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Preface

The study of the flow field produced by the moving surface in a quiescent fluid is relevant to

several practical applications in the field of metallurgy and chemical engineering. The stretch-

ing causes the entrainment of the adjacent fluid, which in turn affects the resistance and the

solidification of the extruded material. The properties of the final product depend to a great

extent on the stretching and rate of cooling which governed by the structure of the boundary

layer near the moving strips. It is therefore, the basic objective of this dissertation is to study of

boundary layer flows over a geometry of stretching cylinder in this dissertation. We analyzed

the effects of stretching cylinder as hyperbolic function with entropy generation, unsteady os-

cillatory wall temperature with mixed convection over a shetching cylinder, Casson fluid with

partial slip and prescribed surface heat flux over a stretching cylinder, hydromagnetic heat

transfer analysis of stagnation point flow of Walters-B fluid over a stretching cylinder, Soret

and Dufour effects over second grade fluid flow over a stretching cylinder with linear radiation

and finally the non-linear radiation effects on Maxwell fluid flow over a stretching cylinder

with heat generatior/absorption. The governing non-linear partiaUordinary differential equa-

tions are solved by means of very efficient numerical techniques such as Keller box method,

spectral method and shooting method.

Chapter 1, includes some basic knowledge about the fluid flows, fundamental laws of fluid

dynamics, relevant mathematical models, a comprehensive literature survey and numerical

methods which are used in this dissertation.

In chapter 2, a comprehensive study of entropy generation over hyperbolic stretching cylin-

der is performed. The numerical results are obtained for the partial differential equations by

an implicit finite difference scheme known as Keller box method. The influence of emerging

parameters namely: curvature parameter and Prandtl number on velocity and temperature pro-

files, skin friction coefficient and the Nusselt number are presented through graphs. Moreover,

the effects of different physical parameters on entropy generation number and Bejan number

are also drawn graphically. The contents of this chapter are published in Alexandria Engi-

neering Journal (2016) 55, 1333-1339.

In chapter 3, heat transfer analysis is presented for mixed convection stagnation point flow

over a vertical stretching cylinder with sinusoidal wall temperature. The governing partial

differential equations are converted into dimensionless form by using suitable transforma-

tions. For the numerical solution of the reduced dimensionless partial differential equations,

vlu



the Keller Box method is applied. To show the accuracy and authenticity of our results, a com-

parison is made with literature for some special cases. The skin friction and Nusselt number

are plotted against unsteadiness parameter and amplitude of surface temperature oscillations

against time. It is appeared that as the values of amplitude of surface temperature oscilla-

tions drop, the amplitude of oscillations in skin friction and Nusselt number also drops. These

observations are published in Revista Mexicana de Fisica 62 (20L6') 290-298'

Chapter 4 is focused to analyze the combine effects of partial slip and prescribed surface

heat flux when the fluid is moving due to stretching cylinder. A very moderate and power-

ful technique namely Chebyshev Spectral Newton Iterative Scheme is used to determine the

solution of the present mathematical model. The accuracy and convergence of the method is

ensure through comparison of its computed results with that of Keller box method through

tables. The CPU time is calculated for both schemes. It is observed that CSNIS is efficient,

less time consuming, stable and rapid convergent. Involved physical parameters, namely: the

slip parameter, Casson fluid parameter, curvature parameter and Prandtl number are utilized

to control the fluid movement and temperature distribution. The results show that the fluid

velocity and the skin friction coefficient on the stretching cylinder are strongly influenced by

the slip parameter. These results are published in Alexandria Engineering Journal (2015)

54,1029-t036.

In chapter 5, heat transfer analysis of two dimensional hydromagnetic flow of Walters-

B fluid towards stagnation point region over a stretching cylinder is discussed. Importantly,

the Walters-B model is transformed into cylindrical coordinates and then solved by Spec-

tral Quasi Linearization Method (SQLM). The flow and heat transfer characteristics are an-

alyzed through governing parameters representing curvature of cylinder, velocity ratio pa-

rameter, magnetic parameter and Weissenberg number. It is noticed that the curvature of the

cylinder has significant impact on the velocity and temperature. Magnetic field applied ex-

ternally suppress the bulk motion and alters the momentum boundary layer thickness. The

drag and heat transfer rate on the surface of cylinder are examined through skin friction and

heat transfer coefficients. Furthermore, streamlines are drawn to see the flow pattern. The

/... 
contents of this chapter are published in Canadian Journal of Physics. 942 1-9 (2016)

dx.doi.org/10.113e/cjp-2015-0s11. ?/ ZA ( *,.2, 
)

Chapter 6 presents the analysis of Soret and Dufour effects on two dimensional flow of

second gade fluid due to stretching cylinder. It is further assumed that the flow is subjected to

lx



thermal radiation, which is another aspect of the study. Mathematical model for second grade

fluid in cylindrical coordinate system is developed in terms of nonlinear partial differential

equations and solved numerically. It is predicted that the simultaneous increase in Dufour and

Soret numbers help to enhance both the temperature and concentration in the boundary layer

region around the cylinder. Also concurrent occurring of increasing Dufour and decreasing

Soret numbers on heat transfer and mass transfer rates have opposite effects. Moreover, the ra-

diation effects are elaborated through the variation of effective Prandtl number. The increase in

effective Prandtl number results in decrease of the temperature of the fluid. These observations

are published in Journal of Molecular Liquids 221 (2016) 878-884.

In chapter 7, we presented the combined effects of linear and non-linear Rosseland thermal

radiations on Maxwell nanofluid flow due to stetching cylinder. Notable difference in the heat

transfer enhancement can be observed through temperature profiles and tables of Nusselt num-

ber. From the computation, it is concluded that the nonlinear radiation enhances significant

heat transfer rate at the surface of cylinder as compared to the linear or in the case of absence

of radiation effects. The presented results are submitted for possible publication in Canadian

Journal ofPhysics.
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Nomenclature

d, c Dimensionless constants

a/c Velocity ratio parameter

A* Coefficient of space dependent heat source/sink

B' Coefficient of temperature dependent heat source/sink

B Velocity slip parameter

C Concentration of fluid

Bo Magnetic field strength

Be Bejan number

Bedl'-7 Groupparameter

b Body force

c.p Specific heat at constant pressure

Cf Skin friction coefficient

DB Brownian diffusion coefficient

De Maxwell fluid parameter, Deborah number

Dr Thermophoretic diffusion coefficient

Eo Characteristic entropy generation

Ec Local volumetric rate of entropy generation

f Dimensionless stream function

k Thermal conductivity of fluid

K Viscoelastic parameter

I Reference length

M Magnetic parameter

ND Brownian motion parameter

N; Entropy generation number

Nt Thermophoresis parameter

n* Temperature index or exponent

Nu, Local Nusselt number

p Pressure

Pr Prandtl number

qtt' Non-uniform heat sink/source
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Chapter 1

Introduction

In this chapter, the preliminaries of fluid mechanics and its fundamental laws (White 2006),

some mathematical fluid models (Harris 1977), numerical methods (Na 1979; Cebeci and

Bradshaw 1985) which are directly related to present research and a comprehensive

literature survey beginning from stretching sheet to stretching cylinder is presented for

knowledge and understanding of readers. For this purpose, current chapter is arranged as

follows:

1.1 Fluid mechanics

Fluid mechanics deals with transport processes in the molecule-dependent motion of fluids

(fluid dynamics) or the fluids at rest (fluid statics). Fluid mechanics is a special branch of

continuous mechanics which deals with the relationship between forces, motion and statics

conditions in a continuous material. In fact, fluid mechanics exists everywhere in our life

both in natural or practical environment and we all as a human being observer that this

branch of science has significant importance. Life is not possible on earth without flows of

fluids and even natural and technical growth would not be possible. Therefore, flows have

vital importance like blood in the vessels which transport the essential nutrients to the cells

by mass flows, where chemical reactions take place and produces energy for the body, flows

of the food chain in flora and fauna, flows into lakes, rivers, and seas, transport of clouds

through winds, and a multitude of other examples in natural and technological environments

1.2 GoverningEquations

All the physical phenomena are in some way related to the laws of fluid mechanics.

Application ofthese laws to fluid flow problems in terms of mathematics, results in the form

of partial differential equations such as continuity equation, the equations of motion or the

Navier-stokes equations, the energy equation and concentration equation. For

incompressible fluid flow these laws are given as below:

Continuity equation:

V.V = 0, (l.l)



Momentum equation:

Energy equation:

Concentration equation :

dV
PE=v't+Pf'

o'r#= v' (kvr) * t:vv 
'

dC
PcpE = V.(D^VC).

(r.2)

(1.3)

(1.4)

(1.s)

(1.6)

The above equations are in general form where, z is the Cauchy stress tensor and S is called

as the extra stress tensor which represents characteristics and rheological behavior of the

considered fluid. d/dt represents material derivative, p is the density of the fluid, V

represents the velocity field, V is the gradient operator, f represents the body forces, c,

represents the specific heat, T represents the fluid temperature, k represents the thermal

conductivity of the fluid, C represents the species concentration for mass transfer, z: VV

represents the scalar viscous dissipation, D- represents mass diffusivity in species

concentration. In cylindrical coordinate system

a ^La a
V = ifr* 0i 

ae* 
2E

D A A lA A

Dt= At* 
uril* ut| 

ag* 
urD

1.2,1 Newtonian fluids

Fluids in which shear stress is proportional to strain rate (or velocity gradient) are commonly

categorized as Newtonian fluids. Mathematically for unidirectional flow it can be written as

du
T C(--,

cty

, = t*. (r.7)
dy'

where p is the constant of proportionality know as dynamic viscosity. For Newtonian fluid,

stress tensor is given by

7 = -pI * S, (1.8)

in which p represents the pressure, I is the unite tensor and the extra stress tensor S has the

following form



S = lrAr,

where A1 represents the first Rivlin-Ericksen tensor and is defined as

Ar=W*(V\)tranPose

(1. r 0)

1.2.2 Non-Newtonian fluid

In non-Newtonian fluids, shear stress and deformation rate are not linearly proportional to

each other. In practice, most of the fluids behave like a non-Newtonian fluid. These fluids

have numerous important industrial applications in chemical, civil, metallurgical

engineering, and mining. The common examples of non-Newtonian fluids in our daily life

are toothpaste, paints, honey, blood etc. Many mathematical models have been proposed to

exhibit the nature of fluids in diflerent circumstances till to date. Some of them which are

related to the work in this thesis are as follows

Casson fluid model

The constitutive equation of a Casson fluid model may be defined in simplified form as

1_
tlr' = (tfi')z + Jr6 for r* > rfi (l.ll)

i" = 0, for z' S r[,
where r' is the shear stress, p is the viscosity coefficient of Casson fluid, y' is the rate of

shear strain and r[ is the yield stress.

(l.e)
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Walters-B fluid model

The constitutive equation for Walters-B fluid is given by

s = z,oAr -ruro+. (1.12)

Here 4s is the viscosity at zero shear rate, ks is the elasticity of the fluid and DA1/Dt is

defined as

o+ 
=+.(v.v)A1 - A1. (vv) - (vv1t'anspo'"'A1 (1.13)

Second grade fluid model

The equation which exhibits the rheological behavior of second grade fluid model is as

follows

S = IrAr * a1A2+ a2Az1, (1.14)

where A2 is the second Rivilin-Erickson tensor which has the following relation

U =#* Ar.(VV) + (Vvlt.or,rPorr.A1.

The thermodynamic constraints for stable second grade fluid model are

1t 2 0,c\)0,c\*a,2=Q,

Maxwell fluid model

The Maxwell fluid model obeys the following constitutive equation

(1.1s)

( l .16)

where, i1 represent the time relaxation of the material, which is duration of the time over

which significant stress persists after termination of deformation. The derivative D /Dt for

the vector and tensor can be define in the following forms:

For a contravariant vector:

DS
S +,41 5; = ltAu

DS dS_=__(w)s
Dt dt

For a contravariant tensor ofrank 2:

( l.l7)

(1.18)

DS dS

; = i- (vv)s - s(w)t'"flspose (1.1e)
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1.2.3 Buongiorno nanofluid model

In the present investigation, Buongiomo model is utilized to study the Brownian motion and

thermophoresis effects in the fluid flow. The energy and transport equations of nano-

particles which represent the Buongiorno nanofluid model is as follows

'; = aYzr + r' (orvc.vr +,rry
and (1.20)

DC - /D,\
Tl = DBvzc + l.i/ v'r.

Here z* = (pc)p/(pc), is the ratio of effective heat capacity of nanoparticle material and

the base fluid, De and D7 are the Brownian and thermophoretic diffusion coefficients and

T- is the ambient temperature of the fluid.

1.3 Literature Survey

The study of boundary layer flow and heat transfer over stretching surfaces received

remarkable attentions due to its numerous applications in modern industrial and engineering

practices. The attributes of the end product are greatly reliant on stretching and the rate of

heat transfer at the final stage of processing. Due to this real-world importance, interest

developed among scientists and engineers to comprehend this phenomenon. Common

examples are the extrusion of metals in cooling liquids, food, plastic products, the

reprocessing of material in the molten state under high temperature. During the phase of the

manufacturing process, the material undergoes elongation (stretching) with cooling process.

Such types of processes are very handy in the production of plastic and metallic made

apparatus, such as cutting hardware tools, electronic components in computers, rolling and

annealing of copper wires, etc. In many engineering and industrial applications, the cooling

of a solid surface is a primary tool for minimizing the boundary layer. Due to these useful

and realistic impacts, the problem of cooling of solid moving surfaces has turned out to be

anarea of concern for scientists and engineers. The dynamics of the boundary layer flow

over a stretching surface started from the pioneering work of Crane (1970). He solved a

primary problem of tvvo-dimensional boundary layer flow of stretching sheet which is

extensively used in polymer extrusion industry and assumed that sheet is linearly stretching

with a distance from a fixed point. Some representative studies over stretching sheet were

presented by Gupta and Gupta (1977), Chakabarti and Gupta (1979), Dutta and Roy (1985),
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Chen and Char (1988), Anderson et al. (1992). They provided their analysis by introducing

suction and blowing, heat transfer with uniform heat flux, heat transfer with suction and

blowing, MHD and heat transfer, analysis of power-law fluids, respectively. Abundant of

literature is available over stretching sheet problem with different geometries, physical

situations, fluid models and boundary conditions and will be discussed in proceeding

paragraphs where necessary.

For last several years, the analysis offluid flow and heat transfer over elongating surfaces

has gained growing interest of engineers and scientists due to its wide application in industry

like wire drawing, cooling of metallic sheets, piping and casting system as well as metal

spinning and many others. In this context, Wang (1988) was the first who considered the

steady flow caused by elongating cylinder immersed in fluid. After a long time, Ishak et al.

(2008, 2009) reestablish the pioneering work of Wang (1988). They produced a numerical

solution of laminar boundary layer flow, uniform suction blowing and MHD effects over

stretching cylinder in an ambient fluid. Heat transfer in magnetohydrodynamics flow due to

a stretching cylinder is analytically tackled by Joneidi et al. (2010) using HAM. Bachok and

Ishak (2010) studied the effects of prescribed heat flux at the surface of stretching cylinder.

They reported that the heat transfer rate is enhanced over a curved surface as compared to

that of flat surface. Time dependent flow over an expanding stretching cylinder is

investigated by Fang et al. (201 l) and they declared that the reverse flow phenomenon exists

due to expansion of cylinder. Munawar et al. (2012) presented thermal analysis over an

oscillatory stretching cylinder and they concluded that entropy generation magnifies due to

oscillatory motion of cylinder. The effect of magnetic field over horizontal stretching

cylinder in the presence of source/sink with suction/injection is studied by Elbashbeshy

(2012). Abbas et al. (2013) explained the MHD radiation effects with porous medium over

a stretching cylinder. Especially in last few years a lot of research problems have been

modeled on the analysis of flow and heat transfer over stretching cylinder. Mukhopadhyay

(2011, 2012); Mukhopadhyay and Gorla (2013) and Mukhopadhyay (2013) considered a

chemical solute transfer, mixed convection in porous media, and MHD slip flow along a

stretching cylinder respectively. Fang and Yao (20 I I ); Vajravelu et al. (2012); W ang20l2;

Lok et al. (2012); Butt and Ali (2014) have considered viscous swirling flow, axisymmetric

MHD flow, natural convection flow, axisymmetric mixed connection stagnation point flow,

and entropy analysis of magnetohydrodynamics flow over stretching cylinder, respectively.

Entropy generation is the quantification of thermodynamics irreversibility which exists in

all types of heat transfer phenomenon and therefore suffer an efficiency loss. It is need of
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the hour to calculate the extent of irreversibility occurring in the dynamical system. Also

search is on for finding the ways to minimize the rate of entropy generation so that maximum

utilization of available energy is possible. Due to this fundamental importance, Chapter 2

of the thesis is optimized with the inclusion of entropy generation analysis. In this context,

the studies (Matin etal.20l2;Butt et al.2}l3;Noghrehabadi et al 2013; Rashidi et al' 2014;

Dalir et al. 2015) are quite useful to explore many aspects of entropy generation.

The stagnation point encounters highest pressure, enhancement of heat transfer and rate of

mass deposition. Some practical examples are cooling of electronic devices by fans, the

aerodynamics of plastic sheets, cooling of nuclear reactors during emergency shutdown,

heat exchangers placed in a low velocity environment, solar central receivers exposed to

wind current and many others (Burde 1995). Due to these aspects, the study of stagnation

point flow and heat transfer has attracted many researchers and engineers. Hiemenz (1911)

initiated the study of trvo-dimensional stagnation point flow over a stationary flat plate. He

transformed the Navier-stokes equations into ordinary differential equations by using

similarity transformations and provided the exact solution of the nonlinear differential

equations. Homann (1936) extended this work to three-dimensional problem of

axisymmetric stagnation-point flow. Schlichting and Bussmann (1943) provided numerical

solution of Hiemenz problem. Eckert (1942) also extended the Heimenz flow by

incorporating heat transfer rate in the stagnation point flow. Ariel (1994) obtained the

analytical solution by introducing suction in flow field. Stagnation point flow over moving

surfaces is also significant in practicalpurposes including paper production, the spinning of

fibres, glass blowing, continuous metal casting, manufacturing of sheeting material through

extrusion process especially in the polymer extrusion in a melt spinning process,

aerodynamic extrusion of plastic sheets etc. Chiam (1994) investigated the two-dimensional

stagnation point flow of a viscous fluid over a linear stretching surface. He considered the

situation where stretching velocity is equalto straining (free stream) velocity and concluded

that no boundary layer exists in this case. Contrary to the Chiam (1994\, Mahapatra and

Gupta (2001, 2002) analysed the effects of Magnetohydrodynamics and heat transfer

respectively, in the region of stagnation point flow towards a stretching surface. They show

that the boundary layer is formed when af c > 1 (ratio of straining to stretching velocity)

and inverted boundary layer is emerging when af c ( 1. Unsteady analysis of flow over a

stretching sheet is reported by Nazar et al. (2004). Recently, (Mustafa et al.20l l; Sharma

and Singh 2009; Javed et al. 2015) reported the investigations on the stagnation point flow

over linear and non-linear stretching sheets in different aspects. In all aforementioned
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studies, the investigations on stagnation point flow are canied out with temporally constant

surface condition and the transient development of flow and heat transfer over stretching

cylinder is not extensively studied. Merkin and Pop (2000) stated that the value of surface

temperature does not remains constant, it often fluctuates about some mean value. The

influence of time dependent oscillations in surface conditions has received very little

attention to date. Therefore, Chapter 3 is aimed to study the unsteady mixed convection

stagnation point flow over a stretching cylinder with sinusoidal time dependent wall

temperafure.

In literature survey, it is discovered that in general the flow field obeys the no-slip condition.

However, certain physical situations exist which do not cope with the said conditions. That

is why, the replacement ofno-slip boundary condition with slip boundary condition is highly

essential. The role of the slip condition is vital in shear skin, hysteresis effects and spurts.

