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Automated FSM Extraction from Model-based Formal Specification Abstract

ABSTRACT

Formal methods have significant importance in making programs to meet requirements
for safety, accuracy, security, unambiguity and any other critical property. Formal
methods are based on mathematical models, thus make specifications quite clear,
unambiguous and concise. Hence, these methods are used by many software testing
techniques and provides good opportunity for automated testing and for adding tool support.
Many formal specification-based techniques have made use of Finite State Machine (FSM)
for the testing purpose. Therefore, FSM extraction from model-based formal specification
is of substantial importance. Some techniques for FSM extraction do exist in literature
but none of them is fully automated. A major challenge in automatic FSM generation
from a class specification is the identification of states and transitions for each operation
given in that class. However, extracting states from abstract formal language like Z or
Object-Z is not an easy task. Specifications in such formal languages include mixed pre-
and postconditions for defining operations. These pre- and postconditions are defined in
terms of predicates, expressions or complex data types. This thesis presents an automated
approach for the identification of states and transitions of FSM from a class specification.
Approach is also demonstrated through an example. A tool for automated generation of
finite state machine (AGFSM) is also developed. Therefore, this research as an initial
step towards automatic FSM generation provides an important development towards fully
automated FSM generation and consequently facilitating automation of specification

based testing approaches.
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Chap No. ! Introduction

1. | INTRODUCTION

Formal methods are based on sound mathematical principles and notation. The use of
formal methods in specification and design phases brings the highest benefits, because
the specification bugs; ambiguities and inconsistencies can be eliminated earlier in the
software development life cycle. Use of formal methods also convinces that the
specification meets requirements for safety, accuracy, security, un-ambiguity and other
critical properties (Smith, 2000).

The use of formal specifications has become vital, not only in the development of high
integrity systems, but also for complex systems. Formal specifications are more precise
than specifications written in natural languages (Jacky, 1996; Pressman, 2001;
Sommerville, 2000). Specifications written in natural language are vague, imprecise,
unclear and not machine-processable. Therefore, using formal specification introduces
the possibility of the formal and automatic analysis of specification and the source code,
for generating a test oracle, for finding appropriate paths through a finite state structure

and making tester to be clearer about what it means for a system to pass a test (Hierons
et. al., 2009).

Formal specifications are constructed during requirements analysis phase, followed by
design, implementation and verification. Formal specifications are widely accepted as
they form the basis of program verification, thus providing correctness proof (Huaikou et
al., 2000), which is almost non-viable for non-trivial systems. However, to gain
confidence in such systems, we need to perform testing based on specification. Although
the use of formal specification enhances reliability, it does not eliminate the likelihood of
errors (Bowen et al., 2002; Hierons, 1997). Thus, testing is still required. Specification-
based testing (Poston, 1996) has several advantages over code-based testing (Offut et al.,
2003). Using formal specifications in specification based testing (Donat, 1997) is
particularly significant because it provides the opportunity to automate the testing process

(Huaikou et al., 2006) and for providing tool support to such approaches (Poston, 1996).

Automated FSM Extraction from Model-based Formal Specification 1
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Model-based formal specification languages like Z (Spivey, 1992), B (Abrial, 1996),
Object-Z (Smith 2000; Duke et al., 1991), and VDM (Jones, 1996) provide valuable

information that can be exploited in specification-based testing.

Finite State Machine (FSM) when used with formal methods, provides significant
advantages. FSM being an abstract machine with finite and fixed number of states and
transitions has appeared as an important construct in specification-based testing. Much
interest has been seen in testing from FSMs as a result of their suitability for modeling or
specifying state-based systems (Hierons, 2010). Object-oriented systems can effectively
be modeled using FSM, by showing method interactions in a class and testing of class
coverage (Huaikou et al., 2006). FSM has also been used by many formal specification-
based testing techniques (Huaikou et al., 2006; Murray et al., 1998; Dick et al., 1993;

Hierons, 1997) for modeling, implementing and testing software systems.

Significance of FSM extraction from formal specifications can be shown by their wide

use for a variety of purposes such as:

a) In facilitating testing process, i.e., test sequencing, test case generation and test case
execution (Poston, 1996).

b) As an explicit system behavior representation in order to implement abstract models
(Sun et al., 2005).

c¢) Modeling the interactions between data members (as states) and member functions

(as transitions) of a class (Hong et al., 1995).

1.1 Research Problem

Using formal specifications in specification-based testing is known as formal
specification-based testing (Donat, 1997). Many formal specification-based testing
techniques based on FSM exist in the literature (Sun et al., 2005; Huaikou et al., 2006;

Murray et al., 1998; Dick et al., 1993; Hierons, 1997) as discussed in detailed literature
survey in chapter 2.

Automated FSM Extraction from Model-based Formal Specification 2
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However, generation of FSM from Object-Z specifications is not a simple task due to
implicitly given pre- and postconditions in Object-Z specifications unlike VDM (with
separate pre- and postconditions). Pre- and postconditions in an operation form the basis
to identify the pre- and post-states of an FSM but in Object-Z specifications pre- and
postconditions are not explicitly specified unlike VDM-SL with explicitly specified pre-
and postconditions. Due to implicitly given pre- and postconditions in Object-Z
specifications it is difficult to identify states and transitions from the pre- and
postcondition of class operations. Consequently, none of the exiting techniques for FSM

extraction from model-based formal specification provides automation for derivation of

states and transitions.

States and transitions are the two main components, an FSM is constructed from.
Hence, state identification and transition calculation from the Object-Z class
specifications are two important tasks to make a class FSM. States of FSM class
correspond to the objects and transitions represent the method calls in a class. However,
extracting states from abstract formal language Object-Z is not an easy task. Object-Z
class specifications include mixed pre- and postconditions that define an operation, where
each condition itself, is defined in terms of predicates, expressions or complex data types.

Since precondition identifies the pre-states and postcondition identifies the post-states.

Each predicate that defines the pre- and postcondition of an operation participates in
identifying pre- and post-state respectively. When the pre- and postcondition is defined in
terms of a complex eﬁpression consisting of multiple predicates, it becomes even more
difficult to identify states for such operations. Each individual predicate defining the pre-
and postconditions participate in identifying class state space. Hence, it becomes
important to make use of separated predicates which makes a pre- or postcondition. Each
predicate can then be analyzed for the variables involved in defining the predicate and the
region of values those variables might offer. Since, the variables involved in the predicate

and the regions defined by them are needed to derive states and later on in determining

the transitions.

Automated FSM Extraction from Model-based Formal Specification 3
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1.2 Related Work

Existing techniques include FSM generation from structured languages like Z, VDM-
SL and object-oriented formal specifications like Object-Z. However, FSM generated
from structured and object-oriented formal specifications are entirely different in their
behavior. Object-oriented formal specifications provide FSM of a class in which states
are obtained from class objects and transitions show method calls among class methods.
The FSM extracted from non object-oriented formal specifications corresponds to FSM
of the whole system in which states are extracted from state schemas and transitions
represent the method calls. Since, a class is considered as a basic unit of testing in object-
oriented systems. We are interested in extracting FSM of an Object-Z class, as Object-Z
does not provide FSM of a class (Murray et al., 1998). Hence, it is an interesting problem
to extract class FSM to facilitate different testing levels i.e. intra-method testing, inter-
method testing and inter-class testing (as cited by Huaikou & Ling, 2006). Class FSM is
also significant in explicit system behavior representations for implicitly embedded state

and operational constraints in abstract Object-Z specifications (Sun et al., 2006).

Following problems are encountered in the existing techniques for FSM generation:

e None of the existing techniques discuss the identification of states and transitions
from input and output predicates used in a specification.

e Manual decision making in derivation of states from the generated test templates
by utilizing human perception.

e  Manual selection of states from partitions obtained from the specifications.

e  Manual transition determination for methods in a class using human judgment.

o Coverage of state space regions offered by the relational predicates for defining a
variable in terms of constants and other abstract variables.

o Partial consideration of state identification from logical expressions defining pre-
and postconditions.

e  Scalability problem that arise by re-writing specifications to obtain partitions.

e  Lack of automation support for states and transition identification to make FSM.

Automated FSM Extraction from Model-based Formal Specification 4



Chap No.1 ' Introduction

Some techniques identify states manually using human intuition and decision making,
from the generated set of test templates TTs in TTF (Murray et al., 2000), Test Method
Templates TMTs in TCF (Huaikou et al.2006) and by partition analysis in (Dick et al.,
1993; Hierons, 1997). Transitions are also calculated manually among the set of manually
identified states for generating FSM (Murray et al., 2000; Huaikou et al.2006; Dick et al.,
1993; Hierons, 1997). Each state with every other state is analyzed manually, if they

satisfy the pre- and postcondition of an operation, are considered as pre- and post-states
of a transition.

Sun et al., (2005) extracts FSM from Object-Z class specifications by using history
invariants as an additional set of predicates. However, history invariants are no more
included in recent versions of Object-Z (Smith, 2000). The work of Hierons, (1997)
generates FSM by re-writing the Z specification according to predefine rules. Though, for
large systems specifications, it might result in scalability problem. An automated
approach by Latif et al., (2008), extracts predicates into input and output predicates from
the given Z operation schema. However, this approach does not discuss state

identification and transition calculation for FSM using these predicates.

Automated FSM extraction from model-based formal specification is, therefore, an
important and interesting problem in formal specification-based testing. However, a
major challenge in automatic generation of an FSM from model-based formal
specifications like Z & Object-Z is the identification and derivation of valid and disjoint

pre- and post-states defined by each predicate that identifies pre- and postconditions of all
the operations of a class.

Another challenging task for FSM generation is the identification of transitions among
the identified states of all operations without involving human intuition. Since model-
based formal specification language like Object-Z can not provide FSM of a class
(Murray et al. 1998); hence it is vital to derive FSM from Object-Z class specifications to

extort valuable information that can be used in testing process.

Automated FSM Extraction from Model-based Formal Specification 5
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1.3 Proposed Work

The proposed approach for FSM extraction is built on the existing work by Latif et al.
(2008) for the separation of input and output predicates defining pre- and postconditions
of a given Z operation schema. However, in this approach the derivation of states from

the separated input and output predicates or from the respective pre- and postconditions is
not discussed at all.

This research is an initial step towards automatic FSM generation from model-based
formal specification. An approach has been proposed for the extraction of states and
transitions of FSM from an Object-Z class. States and transitions of FSM are identified
from input and output predicates extracted from a given Object-Z class. Algorithms and
tool has been developed to support automation for the proposed approach. The approach
is proposed for the Object-Z class specifications that only make use of simple data types,
simple predicates with relational and some logical operators. To avoid complexities in

automation, complex arithmetic expressions and complex data types like sets, sequences
are not included yet.

Therefore, the proposed work is an important development towards automated FSM
generation and consequently in the area of formal specification-based testing. The

approach is also demonstrated on an example given in chapter 3.

1.4 Organization of Thesis

Organization of the rest of the thesis is as follows. Chapter 2 presents the detailed
literature review of the related work. Chapter 3 describes the proposed approach in detail.
Chapter 4 discusses the automation and tool support. Chapter 5 evaluates the proposed

approach. Chapter 6 presents the conclusion and the future work.

Automated FSM Extraction from Model-based Formal Specification 6
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2. LITERATURE REVIEW

This chapter discusses the related work in detail. Discussion and analysis for different
research works for FSM extraction from model-based formal specification languages
such as: Z, Object-Z and VDM etc, are given. A tabular comparison for FSM extraction
techniques is also presented at the end of this chapter. ‘

2.1 Dick and Faivre’s Approach

Dick and Faivre (1993) presented a testing approach for model-based formal
specification languages. The approach is used for generating disjoint partitions from
formal specifications and then identification of states using these partitions. The testing
approach provided by them is based on FSM. They use FSM for sequencing the test
cases. VDM specifications are used to demonstrate the approach.

However, the approach is also practical to any other state-based formal specification
language. The approach initially transforms each operation in the formal specification
into a proposition in predicate logic. The use of partition analysis reduces the
specification to disjunctive normal form (DNF) in order to make disjoint partitions of the

proposition. Transformation of a disjunction into disjoint components is shown below:
BvC = (BAC) v (-BAC) v (BA-C)

This transformation in DNF results in non-overlapping and disjoint partitions. Each of
these partitions depicts an independent proposition and hence can be called as a sub-
operation. If there is some possibility to make sub-operations simpler, then these are
simplified using propositional predicate logic rules. These sub-operations are then used
for the separation and identification of the respective pre- and postconditions. The

identified pre- and postconditions are again converted into DNF to obtain equivalence

Automated FSM Extraction from Model-based Formal Specification 7



I W

Chap No.2 . Literature Review

partitions that present non-overlapping partitions. The disjoint partitions obtained as a
result of this conversion, represent a state. This state can either be a pre-state or a post-
state of that sub-operation. States for all the identified sub operations are derived in a
similar manner. The states of FSM are the disjoint before and after states of the sub-
operations. Each sub-operation identified, corresponds to a transition between a pair of
states say ‘S;’ and ‘S;’. A éub operation such as ‘Op’, having pre-state ‘S,’ and post-state
‘S,’ represents a transition between these two states. To make FSM, this process is
repeated to identify all the transitions. The transitions of the FSM are a set of expressions

(sub-operations) that are derived from the partition analysis.
Analysis

The concept of partitioning the formal specification into disjoint partitions for the
identification of states was first introduced in this work. The approach was demonstrated
on VDM formal specifications, which contains separately specified pre- and
postconditions. Unfortunately, this approach cannot be applied to extract states and
transitions to make FSM from Object-Z class specifications, because in languages like Z

and Object-Z pre- and postconditions are not specified separately. However, this

~approach does not discuss the identification of states and transitions directly from

predicates that define operations other than the partitions. Apart from that no discussion
has been provided for the state space coverage for regions defined in relational
expressions of pre- and postconditions of an operation. Also, the techniques in paper are

all implemented except the generation of Finite State Automata and test values.

