Master thesis

On the Fly OS and Data Recovery for Android
| Smartphones |

Anwar Ghani

 429-FBAS/MSCS/SO08

Supervisor

Dr. Muhammad Sher

Professor

Co-supervisor

Shehzad Ashraf Chaudhry

Lecturer

Department of Computer Science
Faculty of Basic & Applied Sciences

International Islamic University Islamabad Pakistan

Master thesis

On the Fly OS and Data Recovery for Android
Smartphones

4

vrfjg Universitelt amsterdam

Anwar Ghani

EURECA Master Mobility Student Exchange program worked with:

Dr. Herbert Bos

Professor

Georgios Portokalidis
PhD Researcher

Faculty of Science
Vrije Universitiet, Amsterdam the Netherlands
2011

Master Thesis

On the Fly OS and Data Recovery for Android
| Smartphones

vrije Universiteit gmsterdam

Home Institute

International Islamic University Islamabad, Pakistan

Host Institute

Vrije Universiteit Amsterdam, Netherlands

Student Exchange Program

European Research & Educational Collaboration with Asia
(EURECA)

DEDICATION

DEDICATED TO

My Kids

| Muhammad Kashif
&

Yasir Ghani.

DATE 3 (1-0%-80f)

APPROVAL CERTIFICATE

This to certify that thesis submitted by Mr. ANWAR GHANI, 429-FBAS/MSCS/S08 is up to the

standard and we hereby approve it for its acceptance as a partial fulfillment for the award of Master of

Science in Computer Science.

1. External Examiner Q

Dr. Abdus Sattar ﬂ
Former D.G

Pakistan Computer Bureau, Islamabad
Pakistan

2. Internal Examiner

Dr. Muhammad Zubair %"

Assistant Professor DCS
International Islamic University, Islamabad
Pakistan

3. Supervisor

Prof: Dr. Muhammad Sher /. .f‘ O,——s ‘[.,
Chairman DCS

International Islamic University, Islamabad

Pakistan

4, Co-Supervisor

Mr. Shehzad Ashraf 8

Lecturer DCS
International Islamic University, Islamabad
Pakistan '

This research work is submitted to the

Department of Computer Science,
Faculty of Basic & Applied Sciences,
International Islamic University, Islamabad

As a partial fulfillment of the requirement for the award of
the Degree of Master of Science in Computer Science.

vi

Declaration

I hereby declare that I wrote this thesis “QOn_the Fly OS and Data Recovery for Android
Smartphones” by myself and listed all used sources. It is further declared that I have done

this research with the accompanied report entirely on the basis of my personal efforts, and
full guidance of my supervisor professor Dr. Muhammd sher and co-supervisor Mr. Shehzad
Ashraf at home university as well my supervisors at VU university Amsterdam. If any part of
this work is proved to be copied from any source or found to be reproduction of any other

research from any other training or educational institutions, I shall stand by the consequcncés.

Anwar Ghani
429-FBAS/MSCS/S08

vii

Abstract

The use of handheld devices such as Smartphones has increased. because of their broad
application domain. These phones are used by people from every field according to their
needs for several reasons; one of the most important is their portability which makes it easier
to carry while traveling and at the same time it also provides almost the same functionality as

a personal computer.

Besides the above mentioned advantages, it also has some limitations for instance, battery
power limitation restricts the use of sophisticated and complex security software on these
devices, because such software will not only severely affect the battery life but also the

processing speed of these devices.

The main objective of this research work is design a sophisticated recovery system for
ANDROID Smartphone that will automatically and transparently recover the phone to a
stable position after it has been compromised or corrupted due to some external attack

(hacked) or system errors.

The goal of this work is not only to come up with a solution for restoring a Smart phone to a
stable position, but also make sure that the restoration process itself is well secured and
cannot be interfered. Our approach (Safe recovery), will make the restoration automatic and
transparent as it is carried out in recovery mode. This is the reason that this process cannot
be interfered by any kind of attack; therefore, we believe that our approach to restore the

Dphone, while it is in recovery mode, is safe.

viii

Table of Contents

ACKNOWIEAEMENL.........cccericeererriireressneerestesessanerssaneasssssenssssensasssasenssssasnasass sesnsentsnassansssnnsss Xii
Chapter No-01

1. Introduction............... cosseraantoirasans sesertssiansesannsnas cossensane cersssmsranienses coressasinns tesesuansessersarnstenanasses 2

1.1 BACKBIOUNeevrieeeericrieceis s reeessesnseisesssssaseesessesissesssensososssarassansesrsessersnssnvatessossessestnsansssssannssees 3

1.2 ODbJECtiVE & CONLIDULIONcvevceeieiereecsiictiereereeessresseesstessseesessssssseesssessrssesstessesssssnsirssessesssssssessserss 6

1.3 THESES STIUCTUNE.... .o cisietretieenses e secenvnesse st sessessas sesssasasess e e essss e srs st entsessstnaben snrastasssntastsesarasesssusnennsses 6
Chapter No-02

2. Literature Review..... cesrtressnerasstnteerransanans ottiensiessessssracnnens cessenententasisans ereerees 9

2.1 Security Threats to SMartPhONeS.......c.ivciieerteniereniesnitsessaeresiessessaressssanesssserensasssesssessesssssssanssns 9

2.1.1 Platform VuInerabiIities. .. 10

2.1.2 MalWare, WO, TrOJaN NOTSE....uur o vrerieiseireecessisisseessesssssssssesssssnsssenesessssenssssensasosessans 12

2.1.3 Categories & Reasons of VUINErabilities ... s 14

2.2 COUNLEY MEASUNEciiririiiiitennii st ssessesssss s ssssss st st oneshasssesses st sanonbesesaesaosasasssssnsnnssssasasasses 15

2.2.1 Available SECUILY TOOIS ..vvviiiiiierririnieeniisrrrrsreseersessessessssessnsssrasssssssessseennesanssnnesivnssnese 16

2.3 1s ANDROID the Only target?....cccvviicceivierinienne i snnesnesessssnssoressssessesssesessssesssesnssssssnssassssssossses 17

2.4 How to deal with the resource limitation problem?cccouircinnninencc e 18

2.5 DYNAMIC TAINT ANGIYSIS .oocviivievreririreieirristisiriesisscsreassasssnssssosssesssssneresssssessseseseeshsessessnssrtismmesstsssesssses 20

2.6 The problem STateMENL..........ccovveririniiiirieeeresiersresaseressesesssrsvessssrsssarnsenseseesstssesssssesssessnsnsosssans 20

2.7 Related ULIlIIES .covueciiiiiiesenissinrieiniiiensnisinismnisssssnssesssssnstssnstsessssessssessinessassnsiensonss 21

2.7.10Tunes fOr IPRONEoi vttt tes e b st ro st tes s s n et ssasssasassasessasaasses 22

2.7.2 System restore for MSOX.......coivivrervereinenmneninennenneseninsssennenas evreeesernesntrararsssnaaranees 23

L

Chapter No-03
3. Methodology & Implementationccocesuee veensrseenes wernesaennanes vesesenssesssesacaeenres srissaesesssasnerse 26
3.1 Overview ... 26
3.2 AULOMALIC BACKUDP GENETATION w.vuvrorreecrsccereeasarssesssessnisssssss s siassassor rbastssssssens senstsessbssssassstessssasnssos s 27
3.2.1 Working Mechanism of ABG.........ccuuimmmmenmicimmmiissmsn s st 28
3.2.2 Working Mechanism Of ABG........ccmemenmonrnenmiinisinsissmsms s isssasssss sissiessasesssasnes 30
3.3 MOGEL it e seaessonssressrsressnsrs R s S ens s R R SR R SR sha RS iE sk SRk bs R et veaser e seR S 31
3.4 Architecture and implementation A AL Rt A0 32
3.4.1 Why recovery MOAE?cvivvreniirinniiriiemionieserressrennssssssessssmsessnsssssssessesesssssssessess 34
3.4.2 OUT reStOTe ULHItY.....ctevrrsrreruierietrererensresrinsessessassssesescrsecscesissmsnsssnmsrsaresssssssasssocssastsessss esasssssass 36
3.4.3 How to MOdify reCOVEIY IMAEET ..cvcviirerrrreerrecirecreesersrresissvessrrsssssorsosessrsasssnesesasesssasnns 37
3.4.4 Android DebugEIiNg BridEEcccevveiireeriveerirenesnersessiasesessesiesssssesesessssnessessessssnssssissunss 38
3.4.5 Algorithm for oVerall reStOre PrOCESS. ... imismsmsniitsirissmssrmsessnsisssssrsenssessrssssssasessssesss 39
Chapter No-04
4. RESUItS....cvccrricirennirercnsrisscsnenessnnsssssonnrsasnns terersesestiesesteasssateartssarnrrresresarstsssanssesaentnieasant ceressees 41
4.1 Comparison With Marvin ArChiteCUSEcieeeivveerenrenernveentesnsissseestsesssievecsereossersassssssssssssassasns 46
4.1.1 Our approach VS Marvin ArchiteCtUSe........cveveerreieeeersenennessinnimssssssrmsmsrssmsssssnssssasens 47
Chapter No-05
5. SuMmMary and ConClUSIONS ..ccccverreiisseaneonesissrvesessssnvensessrorerrorsses eserersmsanereetrtEtEtesteIsrertisssTssese .50
5.1 FULUFE WOTK. oottt res et s snsrsrss s ssb e s as s 51
6. Appendicesccrnenine eeeeranrens vorneunnsene essnisneeisens - cissrsssnissressansantenas coseressssssssensones vees 53
B.LAPPENGIX Aottt et s b s s s s e e s bes 54
6.2 APPENAIX Beeiveeeeeeiieee e cirrerirreieaesssteesesss e ssebese e e e stasae s e b e ba e e e e R resaaenenae e enesesas 58
6.3 APPENAIX C..uoevevvivrrierrriireirerssereiserssesnsssesassseesessssonesssiseesanssssnsestssnnsossssnssssesssassssersasssonns 62

7. Bibliography

xi

List of Figures
> Chapter No-01
1.1 Web based appliCALIONScevervenrireerrrinie et sessasssessissaesis seesesses setossssssssasmssesssaoses 2
1.2 Layered view of ANDROID Platform.......c.cvceeeceecnvernceeion e secsseisenssnsssssssesssssesessssssssssssssesens 4
1.3 Detailed view of ANDROID PlatfOrm........cviivernecerveenneensserensrisrsnassesivsssssssessesssonssesssssmssssssarssessress 5
Chapter No-02
2.1 Possible exploitable vulnerabilities of ANDROID Platform...........ccvernieeessneessincessmmssnessees 11
2.2 SMartphone MalWare effECts........c o ieenreeeniosnesseniess snessssisessssessas smesssssssssssars ses s arssnsses 14
2.3 Appeared MalWare CateBOrIBS.......cvuurerrirmreremsssrersanssresesnessssssssessssrerssmsasrsssssors sasass sossessssssrasse 15
2.4 The remote MONItOriNG framMEWOTK.....c.v.cccurvreriueeeccsmsernrsrersaseresssmsssssnrsssasssssesessassssesserasssosses saes 17
2.5 Marvin ArCRItECLUNE.cvu e sressas s s sssssessnssssnrsrssteasssssssssnross sorosssssass s smsssssossasasss 21
Chapter No-03
3.1 Android EMUIBLOr L.5... sttt s s s sssarssst s s s b sres 28
3.2 Depiction of Timer program inVOKING ABG........ccccvervesersmsesmmmsssisnnsrssmonssssnrsssssssssssssses 29
3.3.0ne server hosting Many rEPlICaS... ..o o smesismere st s serrssossesses s e ssssnssessisanas 31
3.4 Architecture of the restore process for ANDROID.........icrivvenesivassrieiorssnessssisssens rsesrsanrerenes 33
3.5 HTC GoO0gle ANAroid Gl..........ccvereeererviseneresrnsessersorssrnsess seresssssestvassereasarsenssts sanessssrnss sesessserassasnese 34
Chapter No-04
4.1 Battery CONSUMPLION.......ccciviimmiiesniiesr i st sissanssesisssrsisissersssstssnsassans sassssssneasasanses 41
4.2 OULPUL OF ABGiceiiiirieietiinnenieteiiesecinnessaeresaesestesessrassnsssonstsonsteasosssansessssasssssensranssansseness 42
4.3 Test Directory with backup IMagecouvricnriienrnceccsinncsrcmsienissnnsosisssemsssssisnssssesoes 43
B A HTC G coiiiviiieiciiiiirseemnenissisosoneisstioresssesssnosstssessstssssssssssatssasorssssssssasssssssinsssansssassissnsassasnes 44
4.5 Menu options in RecoVary MOGEcc.eivniiireiieniecinieenieiiisiinensisneessessiniseesssns 45
4.6 Error in Recovery Modificationsccccviecciimncnniniienmnemnmmermemisesiemnssenen 46

xii

Acknowledgment

First of all I would like to thank the Most Merciful and Compassionate, the Most Gracious
and Beneficent whose help and guidance always solicit at every step, at every
moment.......yes I am talking about Almighty ALLAH, HE gave me the confidence and
blessed me with knowledge which I didn 't have.......!