Slips comes into existence when the fluid is a rarefied gas (Sharipov and Seleznev 1998),

or in the case rvhen it is particulate like blood, foam, emulsion or suspension (Yoshimura

and Prud'homme 1988). Slip also arises on hydrophobic surfaces, especially in micro and

nano-fluidics (Eijkel 2007). Recently, Mukhopadhyay (2011, 2013), Mukhopadhyay and

Gorla (2013) studied the effects of partial slip with MHD, chemically reactive solute

transfer, and slip effects with heat transfer over a stretching cylinder respectively. Hayat et

al. (2014) have investigated the effect of heat and mass transfer in flow along a vertical

stretching cylinder with slip condition. A rheological model of Casson fluid pronounces the

properties of many polymers over a wide range of shear rates. Various experimental studies

on blood flow with varying haematocrits, anticoagulants, temperature, etc. offer the

behavior of blood as a Casson fluid. Recently, in this connection some useful research

achievements are made for Casson fluid flow over a stretching cylinder (Hayat et a\.2014,

2015; Hussain et al. 2015). Following this trend in Chapter 4, we present the analysis over

stretching cylinder considering non-Newtonian Casson model with partial slip and

prescribed heat flux using the Chebyshev SpectralNewton Iterative Scheme (CSNIS).

The study of non-Newtonian fluid flow has gained significant attention of researchers in

past few decades, due to extensive applications in polymer processing industry, developing

process of artificial film, artificial fibres, discharge of industrial waste, drawing of plastic

film and wire, thermal oil recovery, glass fibre and paper production, food processing,

crystal growing and liquid films in condensation process. Recently, some non-Newtonian

fluid models namely Viscoelastic, Jaffrey and Powel-Eyring are formulated in cylindrical

coordinates by Hayat et al. (2015). Keeping an eye on previous literature, many non-





t4

Newtonian fluid models are still to be discussed with geometry of stretching cylinder.

Among these, the behavior of Walter-B fluid model for a stretching cylinder has not been

disclosed yet. Walters and Beard (1964) have presented this viscoelastic fluid model which

predicts the flow behavior of various polymer solutions including hydrocarbons, industrial

liquids like paints and several others. Therefore, in Chapter 5, the study of

magnetohydrodynamics flow of Walters-B fluid near a stagnation point over a stretching

cylinder is presented. The interest for considering the Walters- B fluid stem from its physical

and mathematical significance. The Walters-B fluid model is a subclass of viscoelastic

fluids, which can predict the memory effects and secondly, considering it electrically

conducting fluid ensures the control of both velocity and boundary layer thickness. It is

widely applicable to estimate the flow situations in biotechnology and chemical industrial

problems. From a mathematical perspective, its constitutive equation of motion generates

one order higher equation than that ofNewtonian and others non-Newtonian fluids with no

extra boundary conditions available. Secondly, it contains singularity at the starting point of

the domain. Therefore, when fluid is slightly viscoelastic, there is no possibility of obtaining

a numerical solution by any standard integration scheme like Runge-Kutta method etc. Due

to these reasons, we focus our attention to discuss the flow of a Walters B fluid over a

stretching cylinder.

In many chemical processes, it is frequently happening that the transport of heat in the flow

cannot be coupled with the transport of mass in the system. The simultaneous occurrence of

coupled heat and mass transfer in moving fluid generates cross diffusion. As a result, the

concentration of one species undergoes a constant change to other species in the chemical

process. These changes in heat and mass transfer can be termed as Dufour effects: heat flux

incorporated by concentration gradients or diffrrsion-thermo and Soret effects: mass flux

produced by temperature gradient or thermal-diffusion (Soret 1880). Soret and Dufour

effects have their importance in physical situations like reactions in reactors, hydrology,

petrology and geosciences (Benano-Melly et al. 2001). In this context, the main

contributions in many fields were carried out by many researchers including Eckert and

Drake (1972), Dursunkaya and Worek (1992), Kafoussias and Williams (1995), Postelnicu

(2007,2010) etc. ln last decade, Tsai and Huang (2009) considered the Hiemenz flow to

observe the Soret and Dufour effects over a stretching surface through an isotropic porous

medium. Their analysis is based on percentage differences of effects on emerging

parameters which makes the readers understand their findings quite comfortably. Diffirsion-

thermo and thermo-difhrsion effects are examined by Hayat et al. (2014) on peristaltic
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motion of nanofluid. They also outlined the thermophoresis effects and Brownian motion

of nanoparticles The computations were carried out by NDSolve command through

Mathematica software in the study. Mahdy and Ahmed (2015) modelled the hydromagnetic

Marangoni boundary layer flow problem and numerically simulated. For this purpose, they

used R-K scheme to solve the reduced first order differential equations and missing initial

conditions were calculated by means of Newton's iterative method. In their study, the

coupled effects of Soret on mass transfer and Dufour on heat transfer were observed. The

study of Soret and Dufour effects on stretching cylinder was encountered by Ramazan et al.

(2015). Some other physical phenomenon like chemical reaction, heat generation/absorption

and magnetic field effects were also investigated by them in the study. The physical model

was converted into ODE's and then solved by a semi analytical method commonly known

as a homotopy analysis method. Mahdy (2015) investigated the diffusion-thermo and

thermo-diffusion effects on the Casson fluid flow over the porous stretching cylinder. He

found the numerical solution of the modelled problem by shooting algorithm. Ali et al.

(2016) simulated the Soret and Dufour influence over an oscillatory stretching sheet. They

assumed the flow of electrically conducting fluid under orthogonally imposed magnetic

field over the porous sheet. They predicted that the larger values of Soret number results in

higher concentrations. Reddy and Chamkha(2016) considered the hydromagnetic flow and

heat transfer in nanofluid with Soret and Dufour effects. In addition, thermal radiation,

chemical reaction and heat generation/absorption were also discussed in the study. They

used finite element method for the sake of highly convergent solution. For this purpose,

firstly, they transformed the whole domain into finite subintervals and the solution is

computed on each subinterval. Secondly, these intervals were connected to find the global

solution for the whole domain.

In manufacturing processes at high temperature, the mode of heat transfer like thermal

radiation plays a vital role and become essentially important and therefore cannot be

ignored. These situations include re-entry of vehicles, internal combustion engine, and gas

cooled nuclear reactors pointed to the radiation transfer in these processes. Hossain and

Takhar (1996) explored the radiation effects on the flow along vertical surface. They

reduced the governing equation into dimensionless non-similar form and used finite

difference scheme to obtain the results in the form of local Nusselt and Local shear stresses.

Hossain et al. (1999) also considered the free convective radiative flow along a permeable

vertical plate. The reduced dimensionless non-similar equations are solved analytically and

numerically by using justified techniques. Raptis et al. (2004) numerically computed the

I
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influence of radiation on electrically conducting fluid. Mahmoud (2007) discussed the

radiation effects on micropolar fluid flowing due to stretching sheet and especially

considered the variable thermal conductivity effects within the fluid. Similarly, few other

recent studies can be found at (Abbas etal.2013; Siddiqa etal.2013; Javed et aI.2015).

Therefor Chapter 6 is devoted to the study of Soret and Dufour effects of non-Newtonian

fluid flowing due to stretching cylinder with radiation effects.

The study of non-Newtonian fluid has got considerable attention due to their elastic, shear

thinning, shear thickening, thixotropic and Rheopectic behavior. Different non-Newtonian

fluid models have been developed experimentally to predict such flow behavior of the fluids.

Marwell fluid model is one of the non-Newtonian fluid model which predict the elastic

behavior of the fluid. This fluid model can be explained for large elastic effects. However,

it does not predict the creep accurately. [n last decade, the study on Maxwell fluid model

has been considered by many researchers. Wenchang and Mingyu (2002) have considered

the constitutive equations of Maxwell fluid model to study the viscoelastic behavior of the

fluid. They assumed no slip condition and the fluid near the surface is moving with the

surface velocity. They found the exact solution by using discrete inverse transform method

and concluded that for small time, viscoelastic effects are more significant as compared to

the larger time. Vieru at al. (2008) studied the time dependent flow of fractional Maxwell

fluid. The flow is considered between two side walls which are perpendicular to the moving

plat. They found exact solution of obtained differential equations by using Fourier and

Laplace transform method. Hayat et al. (2008) have considered magnetic effect on the

Maxwell fluid flow through a porous medium in a rotating frame. They establish the time

dependent analytical solution by means of Fourier sine transform method for different

emerging dimensionless parameters. Hayat and Qasim (2010) considered the

hydromagnetic flow and heat transfer of Maxwell fluid influenced by radiation and joule

heating. They presented the series solution and estimated the values of local Nusselt and

Sherwood numbers. The reduction in boundary layer is reported with the increment of

Deborah number, and velocity is observed as decreasing function of magnetic parameter.

The time dependent two-dimensional heat transfer analysis of Maxwell fluid flow over a

stretching surface was studied by Mukhopadhyay (2012). The several other studies of

Maxwell fluid are reported in the literature and few of them are Hayat et al. (2012), Prasad

etal. (2012} Javed et al. (2016).

In the recent er4 the development in the field of nanofluid technology have gained the

attention by the scientists and engineers owing to their vast industrial applications. The

l,i
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enhancement in thermal conductivity of the fluids is always a major issue for the researchers

and many affempts have been made for enhancement in the thermal conductivity of the

fluids. Masuda (1993) reported that the saturation of ultra-fine particles in base fluid

surprisingly enhance the fluid thermal conductivity. In later study, Choi (1995) named these

fluids as nanofluids. Buongiorno (2006) studied the thermal conductivity of the nanofluids.

He concluded that two slip mechanisms, Brownian diffusion and thermophoresis are

important factor in the study of nanofluids. Kuznetsov and Nield (2010) studied the effect

of nanoparticles on free convection flow using Buongiorno model. In this study, Brownian

and thermophoresis effects are investigated and they concluded that nanoparticles enhance

the thermal conductivity of the weak conducting fluids. In another study Kuznetsov and

Nield (201l) considered double-diffusive convection flow. In this article, temperature and

nanoparticles concentration at the wall is assumed constant and found that the reduced

Nusselt number drop due to increase in thermophoresis and Brownian motion parameter.

More recently, Sheikholeslami (2015) has calculated the effective thermal conductivity and

viscosity ofthe nanofluid by KorKleinstreuer-Li (KKL) model and provided the nanofluid

heat transfer analysis over the cylinder. Dhanai et al. (2016) investigated mixed convection

nanofluid flow over inclined cylinder. They utilized Buongiomo's model of nanofluid and

found dual solutions of the problem under thermal slip effects in presence of MHD. Major

contribution in the area of nanofluid was discussed later by many researchers, few of them

are Abolbashari et al. (2014), Rashidi et al. (2014), Ghaffari et al. (2015), Garoosi et al.

(2015), Mustafa et al. (2016). In Chapter 7, the idea of combined effects of linear and non-

linear Rosseland thermal radiations on Ma,rwell nanofluid flow due to stretching cylinder is

presented.

lt.4 Methodology

In the present study, attention is given to utilize the numerical techniques Iike implicit finite

difference scheme (Keller Box method), Spectral Quasi Linearization Method, Chebyshev

Spectral Newton Iterative Scheme and Shooting method. Previously, different analytical

method like homotopy analysis method, and Adomian decomposition method with Pade

approximations have been vastly used by the researchers. Although these methods are

eflicient but are time consuming. Since, we will be dealing with very complex equations in

this study; we prefer to use these numerical techniques instead of analytical methods. These

techniques are briefly summarized in the following paragraphs.
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1.4.1 Keller Box method

This finite difference scheme developed by Cebeci and Bradshaw (1984) is very famous

due to its accuracy and rapid convergence. The steps through which the solution is computed

are as follows:

Step-l: The system of nonlinear differential equations are reduced to the system of first

order differential equations.

Step-2: Functions and their derivatives are replaced by mean value and central difference

formula respectively. Which results in a system of nonlinear algebraic difference equation

for the number of unknown equals to the number of difference equations and number of

boundary conditions.

Step-3: The nonlinear terms are linearized by means of Newton's quasi-linearization

technique.

Step-4: The obtained system of linear algebraic equations is then solved by block tri-

diagonal scheme.

We have successfully employed the Keller Box method for the problems in Chapter 2,3

and 6. The detailed implementation of this method on PDE's is given in Chapter 2,3 and

on ODE's is given in Chapter 6.

1.4.2 Spectral Collocation method

Spectral methods (Canuto et al. 2000) are rated amongst the best methods for the numerical

simulations of PDE's. The basic theme of this method is to represent the solution of the

nonlinear equation as a sum of certain trial/basis functions with unknown coefficients to be

found subject to satisff the differential equation at different nodes and boundary condition.

The main feature of the Spectral methods is to form orthogonal systems of basis function

(ortrial functions) with some weight function. It is notedthat every single choice of trial

functions forms a different Spectral approximation. Like "trigonometric polynomials" are

chosen for bounded periodic problems, "Legendre and Chebyshev polynomials" are for non-

periodic problems, "Laguerre polynomials" are for problems developed on the half line, and

"Hermite polynomials" are for problems on the whole line. Spectral methods cannot be

implemented directly for nonlinear differential equations. To tackle this situation nonlinear

differential equations are first transformed to linear form by a suitable technique like Quasi-

linearization method, Newton's iterative scheme or successivelinearization scheme etc. In

this study we utilized the Newton's iterative scheme and Quasi-linearization method for
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linearization process. The detail for these schemes can be seen in forthcoming Chapter 4

and Chapter 5 as Spectral Quasi-Linearization Method and Chebyshev Spectral

Newton Iterative Scheme.

1.4.3 Shooting method

The solution of BVP's related to the fluid flow can be obtained by any numerical technique.

Shooting method is one of the oldest eflicient numerical techniques in which BVP firstly

reduced to system of first order [VP. Secondly, the missing initial conditions at initial point

are assumed as an initial guess. This reduced IVP is then solved by an efficient fourth order

Runge-Kutta integrator. The accuracy ofthe obtained solution is then checked by comparing

the given values at the terminal point. If the accuracy is not up to the desired level, then we

repeat the whole process by assuming a new initial guess and continue in this way until

required level of accuracy is achieved. In spite of randomly choosing the missing condition

after every iteration, we used Newton Raphson's technique to calculate the missing

conditions for speedy process. This procedure is implemented over a particular problem in

Chapter 7.
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Chapter 2

Heat transfer analysis of fluid flow over a hyperbolic
stretching cylinder

In this chapter, heat transfer analysis and entropy generation ofboundary layer flow ofan

incompressible viscous fluid over a hyperbolic stretching cylinder is presented. The

governing nonlinear partial differential equations are normalized by using similarity

transformations. The numerical results are found for the obtained partial differential

equations by an implicit finite difference scheme known by Keller box method. A

comparison of the computed results for the flat plate case is given and developed code is

validated. The influence of emerging parameters namely: curvature parameter and Prandtl

number on velocity and temperature profiles, skin friction coefficient and the Nusselt

number are presented through graphs. [t is seen that curvature parameter has dominant effect

on the flow and heat transfer characteristics. The increment in the curvature of the

hyperbolic stretching cylinder increase both the momentum and thermal boundary layer

thicknesses. Also skin friction coefficient at the surface of cylinder decreases but Nusselt

number shows opposite results. Temperature distribution is decreasing by increasing Prandtl

number. Similarly, the effects of different physical parameters on entropy generation

number and Bejan number are shown graphically and discussed it detailed in results and

discussion section.

2.1 Problemformulation

Let us consider the two-dimensional steady incompressible flow of a Newtonian fluid over

a hyperbolic stretching circular cylinder of fixed radius R'. It is assumed that the cylinder

is being stretched hyperbolically with the function cosh(z/l). The geometry of the problem

is shown in Figure 2.1 with cylindrical coordinates are taken into account. The basic

equations which governs the flow and heat transfer phenomena will take the form as

O(ru) 0(rv)

-*.7=U,
or oz

(2.r)

(2.2)

(2.3')

0u 0vu- *'0- =dr dz

AT AT
?J-*V-=

dr dz

,*(,y),
0 r lTt,ofrl'il,
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Figure 2.1: Geometry of the flow.

where u and u arethe velocity components along r and z directions, I be the temperature

of the fluid within boundary layer, a - k/pcp be the thermal diffusivity of the fluid. The

boundary conditions relevant to velocity and temperature profile are:

(2.4)

(2.s)

v(r,z) = V*(z),u(r,z) = 0,7 -- T* = T- * AV*(z) at r = R',
v(r,z)+0,7 =T- as r)@,

where A is a constant. Now introducing the dimensionless transformation

, -'- 
r2 - Rtz n tz 

,r, - ,rp,poL/Z, - I, ,l -#R'f,|', rlt =vR'Re'r/'f Qt,il,

T -T-o(tl,l) =-Tlw - ,o

Where ( and q are dimensionless variables, Re, = zV*f v is local Reynolds number, T* is

temperature at surface of cylinder, T- is atmospheric temperature and stream function ry' is

the non-dimensional function defined through usual relationship as

1. lt__a!, u-!!, e.6)I roz ror
which satisfies the continuity Eq.(2.1). Upon using Eqs. (2.5) and (2.6) into equations (2.2)

and (2.3), we arrived at following transformed equations

", - 2( , -(.- f dR'{.\rr* 4 dR'l ,,ptnnn - p*rytr,'\'- RIEE )t,t --REEItqn
(2.7)

- r(r of't -t aA
- t 

\r4 af trtrt a{ )'

*(#r,, + 4e,) - r,,,,n {o)rn + *W,',

Vn=ccosh(zll) I , z,v

(2.8)
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= r(r,#-t,T)'
where Req = {lV*/v (local Reynold number) and Pr = v /a (Prandtl number). Using the

stretching velocity Vw = c cosh f in equations (2.7) and (2.8), we get

('.'rr[*.J r,,,*'rffi r,,*](1 +r tanhorr,,-
(2.e)

(ftanhf)ff =, (rr'* - rrrE),

(2.10)

{tanh {of,t =,(fr#- tr#).

The boundary conditions take the new form as

/(0, {) = 0,fq(Q,f) = 1., 0(0,t) = \,frt(*,{) = 0, 0(oo, {) - 0, (2.11)

where y = vl/cR'z is curvature parameter and subscripts in Eqs. (2.9)- (2.11) indicate the

differentiation with respect to 4. If we consider f - 0 and y = 0 then Eq. (2.9) reduces to

the Sakiadis flow equation (Rees and Pop 1995) given by

1
f,tnn * 1f faa - o

with boundary conditions

/(o) = 0,6(0) - 1, /r(rc) = o.

(2.t2)

(2.13)

(2.14)

The formula for skin friction coefficient and heat transfer coeffrcient (Nusselt number)

having physical significance are given as

where r* be the wall shear stress and q* is the constant heat flux from the surface, which

are formulated as

rw = F(#),=_. Qw = -k(#).=_..

Upon using Eq. (2.15) into Eq. (2.14), the expressions in Eq. (2.1$ become

ClRellz = fn,t(O,{), NuRer'/' = -0n(0,{).

(2.rs)

(2.16)
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2.2 Entropy Generation Analysis

Using the boundary layer assumptions, the local volumetric rate of entropy generation E6

for a Newtonian fluid over a hyperbolic stretching cylinder is defined as:

(2.17)

The first component on the R.H.S of the above equation is for entropy effects due to heat

transfer and remaining component is for entropy effects due to fluid friction. After using

results of Eq. (2.5) in Eq. (2.17), the following form is obtained

Ec- h(ff)'. ft(fr)'

krz (T* - T*)z lcost f ) (4, (ry, {))' *r' p(cosnil3 (f* Ot, il)z

,r=ffi,
Ntur=ry(er@,il)',

Nrrr = Bedl*-7 (frr(n,il)' ,

Ec- (2.18)

lR.zTAEV lR'27*(v

Above equation can be written as

l-

' N* =';-- l{'rrr,f))'+ 
rrtcosrrrl'z(6'cry'rl)'z.| 

' (..ts)
'tl

where Nf is the entropy generation number which is the ratio of local volumetric rate of

entropy generation E5 and characteristic entropy generation rate Es = k(T* - T*)2 /1273,

Re1 = clf v, is the Reynolds number, Br - pcz /k(T* - T-) is the Brinkman number, and

O. = (T,, - T*)/T* is the dimensionless temperature difference and the ratio BeO.-1 is

group parameter. The Bejan number Be serves as a substitute of entropy generation

parameter and it represents the ratio between the entropy generation due to heat transfer and

the total entropy generation due to combined heat transfer and fluid friction. It is defined by

Here

(2.20)

(2.2r)

(2.22)

where the subscripts EHT and EFF stands for entropy due to heat transfer and entropy due

to fluid friction. Bejan number Be can also be presented as Be = 1,/(1, + O*), where O* =

Nerr/N1,ar is called irreversibility ratio.

lr
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2.3 SolutionMethodology

To solve nonlinear system of partial differential equations (2.9) and (2.10) subject to the set

of boundary conditions (2.11), we employed a very accurate and eflicient implicit finite

difference method commonly known as Keller box method (Cebeci and Bradshaw 1984).

