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Abstract

The main objective of the present thesis is to study the orthogonal / non-orthogonal
stagnation-point flows on a stationary / rotating lubricated surface. The lubricated thin layer
is modeled as a power-law fluid. The fluid impinging on the lubricated surface is described
by constitutive relationships of viscous, second grade and couple stress fluids. Additional
features like heat transfer analysis, slip effects due to lubrication and impact of magnetic
field are also studied. Interfacial condition between bulk fluid and the lubricant are derived
by imposing the continuity of shear stress and velocity of both fluids. The transformed
boundary value problems consist of highly non-linear and coupled differential equations
subject to non-linear and coupled boundary conditions. An implicit finite difference scheme
known as Keller-box method is employed to solve such a complicated system of equations
numerically. The quantities of interest like fluid velocity, temperature, pressure, skin friction
and local Nusselt number are analyzed for several values of involved parameters. The effects
of involved parameters on the location of the stagnation point are also displayed. Finally, a
comparison of the obtained solutions with the existing results for the no-slip case is also

presented.
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Preface

One of the classical flow problems in fluid dynamics that has received considerable
attention ot the researchers working in the field is the two-dimensional stagnation-point
flow A st znation-point flow is obser ved in the situations whenever the fluid impinges on
a »olid obpect. The fluid velocity reduces to zero and the fluid pressure, heat and mass
transfer rutes are highest at the stagnation-point. Stagnation-point flow has been
encountered in numerous applications in engineering and technological processes. It can
be located in the stagnation region of flow passing a body of any shape. The literature
sutvey reveals that the stagnation-point flow can be discussed either when the flow
impinges on the wall orthogonally called orthogonal stagnation-point flow or when the
flow impinges on the wall obliquely called oblique stagnation-point flow. The study of
impinging jet problems has been of considerable interest during past few decades because
o1 great tec hnical importance in many industrial applications, such as drying of papers and
fihus, tempering of glass und metal during processing, cooling of gas turbine surfaces and

electronic components, surface painting, pest-citing and de-icing.

Stagnation point flows past a lubricated surface is another area that has got attention of
researchers in the recent past Jue to their significant importance in the engineering and
t¢.hnologr al fields Anextensive amount of hterature is available for the stagnation-point
flows over rough surfaces. However. the stagnation-point flows and heat transfer past a
lubricated surface 1s an area which has not been investigated in depth despite of its
enormous practical applications in industry and engineering, such as cooling of nuclear
reactors and cooling of electronic devices by fans, in the design of radial diffusers and

thrust bearmgs. drag reduction and many hydrodynamic processes.

The study of heat transfer in boundary layer flows is important in many engineering
applications such as the design of thrust bearings and radial diffusers, transpiration cooling,
drag reduction, thermal recovery of o1l, etc. The heat transfer rate is very important in the
process of manufacturing of sheets. The mass and heat transfer mechanism occurs in many
processcs such as polymer engincering, electro chemnistry, cooling and drying of paper and

textiles cte



In certain stagnation flow problems, the Navier- Stokes equations reduce to nonlinear
ordinary differcntial equations through similarity transformations. But these equations fail
to explain the phenomenon like shear thinning, shear thickening, normal stresses, shear
relaxation and retardation In such situations, the constitutive equations of non-Newtonian
fluids are preferred which arc highly nonlinear partial differential equations having order
higher than Navier-stokes equations The situation becomes more complex when one
considers a lubricated surface due to the which the corresponding boundary conditions are
also nonlinear. The exact or analytical solutions in such cases are not possible in general
and one needs to look for numerical solutions. In the present thesis such highly nonlinear
coupled equations subject to nonlinear coupled boundary conditions are solved numerically
by implementing an imphvit finite dif ference schenmie namely the Keller-box method. The

chupter wive layout of the thesis is as follows:

Coapter o1 ¢ contains hteriture review and background relating to stagnation-point flows.
The governing mass and momentum conservation equations for rectangular and cylindrical
courdinates are included. In the later part of the chapter, the Keller-box method is described
through the solution of a simple boundary value problem. It is also pertinent to mention
here that the constitutive equation of a power-law fluid is used to model the thin lubrication
laver of variable thickness in all subsequent chapters. This equation along with the

constitutive equations of other non-Newtonian models is also included in chapter one.

