.

ak

It should be pointed out that for A = 0, a/c =1 and M = A; = 0, the solutions of Eqs. (2.10)
and (2.11) is given by Ishak et al. [7] i.e.

f(m)=n. (2.16)
The expressions of skin friction coefficient and the Nusselt number. are given as
Tw Tqw

Cpe= T8 Ny, = —F0 217

P T Al - 1) (217

where the shear stress 7,, at the wall and the heat flux ¢, at the wall are given by
au) (( lﬁo*Tocs) 8T)
Te=p{ — s qu=—(la+ —— |} — . 2.18

Utilizing Eqgs. (2.9) and (2.18) into Eq. (2.17). we obtain

1 1 1 '
Cy (Reé’) =f(0). NuzReZ =-(1+ éRd)B

S Ra)6'(0). (2.19)

In the next section the solution of the boundary value problem consisting of Eqs. (2.10)—(2.13)
is provided by employing HAM.

2.2 Homotopy analysis solution
Choosing the base function

{n“ exp(—nn)/k > 0,n > 0} , (2.20)
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the velocity and temperature distributions f (n) and € (n) can be expressed as

o0 0
n)=agg+ »_ > ak n*exp(—nn), (2.21)

n=0 k=0

=33t exp(—nn), (2:22)

n=0 k=0
in which a, ,, and bk, , are the coefficients. The rule of solution expressions allows us to choose

the following initial guess approximations for f (n) and @ (1)

folm) = Zn+ (1= 2)(1 = exp(—n)). (2:23)
bo(n) = exp(—n}. (2.24)
Besides that we select
_df df
Li(f) = a3 dn (2.25)
2
Lo(f)= 5 - 1 (2.26)

as our auxiliary linear operators satisfying the following properties:

Ly [Cy + Caexp(n) + Cyexp(—n)] = 0, (2:27)

Lg [Cqexp(n) + Csexp(—-n)] = 0, (2.28)

where C;, ¢ = 1 — 5 are arbitrary constants . If p(€ [0.1]) and A;(i = 1,2) are the embedding

and non- zero auxiliary parameters respectively, then the zeroth- order deformation problems

are
(1= p)Lslf(m:p) — fo(m)] = phs N¢[F(m: )] (2.29)

(1 - p)La[6(n: p) — 80(m)] = PhaNo[6((n: p). F(m: p). (2.30)

fo:p)=0. flo:p) =1, Plocip) = =, (2.31)

9(0:p) = 1, B(cc;p) = 0, (2.32)
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in which we define the non-linear operators Ny and Ny are

Baf(np) #flypy _ 8f(mp)\2
+ f(m:p) ( )

Nyl f(nip)] = o L (2.33)
+or + M?(; - 26{zely 4 3, (2 - 2422y £ 36 ().

28(n;p}

- - (1 + éRd) 6_2_

No{6(n; P). f(m:p)] = o B S (2.34)
+P; (f(n; P) 5 — =50 P))

Obviously for p =0 and for p = 1, the above zeroth- order deformations Eqgs. (2.29) and (2.30)

have the solutions

o~ -

Fm0) = foln). Fim1) = f(m). (2.35)
6(n:0) = Bo(n), 6(n; 1) = 6(n). (2.36)

Expanding f(n:p) and €(n; p) in Taylor series with respect to p. we can write

Fonp) )+ Z fm(m)p™ (2.37)

8(m; p) = 8o(n) + Z 0, (2.38)
_10%f(mp) _ 1 0™8(n:p)

fm(n) = — o Om(n) = — |, (2.39)

The convergence of the series in Eqs. (2.29) and (2.30) is dependent upon £ and he. Assuming
that fi; and /iy are selected in such a way that the series in Egs. (2.29) and (2.30) are convergent
at p = 1, then due to Egs. (2.35) and (2.36) we have

f(m) = foln) + Z Fm(n (2.40)
6(n) = 6o(n) + > Oum(n). (2.41)
m=1

Differentiating the zeroth order deformation Egs. {2.29) and (2.30) m times with respect to p.

