Automatic Target (object) Recognition
(ATR) Using Enhanced Versions of
Hausdorft Distance

Muhammad Abid Mumtaz
Reg. No.185-FET/MSEE/F08

Department of Electronic Engineering
Faculty of Engineering & and Technology, (FET)
International Islamic University, (IIU), Islamabad




TH.939>

Accession No

MS

£31.22
MUR

7 } , 7 P 4
h f’ow}'m)‘l%@d‘ {vass LOY’VCLAL:W\

DLATA ENTERED



(Acceptance by the Viva Voce Committee)

Title of thesis; Automatic Target (object) Recognition (ATR) Using
Enhanced Versions of Hausdorff Distance.
Name of student; Muhammad Abid Mumtaz,

Registration No. 185-FET / MSEE / FO8

Accepted by the Department of Electronic Engineering INTERNATIONAL
ISLAMIC UNIVERSITY, ISLAMABAD, in partial fulfilment of the
requirements for the Master of Philosophy Degree in Electronic
Engineering with specialization in Image Processing.

Viva voce committee:

e

ean
Dr. Ghulam Yasin Chohan
FET.

Chairy

Dr. Muhammad Zubair

DEE, FET. :
e
/

External Examiner
Dr. Abdul Jalil
Associate Professor, PIEAS.

I er'nél xaminer
Professor Dr, .M. Qureshi
DEE,

Supetvisor “

Dr. Rab Nawaz Chaudhary
Scientist, NDC, NESCOM.

Day, month, year



DECLARATION

I certify that except where due acknowledgments has been made, the
work has not been submitted previously, in whole, to qualify for any
other academic award, the content of the thesis is the result of work
which has been carried out since the official commencement date of
the approved research program, and any editorial work paid or unpaid,
carried out by a third party is acknowledged.

'Z\ hid
Signed ..............\) Vet kqa (candidate)

iv



DEDICATION

I dedicate this work done by me to my mother who has stood beside me
in the time of troubles as well as in the time of happiness. She devoted
her whole life for my future and what [ am today is all because of her.

[ salute her for what she has done for me. Thanks a lot Mom.



ABSTRACT

A novel and robust algorithm to perform image registration for target
recognition under partial occlusion is proposed. The algorithm makes
use of a particular form of the Normalized Cross Correlation (NCC).
The algorithm is able to handle partial occlusion whether it is in the
form of randomly located corrupted pixels or as a contiguous block of |
corrupted pixels. The approach is applicable wherever NCC is used
i.e, object detection, biometric (forensics), tracking, stereo matching.
The corrupted pixels are detected as a by product of the NCC cal-
culations keeping the computational complexity of our algorithm low.
The corrupted pixels are excluded from the NCC calculations in the
ranked Hausdorff sense. The algorithm thus performs target (object)
recognition by matching certain percentage of the target pixels. Even
if the occlusion is coherent, the location of these pixels is not fixed so
the algorithm handles occlusion in any part of the target as is the case

with ranked Hausdorff algorithm.

vi



ACKNOWLEDGEMENTS

First of all I would like to thank "ALLAH”, the most merciful and
mighty, who love me 70 times more than my own mother and who
gave me this life so that T can learn and spread a message of love and
peace in the world. It is ALLAH’s blessings that have made me able to
complete Master of Science in Electronic Engineering. It is my pleasure
to acknowledge and thank people who helped me accomplish my goal
to pursue graduate studies. I would like to thank my parents for their
constant support and encouragement. They have made lots of sacrifices
to help me with my education, for which I will always be grateful. Also
I am highly thankful to my beloved siblings who helped me in the time
of depression and crises; it would not be possible without their prayers
and support because they are always a source of courage for me. 1
would also like to thank my supervisor and mentor Dr. Rab Nawaz,
for his support throughout my graduate research. His willingness to
assist whenever needed and his constant words of encouragement and
motivation were vital to the completion of this thesis. Also he gave
careful and thoughtful feedback, and greatly contributed to the quality

of this thesis.