Chapter two investigates non-orthogonal stagnation-point flow of a viscous fluid over a
lubricated surface. To denive the interfacial condition, the continuity of velocity and shear
stress has been imposed. The flow equations are reduced to a set of ordinary differential
equations by means of similarity transformations. The numerical solutions are obtained
through Keller-box method. Flow characteristics along with location of stagnation-point
are discussed for the cffects of emerying parameters through graphs and tabular data. A
compariso 1 of the obtaincd solutions with the existing results for the no-slip case is also
presented. I'he results of this chupter are accepted for publication in Journal of Applied

Mechanics and Technical Physics.

Chapter three 1s presented to discuss non-orthogonal stagnation-point flow of a second

grade fluid past a lubricsted surface The statement of the problem is based upon the



continuity of velocity and shear stress at the interface of both fluids along with laws of
conservation of mass and linear momentum. The boundary value problems are solved
numerically by Keller-bo < method for the certain range of slip parameter, Weissenberg
number and a frec parameter. A comparison between the numerical results of this chapter
with the already reported data is made. The contents of this chapter are published in

Zeitschrift fur Naturforschung A (ZNA), 2016, 71(3), 273-280.

Ciapter fors concerned with oblique stagnation-point flow of a couple stress fluid over
a lubricated surface. Governing partial differential equations of couple stress fluid are
converted into ordinary differential equations using similarity transformations. Analysis
has been performed by imposing continuity of velocity and shear stress of both the fluids
at the intertace. Influence of ship and couple stress parameters on the horizontal and shear
velocity components, wall shear stress and stagnation-point is displayed graphically and in
the tabular form. The present solution is found in good agreement with the existing results.

Findings ot this chapter have been submitted to Bulgharian Chemical Communication.

Chapter fiv e describes slip flow ofa sccond grade fluid past a lubricated rotating disc. The
mterfacial conditions between fluid and lubricant are imposed on the surface of disc by
assuming 4 thin lubrication layer. The effects of shp parameter and Weissenberg number
on the three components of fluid velocity and pressure are analyzed graphically while
ellects on both components of skin friction are demonstrated through tables. The computed
1Csults sno w that spin-up by a second grade bulk fluid near the rotating disc is reduced by
increasing »lip at the intertace. The obiained results are published in International Journal

of Physical Sciences, 11, 96-103 (2016).

Chapter six is devoted to study heat transfer analysis in the time-dependent slip flow over
a lubricated rotating disc. .\ppropriate transformations are utilized to convert the governing
partial differential equations into nonlinear coupled ordinary differential equations.
Interfacial conditions have been derived with the help of continuity of shear stress and
velocity of the lubricant and the core fluid. Impact of physical parameters in the presence
o1 lubricaton on fluid velocity, temperature and pressure is displayed graphically. The skin
friction cocfficients and local Nusselt number are examined through tables. The results in

the special case are found in good agreement with the existing results in the literature. The

6



reaults of this chapter are published in Engineering Science and Technology, an

International Journal, 1y (2016) 1949-1957,

Chapter seven 1s devoted to analyze the heat transfer in the time-dependent axisymmetric
stagnation: point flow over a lubricated surface. It 1s assumed that surface temperature of
the disc is time-dependent. Continuity of velocity and shear stress at the interface layer
between the fluid and the lubricant 1s imposed to obtain the numerical solution of the
governing partial differential equations. The computations are presented in the form of
graphs and tables in order 1o examine the influence uf pertinent parameters on the flow and
heat transfer characteristic s. An ncrease in lubrication results in the reduction of surface
shear stress and consequently viscous boundary layer becomes thin. However, the thermal
boundary Lsyer thickness increases by increasing lubrication. It is further observed that wall
shear stress and heat transter rate at the wall grow due to unsteadiness. The results for the
steady case are deduced fiom the present solutions and are found in good agreement with
the existing results in the literature. Findings of this chapter are published in Thermal

Science, DOL: 10.2298/15C1160203257M.