I pay my humble regards to Prof. Muhammad Sher, my teacher and project supervisor from
my home institution International Islamic University for his kind patronage and guidance. It
was his help and encouragement which made me face all the problems that I may not have

the courage to face without his guidance.

I would like to pay my humble regards to Prof. Herbert Bos for offering his supervision to
carrying out my thesis work. I personally feel proud to having him as my supervisor and
instructor for my daily progress. I believe that this is his supervision that has broadened my
knowledge. His personal interest in this work enabled me to solve most of the problems faced

during this research easily.

I would like thank my co-supervisor at my home Uuniversity Shehzad Ashraf Chaudhry from
the core of my heart for his continuous support, motivation and guidance during my thesis

work.

I express my sincere thanks to Georgios Portokalidis for his immense and untiring help and

support throughout my project/thesis work.

I would like to thank Dr. Philip Homburg for his advice, guidance and cooperation during

my project/thesis work.

I would Iike to express my gratitude to local coordinator at Vrije Universitiet Prof. Patricia
Lago and the International Office for their timely guidance and coordination on all issues. 1
am also thankful to all the faculty members and instructors at the “Parallel and distributed
computing systems” group at Vrije Universitiet and faculty members at DCS IIU for their

encouragement and appreciation.

I would also like to express my heartiest regards to Prof. Sasikumar Punnekkat and the
whole EURECA administration for providing me the opportunity to pursue my thesis work at

Vrije Universitiet, Amsterdam.

Xiii

At last but not the least, countless thanks to my parents and my siblings for their continuous

encouragement and support for my studies.

Anwar Ghani

MSCS International Islamic University Islamabad
Master Mobility

EURECA student Exchange program VU University Amsterdam

Xiv

Chapter No-01

Introduction

Chapter 1 Introdyction

Introduction

With rapid growth of Internet over the last few decades enormous changes have occurred in
computer network infrastructure and communication technologies all over the world. This
growth resulted in an increased concern for security. Software developed at organizations
shifted from desktop applications to web based applications and also these application were
ported to mobile world. Today iPhone is leading the market share with 64% shares while
ANDROID stands at number 2 after its introduction to the market in 2008.

In On-line services such as banking, e-learning, shopping, education portals, more than 60 %
of the software applications of the world are running over the web. Figure 1.1 represents the
ratio between web and non-web based software. Thus, the usage of web has become an
indispensable part of day-to-day activities, not only on personal computers but also on
Smartphones. The ease and comfort that a Smartphone provides makes it increasingly

important as a platform to access online services

60% of the world software applications are running over web today

& web based software

1 Non-web software

Figure 1.1: Web based applications

Alan Livingston (2004) in his article defines mobile devices as being 'small enough to fit

comfortably into a purse, pocket or holster, so you can conveniently keep it with you at all

Chapter } Introduction

times.'[1]. Smartphone 1s actually a hybrid of a mobile and a PDA. It is similar to PDA in
many aspects like using some of the same technologies while the most dominant feature of a
Smartphone is to make phone calls. It can use any cellular networks just like any other simple
mobile. Today wireless techonology is becoming cheaper, faster and much more common.
As we see the number of home users and institutions have increased, who deploy or adopt
Wi-Fi kits to share lines and devices around the house or within the workplace. Future
standards should allow wireless broadband data speeds over short distances and the
development of wireless metropolitan networks so that user will be able to login to any

network.

According to Wikipedia [wl: 1], aSmartphoneis amobile phone offering advanced
capabilities, often with PC-like functionality (PC-mobile handset convergence). There is
no industry standard definition of a Smartphone. But well known Smartphone examples
include the iPhone, the Nokia N900 and the phones based on Android. Google Android is an
open source project for smart phones (Mobile devices), recently introduced by Google to get
into the mobile world. The ease and comfort that a Smartphone provides, makes it

increasingly important as a platform to access online services.

The use of handheld devices such as Smartphones is increasing because of their broad
application domain. They can support as many applications as a general purpose Desktop
Computer. These phones are used by people from different fields according to their needs for
several reasons; one of the most important ones is their portability which makes it easier to
carry while traveling as compared to any other device like a laptop, and at the same time it
also provides almost the same functionality as a personal computer. Therefore, these devices
are the attractive targets for attackers. They still have vulnerabilities which can be exploited
[4, 5] like embedding a malware in an application for ANDROID. As we discussed already,
users employ their Smartphones for day to day activities like online shopping. They enter
credit card details and other personal information into the phone’s browser. Therefore among
other reasons there is also a financial incentive for the attackers in attacking (hacking) these

phones.

Chapter 1 Introduction

1.1 Background

On the official developer website ANDROID is defined as {wl: 2] “4 software stack for
mobile devices that includes an operating system, middleware and key applications.
The Android SDK provides the tools and APIs necessary to begin developing applications on
the Android platform using the Java programming language”. Figure 1.2 shows the layered
- view of the ANDROID architecture. A more detailed view is provided in figure 1.3 on the

next page.

Applications

iﬁ’ ' Application Framework

an230i2 : :
System Libraries |}

Figure 1.2: Layered view of ANDROID platform

The ANDROID operating system was first introduced by Android Inc. It is based on Linux
kernel. Later Android Inc was purchased by Google and then by the “Open Handset
Alliance” also called OHA. Google released most of the Android code under the Apache
License, a free software and open source license. The goal of the ANDROID alliance is to
give the consumers a far better experience than what is available on today’s mobile

platforms.

The ANDROID allows developers to write and manage code in Java with many controlling
libraries from Google. ANDROID has seen many updates since its first release. These
updates serve typically two purposes. First, they fix bugs in the previous release identified by
the user community. Second, they add new features and enhance performance of the base

operating system.

-~

Chapter 1 _Introduction

In the last decade mobile communication has become more personal and ubiquitous
communication with nearly three billion users worldwide. Because of this enormous amount
of users and the lack of collaborative efforts made it challenging for developers,
manufacturers and wireless operator to respond timely to the ever-changing needs of the
mobile consumers. Introducing ANDROID is an attempt to position developers and
manufacturers to bring new products faster and at lower cost. The ANDROID platform gives

mobile operators and manufacturers’ significant freedom and flexibility to design products

[6).

The most important reason for the popularity of Smartphone is that they are becoming more
similar in functionality to general purpose computers with a very small size providing

portability. In addition to performing its basic telephony stack, calendars, games and address-

books these phones are now being used for web browsing, reading emails, video and audio
streaming, video conferencing, presentations and a lot more. A plethora of applications for
these Smartphones is available in the market today. Some of them like navigation and

location-sensitive information services are becoming increasingly popular [3].

kead #
T

Activity Window Content N View Notification
Manager Manager Providers System \ Manager
Package Telephony Resourcs Location XRAPP
Manager Manager Manager Manager Service
Surtface Media
Managor Framework SaLke y

: Core
braries
OpneGL/ES FresType WebKit
Daivik Virtual |
Machine (DVM)
sGL SSL Mbe -
Display Camera Blustooth - Flaslh Memory Binder QPC)
Driver Driver Driver Driver Driver
uss Keypad : WiFi Audio Power
Driver ; Driver Driver : Drivers Managernent

C, C+s, native code ’ Java
D = Linux Kernel D = Android frameworks
CJ = Libranies :
) = Android runtime

(54 = Applications

Figure 1.3: Detailed view of ANDROID platform

Chapter 1 Introduction

Figure 1.3 shows the overall architecture of the ANDROID platform. Our work lies in the C,
C++ native portion of the architecture. We do not modify the kernel therefore, our work lies
above the kernel level. To carry out our work we use the functionality and services of the
Core libraries, DVM, and at run time libc. So this places our work in between the kernel layer

and below the java based portion including the Android frameworks and Application.

In the coming few years hopefully we will have more stable and secure infrastructure for
these phones as lots of people are involved in improving the platform and techniques for
developing efficient applications suitable for devices like Smartphone. Also the technological
developments will hopefully help to overcome different problems like resource limitation
with these devices in order to give freedom to the developers to improve security and
performance mechanisms. In the same way the number of mobile users is also continuously
increasing which is encouraging not only for the people involved in the mobile industry but

also for the businessmen and researchers at different educational or research institutions.
1.2 Objective and Contribution

The main objective of the thesis is to extend the design of Marvin architecture that can be
used as a sophisticated recovery system for ANDROID Smartphone which will
automatically/transparently recover the phone to a stable point after it has been compromised
or corrupted due to some external attack (virus, spy software, hacked) or system errors.
Marvin architecture basically works on the principals of execution replication where the
security functions are decoupled from the phone to a powerful machine called the security

server. Marvin architecture is discussed in detail in the later chapters.

Also we believe that our approach will be able to avoid the very famous resource limitation
problem related to Smartphones particularly the battery life. The effect of security function
decoupling through Marvin Architecture on battery is only 7%, which is acceptable as

compared to the heavy and strong security mechanism proposed [4].

The goal of the research is not only to come up with a solution to restore a phone to a stable
position but also make sure that the restoration process itself is well secured and cannot be
interfered. With our approach (Safe recovery) the restoration process will become automatic
and transparent as well as secure. The restoration is carried out in recovery mode so that it
cannot be interfered. It is the first ever implementation of restoration technique for

ANDROID Smartphone. Since the process is carried out in recovery mode due to which it

Chapter 1 . Introduction

cannot be interfered by any kind of attack, therefore we believe that our approach to restore

the phone, while it is in recovery mode, is safe.

1.3 Thesis structure

Due to time limitation and scope of the project our implementation is a part of the Marvin
architecture [4]. We limited our work to restoring an ANDROID phone from a clean image
on the security server. In chapter No-02 we will give detailed “Literature Review” discussing
different approaches proposed till today and different problems related to these approaches
due to which they could not get popularity. We will end the chapter with a brief description

of iTunes for iPhone and system restore for MSOX as examples of the system restore.

Chapter No-03 will discuss implementation of our work with a general description of model
used. We will give detailed descriptions of different aspects of Marvin Architecture which
plays an important role in the current research effort. We will explain in detail the question
why we decided to execute our code on the phone while it is in recovery Mode and how we
modified the recovery image for the phone and what modifications we have made in order to
make it compatible with our approach. In chapter No-04 we will summarize our work. We
also provide the conclusion drawn. We also discuss how this approach can be extended to
support multiple devices, user identification in order to restore the specific user data even if
the phone is changed. We also discussed the feasibility whether this approach can be

extended to other devices.