For present problem, the solution is obtained through following procedure.

The Eqs. (2.9) and (2.10) are wriffen in terms of system of first order differential equations.

Setting

frt=P, P4 =Q, 0q=U

in differential equations (2.9,2.10) and boundary conditions (2.1l) results as:

(2.23\

(, . rrrF,,,rJ q, * zy ffi q *;(t + {tanh€)rq - ({tanh{)pz 
e.24)

=r(rH-r#),

,, .'* ffi, *;(1 + { tanh {)fu
tl
, [' 

+ zrrv

(2.2s\

- f (tanh ilop =, (rrJ, - u#),

and new form of boundary conditions will be

/(0,f) = 0, P(0,f) = 1, 0(0,9; = 1

,f(*,{) = 0, 0(oo,f) = g.

A net on the plane (f, ry) is defined as

To = 0,4j = 1j-t+ Atl,nj = 4*,j = L,2,...,1 - L,

{o = o, fn - qn-r * a(,n = 7,2,...,

(2.26',)

(2.27)

where n and,1 are positive integers, Ary and A{ are widths of meshing variables on ({,4)

plane. The approximate quantities of functions /, p, q,0,and U at the net point ({", 41) are

known as net functions whose derivatives in 4 and f-directions are replaced by the central

difference formulae and functions itself are replaced by average centered at the midpoint

(q"-'/', n i -yz) defined as

ftc rl": =firrr - r;,-,), h,
and

,1",_,,,= firrr - ri-,),
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fi-trz =)trr + fi-), fi!,n =|trr + ri!,)'
After discretization, the system of nonlinear partial differential Eqs. (2.2$ and (2.25) are

converted to the system of difference equations with equal number of unknowns as:

+ Gi + qi)Ui'-', + fj!1) - Gi-', + qi:ilUi + f;!,)j
_ -n-t-I.l ,

r2

l-1
qi - qi-, 

-r,, I {"-i qi + qi-,
L4 ' "J coshq"4 z

. * (, + {n-tnntr"+) (ry) (ry)
- |fr"+ rannr"-l) @i + pi_,)'

1

'#tfti * pi-,)' - (q? + qi-,)Ui + ri-,)

[4\ ui+ut-,-y

l-*^11 2 - P'

.*(, +{}t*h*+)(ru)(ry)
-q"-+(,annq"4)(ry)(ry)

1

-#[(pi + pi-, + pi-' + pi:il@i + Qi-,)

- @f + ui)(fi' + fi-, - f"-' - f;11')l = *iij .

fi'- fi'-,=olt f +pi-,),

pi -pi-,=oltni + qi-,),

ei-ei-l=lt i+ui-),

(2.28)

(2.2e)

(2.30)

(2.31)

(2.32)

#(, + (ni +ni-)v 1ui + ui_,)

where
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';+=-('.Qti+n-,)rFJf
qi-'

An

qi:i

.rr@=1
.J coshf"-z \

qi-' +
z

qi-|

. *(, + {-t t onn,"-*) (ry) (ry)
- (F* -i, onnr"4) (ei 

+ 
-ei-')'

1

(2.33)

*i-4=-#(, +(ni+,i-)y

-vPr

. #l-@i-' + pi:il' + (qi-' + qi:ilUi-' + ri!,')f,

E
l' " r(uin+uf:rt)
lcosh{"-z

*(, + {n-itonhr"4)Ui-'+ ff1)@f-'1+ ui:,,) Q'34)

+{+(*nnq*-t)(ry) (ry)
1

.#l@i + pl-, + pi-, + pi:D@i-, * ri-t)
- (ui-' + ui:il(fi' + fi-r- fn-'- f;!7')1,

The boundary conditions (2.26) become

ft = o,Pt - L,ot = l,Pl - ol - g (2.35)

The nonlinear algebraic Eqs. (2.28) and (2.29) are linearized by using Newton method by

introducing (t + t)th iterates as

(rn)t'*' = (f;')"'* (dr")t" (2.36\
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and similarly for all other dependent (unknown) variables. Here Un"' is known for 0 <

j <l as an initial guess and(afir)t"i, unknown. After using the Newton linearization

process and neglecting the terms containing square and higher order of

(tf;')"' ,(opi)"' ,(aqi)t", (aerr'1ti) ano (au/)('), the system of linear algebraic equations

is obtained which are as follows:

6f;' - 6fi-,-!tuof + 6pi-,) = (rt) j,

(aii6fi_t+ @)16fi + @)i6{_r+ (a)fis + @)i6$_t+ @dfq - (rz)j,

(a)1601-t+ @{160i + @s)jdui-1 * (a1s);dIt'} - (r)1,

6pi - 6pi_, - 
o] 

(or; + og_,) = (r +) j,

6oi - 6oi-, - 
o] 

our + 6ui-) - (rs) i,

The boundary conditions (2.35) take the form as

6ft = 0,6pt - L,6et - L6pl = 601 = 0.

Finally, the above system of linear algebraic equations with boundary conditions will be

written in matrix vector form. The coefficients of unknown functions 6fi', 6pT, 6ql, 60[,

6Ui in momentum and energy equations and non-homogeneous parts are given as:

Coefficient of momentum equation

Coefficient ot 6ff-r:
1

(at)i = *(,. {^-Ltonn{"-i)(ei + qi-,).#Kqi + qi-,) + (qi-'+ qi-i)l

Coefficient ot 6fi:

7t - 1 - 1\, 
1

(oz)i = e(, * 
qnlmntf"-l)($ + qi-,).#lqT + qi-t+ ei-t + qi:!l

Coefficient of 6pl-r:

(as)i = -!r(r"-+tannr"4)@i +e7_,1

1

{"-z (oi + pi-r)
2Lq

Coeflicient ot 6pl:

(a+)i = -l(r"-+rannr^-i)(pi + pi) -#f, + pi-,)

Coefficient of 6ql-r:
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(a)i

Coefficient of 6ql:

. * (, + q"-ltanh{+) U;" + ry,1
1

.#Kf;'+ fi!,) + (f;'- + f;!1)l

EI
.Jcoshf"-zl

t,
., l*-*+ * (, + €n4tantt{-+) Ui + ri:,)

{ cosnl z

1

(a)i = frl' + Qti + tti-)r

=#(' +Qti+tti-t)v

*h

**

.#Kri + fi-,) + (f;'-'+ f;\)l
Coefficient of energy equation

Coefficient of 601-i

(az) i = -i*-i (ronnq'-i) (rf * pi) -#r, + p!-, + pi-' + pi:|l

Coeffrcient of 60i:

(aa) i = -lf-+ (ronnq"-l) @f * pi-,) -#r, + pi-, + pi-' + pi:|\

Coefficient of 6Uf-;

(ag)i

. * (r + q"4tanh{-+) Ui + 1i,1

Coefficient of 6Ujt:

1

l"-z

-T
cosh{n-T

(arc)i @
J,*n,,.;.
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Non-homogeneous terms

-Zy

+ {"-*tanh{+)Ui + ry,1

(rr)i = U;:, - ffl +* frf + pi-,),

Ir
8(1

1

cosh{n-Z

1{"-z /

-['
.rr-fn-, \

qi-'

@i + q1-,1

+
z

qi:l

o
\P
f=
\

\

\L
i-

1r
-8(1 + {"-ltanhf"-+) Ui + fi_,)ki *!n$"-ltannr"-l) x+ qi-r)

qi)(fi-'

#[,.,,

+ ff1) - ki-' + qi:ilui' + ri!)\,

ul:,'un-t -

L

@i + pi-,)' .#{@i * pi-,)' - (qi + qi-,)Ui' + ri'-,)

+Gi+

(rs)t = - .rr-rrr[#]{
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_v
Pr @=r

.Jcosh{n-z \
+
z

u;r1'un-l

-#[, + Qti +,ti-)r

- * (, + {"-lnnht"}) U;,- + ff1)@i-t + uf:,,)

- * (, + q"itanhf"-+) Ui + rj!,)(ui + ui-,)

1

Do Mo

L7 DL ML

L2 D2 M2

::

(ril = (pl-,

7rr)i - (7i-t

Lt_,

- pn *o] frf + qi-,),

- of) *oI tuf + ui-).

Ad -r

6o

61

62

Ts

rt
T2

6- ,f= (2.37)

Dt_,

Ll

Mt_,

Dl

6t_,

6t

rt-t
rJ

.+(ronnq"-l) {r,n * ei-,)@i + pi-,)

.#Kpi + pf-r + pi-' + pi:il@i + ui-r - 0n-1 - ef-t)

- @f + ui-t + ui-' + uy-rt)(fi + fi-, - f"-' - f;!1')),

In matrix form

Where

[=

and
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Do=

00 0 0 0

00 0 0 0

00 0 0 0

o 1-L o o
2

.|,,=

1000
0100
0000
o -1 -! o

z

000-1

Lj=

-7
(a)i

0

0

0

0 0 0 1 -!2,

; j=0,L,...1 -L

; j= 1,2,..,J

; j=L,2,...1 -1'

0

0

(arii
0

0

h
-1
(a)i

0

0

0

000
(a)i 0 0

o (a)i @)i
000
000

00
00

(a)i (ar)i

00
(a)i o

o (ae);
00
01

dfi,
6pi
cqi
60i
6ur

0

(a)i
0

h-i
0

1

(a) i
0

0

lt
-1

(a+)i

0

1

0

(rr)rl
?)tl
(r3)/ [ dj =

sl
,Tl=

3t
OI

(a)r l
(rs)rl

Ts-

Dj=

,Tj=

h'2
(a+) i

0

-1

0

0

h
-1-1

Dr=

1

(a) i
0

0

0

(r)i
(r)i
(rs),,

(rq) i*r
(rs)i*r

The resulting matrix vector form is solved by using block-tridiagonal elimination technique,

which consists of nvo sweeps namely fonvard sweep and backward sweep. The edge of the

boundary layer 1.i- and step sizes A4 and A{ in 4 and { respectively are set for different

range of parameters involved in the problem. The accuracy of the employed numerical

scheme has been established through comparison with the known results obtained by Rees

and Pop (1995) for flat plate (f = 0) as shown in Table 2.1. This comparison gives us

confidence that the developed code is correct and has achieved the desired level ofaccuracy.

Moreover, the values of ClRellz and NuReillz against different values of parameters y

are given inTable2.2.
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Table 2.1: Comparison with Rees and Pop (1995)

cynerr/z NuRerl/2f=0
Ref. (1995)

Present

-0.4439 -0.3509

-0.4439 -0.3509

Table 2.2: Numerical results for CsRellzand NuReftlz at different y when Pr = 0.7 at

f = 0.5.

qneltz NuRert/2

0

0.5

1

1.5

-0.55387

-0.77977

-0.88994

-1.05690

0.4L012

0.60043

0.78894

0.96676

2.4 Results and Discussion

The goveming partial differential equations indicates the presence of two emerging

parameters: (a) the curvature parameter y, (b) and the Prandtl number Pr.

The effects of these parameters are discussed in the forthcoming figures. In Figures 2.2 and

2.3, effects of 7 on velocity and temperature profile are plotted. It is observed that curvature

has significant effects on velocity and temperature profiles. In Figure 2.2, the trend for

velocity profile is rapidly decreasing in the region (0 < ry < 0.42) and then increasing after

tl = 0.42 for increasing values of curvature parameter y and consequently the boundary

layer thickness increases with the increase in curvature of the cylinder. Since the curvature

y and radius of cylinder have reciprocal relationship i.e., increase in y tends to decrease in

radius of cylinder, therefore, due to lesser surface area of the cylinder, the increase in

velocity gradient at the surface is produced and consequently enhances the shear stress per

unit area. Figure 2.2 also depicts that an increase in the curvature of the cylinder leads to

augment in boundary layer thickness, as compared to that of flat plate case (y = 0). In

Figure 2.3, it is seen that the temperature profiles decrease near the surface of the cylinder

as y increases, and afterwards rise significantly and the thermal boundary-layer thickness

increases. This variation of the temperature profile is due to the reason that as the curvature

increases, the radius of cylinder reduces so the surface area which is intact with the fluid
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also decreases. It is also important to mention that heat is transferred into the fluid in modes:

conduction at the cylinder surface and convection for the region r7 > 0. Now, as the area of

surface of the cylinder decreases, a slender reduction in the temperature profile occurs close

to the surface of the cylinder owing to the fact that a smaller amount of heat energy is

transfened from the surface to the fluid through conduction phenomena. On the other hand,

the thermal boundary-layer thickness increases, because of the heat transport in the fluid

due to enhanced convection process all around the cylinder, which is evident from Figure

2.3. Figure 2.4 is plotted to observe the consequence of curvature parameter 7 on the

coefficient of skin friction Clnellz .It is noticed that as 7 increases, Cyne!/2 decreases. This

is due to the reason that for larger curvature ofthe cylinder, the velocity gradient at the

surface become increase rapidly and skin friction coefficient decreases as compared to that

of flat plate (7 = 0). Figure 2.5 is plotted to observe the consequence of curvature parameter

7 on the Nusselt number Nunelu2.It is noticed that as 7 increases the Nusselt number

NuRert/z also increases. It is observed from Figures 2.6 and 2.7 that both velocity and

temperature boundary layer thickness decreases by increasing the value of f . The effects of

different values of Pr on temperature profile have been discussed in Figure 2.8.

0.6

€:\ 0.4

Figure 2.2: Effects on velocity profile due to different values of y at f = 3.
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Figure 2.3: Effects of 7 on temperature profile while Pr = 0.7, Ec = 0.5 and f = 3.
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Figure 2.4: Effects on ClRellz for different y against f .
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Figure 2.5: Effects on NuRe!1/' fot diff.rent 7 against { while Pr = 0.7.
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Figure 2.6: Velocity profile at { = 0.5,1,1.5,3 when / = 0.5.
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Figure Z.TzTemperature profile at { = 0.5, t,1..5,3 when / = 0.5.and Pr = 0.7.
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Figure 2.8: Temperature profile at Pr = 0.025,0.7,2,3.6, 5.5 when f = 3.
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Figure2.l0: tnfluence ofPr on Nf when 7 = 0.5, Re1 = 2,BrO'-L = 1 at I = 0.2.



38

0.

0.

0.

0.2

Tl
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Figure 2.13: Effects of y on Be when BrO'-7 = L, Pr = 7 at | = 9.2.
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Figurel2.t4: Effects of BrO'-1 on Ni when Rel - 2,7 = 0.5, Pr = 7 at { = g.2.
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Figure 2.15: Effects of BrO'-1 on Be when y = 0.5, Re1= 2, Pr = 7 at I = 0.2.
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Figurel2.l6: Effectsof Rel onNj when7 = 0.5, Pr =7,Br{l*-L = L at { =0.2.
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It is observed that temperature and thermal boundary layer thickness decreases with

increasing Pr. It is obvious from the graph that fluids with low values of Pr slow down the

cooling process, and fluids with high Prandtl number expedite the cooling process. Hence

this behavior of temperature profile shows that the fluids with high Prandtl number such as

oil and lubricants can be used to enhance the cooling process. Figure 2.9 shows that Nusselt

number NuRelUz increases along the surface of cylinder and against the increase of Pr.

This is because of fact that by increasing the value of Pr thermal boundary layer decreases

and heat transfer rate enhances. This finding is also visible from the results shown in Figure

2.8. Figures 2.10-2.16 are drawn to discuss the influence of Prandtl number Pr, curvature

parameter f, group parameter BrO'-L and Reynolds number Rel on entropy generation

numberNf andBejannumber Be.InFigures2.l0and2.ll,itisseenthatPrandtlnumber

Pr is helpful in enhancing the entropy generation Nj and Bejan number Be. This is because

the temperature gradient increases with the larger values of Pr. It is also noted that when

Pr 11, a small variation in values of Be near the surface of the cylinder is observed and it

increases for larger r7 and attains maximum value i.e., Be + L. On the other hand, for the

case Pr ) 1, large values of Be at surface of the cylinder is reported and later start

decreasing with Be + 0 far away from the surface. Figures 2.12 and 2.13 are plotted to see

the effects of curvature parameter f on Nj and Be. Both figures depict that entropy

generation is more dominant for stretching cylinder case f ) 0 in comparison with that of

flat plat case f = 0. In Figure 2.13, Be decrease at the surface of the stretching cylinder

(l = 0) *d r.rrrr. behavior is observed far away from the surface. The variations of group

parameter Br{l'-7 onNf andBe aredepictedinFigures2.l4and2.l5.Theenhancement

in BrO'-1 results in augmentation of Nf and these effects are opposite on Be. The values

of Be are decreasing with increase in BrO'-1 because the fluid friction dominates when

Br{l*-t increases and this results in decrement of Be. The effects of Re1 on entropy

generation number are expressed in Figure 2.16. The figure reveals that the entropy

generation number has gained an increasing trend with increase in Re;.
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2.5 Conclusions

In this chapter we presented the characteristics of flow and heat transfer over a nonlinear

stretching cylinder. The nonlinear stretching velocity is considered as hyperbolic function.

An analysis of entropy generation is also presented and results are computed numerically

with Keller box method. From above study it is perceived that the rise in the values of

curvature parameter f causes increase in velocity and temperature distribution in the

boundary layer region. The value of Cfiellz reduces and NuRe!'/' enhances with an

increase in curvature parameter y. However, Prandtl number Pr is responsible to reduce the

temperature in the boundary layer, and in consequence NuRel'l'enhances. Increasing

trend in the values of curvature parameter y, group parameter Br{l*-7 and Prandtl number

Pr results in enhancement of entropy generation.
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Chapter 3

Mixed convection stagnation point flow over a stretching

cylinder

In this chapter the analysis of two-dimensional mixed convection flow near the stagnation

point over a vertical stretching cylinder is presented. The surface of the cylinder is assumed

with temperature as sinusoidal function oftime. The governing partial differential equations

are converted into dimensionless form by using suitable transformations. The numerical

solution of dimensionless partial differential equations is computed with the help of Keller

Box method. The details of the method are also given for better implementation and

understanding of the readers. To show the accuracy and validity of our results a comparison

is also shown as a limiting case with previous studies in the literature. Graphs of velocity

and temperature profiles are plotted for assisting and opposing flow cases at different value

of time. The assisting buoyant flow augment the momentum boundary layer while opposing

buoyant flow controls the momentum boundary layer. The thermal boundary layerthickness

grows with the passage of time. Skin friction and Nusselt number are plotted against

unsteadiness parameter. The amplitude of surface temperature oscillations is plotted against

time. [t is apparent that for the small value of surface temperature, the amplitude of

oscillations.in skin friction and Nusselt number also drops. Furthermore, isotherms are

drawn to exhibit the influence of amplitude of surface temperature oscillations on curvature

parameter with time.

3.1 Problem formulation
Let us the consider two-dimensional laminar boundary layer fluid flow near the stagnation

point over a vertically inclined cylinder as shown in Figure 3.1. The cylinder is of fixed

radius R' is assumed permeable and is being continuously stretching with velocity V*(z)

along its own axis. To perform this analysis, the cylindrical coordinate system is considered

as such that the z-axis is taken along the axis of the cylinder and the r-a<is is in the radial

direction with stagnation point at the origin. It is assumed that the stretching (lzr) and

straining (l/r) velocities are proportional to distance z from the stagnation point i.e.,V* -
cz/l and% = az/l. The temperature (Tr) at the surface of cylinder is considered to be
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Figure 3.1: Geometry of the Problem.

sinusoidal function of time and the ambient fluid temperature is T-. For the present problem,

continuity and energy equations are same as described in Eqs. (2.1) and (2.3) while the

boundary layer momentum equation with Boussinesq approximation is given by

#. "# +'y = r,# * u *(,3) + s F,(r- r-). (3.1)

The boundary conditions of the assumed flow are

v = v*(z) -7,u(r,z) = uw, \
.v _ ,r, ,r,,l.r" -'-'.r--,*l'ar r - 

I

t = tw(z)=r-+ rr(1) (1 +esrncol) at r=R.f B'2)

azl
v +Vr(z)=T,T ->T- as r-+ @ )

where g is the acceleration due to gravity acting downward, B6 is the thermal expansion

coefficient, u, is the mass flux velocity, Ts is some temperature scale, f is the time, e is the

amplitude of surface temperature oscillation and o is the frequency of the oscillation.