Chapter eight cxamines MHD mixed convection stagnation-point flow of a viscous fluid
over a lubricated vertical surface. The obtained set of flow and energy equations are
converted into ordinary differential equations by means of similarity variables. To derive
the interfadial conditions, continuity of shear stress and velocity of the lubricant and core
fluid 1s 1mposed. Impact of emerging parameters in the presence of lubrication on fluid
velocity and temperature is displayed graphically The contents have been accepted in

Industrial Lubrication and Tribology.

Chapter nine is presented to describe the effects of lubrication in MHD mixed convection

stagnation- point flow ofa second grade fluid adjacent to a vertical plate. A power-law fluid
1s utilized for the purpose of lubrication. Interfacial conditions are obtained by
implementing continuity of shear stress and velocity of both fluids. Boundary value
problems are obtamed by usmg suitable similarity variables. Influence of different
paranicters on the velocity and temperature profiles are represented through graphs and

tables. These findings are published in Revista Mexicana de Fisica, 63 (2017) 134-144.



Chapter 1

Introduction

This chapter is included 1o introduce readers with the relevant literature and governing
equations, The equations that govern the flow and heat transfer namely continuity,
momentuny and energy cquations are presented both in rectangular and cylindrical
coordinate. The constitutive relutionships of the viscous, second grade, couple stress and
pewer-law fluids and goyerning equations of magnetohydrodynamics are also included.
The Keller-box numerical method is explained through an example at the end of this

chapter.
1.1 Literature review

The concept of boundary layer theory introduced by Prandtl [1] has gained significant
mmportance in fluid mechanics. Schlichting [2] studied different aspects of the boundary
layer flow and transportation phenomena in fluid mechanics and a good comparison
between the theoretical and experimental results was achieved by him. Extensive research
work s available in the literature on the boundary layer flows for viscous and non-

Newtoman fluids.

One of'the classical flow problems in tluid dynamics is the stagnation-point flow and it has
reveived considerable attention of the researchers working in the field because of its
in.portance in many engineering disciplines. A stagnation-point occurs whenever a fluid
hts the surtace at certain angle. Stagnation-point flows are involved in cooling of nuclear
reactors, extrusion of poly mer sheets, cooling of computer and other electronic devices by
fans, manutacturing of artificial fibers and many hydro-dynamical processes. The literature
survey reveals that one can discuss the stagnation-point flow either when the flow impinges
on the wall orthogonally or when the flow impinges on the wall obliquely. The pioneering
work on the stagnation-puint flow was carried out by Hiemenz [3]. He provided an exact
solution for the Newtonian casc. Stagnation-point flow towards a stretching plate was

exumined by Chiam [4]. Wang [5] studied stagnation flow impinging on a shrinking sheet.



The plonecring work on the axisymmetric stagnation-point flow was carried out by
Homann [6] and Frossling [7]. The three-dimensional orthogonal stagnation-point flow
wus studied by Howarth | ] and Davey [9].