Chapter No-02

Literature Review

Chapter No-02 _Litcrature Review

Literature Review

Almost every Smartphone has a recovery mechanism for restoring user data, application and
setting and preferences in its own way. The technique to restore a Smartphone to a stable
point varies with different phones. As these phones are very popular now days, a plethora of
knowledge is available regarding different techniques on the web. Mobile computing is a
very hot research area today particularly Smartphones which are driving today’s market.
Different techniques are studied at research and educational institutions to know about their
weaknesses and suggest further improvements. One of these devices is ANDROID newly
introduced and a very active research area. Now ANDROID is the second largest share
holder (25%) worldwide [wl-1]. The reason for its popularity is its open source nature.
Everyone can have access to, and modify the source code. Due to this reason it has a very
large community on the web ready to help in almost all kind of problems. As ANDROID is a
new introduction to the market there are still many areas to be covered particularly security

issues.

Here in this chapter we will review literature regarding security issues in ANDROID, the
loopholes in the platform, and threats those are being faced by these devices. We will not
limit ourselves to ANDROID only but we will also consider issues related to other
Smartphones which are related to our work. Along with discussing different threats being
faced by the Smartphones, we will study techniques available to counter these threats. We
will explain the complete context of our work to make clear the importance and scope of our

work.

2.1 Security Threats to Smartphones

Smartphones have become obligatory tools for today's highly mobile workforce. These
devices are not only small in size but also relatively inexpensive. They can be used not only
for voice calls, simple text messages, and Personal Information Management (PIM) (e.g.,
phonebook, calendar, and notepad), but also for many similar functions done on a desktop
computer. Some important functions include sending and receiving electronic mail, web
browsing, storing and modifying documents, delivering presentations, and remotely accessing
data. In general Mobile devices, and particularly Smartphones, have expanded beyond the

basic telephony and communication origins to become accomplished photo- and video-

Chapter No-02 Literature Review

creation tools. Many users store and share documents, data, videos, and photographs on their

phones [3].

Smartphones are being used to store valuable information like documents, PIN numbers,
access codes for offices or secure building, passwords, and Bank Accounts credit card
numbers for online shopping etc. it has been shown by a recent survey that two third of PDA
user do not use any encryption to protect their data on these devices (Computer Business
Review, 2004) [wl: 5]. '

Most of the Mobile handheld devices today also have specialized built-in hardware, such as a
camera, a Global Positioning System (GPS) receiver, and reduced-size removable-media card
slots. They also offer a range of wireless interfaces, for example infrared, Wireless Fidelity
(Wi-Fi), Bluetooth, and one or more types of cellular interfaces [4]. Some of these interfaces
are used for data transfers like infrared, Bluetooth and Wi-Fi. The data transferred from a
phone or system to a Smartphone may be infected and may become a security risk. At the

same time this operation (Data transfer) can be interfered by an outside attacker.

One such example is the famous attack associated with Bluetooth known as Blue Bugging. In
the past different phones like the Nokia 6310, the Sony Ericsson T68 and the Motorola v80
have already became the victims of blue bugging (an attack that exploits famous Bluetooth
bug). Another example is Lasco. Lasco is a malware which spreads using Bluetooth and
using social Engineering to infect all Symbian Installation Source (SIS)-files [5]. It means
that phones having Bluetooth may still be vulnerable to such attacks. It is also possible that
some hardware components of the cellular phones like Flash storage (SD card and intemal
and memory) can be wom out or the battery can be drained easily by keeping the CPU
running or by keeping the phone awake all the time[6]. Any vulnerability in the core libraries
or kemel module can result in very dangerous attacks. In such situation an attacker can run
any malicious code with high privileged mode or even can gain the full control of the device.
The fact that the ANDROID source is publically available increases the intensity of this
threat because some processes at system level have root access and they run with full
privileges. It has been shown in the security analysis that the ANDROID is more vulnerable

to local host based exploitation attempts.

10

Chapter No-02 Literature Review

2.1.1 Platform vulnerabilities

It is a fact that common users are usually unaware of the internal technicalities and
vulnerabilities of their devices. It has been shown in the abovementioned study that the
permission system on ANDROID is not sufficient, in which case the installation of an
application that has malicious behavior can take place. This can result in high security risk. In
the past attacks like buffer overflow, lunched through the phone web browser due to an
outdated native library. This increases the probability of injecting malicious code via web
browser. Security risk analysis is shown via a very descriptive figure 2.1 below taken from

[6] based on the following parameters.

(1) Private/confidential content (pictures, contacts, emails, documents etc.);
(2) Applications and services (phone, messaging, emailing, Internet);
(3) Resources like battery power, communication, memory and processing power (CPU);

(4) Hardware includes the device itself, external memory card, battery and camera.

4

Severe
d
Q
S-_- Moderate
E
Minor
Unlikely Possible Uikely

>
Likelihoad of occurrence

Figure 2.1: Possible exploitable vulnerabilities of ANDROID platform

1

Chapter No-02 Literaturg Revigw

On looking at the figure it is clear that cells at upper right corner with red color show the
likelihood of exploitable vulnerabilities. This figure is based on a very recent study on
security analysis of ANDROID. It means the platform is still having much exploitable
vulnerability. It shows that this platform still needs security mechanisms providing sufficient

satisfaction to the common user.

Figure 2.1 represents five most important threat clusters which should be countered by
employing proper security solutions/capabilities. These threat clusters are obtained by
grouping similar threats assigned with the highest risk [6]. The evaluation is based on
assessing the impact and likelihood of various threats exploiting vﬁlnerabilities in Android in
order to harm, disable or abuse the confidentiality and/or availability and/or integrity of the

above mentioned components.
Threat cluster-1:

Compromising availability, confidentiality and/or integrity by maliciously using the
permissions granted to an installed application. This attack scenario is likely to happen

and potentially has a high impact on the device.
Threat cluster-2:

Compromising availability, confidentiality and/or integrity by an application exploiting
vulnerability in the Linux kernel or system libraries. This scenario was proven possible
and our security analysis shows that additional vulnerabilities are likely to be found.

Although, it has a low probability of occurring, it carries a potential to inflict severe damage.

Threat cluster-3;

Compromising availability, confidentiality and/or integrity of private/confidential
content. Contents on the SD card are not protected by any access control mechanism.

Additionally, wireless communication can be eavesdropped remotely.
Threat cluster-4:

Draining resources. There is neither disk storage nor memory (RAM) quota per application.

Hogging the CPU is also possible.

12

Chapter No-02 Literature Review

Threat cluster-5:

Compromising of an internal/protected network. Android devices can be used to attack
other devices, computers or networks by running network or port scanners, SMS/MMS/email

worms and various other methods of attack.

In addition to the basic telephony function Smartphones are used for different purposes like
social interaction by using a digital shared space among different users where each user can
post his/her messages, file sharing, localized dating services, Community building and mobile
blogging [3]. The properties like portable size, high accessibility and the capability to create
video, audio and text content along with performing effective communications pose threats
and security risks. Many competitors from the software development world are porting their
famous application on to Smartphones. Examples include famous voice over IP client for
general purpose computers namely Skype, Smart VoIP, Google talk, msn, and similarly the
other famous applications like Google Search, Google maps, and navigation software (e.g.
TomTom navigation) etc. they are also being used on Smartphone now, for example, fring is
used to work as Skype client on ANDROID. Similarly Facebook and YouTube and many

other gaming applications for Smartphones are common these days.
2.1.2 Malware, Worm, Trojan horse

Another important threat that Smartphones are facing today is the introduction of malwares.
Main focus of these kinds of attacks is Smartphones with Symbian operating system.
Reports from very authentic sources like Kaspersky 1ab, Filar, McAfee, Symantec, Sophos,
show that 288 malware were found till the end of 2008.But at the same time reports from F-
Secure in Helsinki that the counted number of malware is 418, means there are several
malware without any publically available descriptions [7]. The effects of these malware on
different components of Smartphones are shown in figure 2.2 on the following page. From
left to right the fourth component representing none means these malware are neither harmful

nor beneficial or their activities may be unknown.

The propagation channel for these malwares may be an installation file which needs user
interaction. That is the reason that most of the Smartphone malware are being categorized as

Trojan Horses. Some other sources of propagation may be Bluetooth, MMS etc.

13

Smartphone Malware Effects

Count

Figure 2.2: Smartphone malware effects

The calculation shows that major contribution to the Smartphone malware is from Trojan
horse. 84% of the malware found for Smartphone contain “Trojan Horse”, 15% “Worms”

and 1% “Viruses” shown in figure 2.3 on the next page.

It is also shown through practical examples in [7] that a malware with malicious behavior can
get into the device if it gets executed through undocumented ANDROID java functions. It is
also stated that currently the permission system of the ANDROID could be bypassed which

show a very serious threat to this platform.

The threats we explained are notified by Wayne Jansen and Karen Scarfone in their
publication [8] as “Electronic eavesdropping on phone calls, messages, and other wirelessly
transmitted information is possible through various techniques. Installing spy software on a

device to collect and forward data elsewhere, including conversations captured via a built-in

14

Chapter No-02 Literature Review

microphone, is perhaps the most direct means, but other components of a communications

network, including the airwaves, are possible avenues for exploitation.”

Worm 4o

15%

= Trojan Horse
84%

Figure 2.3: Appeared malware categories
2.1.3 Categories and Reasons for Vulnerabilities

In the world of Information Technology things like software evolved over time. As the time
passes different holes and weaknesses are identified and counter measures are taken
accordingly. As we discussed, the Bluebugging effect, although it has already been taken care
of yet still danger is there that it may be exploitable in some other way. From our discussion
in the previous sections, we can conclude that the security threats to Smartphone are mainly

due to two reasons:

1) Their size and portability

2) Their available wireless interfaces and their services

Some of these are only related to physical security and the others are software holes and
breaches in the platform and device. The detailed categorization of different threats is as

follow.

15

Chapter No-02 Literature Review

Loss, theft or disposal
Unauthorized access
Malware

Spam

Electronic eavesdropping
Electronic tracking
Cloning

V V V V V V V V¥V

Server side Data

The first point (“loss, theft or disposal”) is related to physical security. Phones like
ANDROID can become very easy targets of such attacks because of their small and portable
size. If sufficient security measures like password and PIN code authentication are not in
place, it may be impossible to gain access to the device. This access to the device can result
in the exposure of private and sensitive information that is of critical importance to business

organizations or personnel.

The rest are different security threats being faced by ANDROID and most other Smartphones
because of different exploitable holes in their platform or applications developed by

developers with malicious behavior.
2.2 Counter Measures

To counter the challenges presented by attackers to ANDROID and many other Smartphone
several techniques have been developed and proposed. To cover different security breaches in
the ANDROID platform it has gone through many upgrades. But still it is not sure that the
platform if fully secure. There still may be some holes which can be exploited by the attacker
to gain unauthorized access to the system. The basic function of an upgrade is to cover the
security hole of the previous version and also provide extra functionalities to developers and
users. In ANDROID many security threats have been recognized and counter measures are
already been taken to stop any attacks which can come through that way. For example, in the
past Bluetooth was used as a bridge to inject different malicious software or hack into
different devices. This has already been taken care of by setting some rules for Bluetooth in
ANDRIOD. As the device can make the Bluetooth connection as undiscoverable and even if
the connection is set to discoverable it is only for short period of two minutes. At the same

time in order to inject data into the phone the owner needs to accept the connection. Also, the

16

Chapter No-02 . Literature Review

phone is secure against the SQL injection attacks except that the contents of SD-card are
exposed to the attacker [6].

Among many approaches one based on remote monitoring [9] where the phone is monitored
for anomalies remotely. Information also called feature vector needed to carry out the
monitoring function are sent to the remote machine where it is analyzed for anomalies. The
monitoring is done remotely due to the reason that these kinds of devices have the popular
limitations related to their capability and hardware. The work is based on Symbian system
and windows mobiles. And the aim of this work is to avoid the resource limitation problem

associated with these phones.