vii



DECLARATION . v
DEDICATION v
ABSTRACT vi
ACKNOWLEDGEMENTS vii
LIST OF FIGURES X
LIST OF TABLES xi
1 INTRODUCTION 1
1.1 Object recognition 1
1.2 Applications 1

1.3 Problems 2
1.3.1 Definition of Partial QOcclusion 2

1.4 Normalized Cross Correlation 3

1.5 Hausdorff Distance 4
16 NCC and HD 7

CONTENTS

viii



1.7 Organization of the thesis 7

2 LITERATURE SURVEY 8
2.1 Patch based approaches 8
2.2  Pixels based approaches 10 -

2.2.1 Increment Sign Correlation coefficient (ISC) 10
2.2.2  Selective Correlation Coeflicient (SCC) 11
2.3 NCC variant 11

3 PROPOSED SOLUTION: ROBUST NORMALIZED CROSS

CORRELATION (RNCC) 12
3.1 Robust NCC (RNCC) like Robust Hausdorff 12
4 SIMULATIONS 15
4.1 Partial occlusion of template by Gaussian Noise 15
4.2 Full template corrupted by salt & pepper noise 17
4.3 Partial occlusion of template by a constant value 19
4.4 Partial occlusion of template by intensity reversal 21
5 CONCLUSIONS AND FURTHER RESEARCH 24

BIBLIOGRAPHY 26

ix



List of Figures

1.1 NCC surface
2.1 A template divided into non-overlapping patches (1]

4.1 Rice image partially corrupted by Gaussian noise

4.2  Scatter diagram between Rice image and its image cor-

rupted partially by Gaussian noise
4.3 Rice image corrupted by salt & pepper noise

4.4 Scatter diagram between Rice image and its image cor-

rupted by salt & pepper noise
4.5 Rice image corrupted by a constant low value

4.6 Scatter diagram between Rice image and its image cor-

rupted partially by a constant low value
4.7 Rice image corrupted by partial intensity reversal

4.8 Scatter diagram between Rice image and its image cor-

rupted partially by intensity reversal

16

17

18

19

20

21

22

23



41

4.2

4.3

4.4

List of Tables

Comparison of different NCC values: Partial Gaussian

occlusion

Comparison of different NCC values: 5% pixels in Salt

& pepper occlusion

Comparison of different NCC values: A constant low

value occlusion

Comparison of different NCC values: Partial intensity

reversal

16

18

20

22

xi



Chapter 1

INTRODUCTION

1.1 Object recognition

In object recognition a small image (target) (so called template im-
age) is translated over a large image (so called reference image) and a
best matching position is found by estimating a similarity /dissimilarity

measure.

1.2 Applications

The object/target recognition applications are

Registering aerial images with the reference images from the satel-

lite imagery.

Finding a given target in the scene

A forensic evidence face may also be matched against a list of

criminal people.

A stored face in a watch list may be recognized in a natural scene

of people,

Tracking
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1.3 Problems

The problems we face in image registration are due to poor quality of
reference and/or template image. The reason is that the two images
being taken at different times, different seasons and possibly by different
sensors. Another problem is intentional partial occlusion. The reasons

could be expression, aging, beard, veil, glasses and camouflage.

1.3.1 Definition of Partial Occlusion

In our thesis by partial occlusion, we mean that a certain percentage
of the pixels of the template (or its location in the reference image)
is corrupted. These pixels need not be spatially coherent. Different

scenarios of partial occlusion are

Gaussian The whole (or portion of) template or the whole (or portion
of) location of the template in the reference is degraded by the

Gaussian noise.

Salt & Pepper The whole {(or portion of) template or the whole (or
portion of} location of the template in the reference is degraded

by the salt & pepper noise.

constant A portion of template or reference at the template location
is occluded completely being set to a high/low constant intensity

value.