It the abo.c mentioned studies the velocity and flow pattern are independent of time.
Howcver, in many cngincering and technological problems, the flow starts impulsively
from rest and the unsteady aspects become more interesting. The unsteady stagnation-point
flow over « flat plate was nitially discussed by Yang | 10]. Williams [11] and Cheng et al.
[12] investigated the unsteady axisymmetric threce dimensional stagnation flow on a
stationary Jisc. Nazar ct al. | 13] studied the time-dependent two-dimensional stagnation-
pomt flow over a flat stretching sheet moving with velocity proportional to the distance
from stagnation-point. The unsteady stagnation-point flow with a span-wise oscillating
wall was addressed by Fang and Lee [14]. Cheng and Dai [15] investigated the unsteady
two-dimensional stagnation-point flow of a viscous fluid over a stretching sheet using
homotopy analysis method. Unsteady stagnation-pomt flow impinging over a flat plate was
discussed by Zhong and | ang | 16] for the planner and axisymmetric cases. The unsteady
flow past & stretching shect in the vicinity of stagnation point was investigated by Pop and
N4 [17] They proved that the unsteady flow approaches the steady state situation for large

vieues of tme.

The study tor oblique stagnation-point flow has been discussed by many investigators such
as Stuart [18], Tamada [19] and Dorrepaal [20, 21] etc. They considered the oblique flow
as the combination of orthogonal stagnation-point flow with a shear flow parallel to the
wall. Later the problem was reviewed by Drazin and Riley [22] and Tooke and Blyth [23]
to include 1 free parameter associated with the superimposed shear flow component. This
mudel has becn applied to MHID flow by Borrelli et al. [24] and on moving surface by Lok
et al. [25] Lok et al. [26] discussed non-orthogonal stagnation-point flow towards a
stictching sheet. Tilley and Weidman [27] discussed non-orthogonal stagnation-point for
two-fluids Labropulu et al. [28] discussed heat transfer analysis for the oblique flow
umpinging on a stretched sheet. Axisymmetric non-orthogonal stagnation-point flow over
a circular cylinder has been considered by Weidman and Putkaradze [29]. Recently,
Ghaffari er al. [30, 31] and Javed et al. [32] discussed different aspects for the oblique

stignation point lows



A solution of the Navicr-Stokes and energy equations illustrating skin friction and
temperature distribution mn the stagnation-point flow over an infinite plate was presented
by Stuart [ 33]. Gorla [34] investigated heat transfer in an axisymmetric stagnation flow on
a vylmder. Axisymmetric stagnation-point flow with heat transfer of a viscous fluid on a
moving cylinder with unsteady axial velocity and uniform transpiration was analyzed by
Saleh and Rahimi [35]. In unother paper Abbasi and Rahimi [36] studied three-dimensional
stagnation- point flow and heat transfer on a flat plate with transpiration. Recently, Abbasi
and Rahimi [37] carried out an investigation of heat transfer in two-dimensional stagnation-
pont flow impinging on a flat plate. Massoudi and Razeman [38] studied heat transfer
analysis of a viscoelastic tluid at a stagnation-point Elbashbeshy and Bazid [39] analyzed
heut transfer in an unsteady boundary layer flow over a stretching sheet and found that

thormal and momentum boundary layer thickness depends upon unsteadiness parameter.

In the above studics mostly the constitutive equation of a viscous fluid is considered.
However, 1t is now an cstablished fact that Navier-Stokes equations are inadequate for the
fluids that exist in industiy and technology. Such fluids are called non-Newtonian fluids.
Examples include food, rubber, gel, petrol, paper coating, plasma, grease, polymer
solutions, polymer melts blood, pawmts, oils etc Flow of non-Newtonian fluids has
attracted attention of many scientists and researchers because of their fundamental and
practical importance in the industry, applied sciences, engineering as well as in the daily
lite. Shear stress of such 1luids is nonlinearly related with shear rate and it makes difficult
to analyze their flow. Se\cral non-Newtonian models have been developed to discuss the
phenomena like normal stress effect, shear thinning, shear thickening, stress relaxation and
retardation etc. The governing equations representing the flows of these fluids are highly

nonlinear and are difficult to solve even by a numerical approach.