Device, Feature-Vector
and Andiyzation Results o
Dalsbase i
. e Detection Unit(s)
Web Sarvice Providar:
Device Registraion \ L
aoture Vatior Trangrmidsion \ - Mot Datestion Unil
§ PO ST TR R o NIRRT SRR BT R
Send FeatreVector/ - Y
Recsive Infection Status -
Monired Mobile Dence L &) ‘
MoDo Adminigtration and Observafion

Figure 2.4: The remote monitoring framework [9]

This paper is limited only to monitoring the phone for anomalies to check if there is any
threat that should be cured before it becomes a problem. It does not contain the solution how

to cure it. The study emphasizes on the using sophisticated artificial intelligence techniques

17

Chapter No-02 _ Literature Review

for the anomaly detection. But our approach is not only to detect threats/anomalies but also to
provide measures how to avoid them and how to recover from them when they already

started their steps to challenge the system. The focus of our study will be ANDROID.

In addition to this approach many tools have been developed to serve as security techniques
for ANDROID. But the point here to make is that almost all of these tools are local to the
phone and no matter how light they are as their number is growing they still will affect the
phone which can result in the resource limitation problem. Also, if they are developed as light
as possible to fit in the mobile environment they may still not able to cope with complex
situations. We will discuss a few of them briefly here. Many of these have been listed in “Top
100 Network Security Tools”. The listing is available at (http://sectools.org) [wl-6].

2.2.1 Available Security Tools

Some of the currently available security tools, as mentioned in [2], include Clam as anti-virus
toolkit which is an open source (GPL) designed for UNIX and can be modified to use for
ANDROID. Its basic functionality is email scanning on email gateways. Netfilter, as a
firewall is a set of hooks inside Linux kernel which allows kernel module to register call back
functions with the network stack. Chkrootkit as a Rootkit Detector scans for signs of rootkits,
worms and Linux kemnel module (LKM) Trojans. It can inspect binaries, check logs, check
network interfaces and also look for hidden files. For intrusion detection Snort can be used
which is a lightweight network intrusion detection and prevention Systern. It can be used on
IP networks that excel at traffic analysis and packet logging. There are lots of others
including Nmap, strace, OpenSSH, Bash and Busybox etc. If we look at all these tools it is
obvious that most of them are specialized in nature and none of them is providing generic
means for security. There is a need of system which is more generic and provide as many

function as possible at the same time.

Many techniques had been proposed for dealing with different kind of attacks like intrusion
detection [9, 10, 11, 12, 13, 14, and 15] in more or less static form. But mobile applications
are shifting from standalone environment to collaborative and more dynamic nature resulting
in internal exposure [16]. To deal with the problem we need a dynamic and reliable
technique. But again we will say that implementing such dynamic and sophisticated

technique on the phone may result in other problems.

18

Chapter No-02 Literature Review

Today more than 60% of the world software applications are running on the web. Most of
these applications are being ported to the mobile world. Even in some countries like Germany
the number of inhabitants is exceeded by the number of mobile devices [9]. At the same time
the number of mobile applications is increasing day by day. To meet the market demand and
the user’s requirements the developer are developing new and complex applications with
extended functionalities or rather these functionalities are being incorporated in the existing
applications. As a result, the complexity of the "applications grows which affects the battery
life and other hardware resources of the device. In devices like Smartphones battery is the

most critical resource.
2.3 Is ANDROID the only Target?

ANDROID is the recent introduction in the mobile world which became popular very quickly
in the community. Because of the facilities, functionalities and interfaces provided by
ANDROID, it is becoming an important target for attackers. To provide as much
functionality as a general purpose computer, also implies an increase in the complexity of the
software used on these phones. Since these phones are being used by people for their daily
activities like shopping, web browsing, emails and presentations they may contain sensitive
and private information like PIN code, Passwords or Credit card details. Also the increase in
software complexity may result an increase in the exploitable vulnerabilities and bugs {7].
Due to these reasons these phones are not only becoming attractive targets for hackers. They

also offer financial incentives in case of successful attacks.

These problems are not only associated with ANDROID but rather shared by the whole
Smartphone family. All of these phones are exposed to these kinds of attacks in one way or
the other. Windows mobile also share some problems with the normal PC’s. If we talk about
normal PC viruses each day more than 30,000 new viruses are introduced. Many attacks
which are possible on PC’s are also threats for windows mobiles. The iPhone is also
vulnerable to these kinds of attacks [wl-3] because it belongs to the same family as
ANDROID and shares problem like resource limitation. To overcome these problems the
iPhone has gone through many developments. New models and software versions have been
introduced. But still the latest 3Gs iPhone is not secure and has been cracked [wl-4]. It means
the use of these phones for commercial transactions is still a security concern which may lead

to the exposure of private and sensitive information. Especially for online shopping like

19

Chapter No-02 Literature Review

buying applications, books, garments, or any sort of shopping, credit card numbers and
passwords are required to be entered in the phone based web browser which could become

compromised and may be misused if there are no sufficient security measures available.
2.4 How to deal with resource limitation problem?

Having looked at these problems the first solution that comes to one’s mind is to have very
good and generic security (anti-virus etc) software on the phone which shall ensure the
security of these phones. We know that the number and complexity of mobile applications is
increasing day by day, hence it needs generic and sophisticated security software. We also
know that generality and sophistication of any software leads to complexity and increase in
size, and it will require more resources like battery life and high processing speed to run on a

mobile device.

Unfortunately, adding more functionality to mobile devices along with heavy security
mechanism affects other resources as well as it reduces the processing speed of the device
and in particular, the battery life of a mobile device is directly dependent on the types of
applications are being run on the phone. If the applications running on the phone are heavy in
terms of graphics or processing, it will consume the battery power very fast thereby reducing
the battery life of the device. Since battery life is very important it should be used as

efficiently as possible.

Now there are a number of security challenges. First we want to add security against attacks
to the phone. Second we want to make security solution cheap in terms of resource usage. In
this thesis we will assume the solution provided in the “Marvin architecture” which
decouples the security functionality from the phone and instead pushes it to a powerful
machine called a security server which runs an exact replica of the phone with heavy security
measures as we do not have such limitations on this machine as on mobile devices [7].
Marvin proves that the problems due to limitation of resources can be solved by moving the
security function to a machine which is more powerful so that we can apply heavy and more
sophisticated security mechanisms on the Phone’s replica and also it doesn’t suffer from
resource limitations like power or battery life. The replica runs under heavy security on the
security server duplicating the exact execution of the phone. The phone is synchronized with

the replica through the Marvin protocol.

20

The replica on the security server is monitored under sophisticated security mechanism and if
there is anything (virus, any intrusion attack etc) dangerous found i.e, the security checks
indicate an attack, the user is notified by the security server that the phone has been
compromised. The security server also suggests that the phone should be restored as soon as
possible. If the user does not have a chance to start the restoration immediately, at least
he/she can limit or even stop using the phone until it has been recovered. In Marvin
Architecture a prominent technique to determine attacks and the amount of data that is
compromised and to which extent another technique called “Taint analysis” is suggested
[17].

Since our thesis work is based on Marvin Architecture shown in figure 2.5, the contribution
of the thesis intends to addresses one of the basic and important problems in the architecture
as to how restore a phone after an aftack is Jaunched and detected. This architecture enabled
us to carry out the detection and prevention on a powerful machine with power detection and
prevention mechanism (software) so that problems like resource limitations are not faced. As
we discussed the Marvin Architecture affects the battery life of ANDROID Smartphone to
the extent of only by 7%. This is not a significant decrease in favor of a strong and advanced

security technique.

server-side
replica

PiFrorad

walfie “Sw

-y ropular
fratfic flow
. — L .

mirrered
rattt

Figure 2.5: Marvin Architecture

21

Chapter No-02 L Revi

A high-level overview of the Marvin architecture is illustrated in Figure 2.5. We sketch the
basic idea here. A tracer on the phone intercepts system calls of, and signals to, the set of
processes that need protection and record them in a log file. The file is store in a secure
location on the phone. This set comprises all processes on the phone that may be attacked. It
is typically a large set that includes the browser, media players, system processes, and so on).
A replayer on the security server subsequently replays the execution trace, exactly as it
occurred on the phone, while subjecting the execution to additional instrumentation. The
transmission of the trace is over an encrypted channel. The proxy in the middle redirects the
incoming and outgoing traffic to the security server in order to decrease the burden of

communication for synchronization on the phone and save the battery life.
2.5 Dynamic Taint Analysis

Let discuss briefly the security technique proposed in Marvin Architecture to run on the
security server and monitor the replica for different anomalies that is Dynamic Taint
Analysis. We will not go into details since this topic is not the focus of our work. Dynamic
taint analysis technique can automatically detect overwrite attacks, which include most types
of exploits. It a powerful intrusion detection mechanism which can detect buffer overflow,
Jformat string attacks, double frees, heap smash and many more which changes the control
flow of a program. It also does not need source code or special compilation of the program it
is monitoring and hence it can work with commodity software. In order to protect
vulnerabilities this mechanism uses automatic signature generation, as manual signature
generation is not able to respond quickly enough to attacks like worms. Interesting thing
about this technique, it doesn’t produce false positives which shows that the technique is very

reliable.
2.6 The Problem Statement

Smartphones are getting popularity very rapidly in the market today because of their broad
application domain. They are used everywhere in educational research, in business
community and by home users because it is portable. It is not only a mobile that was famous
for its basic telephony function. Rather it resembles general purpose computers in almost all
the functionalities in addition to their basic telephony function. Resembling in functionality
does not mean that these phones are also the same in processing power or hardware resources

as general purpose computers. This is the reason that these phones share some problems with

22

Chapter No-02 Literature Review

general purpose computer but at the same time they are not equivalent to these machines in
counter measures. The functionality resemblance is at the software level but when it comes to

the hardware level these phones suffer from resource limitation problems.

It means that the attacks which could be launched against a general purpose computer and
may not be successful can be launched against these phones and may be successful because
of the imbalance in counter measures between Smartphone and general purpose computer.
They are also facing sophisticated security attacks like injection of spy software, virus attacks
or hacking. At the same time these phones also suffer from resource limitation problems like
battery life, processing power etc, which restrict the developers to provide a geneﬁc‘ security
solution to stop all the threats. After realizing that the problem cannot be solved, as long as,
the execution and implementation of the security software is local to the phone. Therefore a
solution is proposed in [4] by the name of Marvin Architecture. This architecture decouples
security function from the phone to a powerful machine called security server by running
replica of the phone on this machine under heavy security mechanisms. And whenever an
attack is detected on the security server it is signaled back to the phone asking the user to take

appropriate actions.

Now Marvin architecture did its job by decoupling the security function from the phone in
order to avoid the resource limitation problem associated with the ANDROID and all other
Smartphones. But what to do when an attack is detected? How to implement a restore
mechanism through which we can restore the phone after an attack occurs? How to use

system image taken from the replica on the server to restore the phone?

2.7 Related Utilities

Most of the mobile devices and other automated systems have the option to restore the to its
factory setting. But this type. of restore will not restore the data, applications and preferences
that the user has stored on the phone or machine. Rather it will simply wipe the machine or
device and will come to the point it was in on the first day when it was bought. It is desirable
that every Smartphone and any other system that deals with information storing and
processing must have a recovery/restore mechanism. For example Sony Ericson Xperia,
Nokia N-97 one of many Nokia’s Smartphones, the famous iPhone all have a recovery
mechanism. Similarly if we talk about machines, all computers based on Microsoft windows

have a check pointing mechanism for restoring to a previous stable state. Here we will

23

Chapter No-02 Literature Review

discuss two such systems, one that represents the Smartphone family iTune for iPhone and
other system restore in Microsoft windows which will represent machines other than

Smartphones.
2.7.1 iTunes for iPhone

iTunes [wl-7] is aproprietary digital media player application, used for playing and
organizing digital music and video files. The program is also an interface to manage the
contents on Apple's popular iPod, the iPhone and iPad. 7 is also used to download
applications for the iPhone and iPod touch running iPhone OS 2.0 or later.

iTunes was introduced by Apple Inc. on January 09, 2001 at the Macworld Expo in San
Francisco and its latest version iTunes 9, was announced at Apple’s September 2009 keynote
“Rock and Roll”. With iTunes an iPhone user can restore his/her contacts, calendars, emails,

photos, music and videos using iTunes user account.