Introducing the following non-dimensional variables:

12 - R*2 lr lfc
, =#l*,r = llrn'r(q,t),r = o)i,r =r**r"(1)lQt,t), (3.3)

here f (q,t) is the dimensionless function and 0(r7, t) is the dimensionless temperature field.

From relation (2.6), we obtain
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*= -Tffrr,r) and u -ffro,t) (3.4)

Substituting Eqs. (3.3) and (3.4) into Eqs. (3.1) and (2.3), we get the following

dimensionless system of partial differential equations

(L + zyfifrnn * zyfn,t + f fqn* (:)' - fr' * 70 - 1fq, - 0, (3'5)

(L+zyq)lrr* zyLr+Pr(f0,1-frl -90r) = o. (3.6)

The boundary conditions in Eq. (3.2) take the form

4 = 0: f (n,t) = s,fn(n,t) = 1,O(n't) = 1*e sint,
(3.7)

I + q: o(rl,t) = 0,frt(n,t) = a/c ,

where y - JW is curvature parameter, a/c is the ratio of straining (free stream) to

stretching velocities, l=Grz/Rerz is the mixed convection parameter where Grr=

g prToza /tvz and Re, - czz / ly.It is important to note that ), - 0 corresponds to forced

convection flow,.l > 0 (To ) 0) corresponds to assisting flow case (i.e., the buoyancy

forces acts parallel to free stream velocity), ,l < 0 (To < 0) corresponds to opposing flow

case (i.e., the buoyancy forces acts opposite to free stream velocity), F = la/c is unsteady

parameter (arises due to temperature oscillations), Pr - v/a is Prandtl number, S =

-u*rfT[, is the suction/injection parameter with 5 ) 0 represents suction case and S <

0 is for injection case. After utilizing Eq. (2.15) in Eq. (2.14),the expressions of C; and Nu

will be modified as following

Re'/z c1 = frr(o,t), RelL/z Nu, = -04(o,t). (3.8)

3.2 Solution Methodology

The nonlinear system of partial differential equations. (3.5) and (3.6) subject to the boundary

conditions (3.7) is solved by using the second order accurate Keller box method. The

detailed method has explained in the book by Cebeci and Bradshaw (1984). The main steps

are as follows: Setting

fn=P, P4 =Q' ?rt=U'

in differential equations (3.5, 3.6) and boundary conditions (3.7) resulting as

(7 + zqy)q,t * Zyq + fq - pz + ?,0 - P# = - (!)',

U, * ZyU * e, (ru - f,e - /ff) = o,

(3.e)

(3. l 0)

(3.1l)
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and boundary conditions take the new form as

.f(o,f) = o, P(0,{) = 1, o(0,{) - 1' 
(3.12)

/(-,f) = 0, 0(o,{) = g.

A net on the plane ({, ry) is defined as

4o=0,4j =4j-t+ Aq,ql =rl-,j --7,2,,..,J -L, 
(3.13)

{o = o, fn - qn-L * Af, n = L,2, ...,

where n and 7 are positive integers, A4 and A{ are widths of meshing variables on ({,4)

plane. The approximate quantities of functions /, p,q,e and U at the net point ({",tI1) are

known as net functions whose derivatives in 4 and f-directions are replaced by the central

difference formulae, and functions itself are replaced by average centered at the midpoint

(E"-' /', rt i -u z) defi ned as

*r, ,1": --firff - r;'-'), fu ,|",n,,=firrr - ri'-,,),

and

fi-''' =lrVf + fi-), fiu, =){rf + fi-,).

After discretization, the system of nonlinear partial differential Eqs. (3. I 0) and (3. I I ) are

converted to the system of difference equations written as

'' (, * (,ti +,ti-,)fry + y(qi + qi-,) . (ry)(ry)

=r::+ 

pi-,)' . ^(ry) -'#t ri * pi-,)'\ (3 14)

1-

(r + (,r; + ry-r)y)ry + y@i + uf-,)

.,,(tru)(ry) (3'5)

- P, (et 
. eL,) (ry) - ", o (ry) = 4_i,

Eq. (3.9) becomes

fi'- fi,=olt i +Pi-,), (3.16)

(3.17)pi - pi-, =o{{rf + ai-,),
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(3. l 8)

(3.1e)

(3.20)

where

,;:i -- -, (i)' + [r + y(n 1 +n,-,)] (ry) - vki-' + qi:t)

- !nrrr-' + r11) ki-' + qi:il + (ei-' Yr:l)'

-^(ry)
*;-i =-(r + 1r7, + ny,)r)(ry) -, @i-' + ui-t)

-'i trr-' + r;:,\@r-L + ui:,L)

.r,(ry)(rer';ei:i1
rhe boundarY conditions:;?J:T;fi 

= 1, pr = 0i - o

The nonlinear algebraic Eqs. (3.14) and (3.15) are linearized by using Newton method by

introducing (t + t)th iterates as

(f;')'*' = Ui)"'* (dr')t". (3.2r)

and similarly, it is same for all other variables in which (fn"' is known for 0 ( i < J as

an initial guess and 104.")(')ir unknown. After using the Newton linearization process and

neglecting the terms containing square and higher order of

(tfi)"' ,(apf)t",(aqf)t",(oerr';t') and (orr")t", the system or linear algebraic

equations is obtained as follows 
Lnofi'- 6fi'-,-!tanf + 6pi) = (rt)i,

(o)i6fi-t+ @)fifi + @s1'6pi-t+ @ii64 + @)i6qi-r* (a)i6qi + @)fei-t
+(ar)f)i = (rz)i,

(a)f Ti-t + @1a)i60i * (411);dui-r + @n),6u'| = (r)1,

6{; - 6pi-, -*(rrr; + oqi-) = (rq)i,

6ei - 6di-r-Alour + 6ui-t)= (rs)i.
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The boundary conditions (3.2a) take the new form as

6ft = o,6pt - L,6et = L,6Pl = 6ol = o.

Finally, the above system of linear algebraic equations with boundary conditions will be

written in matrix vector form. The coefficients in momentum and energy equations of

unknown functions 6f?, 6pl, 6q1,60[, 6Ul and non-homogeneous parts are given as:

Coefficient of momentum equation:

coeflicient ot 6fi!r:

(at) j = lntni * ri-r)
Coefficient of 6fjt:

(az)i =l{rf *ri-,)
Coeflicient of 6pl-r:

(as) j = -|fof +pi-,) -#
Coefficient ot 6pi:

(a+)i = -|fof +pi-,)-#
Coefficient of dgf-r:

(as)i = -#f, +y(ni+ ri-,)l +y +lrfrf + fi'-r)

Coefficient of dqf :

(ae)i = -#f, +y(ni+,ri-r)] +y+!nUi'+fi'-r)

Coeflicient of 601-r:

@), = l,
Coefficient of 601:

Coeflicient of energy equation:

Coeflicient of 601-i

(as)i = -']fof + pi_r) -'#

A(aij = Z
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Coefficient of 60i:

(aro)i = -+@i+pi-,)-'#
Coefficient of dUf r:

(a,,)i - -lt+Y(qi:ni)l *']trr + fi-,)

Coefficient of 6Ul:

(a,,)i =W*']rrr+fi-,)
Non-homogeneous terms

(rt)i = U;:, - fn +! frf + pi-),

(rz)i = -r(:)' + [r + y(ni +,ri-,)] (ry)-yki-' + qi:i)

-ltrr' + rl1\Qi-'+ q::l).(yl-' .-er-i)' -('.:lx)
- [r + r(n1 +,r,-,)] (ry) - y(qi + qi-,)

-ivr + ri!,)(qi + qi-,) *lrrr * pi-,)' -*er + ri!,)

* ftUrf + pi-,) - @i-' + pi:ilj,

(rs)r = -[r + r(ni +,ri-,)] (ry)-v@i-'+ui:,,)

-']rrr-' + f;!1\@i-'! + ul:,,) *']{or-' + pi-l@i-l + ei-,,)

- # f, + v(ni +,ti-)l(uf + ui-,) - v(ui + ui-,)

-'iVf + ri!,)(ui + uf-,) *'ffUtf + ef-,) - (ei-' + ei:,t)\,

(r+)i = @i-,- pfl +o] frf + ql-,),

(rs)i= @i-,-efl+^*t f +ui-,).

The resulting matrix vector form is solved by using block+ridiagonal elimination technique,

which is explained in the previous chapter. The edge of boundary layer thickness 4- is
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Table 3.1: Numerical values of /rr(0) for different af c whenY = 7 = 5 = I = t - 0

with Mahapatra and Gupta (2002) and Nazar et al' (2004)

[N4anupat* una Cupta(2002) Nazar et al. (2004) Present study

0.01

0.02

0.05

0.10

0.20

0.50

2.00

3.00

5.00

10.00

20.00

50.00

-0.9694

-0.9181

-0.6673
2.0175

4.7293

-0.9980

-0.9958

-0.9876

-0.9694

-0.9181

-0.6673

2.0L76

4.7296

LL.7537

36.2687

1.06.5744

430.6647

-0.9980

-0.9958

-0.9876

-0.9694

-0.9181

-0.6673

?.0775

4.7294

1,L.7524

36.2603

L06.5239

430.1501

Table 3.2: Comparison of-ga(0) for different afc andPr when y = a/c - S - 0 =

t = e = 0 with (Ishak et al. 2009)

1 Pr Ishak et al. (2009) Present study

1

?

3

0.01

0.72

1.0

3.0

7.0

10

100

1

chosen according to the values of the parameters. The iteration is continued for refinement

in the solution until we achieved the difference between two consecutive iterations is less

0.0L97

0.8086

1.0000

L.9237

3.0723

3.7207

72.2947

1.0873

r.t4z3

1.1853

0.0198

0.8086

1.0000

L.9237

3.0723

3.7?08

12.3004

1.0873

L.1423

1.1853
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than 10-6. The employed technique is validated after comparing the numerical values of

frt,t@) with Mahapatra and Gupta (2002) and Nazar et al. (2004) as shown in Table 3.1 as

a limiting case. Table 3.2 gives the comparison of -0r(0) with [shak et al. (2009) for limited

cases. These tables show that the computed results are in good agreement that gives us a

confidence in accuracy of the employed numerical technique.

3.3 Results and Discussion

The non-linear partial differential equations (3.7)-(3.8) subject to the boundary conditions

(3.9) are solved numerically using Keller Box method for various values of emerging

dimensionless parameters namely, curvature parameter (7), velocity ratio parameter (a/c),

mixed convection parameter (.1), suction/injection parameter (S), unsteadiness parameter

(B), Prandtl number (Pr) and amplitude of oscillation in temperature (e). The numerical

results are computed in terms of velocity profile frt(tl,t), temperature profiles 0(4, t), skin

friction coefficient Re'/z C1 and Nusselt number Relrlz Nur. Figure 3.2 exhibits the

velocity profile against 4 for different values of a/c for assisting flow (i = 1) and opposing

flow (.1 - -1) cases at different time steps levels (t = 0,tt/4,r/2).lt is observed that

velocity increases for increasing values of time (t) in assisting flow case (,1 = 1) and

opposite behavior is observed in opposing flow case (1 = -1) for all values of velocities

ratio parameter (a/c). This is due to the reason that in assisting flow, buoyant force assists

the flow and in opposing flow, buoyant force delays the flow. Figures 3.3 and 3.4 show the

velocity and temperature profiles respectively for various values of curvature parameter (7)

and suction/injection parameter (S). In Figure 3.3, it is noted that the velocity profile

decreases near the surface of cylinder and increases far away from the surface due to

increase in curvature parameter (y) for both suction (S = 0.5) and injection (S - -0.5)
cases. It is also observed that in case of injection (S - -0.5), the velocity and corresponding

momentum boundary layer thickness become higher as compare to the case of suction

(S = 0.5). This is because injection enhances the flow near the surface. In Figure 3.4 for

both values of parameter (S), the temperature profile increases with increase in curvature

of the cylinder (f). Furthermore, it is noted that, thermal boundary layer thickness can be

increased with increase in curvature parameter (f) both for injection and suction cases.

Figure 3.5 demonstrates the effects on temperature profiles against 4 for various values of



52

parameter af c at different time step levels t = 0 and t =n/2. The temperature profile

increases with the increasing value of time (t) for all values of a/c which is obviously due

Table 3.3: Values of ne)/z q and (n{1/2 Nuz) for the various parameter y,

af c, 7, S, B, e and Pr

Pr y a/c 1 p e .S t=0 t-r/4 t-n/Z t=Tr

0.7 0.2
-0.8034

0.5
(1.1s08)

-0.7L40
(1.18s7)

-0.2075
(1.11s8)

-0.2075
(1.1rs8)

-0.2075
(1.11s8)

-L.73L2
(1.303e)

-L.8222
(1.3628)

-0.3432
(L.7024)

-0.3432
(7.7024)

-0.3432
(7.7024)

0.3530
-0.5

(L.e770)

0.3526

(2.0626)

0.6807

(2.1204)

-0.5861
(2.3036)

-0.4985
(2.3446)

-L.2075
(2.23s3)

-L.2075
(2.3632)

-1..2075

(2.e870)

-7.9999
(3.s2e0)

-2.0928
(3.680s)

-0.5936
(4.13s2)

-0.5706
(4.326s)

-0.6465
(s.1e87)

0.6352

(7.6830)

0.6346

(7.8e86)

0.9606

(7.e82s)

-0.4110
(2.47s0)

-0.3280
(2.s236)

-L.2075
(2.347e)

-7.?075
(2.4180)

-1.2075
(3.06e1)

-2.2780
(3.s3s2)

-2.3769
(3.7L37)

-0.8064
(4.3674)

-0.7776
(4.4671)

-0.9241.

(s.37s3)

0.8990

(6.e611)

0.8982

(7.2232)

1..2L76

(7.3444)

-0.6803
(0.80e7)

-0.6007
(0.8s30)

-7.2075
(0.7L37)

-7.2075
(0.s6e6)

-L.2075
(0.2e6s)

-2.L029
(0.107e)

-2.2L72
(0.134e)

-0.4937
(0.8606)

-0.5163
(0.6346)

-0.5777

(0.2686)

0.5762

(-1.4708)

0.576L

(-1.3e6s)

0.8896

(-7.28ee)

0.2

1.5

1.5

-11.0

0.4

1.57.0

0.6

L.2
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to input temperature at the wall at that time. It is further important to note that the

temperature profile decreases due to increase in velocity ratio parameter (a/c) and hence

thermal boundary layer thickness become smaller for large values of velocity ratio

parameter a/c. ln Figure 3.6, the temperature profile increases at any point within the

boundary layer for increasing time steps levels in both assisting and opposing flow cases.

In opposing flow case, the thermal boundary layer thickness is larger as compared to

assisting flow case for all time steps levels t = 0,r/4 and r/Z.lnfluence of curvature

parameter (Z) on velocity and temperature profile is shown in Figures 3.7 and 3.8

respectively for tr = 0.5 (assisting flow) and 7 = -0.5 (opposing flow). As curvature

parameter (7) increases the surface of cylinder squeezes due to which surface area reduces

and consequently the velocity of the fluid increases as shown in Figure 3.7. Similarly,

temperature of the fluid also enhances at any point within the boundary layer region due to

increase in curvature parameter (y) as shown in Figure 3.8. In addition, momentum

boundary layer is maximum in case of .l = 0.5 (assisting flow) in comparison with 2 =

-0.5 (opposing flow), but very little change is observed in thermal boundary layer for,tr =

0.5 (assisting flow) and i = -0.5 (opposing flow) cases. Figures 3.9 and 3.10 illustrate the

variations in nel/z C, and RelL/ZNu, respectively against time (t) for different values of

unsteadiness parameter (fi.ft is noted that due to sinusoidal nature of temperature, the

amplitude of skin friction enhanced as well as reduced for Nusselt number with backward

phase shift against time (t) with increase in unsteadiness parameter (f) as shown in Figures

3.9 and 3.10. Figures 3.ll and 3.12 show the variation of Re)lzCy and Re)UzNu,

respectively against t for different values of E. It is noted that amplitude of oscillations in

the values of nel/z g and Re;tlzNu, increases with increase in E. It is also perceived that

as the values of e drop, the amplitude of oscillations in ne)/z C1 and Relt/zNu, also

diminish. However, for e = 0, the case of constant surface temperature is recovered as

shown in Figures 3.l l and 3.12. The effect of Prandtl number (Pr) on heat transfer rate is

observed in Figure 3 . I 3 . The heat transfer rate enhances due to increase in Pr and amplitude

of oscillation become larger for large values of Pr against time t. Figures 3.14 and 3.15

demonstrate the isotherms for curvature parameter (f) and amplitude of temperature

oscillations (e) respectively. Due to increase in curvature parameter (f) and amplitude of

temperature oscillations (E), a pattern of increasing behavior in sinusoidal nature of

isotherms is clearly visible. Table 3.3 is constructed to exhibit the behavior of sundry
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T:0.0
y :0.2
T :0.4

r.' I

@
,S: -0.5

S: 0.5

Figure 3.4: Temperature profile for different y at S = 0.5 (suction) and .S = -0.5
(injection) while B = 2,e = 1,7 = 7,a/c = 0.2,t = n/4 ,Pr =1.

s/c:0.2
a/c : 1.0
a/c :2.0

t = r./2

t:0

Figure 3.5: Temperature profile for different a/ c att = 0 and t = r /2while y -

0.5

0.2,p - 2,€ = 7,7= 1,.S = 0.2,Pr = 7.
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Figure 3.6: Temperature profile at t = 0,n f 4, n /2 while y = 0.2, F = 2, e = 7, af c =

0.2,5 -- 0.2,Pr ='J-.
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Figure 3.7: Velocity profile aty = 0,0.4,0.8 while F = 2,e = 7,.S = 0.5, af c = 0.2,t =
i Ttf 4,Pr = L.
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0,2,t = rf 4,Pr = \.
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3.4 Conclusions

In this chapter, the analysis of unsteady mixed convection stagnation point flow due to

stretching cylinder with sinusoidal wall temperature is presented. The modeled equations

are reduced into dimensionless form as partial differential equations and solved numerically

with the help of Keller box method. The analysis is made in term of velocity, temperature

profiles, skin friction and Nusselt number against different parameters of the problem. It is

noted that the assisting buoyant flow increases the velocity profile and opposing buoyant

flow decreases the velocity profile. The heat transfer rate increases due to increase in Prandtl

number and amplitude of oscillation also increases with passage of time. Most importantly,

this phenomenon of maximizing heat transfer near the stagnation point flow over a

stretching cylinder can be enhanced by introducing the sinusoidal heat at the surface of the

cylinder.
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Chapter 4

Heat transfer analysis of Casson fluid flow due to

stretching cylinder

This chapter analyses the combine effects of partial slip and prescribed surface heat flux on

the heat transfer analysis of Casson fluid flow around the stretching cylinder. The physical

model is represented as a system of ordinary differential equations. A very moderate and

powerful technique namely Chebyshev Spectral Newton Iterative Scheme (CSNIS) is used

to determine the solution of the governing equations. The comparison of computed

numerical values of skin friction coefficient and the localNusselt number is made with the

results available in the literature. The accuracy and convergence of Chebyshev Spectral

Newton lterative Scheme is compared with finite difference scheme (Keller box method)

through tables. The CPU time is calculated for both schemes. It is observed that CSNIS is

eflicient, less time consuming, stable and rapid convergent. Involved physical parameters,

namely: the slip parameter, Casson fluid parameter, curvature parameter and Prandtl number

are utilized to analyze the fluid movements and temperature distribution. The results show

that the fluid velocity and the skin friction coefficient around the stretching cylinder are

shongly influenced by the slip parameter. It is analysed that hydrodynamic boundary layer

decreases and thermal boundary layer increases with the slip parameter. Influence of Casson

fluid parameter on temperature profile provides the opposite behavior as compare to the slip

parameter.