Among several non-Newtonian {luids. the second grade fluid is one that has received much
attention recently as it exhibits viscous and elastic-like characteristics when undergoing
detormation. Honey, plastic filims and artificial fibers are some examples of fluids whose
rbwological behavior can be discussed through the constitutive equation of second grade
fluids. The equations of motion of second grade fluid are highly nonlinear and one order

higher than the Navier- -Stokes equations. For this reason, additional boundary conditions

10



are required to discuss the flow problems associated with the second grade fluid model.
Rajagopal [40] and Beard and Walters [41] developed the boundary layer equations of
second grade fluids and Rajagopal and Kaloni [42] discussed the issue of paucity of
boundary conditions for these tluids. Rajagopal et al. [43] and Rajagopal and Gupta [44]
solved the flow problem related to second grade tluid by using a supplement boundary
cendmon ut the free stream. The analysis for the stagnation-point flows of second grade
fluids was carried out by Srivatsava |45], Rajeswari and Rathna [46], Beard and Walters
[47], Garg and Rajagopal [48] and Ariel [49]. Beard and Walters [47] used a regular
perturbation technique to tackle the paucity of boundary conditions. Garg and Rajagopal
[48] and Ariel [49] overcame this difficulty by augmenting the boundary conditions at
nfinity. Ayub et al. [SU] investigated viscoelastic second grade fluid flow near a
stagnation- point due to a sretching sheet. Labropulu et al. [51] have extended the classical
Hiemen/'s flow of a viscoelastic second grade fluid to oblique stagnation-point flow.
Oblique stugnation-point tlow of an incompressible viscoelastic second grade fluid towards
a stretchiny surface is investigated by Mahapatra et al. [52]. The unsteady stagnation-point
flow of a second grade fluid has been discussed by Labropulu et al. [53]. Effects of
Weissenberg number on the flow and heat transfer in the stagnation-point were analyzed

by Lietal [54).

Couple sticss tluid modey 15 another 1mportant non-Newtonian model first proposed by
Stokes [55, to describe the polar effects. The couple stress fluid can be described by a new
type of tensor called couple stress tensor in addition to the Cauchy stress tensor. In such
fluids, polar cffects play a significant role which are present due to the couple stresses and
body couples. Because of significant importance in the industrial and engineering
applications, many researchers have analyzed the flows of couple stress fluids. Some
examples of fluids that can be described by couple stress model are animal blood, liquid
crystals, polymer thickencd oil and polymeric suspensions. Devakar et al. [56] discussed
the Stokes problems for couple stress fluid. In another investigation, Devakar et al. [57]
v estigated the flow of couple stress fluid flowing between parallel plates. Heat transfer
analysis for the flow of a couple stress fluid near a stagnation-point has been carried out by
Hayat et al [58]. Muthura et al. [59] studied viscous dissipation effects on hydromagnetic

tlow of a couple stress fluid 1n a vertical channel. Heat transfer analysis has been carried

11



out by Srinivasacharya et al. [60] for couple stress tlow due to expanding and contracting
walls in a porous channel Flow of couple stress tluid due to free convection through a
porous channcl was carried out by Hiremath and Patil [61]. Umavathi et al. [62] discussed
heat transfer for the channel flow of a couple stress fluid sandwiched between two viscous
fluids They showed that couple stress parameter is responsible for enhancing the fluid
velocity Kamesh and Devakar [63] studied porous-saturated effects of heat and mass
transfer on the peristaltic transport of electrically conducting couple stress fluid through

porous medium in a vertical asymmetric channel.