Reversal A portion of template or reference at the template location

is degraded so that intensity is totally reversed at that portion.
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1.4 Normalized Cross Correlation

The normalized cross correlation is defined as

NCC(u,v) = S~ Ait-19

(1.4.1)
VU TR - 12

Where ¢ is the template image, ¢ is its mean, f is the reference image
when template image is translated to position (u,v) of the reference
image and f is its mean. Note that f and f will change for all (u,v)
locations. It is implicit that the sizes of t and f for one NCC(u,v)
calculations are the same. The complexity of NCC is of the order
of reference image and the template sizes. Other hardware friendly
variants of NCC have been proposed in [3] which use integral images to
reduce the computational complexity of NCC. NCC is computed for ev-
ery (u,v) location and a position with maximum NCC value is declared
as a match between template and the reference image. Figure (1.1)
shows one such NCC surface. Normalized Cross Correlation (NCC) is
a popular measure for image registration under linear changes between
the reference and the template images. NCC is sensitive to partial
occlusion. Local variations/occlusion degrade the NCC value of the
template at its actual position. This leads to match being declared at
wrong positions. It also makes NCC surface less peaky, reducing our

confidence on the NCC match surface.
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Figure 1.1. NCC surface

1.5 Hausdorff Distance

The Hausdorff Distance (HD) between two finite set points, A = {ay, az, ...

and B = {by,bs, ..., b4} is defined as [4]

H(A, B) = maz(h(A, B), h(B, A)) (1.5.1)
where
h(A, B) = ma:c.,eABD(a) (1.5.2)
similarly
h(B, A) = mazeepAp(b) (1.5.3)

h(A, B) is called the directed Hausdorff Distance from A to B. h(B, A)
is called the directed Hausdorff Distance from B to A. H(A, B) is the
maximum of these two directed distances. Bp(a) is the DT value of

image B at edge locations given by A. h(A, B) gives the distance of

,ap}
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the farthest point in A from its nearest point in B. h{B, A) gives the
distance of the farthest point in B from its nearest point in A.

The directed distance measures h{A,B) and h(B,A) are sensitive to
partial occlusion as they are based on the maz operator.

Hausdorff Distance (HD) has historically been used in conjunction with .
edge images. In the context of template matching, edge images of the
template and reference images are gotten. Another so called Distance
Transform of both the images is also calculated. The distance trans-
form, at every location, measures the distance from the nearest edge.
The edge pixels of the template and the corresponding portion of the
reference are the elements of the sets A and B. HD surface is estimated
by translating the template and estimating HD for all the locations.
The template matched position is found by finding the minimum of the
HD surface.

The directed distance measures h(A,B) and h(B,A) are sensitive to
occlusion as they are based on the maz operator. The authors in [4]

also propose a robust version by defining h(A,B) as below
hi(A,B) = L ,Bp(a) (1.5.4)
hi(A, B) gives L** largest value of Bp at locations given by A. similarly
hi(B, A) = K{ZAp(D) (1.5.5)

hx (B, A) gives K** largest value of Ap at locations given by B. Finally

the Partial Hausdorff Distance (PHD) is given as

HLK(A,B) = ma:c(hL(A,B),hK(B,A)) (156)
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The L and K are given as fraction of the total number of edge pixels
being matched. For example if want to match only best 76% of the -
template points given by A, we shall set L = (.75 %4, where n4 is the
number of edge pixels in set A. If want to match only best 75% of the
reference points given by B, we shall set K = 0.75 * ng, where ng is
the number of edge pixels in set B.