Each time a user uses “sync your iPhone” [wl-8] option, the data, settings, and other
information on the phdne are automatically backed up on the computer to which it is
connected (e.g personal computer). If the user encounters a situation in which he/she needs
to restore, though, all you need to do is download this back up to your phone and you’ll be
off and running again. It’s a nice and easy process but the user needs to sync his phone
periodically. Each time if there is some critical update or data change the phone needs to be

backed up, so that it can be restored if anything bad happens in case.

At the start of this iTunes restore process the user is asked for account information and
registration details. If the phone is hacked then the hacker may be able to read personal and
account information of the user. It means this process though restores the phone, but it still

looks vulnerable to such threats.
2.7.2 System Restore for MSOX

System Restoreis a feature/component available on all Microsoft's Windows namely
windows Me, Windows XP, Windows Vista and Windows 7 operating systems. Basically it
works on the principle of check pointing. It allows for the rolling back of system files,
registry keys, installed programs, etc., to a previous state which help in preventing a

malfunctioning state or state of failure.

24

Chapter No-02 Literature Review

The server family of windows operating systems from Microsoft does not support system
restores. The system restore in Microsoft windows usually uses the mechanism of shadow
copy [w]-9]. This technique helps the system monitor block level changes and back up any

file located anywhere in the system.

There is some manual work involved in System Restore. For example, the user may create a
new restore point manually, roll back to an existing restore point, or change the System
Restore configuration. Moreover, the restore itself can also be roll backed undone all the
changes made by the restore process. This is a very reliable process of backing up and
restoring a system. Although old restore points are. deleted in order to keep the volume's
usage within the specified limits. It also can affect performance of the system by
continuously monitoring changes to some data and recording them for future restore. For
many users, this can provide restore points covering the past several weeks but the problem is
when user wants to restore the system to near past may be two or three days or one week, will
not be possible. Users concerned with performance or space usage may also disable System
Restore entirely. In this case if something goes wrong files stored on volumes not monitored

by System Restore are never backed up or restored.

System Restore backs up system files of certain extensions (.exe, .dll, etc.) and saves them for
later recovery and use. It also backs up the registry and most drivers so that it can reply the
system state at that specific point in time. The restore process is different in windows XP and
Vista. In windows XP it can use up to a maximum of 12% of the volume’s space where as in
Vista it uses up to 15% since it is designed for larger volumes. There is one problem when
user wants to keep choices for backup at so many different points in time; it will consume
large disk space. Running such technique on Smartphone is not feasible for several reasons. It
can affect the battery life very drastically and also it can create memory problems for these

devices while keeping backups for a little long timie.

25

Chapter No-03

Methodology & Implementation

26

Chapter No-03

Methodology & Implementation

In this chapter we are going to discuss few things including the basic overview of our project,
a general model that we have used in conducting our work, the basic architecture and the
way we have implemented it, in the respective sections. We have used Linux distribution
Ubuntu 9.10, 10.10 with HTC G1 ANDROID phone and the C and java as programming
languages. We have used Jboss as the application server for this project. Also root access is
needed on the device to test our work. For this purpose we rooted access our phone using the

method available on the official developer’s website [w1-10].

3.1 Overview

The idea behind this implementation is to have a security system for ANDROID that is
controlled at a central base with powerful security measures. The central base is also called
security server. It is a powerful machine with heavy security software running on it. This
machine can host many replicas of different phones at the same time. It is just like a one-to-
many association between security server and the phones. These replicas replicate the actual
execution of a phone to which it is associated. There is no need to have a dedicated machine
for each replica. In the same way all the replicas on a server are controlled by one security
software. This software monitors all the executions and whenever it finds something
suspicious it will immediately signal it to the phone associated with this specific replica to

invoke its security and recover the phone to a stable position.

Now let’s have a brief discussion of the security mechanism on the security. server, In the
digital world a huge number of attacking techniques are produced every day which can affect
different system in hours or even minutes. Different studies showed that 288 Smartphone
malware were found by the end of 2008 [7). To overcome this problem we need a fully
automated and filtering system which automatically detects such threats. Dynamic Taint
Analysis [17] is one of the sophisticated and heavy security mechanisms dealing with such

situations.

Knowing that Dynamic taint analysis (DTA) can detect and defend any vulnerability in the
system; we do not have to worry about how an attack is detected and how different exploits
can be protected. All we need is to concentrate on how fo recover the phone after it has been
compromised due to some system corruption or some internal or external attack? But again

we have to say that this is a heavy mechanism and is not feasible to run on devices like

27

Smartphone which are power crucial machines. It will deplete the battery of the phone in

seconds. But when the security decoupling mechanism ag suggested in Marvin Architecture is
used then this technique is the perfect choice for such devices as it makes use of the security
server. Let’s first discuss how to generate system backup from ANDROID emulator running

on the SCCUH'f}’ server, This image can be used later for restoration process of the phone.

3.2 Automatic Backup Generation

Before going into the specific details of the restore process’s implementation and architecture
we will discuss another topic crucial to our work that is “Automatic Backup Generation” or
ABG. In this process we will discuss how to generate system backup of the replica
(Emulator) running on the security server. For this purpose we have used ANDROID

emulator 1.5 as shown below.

Y Vshme Dz

Figure 3.1: Android Emulator 1.5

ANDROID emulator can emulate any function that an ANDROID Smartphone can perform
except making calls to other phones. It has a keyboard of type “QWERTY” just like personal

computers. It perfectly emulates HTC G1 which we have used to test our work on.

28

TH 74

Chavter No-03

3.2.1 Working Mechanism of ABG

Basically automatic backup generator (ABG) will work as a background process. This will
not affect the normal execution of the replica by giving some output messages. It will quietly
take image of the system invoke after a specified period of time. Of course this protocol can
be changed to in many different ways. We will give a little bit details about this topic later in

this writing.

Timer Generating
singals

Systemimages: '

‘System mage Stored hero

Send,i-ngy signais

Backup generator

-Funclion - Sig-Handler

“C'alls-Backup generator

Figure 3.2: Depiction of Timer Program invoking ABG

We have set a timer that will invoke the backup generator on the specified time. The backup
generator will then locate and read the image being used by the emulator as its partitions like
/system, /userdata, or /boot. When the phone is synchronized with the replica all the
execution trace is sent to the emulator (replica) and replayed. The changes are committed tc
the emulator that the user has made after the previous sync to these partitions which are
basically images in “.img” format. This time runs on the security server locally and will

periodically trigger the automatic backup generation.

The timer will generate a signal which will be intercepted by a handler function. This handler

will then in turn invoke the backup generator function to start storing the current system

29

image of the replica. This image will of course later be used for restoring the phone in case it
has been affected by some attack or system errors. One such example can be found in MS

windows where it is known as check pointing technique.

The function will read the different partition of the replica like /system, /userdata, and /boot
block-by- block and store it to permanent storage. This storage may be internal to the replica

or may be some directory on the security server.

The sole purpose of the script is to generate signals. It has nothing to do with the rest of the
architecture. We generated the signal through the script periodically but the protocol can be
changed or even omitted depending upon the design decision. In the backup generation is
activated right after the completion of any sync operation. Whenever a modification is
synchronized from the phone with the replica, the operation will be preceded by backup
generation operation automatically. It does not affect the architecture whatever the design

decision for the backup generator is.

3.2.2 Algorithm for Automatic backup Generator

1. get time of the day (from System)
2. to set timer
i. add a period value to the time

3. call the check timer with the new time value
& period value

4. keep comparing the new value with the
system time

i. when both values become equal

ii. generate backup (with a date & time
stamp)

iii. increment timer by period value

5. Repeat steps 3 and 4.

30

Chapter No-03

3.3 Model

The general and abstracted depiction of our work is shown in Figure 3.1. It looks similar to

the famous client server model but actually it is not a client server model.

In client server model the execution is mostly carried out at the server by a client request but

in this model the execution is fully local to the phone and is just replicated on the server.

The phone is independent in executing it applications or storing or modifying its data in any
way. The connection lines are just the representation of the fact that one server can replicate
the execution of many phones at the same time. Also these connections represent UMTS
communication of the phone with server. This type of communication is used for
synchronizing the phone with the associated replica on the server in order to make the
execution smooth. As shown in Marvin Architecture [4], the incoming and outgoing traffic
does not need to be synchronized with the replica, as the traffic is automatically mirrored on
the server side replica from the proxy server in between the phone and the replica. In this way
the communication between the phone and the replica (security server) is reduced so that to
avoid any extra delays. All that needs to be synchronized with the replica is local execution

and modification made by the phone.

Security Server

Figure 3.3: One server hosting many replicas

31

Chapter No-03 Methodology & Implementation

The normal execution of the phone or the results of execution are not affected by security
server. All the security server is doing is to mirror the execution of the phone. The outgoing

or incoming traffic to the phone is never affected by security server.

The connection lines between the security server and different phone represents association

of each phone to its replica on the security server.

This model depicts the situation when the phone is up and running normally without being
compromised. In this case any modifications made by the phone to the data are synchronized
with the replica on the security server. When the phone is compromised in any one of ways
we discussed, this approach needs to be changed in order to restore the phone to a stable
position and at the same time avoid any external interference. We have decided to connect the
phone to security server indirectly instead of a direct connection. We will use TCP/IP
connection for communication with security server and indirect connection through the user
machine just in case when we want to start recovery. We are going to discuss this in detail in

the next section.
3.4 Architecture and Implementation

In this section we are going to discuss the architecture and implementation of our work. The
basic view of our system is as shown in Figure 3.2. It works on the basic decoupling principle

of Marvin Architecture when the execution is normal before the attack occurs.

The incoming and outgoing traffic is automatically synchronized with the replica from the
proxy server in between the phone and the server side replica. It reduces the communication
for synchronization of the phone with the replica. However the modification made locally

must the synchronized. For this purpose the phone use UMTS communication link.

But in the situation when an attack is detected by the security mechanism that is in place on
the server side which may DTA or any other technique the server sends an attack detection
signal to the phone. Upon receiving the signal the user is prompted whether to restore the
phone or not. If the user says “NO” he/she is advised to limit the usage of the phone or even
to stop using the phone until it is restored to a stable position. If the user has access to his
computer and an internet connection and says “YES” he/she is advised to connection his

phone to his computer and run the restore utility (Described under section 3.3.2). This time

32

Chapter No-03

the communication is through a TCP/IP network between the user computer and the security

server.

Running the restore utility will establish a communication link with the security server. When
the connection is established a request for clean image will be issued to the server. The
security server will redirect the request to the image directory and will retrieve an image of
the running a replica for this phone.‘ Since the directory contain clean images taken from the
replica and stored for the purpose. One of these images will be used at this moment to bring
the phone to a stable position. So when the server will retrieve the backup image from the

image directory it will be sent out the requesting machine.

How the backup images will be taken we will discuss it in the coming sections. But here we
will at least remind that there should be some protocol for taking a backup image. There must
an agreement on when to take the image from the replica and store it in the image directory,

for example when modification to the phone takes place or after some specific time period.

Server Side Replica

Norma Execution Befars [Auack Detection Signal

7 toRasion | - megulnr
LG fews
-~
= laggig
iy e

-

" Gommenication for Fostoring

Figure 3.4: Architecture of the restore process for ANDROID

33

Chapter No-03

Here we are not going into that detail. It simply depends on the design decision whatever the
designer decides that result in the best and smooth operation of the system. After receiving
the clean images from the server, the phone will be restarted into the recovery mode and
these images will be pushed into the SD card of the phone in order to be used for ﬂashing the
partition with these images in recovery mode. Since we have made appropriate modifications
to the recovery image and with a little interaction from the user it will used the images in the

SD card to flash them on to the partitions.