2.2 Hierons’ Approach

Hierons (1997) presented an approach for testing from Z specifications. FSM is
derived from partitions generated by applying partition analysis. This approach begins

. with the classification of variables that are used in the specification. These variables are

classified into one of input, output, global, input state, output state and intermediate

variables. Once variables are classified, specification is re-written to predicate logic. By

Automated FSM Extraction from Model-based Formal Specification 8
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re-writing the specification, it is flattened to categorize the predicates into input and
output predicates. The predicates that define the input are denoted as input predicates and
corresponds to the precondition. The predicates which are involved in defining the output
or the final state are denoted as output predicates and such predicates correspond to the
postconditions. Specification is once again re-written to the required form using some
rules. This re-writing makes every precondition conjunct with its corresponding
postcondition. By doing this, whole specification becomes disjunctions of such pairs
(having conjunctions). Formally, this form is presented as,

V isisn (Xi A Yi)

‘Xi’ and “Yi’ represents the pre- and postconditions respectively. Partitions are then
identified from this disjunction of pairs. Each generated partition represents a state;
hence states are identified from these partitions, where these disjoint partitions
correspond to unique states. Once states are identified, transitions are then determined
between those states. The combination of a pre-state and a post-state with an operation

that evaluates to true, determines a transition for the FSM.

Let ‘Sy’ and Sy’ be the pre- and post-states respectively, for an operation ‘Op’. If this
combination evaluates to true then a transition exist between ‘S,’ to ‘Sy’ labeled by ‘Op’.
All the identified states and transitions are then mapped to make an FSM. This FSM is
then used for the testing purpose.

Analysis

Hierons used Z specification language in which pre- and postconditions are not
explicitly given and need to be separated. This work discusses the identification of pre-
and postconditions in a specification as well as the generation of FSM. For rewriting of Z

specification an algorithm is given that is used for input domain partitioning. Rewriting
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the specifications for larger systems can increase the size of the representation producing -

excessive number of sub domains thus leading to scalability problem.

The approach also lacks the details of automation for the identification of states and
transitions. Hence, it provides no tool support due to involvement of human intuition and
decision making in deciding the status of variables, states and transitions in the process of
FSM generation. However, this approach does not discuss state identification from
complex data types and from predicates; rather manually separated partitions are being
used. Also, this approach does not handle relational expression in terms of variables and

constants in the pre- and postcondition of an operation.
2.3 Sun and Dong’s Approach

Sun and Dong (2005; Sun, 2006) presented an approach to extract explicit system
behaviors as FSM from abstract Object-Z specifications using history invariants. This
work is mainly aimed to generate implementable constructs from high-level designs in
Object-Z. The work has specially taken into account the state explosion problem that

takes place due to the infinite number of states offered by a class.

However, an FSM should consist of finite number of states. Mapping infinite states to
finite number of states is a key challenge in FSM generation. These finite states called as
abstract states are generated using predicate abstraction. Abstract predicates are being
used to determine abstract states as given (Sun & Dong, 2006):

Sa = {s| IXcAPes=A(XU{—eleeP\X})}

‘Sa’ represents the set of abstract states, ‘s’ represents an abstract state, ‘AP’ is the set
of all predicates, ‘X’ is the set of those predicates which must be true in state ‘s’ and ‘e’
is the predicate that must be false in case of ‘s’. Using (—e) in definition of ‘s’ ensures

that all states are disjoint. After states are derived, transitions are determined. In addition

Automated FSM Extraction from Model-based Formal Specification 10



Chap No.2 Literature Review

to states abstraction, each operation is also abstracted to identify the transitions. It is
determined that from which state the transition invokes, referred to as pre-state and to
which abstract state it can lead, referred to as post-state. To decide on those states that
satisfy precondition (pre-states) and those states that satisfy the postconditions (post-
| states), function W(p) and S(p) are defined respectively.
Formally (Sun & Dong, 2006),
W(p)={seSa\s=p}
S(p)=Sa\ {seSa\ s=>-p}

Pre- and post-states are identified for each operation in the specification. For an-
operation ‘Op’, having pre-state ‘Sa’ and post-state ‘Sb’, the transition will be from ‘Sa’
to ‘Sb’ labeled as ‘Op’. Once all the transitions are determined, these are mapped along
with the abstract states to form an FSM.

The work is extended further to extract FSM from Object-Z specifications along with
history invariants. Where history invariants are used to capture liveness properties, which
must be true unlike safety properties. A Biichi automaton is extracted from history
invariants. Then this Biichi aufomaton and the product of earlier developed FSM, a raw
FSM is acquired. An algorithm is proposed to prune the FSM ensuring that raw FSM
fulfills two crucial properties of the open systems. Guard conditions are then determined
for transitions where are found necessary and appropriate. This results in the completion
of FSM. This FSM is assumed to be the Object-Z realization with history invariant. The
approach is supported by a Java based tool that takes XML form of Object-Z

specifications along with the abstract predicates and the approach is partially automated.
Analysis

A special consideration has been given to the state explosion problem in the work of

Sun & Dong. State explosion even being a central problem in FSM generation has not
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been considered by other related works. This approach uses history invariants along with
that of Object-Z specifications to generate FSM. However, history invariants are no more
included in Object-Z specifications (Smith, 2000). This approach does not consider state
identification from arithmetic and relational expressions, when used in pre- and
postconditions of operations of Object-Z specifications. State identification from the

predicates defining pre- and postconditions of operations is not considered as well.

2.4 Carrington et al. (2000; revised 2003)

A valuable cbntribution has been added by the researchers at fhé University of
Queensland in the area of formal specification-based testing over last few years. They
presented a specification-based testing approach for Object-Z class specifications. The
approach demonstrated the usage of Object-Z from test case generation to execution and
evaluation. The approach consists of different phases in order to complete the testing

processes, which are explained below:

2.4.1 Test Templafe Framework (TTF)

Test Template Framework (Stocks & Carrington, 1996) is used for test templates
generation from an operation’s Object-Z specification. TTF provides a stepwise guidance
for the generation of abstract test cases. However, originally the TTF was demonstrated
on Z specification but the authors claimed its applicability on any other formal
specification. That is why; it was later used for the Object-Z specifications. A test
template (TT) generated by TTF is basically a Z schema representation of test data. An
original specification of operation is also regarded as a TT but at most abstract level it is
called Valid Input Space (VIS). To obtain finer TTs from VIS further, a testing strategy is
applied on VIS. By applying testing strategy a subset of parent TT is produbed including
multiple TTs and is more refined than their parent. This process can be repeated unless
desired level of test data is attained. Final TTs obtained represent the final test data

derived from the specifications. These TTs when are obtained from Output Space, are
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named as output templates (OT) which are treated as oracles. The process for the
generation of TTs is repeated for every operation in the class to obtain a set of TT's for the

whole class. Once all TTs are obtained next phase for FSM generation is applied on

them.

2.4.2 FSM Generation from TTs"

FSM is generated from the TTs obtained by TTF for a class under test. The initial state
of the FSM is obtained from the INIT schema of the class where, the rest of the states are
obtained from the final set of test templates (TTs) and output templates (OTs). To derive
the states of FSM, state templates are generated from TTs and OTs by using schema =~
hiding. Schema hiding, hides the input and output variables from TTs and OTs
respectively. This hiding is done only to show state variables in TTs and OTs. State
templates (STs) obtained as a result of schema hiding may involve duplicate and over-
lapping state templates. These over-lapping and duplicate STs are removed to get disjoint
and distinct state templates. These disjoint state templates correspond to the states of
FSM. Once states are obtained, transitions are identified between the states. For finding
the transitions, operations that map between a pair of states templates are identified.
Transitions for all the operations are identified in the similar manner. For each transition,
the state template corresponding to the precondition is said to be its source state and the
state template corresponding to the postcondition is its target state. When source and

target states are identified for all the transitions, FSM is generated from them.

2.4.3 ClassBench Tool

ClassBench framework (Hoffman & Strooper, 1997) generates and executes the test
cases for testing purpose. ClassBench conventionally takes the input from
implementation. However, this approach utilizes ClassBench to take the inputs that are

generated from the specifications. Three main phases of ClassBench tool are given
below:
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a) Test Graph Generation

FSM is used to generate test graphs which represent a subset of FSM. The testing from
test graphs was first introduced by Hoffman and Strooper (1995). A test graph only
consists of those states and transitions from FSM, which are to be tested. The choice of
states and transitions in the test graph is purely depends on the tester. Since ClassBench
generates test suites from the test graph, so it is important to include only those states and

transitions in the test graph that need to be tested.
b) Test Oracle Generation

Test oracles are generated using the Object-Z specifications of the class under test.
Object-Z specifications have been treated as passive oracle. Therefore, independent
oracle class is generated from the specifications. The use of Object-Z specification

independently to construct a ClassBench oracle class has been provided by McDonald
and Strooper (1998).

c) Test Case Execution and Evaluation

ClassBench tool takes three inputs: generated test graph, test oracle and
implementation of the class under test. Once the input is given, this automated tool

generates, executes and evaluates the test cases for testing the given class.

2.4.4 Automation

This approach is not fully automated. TTF was first automated by a tool named as
TinMan (Murray, Carrington, MacColl, Strooper, 1999). TinMan tool automates the test
templates (TTs) generation from the Object-Z specifications by selecting a predicate that
satisfies the Valid Input Space (VIS) and a testing strategy from a pre-defined set of

testing strategies. This restriction for selection of testing strategy was one of the
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limitations of TinMan. To overcome this limitation Ashraf and Nadeem (2006) enhanced
TinMan to accept the desired testing strategy specified in Object-Z specifications.

Using a type checker for Object-Z specification named as Wizard (Johnston, 1996), a
tool was built for the oracle class generation (Carrington et al., 2000). Whereas, the
ClassBench tool that generates executes and evaluates test cases is also an automated

tool.
Analysis

This approach is a collection of phases to conclude the testing from the specifications.
However, each of the sub approach has its own set of limitations and thus corresponds to
separate research work. These limitations are also applicable to the Carrington’s approach
as well. TTF that was formerly used to generate test templates from Z specification was
extended for Object-Z Specifications. Since Object-Z is a variant of Z language, hence
this extension does not require much exertion. However, certain issues may rise if TTF

has to be used for formal specifications other than Z and Object-Z.

Although it is the most automated approach in specification-based testing but still it is
not fully automated approach. This approach does not discuss state identification from
the pre- and postconditions composed of arithmetic and logical expressions. However,
when relational expressions are used, only predicates defined by abstract variables are
considered. Identification of states and transitions for FSM is also a manual process. State
templates from the derived test templates are selected manually and requires human
hunch, involving manual decision making for the selection of non-overlapping set of
states. Among the final set of manually identified states, transitions are also identified
using human intervention. This manual process and human intuition endows with a

hindrance in automating the process of FSM generation from Object-Z class

specifications.
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2.5 Huaikou and Ling’s Approach

An approach to formalize the class testing process from Object-Z specifications was
proposed by Huaikou and Ling (2006). They proposed a framework named as Test Class
Framework (TCF). According to Binder (2000) there can be different levels of class
testing. Harrold and Gregg (as cited by Huaikou & Ling, 2006) suggested testing
independent class on three levels (see Binder, 2000) i.e. inter-method, intra-method and

inter-class. TCF focuses only on two types of testing levels i.e. intra-method and intra-

class testing levels.

Testing each method independently that is encapsulated in the class, is called intra-
method testing. TCF testing for intra-method is a slight variation of an earlier framework
(Ling & Huaikou, 2000) for Z operation testing.

Since intra-method testing of Object-Z class has similarity with that of testing an
operation in Z specification. For intra-method testing in TCF, functional specification of
the method under test is denoted by Test Space (TS). Test method templates TMTs are
generated according to a defined criteria. TMTs represent a finer level of Object-Z
specifications then that of TTs. This process of refinement can be repeated on TMTs until
required level of refinement is achieved. To obtain concrete test cases from abstract TMT
test cases, TMTs need to be instantiated to specific values. These concrete test cases are
named as instant templates (IT). Method Testing Adequacy Function (MTAF) is used
optionally to check whether TMTs satisfy certain adequacy criterion.

For the second level of testing i.e. intra-class testing, TCF was first proposed by Ling,
Huaikou, & Xuede (2000). It was refined by Huaikou & Ling (2006). In intra-class
testing, different valid sequences of method calls need to be tested. This testing of
sequences of method calls is achieved by modeling the class under test with a FSM. A
state is characterized by a state template (ST). Input and output variables from INIT

schema are hidden to form ST corresponding to the initial state. Once all the STs are
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identified, possible transitions are determined between each pair of STs. For a pair of
STs, if such a TMT exits, whose precondition corresponds to one ST and postcondition
corresponds to the other ST, then such a TMT becomes a transition among these STs.
While the ST that satisfies the precondition of TMT becomes the source state and ST that
satisfies the postcondition of TMT becomes the target state. When all the transitions are
identified, are mapped along with respective pre- and post-states to form an FSM. After
the FSM is produced, different sequences are selected that are needed to be tested. This
selection of sequences is made according to some criteria. A Test Class (TC) consists of
one such sequence of methods. Hence, a TC represents a full test specification of a test

case. Class Testing Adequacy Function (CTAF) is used to formalize the process of
generation of TCs from TMTs.