The PHD algorithm handles occlusion by matching max(L, K} points -
on the template. It handles ocelusion by comparing only the best por-
tions of the template but is shown to be still sensitive to occlusion due
to using a ranked value from the list of distances. To tackle partial oc-
clusion, the authors in (2] propose Modified Hausdorff Distance (MHD)

based on the following directed distances

h(A, B) = niAZBD(a) (15.7)

acA

Here n,4 is the number of edge pixels in set A. We can see that MHD is
still sensitive to outliers as the summation of the distances is affected
by the outliers due to occlusion. Another robust version proposed by
the authors in [2] is called Least Trimmed Square Hausdorff Distance
(LTS-HD), given by

1 K

hurs(A, B) = 2 3 Bo(@)sorted(i) (1.5.8)

i=1

where K and Bp(a) are as defined in PHD and Bp(a)sorteq is the sorted
Bp(a) in ascending order. The measures described above make it ro-
bust against the constant type of partial occlusion because the pixels

corresponding to that portion will give us high dissimilarity values from

the DT.
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1.6 NCC and HD

We have seen in previous section that the directed distances in HD are
tuned to deal with the occlusion. The directed distance give dissimilar-
ity of one set to the other set. As we are accustomed to use edge images
with HD, we have two directed distances i.e., h(A,B) and h(B,A). If we
want to use pixel intensities instead of edges to show dissimilarity be-
tween two sets, we shall have one directed distance between A and B.
The directed distance can be based on max value of all the pixel dis-
tances (HD), or a ranked pixe! distance (PHD) or an average of the all
pixel distances (MHD) or an trimmed average (LTS-PHD). We shall
introduce a novel form of calculating this directed distance in the next

chapter.

1.7 Organization of the thesis

The rest of the thesis is organized as follows: Chapter 2 gives an
overview of the literature about image registration under partial oc-
clusions, Chapter 3 details the proposed solution. Chapter 4 provides
simulations of the proposed algorithm. The detailed comments are also
provided about the outcomes of the simulations. Finally Chapter 5

concludes the work and give some future research directions.



Chapter 2

LITERATURE SURVEY

This chapter surveys different image registration algorithms based on

NCC which deal with partial occlusion.

2.1 Patch based approaches

Detecting the template when it is partially occluded in the reference
image, there are patch based approaches. At every candidate (u, v)
location, the template and the reference image under template is di-
vided into a number of overlapping/non-overlapping patches. Each
small patch of template image is independently matched with the cor-
responding patch of the reference image using NCC. The resulting NCC
values are added up to give the similarity measure at that (u, v} lo-
cation [5]. The motivation to use patches is that, if there is an affine
(linear) transformation between the local patch of the test and the tem-
plate image, the local patch will give high value of NCC. This keeps the
NCC surface peaked in spite of the local occlusion. Even if the local
patch(es) is (are) occluded the remaining patches of the template play
main role in matching without being influenced by the occluded pixels.
Figure (2.1) shows a template divided into non-overlapping patches [1].
The absolute of the resulting NCC values are added up to give the

similarity measure at a location [6]. This algorithm handles even lo-

8



Section 2.1. Patch based approaches 9

Figure 2.1. A template divided into non-overlapping patches [1]

cal intensity reversals and is useful when matching images taken with
different sensors.

The local variation/occlusion may not coincide with the non-overlapping
patches. Some work using particle filtering is done in [5] to decide the
size and distribution of patches within the whole template. If we opt
to use overlapping patches, the complexity increases, even further.
Another limitation of the method is that it requires coherent occlu-
sion and cannot handle random pixel corruption scattered all over the
template. It should be noted that the randomly located corrupted pix-
els are equally bad for global template matching as are the coherent

corrupted pixels.
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2.2 Pixels based approaches

The authors in [7] detect occluded pixels using the EM algorithm. They
then use weighted NCC. The weighted NCC is given by

NC‘Cw(u wa f t_t)
\/Zw(f )25 w(t - B2

The contribution from each pixel is weighted to calculate the weighted
NCC. The problem with these algorithms is that explicit algorithms
are required to detect the occluded pixels so that they can be down

weighted.

2.2.1 Increment Sign Correlation coefficient (ISC)

In Increment Sign Correlation coefficient (ISC) algorithm (8], the ref-
erence image f and template ¢ are independently converted to binary
codes b{ and bf, respectively, based on intensity incremental values.