then setting p = 0, and finally dividing by m!, the mth— order deformations problems can be

21



expressed as

Ll fm(n) = Xmfm—1(n)] = R Ry (n), (2.42)
Lo 0m(n) — XmBm-1(n)] = haRe(n). {2.43)
Fm(0) = fr(0) = fi.(oc) = 0, and 8, (0) = Om(oc) =0, (2.44)
2
Ry(m) = fram) = P2+ D) f 1+ (1= )22 + 5+ 0 2)
m-—1
A0t + Z [fm—l—kfl: — fr—1-xfi)s {2.45)
k=0 ’
m=1
Ro(n) = (1+ ng)e;n_l(n) + P S [0y fi = Omo1—ifL)- (2.46)
k=0
0, m<1
Xm = ) (2.47)
I, m>1

The general solutions of Eqgs. {2.42) — (2.44) are

fm (1) I (m) + C1 + Caexp(n) + Cyexp(—n), (2.48)

Om (1)

&, (1) + Caexp(n) + Cs exp(—n).

where f, (n) and 6}, () denote the special solutions of Egs. (2.42) — (2.43). and the integral

constants Cy, (i = 1 — 5) are determined by the boundary conditions {2.44) as

Co=Cs=0, C3= Ofm(m Ci1=-C3— fr(0), Cy=—8,,(0). (2.49)
an =0

Therefore, it is easy to solve the linear non-homogeneous Eqs. (2.42) and (2.43) by using the

Mathematica, one after the other in the order m=1,2,3....

2.3 Convergence of the HAM solution

We observe that Eqgs. (2.40) and (2.41) consist of the auxiliary parameters k; and fs. Liao in

his book (1992) shown that the convergence and rate of approximation of such series depend
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the values of k; and 2. Here to see the admissible values of /i; and As. the A-curves are plotted
for 15th-order of approximation for both assisting and opposing flow in Figs. 2.1 and 2.2 for
different values of the parameters of interest. It is clearly noted from Fig. 2.1 that for f(7). the
range of admissible values of & for assisting flow is —1.3 < k; < —0.25 and for opposing flow it
is —1.3 < h; < —0.2. Fig. 2.2 depicts that for 6(n), the range of fis are —1.18 < fis < —0.2 for
both assisting and opposing flow. Obviously our calculations show that the series (2.40) and

(2.41) converge in the whole region of n when ;o = h = —0.7.

2.4 Results and discussion

This section describes the graphical results of some interesting parameters for velocity and
temperature profiles. For this purpose, Figs. 2.3 — 2.14 are prepared in order to see the
influence of the Hartman number M, porosity parameter A;, the buoyancy parameter A, the
Prandal number Pr and a/c on the velocity f, temperature 6, the skin friction coefficient Reé cr
and the local Nusselt number Nu, Reé, respectively. Also the values of skin friction coeficient
Rez% cy are computed in Tables 2.1 — 2.2 for sundry parameters. The comparison of the present
results has been made with the existing numerical results. An agreement between the results
is noted in the limiting sense.

Figs. 2.3 ~ 2.8 depict the variations of M, A;, A, Pr, and a/c on the velocity f’ and the
skin friction coefficient ReI% cy. respectively.

Fig. 2.3 shows the influence of M on f’. It is noted that for assisting flow the velocity f’
decreases as M increases but for the opposing flow it shows the opposite results. The boundary
layer thickness is decreased by increasing M. Fig. 2.4 indicates the effects of A; on f’. It can
be seen from this Fig. that f’ has the similar behavior as in Fig. 2.3. However. the change
in velocity is smaller in Fig. 2.4. The boundary layer thickness decreases for large values
of A;. Fig. 2.5 indicates the variation of A on f'. It is observed that for assisting flow the
velocity increases at the beginning until it achieves a certain value. then decreases until the
value becomes constant. that is unity, at outside the boundary laver. The results of velocity
are noted to be more pronounced for large A. This is because. large values of A produces large

buoyancy force which produces large kinetic energy. Then the energy is used to overcome the
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resistance along the flow. As a result, it decreases and becomes constant far away from the
surface. The results for the opposing flow case are opposite. The variation of Pr on f’ is seen
in Fig. 2.6. It is noted that the velocity of fluid decreases in case of assisting flow by increasing
Pr but the opposite trend is noted in the opposing flow. Fig. 2.7 and 2.8 give the effects of
a/c, Pr and the skin friction coefficient ReI% cys. respectively. Fig. 2.7 suggest that skin friction
coeflicient Reé ¢y increases in both cases by increasing the values of a/c. Fig. 2.8 depicts that
skin friction coefficient increases in both cases by decresing the values of Pr.