Analysis

Identification of states from the generated set of TMTs is a manual process, and
requires human intuition for selecting the disjoint set of states. Transitions among

manually selected state pairs are also derived manually for the operations in an Object-Z

class.

This approach does not discuss state identification from logical expressions and
predicates that define pre- and postconditions of operations. Complex data types are also
not handled in this work. Howeyver, in relational expressions, only predicates that define
regions in terms of constants are considered but the ranges defined by the predicates in
terms of abstract variables and constants are not discussed at all. Automation of TCF is

not discussed at all and consequently no tool support is provided as well.

Table 2.1 presents the comparison between different FSM extraction techniques from
model-based formal specification languages. Table 2.2 shows the abbreviations used in

the comparison table. The parameter “Specification language used” represents the model-
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based formal specification language for demonstrating the particular approach;

“Scope/Purpose” indicates the purpose for proposing the approach.

“State Derivation” parameter is divided into five sub-parameters having same
parameter values i.e. “Arithmetic Expression” (A.E) parameter depicts the state
identification from the arithmetic expressions used in the specifications. This parameter is
assigned “Yes” (Y) if the approach is deriving states from such expressions, “No” (N) for
not handling the expressions, “Partial” (P) for partially handling the Arithmetic
expression. “Logical Expression” (L.E) parameter is used to show whether the approach
generates states from logical expressions. “Relational Expression” (R.E) represents
whether states are identified from relational expressions containing simple data types like
integers, natural numbers etc, for defining a particular variable. This parameter is further
divided into three types: i.e. “Defined by Constants”, “Defined by Multiple Variables”,
“Defined by Constants and Variables”. Relational Expression that is composed of
predicates defining a variable in terms of constants comes under the parameter “Defined
by Constants”. Predicates in relational expressions which define a variable in terms of
constants and other variables come under the parameter “Defined by Constants and
Variables”. The parameter “Defined by Multiple Variables” includes predicates that
define a variable in terms of multiple variables. “Complex Data Types” (sets &
sequences) parameter is used to evaluate the approaches that considers such data types.

This parameter is assigned “Y” if the approach identifies states for such data types and
“N” otherwise.

The need of automation is significant in formal specification-based testing. Therefore,
the parameter ”Automation/Tool Support” has been given. This parameter has been
divided into two sub-parameters: “States Identification” (S.I) and “Transition
Calculation” (T.C). These two sub-parameters represent the two actual steps needed for
FSM generation. “Y” in “Automation” column shows that the approach provides
automation support, “N” means no automation support exists and “P” means some

automation support exists but manual work out is also involved.
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Table 2.1 Comparison of FSM Extraction Techniques from Formal Specification

Automation
State Derivation /Tool
Support
Approach | Specification Scope/ RE
Language Purpose Complex IP .
Used AE | LE | Defined Defined | Defined by Data & SI T.C
by by Variables Types or
Constant | Multiple &
Variables | Constants
. Test case
Carrington
Object-Z Generation N N N Y N P N P N
et al. (2000) )
& Execution
Dick & Test case
Faivre VDM Generation Y P N Y N P N Y N
(1993) & Execution
Test case
Huaikou & .
. Object-Z Generation P N Y N N N N P N
Ling (2006) )
& Execution
Test case
Hierons
z Generation Y P Y N N N N N N
(1997) .
& Execution
Synthesizin,
Object-Z with v g
Sun & Dong . Implementa-
History N | 4 N N N P N P P
(2006) . ble
Invariants
Constructs
Table 2.2 Abbreviations used
AE Arithmetic Expression
LE Logical Expression
R.E Relational Expression
IP & OP Input Predicate & Output Predicate
S.1 State Identification
- T.C Transition Calculation
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2.7 Conclusion

It is apparent from the literature survey that FSM has proved its significance not only
in testing approaches but also in determining low level implement-able constructs from
abstract formal specifications. Therefore, automated FSM construction from formal

specifications has emerged as a necessary and fundamental need in specification-based

testing.

None of the approaches for FSM generation from model-based formal specification
identifies states and transitions from the input and output predicates that define pre- and
postconditions of operations. Relational expressions that are composed of predicates

using both constants and variables are also not considered.

Some approaches for FSM extraction generates states manually by quantifying the
predicates applying certain testing strategy. The process of refinement to obtain desired
level of test data, conversion of the templates into states, removal of duplicate and over-
lapping states is a manual process and requires human effort and verdict. The process of
determining transitions by mapping an operation to the states satisfying its precondition

and postconditions is also manually performed and requires human intuition.

Other approaches generate FSM by simplifying the operations in given specifications
according to some criteria in order to generate desired level of disjoint partitions.
However, this simplification level of partitions and generation of states and transitions

from these partitions requires manual effort and judgment.
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3. THE PROPOSED APPROACH

FSM generation from a model-based formal specification is an imperative problem as
discussed in the literature survey. Identification of states and transitions from input and
output predicates facilitates in generation of FSM of an Object-Z class. However, as
noted in the previous chapter, the existing techniques for FSM construction from a formal

specification are not fully automated.

This chapter presents an automated approach proposed for FSM generation from an
Object-Z class specification. Section 3.1 gives a brief overview of the proposed approach

and the rest of the sections discuss the approach in detail.

3.1 Introduction to the Proposed Approach

This section details the proposed approach for derivation of states and transition

calculation of a class FSM from its Object-Z specifications.

In model-based formal specification language such as Object-Z, pre-
and postconditions are implicitly expressed, unlike in VDM (with separate pre- and
postconditions). Hence, to identify states of FSM from pre- and postconditions, it is
required to separate pre- and postconditions and input and output predicates defining
them. Since Object-Z can not provide a Class FSM (Murray et al. 1998), therefore

generation of FSM from an Object-Z class is a necessary and interesting problem.

However, generation of FSM from Object-Z specifications is not a simple task due to
the involvement of expressions, complex data types and abstract predicates fors defining
class operations. Predicates that define variables Vin terms of some constant gives a
concrete range of value that it offers. Some predicates might deﬁné the value of a
variable in terms of other abstract variables with unknown values. Identification of states

for such variables is even more difficult task for defining simple yet abstract predicates
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since the value of variable is unknown. Another important task is to generate states for

the pre- and postconditions that are constrained by predicates that define multiple

variables.

Our approach is built on an existing work by Latif & Nadeem (2008) for the
separation of input and output predicates and extraction of pre- and postconditions from
these predicates for a given Z operation schema. This approach is also supported by a tool
“TEIOPZ” (Tool for extraction of input and output predicates from Z specification).
Abstract view of TEIOPZ is shown in figure 3.1. However, this work does not provide
any discussion for the FSM generation from the separated input and output predicates or
from the extracted pre- or postconditions constituting these predicates. We have built on
this work not only to generate FSM from these separated input and output predicates, but
also to accommodate object-oriented features provided by Object-Z.

The proposed approach is an initial attempt towards automatic FSM generation from
model-based formal specification. The approach is proposed for the specifications that
define operations by using simple data types and simple predicates with relational and
some logical operators. To avoid complexities in automation, arithmetic expressions and

complex data types like sets, sequences are not included yet.

Z Operation
Schema
TEIOPZ
Input Output
Predicates Predicates

Figure 3.1 Abstract View of TEIOPZ (Latif et al., 2008)
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Although TEIOPZ is meant for the separation of Input Predicates denoted as ‘IP’ and
Output Predicates denoted as ‘OP’ from a given Z operation schema but we have utilized
it to separate IP and OP for all operations in an Object-Z class. However, there is a
remarkable difference in the Z and Object-Z operations. An Object-Z operation is
disabled outside its precondition, unlike Z in which precondition violation gives an
undefined result (Murray et al., 2006).

Input Output Class operations
Predicates Predicates with pre and
post conditions

State
Identification

A
Transm‘
Calcul-atioy‘

4

Transitions

y

FSM
Construction

y
Class FSM

Figure 3.2 Flow chart of the proposed approach

Important steps in FSM generation from Object-Z class specifications are
identification of pre- and post-states for all operations in that class followed by the

transition calculation among the identified states. These states and transitions then
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collectively make an FSM. Hence, the proposed approach is partitioned into three main
phases: State identification phase, Transition calculation phase, and FSM construction
phase. Figure 3.2 presents the flow chart of the proposed approach. The ovals represent

the processes and the rectangles represent development artifacts.
3.2 State Identification Phase

In this phase, states are identified for the FSM of an Object-Z class. From the class

initial (INIT) schema, and each operation’s'IP and OP, we d_erive the states of the class
FSM.

Pre-states can be identified from preconditions and the corresponding post-states can
be identified from the postconditions. IP and OP that defines precondition (entry-level
condition) and post-condition (exit condition) respectively, hence are used in this phase,

as a basis to identify states of an Object-Z class.

To identify states from the separated IP and OP this process is composed of three sub
processes: Predicate Categorization, Sequenced List Formulation and State Generation as

discussed in detail in the following sub-sections.

3.2.1 Predicate Categorization

Predicate categorization is the first sub-process of the state identification phase. It
categorizes input and output predicates that are extracted from Object-Z class
specifications into defined categories of predicates. Each predicate category corresponds
to the predicates with discrete nature and definition. Algorithm for predicate

categorization process is shown in figure 3.3. Predicate categorization details are

discussed below;
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a) Categorization of IP and OP into Pv

This process begins with the identification of IP and OP that are defined by similar
variable say ‘v’ in the specification. These predicates are grouped together into a new
predicate list denoted as ‘Pv’ and this process is repeater unless each predicate in IP and
OP becomes a part of its respective ‘Pv’ list. As a result, ‘Pv’ list contains all the
predicates with similar identifier name. The number of ‘Pv’ lists obtained from a class

specification depends upon the number of variables used in it.

If (IP U OP) represents the set of all predicates say ‘P,’ that defines set of all variables
say ‘V;’ used in the specification then each variable in ‘V;’ contains its own set of

predicates Py defining that particular variable. Given,

{P4 |IP U OP} where {1<a<n}
and {V;|1<ism} .
Pyik = {prlpx EPa Pi contains Vi) where {k c{1...n} Ak#{}}

b) Categorization of Pv into Predicate Categories (PCs)

Once all the Pv lists are obtained for Vi, the predicates in each ‘Pv’ list are examined
further to place these predicates into predicate categories defined to make them
appropriate for Sequenced List Formulation process in section 3.2.2. For this predicate

categorization a set of rules are proposed which are illustrated below:

Predicate Category 1. For a predicate ‘p’ in ‘Pv’ which defines a variable say ‘v’
on L.H.S of standard infix relational operator such as: less than ‘<’, less than or
equal to '<’, greater than ‘>’, greater than or equal to >’ and constant on its
R.H.S are denoted as ‘Pvc’, where the predicate category is named as ‘PCvc’,

Formally,
PCvc= {Pvc | Pvc ePv, Pvc contains (varel Ac)}
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Where ‘c’ denotes constant and ‘rel’ denotes relational operators like: less than ‘<’,

less than or equal to *<’, greater than “>’, greater than or equal to *>’.

Discussion: Each predicate category of PCvc contains all those predicates that
define similar variable in terms of constants and standard operators. Since
standard operators have regions upoﬁ which their behavior is expected to be
uniform (Hierons, 1997). Hence, each Pvc predicate provides us with the valid
region for the variable say ‘v,’ defined by it. Thus, all predicates in PCvc category
define all possible regions for variable ‘v’ in which its behavior is expected to be
uniform for a given class specification. These defined regions are converted into
valid sequenced lists in next section 3.2.2 that guarantees generation of valid and
disjoint states from it to cover all the state space that might be offered by variable

‘vy’ in a class specification as explained in detail in section 3.2.2.