The binary codes for the reference image [b{, b}, ...,b]_|] are defined as

b 1, iffinzf (222)

1
0, otherwise

The same applies to the binary codes for the template image. The ISC

is given by the XNOR of these binary codes as shown below

NCCise(u,v) = = \;bfb* — (1 — 8t (2.2.3)

(2.2.1)
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2.2.2 Selective Correlation Coefficient (SCC)

The same authors also propose a masked NCC where a mask is de- )
cided based on distribution of the binary codes [9], defined above. The
method is called Selective Correlation Coefficient (SSC). For all even
numbered codes, if the codes are same on the template and the refer-
ence, the corresponding pixel value in the mask is set to one otherwise
to zero. The odd numbered pixels are given mask value equal to that
of the neighboring even numbered pixel. Only pixels with mask value
of 1 are used to calculate NCC

ISC keeps partial occlusion effect limited to local binary codes. SCC
builds on 1SC and masks out bad pixels from taking part in the NCC
calculations. Both seem to work well for spatially coherent occlusion.
There is a risk that SCC in case of randomly located corrupted pixels
will fail because so many pixels will be masked out to be included in

the NCC calculations.

2.3 NCC variant

NCC is also given by [10]
NCCoua(u,v) =1-05Y (f ~t)? (2.3.1)

The f and t are zero-mean unit normalized vectors of the reference
image and the template, respectively [10]. We call this NCCj,q because
the term on the right hand side represents sum of squared differences
between f and t. We will come back to this definition of NCC in the

next chapter again.



Chapter 3

PROPOSED SOLUTION:

ROBUST NORMALIZED

CROSS CORRELATION
(RNCC)

As noted in the previous chapter, NCC is given by [10]

NCCyu(u,v) =105 Z(f' ~t)? (3.0.1) |

The f' and t are zero-mean unit normalized vectors of the reference
image and the template, respectively. We call this NCC,,e because
the term on the right hand side represents sum of squared differences
between f and . This form also suffers from the same problems of

partial occlusion,

3.1 Robust NCC (RNCC) like Robust Hausdorff

The squared differences in Equation (3.0.1) give dissimilarity for the
corresponding pixels as we had pixel distances in the directed Hausdorff
distance formulas. This is similar to the pixel distances/disimilarities in

12
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the directed Hausdorff distance formulas. We notice that the pixels that
contribute negatively to NCC are represented by the large squared dif-
ference values. We, therefore, suggest not to include the large squared .

differences in the summation. Qur algorithm is given below

K
NCCrmee(u,v) = 1 =053 (f =t )iorsed (3.1.1)

i=1

K gives the fraction of total number of pixels being matched. For
example if want to match only best 75% of the template points , we shall
set K = 0.75*n,, where n; is the number of pixels in the template. This
will make the global correlation robust to all types of partial occlusions
mentioned above. Qur algerithm is similar in nature to LTS-HD given
in Equation (1.5.8).

The number of pixels not included should be linked with the template
size and will represent the expected occlusion or local intensity varia-
tions. Finally we convert the summation representing dissimilarity into
NCC which gives similarity. Note that the pixels corresponding to the
large squared differences may or may not be contagious.

We normalize the two images independently, which bears resemblance
with ISC method. We detect the pixels to be discarded/masked once
we have squared difference between them. This bears resemblance with
SSC method.

One variation of RNCC is, we identify the pixels as above and run a
separate correlation for the non-occluded pixels. We shall refer to this
method as RNCC} in our simulations. We have seen (please refer to
the simulations in next chapter) that the difference of correlation values

of the two methods is very small. Our approach is novel in the sense
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that it avoids an explicit procedure to detect occluded pixels.

As far as computational complexity is concerned, the term f can be
efficiently calculated using integral images [3]. Some applications may
suit f calculations offline. The term t only needs to be calculated
once.

Our approach is different from patch based approach as it does not
require a full correlation estimation at patch level to determine the local
occlusions. Local occlusions are available as a by product of correlation
of the full template itself.