We have used HTC Google G1 Smartphone to test our works. To carry out the testing we

need to have root access on the phone which is not enabled by default on the phone. So we

Figure 3.5: HTC Google Android G1

jailbroke (getting root access) the phone manually in order to have full access to system level

changes and carry out our work smoothly without any interruption.
3.4.1 Why recovery Mode?

The Recovery Console is a feature of the ANDROID operating system. It provides the
means for administrators to perform a limited range of tasks using a command line like
interface. Its primary function is to enable administrators to recover from situations where
operating system does not boot as far as presenting its graphical interface. Different recovery
has different available functions or can be modified according to the requirements from the
source code provided by Google. As such, the Recovery Console can be accessed by holding
down Power+Home button at start up. We have modified the recovery image in order to

Implement our approach.

The focus our work is to enhance the security of the Smartphones specifically ANDROID.

Our attempt is not only to secure the phones but also the process of restoration itself.

34

Chapter No-03 - Methodologv & Implementation

Restoring the phone while it is in recovery mode will ensure that no interface like Bluetooth,
GPS, infrared or Wi-Fi is up, which in turns means that no attacker or intruder will be able to
hack into the phone. In this way any kind of external interference can be stopped. This will
ensure the authenticity of the restore process itself. This is not only true for hacking attacks
but also for virus or spy software as they are not allowed to run in the limited functionality
environment (recovery mode). If the phone is attacked, for example, we cannot even be sure
that the modifications made during the restoration or even the restoration process itself is not
compromised and clean. Any change or modification to personal data could be revealed to
the attacker and the attacker may get access to any sensitive information during this process.

It may include username password, personal data, contacts or credit card details.

To avoid these threats we need to follow a strategy that can ensure the maximum security of
the restoration process itself so that we can be sure that the phone is restored clean and is
stable. It must be secure enough to stop the attacker from getting any details or getting any
information about the modifications that are being made to the phone for the purpose of

restoration.

The recovery mode just makes sure the interfaces Bluetooth, wifi or GPS are not available for
anyone. As we have already mentioned, some models of Nokia had suffered from such
problems called blue bugging; caused by a bug in the Bluetooth implementation of those
models [4]. Here is the most important question: if we stop all above mentioned ways will it
be safe to restore the phone? If we consider the above discussion was about an attacker from
outside, what if there is threat from inside, like virus, which may copy sensitive information
and then later send it somewhere or even delete sensitive information or data from the phone

or control the critical system functions.

We need to stop all these ways in order to stop an attacker from interfering. To achieve this
goal we need to put the phone in a Mode where the above mentioned functions like wifi, GPS
or Bluetooth do not work at all. Then in the same Mode, carry out the restoration process. We
cannot stop an attacker once he gets the control of the device from enabling or disabling any
feature. This is the reason we have decided to carry out the restoration process while the
phone is in recovery Mode, because in the recovery Mode none of the interfaces (Wi-Fi,
Bluetooth, and GPS) work. Therefore there is no chance that the attacker can use them to

hack the restoration process or even virus software is able to run.

35

Chapter No-03

3.4.2 Our restore utility

' When the phone is in recovery mode very limited functionality is available to the user. No
interface such as Bluetooth, infrared, Wi-Fi, or the network operator work. In this mode we
are unable to avail the full functionality. Now communicating with the security server
through normal protocol to restore the phone seems impossible unless, we have a
bridge/interface in the middle to connect the device with Security Server. For this purpose we
needed a piece of code that will run on the user machine while the user machine and the

device communication takes place via a USB cable using Android Debugging Bridge (adb).

This utility will perform two main tasks. Firstly, it is responsible for communicating with
both the security server and the phone. For communicating with the security server it uses the
TCP/IP connection available on the user machine and for communicating with the phone it
uses the Android Debug Bridge [wl-12] ADB (to be discussed later). Secondly, it issues
request for clean backup images from the security server, and when received, it pushes them
to the phone’s SD card using the cable connection. This piece of code will have to be run by
the user from his/her personal computer after the phone has been connected to it in order to
start recovery. On the server there should be ANDROID backup directory containing backup
image taken over time depending on the protocol established. These images represent
different modifications those are being made to the phone before taking these backup images.
A latest backup clean image has to be sent by the server as a response to the request issued by
this utility.

As we discussed, the clean image when downloaded at the user machine needs to be copied
to a memory that the phone could use as it is not possible for the phone to use images from
the user machine. But we have to remember if the phone is running in normal mode then
copying images to phone’s memory will not be safe in case the phone is attacked. So before
copying the downloaded images to the phone internal memory we need to put the phone in
recovery Mode in order to avoid any problems. As we know, in the recovery Mode the

attacker will not be able to how the recovery mechanism is working.

After rebooting into recovery Mode we need to move the downloaded image into the SD card
of the phone in order to be used for completing the restore process. Since the functionality is
limited in recovery Mode we will not be able to access the phone’s memory without making

some modifications to the recovery image that is used in the phone. We need to modify the

36

Chapter No-03

recovery image which could replace the recovery image in the phone. How the recovery

image is modified? We will discuss in the next section.

We have tried to make the process interaction less but there are situations where we need
some interaction from the user to complete the process. The restore process cannot be started
unless the user says yes and connects the phone to the personal machine. The user does not
need to know about the internal details; such as where is the backup image located and how is
it transferred to the phone? The process as it seems to the user is carried out between the user
machine and the phone. The process is fully automated as our restore utility does not require

any other interaction from user after the initial start and until the phone is restarted.

3.4.3 How to modify recovery image?

To carry out the restoration process as we discussed we needed to make some modifications
to recovery image of the phone. To execute code/program in recovery mode, the recovery
image needs to be modified accordingly, since the operating system is not operational in this
mode and as we discussed it works in a limited functionality environment like a2 command
line interface. For this purpose we used the ANDROID source by downloading the whole
source code of the ANDROID project from the official website [wl-11]. Once you have the
source, you can modify any of its components. From the source we then modified the source

code for recovery for testing our work.

One of the basic modifications was to enable adb (4ndroid Debug Bridge). Enabling “adb”
in recovery Mode provides the flexibility to perform different operations on the phone by
accessing the phone’s shell through the user machine to which the phone is connected via a
USB cable. We are basically interested in two basic operations, pull and push. These
operations are equivalent to copy-from and copy-to operations. We use these operations to
copy the downloaded images to phone’s SD card memory to be able to use them for the

restoration purpose from recovery console of the phone.

In addition to the above modifications we make some other modification to the recovery as
well, it means enabling “adb” for push and pull operation is not quite enough to complete the
task. Therefore we also modify recovery source in order to be able to execute (to call our
function that can read the images for the SD card) our code while in recovery Mode. Our
modified recovery code will read the images copied to the phone’s SD card memory to

recover the damaged partitions by install the new stable image on them. After

37

Chapter No-03

installing/flashing the partition with these images all the changes that are made to the phone
after taking this backup image will be rolled back and device will go into a previous state that

is stable.

The recovery image is an “.img” image file which is almost impossible to modify directly
because the contents of the image is not a normal text or readable pattern and is not easy to
understand. To modify the recovery image we need to be able to read the contents of the
image. It means before making any modifications to the recovery image we need to unpack
the “.img” file in order to retrieve its contents, and then it will be possible to make
modifications or replace some contents of the file. We used two Perl scripts to unpack, edit
and repack these images available online [wl-13]. These scripts take source path of the input
file and destination path for the out file to unpack or repack images. After executing the
scripting by providing the right arguments we unpack the images and are able to see the

required contents.

3.4.4 Android Debugging Bridge

The following definition is taken from the android developers’ website in [w]-12]. “Android
Debug Bridge (adb) is a versatile tool lets you manage the state of an emulator instance or

Android-powered device.” It is a client-server program that includes three components:

e A client, that runs on the development machine and can be invoked from the shell
using adb command.

e A server, that runs on the development machine as a background process. It is
responsible for managing the communication between the client and the adb daemon
running on an emulator or device.

e A daemon, that runs on each emulator or device as a background process.

The “adb” support a large set of commands to be used while the device (is connected through
USB) or the emulator is running on the user machine. Since we need to use the “adb” while
the device is in recovery mode we either need a recovery image which already has “adb”
enabled in it or we have to explicitly enable it. Enabling “adb” in recovery mode will give us
access to a limited number of functions like “adb shell”, “adb push”, “adb pull”, “adb
reboot”, “adb reboot recovery” etc. but to run these command we must have root access on

the phone. For emulator we have the root access by default but not on the G1 phones.

38

Chapter No-03

Complete details on how to get root access on ANDROID HTC G1 are available in [wl-10]
and many other resources on the web. After getting root access we can make changes to

different parts of the source code.

One important aspect that we can flash any image on any partition with root access without

modifying the recovery image by executing just one command i-e
flash_image <partition name> <source file on sdcard>

As the second argument suggests, we must first push the source file (image) to the sdcard
using the “adb push” command. After this we can get into the phone shell using “adb shell”
to execute the “flash_image” command. After flashing the image we can use “adb reboot” to
boot into any specific mode to check if our command executed successfully or not. Since |
modifying recovery is time consuming job, so we did most of our testing with manual

command to check the output quickly.

3.4.5 Algorithm for over all Restore process

1. User machine sends a request for clean image
2. Reguest is received at server

3. In response the server searches for a latest clean system
image

4. Sends the image to the requesting Node.

S. On receiving the image the download utility reboot the
phone into recovery mode (using adb)

6. Pushes the i}nage into SD-Card (using adb push)
7. User selects the restore option from recovery menu

8. Reboots on completion

39

Chapter No-04

Results

Chapter No-04 Results

Results

In this chapter we are going to add some results in the form of screenshots representing
different states of the system during execution. Although the ABG will run a background
process, still we will include some screen output results in order to show that our proposed
solution is feasible. To check the integrity of the backup images we use them to flash the
phone to check if it works fine or producing some error. While doing this one must be careful
to take backup of the phone first, as a slit mistake during this process of testing images can
break the phone and it may not be usable in the future. In such case the backup can be

reinstalled on the phone to bring it to its original state.

Since it has been shown in [4] that the effect of Marvin Architecture based system on the
phone’s battery life is only 7%, the same result holds true for our approach since it does not

carry out any execution directly on the phone. Here is the figure taken from [4] approving the

statement.
100 WiFT
3G
~m == WiFi-Manvin
m———== 3G-Manvin
85 - e

Battery level{%)
o
o

83

BU T T T T L B B L B L B L [Frrrs T T
o000 0:10° 020 030
Time.

Figure 4.1: Battery Consumption

41

Chapter No-04 Results

To check the feasibility of our proposed model we implemented the Automatic Backup
Generator (ABG) to see if it works fine and produces the desired results. The following
screenshot shows the execution of ABG which generates a backup after every 10 seconds, set
on the timer. It shows the path of the generated backup with date and timestamp. It also

outputs the generation time.

To check the integrity of the image we used the “hex” editor to open the both the source and
destination images and compare the contents of both. Successful opening of the backup
image indicates that the image is not corrupted during the backup process and the content

comparison shows that the content of the image are intact.

VOMN-NS S/ ¢ ATest backup

Bach 15 Saccassiully

shome s ar Slest /Backan -0

feack 1.

Jhane /o
Back 1%

C1 62 2011

B7oamg

1296581917

Figure 4.2: Output of ABG

42

Chapter No-04 Results

The following screenshot verifies the execution shown in the previous screenshot. This is an
image of the test directory with the backup images generated by the execution of ABG. The
name backup is followed by a date and time stamp, and shows that the backup is generated
on the specific date at the specified time. This timestamp will make the process of searching

for latest image much easier when required for recovery.