The probkems on magnetohydrodynamic (MHD) stagnation-point flows have been
discussed by Chamkha [64], Chamkha and Issa [65], Kumari [66] and Prasad et al. [67]. In
revent years many rescarchers are taking interest in the area where such flow situation
oveurs. The study of MHD flow of an electrically conducting fluid is of significant
importanct in modern metallurgical and metal working processes. Magnetic field affects
the velocity gradient and heat tansfer rate at the surface due to increase in the Lorentz
force. Attia [68] reported 1he effects ot increasing magnetic field on velocity and boundary
layer thickness in a stagnation-point tlow. The influence of an applied magnetic field on
Maxwell fluid for the flow of both steady and unsteady cases in a region of stagnation-
point was studied by Kumari and Nath [69]. They found that velocity gradient at the surface
and heat transfer are modified under the influence of Hartmann number. Singh et al. [70,
71] investigated effccts of magnetic and radiation parameters on stretching sheet for steady
and unsteady flows. Ziya ¢t al. [72, 73] discussed MHD free convection flow of a viscous
fluid through inclined porous plate in the presence of high temperature. MHD stagnation-
pomt flow of a power-law fluid towards a stretching surface was discussed by Mahapatra
et al. [74]. Problem of mixed convection flow near the stagnation-point against a heated
vertical serni-infinite perimeable surfuce for viscous fluid in the presence of an applied
magncetic field has been investigated by Abdelkhalek [75]. Aydin and Kaya [76] presented
mixed convection flow of a viscous dissipating fluid over a vertical flat plate. Problem of
mixed convection m stagnation-point flows adjacent to vertical surfaces was investigated
by Ramachandran et al. [77]. Devi et al. [78] discussed unsteady mixed convection flow in
stagnation region adjacemt to a vertical surface. A study on combined forced and free

convection in stagnation {lows ot micropolar fluid over a vertical non-isothermal surface

12



was presented by Hassanien and Gorla [79]. Lok et al. [80] studied unsteady mixed
convection flow of a micropolar [luid near the stagnation-point on a vertical surface. MHD
mixed consection boundary layer flow towards a stagnation-point on a vertical surface with
induced magnetic field was presented by Nazar et al. [81]. Ishak et al. [82] considered a
stcady MID flow towards a stagnation-point on a vertical surface immersed in a
micropolar fluid. In a later attempt, Ishak et al. [83] investigated the problem of MHD
mixed convection flow near the stagnation-point on a vertical permeable surface. Hayat
et al. [84] nresented mixcd convection effects in the stagnation-point flow adjacent to a
vertical swface in a viscoelastic tluid. Hayat et al. [85] also discussed the Homotopy based
analytical solution of steady MHI) two-dimensional mixed convection boundary layer flow
01 a viscous incompressible fluid neai the stagnation-point on a vertical stretching surface
embedded n a fluid-saturated porous medium with thermal radiation effects. MHD mixed
convection in a vertical annulus filled with AlOs-water nano-fluid considering
nanoparticles migration was anatyzed by Malvandi et al. [86]. Recently Afrand et al. [87]
discussed ¢ ffects of magncetic field on free convection flow in inclined cylindrical annulus
containing molten Potasswum. Safaei et al. [88] carried out numerical study of laminar
mixed convection heat transfer of power-law non-Newtonian fluid in square enclosures by
fimte voluine method. Recently Naveed et al. [89] studied hydromagnetic flow past a time-
dependent curved stretching surface. Khalid et al. [90] produced theoretical results to
i estigate time-dependent MHD flow of a Casson fluid. They considered a free convective
flow along an oscillating surface placed vertically in a porous medium. Effects of an
applicd mi.gnetic field in an unsteady radioactive flow of a nanofluid with dust particles
past a stretching surface was examined by Kumar ¢t al. [91]. Heat and mass transfer for a
MHD Casson fluid past an exponentially permeable stretching sheet is investigated by Raju
et al. [92].