Algorithm: CatPredicate

Input:
Output:
Declare:

IP,OP:Set of Predicates;

PCvc, PCvmv, PCvei: List of Predicates;

P: List of all Predicates, rel-oprtr:: infix relational operators used in predicates, PCve: List of predicates with
similar variable name defined by constants, PCvmv: List of predicates containing multiple variables, PCvei: List
of predicates with equal to and not equal to operator.Union(): combines the elements of two sets, append():
add elements to the list, remove():remove elements from the list

Begin: CatPredicate

VEONGAWn A LD

P=Union (IP, OP)

For (Every p in P) do
Select all p in P with similar variables on L.H.S of rel-oprtr
Pv=append (Pv, p)
P=remove (P,p)
End For
For (every pvin Pv) do
If pv contains variable on LIS and Constant on R.H.S of rel-oprtr then
PCvc = append (PCvc, pv)
Pv=gremove (Pv,pv)
Bad If
If pv in Pv contains variable on L.H.S and R.H.S of rel-oprtr then
PCvmv = append (PCvmv, pv)
Pv=remove (Pv, pv)
End If
If (pv in Pv contains =’ or ‘#’) then
PCvei = append (PCvei, pv)
Pv=remove (Pv, pv)
End If
End For

21 Return PCvc, PCvmv, PCvei
End CatPredicate

Figure 3.3 Categorize Predicate Algorithm
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Predicate Category 2. If a predicate ‘p’ in ‘Pv’ defines a variable ‘v1’ in terms of
another variable say ‘v2’ with the help of standard infix operator such as: less
than ‘<’, less than or equal to ’<’, greater than ‘>’, greater than or equal to >’,
such a predicate is denoted as ‘Pmv’, and is added to the predicate category
‘PCvmv’. |
Formally,

PCymv ={Pmv | Pmv €Pv, Pvc contains (vl arelav2)}

Discussion: Each predicate category of PCvmv contains all such predicates that
define a variable say ‘v,’ in terms of another variable ‘v;’ using standard infix
operators. In such a case standard operators define abstract regions for ‘v,” whose
possible values are unknown. For that reason ‘v;’ is not defined in terms of some
constant ‘c’ but in the terms of another variable ‘v,’ whose value is unknown yet.
Hence each predicate Pmv provides valid yet unknown region for ‘vy’ defined by
it. Thus, all Pmv in category PCvmyv defines all possible undefined and unknown
regions for ‘v;’ in which its behavior is expected to be uniform for a given class
specification. These abstractly defined regions in PCvmv are manipulated further
in section 3.2.3 to make valid sequences that guarantees generation of disjoint

states from them by covering all the possible state spaces that might be offered by

3 H

Vi,

Predicate Category 3. If ‘Pv’ contains a predicate ‘p’ that defines a variable ‘v;’
interms of the standard infix operators such as: equal to ‘=" and not equal to *#’
and another variable ‘v;” or a constant ‘c’ then such predicates are added to
predicate category ‘PCvei’.

Formally,
PCvei ={Pei | Pei ePv, Pei contains vIA(= v#)a(v2vc) }

Discussion: Each list of category PCvei obtained from Pv contains predicates that

equates the variable ‘v, in a predicate Pei to some constant ‘¢’ or another variable
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‘v2’. It also includes the predicates that provides inequality between a variable say
‘vi’ and another variable say ‘v;’ or a constant ‘c’. In each case Pei defines a
particular value of ‘v;’ either a known value in terms of ‘c’ or an unknown value
in terms of ‘v,’. The value of ‘v;’ defined by Pei might cause duplication or over-
laping with the values that the regions might hold. To overcome that issue we
apply a set of rules to adjust such predicates in the regions and in state generation

process for a variable as explained in section 3.2.3.

By the end of this process each ‘p’ in ‘Pv’ is placed into categories PCvc or PCvmyv or
PCvei. This process is repeated unless predicates in all the ‘Pv’ lists obtained from
specifications are categorized in one predicate category or other and all ‘Pv’ lists become
empty. Empty lists ensure that all the predicates in each ‘Pv’ list, used in a given
specification are arranged into the appropriate categories: PCvc, PCvmv and PCvei. Such
organization is necessary for making appropriate sequenced lists resultantly as explained

in section 3.2.2. Algorithm for Categorize Predicate is shown in figure 3.3.

3.2.2 Sequenced List Formulation

In this process valid sequenced lists are generated from predicate categories obtained
previously. Valid sequences are formulated to ensure the generation of valid and non-
overlapping states from these lists as explained in section 3.2.3. The algorithm for
Sequence List Formulation process is shown in figure 3.4.

Separate criteria are applied for formulation of lists depending on the number of
predicates contained in categories PCvc and PCvmv extracted from each Pv List. Some
of the predicates that contain constants as in PCvc clearly indicate the state boundaries
but for those that contain abstract variables on each side of operator, it is difficult to
imagine boundary or range offered by the variable used. Four types of possible

alternatives that might occur depending on the type of predicate list are discussed below:

List Formulation Type 1. If the predicates in ‘Pv’ are categorized into ‘PCvc’

only, it indicates that all the predicates defining variable ‘v’ has defined regions.
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It is necessary to sort these regions into a valid sequence so as to generate valid
states from them. For predicates containing constants like in PCvc, only one
valid sequence can be formulated say ‘Lc’ and that is by sorting its predicates in
ascending order on the basis of constants used in all predicates. Reason for
generating one sorted list only and not finding its permutations is that, that re-
arranging the predicates in PCvc to find other sequences might result in invalid
sequences, which can cause invalid state generation.

Formally,

Le={PCvc | sort(PCvc)}

List Formulation Type 2. If the categorization of predicates in ‘Pv’ results in
PCvmv only and number of predicates greater than 1. That means all the
predicates defining that variable say ‘v’ has abstract regions with unknown
values. In such a case, it is necessary to make Lists with all possible sequences
that may occur denoted as ‘Lmv;’. Since value of variable ‘v’ can lie in any of the

possible combination of the regions. For that reason, we make n factorial (n!)
sequences of the predicates in PCvmv.

Formally,

Lmv;= ith permutation of PCvmy,
Where i= {1, 2, 3....n!} and n>1

List Formulation Type 3. Predicates in ‘Pv’ if are categorized in categories

PCvmy and PCvc then it leads to the following possibilities:

o If the number of predicates in PCvc is greater than or equal to 1 and
number of predicates in PCvmv is equal to 1, then (n) number of
sequenced lists are formulated denoted as Lmvc;. These lists cover all the

possible and valid sequences of the predicates both from PCvmv and
PCvc.

Formally,

Lmvc;= ith permutation of PCvmvUPCvc
Where i= {1, 2, 3....n} and n>1
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Algorithm: FormSeqLists

Input: PCvc, PCymv

Output:  ListsL

Declare:  sort(): Sorts the predicates in List P in ascending order on the basis of constants iavolved, Pmvct: Contains
sorted PCvc aad PCvmv, append(): adds element to the list, add(): Adds a list to the set of lists

Begin: FormSeqLists

1 If (#PCvc=0 ) A (#PCvmv =0) then

2 Error & exit

3 EndIf

4, If (HPCvc>1) A (HPCvmv=0) then

5 L=PCvec.sort {

6 Else If (#PCvc = 1) A (#PCvmv2 1)) OR ((#PCvc = 0) A (HPCvmv>1)) then
7 PCvcsort()

8. Pmvc =append (PCvc, PCvmv)

9. Make Lists of Pmvconst

10. Whete # L =n!

11, L= Add (L)

12. End If

13, Else If (#PCvc>1) A (#PCviav=1)) then

14. PCvcsort ()

15. Pmvconst =append (P Cvc, PCvmv)
16. Make Lists of Pmvconst

17. . Where # L =n

18. L= Add (L)

19. End If

20. Else If (#PCvc>1) A (#PCvmv>1)) then
21. PCvesort ()

22. Pmvconst =append (PCvc, PCvmv)
23. Make Lists of Pmvconst

24 Where # L = n-2*n-1*%.....

25. L= Add (L)

26. End If

27. End If

28, Return L

End FormSeqLists

Figure 3.4 Sequenced List Formulator Algorithm

o If the number of predicates in ‘PCvc’ is equal to 1 and number of
predicates in ‘PCvmv’ is greater than 1, then (n!) number of sequenced
lists are formulated denoted as ‘Lmve;’.

Formally,

Lmve;= ith permutation of PCvmvUPCve
Where i= {1, 2, 3....n!} and n>1

o If the number of predicates in PCvc is greater than 1 and number of
predicates in PCvmyv is also greater than 1 and PCvc contains predicates
greater than or equal to that of PCvmv. For its sequenced lists, sorted

PCvc is appended with PCvmyv in such a manner that sorted sequence of

Automated FSM Extraction from Model-based Formal Specification 30




Chap No.3 The Proposed Approach

PCvc is not disturbed in any of the new sequence with PCvmv to evade
generation of invalid states from them. For such a case possible number
of sequenced lists formulated is (n-1)? . Otherwise the number of possible
permutations will be (n-2!).

Formally,

Lmvc;= ith permutation of PCvmv_PCvc
Wherei={1, 2, 3.... (n—l)z} and nz1

It is notable here that the sequences are formulated in such a way that they only result
in producing valid and disjoint set of states in the state generation process. It is thus
essential to formulate lists in which the sorting order is maintained because we are
interested in capturing only the valid state space offered by the predicates in PCvc and
PCvmv as shown in Formulate Sequenced List algorithm in figure 3.4.

3.2.3 State Generation Process

List of lists ‘Lc;’, ‘Lmvi’, ‘Lmvc;’ obtained from Sequenced list formulation process
ensures all the valid and disjoint sequences of the predicates that define variable ‘v’. Let
‘L;’ includes collective set of all sequenced lists ‘Lc¢’, ‘Lmv;’, ‘Lmvc;’ obtained for all
predicates ‘P;” defining all variables ‘v;’ used in the specification. Hence, ‘L;’ for a class
specification provides all the possible regions of state space that class data members
might offer. The State Generation Algorithm is shown in figure 3.5. States are now

generated from each of the sequenced list obtained as explained below:

A set of rules is also proposed for state identification among the two consecutive

predicates in each sequence list ‘L’. These rules are explained below:

Rule 1: For a sequenced list ‘L’, if the first predicate ‘P;’ in it includes standard
infix relational operator like: greater than ‘>’ or greater than or equal to ‘>, this

predicate is negated to convert it to less than or equal to ‘<’or less than ’<’
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respectively. The negated ‘P;’ is added to set of states denoted as ‘S’ as a state say
‘s’. If not, then P; without any change, as a state‘s’ is added to ‘S’.
Formally,
If PieL, includes > or 2 then
~P; e S
else P, €8S

Where ‘L’ denotes a list from all sequenced lists ‘L;’ and i>1

A state ‘s’ obtained by above rule captures the initial values of state space region
for ‘v;’ if not defined by the first predicate P; that contains >’ or ‘>’. Other wise
in case of no change when P; contains ‘<’ or ‘<, the state obtained by this
predicate do provide that initial state space region and hence P; is declared as ‘s’

without any change.

Rule 2: If the last predicate say ‘P,’ in the given List sequence ‘L’, contains
standard operator like: greater than ‘>’ or greater than or equal to ‘>’, then Py is
added to ‘S’ as a state‘s’. Otherwise, if P, contains‘<’ or ‘<’ then negation of P, is
take to inverse its operators to greater than >’ or greater than or equal to >’ and
are added to ‘S’ as a state‘s’.

Formally,

If P, €L, includes > or > then,
P,eS

else ~PpesS

Where ‘L;’ denotes a List from the List of sequences, and i= {1, 2... n}.
A state ‘s’ generated by using this rule covers the last region for state space of

variable ‘v’ if defined by P, in L;. If this is not the case then this P, is converted
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into a form so as to cover the region containing last values defined by ~P, and is
added to ‘S’ as a state ‘s’ .

Rule 3: Two consecutive predicates say P; and Py, in list L are compared on the
basis of the infix relational operator defining region of each predicate.
Comparison begins from the first predicate P; up till the last predicate say P, in
‘L’. We compare two predicates at & time and apply a set of rules depending on
the operator used in each predicate to cover the intermediate region defined by the

two predicates as explained below:

o IfP; defines a region for ‘v’ using ‘>’ or ‘>’ and P defines a region for
‘v’ using ‘<’ or ‘<, then for capturing the intermediate and valid state
space region between these two predicates, only conjunction of the two
predicates is taken to generate a state ‘s’ from them.

Formally,
If P, P j€L; and P, includes > or > and Py includes < or <, then

P(/\PH-[ ')

o IfP; defines a region for ‘v’ using < or < and P defines a region for ‘v’
using < or < For generating their intermediate and valid state space

region, ~P; is conjunct with Pj+; to generate a valid and non overlapping
state ‘s’ from them.

Formally,

If P, Piyj€L;and P;includes < or < and Py, includes < or < then,

~PiA (Py) €8

o For P;defining a region for ‘v’ using ‘<’ or ‘<’ and P;+; defining a region
for ‘v’ using >’ or ‘>’. For generating their intermediate and valid state

space region requires conjunction of ~P; with ~Pi+;. Resultant state will be

a valid and disjoint state ‘s’.
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Formally,
If P, Pj.;€L;and P, includes > or 2 and Py includes < or < then,

~PiA~(Pn1) €8

o If P; defines a region for ‘v’ using >’ or ‘>’ and Pj;; defines a region for
‘v’ using >’ or ‘>’. The intermediate and valid state space region
between these two predicates will be captured by taking conjunction of P;
with ~Pj+1. Resultant state will be a valid non-overlapping state‘s’.

Formally,
IfP, Pi.1€L;and P, includes > or > and P;y, includes > or > then

P,- A ~P1+1 S

Applying this rule ensures that intermediate regions defined by the predicates in list L
are converted into valid, disjoint and non-overlapping state space regions, being offered
by the predicates. This state space generated by Rule 3 will include regions other than
those covered by the first and last states generated by Rule 1 and 2.

State generation process ensures that all the possible, disjoint, valid and non-
overlapping state space regions are covered and assigned to respective states. These
regions are defined for each list ‘I’ formulated for a variable ‘v’. Hence, the states
generated by this process will be covering all possible state space regions defined by all

Lists L; for each variable ‘v;’ used in the specification.

If a predicate category PCvei is empty for variable ‘v’ then ‘S’ generated includes the
final set of states. Otherwise, if PCvei is not empty then the predicates in PCvei must be
over-lapping with, some value of any of the state space region covered by a state‘s’. To

overcome that problerri following rules are applied to make the states disjoint.