4,1 Problemformulation

Considered the flow of non-Newtonian Casson fluid outside the stretching cylinder of fixed

radius R.. The flow is assumed as steady, axi-symmetric and is subjected to laminar

boundary layer assumptions. The surface of the cylinder is heated due to prescribed heat

flux g*. The physical model of the flow situation is shown in Figure 2.1. h is further

assumed that cylinder is stretched in the axial direction with velocity V* with wall

temperature ?l, and ambient temperature T-. It is assumed that the wall temperature is larger

than that of ambient temperature i.e., T* ) T-. The rheological equations for non-

Newtonian Casson fluid model are described in Eq. (l.ll). For the problem under



63

consideration, the continuity and energy equations are same as in Eqs. (2.1) and (2.3). By

means of boundary layer approximations, the momentum equation for Casson fluid model

is

(4.1)

where F' - trrrl-Zn/py is known as Casson parameter. The boundary conditions which are

imposed to the velocity components and temperature profile are

v =v** Bp(r.i)#, k9#= -e*(z), u = 0 at r = R*, 
(4.2\

v+0,7+T*asr+R*.
HereV* = cz/l is the stretching velociy, Bt is velocity slip factor with dimension [T/t].

Following the similarity transformation of Bachok and Ishak (2010) as

,=+8, 111 =,1@R'f(q), r*=r*.Yfftrr. (4'3)

Utilizing the transformation (4.3), the velocity components in stream function notation

given in Eq. (2.5) will be of the form

,u#*uff=,(r* i)(*?#)),

v -- v*f '(n) and u = -l ff f O>.

/(0) = 0,f'(0) = 1 * a (r + 
f,) r"ror, f'(*) - o,

rw = Pa(,.i) (#),=-., ew - -ft(#),=-.

(4.4)

After substituting Eqs. (a.3) and (4.4) into Eqs. (4.1) and (2.3), we get the following

goveming equations in terms of ordinary differential equations

=0, (4.5)

(4.6)(1+2yD0" + Tye'* Pr(f?'- f'0 ) = 0,

where primes denote differentiation with respect to 4. The boundary conditions in Eqs. (4.2)

become

(L + zyTD(, .;) r"' + z (r + i)rr" + rr" - (r')'

(4.7)

0'(0)=-1,0(m)-0.

where B - BJJfri is velocity slip parameter. The wall skin friction and the wall heat

flux are

(4.8)

Upon using the similarity transformation (4.3) in Eq. (4.8), the expression for Cl and Nu

which are already defined in chapters 2 and 3 can be written as
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Re'/z c, = (t. it) f " (o), Re)tlz Nu,= # . (4.e)

4.2 Numerical Scheme

The system of nonlinear ordinary differential equations Eqs. (a.5) and (4.6) subject to

boundary conditions (a.| is solved for different values of involving parameters by an

efficient numerical scheme namely: Chebyshev Spectral NeMon Iterative Scheme (CSNIS).

This scheme is mathematically simple and can be easily coded in MATLAB algorithm. It is

based on Newton iterative scheme having convergence of order 2. It is therefore rapidly

convergent as shown in Tables 4.4 and 4.5 and low-cost scheme with less CPU usage. The

solution procedure is as follows:

In first step, we linearized Eqs. (4.5)- $.7)by using Newton iterative scheme. For (i + 1)th

iterates, we write

ft+r=fi*6fi,?i+t=0i*60i, (4.10)

and for all other dependent variables. Using Eq. (a.10) in Eqs. (4.5-4.7), we obtained

cLi6fr"' + c2,i6fi" + ca,i6fi * ca,i6 fi = Rr,i,

dr,i60!' + dz,i60'i + ds,iei + d4,i6fi' + ds,i6fi = Rz,, 
(4'l l)

the boundary conditions become

dfi(o) = -.[(0),

6fi@) = -f!(*),
60j(0) = -f - 0i(-), 60,(0) = -0i(-).

The coefficients cy,i U = 1,2,3,4), d^,i(m = L,2,3,4,5) and Rn,i(n = 1,2) are

cr,i= O+zn) (, -iJ, cz,i= zy(t +f,) + f,,

c3,i = -Zfi, c4,i = fi",
d\i = (L + 2y4), dz,i = 2y * Prfi, dsi = -Prfi

d+,i = -Proi, ds,t = -Prf{ 
(4'13)

Rr,i = -(1 + zyD (t. ir) f;,, - zr (r + i) t,, - ftfi, * (fi)z,

Rz,i = -(1 + ZytD?i' - Tyei - Pr(f0' - f' e).

dfi'(o) -r, (,.#) 6fi'rrc)= r -fi'(o) + a, (r + i) rt'ror,
(4.12')
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Now the obtained linear system of equations (4.11) subject to conditions (a.12) is solved by

using the Spectral Collocation method with Chebyshev polynomial is used as a basis

function (Motsa and Sibanda 2012, Motsa et al. 2014). The physical domain [0, co] is shorten

to finite domain [0, l] where L is set as sufficiently large to achieve required accuracy. This

finite domain again converted to [-l,l] by using transformation f. = 2rl/L - 1. The grid

points between -l and I are defined in term of Gauss-Lobatto collocation points defined by

{j = cos(rj lN), j = 0,1,2, ...N. The derivatives are calculated by Chebyshev

differentiation matrix D as suggested by Trefethen (2000). The above linear system of

equations can be arranged in matrix form as

(4.14)

where

Mu = h,rD3 + c21Dz * cs,iD * ca,il, Mrz = 0,

Mzt = da,iD * d5,il, Mzz = dr,iD' t d2,iD + ds,J'

The obtained system of linear equations is solved by an iterative Gauss elimination method.

MATLAB software is used to develop the algorithm for the above problem.

4.3 Results and Discussion

The nonlinear system of ordinary differential equations (4.5) and (4.6) subject to the

boundary conditions (4.7) have been solved numerically using CSNIS. The computed

results are compared with the numerical values obtained by Keller box method. The

comprehensive study related to Keller box method can be found in the book by (Cebeci and

Bradshaw 1984). In Table 4.1, the computed numerical values of the surfacetemperature

0(0) are compared with previously published results (Bachok and Ishak 2010) available in

the literature. It is observed that the results are in excellent agreement. In Tables 4.2 and 4.3,

the comparison of the values of skin friction coefficient and local Nusselt number with the

Keller box method is given. The main finding of the tables is that the CSNIS has advantage

over Keller box method in terms of time consumption. CSNIS reduces the cost over the

time, which is need of the hour and we achieved excellent accuracy. In Tables 4.4 and 4.5,

the computed values of ne)/z q and 0(0) are presented. These results show the validity and

convergence CSNIS. In Table 4.4,itis observed that the values of nel/z Cl converge rapidly

after only 3 to 4 iterations. Table 4.5 clearly indicates that after performing few iterations,

the present CSNIS results display an outstanding agreement with the results of Bachok and

ff:: Y,,)G[,)=(fi]:l)
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Ishak (2010). It is also noted through Table 4.5 that for the case of stretching sheet (y = 0),

the results converge after first iteration. This authenticates the validity of the present

scheme.

Figures 4.2-4.7 are plotted for various physical parameters namely: curvature parameter

(7), Casson fluid parameter (B'), slip parameter (B) and Prandtl number Pr against both

velocity f'(q) andtemperature 0(4) profiles. In Figures 4.2 and 4.3, the domain truncation

parameter 'L' and number of collocation points 'N' are set as 15 and 82, respectively.

Whereas in remaining figures I and N are set as 25 and 120, respectively. In Figure 4.2,

influence of velocity profile against various values of curvature parameter (y) is developed.

It depicts that the velocity profile increases with increase of curvature parameter (y) and

growth in boundary layer thickness is noticed. Figure 4.3 demonstrates the variation in the

temperature profile 0(tD for various values of curvature parameter (f).As surface area of

the cylinder will squeeze with increase in curvature parameter (y), consequently, less

surface area provides low heat transfer rate in other words temperature profile decreases

with increase of curvature parameter (y) near the surface of the cylinder. In Figure 4.4

effects of Casson fluid parameter (B') on velocity profile is presented. It is noticed that the

increase in the non-Newtonian parameter (B') provides more resistance in fluid motion and

resultantly velocity of the fluid gets slow down with an increase in Casson fluid parameter

(B'). Influence of temperature profile with Casson fluid parameter (B') is plotted in Figure

4.5. It is important to mention that highly viscous fluid (Casson fluid) provides more heat

transfer rate as compare to the Newtonian fluid. These noticeable effects can be observed in

Figure 4.5 that with an increase of Casson fluid parameter (B') temperature profile

increases. [n Figure 4.6, the mainstream velocity has been plotted against ry for various

values of slip parameter .8. tt is noted that velocity profiles decrease near the wall with

increase of B. It is due to the reason that when slip parameter increases in magnitude, the

fluid near the wall no longer move with the stretching velocity of surface. By increase in the

value of B the surface of the cylinder become smoother so that the pulling of the stretching

surface rarely transmitted to the fluid. It is obvious that B has a substantial effect on the

solutions. [n Figure 4.7,temperature profiles are ploffed against 17 for various values of slip

parameter B It is depicted that temperature of the fluid enhances with increase in slip

parameter B. Figure 4.8 presents the variation in temperature profile due to increase in Pr.

It is seen that the increment in Pr reduces the thermal boundary layer thickness.
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Table 4.1: Variation of 0 (0) for different values of y and Pr when F* - * and B = 0

Analytic solution

of Eq. (4.8)

Bachok and Ishak (2010)

Numerical Results Present Results

Bachok and Ishak (2010) (CSNIS)

0.72

I

6.7

10

0.72

I

6.7

l0

1.236657472

1.000000000

0.3333030614

0.268768s15t

1.2367

1.0000

0.3333

0.2688

0.8701

0.7439

0.2966

0.2442

1.2366574712

0.9999999999

0.3333030614

0.26876851s1

0.870042t639

0.7438521133

0.2965389644

0.244126633s

Table 4.2; Y uiation of Ref,lz Cy fordifferent values of y, B', B .

vp' Keller box

Scheme

CPU time

(seconds)

CSNIS CPU time

(seconds)

l0

100

0.1

0.5

0.1

0.5

0.1

0.5

0.1

0.5

0.1

0.5

0.1

0.5

0.1

0.5

0.1

0.5

-1.17286

-0.72221

-0.90909

-0.60860

-0.87588

-0.59300

-0.87208

-059120

-l.64185

-0.91986

-1.19747

-0.75060

-1.14434

-0.72799

-1.13830

-0.72538

0.070381

0.066410

0.067188

0.071580

0.068287

0.078705

0.070348

0.070998

0.051344

0.054036

0.056144

0.057946

0.054190

0.058315

0.0s8091

0.056084

l0-)

l0-5

l0-5

l0-s

l0-s

l0-s

l0-s

l0-s

3.0x l0-s

l0-s

l.0xl0-5

1.0x10-s

2.0x l0-s

l0-s

2.0x l0-s

1.0x10-s

7.957862 -1.17286

12.978531 -0.72221

5.330466 -0.90909

5.91165l -0.60860

5.324875 -0.87s88

5.937075 -0.59300

5.282584 -0.87208

5.956520 -0.59120

7 .716986 -1.64188

13.686686 -0.91986

6.673299 -1.19748

6.754250 -0.75061

6.735931 -1.14436

6.699626 -0.72799

7.448435 -1.13832

6.749316 -0.72539

l0

100
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Table 4.3: Variati on of RelLlz Nu, for different values of y, Pr andB"when I = 0.5.

yp* Finite

difference

CPU time

(seconds)

Iterative

Scheme

CPU time

(seconds)

l0

0.7

7.0

0.7

7.0

0.7

7.0

0.7

7.0

0.7

7.0

0.7

7.0

0.69609

2.57384

0.67216

2.57226

0.6661I

2.57853

0.97388

2.68205

0.97410

2.80726

0.97143

2.82221

12.793637

12.881962

5.916910

6.022827

6.098248

6.047961

t3.636132

13.643384

6.643172

6.574281

6.663579

6.594247

0.69609

2.51380

0.67216

2.57222

0.6661I

2.57850

0.97389

2.68209

0.97412

2.80732

0.97145

2.82226

0.0703620

0.070446

0.072338

0.070590

0.077956

0.077398

0.052239

0.054686

0.055505

0.056434

0.058720

0.055463

4.0x l0-s

10-s

4.0x l0-s

l0-5

3.0x l0-s

l.0x l0-5

4.0x l0-s

2.0x l0-s

6.0x 10-s

2.0x 10-s

5.0x l0-5

l0

Table 4.4: Values of ne)/z g at different iteration'

Y=0,F'=- Y=7,F'=L
IterationsJ

B=0.1 B=0.5 B = 0.1. B=0.5

(Re:/2cf)-

-0.8695652

-0.8720819

-0.872082

-0.8720824

-0.8720824

-0.872082

-0.57142857

-0.59108397

-0.59119547

-0.59119548

-0.59119548

-0.591 1954

-1.53508496

-1.63214914

-1.64168650

-1.64187579

-1.64187589

-1.641875899

-0.84615333

-0.91558621

-0.91981240

-0.91986053

-0.91986054

-0.919860545

Since the Prandtl number (Pr) denotes the ratio of kinematic viscosity to thermal

diffusivity, so as the viscosity of the fluid increases, the heat transfer rate enhances due to

which the temperature of fluid decreases. Figure 4.9 is plotted for Re)/z q against slip

parameter (B) for the different values of P'.The absolute value of neLrlzCy gives higher

friction with the wall for f ' = 0.5 and 1 as compare to that of NeMonian fluid (f ' - *).
It is also observed that with increase in the value of B, the drag in the fluid near the surface



69

Table 4.5: Comparison with analytical and numerical results of Bachok and Ishak (2010)

and CSNIS results

Y
IterationsJ

Pr - 0.72

=Q

Pr = 6.7

Y=L
Pr = 0.72 Pr = 6.7

0(0) -r

1.236657471

r.23665747t

r.2366s7471

1.236657471

1.236657471

1.236657471

1.236657471

1.236657471

1.236657472

1.2367

0.333303061

0.333303061

0.333303061

0.33330306r

0.333303061

0.333303061

0.333303061

0.33330306r

0.3333030614

0.3333

0.950775246

0.843083154

0.866247457

0.869928748

0.870042029

0.870042164

0.870042164

0.870042164

0.8701

0.294388703

0.295172498

0.296395959

0.296535240

0.296538958

0.296538963

0.296538963

0.296538963

0.2966

I

2

J

4

5

6

7

8

Analytical-t

Numerical-r

increases for both Newtonian and non-Newtonian fluids. Figure 4.1 0 is plotted for the values

of nel/ZCy against Casson fluid parameter for various values of curvature parameter (y).

The value of ne)/z C; is decreasing with the increase of curvature parameter (y) against

any fixed values of Casson fluid parameter (B.). These results also validate the findings in

Figure 4.2. Figure 4.1 I is drawn for Rertlz Nu, against slip parameter Bl for the different

values of P'. For small value of B, increase of p' results in reduction of heat transfer rate

and for large value of B, heat transfer rate enhances. Figure 4.12 isplotted for RertlzNu,

against Casson fluid parameter (B') for the different values of curvature parameter y. With

increase in 7, the surface area of cylinder reduces due to which heat transfer rate increases

and same effects are observed for increasing values of P'.
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Figure 4.2: Velocity profile for different 7 with B = O.L,and B* + m.
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Figure 4.8: Temperature profile at different Pr with B = 0.5, F* = L, and y - 0.5.
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Figure 4.122 Yariation in Relvz Nu, against Casson fluid param eter B' at different 7.

4.4 Conclusions

The numerical investigation of heat transfer analysis of non-Newtonian Casson fluid due to

stretching cylinder with partial slip and prescribed heat flux is this performed in this chapter.

For computation purpose, the Chebyshev Spectral Newton Iteration Scheme (CSNIS) is

utilized. It is observed that the CSNIS is eflicient, less time consuming, stable and rapid

convergent. The computed results by this scheme have excellent agreement with analyical

solution (see Table 4.1) and Keller box method (see Table 4.2).The present investigations

help to conclude that the velocity is decreasing function of Casson fluid parameter (p') and

temperature profile is increasing with increase in Casson fluid parameter (f'). The

momentum and thermal boundary layer thickness increases with increase of curvature of

cylinder. Absolute skin friction gives higher friction for small non-Newtonian parameter

(f') as compare that of Newtonian fluid (p' - @) and absolute value of skin friction

coefficient increases with the increase of curvature of cylinder. For small values of slip

parameter (B), reduction in the values of RelvzNurhasbeen observed with increase of

Casson fluid parameter (B.).

0.90.70.6
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Chapter 5

Heat transfer analysis of Walters-B fluid flow over a

stretching cylinder

In this chapter, two dimensional hydromagnetic flow and heat transfer of Walters-B fluid

towards stagnation point region over a stretching cylinder is discussed. Constitutive

equations are transformed into dimensionless form by means of suitable similarity

transformations. Spectral Quasi Linearization Method (SQLIO is employed to obtain the

solution of similarity equations. Comparison of computed results with existing results in

limiting case of a flat sheet is also provided through Table. Analysis of obtained results is

performed through graphs to discuss the influence of emerging parameters on the velocity

and temperature profiles. The flow and heat transfer characteristics are analyzed through

parameters representing curvature of cylinder, velocity ratio parameter, magnetic parameter

and Weissenberg number. [t is obvious that the magnetic field applied externally suppress

the bulk motion and alters the momentum boundary layer thickness. The drag and heat

transfer rate on the surface of cylinder are examined through skin friction and heat transfer

coefficients. Furthermore, streamlines are drawn to see the flow pattern.

5.1 Formulation of problem

Let us consider the steady the flow of Walters-B fluid near the stagnation point over an

horizontal stretching cylinder of radius R-. It is assumed that the surface of the cylinder is

at the temperature T*, the ambient temperature is T- with T* ) T-. The cylindrical

coordinate system is used to model the flow problem in which z-axis is taken along the

horizontal direction and r-axis is along the vertical direction respectively. A constant

magnetic field B(80,0, 0) is applied along the radial direction ofthe flow. It is assumed that

ini nuiA is electrically conducting in conjecture of low magnetic Reynolds number.

Moreover, it is assumed that the effects of induced magnetic field effects are very small as

compared to that of applied magnetic field neglected. This whole situation is summarized

in Figure 5.1.
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Figure 5.1: Physical model and coordinate system.

The general transport equations for Walters-B fluid are (Beard and Walters 1964;

Nandeppanavar et al. 2010)

(5. 1)

(s.2)

(5.3)

where V is time independent velocity vector, p is the density of the fluid, S is Cauchy

stress tensor, b is the external body force, cp represents specific heat, I is the

temperature and k is the fluid thermal conductivity.

The constitutive equation for Walters-B fluid is given by

(s.4)

(s.s)

here S is the Cauchy stress tensor, z is the extra stress tensor, I is a unit tensor, 4e is the

viscosity atzero shear rate, ks is the elasticity ofthe fluid, and 41 is the first Rivlin-Erickson

tensor. Incorporating the usual boundary layer assumption O(u) = O(z) = L,O(u) =

0(r) -- 6', and O(v) = O(ki = d2, where d represents the boundary layer thickness which

isivery small as compare to the lenglh of the cylinder (see Schlichting and Gersten 2003).