The source code for Automatic Backup Generator (ABG) is given in Appendix-A with the
name of “ABG.c”.

sarks. Help T
“ﬁ' W ﬁ' ﬁ' E '_Q 100% Q Ilcor.\hew T[Q-
Il'ﬁanwar[tcst[| : '

= =T
 I——
Backup-m-oz 201 Backup01022011- Backup01022011- Backup010221- Backup-01-02-2011- Backup01-02-2011-
22:30:37.img 2230:47.img 22:30:57.img 22:31:07.img 22:31:17.img

R S laeed
Backup-01-022011- Backup01:02-2011- Backup-01-02-2011- Backup-01-02:201%- Backup-01:02-2011- Backup-01-02-2011-
22:31:2Timy 12:31:37.img 22314y 22:31:57.img 22:32:07.iing 22:3217.imyg

Figure 4.3: Test Directory with generated backup image

43

Chapter No-04 Results

We will not go into details of the Marvin Architecture here as we have discussed it in detail
in chapter 2. Now we are going to give some screen shots from testing our work on the

system. We have used HTC G1 for this purpose.

Figure 4.4: HTC G1

Recovery console offer a minimum function environment to the user to perform functions
like restore update etc. Also user can apply any update in zip format available on the sdcard
of the phone. It must be remembered that some of these functions can be performed using the
fastboot utility available and can be built from android source code. It can execute different

command like flashing image, rebooting the device in different mode etc. All we had to do is

44

Chapter No-04 Results

to add a menu item to the menu list and execute our code against that menu item. The same

can be done against an existing menu item.

Eome Back reboot synten nox

Figure 4.5: Menu options in Recovery Mode

This result shows a successful installation of a modified recovery image on the phone. It
means we can execute any code in recovery mode by modifying the recovery image
accordingly. This verifies that it is possible to carry out any function in this mode but within

the restriction limits imposed.

Since ANDROID is an open source operating system, if we look on the web many
developers offering their modified recovery images with different functionalities and feature
to the ANDROID users. This is becoming a common practice in the world of ANDROID to

have a Smartphone with custom features you like.

45

Chapter No-04 Results

In the case of some run-time errors in the code modification of the recovery image when it is
flashed installed on the device, it gets stuck at the following screen and will remain on this

screen forever. This verifies that the process of modification is incorrect.

Figure 4.6: Error in Recovery modifications

We have successfully implemented and tested Automatic Backup Generator. The aim was to
test whether a system image can be stored as backup and used for restoring the phone at

some times later when required.

We have included some other source code for different scripts those are being used in testing

the feasibility of this process, and the code for modified recovery in different Appendices.
4.1 Comparison with Marvin Architecture

We are going to compare Marvin architecture with our approach to show how our approach
overcomes different weaknesses of the architecture. We do not challenge the results in
produced by Marvin Architecture in terms of avoiding resource limitation problem as well as
attack detection. It means the results stand the same for our approach except that our

approach incorporates the recovery facility to restore the phone to an earlier stable position,

46

Chapter No-04 ' Results

whereas in Marvin Architecture users only have the option to restore the phone to factory

setting. In that case all the data, setting and preferences will be lost. The comparison is

shown in the following section.

4.1.1 Our approach versus Marvin Architecture

e

o

O,
L <3

Our approach guarantees a transparent and automatic backup generation process
where user need not be aware of where the backup is located and how is it generated?
While in Marvin Architecture there is no provisions for backing up the system to be
used for restore.

In our approach the maintenance is done by the security server and the user does not
need to worry about the maintenance and security of the backup.

In our approach the phone is restored in recovery mode in order to ensure the security
of the restore process itself.

In our approach restore is through the user machine connected to internet to avoid any
battery power consumption and also to ensure the security of the process itself. Where
as using the phone UMTS connection for restore is not feasible due to the reason that
with this approach it can significantly affect the battery life as well as the process
itself become compromised if the phone is already under attack.

Incorporates all strengths of Marvin like avoiding resource limitation problem and
improving security with some of its own features, like restore and avoiding external

interference during the restore process.

From the above comparison it is clear that using Marvin architecture can avoid resource

limitation problem as well as improving security but at the time has no provision for

protecting user data, applications, setting and preferences. On the other hand our

approach proved to be as secure as Marvin, with a transparent and automatic recovery of

the phone to recent stable point there by protecting the user from data loss. Our approach

looks more safe as the system image is taken from the replica on the security sever

instead backing it up from the phone directly.

The comparison is summarized in the following table:

47

£

-~ S

Chapter No-04

Marvin Architecture A4

Our Approach

One way synchronization from Phone to
Server

Two way communication i.e from phone
to server and from server to phone.

No mechanism for restoring the phone

after an attack

Can be used to restore the phone with no
power consumption from the battery.

All the communication is through UMTS
internet which is not suitable for restore
because battery power will be consumed

very fast.

Restore is through the user machine
connected to internet to avoid any battery

_power consumption. Also to ensures the

security of the process itself.

Has the advantage of avoiding resource
limitation problem and improving

security

Incorporates all strengths of Marvin with
some of its own features, like restore.

No External Interference from attacker,
nor a malicious software

Table 4.1: Comparison proposed approach with Marvin Architecture

48

Results

Chapter No-05

Summary and Conclusions

49

Chapter No-05 Summary and Conclusion

Summary and Conclusion

4.1 Summary

This work demonstrates the crucial role of recovery/restore of ANDROID phones from a
replica on security server and gives an approach that is automatic and transparent to restore
the phone from a compromised state to a stable one. Our work is a valuable extension to the
Marvin Architecture in order to accommodate a restore facility. This work represents a very
flexible and reliable approach for recovery/restore which insures security, reliability and
availability. The popularity and application complexity of mobile devices (Smartphone) is
increasing as the vendors are striving to provide maximum functionality like online shopping,
web browsing, checking emails, video conferencing storing and editing documents and
photos etc. and this is the reason they are becoming the first and attractive targets for
different attacks. These attacks are also a source of financial incentives for the attackers
because of the broad application domain enabling these devices to be used for different
financial transactions. Therefore they need a highly advance security system to insure that
these operations are secure to be performed on these devices. But the implementation of such
advance system is restricted by the resource limitations like better life, processing power etc

associated with these devices.

Our approach is based Marvin architecture which decouples the security function from the
phone to an isolated powerful machine with sophisticated security mechanisms called the
security server. This architecture is responsible to avaid the resource limitation problem and
any other restriction that is a hurdle in the way of implementing an advance security
technique for Smartphones. Our work is an extension to this architecture to provide the

restore facility to the users.

We aimed to implement a system that not only provides tight security and advance detection
system but at the same time do not increase the processing burden on the phone so as to
decrease the load on the battery power. The communication problem between the device and
the replica for synchronization is solved to some .extent by Marvin architecture by
synchronizing the in coming and out going traffic directly with the replica from a proxy
server between the device and the security server. To sum up main objectives of this work

are.

50

#

Chapter No-05 _ Summarv and Conclusion

¢ Sophisticated security system
¢ Heavy security against intrusion/attack detection

¢ Decreased processing load on phone

Automatic backup generation system is a system which generates backups of the replicas on
security server after a specified period of time. It is totally a design decision and depends on
whatever protocol is used. Whenever there is a problem, the system is able to rollback to an
older state using a clean backup image of the system just like Microsoft Windows
“checkpoint” technique. With this rollback feature we are not only able to restore the device
to a stable position but also it help to clean the system from any anomalies occurring after the
backup has been taken.

To insure that the backup image to be used for restore is clean the mechanism of Taint
analysis could be used. This technique uses back tracking in order to find out which data has

been affected by an attack and to what extent.

4.2 Future work

Much more needs to be done. This thesis gives the design possibility to one such system.
Currently we have tested our approach with only one replica and one device but in future it
can be extended to support multiple replicas on the same server machine serving my devices

at the same time.

Moreover this approach can also be extended to a system that can identify the user with some
authentication mechanism and restore customized user’s data instead of the whole system. In
this way the un-necessary communicaﬁon between the server and the phone can be
minimized to a significant level. The user will able to restore the desired application, setting

or preferences.

This technique can cope with situation to restore data even if the phone is broken or even
stolen. The user needs to have some special means by which he/she will be able to block thé :
stolen phone. One such example is the use of IMEI number of the stolen phone, and restore
the data to his/her new phone with different IMEI number. The same is true for broken phone
except this one will not need to be blocked. Although this can also be accomplish with

Google account authentication associated with each ANDROID Smartphone.

51

Chapter No-05 . Summary and Conclusion

This technique is not limited to ANDROID only. It can be implemented for other phones like
Smartphones from Nokia, Sony Ericson, and Motorola etc to address the same resource

limitation issue.

52

Appendices

53

Appendix-A Timer for ABG

Appendix-A

Timer for Automatic Backup Generator

Here we are going to give the source code for the timer which trigger the automatic backup
generation of the replica. This code will run completely as background process with no
interaction from the user. It will generate copies of the three main partitions *“/boot”,
“/system”, and “/userdata” with a date and time tag. This tag can later be used to search for
the latest clean image. Then it will be downloaded to the user machine and flashed on to the

device.
Here is the code for ABG:

/* this ABG.c code will run on the security server where a
replica (emulator) replicating the execution of the device
(android phone) is running. The function of this code is
generator backup of the system from the replica and store it
in a directory specified for backup images to be stored in.
These images may later be used for the phone's restoration
process if the phone is attacked or corrupted due to system
error to rollback it to a previous stable point.

*/

#include <sys/time.h>
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

long int count=0; /*a global variable holding the time of
The next backup generation */

int delay=1*10; /* delay is a global variable represents
The time between two back up */

int main ()

{

struct timeval tv;
count=SetTimer (tv,delay); //set up a delay timer

54

Appendix-A . Timer for ABG

while (1)
CheckTimer (count,delay); //Generate bakups periodically

return O0;

)

/* This method will set the timer for the first time to
initiate the backup process. It will be called once the

program start.*/

int SetTimer(struct timeval tv, time_t sec)

{

gettimeofday (&tv,NULL) ;
tv.tv_sec+=sec;
return tv.tv_sec;

int CheckTimer(long int x,time_t sec) // Checks the current
time against the sget timer

{

struct timeval ctv;
gettimeofday (&ctv,NULL) ;

if (ctv.tv_sec == x)

{

generate_backup(); //call for Backup
printf ("Back is Successfully Generated at time = %1d
\n",x);
gettimeofday(&ctv,NULL) ;
count=ctv.tv_sec+sec;
//sleep(10) ;

}

return 0;

}

/* This function will open the images directory and read

images to a backup directory to be used for restore later.*/

int generate_backup()

{

Char file path[100],file_name[30],time_buffer [20];
Char file_extension[5];

struct timeval tv;

55

A

Appendix-A__ - Limer for ABG

time_t curtime;

gettimeofday (&tv, NULL);
curtime=tv.tv_sec; '

char *templ,*temp2, *dest_path;

strcpy(file_path, "/home/anwar/test/") ;
strcpy (file_name, "Backup-") ;
strftime(time_buffer,30, "$d-$m-%Y-
%¥T",localtime (&curtime)) ;
strcpy(file_extension,".img") ;

templ=strcat (file_path,file_name) ;
temp2=strcat (time_buffer,file extension);
dest_path=strcat (templ, temp2) ;

char *source_path="/home/anwar/Desktop/newimage.img";
FILE *rfile;

FILE *wfile;

char *buffer;

unsigned long fileLen;

//Open the source file
rfile = fopen(source_path, "rb");
if (lrfile)

{
fprintf (stderr, "Unable to open file %s",
source_path) ;
return;

//Get file length of source file
fseek(rfile, 0, SEEK_END);
fileLen=ftell (rfile) ;
fseek(rfile, 0, SEEK_SET);

//Allocate memory
buffer=(char *)malloc(fileLen+l);
if (!buffer)

{
fprintf (stderr, "Memory error!");
fclose(rfile);
return;
}

//Read source file contents into buffer
fread(buffer, filelLen, 1, rfile);
fclose(rfile);

//Open destination file
wfile = fopen(dest_path, "wb");
if (lwfile)

56

Appendix-A Timer for ABG

{
fprintf (stderr, "Unable to open destination %s",
dest_path);
return;
}

//write file from buffer to destination
fwrite (buffer, filelien, 1, wfile);
fclose(wfile);

free (buffer);
return 0;

}

57

Appendices

Appendix-B

58

Unpacking &'Repacking Recovery images

Unpacking reéovery image

To unpack recovery image and avoid the manual efforts and error chances we have used the
following perl script. This script unpacks the recovery image into two different files. The first
one is “kernel” which is a “.gz” format. The second one is “ramdisk” which is also of the
same format but further extracted into a directory with the same name. We can change any of

the contents in this directory to reflect our changes in recovery mode.