The proposed approach is applicable wherever NCC is used i.e, object
detection, biometric (forensics), tracking, stereo (give few references)
etc.

we are taking the sense of Hausdorff in dropping some dissimilarity from
higher end to tackle partial occlusion. Like Hausdorff, our algorithm

does not assume any fixed location for occlusion.



Chapter 4

SIMULATIONS

We shall simulate different types of occlusions and discuss the results.
We exclude the patch based approaches from the comparison because
their computational complexity is too high to be considered for real

time systems.

4.1 Partial occlusion of template by Gaussian Noise

The rice image was corrupted by Gaussian noise of variance 25 in Figure
(4.1) in a spatially coherent portion. The noise was contained to 15%
contagious pixels. We dropped squared differences of top 10% pixels for
RNCC. We see that this value should be proportional to the variance of
the Gaussian noise. Higher the variance, higher will be the degradation
in the NCC value. We demonstrate that the otherwise NCC of one has
reduced to 0.8332. The comparison of different algorithms is given in

Table (4.1) Figure {4.2) shows the scatter diagram of the pixels of

15
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Table 4.1. Comparison of different NCC values; Partial Gaussian
occlusion

NCC | RNCC RNCC2| ISC SCC
0.8332 | 0.9865 0.9924 | 0.9271 0.8986

Figure 4.1. Rice image partially corrupted by Gaussian noise

rice and its corrupted image pixel intensities. The pixels not on the
straight line with a positive slope cause degradation of the global NCC
from one to 0.8332. Green pixels are the corrupted pixels detected by
our algorithm. Note that we were successful in detecting majority of the
corrupted pixels. The only parameter to be tuned in our algorithm is
how many of pixels we are going to throw. This can be learnt by looking
at the data of a particular application. There is a very slight difference
between RNCC and RNCC,. Our proposed algorithms outperform
the ISC and SCC algorithms values as shown in Table (4.1).
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Figure 4.2. Scatter diagram between Rice image and its imagé cor-
rupted partially by Gaussian noise

4.2 Full template corrupted by salt & pepper noise

5% of the the rice image pixels were corrupted by salt & pepper noise
in Figure (4.3). We dropped squared differences of top 5% pixels for
RNCC. Note that we are assuming that our template (the full rice
image) or its location in some larger scene has been corrupted by salt
& pepper noise. We demonstrate that the otherwise NCC of one has
reduced to 0.7956. Note that only 5% of pixels corrupted reduced the
correlation by more than 20%. The comparison of different algorithms

is given in Table (4.2) Figure (4.4) shows the scatter diagram of the
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Table 4.2. Comparison of different NCC values: 5% pixels in Salt &

pepper occlusion

NCC
0.7956

RNCC RNCC2
0.9879 0.9999

IsC SCC
0.9527 0.8858

Figure 4.3. Rice image corrupted by salt & pepper noise

pixels of rice and its corrupted image pixel intensities. The pixels not

on the straight line with a positive slope cause degradation of the global

NCC from one to 0.7956. Green pixels are the corrupted pixels detected

by our algorithm. Note that we were successful in detecting majority of

the corrupted pixels. The only parameter to be tuned in our algorithm

is how many of pixels we are going to throw. This can be learnt by

looking at the data of a particular application. Finally there is a very

slight difference between RNCC and RNCC, values. Our proposed

algorithms outperform the ISC and SCC algorithms values as shown in

Table (4.2).
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Figure 4.4. Scatter diagram between Rice image and its image cor-
rupted by salt & pepper noise

4.3 Partial occlusion of template by a constant value

The rice image was corrupted by lowering 15% of contagious pixel values
to a constant value. in Figure (4.5). We dropped squared differences
of top 7% pixels for RNCC. We demonstrate that the otherwise NCC
of one has reduced to 0.5647. The comparison of different algorithms

is given in Table (4.3) Figure (4.6) shows the scatter diagram of the
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Table 4.3, Comparison of different NCC values: A constant low value
occlusion