The dominant order terms have been retained and neglected the small order terms (i.e. 6 and

d2 etc.). The Eqs. (5.1)-(5.3) reduce to the following form

divV = 0,

dv
PE=divs-Pb'

,,,(#+ v. vr) = v.kvr,

S--pl+2,
dAt

t=ZrloAt-ZkoT

O(ru) O(rv)

-*-=U,
dr dz

(s.6)
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where u(r,z) and u(r,z) are radial and transverse components of velocity, u is the

kinematic viscosity, o is the electrical conductivity of fluid and a is the fluid thermal

diffusivity. The relevant boundary conditions are

,# * u ff = v,r,)W * 
" (,L*. #)

. 
? (i3,*,?#) . #*(, y) -i*Q LA (5 7)

-i:,(#))-+(v'(z)-u)'
AT AT A/AT\,6*ud= od\, u),

v(r,z) =V*(z) =7,u(r,z) = O)

rztt'f atr=R-,
T(r,z) - T* = f- + fo (7) )

, =+ ffr,4, - ffzn,f (n),r = r- + rr(i)" ernl.

(s.8)

(s.12)

(s. l 3)

(s.e)

v(r,z) =V*(z) =T,T(r,z) -r T- asr + m.

Eqs. (5.6)-(5.8) governing the two-dimensional flow in the plane r 2 R', -oo < z I *q
subject to boundary condition (5.9) are not amendable to analytic solution. For numerical

solution, we introduce the following transformations:

(5. l0)

In above transformations, stream function ry' is related to velocity components as u =

-r-t0tp/02 and v=r-t7rlt/lr, 4 is the similarity variable, f(D and 0(rD are the

dimensionless velocity function and temperature field. With the help of above

transformations, Eq. (5.6) is identically satisfied and Eqs. (5.7) and (5.8) take the following

form

(7+Tyq)f"'+ Zyf" +ff" -u')'*4wey(f'f" +ff"')

+(r + ?,yflwe(f ftu - zf, f"' + (f")r) - *, (f'- i) . (i)' = o, (5'l l)

(L + ZyDe" + 2y0', * Pr(f 0' - n'f '0 ) = 0.
!i'^,',

The corresponding boundary conditions are

/(0) = 0,.F'(0) = 1,0(0) - 1,f'(q) -- a/c,p(oo) -r 9.

The involved non-dimensional parameter dra y = J-vl/cnz (Curvature parameter), We =

cks/pvl (Weissenberg number) , InI = Jffi (Hartman number), a/c (Yelocity ratio
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parameter) and Pr = v /a (Prandtl number). Physical quantities of interest for present study

are skin friction coefficient Cy and heat transfer coefficient Nu ate given as

(Re)r/zg, = (1- 3We)f"(O) and (Rer)-|/zNu = -0'(0),

where, Re, = czz fvl is the dimensionless local Reynolds number.

5,2 Numericalprocedure

Eqs. (5.1 l) and (5.12) subject to the boundary conditions (5.13) forms a system of nonlinear

differential equations and are solved by using Spectral Quasi Linearization Method

(SQLM). This method is a generalized Newton-Raphson method that was first brought in

use by Bellman and Kalaba (1965) for the solution of functional equations. SQLM can be

used in place of traditional methods such as shooting method, finite difference schemes in

solving non-linear boundary value problems to achieve better accuracy. The present scheme

is based on linearizing the nonlinear component of goveming equations using Taylor series

expansion with the assumption that diflerence between the values of unknown function at

the current (r + L)th stage the steps with that of previous represented by (r)th stage is

small. The equations in linearized form are

a r,, f]! r+ az,, fJi i as,, f i'* i a +,, f i + t* d s,, f, + L = B 1,,,

b L,r 0 l' + L+ b 2,r e | + 7+ b 3,7 0 7 a 1* b a,7 fi * i b s,' f' + L = B z,r,

and the boundary conditions become

/.*r(0) = 0, fi*t = t,0ra1(0) = L,

fr*J*) -2,fi'*r(*) = o,o.*r(o) - o

The coefficients cp," bp,7 and Br,, k = (L,2,... ) are given as

d!,r = G + TyTDW ef, a2,, = (1 + Zyq) + 4Wey f, - Zf; (1 * Zyq)We,

d3,, = zy * f, + aweyfi + 2f;' (7 * zyr)we,

@4,, = -Zf; + 4Weyf, - ZWe(L * TYq)f "' - M2,

as,r = fi' + G + ZyDWefi" + 4Wey fl",
bL, = (7 + LytD, bz,, = 2y * Prf,

br,, = -n'Prfl , bq,, = -n'Pr?r, bs,, = Pr?!r,

and

(5.17)

(s.14)

(s. l 8)

(5. l 5)

(5.16)

Br,, = (t + zyDwe(f,fi" - zf; f;' + f;'') + 4wey(f,fi" + f; f;') (5.1e)
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+f,fi' - f;' - ,'(:) - (:)' ,

Bz,, = -n' Prorfi * Proi-ffi

For solution of Eqs. (5.15)-(5.17), Chebyshev Spectral Collocation Method is used. It is

applied by hrst reducing the semi-infinite domain [0, o] to finite domain say [0,4-] and

then further transforming it to [-1,1] by using the transformation 4 = 4-(! + 7) /2, which

is a basic need for use of collocation methods. To estimate the derivatives of unknown

variables f(D and0(q) at the collocation points, differentiation matrix D is used e.g.

derivative of f (il is given as

d.f 
j rv

6=Z''rf (Yt') - Df ' i = o'1"""N'
k=0

where N is the total number of collocation points, D = D ln- and

f = VUi, f (v), ...,f Ui)'.
For higher order derivatives, the following relation is used

;(s) = DG)f ,

(5.20)

where 's' is the order of the derivative. Matrix D is of size (N x 1) x (N x t) and the

collocation points are defined as

y,=ror(ff), i=o,L,...,N. (s.23)

Applying Collocation method to Eqs. (5.15-5.17), the following matrix is obtained.

(5.21)

(s.22)

(s.24)

(s.25)

li:: i',ll[iiil=l1::l
In which

At = a\rD4 * a2,rD3 + as,Dz * ao,rD * as,rl, Atz = O

Azt = b4,rD + b5,71, A22 = b\rD2 + bz,rD + bs,rl.

In which / is identity matrix, and ai,r, bi,r, Byand Bz, (i = 7,2,...,5) are given by set of

Eqs. (5.18) and (5.19) respectively. In order to ensure that the solution of the present

problem is grid independent, computed numerical values of /"(0) against different

refinement levels of grid points are given in Table 5.1. It is observed that percentage error

is reducing by increasing the grid points and is minimum at fourth refinement level. Therefor

the fourth refinement level (i.e., N = 40) is used for the solution in present study.
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Table 5.1: Validity of computed /"(0) at different grid points

Refinement levels Grid Points (N) f" (0) o/oError

First

Second

Third

Fourth

10

20

30

40

-0.6325

-0.9706 35

-0.9736 0.3

-0.9735 0.01

5.3 Results and discussion

The grid independent solution of the problem has been computed with the help of Spectral

Quasi Linearization Method. Main focus of study is how fluid flow varies about stagnation

point under the influence of traverse magnetic field. In order to get the clear insight of fluid

flow and heat transfer principle, a parametric study is conducted in the prescribed domain

with the variation of non-dimensional factors i.e. curvature parameter (y), Magnetic

parameter (M), velocities ratio parameter (a/c), Weissenberg number (We) and Prandtl

number (Pr). Tables 5.2-5.6 are drawn to show the validity and accuracy of computed

results. In which, Table 5.2 shows acomparison of computed numerical values of /"(0)
with Sharma and Singh (2009) for different values of af c, when other parameters are fixed

asY=We=M--0.
Table 5.2: Present results of /"(0) as compared to (Sharma and Singh 2009) for different

values of a/c when T = We = M = 0.

a/c Sharma and Singh (2009) Present results (SQLM)

0.1

0.2

0.5

2.0

3.0

-0.969386

-0.918106

-0.667263

2.017490

4.729225

-0.969386

-0.918107

-0.667264

2.01750

4.729282

In Table 5.3, comparison has been shown for computed numerical values of /"(0) with

Sharma and Singh (2009) when 7 = We = 0 are fixed against various values of parameters

M and a/c.ln Table 5.4, comparison has been shown for computed numerical values of

-0'(0) with Elbashbeshy et al. (2012) when y = We = M = afc - 0 are fixed. Table 5.5

shows a comparison of numerical values of /"(0) with the results computed by Pillai et al.
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(2004) and Nandeppanavar et al. (2010) for different values of We when 7 = M = alc -
0. It is observed through all these tables that the computed solution is convergent, grid

independent and highly accurate. Computed numerical values of /"(0) are listed in Table

5.6 for different values of M.lt is important to mention that these values are also validated

by another numerical scheme known as Hybrid method (Areal 1992). These tabulated values

are new results in literature and will be helpful in future references.

The Figures 5.2 and 5.3 are plotted to observe the effects of curvature parameter f on

velocity and temperature profiles respectively. It is noticed that by increasing the curvature

of the cylinder, the velocity and temperature profiles increase in the boundary layer. It is

because by enhancing 7, the cylinder surface area squeezes and the motion of the fluid

adjacent to the surface speeds up which consequently increases the temperature of the fluid

within the boundary layer. The increase in y further helps to control the momentum and

thermal boundary layer thickness as shown in these figures. Figures 5.4 and 5.5 demonstrate

Table 5.3: Present results of /"(0) compared to (Sharma and Singh 2009) for different

values of M and af c whenr = We = 0.

a/c M Sharma and Singh (2009) Present results

0.1

0.2

0.5

2.0

3.0

0.1

0.2

0.5

2.0

3.0

0.1

0.2

0.5

2.0

3.0

0.1

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.5

0.5

1.0

1.0

1.0

1.0

1.0

-0.973508

-0.92L466

-0.669L0?,

2.019932

4.733399

-1.067898

-1.000469

-0.711890

2,.0777Ll

4.832507

-L,32LLL7

-L.2L5622

-0,832L25

2.240857

5.130344

-0.973508

-0.927534

-0.669702
2.0199+4

4.733455

-1.067898

-1.000469

-0.777897
2.077724

4.832520

-7.32L77t

-7.2t5622

-0.832126
2.249L03

5.130380
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Table 5.4: Present results of -0'(0) compared to Elbashbeshy et al.2012 for different

valuesofM when T =We = M = afc = 0.

Pr n* Elbashbeshy et al.20l2 Present results (SQLM)

L-2
-1
0

1

2

t0 -2
-t
0

1

7,

0.9 z

0.8 2

0.7 2

-1.0000
0.0000

0.5820

1.0000

1.3333

-10.0000

0.0000

2.3080

3.7207

4.7969

-1.0000
0.0000

0.5819

1.0000

1.3333

-10.0000
0.0000

2.3080

3.7207

4.7969

L.25046

L.76276

L.06932

Table 5.5: Present results of /" (0) compared to Pillai et al. 2004 and Nandeppanavar et

al. 2010 for diflerent values of We when T = M = a/c = 0.

We Pillai et al.2004 Nandeppanavar et al. 2010 Present results (SQLM)

0

0.0001

0.001

0.005

0.01

0.03

0.05

0.1

0.2

0.3

0.4

0.5

1.0

1.00005

1.0050

1.00504

1.05409

1.11803

t.t95z3

L.29099

L.4L4Z7

1.0

1.00005

1.00500

1.00251

1.00504

1.01535

1.02598

1.05409

1.11803

L,LgS23

1.29099

1.4L421.

1.0

1.00005

1.00500

1.00250

1.00504

1.01534

L.0?597

1.05406

L.L7797

1.L95L2

7.29079

7.47390
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Table 5.6: Numerical values of /"(0) for different values of y,af c,M andWe.

Present results
a/c M We

SQLM Hybrid Method (Areal 1992)

0.10.0

0.20.5

0.31.0

0.1 0.1

0.2 0.1

0.5 0.1

0.1 0.5

0.2 0.5

0.5 0.5

0.1 1.0

0.2 1.0

0.5 1.0

-7.0377

-0.9832

-0.7320

-1.7450

-L.6627

-7.2707

-3.5380

-3.4028

-2.8108

-1.0377

-0.9832

-0.7320

-1.7450

-L.6627

-7.2707

-3.5380

-3.4028

-2,8r08

the effects of W e on velocity and temperature profiles respectively. The case when a / c 1

1; the velocity profile decreases for larger values of We and for the case a/c > l.; the

velocity profile increases for larger values of We. This behavior of We is quite opposite in

the temperature profile as shown in Figure 5.5. It is also noted that when the value of af c )
t, the temperature variation is very small for increasing values of We.For af c close to

unity, the velocity /'(ri) is almost constant and independent of We.Due to this fact, the

temperature inside the boundary layer is independent of We for a/c - 1.. To show the

importance of Lorentz force on the velocity profile of Walters-B fluid near a stagnation

point over a stretching cylinder, Figure 5.6 is plotted. It depicts the variation in velocity

profile for different values of magnetic parameter M. Physically, the presence of transverse

magnetic field to an electrically conducting fluid develops a body force known as Lorentz

force. It acts like a resistive force which decelerates the fluids velocity. This effect differs

due to boundary layer structure and due to the velocities ratio parameter af c.When a/c -
0.4 < 1 (i.e. free stream velocity is less than stretching velocity and inverted boundary layer

structure develops), the velocity profile decreases with increasein M. When af c = 0.4 > 1

(i.e. free stream velocity is greater than stretching velocity and boundary layer structure

develops), the velocity profile increases with increase in M Also when af c = 1 (i.e. free

stream velocity is equal to stretching velocity and no boundary layer exists), the velocity

profile for different values of M coincides. In other words, the velocity profile is

independent of the applied magnetic field when free stream velocity is equal to stretching
t,
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velocity. Mathematically, this behavior of velocity profile can be related to the factor

-M(F'-alc) in the flow Eq. (5.11). Figure 5.7 is plotted to predict the temperature

distribution against the impact of Lorentz force. The observation reflects that the

temperature in boundary layer region is enhanced by strengthening magnetic field. It is

because of this reason that by increasing strength of magnetic field (i.e. increase in Lorentz

force) the heat transfer rate reduces which falls out as enhancement of temperature in

boundary layer region. In addition, the variation in heat transfer rate against M is discussed

later in this section. Figure 5.8 depicts the variation in velocity profile against the velocity

ratio parameter af c.lt is noted from the figure that when a/c ) 1, the flow has boundary

layer structure. Also with increase in af c, the boundary layer thickness shrinks. Physically,

it means that for large value of free stream velocity as compare to stretching velocity (such

that a/c ) 1), the fluid near the surface of cylinder moves with free stream velocity which

leads to thinning of momentum boundary layer. When a/c 11, the flow has an inverted

boundary layer structure, which is because ofthe reason that the stretching velocity exceeds

the free stream velocity. When a/c - 1, no boundary layer structure is formed. Temperature

profile for various values of n* is shown in Figure 5.9. It is seen from the figure that

temperature profile decreases and thermal boundary layer is controlled by increasing n'.

Figure 5.10 shows that the temperature of the fluid is reduced for larger values of Pr.

Physically it is due to the fact that the fluids with large Pr have the ability to reduce the

temperature of the surface. Therefore, in automobiles and industrial mechanisms, the fluids

with high Prandtl number are frequently used as a cooling agent. Numerical results for

physical parameters like skin friction coeflicient 6el/2C) and heat transfer coefficient

(RelvzNu) are plotted in Figures 5.ll-5.15 against curvature parameter (7), magnetic

parameter (M) and Weissenberg number (We) for various ranges of We and Pr

respectively by taking other parameters fixed. It is noted in Figure 5.1 I that the skin friction
1r.,,'

coefficient 1ne)/2 C) increases by increasing the prescribed values of W e.This implies that

the drag between fluid and surface of cylinder is getting stronger in going from Newtonian

to non-Newtonian behavior of the fluid (We - O - 0.3). However, a small amount of

reduction in drag is noted with large value of We against eachy.It is illustrated from Figure

5.12 that heat hansfer coefficient (nelLlz Nu) is an increasing function of 7 for prescribed

values of We. This affirms the reduction in heat transfer rate in going from Newtonian to

non-Newtonian behavior of fluid (We = 0 -r 0.3). The dominating effects of M are shown
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in Figure. 5.13. By increasing the strength of magnetic field, the absolute value of Re)/z Cy

increases. Also the effects of M ue more pronounced for We = 0 in comparison withW e =

0.3. In Figure 5.14, the heat transfer rate is found to be decreasing function of M which

validates the effects achieved in Figure 5.7. Figure 5.15 shows that the heat transfer

coefficient 7nelllzt'tu) is an increasing function of Prandtl number Pr and heat transfer

rate slightly decreases against large values of We. The flow developments through

streamlines are observed in Figures 5.16-5.19 within the restricted domain. Variation in

streamlines in the absence of stagnation and in the presence of stagnation point are plotted

in Figures 5.16(a) and (b), respectively. When af c = 0, the fluid moves due to stretching

of surface, and no potential flow occurs. Due to this, the streamlines are stagnant in the

region beyond the surface and near the surface the fluid is moving away from dividing

streamline in both directions. When af c = 0, the potential flow exists but the case af c < L

means the stretching velocity effects are more dominant than straining velocity effects.

Because of this, streamlines are more concentrated towards dividing streamline beyond the

surface and expanding near the surface. The resulting pattems of streamlines for (a)

stretching sheet 7 = 0 and (b) stretching cylinder Y = L are shown in Figure 5.17.

Streamlines are getting closer and concentrated near dividing stream in case of stretching

cylinder y = L in comparison with that of stretching sheet 7 = 0. This shows a dominant

fluid flow around stretching cylinder due to small surface area. Figure 5.18 (a, b) shows the

streamlines in case of Newtonian(We = 0)and non-Newtonian Walter-B fluid (We - 0.3),

respectively. Figure 5.18 (b) shows thatthe sheamlines are more diverging from dividing

stream line for Walter-B fluid(We = 0.3) than the Newtonian fluid (We = 0) in Figure 18

(a). In Figure 5.19 (a, b), the streamlines are plotted for M = 0 (absence of magnetic field

effects) and for M = 2 (presence of magnetic field effects), respectively.In Figure 5.19(a),

the minimum and morimum values of l{l are observed as lrll min = 1.6748 and lrpl maa =
7.6748, and the streamlines are concenffated in this domain, which is indication of high

flow rate. In Figure l9 (b), ltll ^o, = 5.5748 which is smaller than the hl)l 
^o* 

in absence

of magnetic field, this leads to the fact that magnetic field reduces the flow rate. It is noted

through Figures 5.18 and 5.19 that We and Mhave same impact on fluid flow.
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Figure 5.2: Curvature effects on velocity profile at M = 0.1, af c = 0.1, W e -- 0.L.
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Figure 5.3: Curvature effects on temperature distribution at M = 0.7, af c = 0.1,W e =

0.1, n' = 2, Pr = 0.7.
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Figure 5.4: Viscoelastic effects on velocity profile dt f -- 0.7, M = 0.1.
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Figure 5.6: Magnetic field influence on velocity profile atf = O.L,We = 0.1.
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Figure 5.7: Magnetic field influence on temperature distribution at Y = 0.\, a/c -
Q.I,We = 0.1, n' = 2,Pr = 0,7.
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Figure 5.8: Velocity behavior due to variation of a/c dtf - 0.L,M = 0.1, We = 0.1.