This script takes two arguments. One is the recovery image to be unpacked and the second
argument is the path to the output files.

“#1/usr/bin/perl -W

use strict;
use bytes;
use File::Path;

die "did not specify boot img file\n" unless $ARGVI[0];
my S$bootimgfile = $ARGV(0];

my $slurpvar = $/;

undef $/;

open (BOOTIMGFILE, “"$bootimgfile") or die "could not open boot img
file: $bootimgfile\n”;

my $bootimg = <BOOTIMGFILE>;

close BOOTIMGFILE;

$/ = $slurpvar;

chop off the header
Sbootimg = substr (Sbootimg,2048);

we'll check how many ramdisks are embedded in this image
my $numfiles = 0;

we look for the hex 00 00 00 00 1F 8B because we expect some trailing
padding zeroces from the kernel or previous ramdisk, followed by 1F 8B
(the gzip magic number)
while ($bootimg =~ m/\x00\x00\x00\x00\x1F\x8B/g) {

$numfiles++;
}

if ($numfiles == 0) {

die "Could not find any embedded ramdisk images. Are you sure
this is a full boot image?\n";
} elsif ($numfiles > 1) {

59

Appendix-B

die "Found a secondary file after the ramdisk iyage; .Accqrding
to the spec (mkbootimg.h) this file can exist, but this script is not
designed to deal with this scenario.\n";

}

$bootimg =~ /(.*\xOO\xOO\xOO\xOO)(\xlF\xaB.*)/s;‘

my S$kernel = $1;
my $ramdisk = $2;

open (KERNELFILE, ">$ARGV[0]-kernel.gz");
print KERNELFILE $kernel or die;
close KERNELFILE;

open (RAMDISKFILE, "SSARGV[0]) -ramdisk.cpio.gz®);
print RAMDISKFILE $ramdisk or die;
close RAMDISKFILE;

print "\nkernel written to $ARGV[0] -kernel.gz\nramdisk written to
$ARGV[0] -ramdisk.cpio.gz\n";
if (-e "$SARGV{0]-~ramdisk") ({

rmtree "S$SARGVI[0] -ramdisk";

print "\nremoved old directory $ARGV[0]-ramdisk\n";

}

mkdir "$ARGV{0]-ramdisk" or die;

chdir "$ARGV[0]-ramdisk" or die;

system ("gunzip -c ../$ARGV([0]-ramdisk.cpio.gz | cpio -i*);

print "\nextracted ramdisk contents to directory $ARGV[0]-ramdisk/\n";

Repacking the image

After modification we can repack the image of course through manual process but again to
avoid the efforts as well as error chances we have use another perl script “repack-bootimg”.
This script takes three arguments. First is the kernel file in “.gz” format the second one is the
“ramdisk” directory to which modification has been made and the third one is the name path

to the output image,

#1/usr/bin/perl -w
use strict;

use Cwd;

my $dir = getcwd;

60

- o A

o —

F3

M\

Appendix-B

my $usage = "repack-bootimg.pl <kernel> <ramdisk-directory>
<outfile>\n";

die S$usage unléss SARGVI0] && SARGVI[1] && SARGVI[2];
chdir $ARGVI[1] or die "$ARGV(1] §!";

system ("find . | cpio -o -H newc | gzip > $dir/ramdisk-
repack.cpio.gz");

chdir $dir or die "$ARGV(1] s$!";;

system ("mkbootimg --cmdline 'no_console_suspend=1 console=null' --
kernel $ARGV([0] --ramdisk ramdisk-repack.cpio.gz -o $ARGV[2]");

unlink ("ramdisk-repack.cpioc.gz") or die $!;

print "\nrepacked boot image written at $ARGV([1]-repack.img\n";

»

61

Appendices

Appendix-C

62

Appendix-C Modified Recoverv

Modified Recovery

Here we are including the source code for modified recovery. We have modified three files
from android source namely recovery.c, recovery_ui.c, default_recovery ui.c. These files can
be found at the following path in the ANDROID source.

Project-Source/bootable/recovery/

Although we have used the manual testing to flash the recovery partition mostly as this
method is quick for testing. However we did test the source code modification to see if we

can modify the code and execute some thing we want to in the recovery mode successfully.

We can add any number of menu items to the recovery menu and can perform any function
on click on the specified menu item. The user either has to click on the menu item with the

help of the track ball or press the shortcut key for that item.

63

Bibliography

Bibliographv

(1

[21.

{31

(4.

[5].

[6].

[71.

[8].

References

Paul Anderson, Adam Blackwood, “Mobile and PDA technologies and their future
use in education”, JISC Technology and Standards Watch, page 3,11, 13,/ November
2004.

Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Jan Clausen, Ahmet Camtepe,
Sahin Albayrak, Kamer Ali Yiiksel and Osman Kiraz. “Enhancing Security of Linux-
based Android Devices”, TU Berlen DAI-Labour Germany, page S, / September 19,
2008

Russell Beale “Supporting Social Interaction with Smart Phones,” IEEE Educational
Activities Department Piscataway, NJ, USA, Volume 4, page 5/ April, 2005.

G Portokalidis, P Homburg, N FitzRoy-Dale, K Anagnostakis, Herbert Bos,
“Protecting Smatphones by means of execution replication”. Technical report IR~-CS-
54, (Vrije Universiteit Amsterdam), Page 1, 2, 4, 5, 6 / September, 2009.

William Enck, Machigar Ongtang, Patric McDaniel, “On lightweight mobile phone
application certification™. In proceedings of the 16® ACM conference on Computer

and Communications Security (CCS’09), Chicago, Iilinois, USA, pp. 235-245. /2009

A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, “Google Android: A State-
of-the-Art Review of Security Mechanisms”, Department of information and system

Engineering Ben Gurion University Israel. pp. 17- 21 / December, 2009,

vAubrey-Derrick Schmidt, Hans-Gunther Schmidt, Leonid Batyuk, Jan Hendrik
Clausen, Seyit Ahmet Camtepe, Sahin Albayrak, Can Yildizli, “Smartphone Malware
Evolution Revisited: Android Next Target?”, 4th IEEE International Conference on
Malicious and Unwanted Software (Malware 2009), Montreal, Quebec, Canada, page
1,2,3,5

Wayne Jansen, Karen Scarfone. “Guide lines on cell phone and PDA security”.
Recommendations of the national institute of standard and iechnology, National
Institute of Science and Technology (NIST) US Department of Commerce, Special
Publication 800 -124, / Oct 2008

65

Bibliographv __ References

[9].

[10].

[11].

[12).

[13].

[14].

[15].

A.-D. Schmidt, F. Peters, F. Lamour, and S. Albayrak, ‘“Monitoring smartphones for
anomaly detection,” in MOBILWARE 2008, International Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications, Innsbruck, Austria,
2008.

A. Bose, X. Hu, K. G. Shin, and T. Park, “Behavioral detection of malware on
mobile handsets,” in Proceeding of the 6th international conference on Mobile
systems, applications, and services. Breckenridge, CO, USA: ACM, 2008, pp. 225-
238. '

D. C. Nash, T. L. Martin, D. S. Ha, and M. S. Hsiao, “Towards an intrusion detection
system for battery exhaustion attacks on mobile computing devices,” in PERCOMW
’05: Proceedings of the Third IEEE International Conference on Pervasive Computing
and Communications Workshops. Washington, DC, USA: IEEE Computer Society,
2005, pp. 141-145.

H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies and mobile
malware variants,” in MobiSys ’08: Proceeding of the 6™ international conference on
Mobile systems, applications, and services. New York, NY, USA: ACM, 2008, page
239-252.

G. Jacoby and N. Davis, “Battery-based intrusion detection,” in Global
Telecommunications Conference, 2004. GLOBECOM °04. IEEE, vol. 4, 2004, page
2250-2255.

T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C. Marchany,
and J. G. Tront, “Mobile device profiling and intrusion detection using smart
batteries,” in HICSS ’08: Proceedings of the Proceedings of the 41st Annual Hawaii
International Conference on System Sciences. Washington, DC, USA: IEEE
Computer Society, 2008, p. 296.

M. Miettinen, P. Halonen, and K. H"at"onen, “Host-Based Intrusion Detection for
Advanced Mobile Devices,” in AINA ’06: Proceedings of the 20th International
Conference on Advanced Information Networking and Applications - Volume 2
(AINA’06). Washington, DC, USA: IEEE Computer Society, 2006, pp. 72-76.

66

Bibliography. References

[16]. Machigar Ongtang, Stephen McLaughlin, William Enck, Patrick McDaniel,
“Semantically Rich Application-Centric Security in Android”, Annual Computer
Security Applications Conference, Honolulu, Hawaii, / December 2009.

[17]. J. Newsome and D. Song. “Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software”, In proceeding of the
Network and Distributed system security symposium (NDSS 2005), /2005.

[18]. Junyao Zhang, Article on “Android vs iPhone”, April 12, 2010.

[19]). Michael K. Cheng, “iphone jailbreaking under the DMCA: towards a functionalist
approach in anti-circumvention”, 2010.

Web Links

[wl-1]. Smartphone. [Online] Available at http://en.wikipedia.org/wiki/Smartphone

[wl-2]. What is ANDROID? [Online] Available at official ANDROID developers website:

http://developer.android.com/guide/basics/what-is-android.html

[w1-3]. H. Moore. Cracking the iphone (part 1). [Online] Available at

[wl-4].

[wl-5].

[wl-6].

hitp://blog.metasploit.com/2007/10/cracking-iphone-part-1.htm] [October 2007].

Karl Flinders. iPhone 3GS crack released. [Online] Available at:
http://www.computerweekly.com/Articles/2009/07/06/236777/iPhone-3GS-crack-
released.htm! [Monday, July 06, 2009] '

Computer Business Review, 2004. PDA security: mobile employees risk corporate
data. Computer Business Review Online [online]. Available at:

http://www.cbronline com/features/pda_security_mobile_employees risk corporate
data. {31 August 2004]

INSECURE.ORG, “Top 100 network security tools,” 2006. [Online] Available at:
http://sectools.org/

[w1-7]. iTunes. [online] Available at http://en wikipedia.org/wiki/ITunes

67

Bibliography ' References

[w1-8]. Sam Costello. How to restore iPhone from backup. [online] Available at

http://ipod.about.com/od/iphonetroubleshooting/ss/restore-iphone.htin

[w1-9]. System Restore. [Online] Available at http://en.wikipedia.org/wiki/System_Restore

[w1-10]. Why should you root your Dream G1? [Online] available at: http://forum xda-
developers.com/showthread.php?t=442480

[wl-11]. Building android from source. [Online] available at:

hitp://source.android.com/download

[wl-12]). Android Debug Bridge(ADB). [Online] available at:
http://developer.android.com/guide/developing/tools/adb.html

[wl-13]. How to: Unpack, Edit, and Re-pack Boot Images. Available at http:/android-
dls.com/wiki/index.php?title=HOWTO: Unpack%2C Edit%2C_and_Re-

Pack_Boot_Images

CENTRAL

LIBRARY
ISLAMABAD.

68