Rule 1: If a predicate Pei in predicate category PCvei defines a variable ‘v,’ on

L.H.S in terms of equal to operator ‘=’, another variable ‘v;’ or constant ‘c’ on
q P
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R.H.S, than predicate Pei is added to S as a state ‘s’. We need to negate this value
offered by ‘v,’ from particular state space region including it. For this reason,

~Pei is conjunct with the state‘s’ which contains its value.

Formally,
If Peie PCvei and includes ‘=’ and Pei < s, then
Pei € Sand
~Peins (replacing previous s) €S
Algorithm StateGen
Input: Lists L

Output: SetofStates S
Declare: P List of Predicates, PCvei: List of predicates containing equality and non-equal to operator,
GetAllPredinList(): Gets all predicates included in each List L, add(): adds a state to set of states

Begin StateGen :

1 State 5= null

2 For (every lin L) do

3 P= L.getallpredinList()

4. If (piin P contains > or 2) then

5. S.Add (~P)

6. Else S.Add (P)

7 EndIf

8 If (pn in P contains < or <) then

9. S.Add(~P)

10. Else S.Add (P)

1. End If

12, Fot (every pinP)do

13, If (p contains < or <) A (p++ contains < or <) then
14, S.Add (~p A pt+)

15. Else If (p contains < or £) A (pt++ contains > or 2) then
16. S.Add(~p A ~p++)

17. End If

18. Else If (p contains > or 2) A (p++ contains < or <) then
19. S.Add(p Apt++)

20. End If

21. Else If (p contains > or 2) A (p++ contains > or 2) then
22, S.Add (pA ~ptH)

23, EndIf

24. End If

25. Repeat until p, in P

26. End For

27. For (every p in PCvei) do

28. Check each PCvei with every s in §

29. If (P contains *=) A (P ¢ of S)

30. Then 8= (8 A~ PCvei)

3 End If

32 End For

33 Addto §

34, End for

35. Retum$§

End StateGen

Figure 3.5 State Generation Algorithm
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Rule 2: If a predicate Pei in predicate category PCvei containing a variable ‘vy’
on L.H.S of not equal to operator ‘#’, with another variable ‘vy’ or constant ‘c’ on
L.H.S, then we. only conjunct this Pei without any change with the respective
region covered by ‘v;’ from the set of states ’S’, For this reason we conjunct Pei
with the state ‘s’ with which it makes a subset to.

Formally,

If Pei e PCvei and includes ‘¢’ and the value in Pei C s, then

Peins (replacing previous s) €S

Considering input predicates IP and output predicates OP inform of predicate
categories PCvei, PCvmv and PCvei for each variable ‘v;’ in the specification, formulates
those list sequences that gives more equivalence classes, that is, a more refined partition
of the class’s state space. Since the derived states contain non-overlapping disjoint states,
hence providing maximal partition (there is no overlap of states and together the states
completely cover the class’s state space). Also, states generation from IP and OP ensures

that resultant states will contain both pre- and post-states of the class FSM respectively.

3.3 Transition Calculation Phase

In state identification phase, valid, disjoint and non-overlapping set of states ‘S’ was
generated for a class FSM from extracted input and output predicates. To determine FSM
of a class, transitions are also needed along with the states. Hence, in this phase

transitions are calculated for all the operations in a given class.

For calculating transitions, an explicit representation of initial schema, operations of
class with respective pre- and postconditions, inform of a text file is provided. Since,
TEIOPZ is developed for extraction of input and output predicates for single operation
schema. TEIOPZ, when is used for extracting predicates of whole class with more than

one operation does not provide any relationship among each of the operation and its
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respective pre- and postcondition and with that of the predicates that define these
conditions. However, extension of TEIOPZ for extraction of predicates from object-

oriented class specifications may resolve this issue.

A valid transition ‘t’ for an operation ‘opr’ in FSM occurs if there exist a pre-state
‘Spre’ in ‘S’, satisfyihg its precondition and a post-state ‘Spost’ in ‘S’ satisfying its
postcondition. As discussed earlier in section 3.1 a pre- and postcondition is defined by
IP and OP respectively. Hence, transitions can be calculated for each ‘opr’ by identifying
states that satisfy each IP used to define the precondition. This will result in identification
of all pre-states. Similarly, comparing states with each OP defining postcondition

provides all post-states for that operation.

Transitions for all the operations can be calculated in a similar manner. Such
transitions are labeled with their respective pre- and post-states and are represented in

FSM by an arc labeled by the operation name pointing from pre-state to post-state.

Transitions are determined by applying the boundary value analysis on the given set of
states to find the valid pre- and post-states that satisfy pre- and postconditions for all the
operation in the given Object-Z class. Hence, to find pre- and post-states for each
operation it is necessary to identify those states that satisfy each predicate in its pre- and
postcondition.

3.3.1 Identification of Pre-states for an Operétion

The class information provided by the explicitly provided file along with the set of
states ‘S’ identified from IP and OP (in section 3.2) will help in calculating transitions for
each operation. For the identification of pre-states for an operation, each input predicate
containing ‘v’ in the precondition of that operation is compared with every state ‘s’
derived for variable ‘v’ in ‘S’. The state whose space becomes the subset of the region

defined by that predicate is denoted as pre-state for operation ‘opr’.
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Formally,

For a given operation ‘opr’,

IP x S—>Spre
Ifsc IP, and s €S then
s&Spre (opr)

3.3.2 Identification of Post-states for an Operation

Similarly post-state can be identified for an operation. Each output predicate
containing variable ‘v’ in the postcondition is matched with every state‘s’ in S. The state
whose state space makes the subset of the region defined by that output predicate is
denoted as pre- state for operation ‘opr’.

Formally,
For a given operation ‘opr’,
OP x S—»Spost
Ifsc OP, and s €S then

s eSpost(opr)

Pre- and post-states for all operations of the Object-Z class are determined in the
similar manner.

A transition ‘t’ can be represented as:

Spre —opr->Spost
Where Spre and Spost are the pre- and post-states for operation ‘opr’.

The set of transitions ‘T’ is calculated for all operations of the given class. Calculated T;,

along with respective pre- and post-states will help in making FSM of a given Object-Z
Class.
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Algorithm TransitionCalc

Ioput: S, OPR, IP, OP

Output: TS: Transition Set

Declace: GetPrecondition(): Gets the precondition of a particular operation OPR from File,

GetPostCondition(): Gety the postcondition of a particular operation OPR from File,
Getloputpredicates(): Gets the set of input predicates included in the precondition of a particular
operation, GetoutputPredicates(): Gets the set of output predicates included in the postcondition of a

particular operation
Begin: TransitionCalc
1. Add ClassOprationsPreandPost.txt
2 For (every Opr in class) do
3 Pre=OPR GetPrecondition()
4, Post= OPR.GetPostCondition()
5. IP=Pre.Getlnputpredicates()
6. OP= Post. GetoutputPredicates()
7. For (every IP of OPR) do
8. Check each IP withalls in §
9. 1£ SCIP then
10. Add s to SPre
1. Spre=$
12, End If
13, End For
14. For (every opr of OPR) do
15. Check each OP with all sin §
16. If s OP then
17. Add s to Spost
18. Spost = §
19. Eand If
20. End For
21, End For
22.  Return Spre, Spost, OPR
End TransitionCalc

Figure 3.6 Trausition Calculation Algorithm

3.4 FSM Construction Phase

In Object-Z an operation schema represents a transition from one subset of state space
to another, with associated input and output variables. After all transitions ‘T’ are
obtained the number of variables involved in the pre- and post-states that satisfying the

pre- and postconditions of an operation are checked. Figure 3.7 shows the algorithm for
FSM construction.

If the pre- and post-states of transitions of an operation are defined by single variable
then the pre- and post-states are mapped along with the transitions. Such calculated

transitions along with the respective pre- and post-states thus make final Class FSM.
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3.4.1 State Combinations

If multiple variables are involved in pre-states of transitions of an operation then the
identified pre-states need to be combined. The number of these state combinations

depends upon the number of pre-states identified for each IP involved in defining

precondition.

Similarly, if multiple variables are involved in post-states of transitions of an operation
then the identified post-states are combined. The number of these state combinations

depends upon the number of post-states identified for each output predicate involved in
defining the post condition.

Let opr; be the set of operations defined in a class, and IP; be the number of input
predicates that define opr’s precondition. OPi be the number of output predicates defining
opr’s postcondition. Spre; be the set of pre-states identified for each IP in IP; used in
opr;’s precondition and Spost; be the set of post-states identified for each OP in OP; used

in opr;’s postcondition. Formally, State combinations denoted as ‘SC’ are,

{opriin Class | i>0} and
{IP,;eoprpre)|j>1}
{OP;eopr(post)|j>1}
{Spre;cIP; and Spre; €S |i>0} and
{Spost,cOP; and Spost; €S |i>0}

Formally, State combinations for pre-states of an operation are,

. n
SCpre;= {Spre;Opr, (pre) | []Spre (IP)}

j=1

State combinations for post-states of an operation,

n
SCpost= {Spost;€Opr; (post) | [1Spost (OP)}
J=1
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This process will be repeated unless state combinations for all the pre- and post-states
of all the operations of the Object-Z class are obtained. The initial state of the FSM is
read from the input file provided explicitly and is obtained from initial schema of the
Object-Z class. This file contains explicit representation of the relationships of all the
operations with their respective pre- and postconditions. To identify the transitions for
FSM this file plays a vital role for keeping track of the separated predicates with their
respective operations in the original class specifications. Once transitions are calculated,
these are mapped along with their respective pre- and post-state combinations obtained
for all the operations in an Object-Z class. To reduce the complexity of the resulting
FSM, state minimization process is applied. Due to this minimization the number of

states and transitions is reduced resultihg in a simplified FSM.

Algorithm: FSMConstruction

Input: Spre, Spost, OPR

Output: TransitionSet TS

Declare: GetSpre(): Gets all the prestates of s particular operation , GetSpost(): Gets all the poststates of a particular
operation, Sinv : Initial state invariant, SC: State Combinations

Begin: FSMConstruction

1 include ClassOprationsPreandPost.txt

2 Make Sinv of initial schema Si

3 For (each opr in OPR) do

4, If Spre(i) € Vi and i>1 then

5. SC(E)=#Spre(Vi)* #Spre(Va)* ....... *#Spre(Vy)

6. If Spost(l) € V(i) then

7 SC@)=#Spost(Vy)* #Spost(Va)* ....... *#Spost(Vy)
8 For (every Spre in SC(1)) do

9. SC(i) & SCpre(opr)

10. For (every Spost in SC(f)) do

11. SC() € SCpost(opr)

12, TS ts="";

13. TS= ts + OPR.GetSCpre() + “~————e-—->" + OPR +"--— > + OPR.GetSCpost()
14. TS.Add (ts)

15. End For

16. End for

17. End if

18. End if

19. End for

20. Else

21. For (every S in Spre) do

22, For (every S in Spost) do

23. TS ts="";

24, TS= ts + OPR.GetSpre() + “~--—eoeeere>” + OPR +7-eececeece-> + OPR.GetSpost()
25. TS.Add (ts)

26. End for

27. End For

28. Return TS

End FSMConstruction

Figure 3.7 FSM Construction Algorithm
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3.5 Introduction to the Example

The proposed approach for the generation of FSM is demonstrated on Object-Z

specifications of a ‘Bank Account’ class.

A simple type of bank account has been taken as an example to demonstrate the
proposed approach. This type of bank account is opened for a term period ‘t’ of 60
months with no initial balance *b’. After one month of term period of opening of account
the user is allowed to deposit money, but the amount deposited ’a’ should be greater than
100$ with in the specified term period. The deposited amount can be withdrawn after the
term period of 3 months of opening of account. User can only with draw amount greater
than 10008 only when the balance in the account is greater than 10008,

____ FankAccount

| vz

)

. Init
1 «_="'0_

' _Daposa'tAMouht“”
|- et

| a?=100n Bz!lo. tzl nt5'60.':
- b=b+a? Ab=100

___HithdrawdAmount

A
RN

" &? 21000/ b=1000n t=3 nt<60
b'=b-a? nb'=0

Figure 3.8 Object-Z class specification for Bank Account
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3.5.1 Object-Z Representation

The requirement specification of a Bank account class is represented by a class
schema named as ‘BankAccount’ in Figure 3.8. It represents a bank account with INIT
schema that initializes the state variable ‘b=0°. A state variable ‘b’ represents the account
balance, a? represents input variable being used and ‘t’ represents the intermediate
variable. Two operations represented by operation schema ‘Deposit Amount’ and
‘Withdraw Amount’ from an account, shows the constraints on the amount deposited and

with drawn from the account respectively.