Figure 5.9: Influence of n on temperature distribution at T = 0.L,M = 0.L,a/c -
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Figure 5.10: Effect of Pr on temperature distribution at Y = 0.1, M = 0.7, af c -- 0.1,
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Figure 5.12: Variation in Re-'/'Nuwith 7 at different We for M = 0.L,a/c -
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Figure 5.16: Streamlines for (a) a/c = 0, and (b) a/c - 0.4.
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Figure 5.18: Streamlines for (a)We = 0, and (b) We = 0.3.
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Figure 5.19: Streamlines for (a) M = 0, and (b) M - 2.
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5.4 Conclusions

A computational study is performed to investigate the two-dimensional, laminar, MHD

stagnation point flow of Walters B fluid over a stretching cylinder. The main theme is to

model the Walters B fluid constitutive equation in cylindrical coordinate system subject to

flow over stretching cylinder. For this purpose, the Spectral Quasi Linearization Method

(SQLM) has successfully employed to perform a comparative study of present problem in

limiting case with that of previous studies. It is observed that SQLM is accurate, rapidly

convergent, time saving and easy to implement in MATLAB coding. It is concluded that

the implemented method reflects an abundant prospective to widely use in non-linear

science and engineering problems. ln present study, mainly the effects of curvature

parameter (7), velocity ratio parameter (af c), Weissenberg parameter (We) and Prandtl

number (Pr) with constant magnetic field are discussed. The developed Walters-B fluid

model over a stretching cylinder can be extended for the nanofluid by incorporating the

nanoparticles and mixed convection flows. We noted that the curvature of cylinder has

significant effect over velocity and temperature profiles as compared to that of flat plat case

when y = 0. The application of an extemal magnetic field generates Lorentz force which

decelerate the fluid flow and accelerate temperature of the fluid. The velocity profile

decreases significantly and momentum boundary layer gets thin for large values of

Weissenberg number (We).lt is because viscous forces dominate the elastic forces. With

increasing values of Weissenberg number (We), the drag force over the surface increases

and it reduces against each value of cylinderCurvature parameter (y). Reduction in heat

transfer rate is noted with increase in the values of Weissenberg number (14le), while

enhancement in the heat transfer rate is observed with increasing curvature of cylinder.
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Chapter 6

Study of non-Newtonian fluid flow due to stretching

cylinder under Soret and Dufour effects

This chapter presents the analysis of Soret and Dufour effects on the two-dimensional flow

of second grade fluid due to stretching cylinder. It is further considered that the flow is

subjected to thermal radiation, which is another aspect of the study. Mathematical model for

second grade fluid in cylindrical coordinate system is developed in terms ofnonlinear partial

differential equations. These modelled equations are first transformed to a system of

nonlinear coupled ordinary differential equations after using similarity transformation, and

then the solution is computed numerically by using Keller box scheme for the wide range

of physical parameters. The computed results are validated with the existing literature for

limiting case. The drag coefficient on surface, heat transfer, and mass transfer rates are

analyzed through the graphs and tables. It is predicted that the simultaneous increase in

Dufour and Soret numbers help to enhance the temperature and the concentration in the

boundary layer region around the cylinder, respectively. Also concurrent occurring of

increasing Dufour and decreasing Soret numbers on heat transfer and mass transfer rates

have opposite effects. Moreover, the radiation effects are elaborated through the variation

of effective Prandtl number. The increase in effective Prandtl number results in decrease of

the temperature of the fluid.

6.1 Mathematical formulation

Let us consider the two-dimensional flow of second grade fluid due to stretching cylinder.

To generalizethe scope of the study, the effects of thermal radiation, Soret and Dufour

phenomena are also made a part of this work. Moreover, the properties of the fluid are

assumed to be constant. Geometry of the problem is constructed in such a way that axis of

cylinder (z-axis) is taken in horizontal direction and r-axis is considered normal to it. The

cylinder is assumed of fixed radius R' and the surface is subjected to stretching with velocity

cz/l.The Schematic of flow model is presented in Figure 4.1. After invoking the boundary

layer approximation, the governing equations for the momentum (in component form),

energy and concentration are reduced to:
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z-component of momentum equation

0v 0v 0p /02u t du\uE*ufr= _E+"\m*;A)

/t (0v 0u 0u0v 02v 02u) \I -t-- r".-r",-[r Iarl rlazar or or ' " araz' * arzl ' Ir-l \ / I' P I ffv 03u 0v 02u 0v 02v l'

\ "af +vffi- arffi* ** I
r-component of momentum equation

70o a. lL ravJ 0v02v\
Q = - o=,i;* zl.;(a/ *' * *)'

Energy equation

r 0T dlr lAzT aT\ oD-k, /02C aC\ A
P'p \u u + u E) = u \* * r*) * ? (.az *,o, 

) - -r*(rQ)'
Concentration equation

r 0C dCr lAzC AC\ D^k, lAzT aT\
(."a, *"8)- Dm(.aZ- *r)*T[.az*d)

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

The corresponding boundary conditions against the fluid flow, temperature and

concentration are

cz
v(r,z) =7,

L

u(r,z) - 0,

rztn'
T(r,z) = r- + (7,) AT,

c(r,z)= c- + (i)"' o,

v(r,z) = 0, 'l
u(r,z) = g, t

T(r,z)=T-,f asr+@'

C(r,z) = C* )

The symbols used in above equations are listed below as:

) 

,,' = *.,

and

p: pressure

a1: material parameter of second grade fluid

D-: molecular diffusivity of the species

concentration

kg: thermal diffirsion ratio

c" : concentration susceptibility

cr: specific heat capacity

qr: radiative heat flux

n": temperature index.

Tr: mean fluid temperature
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I: characteristic length of the cylinder

C-: ambient concentration

C: concentration of fluid

c: dimensional constant

The radiative heat flux q, is obtained by means of Rosseland approximation (Rosseland

l93l) as follows

40* AT4
Qr=-@ot$'

where o' is the Stefan-Boltzman constartt, a, is the Rosseland mean absorption coefficient,

and o, is the scattering coefficient. For the flow over hot stretching cylinder, the reduced

form of radiative heat flux (Magyari and Pantokatoras 2011) is

Qr=-ffi#
Upon utilizing Eq. (6.6) in Eq. (6.3), we get

a# .'#) = h(' . #, . "J 
(# . #)

(6.8)

+PDmkt (azc ac \
cpc, \dr, 

* d|
It is assumed that temperature difference in the fluid-phase within the flow is sufficiently

small and k is considered as constant. Linearizing the radiative heat flux about the ambient

temperature T- will bring Eq. (6.8) to the following form:

(6.6)

(6.7)

(6.e)

(6.10)

("#.'#)=h('.#r) (#.#)
.'#(#.#)

Introducing the following appropriate similarity transformations

,=+8,, u- -Lffrcr>, u-lr,{il,

o(rl=#, o(n)-#,
After eliminating pressure terms from Eq. (6.1) and Eq. (6.2) and upon using similarity

transformation, Eqs. (6.1-6.4) take the following dimensionless form:

(L+TytDftu - f'f" + f f"'+4yf"'+4yKf'f"'-
6yKf fiu + (1 + zYtDx(f' fiu - f fu) = o,

(6.1l)
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;C((r + 2yrt)0" + 2y0') + (f0' - n' f' e) + ou(tr * \vn)Q" + zv|') 
(6.12)

=0,

(6.13)

=Q.

The boundary conditions (6.5) reduce to:

f (O) = 0,.F'(0) = L,f'(*) = f"(*) - f"'(*) = 0,

0(0) = 1,O(rc) = 0,0(0) = l, @(o) - 0,

(6.14)

where, K = a{/pul (Viscoelastic parameter), Nr = 76o'73 /3k(a, * or) (Radiation

parameter), Prrf f = PrlQ. + Nr) (Prandtl effective number), Du = Dmkt(Cw - C-)l

cocr(T* - T-) (Dufour number), sr = Dmkt(T* - T*) lT*v(c* - c-) (Soret number),

and S. = v/Dm (Schmidt number).

It is important to mention here that for Y = 0, Eq. (6.11) reduces to the case of flat sheet

problem, i.e.

(Cr + Zyn)Q" +ZyQ')+sc(fQ'-n'f'O) +scsr((r *2v4)0" +2v0')

fi" _ f, f,, + ff,,, + K(f,fi" _ ffr) = o.

Integrating above equation w.r.t 4 we get:

f"'+ f f" - 1',2 +x(211t" -fttz - f f*) *c = 0.

here constant c = 0, due to boundary condition specified at infinity. The above Eq. (6.16)

is a typical form of second grade fluid model as reported by (Vajravelu and Roper 201l).

The important physical quantities which are used to measure the skin-friction, heat and mass

transfer are given as

(6.1s)

(6.16)

(6.18)

zQw
Sh=

zQm
(6.17)

k"tr(T* -T*)' D*(C, - C-)'

where rrz represents the shear stress along the cylinder, k"f f is the combination of kron4

with kro4, qw represents the heat flux and q- is mass flux at the wall, which are defined as

cr=h, Nu=

rTvt / 02v 02v 0v0v 0v0u\
rw = tt (arl,=* + q\v 

azar+ 
udV - arE * 6 a, ) ,=^,

76oT3
k"rr = k* yo,* os, ew- -kerr(#),=^, Qm- -Dm(#),=-'

ln view of Eq. (6.18), Eq. (6.17) become

Skin friction coefficient: ne)/zq = (1 + 3K)f " (o),

Local Nusselt number: Relt/z f, = -0'(0),
(6.re)
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Localsherwood number: Re/lztn = -O'(0),

where Re, = czz /lv is the local Reynolds number.

6.2 Solutionmethodology

The numerical simulation of nonlinear ordinary differential equations (6.1l-6.13) subject

to the boundary conditions (6.14) is performed by means of Keller box method (Cebeci and

Bradshaw 1984). The steps through which the solution is computed are as follows:

The system of equations (6.13-6.15) are reduced to the system of first order ODE's. For this

purpose, let us introduce the new variables p, q, s, d,U ,l/ which are defined as:

f' =P,P' = q,q' = s,s' = d,0' = U,Q' =V'

After using above functions in Eqs. (6.1l-6.14), we get

(L + ?ny)d - pq + fs * 4ys * 4YKPs -

(6.20)

(6.21)
6yKfd + (1 + zYilK(Pd- f d') = 0,

L 
K7+zyq)u'+zyul+(fu -n'pl) + Du[(l*zvl)v'*uvv)- 0, (6'22')

Preff

l(L + zyDV' + ZyVl + Sc(l:V - n'.pt) + Scsr[(l * Zvq)ll' + ZvU) - 0,

/(0) = 0,p(0) = 1,p(m) = q(o) = 5(m) - 0,

e(o) = 1,0(o) = 0,0(o) - 1,@(m) - o.

A net on 4 is defined as

4o = O,4j = 4j-r+ Aq,nl = 4-,j = 7'2' ""J - 7

(6.23)

(6.24)

(6.2s)

whereT is positive integer and A4 is the width of meshing variables on 4. The approximate

quantities of functionsp,q,s,d,IJ,andV at the net point 4i are known as net functions

whose derivatives in 4-direction are replaced by the central difference formulae and

functions itself are replaced by average centered at the midpointqial2 defined as fi-Uz =

Ui - fi)1A4, and fi_rt, - (fi + fi)/Ln.After discretization,the system of first order

nonlinear ordinary differential Eqs. (6.21-6.23) are converted to difference equations in

terms of nonlinear algebraic equations as follows
,|

){, * (ni + rti-,)v)(di + di-r) -!fr, * pi-,)(q; + qi-,)

+ |,Ut + fi-rX"i + s;-r) + 2v(s1 +s;-r) + vK(pi * Pi-r)(s; + s;-r) $'26)

3vK .- z lfi + 1,-,Xd; + di-) -Yt ,+ fi-',.)(a, + a,-,)



r02

+(1 + (rt i + n i -,)rlr (!r(p i + p i-,)(a, + di -t)

'*(fi + 1,-,)(ai -r,-,)) = o,

**(,, . (,t i + n -,)r (+) * r@,* r,-,))

It* 
[a 

(f + fi-,)(ui + ui-,) -!fo, + pi-,)(ei* ',-,)) 
(6'27\

* ,, ({, + (r; + ni-,)v)(yt 
-!"^) + v(vi* r'i-,)) = o,

/
(,, . (,t i + n -,)f (+) * rU,* r,-,))

* ,, (1o 6, + f1-,)(v, + vi-,) -lfo, + pi-t)(Qi* o,-,)) (6.28)

/
*sc.sr(,,. (ni +ni-)r(+)*r@,* u,-,)) = o

and Eq. (6.20) becomes

fi - fi-, =ol{0, * pi-r),

pi - Pi-t =o]{r, * qi-r),

ei - ei-r =olt ,+ s;-r), $.zs)

sy - s,-r =ol{0, + d1-r),

o1 - o1-r =o]{u, + nyr),

Qi - Qi-, =!{r, + vi-r).

The nonlinear algebraic Eqs. (6.26)-(6.28) are linearized using Newton method by

introducing (r + 1)th iterates as

fi*' = flD + off'> 6.30)

and similarly for all other variables. Here 4.(t) is known for 0 < j < I asan initial guess and

,[(" tr unknown. After using the Newton linearization process and neglecting the terms
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containing square and higher order of 6f;D ,6p;') ,aqr('), o{i), oa,(D , oet'D ,6u;" d4r(i), uno

6VjQ) ,the system of linear algebraic equations is obtained as follows:

6fi - 6fi-r-!tor, + 6pi-r) = (rr) j,

(ar)i6fi-t+ @)fifi + @)i6pi-1+ (a)i6p1+ @)fej-t* @)i6qi
(a) i6si-r+ (ar);ds; + (a) i6d1-, + (aro);d'd1 - (rz) 

1,

(a1) i6fi-r. 
!_i!r;d,t, 

+ (a,r) pu1-t * (a.*) i6ui + (a6) fvlt + (arr) PV1

(arr)i6Qi_1 + (arr);6'0i + @rr),6Vi_r * (a2ii6V1 -- (r+) j,

6pi - dpi-r-oflton,+ dqi-r) = (rs) j,

6Qi - 6qi-.,.-oltot,+ ds;-r) = (ro)i

ds; - ds;-r -oltoo, + 6d1-r) - (rz) j,

6oi - doi-t-!luu, + 6ui-t) = (ra) j,

6Q i - 6 Qi-, - ! {on, + 6vi-t) = (rg) i.

The boundary conditions (6.2$ take the form as

6fo =dpo = 60o- 6Qo = 0,6pt - 6et- dtr - 60t = 6Qt = 0.

Finally, the above system of linear algebraic equations with boundary conditions are written

in matrix vector form. The coefficients in momentum and energy equations of unknown

functions 6fj-r,6p j-r,6qj-r,6s7-r, 6di-r,60i-r,6Ui-t and 6Vi-t and non-homogeneous

parts are given as

Coefficient of momentum equation

Coefficient of 6fi-;

(ar)j = -|f'r*sy-r )-ry(ai+d.i-,)

+ (r + v(n1+,r;-,)) r(-*1a, + a,-1)

Coefficient of 6 f1:

(az)i = lOr*r;-r) -ry(a1 +di-t)
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r (r + r(ni +r;-,)) r(-*r1a, + a,-,;)

Coefficient of 6p;-1:

(as)i = -lfn, * ei-t) + 7r(s, + s;-r)

+ (r + r(n1+,r,-,)) +( 
^+r1a, 

+ a,-,;)

Coefficient of 6p1

(a+)i = -!fr, * ej-r) + yr(s, + s;-r)

+ [r + r(n1+,ti-,)l+(*1a, + a,-,1)

Coefficient of 6'qi-1:

(as)i = -!nfr,+pyt)
Coefficient of 6q1:

(as)i = -lfo, +pi-r)

Coefficient of ds;-r:

(a) i = lntt, * fi-r) + 2y + vK(pi + pi-r)

Coefficient of ds;:

(aa) i = !nU, * fi-r) * 2y + yK(pi + Pi-r)

Coefficient of 6di-{

(as)i = 
(t + v(ni + qi)) 

-ry(1, + fi-,)

+ (r + y(ni +,r,-,)) r(|f , + pi-t) . *1r, * r,-,))

Coeflicient of 6di:

(a,o)i - (r + Y('t' + 'ti)) -Yrr, + fi-,)

+ (r + y(,ti +,u-,)) r(lr, + pi-t) - *U, * r,-,))
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Coefficient of energy equation

Coefficient of 60i-i

(arr)i = -+(pi +pi-r)

Coefficient of 60i:

(arz)i = -+(ni+p.-r1
Coefficient of 6U;-r:

pr,r\ '#+r)+!nU, * r,-')

Coefficient of dU;:

(o,+)i= : rc.'b'+ni-')) \p,,rr\ '#+r)+!nU, * r,-')

Coefficient of 6Vi-{

(ars); = Du(t, - r(ni +rr-r)X#) . r)

Coefficient of 6V1:

(ar)i = Du(tr . r(ni +n;-,))(#) . r)

Coefficient of concentration eq uation

Coefficient of 6fi-i

(ay)i = -.sc F)fo, + pi-r)

Coefficient of 6'0;:

(an)i = -sc (T)fr, + pi-t)

Coeflicient of 6Q1-;

(arr)i -- -+(pi + pi-r)

Coeflicient of d@;:

(aro)i = -+(pi +pi-,.)
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Non-homogeneous terms:

(rr)i = fi - fi-t-olfr, *Pi-t),

7. 1

(rz)i = -i0 + Qti + ni)i@i + d1-) + 
n@i 

* pi-rXq; + qi-r)

L.
- :nUi * fi-r)(t; + t;-r) - zv(si +s;-r) - vK(pi * Pi-r)(s; + s;-r)

3vK- z (fi + y,-rXa; + d1-t) +Tfrt+ fi-,)(a, + a,-r)

-(r + (ni + a,-,1rr(+(ni + p,-,1(a, + di-) - *Ui + v,-,)(ai -r,-,)),

(rz)i = -;C(,,. (ni +a,-,1f (+)*r@,* r,-,))

- (!nV, + fi-,)(ui + u1-,) -ito, + pvr)(ei* 
',-,))

- r, (f, + (ni +,ti-,)v)(+) + v(vi* ,,-,)),

/
(rq)i =- (t, + (,ti + ni-,)y)(+) + y(vi* n-,))

- t' (i Ui + fi-,)(vi + vi-,) -i{r, + pi-,)(Qi* o,-,)),

(rs)i = 6Pi - 6pi-, -o]{or, + 6qi-r),

(re)i = 6qj - 6qi-r-o]{ot,+ ds;i-r),

(rz)i =ds; - ds;-r -olfuo, + 6d1-t),

(ra)i = 6oi - 6oi-r -!{or, + 6lti-t),

(rg) i = 6Qi - 6 Q i-t - 
o] 

ton, + 6vi-t).

The resulting matrix vector form is solved by using block+ridiagonal elimination technique.

The edge of the boundary layer 1.1- and step sizes A4 are set for different range of

parameters. By implementing the above mentioned procedure, the system of equations

(6.1l-6.14) is solved and the computed results are presented through tables and graphs for

wide ranges of physical parameters involved in the equations. Table 6.1, presents the
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numerical values of skin friction coefficient against different iterations to ensure the

convergence of the adopted method. It is ensured from these results that convergence is

achieved after only 5 or 6 number of iterations and these values are validated with

Chebyshev Spectral Newton Iterative Scheme (Majeed et al.2015). This gave us great

confidence in accuracy of applied technique. A comparison of the computed numerical

values of -0'(0) as a limiting case with previous published results is given in Table 6.2.

These results are in perfect agreement with Ali (1994), and Mukhopadhyay (2012) for

Newtonian case.

Table 6.1: Values of ne)/2C, at different iterations with Keller box method when 7 - 0

Iterations I ae)/z c,

K--0 K=0.5 K-7 K=5
1

2

3

4

5

6

7

8

9

10

CSNIS (Majeed et al.20l5)

-L.27L9 -1,.6652

-7.7792 -2.3827

-L.9437 -2.6521,

-2.00L7 -2.7575

-2.0265 -2.8031,

-2.0373 -2.8225

-2.0408 -2.8280

-2.0412 -2.8284

-2.0412 -2.8284

-2.0412 -2.8284

-2.04L2 -2.8284

-0.7241.

-0.9337

-0.9768

-0.9911

-0.9969

-0.9993

-0.9999

-1.0000

-1..0000

-1.0000

-1.0000

-3.5303

-5.1.968

-5.9641.