The variations of the M., X;, Pr. R4 and on the temperature ¢ and the local Nusselt number
Nu, Re;%g have been displayed in Figs. 2.9 — 2.14. From Figs. 2.9 and 2.10, it is observed that
the temperature # increases in both cases of buoyant assisting and opposing flow by increasing
M and A;. But this increment in 8 is larger in case of an opposing flow. The thermal boundary
layer increases as Af and ), increase in both cases. Fig. 2.11 shows the influence of Pr on 8. It
is noted that 8 decreases when Pr increases in both cases of assisting and opposing flows. The
thermal boundary layer also decreases as Pr increases in both cases. Fig. 2.12 shows the affects
of Ry on 8. As expected, the temperature @ increases by increasing Ry in both cases of assisting
and opposing flow. The thermal boundary layer increases when Ry increases. Figs. 2.13 and
2.14 indicate the influence of a/c and Pr on the local Nusselt number Nu, Reé . These figures
suggest that local Nusselt number increases in both cases by increasing the values a/c and Pr.

The values of the skin friction coefficient Re;? cy are given in Tables 1 — 2. Table 1 is made
to show the present results in case of the buoyancy term when Af. Af and A; are absent in Eq.
2.10 and compared with the numerical results reported by Mahapatra and Gupta [11]. Nazar et
al. [12] and Ishak et al. [7]. It is seen from Table 2.1 that the preset values of Re-é cy calculated
by HAM are in very good agreement with those of numerical results of Mahapatra and Gupta
[11]. Nazar et al. [12] and Ishak et al. [7]. Table 2.2 is prepared to show the value Re,%; ¢y for
a/c. M and A; when the buovancy term A8 is absent. A similar observation is noted on Reé cf
by increasing a/c¢ in the presence of M and A;. The magnitude of the skin friction coefficient

1
Re# ¢y decreases when both M and A; are increased.
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Fig. 2.1: h-curve at 15th order approximation for f.
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Fig. 2.2 h-curve at 15th order approximation for 6.
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Fig. 2.4 : Variation of A; on the velocity f at
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Fig. 2.5 : Variation of A on the velocity frat A = —0.7.
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1
Table 2.1 : Values of skin friction coefficient ReZ ¢ for different values a/c when the buoyancy

force term AP is absent and M = A; = 0.

a/c | Mahapatra and Gupta[l1] | Nazar et al.[12] | Ishak et al.[07] | HAM solution
(.1 —0.9694 —0.9694 ~0.9694 —0.96%4
0.2 —0.9181 —0.9181 —-0.9181 —-0.9181
0.5 -0.6673 —0.6673 —0.6673 -0.6673
2.0 2.0175 2.0176 2.0175 2.0175

3.0 4.7293 4.7296 4.7294 4.7293

1
Table 2.2 : Values of skin friction coefficient Re ¢y for different values of a/c, M and A\; when

the buoyancy force term A is absent.

afc | M X\ ReJ%T cf

01101101 -0.88358
0.2 | 0.1]0.1] —-0.84926
0.5 0101 -0.63382
200101 1.98014
3.0 | 01101 4.66643
0.0 [ 0.0]0.2 | —0.61091
0.5 | 0.2 0.2 | —0.60168
0.5 10502 —-0.56036
0.5 ; 1.0 | 0.2 | —0.46563
05|20 0.2 —-0.31542
0.5 0.2 0.0 | —0.65426
0.5 02] 0.2 -060168
05102 05| —0.51529
6.5 | 0.2 0.7 | —0.49118
0502 1.0 —-0.46100
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Chapter 3

Mixed convection stagnation point
flow of a MHD second grade fluid
over a vertical stretching sheet in a
porous medium with thermal

radiation

This chapter generalizes the result presented in chapter 2 for a second grade fluid. The mo-
mentum and the energy equations for the flow under consideration are reduced to a system of
coupled non linear ordinary differential equations under similarity transformation. Homotopy
analysis method is used tc obtain the velocity and temperature distributions. The conver-
gence of the solution is established and the effect of pertinent parameters on the velocity and

temperature profiles are discussed in detail.