3.5.2 Extraction of Finite State Machine (FSM)

The step by step demonstration of FSM extraction from Object-Z class with necessary

explanation is provided below:
Phase 1: Extraction of Input and Qutput predicates

For FSM generation initially Input and Output predicates from Bank Account Class
are extracted using TEIOPZ, resultantly:

IP= {b=10, a? geq 100, b geq 0, t geq 1,t leq60, a? geq1000, bgeq1000, t geq3,t leq60}
OP= {b’=b+a?, b’=b-a?, b’>100, b’>0}

Phase 2: Automatic Generation of FSM

FSM is generated from Bank Account Class, by applying the steps of the proposed
approach as explained below:

Step 1: Predicate Categorization

In this step IP and OP are categorized into lists ‘Pv’ containing predicates with similar
variables, the predicates in each ‘Pv’ is further categorized into predicate categories
having infix relational operators containing constants, multiple variables and those

containing ‘=" and ‘#’, denoted as PCvc, PCvmv and PCvei respectively.
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Applying Predicate categorization process results:

Initially,

P=IPUOP

P ={b=0, a?geq 100, b geq 0, b'geq100, b’geq 0, t geq 1, t leq60, a? geq1000,
b geq1000, t geq3, t leq60, b'=b+a?, b'=b-a?}

After the categorization of predicates in respective ‘Pv’ lists,
Pvi=Pb={b=0,b geq'IOOO, b geq0, b'=b+a?, b'=b-a?, b'geq100, b’geq 0}
Pv,=Pt= {t geq 1,t leq60,t geq3,t leq60}

Pv;= Pa= {a7geq 1000, a? geq100}

Since the Latex source of the Object-Z class has been taken as input, hence for simplicity
these notations are replaced by the respective standard relational operators.

Pv Lists:

Pv,=Pb= {b=0, b >1000, b >0, b'=b+a?, b’=b-a?, b’>100, b'>0}

Pv;=Pt= {t> 1,t <60, t >3, t < 60}

Pvs=Pa= {a? 21000, a? >100}

From each Pv list generated predicates defining variable ‘v’ interms of constant ‘c’ are

stored in to respective PCvc, PCvei, and Pmvar lists.

After categorizing the predicates in Pb in to predicate categories:
PCbc ={ b >1000, b >0, b'>100, b'>0}

PCbei = {b= 100, b'= b+a?, b’=b-a?}

PCbmv ={}

After categorizing the predicates in Pt in to predicate categories:
PCte={t>1,t <60,t >3,t <60}

PCtei ={} |

PCtmv ={}
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After categorizing the predicates in Pa in to predicate categories:
PCac ={a?7>1000, a? >100}

PCaei ={}

PCamv = {}

Step 2: Sequenced List Formulation

In this step the lists are now formulated according to a predefined sequence to
maintain validity among the resultant states, as shown below:
Applying List Formulation Type 1,
If # PCvc > 1 A PCvmyv =0, then
After sorting PCbc, Pth, PCac in ascending order

(Removing symbols and duplicate predicates)
PCbc = {b >0, b>100, b=1000} = L,
PCte ={t21,t>3,t<60,t <60} =1L,
PCac = {a>100, a>1000} =L,

Step 3: State Generation

Once required lists are formulated that states are generated from each of the sequenced

lists by applying a set of rules, shown below:

Teking Lists Lb, Lt, La

L= {b>0, b >100, 5>1000}
L= {t>1, t >3, t <60}

L.= {a>100, a >1000}

Applying state generation process on L0,
Ly= {b 20, b >100, b>1000}

S1=b<0

S2=b=0Ab<100
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S3=b>100Ab<1000
S4=b=1000

L= {t>1,t>3, t <60}
Ss=t<1

S¢ = t=1At<3

S, = t>3At<60
Ss=t>60

L.= {a>100, a>1000}
So=a<100

Si0= a>100Aa<1000
S11=2a>1000

Checking S with PCbei, PCtei, and PCaei,

Final set of states generated:

Table 3.1 States generated
State Name State Invariant
So b=0
S b<0
S2 b>0 Ab<100A b#0
S3 b>100 Ab<1000
S4 b>1000
S5 t<1
S¢ t>1At<3
Sq t>3At<60
Sg t>60
So a<100
S1o a>100 A a<1000
Sy a>1000
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Step 4: Transition Calculation

For transition calculation the file containing explicit representation of class operations
with respective pre- and postcondition is given below:

Initial state: b=0
Operation 1: Deposit Amount

Precondition: a>100, t=1, t<60, b>0
Postcondition: b=b+a, b>100

Operation 2; Withdraw Amount

Precondition: a>1000, t3, t<60, b>1000
Postcondition: b=b-a, b>0

Figure 3.9 Representation of Operations of Bank Account Class

Final Result:
Initial State: b=0

Operation 1: Deposit Amount

Prestates: b>0Ab<100Ab#0, b>100Ab<1000, b>1000, =1At<3, t23At<60,
a>100Aa<1000, a>1000

Poststates: b>100Ab<1000, b>1000

Operation 2: Withdraw Amount
Prestates: b>1000, t>3At<60, a>1000

Poststates: b>0Ab<100Ab#£0, b>100Ab<1000, b>1000

Figure 3.10 Class Operations with Respective Pre- and Post-states
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Step 5: State Combinations

The pre- and postconditions of operations of Bank Account class are defined by
predicates with multiple variables. Hence, for identifying states that satisfies the whole
pre- and postconditions, combinations of states identified in figure 3.10 for precondition
of deposit operation are made. This step is necessary to show all the state combinations

that satisfy the pre- and postconditions of each operation in Bank Acount class.

SC=3*2*2=12
Table 3.2 State Combination
SC, b>0Ab<100Ab#£0 t>1At<3 a>100 A a<1000
SC, b>0Ab<100Ab#£0 21IAt<3 a=1000
SC; b>0Ab<100Ab#0 23At<60 a>100 A a<1000
SCq b>0Ab<100Ab#0 t23At<60 a>1000
SCs b>100 Ab<1000 21At<3 a>100 A a<1000
SCe b>100 Ab<1000 t=1At<3 a>1000
SCy b>100 Ab<1000 t>3At<60 a=>100 A a<1000
SCs b>100 Ab<1000 t>3At<60 a>1000
SCo b>1000 t=21At<3 82100 A a<1000
SCio b>1000 t21At<3 a=1000
SCi b>1000 t>3At<60 2>100 A a<1000
SCiz b>1000 23At<60 a=1000

Step 6: States Minimization

The possible combinations of states are minimized now to make lesser number of

states and transitions to make a simplified FSM, as shown below:
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Table 3.3 State Minimization table

Deposit (Operation 1) Withdraw(Operation 2)

In this step the source states that have similar target states combinations are

disjunction into one new state and renaming the rest of the states give:

SCyvSC,vSC3vSCyvSCsvSCsvSC7vSCvSCovSCiovSCiy = Si3
SCiz =S4
SCo = So

The Resulting FSM is:

Figure 3.11 FSM of Bank Account class
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3.6 Hypothetical Example

Opl

X235 » y<b
Op2
Op3
Op4
Op5

z=k | J( 2537
Op6

x>d > x=q
Op7

z>18 z<12

\ 4

Figure 3.12 Hypothetical Example
Extracted set of input predicates ‘IP’ and output predicates ‘OP’ using TEIOPZ:
IP: {x>5, x#3, y=>t, ch, z=k, x>d, z>18}
OP: {y<25, x<14, y#g, y>m, z<37, x<q, z<12}
Step 1: Categorization of Predicates into ‘Pv’ lists,
Px = {x=5, x#3, x<14, x<c, x>d, x<q}

Py = {y<b, y=t, y#g, y=m}
Pz = {z=k, z<37, 2>18, z<12}

Automated FSM Extraction from Model-based Formal Specification 50



Chap No.3 The Proposed Approach

Step 2: Categorization of Predicates into lists PCvc, PCvmy, and PCvei

PCxc = {x<14, x>5}
PCxmv = {x<c, x>d, x<q}
PCxei = {x#3}

PCyc = {}
PCymv = {y<b, y2t, y>m}
PCyei= {y#g}

PCzc = {z<37, z>18, z<12}
PCzmv= {}
PCzei= {z=k}

Step 3: Sorting the extracted PCvec lists if any,
Sort PCxc, PCyc and PCzc

PCxc= {x>5, x<14}
PCyc={} :
PCzc= {z<12, >18, z<37}

Step 4: Combine PCxmv and PCxc if any resulatant PCxmvc will be,

PCxmve= {x>5, x<14, x<c, x>d, x<q}
Combine PCyc and PCymv,

PCymvc = {y<b, y=t, y>m}

Combine PCzc and PCzmv,
PCzmve= {237, 2>18, z<12}

Step 5: Make sequenced list formulations, if both PCvc and PCvmv are non-empty,

No. of Sequenced lists for PCxmvc will be n-1*n-2*n-3...
For PCxmvc
4¥3%2*1=24 Lists

Lmxc= {x>5, x<14, x<q, x<¢, x>d}
Lmxc;= {x>5, x<q, x<14, x<c, x>d}
Lmxc;= {x<q, x=5, x<14, x<c, x>d}
Lmxcs= {x>5, x<q, x<c, x>d, x<14}

Lmxcs= {x>5, x<14, x<q, x>d, x<c}
Lmxce= {x>5, x<q, x<14, x>d, x<c}
Lmxcy= {x<q, x>5, x<14, x>d, x<c}
Lmxeg= {x25, x<q, x2d, x<c, x<14}
Lmxco= {x>5, x<14, x>d, x<c, x<q}
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Lmxci= {x25, x>d, x<14, x<c, x<q}
Lmxe; = {x>d, x>5, x<14, x<c, x<q}
Lmxcp= {x>5, x>d, x<c, x<q, x<14}

Lmxci3= {x>5, x<14, x>d, x<q, x<c}
Lmxcis= {x>5, x>d, x<14, x<q, x<c}
Lmxcis= {x>d, x5, x<14, x<q, x<c}
Lmxci¢= {x=5, x>d, x<q, x<c, x<14}

Lmxci7= {x=5, x<14, x<c, x>d, x<q}
Lmxcis= {x=5, x<c, x<14, x>d, x<q}
Lmxco= {x<c, x>5, x<14, x>d, x<q}
mec20= {x—>-5’ X<c, xzd’ xsq, x-<-14}

Lmxcy= {x=5, x<14, x<c, x<q, x>d}
Lmxcy= {x>5, x<c, x<14, x<q, x>d}
Lmxcy= {x<c, x>5, x<14, x<q, x>d}
Lmxcy= {x>5, x<c, X<q, x>d, x<14}

For PCymvc

No. of Sequenced lists for PCymvc will be like n*n-1*n-2*n-3....... , if only PCymv is

non-empty,
3#2*1=6 sets

Lmyc; = {y<b, y2t, y>m}
Lmyc; = {y2t, y<b, y>m}
Lmycs; ={y<b, y>m, y=t}
Lmycs= {y=m, y<b, y2t}
Lmycs = {y2t, y2m, y<b}
Lmyce = {y>m, y>t, y<b}

There is no PCzmv so no need to make its sequenced list formulations.

Step 6: Making states for all the sequenced lists formulated by applying the state

generation process,

For Lmxc;={x>5, x<14, x<q, x<c, x>d}

~x>5) P> (x<5)> S

(x>5) A (x<14) 2 (5=x<14) > S
~x<14) A (x<q) D (14<xzq) > S
~(x<q) A (x<c) 2 (@<x<c)=> S
~(x<c) A ~(x>d) D (c<x<d) > S
(x>d) > S

For Lmxc;={x>5, x<q ,x<14, x<¢, x>d}

~(x>5) > (x<5) D S

(x5) A (x<q ) P (5<x<q) & S
~x<q) A (x<14) & (q<x<14) 2> S
~(x<14) A (x<c) D?(14<x<c) 2> S
~(x<c) A ~(x=d) D(c<x<d) D> S
x>d) =2 S
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For Lmxc;= {x<q, x5, x<14,x<¢, x>d}

(x<q) 82

~(x2q) A ~(x25) ¥ (q<x<5) > S
(x>5) A (x<14) > (5<x<14) > S
~(x<14) A (x<c) D (14<x<c)> S
~(x<¢) A ~(x>d) d(c<x<d)> S
(x>d) > S

For Lmxc={x>5, x<q, x<¢, x>d, x<14}

~(x25) D (x<5) S S

(x25) A (x<q) F(5=x<q) ¥ S
~(x<q) A(x<e) F(q<x<d) D S
~(x<c) A~(x>d) d(c<x<d) ¥ S
(x=d) A (x<14) P(d<x<14)> S
~x<14) D (>14) D S

Lmxcs= {x>5, x<14, x<q, x>d, x<c}

~(x25) P (x<5) > S

(=5) A (x<14) P (5<x<14) D S
~(x<14) A(x<q) ¥ (14<x<q) > S
~(xsq) A ~(x2d) ¥ (q<x<d) > §
(x>d) A (x<c) ¥ (d<x<c) ¥ S
~(x<c) D(x>c) P> S

Lmxce= {XZS, x<q, XSM, x>d, x<c}

~(x25) > (x<5) > S

(x23)A (x<q)>(5x<q) ¥ S
~X<QA (x<14) P (q<x<14) > S
~(x<14) A ~(x2d) ¥ (14<x<d) > S
(x=d)A (x<c) ¥ (d<x<c) > S
~(x<c) P (x>c) S

mec7= {XSq, XZS’ X514, XZd, X<C}

(x<q) > S

~(x<q) A ~(x=5)P (q<x<5)2>» S
(x>5) A (x$14)> (55x<14)d S
~(x<14) A ~(x2d) > (14<x<d)=> S
(x2d ) A (x<c) ¥ (d<x<c) > S
~(x<c) ¥ (x>c) IS

Lm108= {XZS, XSq, XZd, x<c, x_<_14}

~(x25) ¥ (x<5) >SS

(x25) A (x<q) P (5<x<q) &> S
~(x<q) A ~(x2d) ¥ (q<x<d) ¥ §
(x>d) A (x<c) ¥ (d<x<c) > S
~(x<c) A (x<14) P (c<x<14) D S
~(x<14) P (x>14) > S

Lmxeq= {x>5, x<14, x2d, x<c, x5q}

~(x25) ¥ (x<5) ¥ S

(x25) A (xs14) F(5=xs14) S §
~(x<14) A ~(x2d) F(14<x<d) > S
(x=d) A (x<c) 2 (d<x<c) 2> S
~(x<c) A (x<q) P (c<x<q) & S
~(x<9) > x>0 > S

LmXC“)'-' {XZS) XZd, XSI4, X<c, xﬁq}

~(x25) P (x<5) DS

(x25) A ~(x>d) D (5<x<d) > S
(x>d) A (x<14) D(dsx<14) > S
~(x<14) A (x<c) P(14<x<c) 2> S
~(x<c) A (x2q) P(c=xzq) P S
~(x<q) P (x>q) S

Lmxc; = {x>d, x>5, x<14, x<¢, x<q}

~(x2d) P (x<d) > S

(x2d) A ~(x25) ¥ (d<x<5) > §
(=5) A (x<14) P(5zx<14) > S
~(x214) A(x<c) P (14<x<c)> S
~x<c) A (x<q) P (c<x<q)D> S2
~x<q) > (x>9) > S

mec12= {XES, xzd’ X<¢, X.Sq, x514}

~x>5) P (x<5) D S

(x25) A ~(x2d)>(5x<d)> S
(x2d) A (x<c)=» (d<x<c)=> S
~x<c ) A (x2q)P (c<x<q)=> S
~(x5q) A (x<14)P(q<x<14)> S
~x514) D (x>14) 9 S
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Lmxcy3= {x>5, x514, x2d, x<q, x<c}

~(25) P (x<5) D §.