-6.3183

-6.4753

-6.5259

-5.53L9

-6.5320

-6.5320

-6.5320

-6.5320

Table 6.2: Numerical values of -0'(0) for different n when y = K = Nr = 0

and Pr = Pr"ff

n Ali (1999) Mukhopadhyay (2012) Present

0

1

2

0.5821

1.0000

1..3269

0.5820

1.0000

L.3332

0.5820

1.0000

1.3333
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6.3 Results and Discussion

After employing the above discussed numerical scheme, results are found for velocity,

temperature and concentration profile against the various values of emerging parameters

named as: curvature parameter (y), viscoelastic parameter (K), Dufour parameter (Du),

Soret parameter (Sr), temperature exponent (n'), effective Prandtl number (Pr41), and

Schmidt parameter (Sc) which are shown in Figures 6.16.7. The effects of Curvature,

viscoelasticity, Soret and Dufour parameters on RellzCy, RelLlzNu and Re;L/zSh are

computed and shown in Figures 6.8-6.11. Figures 6.1 and 6.2 illustrate the variations of

velocity, temperature and concentration profiles against various values of curvature

parameter y and viscoelastic parameter K, respectively. Figure 6.1 shows that the velocity

enhances as the curvature of the cylinder increases. This is evident from practical

observation that the fluid flows over the cylinder with relatively small radius is much faster

than that of cylinder with large radius or flat surface. As having the reciprocal relationship

between curvature and radius, so increase in curvafure results in reduction of surface of

cylinder. The reduction in surface area enhances the fluid flow over the surface which

increases the velocity, temperature and concentration. Figure 6.2 demonstrates that by

enhancing the viscoelasticity of the fluid through increasing viscoelastic parameter We,the

fluid velocity increases, and opposing effects are seen in case of temperature and

concentration profiles. The effects of Du on temperature and Sr on concentration are shown

in Figures 6.3 and 6.4 respectively. Temperature and thermal boundary layer thickness is

observed an increasing function of Du. On the other hand, Soret number Sr helps to

accelerate the concentration in the fluid in the boundary layer region. The effects of

ttimperafure exponents n* on temperature and concentration profiles are demonstrated in

Figure 6.5. It is seen that the variation from linear to nonlinear wall temperature helps to

reduce the temperature and concentration boundary layer thicknesses. In Figure 6.6, the

effects of effective Prandtl number on temperature profile is shown. It is found that with

increase in effective Prandtl number the boundary layer gets thin. Since the effective Prandtl

number is a combination of both radiation and Prandtl number as proposed by Magyari and

Pantokratoras (201l). tn their article, they suggested that the prominent effects of radiation

can be obtained forthe smaller values of effective Prandtl number and increasein Prryl

results in substantial reduce in temperature of the fluid. It is further seen that with increase

in Prqs, thermal boundary layer thickness decreases near the surface of cylinder. Figure

6.7 demonstrates the results of concentration profiles for various values of .Sc. tt is found
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that the increasing values of Sc minimizethe concentration in the fluid. This is because of
the fact that molecular diffusivity has inverse relation with Sc, in turns increasing Schmidt

number has decreases diffusivity effects in flow domain. It is found through Figure 6.8 that

values of ne)/z C, is a decreasing function of 7 and K. However, it is sharply decreasing

for viscoelastic effects. It is due to the reason that increase in curvature of stretching cylinder

implies to reduce the surface area of the cylinder, hence skin friction will decrease. It is also

seen that with increase in 7, the variation in skin friction remain negligible at K = 0. Figure

6.9 shows the effects of curvature parameter y on ReluzNu and Rell/ztn fordifferent

values of K. It is observed that as much we reduce the radius of cylinder heat transfer rate

near the surface in the fluid decrease for both NeMonian and non-Newtonian fluid.

However, the effects are more dominant in non-Newtonian case. Figure 6.10 shows the

qffects of K on Reltlz f , and Re;llzSh for simultaneous variation of Du(increasing) and

.Sr (decreasing). To discuss the effects of Dufour and Soret number, keep in mind that their

product should be constant for homogeneous mixture. It is seen through Figure 6.l0 that by

increasing the Du parameter heat transfer rate reduces. On the other hand, Sr parameter is

found responsible for increase in Re-Uz Nu for all values of We.Variations of mass transfer

rate against We for diflerent values of Du and.Sr are also presented in Figure 6.11. A

development in concentration rate is seen for large values of We. However, the effects for

simultaneous variation of Du (increasing) and.Sr (decreasing) on the values of Relt/zSh

are observed opposite as that of effects on the values of Re)rlzNu. Figure 6.12 illustrates

the variatio ns of RelL/z Nu and Rell/z tn against viscoelastic parameter W e for different

yalues of Prandtl effective Preff. The values of Rerl/zNu enhance for larger values of

Pr"ly while opposite trend of it has been observed on Rell/z5h. Figure 6.12 is plotted to

show a relationship among the parameters Pr, Prql andNr. This graph shows that Nr = 0
implies Pr"f f = Pr and with increase in radiation (i.e. Nr > 0) the values of pr"ly are

decreasing. This behaviour exhibits that the small Prandtl number exalts radiation effects.

The computed numerical values of Re)/zcy, RelL/zNu, and Re-r/zsh for various values

of viscoelastic parameter K and curvature parameter 7 is shown in Table 6.3.
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Figure 6.1: Curvature effects on velocity, temperature and concentration profile with

fixed values ofK = n' = Preff = t,Dlt= 0.3, Sr = O,Z,and.Sc = L'6'

Figure 6.2: Impact of K on velocity, temperature and concentration profile with fixed

values ofy -- 0.2,n' = Preff = \,Dlt = 0.3, Sr = Q.Z,and Sc = 1-.6.
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Figure 6.3: Impact of Du on temperature profile with fixed values of y - 0.2,K -- n' =

Pr"f f = L,Sr = 0.2, and sc = 1.6.
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Figure 6.4: Impact of Sr on concentration profile with fixed values of y - 0.2,K = n* =

Pr"f f = l, Dtt = 0.3, and Sc = L.6.
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Figure 6.5: Impact of n' on temperature and concentration when 7 = 0.2, K = Pr"y1 =

L,Du = 0.3,.Sr = 0,2,and 5c = 1.6.
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Figure 6.6: Impact of Pr1y on temperature and concentration when Y = 0.2,K = n* =

e
@

1,Du = 0.3,Sr = 0.2, and.Sc = L.5.
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Figure 6.7: tmpact of Sc on temperature and concentration when 7 = 0,2,K = n* =

Pr"f f = L,Du = 0.3, and Sr = 0.2.
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Figure 6.8: Variati onin Ref,/zCy against 7 at different K while n* = Pr"11 = 7,Du

0.3, Sr = 0.2 and Sc = 1.6 are fixed.
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Figure 6.10: Variation in Re-U'Nu and Re;tlzSh against K at differe nt Du,and Sr

1.5I
K

while 7 = 0.5, n* = Pr"yl = 1, and Sc = 1.6 are fixed.
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Figure 6.12: Graph of relationship among Nr, Pr, and Pr"s7.
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Table6.3:Numericalvalues of Re)/zq,ReluzNu,andRe-t/zshatdifferentKandy

ne)/zc, Relt/zru R{L/zto
0 -1.0000 0.4613

0.2 -7.0727 0.4857

0.5 -L.L779 0.5687

0 -2.8284 0.4926

0.2 -3.7259 0.5482

0.5 -3.5674 0.6297

0 -6.5320 0.5579

0.2 -7.8801 0.6L62

0.5 -9.7687 0.7001

0.7757

0.7737

0.8615

0.7780

0.8374

0.9245

0.8433

0.9038

0.9923

6.4 Conclusions

Heat and mass transfer analysis of second grade fluid over an elongating surface of the

cylinder has been studied in this chapter. For computational purposes, two numerical

schemes, i.e. Keller box and Chebyshev Spectral Newton Iterative Scheme is used. To

confirm the validity of obtaining results, the comparison is made with published results and

it ensures that the computed solution is highly accurate. The important results of this study
are mainly dependent upon the Soret, Dufour, viscoelastic and radiation parameters. We
expressed our results in terms of figures and tables. The Curvature paramet er (y) increases

the velocity of the fluid in the boundary layer region outside the cylinder. Similarly,
temperature, and concentration are also increasing function of 7. The non-Newtonian fluid
parameter (K) has an increasing impact on velocity and likewise temperature and

concentration. The increase in Du and .Sr significantly enhance the temperature and the

concentration, respectively. The variations of concurrent occurring of Du (increasing) and

sr (decreasing) on R{llztn are observed opposite as that of effects on Rer-r/zNu. The

concentration boundary layer augments with a decrease in Schmidt number. It is important
to write here that increase in Pr"y bring about substantial reduce oftemperature of the fluid.
)! ,I
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Chapter 7

Study of Maxwell nanofluid flow around a stretching

cylinder

In this chapter, attention is given to investigate the combined effects of linear and non-linear

Rosseland thermal radiations in Ma"rwell nanofluid flow due to stretching cylinder. To

strengthen the importance of the study, non-linear heat generation/absorption is also

considered. These effects are incorporated into momentum, energy and concentration

equations, and then these modeled non-linear partial differential equations are converted

into ordinary differential equations with the help of suitable transformations. Significant

difference in the heat transfer enhancement is observed through temperature profiles and

tables of Nusselt number. From the graphs, it is observed that the nonlinear radiation

provides better heat transfer rate at the surface of cylinder as compare to that of linear or

absence of radiation effects.

7.1 MathematicalFormulation

Let us consider the two-dimensional flow of Maxwell nanofluid around the stretching

cylinder of fixed radius R'. The constitutive equations of Maxwell fluid model are

developed in cylindrical coordinate system. The schematic of the flow has been described

in chapter 4 and 6. Extra heating factors like nonlinear radiation and non-uniform heat

generation/absorption are taken into account. Buongiorno's model is used to investigate the

Brownian diffirsion and thermophoresis effects on flow, heat and mass transfer of Maxwell

nanofluid. This physical situation is modeled into mathematical form and obtained boundary

layer equations which governs the flow, heat and mass transfer are as follows:

O(ru) O(rv)
a, -T'

0v 0v /02v 1du\ 7, / ^02v 02vu6+uE= '(aZ *; *)*7(."' o*+2uv676;+t,'
aT ar k /027 1ar\ I 0c aT D, r0T

u a, * ud = *r\w * ; *) + r 
lDa a, ar* r- (r,

*#), (72)

(7.1)

)']-
(7.3)
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1 !O(rqr) . q"'
p%7-7F- p%

ac ac / azc 1 ac\ D- I A2T 
' E), (7.4)";*ui= o,\fr*; *)* r l,a* *i 0,1

with boundary conditions

v(r,z)-V*=,(i)' u(r,z) =0,] ,. r=R*,
T(r'z) = T*' C(r'z) = 6* )

,f;?--i:, [li:,:)=?-l asr + @

The new symbols which are used in equations (7.2-7.5) are defined as

(7.5)

,1r: matertat.alaxatton time Ds: Brownian diffusion coefficient

D7 : Thermophoretic diffirsion coefficient

q,,, =rylA'(T* -T*)f ' + B'(T - I-)]: non-uniform heat sink/source

4.: coeflicient ofspace dependent heat source/sink

B' coeflicient of temperature dependent heat source/sink

Upon ,sing the raaiative heat flux q, and non-uniform heat sink/source q"' as defined

above, Eq. (7.3) takes the following form

AT AT k / 76o'T3 \ /A2T AT\
ufr * u E = r., (,' 

* 6)\w * *r) *
(7.6)

, . | - .ac ar D, pr12l rylA'(T* -T-)f ' + B.(T - r-)l
'lo'**-r;\arl l- '

Introducing the following appropriate similarity transformations:

r2-R'2 rr R' rcv . -

, = ,* 1"1, Lt = -? li rrrr, u -ff f'@),

og)-*, Qet)-*' 
(t't)

tW .@ v@

Utilizing T = T*(\ * (0* - 1)0) and 0* = Tn/T- (temperature ratio parameter) into Eqs.

(7.2)-(7.4). we obtained the following differential equations

(7+\ytDf"' +\yf" + ff" -(f'l'z -, YDl,. 71"v ' G+zyD (/.8)

I 
+De(Zff'f"-fzf"')=0,
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(L + zyD:rt! *!*os * (0*- 1)0),) 0,) Q'e)

*{rr(, * f *ar t + (ew- ryrl,) * rrfle,

+ (1 + ?yil(Noe'e' + Nre,') + l,f, + B,o = o,

(L + zytDQ" + zyy, * scfQ,*ff tfr + zytl)o,, * zyl,) - s. (7.10)

The boundary conditions (7.5) in dimensionless form are

,f(0) = 0, f'(0) = 1,/'(m) = 0,

0(0) = 7,0(a) = 0,0(0) = 1,0(o) = 0. Q'll)

Dimensionless symbols used in equations (7.8)-(7.10) are defined as

y - J@: curvature parameter D

0* = T*fr-: surface heating parameter Rd = 4o.73/ k(a, * or): radiation

parameter

Pr = v/a: Prandtl number Nt = Drr(Tw - T_)/T*a: Thermophoresis

parameter

N6=Dst(c* - c-)/a: Brownian motion 0: dimensionless temperature

parameter

@: dimensionless concentration sc = v / Da: Schmidt number

After utilizing the expression of Nu f.
with similarity transformation of present chapter the transformed values of Nu and .Sh will
be of the form

t
nr,;wr,= - (r -fftA)e'(o), nr)+sn= -0,(0). (7.12)

7.2 Numerical Scheme

Since the system of equations with boundary conditions (7.8)-(7.1l) is non-linear, so the
presentation of solution in exact form is impossible. Keeping this in view, we obtained the
ny,lerical 

lolution 
of it by using shooting method with Runge-Kuffa fourth order integrator.

For this purpose, we first need to convert the obtained system of boundary value problem
(7.8-7.11) into first order initial value problem such as

f'=p,
P'=q,
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l(t + zyD - De fztq' *lr, + f - Y, . ;q - p, + zDefpq - 0,

0,=U,0,=R,

(L + zytD*K, *!*os * (0*- 1)0)3) u\* zr ( *!*arL + (ew - 9e1,)u

+ prfU + (NDRU * NrQz ) + A,p + 8.0 = O,

(L + zyfiR, + zyR + scf R* 
fffC, 

* zyr;)u, + zyl,) - 0,

with initial conditions

f (0) = 0,p(0) = 1,q(0) = 5r,

0(0)=L,U(g)-s2,

0(o)=1,R(o)-s3.
where the constants s1, s2 and s3 are unknown commonly known as missing initial
conditions. These missing conditions are chosen in such a way that the boundary conditions

at infinity satisfi. So for the calculation of missing initial conditions Newton Raphson

algorithm is utilized. The obtained results are firstly validated by the comparison with
published results and then novel results for the considered problem are calculated.

7.3 Results and discussion

Numerical investigation of Maxwell nanofluid with non-linear radiation and non-uniform
heat generation/absorption is performed. Obtained system of partial differential equations

are transformed into dimensionless form by using suitable similarity transformation. The

numerical scheme described previously is applied to get the results. To check the validity
of these results, a comparison is given in Tables 7.1-7.3,which show a good agreement with
the past studies. Further, the results for different emerging parameters such as Maxwell fluid
parameter De, radius of curvafure y, radiation parameter Rd, thermophoresis parameter Nr,
Brownian motion parameter/V6, space dependent heat source/sink .A*, temperature

dependent heat source/sink B*, Prandtl number Pr and Schmidt number Sc are presented in
Figures 7.1-7.12- Figure 7.1 demonstrate the effects of Maxwell fluid parameter De on
dimensionldss velocity profile by taking y = 0 (Stretching sheet) and y = 0.5 (Stretching
cylinder). It is clearly seen that with the increase in De the velocity and momentum
boundary layer decrease for both stretching sheet and stretching cylinder. It is found that the
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Table 7.1: Values of -/"(0) for various values of Maxwell fluid parameter De,

y->
Del Abel et al.

(2012)

0.50.20.0

Present+

0.0

0.2

0.4

0.6

0.8

L.2

L,6

2.0

0.999962
1.051948

1.1.0L850

1.150163

7.L96692
1.285257

7.36864L
L.4476L7

1.000008

1.051885

L.70L892
7.L50L26
L.796702
L.285349

L.368744
7.447637

L.073104
7.72t344
1.768L36
7.213579
L.257568
7.34t984
7.421978
1.498083

1.180682

L.226009

1,.270075

7.3L2934
1..354648

L.434921
1.511338

L.584367

Table 7 .22 Comparison of -g'(0) for the various values of Ng and N6 when F = y -
Rd -- A' = B' = 0,Pr = L0 and Sc = 10.

Na-

N,J

0.50.30.1

Khan and

Pop (2010)

Khan and

Pop (2olo) Present
Khan and

Pop (2010)

0.1

0.3

0.5

0.9524
0.5201
0.3277

0.9524
0.5201

O,32LL

0.2527
0.1355

0.0833

0.2522

0.1355

0.0833

0.0542
0.0291
0.0779

0.0543

0.0291.

0.0L79

Table 7.3: Comparison of @'(0) for the various values of Nr and N6 when F = y = Rd =

A' = B' = Q,PT = L0 and.SC = L0.

Na-

NtJ Present

0.50.30.1

Khan and

Pop (2010)

Khan and - Khan and

Pop (2olo) Present 
Pop (2olo)

0.1

0.3

0.5

2.1294
2.5?.87

3.0352

2.1294
2.5?86

3.0351

2.4L00

2.6088
2.7519

2.4L00

2.6088

2.7519

2.3836
2.4984
2.573L

2.3836
2.4984
2.5737

boundary layer thickness increases with increase of7. Linear and non-linear radiation

effects on temperature and concentration profile over a stretching cylinder are presented in

Figure 7.2.It is depicted that temperature enhances and concentration reduces with increase

in 0r. The graph clearly distinguishes between linear and nonlinear radiation effects.

Nonlinear radiation greatly increases the temperature ofthe fluid but little effect can be seen

on concentration profile. Figure 7.3 capture the effects of space dependent coefficient of

heat generation/absorption on temperature and concentration profiles. It is seen that with
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increase of .A. temperature profile increases throughout the boundary layer regime but the

concentration profile decreases near the wall and adopted an opposite behavior away from

the cylinder surface. Same effects of temperature dependent coefficient of heat

generation/absorption B* are observed in Figure 7.4. Figure 7.5 and 7.6 capture the

Brownian motion and thermophoresis effects on temperature 0OD and nanoparticle volume

fraction Q(tD.It can be seen that for weak Brownian motion (Na = 0.L) temperature and

concentration significantly increase due to increase in thermophoretic parameter. However
due to hot surface a particle-free layer occurs near the wall because heated surface drive
back the small size particles. However, for small thermophoresis effect with N6 = 0.1, due

to change in weak to strong Brownian motion, a very small increase in temperature 0(r7)
and nanoparticle volume fraction d(rl) is observed. Figure 7.7 is developed to show the
variation in wall shear stress again Maxwell fluid parameter at different orientations of
geometry from sheet (f = 0) to cylinder(f > 0). tt clearly describes that wall shear stress

decreases for the curved surface (f > 0) and same is happening with Maxwell fluid
parameter. Due to increase in curvature parameter the cylinder surface reduces,
consequently drag on the surface will reduce. The variation in /Vu and .Sh against Deborah
number De is plotted for 7 = 0, 0.5, I and is shown in Figure 7.8. with increase in curvature
parameter y, the values of Nu and S/r both increase while these quantities reduce for
increase in De. Linear and nonlinear radiation effects on heat transfer rate arepresented in
Figure 7'9 for different values of Ns and iv6. This figure depicts that heat transfer rate due
to nonlinear radiation is more prominent than that of linear radiation. Moreover, the increase
in radiation parameter also enhances the rate of heat transfer. This figure depicts that the
radiation effects enhances the heat transfer rate and this enhancement in case of nonlinear
radiation is higher than that of linear radiation. It can also be seen that by increasing the
thermophoresis and Brownian motion effects of the nanoparticles the cylinder surface
rapidly gets cool as compare to Maxwell fluid alone. To show the flow pattern at the surface
of sheet and cylinder, the streamlines are displayed in Figures 7.10 and 7.1I for both y - 0
and 7 - 1.0.

i,..,
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7.4 Conclusion

The non-linear radiation effects on Maxwell nanofluid flow along a stretching cylinder in
presence of non-uniform heat generation/absorption is performed. The govemed partial

differential equations transformed into dimensionless ordinary differential equations, which

are then simulated with the help of shooting method. For the validity of applied scheme, the

results are first compared with the benchmark studies and then innovative results for the

Maxwell nanofluid flowing over stretching cylinder are presented through table and graphs

for emerging dimensionless parameters. It is observed the velocity profile shows a
decreasing nend with increasing values of Maxwell fluid param eter (De) for both stretching

sheet (7 = 0) and stretching cylinder (r > 0) case. Heat transfer rate is decreasing with the

increasing strength of Brownian motion and thermophoresis effects. It is important to
mention that nonlinear radiation has significantly enhances the radiation as compare to
linear radiation.

(V-+
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