3.1 Problem statement

The geometry of the flow problem was thoroughly explained in chapter 2 and to avoid repetition

we will not restate it here. Similarly, the flow is taking place under the same assumptions as
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used in chapter 2. The difference between chapter 2 and 3 lies in the fact that in chapter 2 the
flow analysis is performed for a Newtonian fluid. However, in this chapter second grade fluid
model is used for the flow analysis. The boundary layer equation for a second grade is already
derived in chapter 1. This equation after taking into account buoyancy effects, porous nature

of the medium and MHD effects can be written as

u—(?g-i—t@ = Qgﬂ/@ + 2 [u Fu + @@ + ?E___Bzu + 1';93—”E (3.1}
9z "8y 0z Oy p | Oz9y? Bz dy? | Bydzdy Oy )
B2 v

+gB(T — Too)-i-UTO(U —u)+ 2 (U — ).

The energy equation and the boundary condition remains similar to Egs. 2.3 — 2.5. Emploving
the same procedure to linearize the energy equation and then non-dimensionalizing it along

with the Eq. (3.1) and the boundary conditions we get.

a2

P4t =M C =G - )+ G0 |2+ T - 1 =0, (32)

F0)=0, f'0) =1, fi(c) = =, (3.3)
(1 + %Rd) 6" + Pr(f0' — f'6) =0, (3.4)
(0) =1,8 () =0, (3.5)

where € = ajc/pv is the non dimensionless second grade parameter. The expression for the

skin friction coefficient is modified due to the modification in 7,, which is given by

Ju Ou dv
T = U (a—y)y=0 - 201 (Eaa)yzo . (36)

Using the value of 7, given above in expression (3.6) and then utilizing the dimensionless

variables given in (2.15) we obtain

o (Reé) e (3.7)
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Similarly the expression of Nusselt number is given as below

NugRef = (14 %Rd)a’(oy (3.8)

3.2 HAM solution

We start the HAM solution with the same base functions, initial guess approximations and
linear operators as used in the previous chapter. The expressions which are modified are the

non-linear operators Ny, Ny, Ry (n) and Ry (7). These are

7 7 - 2
AF{A(n;p)] = MJF.;‘( ; )agf(n;p) 3 (af(n:p))

a’ (e 8fmp) a Of(m:p)
Tarh 5_—877") o (E_ an ) (3.9)
v 8f(mp) B F(m; 82 Fm: i
el e e L e

n N 7T R v o Flom o)
o [f ). For)] = (14 §Ra) 02 vy (f(n;p)agggp) - AlDg, P)) . (310)

a a a a a
Retn) = fua() - (M2 4 A1~) st (1= x) (M2 4+ 5 20, 2) .20

m—1

+ [fm 1—kfe = Frncaokfe + 2y fi +fm_1 i fm—l—kfliv:[ . (3.11)
k=0

-1

Rofo) = (1+ 32 ) 6 ln)+Pr2[m W SrAL (312)

The computer code is updated to take into account all the modifications and then used to

produce the graphical results in the remaining part of the chapter.
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3.3 Convergence of the solution

In this section h—curves are plotted to demonstrate the convergence of the HAM solution
obtained in the previous section. One can see from Fig. (3.1) that the admissible range of A,
for f(n) in the case of assisting flow is —1.25 < h; < —0.3. However, for opposing flow it is
—1.4 € Ay £0.2. Similarly the valid range of values of iy for # (n) in the case of assisting flow is
—1 < #ip < —0.4 and for opposing flow it is —0.9 < kg < —0.5. We have chosen k) = hy = 0.7

in the next section to observe the behavior of f (n) and 8 (n) for emerging parameters.