NCC | RNCC RNCC2| ISC SCC
0.5647 [ 0.8667 0.8661 | 0.9460 0.6925

Figure 4.5. Rice image corrupted by a constant low value

pixels of rice and its corrupted image pixel intensities. The pixels not
on the straight line with a slope cause degradation of the global NCC
from one to 0.5647. Green pixels are the corrupted pixels detected by
our algorithm. Note that we were successful in detecting majority of
the corrupted pixels. The only parameter to be tuned in our algorithm
is how many of pixels we are going to throw. This can be learnt by
looking at the data of a particular application. Finally there is a slight
difference between RNCC and RNCC3. ISC outperforms our proposed
algorithms as shown in Table (4.3). This is possible a constant down
occlusion renders binary codes to be zero. This mistakenly gives a high

value of XNOR because the original rice image also has zero binary
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codes at the corresponding locations. The SCC (which builds on ISC
codes) is inferior to our algorithms. This again proves supremacy of
our algorithms as SCC could not mask out pixels under the occlusion

and resultantly had a lower correlation value.

BOP _
250
200
150
100F -

Q 50 100 150 200 250 300

Figure 4.6. Scatter diagram between Rice image and its image cor-
rupted partially by a constant low value

4.4 Partial occlusion of template by intensity reversal

The rice image was corrupted by subjecting 15% of contagious pixel to
a intensity reversal. in Figure (4.7). We dropped squared differences of
top 15% pixels for RNCC. We demonstrate that the otherwise NCC of
one has reduced to 0.6877. The comparison of different algorithms is

given in Table (4.4) Figure 4.8} shows the scatter diagram of the pixels
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Table 4.4. Comparison of different NCC values: Partial intensity
reversal

NCC | RNCC RNCC2| ISC SCC
0.6877 | 09985 1 (.8940 0.9021

Figure 4.7. Rice image corrupted by partial intensity reversal

of rice and its corrupted image pixel intensities. The pixels not on the
straight line with a positive slope cause degradation of the global NCC
from one to 0.6877. Green pixels are the corrupted pixels detected by
our algorithm. Note that we were successful in detecting majority of the
corrupted pixels. The only parameter to be tuned in our algorithm is
how many of pixels we are going to throw. This can be learnt by looking
at the data of a particular application. Finally there is a slight difference
between RNCC and RNCC,. Our proposed algorithms outperform
the ISC and SCC algorithms values as shown in Table (4.4).

+ et
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Figure 4.8. Scatter diagram between Rice image and its image cor-
rupted partially by intensity reversal



Chapter 5

CONCLUSIONS AND
FURTHER RESEARCH

In this chapter general conclusions are drawn and suggestions for fur-
ther research are given.

We have proposed a novel and robust algorithm to perform image reg-
istration for object/target recognition under partial occlusion. The
robustness to occlusion takes its intuition from the robust LTS-HD al-
gorithm. This was possible by using a particular form of the Normalized
Cross Correlation (NCC).

The corrupted pixels are detected as a by product of the NCC calcula- .
tions keeping the computational complexity of our algorithm low.

The algorithm is able to handle partial occlusion whether it is in the
form of randomly located corrupted pixels (noise) or as a contagious
block of corrupted pixels.

Even if coherent occlusion is present, location of the occluded pixels is
not fixed so the algorithm handles occlusion in any part of the target
and matches based on the given percentage of the best pixels.

We are taking the sense of LTS-HD Hausdorff in dropping some dis-
similarity from higher end to tackle partial ocelusion.

Like Hausdorff based algorithms, our algorithm does not assume any

24
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fixed location for occlusion.

RNCC(C, bears resemblance with SCC algorithm as both first mask out
occluded pixels and then estimate NCC over the reminding pixels.
Adaptive version of our algorithm where the elimination of large squared ‘
difference values is made intuitive will be an interesting future research

direction.
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