(x>5) A (x<14) P(5=x<14) > S
~(x<14) A ~(x>d) P(14<x<d) > S
(x2d) A (x<q) & (d<xzq)?> S
~(x<q) A (x<c) ¥ (q<x<c)¥ S
~(x<c) P(x>c) > S

Lmxe;q= {x>5, x>d, x<14, x<q, x<c}

~(x25) P(x<5)> S

x=5) A ~x>d)DP(S<x<d)> S
(x>d) A(x<14) D(d<x<14)> S
~x<14) A (x<q)>(14<x<q)> S
~(x<q A (x<c)>(q<x<c)> S
~(x<c) D (x>c) ?S

Lmxe;s= {x>d, x>5, x<14, x<q, x<c}

~(x=d)?>» (x<d) 98

(x2d) A ~(x=5)P(d<x<5)= S
(x>5A x214)D(5<x<14)2> S
~(x<14) A(x5q)D(14<x<qD> S
~x5q ) A (x<c)d(q<x<c)=> S
~(x<c) (x>c) S

mec16= {XZS’ XZd, xﬁq, x<¢, 1514}

~x25) P (x<5) > S

(x=5) A ~(x>d)DP(5<x<d) > S
(x=d) A (x<q)>(d<x<q) > S
~(x<q) A (x<c)= (q<x<c) > S
~(x<c) A (x2149)D(c<x<14) > S
~(x<14) D (x>14) D S

Lmxey= {x>5, x<14, x<c, x>d, x<q}

~(25) P (x<5) > S

(x25) A (x<14)?> (5=x<14)> S
~(x<14) A (x<c) D (14<x<c)> S
~x<c) A ~(x>dd(c<x<d)=> S
(x>d) A (x> (d<x<q)> S
~(x59) ¥ (x>q) IS

Lmxc;s= {x>5, x<c, x<14,x>d, x<q}

~(x25)> (x<5) &S

(x25) A (x<c) (5<x<c)> S
~x<c) A (x<14)P (c<x<14)> S
~x<14) A ~(x>d) D (14<x<d) D S
(2d) A (x<q)D (dsx<q)d S
~x5q) 2 (x>q) S

Lmxcyo= {x<c, x>5, x<14, x>d, x<q}

(x<c)DS

~(x<c) A ~(x25)P (c<x<5)D S
O5)A (x<14)D (5<x<14)> S
~(x<14) A ~(x2d)D> (14<x<d) D> S
(d) A(x<q)d (dsxsq) P §
~x<q) S (>9) IS

Lmxcz= {x>5, x<c, x2d, x<q, x<14}

~(x25) D (x<5)> S

(x25) A (x<c)P(5<x<c) > S
~x<c) A ~(x>d)P(c<x<d) P S
(x>d) A (x2q)P(d<x<q) > S
~x5q) A(x<14)D(q<x<14) > S
~(x214) 2 (x>14) > S

Lmxcz= {x>5, x<14, x<c, x<q, x>d}

~x>5) > (x<5)2> S

(x=5) A (x514)> (5zx<14) > S
~(x<14) A (x<c) D(14<x<c) 2> S
~x<c) A (xq) @ (c<xzq) > S
~(x5q) A ~(x>d) P(q<x<d) & S
(2d) IS

Lmxcy= {x5, x<c, x<14, x<q, x>d}

~(x=5)> (x<5)2> S

(x=5) A (x<c)=>» (5<x<c) > S
~x<c) A (x214)> (cxx<14) > S
~x<14) A (x<q)> (14<xq) 2> S
~(x5q) A ~(x>d)» (q<x<d) & S
(x>d) oS
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Lmxcy= {x<e, x>5, x<14, x<q, x>d}

(x<c) S

~(x<c) A ~(x=5) D (c<x<5) 2> S
(x25) A (x<14) D (5<x<14) D S
~(x<14) A (x<q) D (14<x<q) ¥ S
~(x2q9 )A ~(x>d) > (g<x<d) 2 S

(x>d) > S

Lmxecs

3.6.1 Extracted Set of Non-overlapping States

Lmxcy= {x>5, x<c, x<q, x>d, x<14}

~(x=5) P> (x<5) 2 S

(x=5) A(x<c) 2 (5<x<c) 2 S
~(x<c) A (x<q) P(c<x<q) > S
~XZQA ~(x>d) P (g<x<d) > S
(x2d) A (x<14) D (d<x<14) D> S
~(x<14) D (x>14) D> S

Table 3.4 Removing the Duplicate State Invariants

Lmxc;

Lmxcy

Lmxes

Lmxcg

Lnmxe;

Lmxcg

5<x<14 | 52xZq q<x<5
14<x<q | q<x<14 q<x<d
q<x<c 14<x<c 14<x<d

Lmxcy

LlﬂXCm

Lmxcey,

Lmxep

Lmxegs

Lmxcyy

Lmxes

Emxey,

5<x<d

d<x<$§

d<x<q

l4<x<c

c<x<14

LHIXC|7

Lmxegg

Lmxeyy

Lmxceyg

Ll]']XCg;

Lmxc,;

Lmxce,s
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For PCymvec:
PCymvc = {y<b, y>t, y>m}

We have,

Lmyc, = {y<b, y2t, y>m}

(y<b) > S

(Y<b) A ~(y2t) > (bsy<t) > S
(y>t) A ~(y>m)=>» (t<y<m) = S
(yzm) 2 S

Lmyc, = {y>t, y<b, y>m}

~2t) D (y<t) > S

(y2t) A (y<b) = (t<y<b) 2> S
~(y<b) A ~(y=m) > (b<y<m) > S
(y2m) > S

Lmyc; = {y<b, y>m, y>t}

(y<b) =S

~(y<b) A ~(y>m) =» (b<y<m) = §
(y2m) A ~(y=t) =& (m<y<t) 2 S
z)> S

Lmycs = {y>m, y<b, y>t}
~(y=2m) = (y<m) =2 S

(y>2m) A (y<b) ?(m<y<b)=> S
~y<b) A ~(y2) D (b<y<t)> S
(yz)> S

Lmycs = {y>t, y>m, y<b}

~y>t) D y<t=> S

(y2t) A ~(y>m) D (t<y<m)=> S
~(y<m) A ~(y=b)»(m<y<b)=> S
~(y<b) > (y=2b) > S

Lmyc6 = {Yzm, )’Zty )’<b}
~(y2m) > y<m > S

(y>m) A ~ (y2t) ?Pmy<td S
(y2m) A (y<b)?»m<y<b=>» S
~y<b) 2 (y2b) > S

Table 3.5 Set of States Generated From Lmyc;

Lmyc,; Lmyc, Lmye; Lmycy Lmycs Lmye,
y<b y<t y<m

b<y<t t<y<b m<y<b

t<y<m b<y<m m<y<t

y2m y2t y=b

For PCzmve:

PCzc = {z<12, 2>18, z<37}

(z512) > S

~(2£12) A ~(z>18) =2 12<z<18>» S
~(z£18) A ~(z>37) P 18<z<37» S
~(2537) > z2>379 S
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Table 3.6 Set of States Generated From PCzmvce

Lmzc;

z<12

12<z<18

18<z<37

>37

Step 7: Making final set of states by adjusting PCxei if any

PCxei={x=3}
Make x=3 =»S (and add x#3 where it lies among predicates)

Applying boundary analysis on the states generated from Lmxc;

For PCyei= {y=g} adjusting it with corresponding states in Lmyc;

Making (y=g) = S

For PCzei= {z#k} adjusting it with corresponding states in Lmzc;

Step 8: Making final set of states

States

L.mxc

State

Table 3.7 Final Set of States for ‘Px’

States

Lmxe g

States

Lmxe

States

s [ERt | s |smsa | se [dssu| s Sis | Ssx<c
S,; 5<x<14 Ss q<x<14 Sis x>14 Sz¢ 5<x<d Sz
<
S3 14<X_<_q Se 14<x<c Sis d<x<c Sa Sa7 ZS: ;ég
<q A <x<
Sy | g<x<c Sio ]]:#g Sis | x>c Sz g;; SA
Ss | c<x<d Sn g;fs Al sy |la<x<d| S |d<x<q
Se q<x<d c<x<q c<x<14
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Table 3.8 Final Set of States for ‘Py’

States Invariants States Invariants
S2s y<b A y#g S4 b<y<m A y#g
Sz b<y<t A y#g Sss m<y<t A y#g
S0 t<y<m A y#g Ss6 y2t A y#g
Ssi y>m A y#g Sy y<m A y#g
S y<t A y#g Sis m<y<b A y#g
S33 t<y<b A y#g S19 y=>bA y#g

Table 3.9 Final Set of States for ‘Pz’

Sao z<12 A z#k

Sa1 12<z<18 A z#k
Sa2 18<z<37 A z#k
Sq3 2>37A z#k

S44 =k

Step 9: Identifying Pre- and Post-states for Each Pre- and Postcondition

The identified pre- and post-states for pre- and postcondition of an operation are further
minimized to get lesser number of states and transitions. The source states having the similar
destination states are combined to form new states.

Si P Sus

S; VS; VS, VSV S5 Sus
SsVSi2VSi3VS17 VS Syy
Se VS1aVSi6VSigVSi9 VSV Sy > Sus
S7V So=» Sy

Si0 VStV SV 827 2 Sy

S22 P S5

S25 V S26 = S52

S30 V S33 V S35 > Ss3

S42 V Sa3 Sss

Sas > Sss

S28 V S20 V 531V 832 V' S34 V S35 V S37 V S33V S39V S40 V S4 Ss¢
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3.6.2 State Transition Table

Table 3.10 Final Set of States after State Minimization

States  Opy OP; Opq Ops Ops Op-
Sa6 Ss3, Ss¢ | Sas, Sa6y Sa7, Sass Sse Sass Sa7y Sas,
S49, Sso, Ss1, Ss2 S49, Sso, Ss1,
Ss2
S47 Ss3, Ss | Sas, Sa6y Sa7, Sas,
S49, Sso, Ss1, Ss2
Sas Ss3, Ss¢ | Sas, Sags S475 Sas, Sa6s Sa75 Sas,
S49, Sso, Ssi, Ss2 S49, Sso, Ssi,
Ssa
Sa9 Ss3, Ss¢ | Sas, Sagy S47, Sas, Sse
S49, Sso, Ss1, Ss2
Sso S4s, Sa6y Sa7, Sas,
Sa9, Sso, Ss1, Ss2
Ss1 S4s, Sags Sa7, Sas, S46 Sa7, Sas,
S49, Ss0, Ss1, Ss2 ' S49, Sso, Ss1,
Ss2
Ss2 Sas, Sasy Sa7, Sas, Sss
S49, Ss0, Ssi, Ss2
Ss3 Ss3, Ssg
Ss4 Sse
S55 SS4’ SSG
Sse
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4. AUTOMATION AND TOOL SUPPORT

This chapter describes the tool named as “Automatic Generator of Finite State
Machine” (AGFSM), which automates the proposed approach for generation of FSM
from an Object-Z class. This chapter presents automation details including tool
architecture, responsibilities of different tool components and screen shots of GUIs

(Graphical User Interface).

4.1 Tool Architecture

AGFSM is a tool for extraction of states and transitions of FSM of an Object Z class.
Abstract view of AGFSM is shown in figure 4.1. It takes input and output predicates
extracted using an existing tool TEIOPZ (Latif et al., 2008) from the LaTeX source of
the given Object-Z class specification. On the basis of these extracted input and output
predicates, it identifies the states invariants and displays them in the graphical user
interface (GUI). Then, it calculates transitions using identified states and an explicitly
given input file showing relationship among class’s operations and their respective pre

and postconditions and finally displays them in the GUI.