3.4 Graphs and discussion

We briefly discuss here the effects of various emerging parameters on the velocity and tempera-
ture profiles of a second grade non-Newtonian fluid. It is observed that the qualitative behavior
of velocity and temperature profiles for a second grade fluid do not alter much in comparison
with Newtonian fluid. However there is a quantitative change. To observe this change we have
plotted Figs. 3.3 — 3.14.

Fig. 3.3 shows that the velocity decreases with an increase in magnetic parameter M in
assisting flow while it increases by increasing M in opposing flow. This is because of the
fact that magnetic force causes a resistance to the flow and hence decreases fluid velocity. The
boundary layer thickness also decreases for large values of M. The effects of buoyancy parameter
A on f' can be observed through Fig. 3.4. This figure depicts that A has similar effects on the
velocity profile f' of a second grade fluid as it has on the velocity profile of a Newtonian fluid
i.e. f' increases/decreases by increasing A in assisting flow/opposing flow. The influence of
the porosity parameter X; on f’ is illustrated in Fig. 3.5. It is observed from Fig. 3.5 that
an increase in A; decreases the velocity of a second grade fluid in the case of assisting flow.
However, the velocity is enhanced by increasing A; in the case of opposing flow. The effects of
Prandtal number Pr on f' are shown in Fig. 3.6. This figure reveals that velocity and boundary
layer thickness decreases for large values of Pr in the assisting flow, where as opposite trend
is observed in the opposing flow case. The variation of f’ for different values of second grade
parameter € in both the cases of assisting and opposing flows is displayed in Fig. 3.7. It is noted

that in the case of assisting flow the velocity for a second grade fluid attains higher values in
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comparison with the velocity for a Newtonian fluid. It is further observe that the situation is
reversed in the case of opposing flow.

Fig. 3.8 — 3.12 shows the variation of M, A, Pr. Ry and the second grade parameter ¢
on the temperature profile § in both the cases of assisting and opposing flows. These figure
demonstrate that the temperature of a second grade fluid increases by increasing all these
parameters including the second grade parameter € except the Prandtal number Pr. It is evident
from Fig. 3.10 that 6 (n) decreases for large values of Pr. Fig. 3.13 shows the variation of the
skin friction coefficient Re;% cy for different values of €. Here it is seen that skin friction coefficient
is decreasing by increasing ¢ in the case of assisting flow. Moreover, its values are higher for
a second grade fluid when compared with Newtonian fluid. It is further noted that Rei? cs
increases by increasing e in the case of opposing flow. The observation regarding the effects of
Nusselt number Nu, Reé can be made through Fig. 3.14. This figure shows the behavior of

Nusselt number is similar to that of skin friction coefficient.
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39



1.04

1.02

£

0.96 |

M=051=1la'c=1Pr=1.Ry=¢ 0.5

0.98 ]

-1

Opposing Flow

4 =151050¢

0 1 2 3

n

Fig. (3.5) : Variation of A; on the velocity f" at h = —0.7.

L1}

M=0.5, A, = 0.5,3/c =1, A=], Ry=¢ = 0.5

Assistmg Flow
Pr=1,07206,0

1.05¢
L B ]
B O\ T |
= 0.95} 1
09F % 7 Br=1072060 ]
085f OmesmgPow
0 2 4 6 8
n

Fig. 3.6 : Variation of Pr on the velocity f' at h = —0.7.
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Fig. 3.7 : Variation of ¢ on the velocity f’ at h = —0.7
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Fig. 3.8 : Variation of M on the temperature 8 at h = —0.7
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Fig. 3.9 : Variation of A; on the temperature 4 at i = —0.7.
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Fig. 3.10: Variation of Pr on the temperature 8 at A = —0.7.
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Fig. 3.11 : Variation of R; on the temperature & at k
= —0.7.
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Fig. 3.12 : Variation of ¢ on the temperature # at A = —0.7.
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