I[nput & output
predicates

AGFSM Class
Class Operations FSM
with Pre- and
Postconditions

Figure 4.1 Abstract View of the tool

The tool achieves final output using four main components, i.e., Predicate
Categorizer, Sequence List Formulator, State Identifier, and Transition Calculator as

shown in figure 4.2.
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4.1.1 Predicate Categorizer

The input and output predicates are scanned to identify the predicates with similar
variables. This list of predicates with similar variables is further categorized on the basis
of constants and variables used in the relational predicates. The predicate categories for
each variable used in the given Object-Z class specification are extracted by- this

component. Categorization of predicates is discussed in detail in section 3.2.1.
4.1.2 Sequenced List Formulator

This component takes the predicate categories as input and transforms them into
sequenced lists. It formulates the permuted lists in a valid sequence on the basis of
number of predicates present in the each predicate category containing constants and
multiple variables such as PCvc and PCvmv respectively. Details of sequenced list
formulation from these predicate categories are given in section 3.2.2. These sequenced
lists formulated are used as input in the state generation process, hence ensuring validity

of resultant states.

Input & Output ClassOprations
Predicates PreandPost.txt

r

Predicate A
Categorizer

List

. "
h———Categories of predicates——————» Formulator

Generated
4 Sequenced
Lists

. Generated
Transition States States

Calculator Generator

Transitions

Figure 4.2 Schematic Diagram of the AGFSM
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4.1.3 States Generator

Sequenced lists are taken as input in this component. This component applies a set of
tules on the predicates in each sequenced list formulated as discussed in detail in section
3.2.3. Valid set of states are generated as a result. These states are generated to cover all
the input and output state space provided by each predicate for a variable in each

sequenced list.

4.1.4 Transition Calculator

The states generated from the state generator component, along with the explicit file
are provided as input to the transition calculator component. This component calculates
the valid set of transitions for every operation of the class with respective pre- and post-
states identiﬁed, details are provided in section 3.3. These states are mapped along with

the transitions to make final Class FSM.

4.2 Snapshots of AGFSM Tool
AGFSM has a very interactive GUL. The main interface of AGFSM is shown in figure

4.3. It contains two input text boxes: ‘Input predicates’, ‘Output predicates’ and three
buttons: ‘Ok’, ‘Cancel’ and ‘Exit’.

&ns

Ot Prodcats;  P9ea D bywa 100 _ _ I

Figure 4.3 Main GUI- AGFSM Showing Input and Output Predicates Of
Bank Account Class
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A user can enter input predicates and output predicates of all operations of the Object-
Z class. On pressing the ‘Ok’ button, next interface appears showing the formulated

sequenced lists as shown in figure 4.4.

T ALrS™

Ligke F3NY

CREATING SETS

e ogeqg 0L y=yg . gy 100,L geqg 1000
ra? geq 100, a? geq LCOO0
21t gaq 1,t gaqg , £ gadq 60 ,t laqg £0

STATES OF SETS ARE

o
< 100
B < 1700

ZREE

Figure 4.4 Sequenced List Formulation For Bank Account Class

Next interface contains five buttons: ‘Make States’, ‘Browse Text File’ and ‘Make
FSM’, ‘Clear All’ and ‘Exit’. Pressing ‘Make State’ button will identify set of all valid

states from each of permuted lists as shown in figure 4.5.

Once the states are identified, the “Browse Text File” button is pressed to browse and
select the input file. After the input file is selected, its contents are displayed in the GUI

to confirm that the file is successfully selected and read as shown in figure 4.6.

The “Make FSM” button will calculate the transitions by matching the identified states
with preconditions and the postconditions provided by the input text file of Object Z
class. The states that become the subsets of the preconditions and postconditions become
the pre- state and post-state of that particular operation. Transitions for all the operations
of class are calculated and shown with the respective pre- and post-states as shown in
figure 4.7,
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QanFsM

$3:b>=0"0<100" b
S4:a»>=1000
35:a>=100"a<1000

{e7: £560
SB:t>=17t<3
89:t>=3"t<G0

PokoFsm

tt File For Ccomparision State Foxr The

Operationl (Deposit Amount)

§i°re Condition:

fa>= 100, b>=0, t>=1, t<=60

Figure 4.6 Reading Text File for Representing Operations of Bank Account Class
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. s |S8~----operationl:-----81
87---~--operationl:-----51

{S5-----operationl:-----S1

tmmm—=S0
t=====S0

Sabuts wist

Clear Al

Figure 4.7 Transitions Calculated With Respective Pre- and Post-States For All Operations
of Bank Account Class
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5, " EVALUATION

This chapter evaluates the proposed approach for FSM generation from Object-Z class
specifications as well as the developed tool ‘AGFSM’ as shown in table 5.1. Section 5.1,

5.2,5.3, 5.4 and 5.5 evaluates the approach against five different parameters.
5.1 Scope/Purpose

The proposed approach is mainly aimed to extract FSM from model-based formal
specification. It is obvious from the literature survey that FSM generation has been
significant mainly for: Testing, development of implement-able constructs and as a

realization of Object-Z specifications.

This work is targeted towards extraction of FSM for testing purpose as the work of
Dick & Faivre (1993), Hierons (1997), Carrington (2000), Huaikou & Ling (2005), as

well as for developing implement-able constructs as the work of Sun and Dong (2006).
5.2 Specification Language Used

The proposed approach is based on the Object-Z specification language. Other related
works are also typically notation specific. However, the approach may be easily extended

for other model based formal specifications such as Z.

5.3 State Identification

State identification is a necessary step for the extraction of FSM because the states
along with operations help identifying the transitions of FSM. The state generation
process in Carrington et al., (2000) and Huaikou et al. (2006) is manual and the
refinement of states determined later is based on decision of a tester. Even the removal of

resultant duplicate and overlapping states to get disjoint states depends on human
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intuition. Apart from that, these approaches do not consider the pre and post-conditions
that are defined by more than one predicates. Also, no strategy is provided to extract
states for a particular variable of simple data type, if defined by more than one relational

predicates.

History invariants that are additional set of predicates are used for the extraction of
states in the work of Sun et al., (2006). However, thése history invariants are not
commonly used in the recent versions of Object-Z. The proposed approach only uses the
predicates extracted from the given Object-Z Class specification without involving
history invariants. This approach too does not discuss coverage of state space defined by
multiple predicates for a particular variable. The approaches that extract states from
disjoint partitions (Dick et al.,1993, Hierons, 1997), depend on human verdict to decide

the simplification level of partitions obtained and to identify distinct and non-overlapping
states from them.

A set of distinct and non-overlapping states is extracted from the predicates by
applying a sequence of steps. This extraction of states involves no human intervention to
decide about the level of refinement of states and for the removal of duplicate and
overlapping states. The resultant states not only provide abstraction but also are reachable
in the resulting FSM. State Identification parameter has been evaluated on the basis of

following sub parameters:

5.3.1 Logical Expression (L.E)

The proposed approach extracts states and transitions from logical expressions

including conjunctions used in the Object-Z class specifications.

5.3.2 Relational Expression (R.E)

The approach and AGFSM provides successful extraction of states and transitions

from the relational expressions including: less than ‘<’, less than equal to ‘<’, greater than

>¢, greater than equal to * 2’, equal to ‘=’, not equal to ‘#’.
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This parameter is further evaluated on the basis of three sub-parameters:

a) Defined by Constants

The approach provides extraction of states and transitions from the predicates involved
in relational expressions that are used to define a variable in terms of constant values

only.

b) Defined by Multiple Variables

Extraction of states and transitions from the predicates in relational expressions which
are used to define a variable in terms of other abstract variables is also provided by the

proposed approaéh.

c) Defined by Constants and Variables

States and transitions are extracted from the predicates in relational expressions used

to define a variable in terms of constant values and other abstract variables.

5.3.3 Input and Output Predicates

Latif et al. (2008) proposed an approach to separate input and output predicates from a
given Z operation schema. Its ultimate goal was to develop states from the extracted pre-
post conditions. However, it does not discuss the extraction of states and transitions from
the separated predicates. Hence, the work by Latif et al., (2008) has not been included in

the evaluation table for states and transition identification of FSM.

The proposed approach particularly addresses the generation of states and transitions
for FSM from the extracted input and output predicates of a given Object Z class in
detail. An approach is given to identify states from input and output predicates. In
addition, the proposed approach also calculates transitions from the identified states and

the pre- and postconditions of operations of a class.
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5.4 Transition Calculation (T.C)

It is another significant step after the identification of states for making FSM.
However, in the existing techniques for FSM generation, the process of determining
transitions by mapping an operation to the states satisfying its precondition and post
conditions is also manual. However, this work is not only detailed and mechanical but
also requires human intuition in deciding about the pre and post states for an operation.
The proposed approach provides a systematic way to identify the pre-states and post-
states for a particular operation. The states that subsets the regions offered by predicates

defining the pre-and post-conditions of an operation becomes the pre-and post-states
respectively.

5.5 Automation / Tool Support

Limited tool support has been provided by the formal methods. The tool support that is
developed for the proposed approach, AGFSM is a fully automated tool. Hence, the
proposed approach is an important development towards the automatic FSM extraction
from Object-Z specifications and consequently in specification-based testing techniques

as automation in specification based testing is scarce (Offut et al., 2003).

The work of Latif & Nadeem (2008) for the extraction of pre and post conditions for
FSM extraction from Z language and did not discuss FSM generation from the separated
input and output predicates and consequently, no automation details were discussed as
well. The proposed approach is built upon their work. AGFSM automated the extraction

-of states and transitions of FSM from the input and output predicates from Object-Z

specification. Hence, it is a significant improvement towards the automated FSM

extraction and automated testing.

Carrington et al., (2000) does not provide any automation details for identification of
states from test templates and transition calculation to make an FSM. Huaikou, (2006)

generates an FSM from a class using Test Class Framework (TCF), but it too does not
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provide any automation details for FSM generation from templates generated through

TCF. Hence, AGFSM is an important development towards automatic FSM extraction.

Table 5.1 Comparison of FSM Extraction Techniques from Formal Specification

Automation /
State Derivation
Tool Support
RE
Specification
Scope/
Approach Language Defined | Definedby | IP &
Purpose L.E | Defined SJI T.C
Used b by Variables or
Y Multiple and
Constant
Variables | Constants
] Test Case
Carrington
Object-Z Generation & N N Y N N P N
et al. (2000) .
Execution
) Test Case
Dick & Faivre
VDM Generation & P N Y N N Y N
(1993) .
Execution
, Test Case
Huaikou &
. Object-Z Generation & N Y N N N P N
Ling (2006) .
Execution
Test Case
Hierons (1997) A Generation & P Y N N N N N
Execution
Object-Z With Synthesizin
Sun & Dong ! m &
History Implementable P N N N N P P
(2006) ,
Invariants Constructs
. FSM
Our Approach Object-Z ) P Y Y Y Y Y Y
Construction
Table 5.2 Abbreviations Used
LE Logical Expression
R.E Relational Expression
IP&OP | Input Predicate and
Output Predicate
S.I State Identification
T.C Transition Calculation
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6. CONCLUSION & FUTURE WORK

FSM has appeared as an important construct particularly in facilitating testing process
i.e. test sequencing, test case generation and test case execution in formal specification-
based testing. FSM has also been driven as explicit system behaviors to generate

implement-able constructs from abstract high level specifications.

However, FSM extraction from model-based formal specifications is not an easy task.
Model-based formal specifications like Object-Z do not explicitly specify pre- and
postconditions in class operations. None of the existing techniques for FSM extraction
identify states and trgnsitions from input and output predicates that define pre- and
postconditions of operation in a class. State generation from the predicates in relational
expressions that define a variable in terms of constants and variables has also not

considered earlier,

This research is an initial step towards automatic FSM generation from model-oriented
formal specification. The proposed approach successfully extracts states and transitions
of FSM from an Object-Z class specification. The developed tool, AGFSM, fully
automates the proposed approach. The approach is proposed for the Object-Z class
specifications including simple data types, simple predicates with relational and some

logical operators. However, complex data types like sets, sequences are not considered in

research,

As automated testing area is a growing research area. Therefore, this research is an
important contribution towards the automation of software testing techniques using FSM

based on Object-Z specifications.
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6.1 Future Work

Fully automated testing based on automatically extracted FSM can be an important
future direction of this research work. Another future direction can be to develop (link)

abstract models implementation technique based on our approach.

Other future directions to this research can be to automatically generate FSM for
multiple Object-Z classes covering the inter-class relationships like inheritance,
generalization and association etc. Also, the approach takes an explicit input
répresentation of class’s INIT schema, state invariants and each of its operation’s pre-
and postcondition for transition calculation, other than class’s extracted input and output
predicates from TEIOPZ. This is due to the reason that TEIOPZ is mainly developed for
single Z operation and provides no relationship between a class’s operations and their
respective pre- and postconditions and the input and output predicates involved in them.
Hence, extension of TEIOPZ for Object-Z class can eliminate the need for explicit
representation needed other than Object-Z input and output predicates and can be an
important future direction. Moreover, the work can also be explored, whether this

approach can be generalized for other model-based formal specification languages.
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