The flow of fluid in the vic inity of a rotating disc has many applications in fluid mechanics,
engineering and industry A few examples of such flows include spin coating, water
treatment plants, washing machines, spinning disc reactors, turbines, viscometers, sports
discs, fans rotors, electrochemical engineering, computer storage devices, centrifugal
pumps ctc Shear stress generated by the flowing fluid is utilized to control the boundary

layer thickness. to produce photographic films and papers, to clean the surface of objects,

13



to cool the hot skin of mac hines and crafts and to regulate the thickness in the wire coating
mechanisni. Furthermore. the flow over a rotating surface also finds direct applications to
waste wator treatment, turbo-machinery, viscometry, centrifugal pumps, computer discs,
sports discs and rotating blades. The stagnation-point flow of Newtonian fluid over a
rotating disc was initially Jdiscussed by Von Karman [93]. He transformed the set of partial
differcntial equations into ordnary differential cquations by introducing an elegant
similarity transformation and solved the resulting equations by momentum integral
method. Due to importane e of rotating flows in the fields of engineering and technology
much extensions and modifications with more accurate solutions of Von Karman’s flow
have becen presented in the literature. In 1934, Cochran [94] obtained asymptotic solution
o! the Von Karman’s flow problem Benton [95] improved the Cochran’s results and
eatended the problem by taking into account the unsteady case. Sparrow and Gregg [96]
studied the steady state heat transfer from a rotating disc by taking different values of
Prandtl numbers. Some mwore investigations on the rotating disc were made by Kakutani
[97], Spartow and Chess [28], ’andc | 99], Watson and Wang [100], Kumar et al. [101] and
Miklavcic ind Wang [102]. Asghar et al. | 103] carried out Lie group analysis of flow and
heat transfer of a viscous fluid un a rotating disk stretched in radial direction. Recently,
Turkyilmasoglu [104-108 | investigated different aspects of fluid flow and heat transfer due
to rotating disc. Impact of normal blowing on the fluid flow caused by a rotating disc was
studied by Kuiken [109]. Watanabe and Oyama [110] discussed heat transfer analysis of
electrically conducting fluid near a rotating disc. Wang [111] considered the flow towards
a stagnaticn-point near an off-centered rotating disc. He found that disposition of disc
makes the tlow phenomenon more complex. The problem of Wang [111] was reconsidered
by Nourbakhsh et al. [117]. They reshaped the results using an analytical technique. The
unsteady MHD flow with heat transfer of a fluid film spread over a rotating infinite disc
was treated by Kumari and Nath [113]. They obtained two solutions by taking thin and
thick films of flurdd. Munawar ct al. [114] analyzed unsteady flow near a stagnation-point
due to a rotating disc. Thacker ot al. {115] re-examined the work of Sparrow and Chess
[98] by applying suction and injection at the disc surface. Hannah [116] discussed the
axisymmetric stagnation-point flow of a viscous fluid towards a rotating disc for the first

ume. ltford and Chu [ 11 '] found the exact solution of the problem considered by Hannah
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[116]. Asghar et al. [11X] investigated MHD flow due to non-coaxial rotation of an
accelerated disc. Attia [119] studied the flow due to a rotating disc under the influence of

an external uniform magnctic field.

[n all above investigations the conventional no-slip has been imposed at fluid-solid
interface. 1However, there are many situations where the no-slip boundary condition is not
realistic and can be replaced by the linear slip boundary condition proposed by Navier
[120] and Maxwell |121] independently. Typical examples are emulsions, foams,
suspensions and polymer solutions. Beavers and Joseph [122] discussed the slip boundary
condition n detail. Yeckel et al. [123] discussed stagnation-point flow on a rigid plate
against a hin lubrication, laycr for the first time. Blyth and Pozrikidis [124] studied
stagnation: point flow of a4 viscous fluid past a liquid film on a plane wall. A literature
survey indcates that a number of flow problems of viscous fluids have been analyzed using
the Navier slip boundary condition [125-128]. Flow of a viscous fluid over a stretching
sheet with partial slip was examined numerically by Wang [129]. The problem considered
by Wang | 129] is solved for an exact solution by Anderson [130]. Ariel [131] discussed
the ship eficets on an axisvymmetric flow over a stretching sheet and obtained a numerical
solution o1 the problem. Vazlina et al. [132] discussed slip effects on mixed convective
stagnation- point flow and heat tiansfer over a vertical surface. Sajid et al. [133] analyzed
the unstcady flow of a visvous fluid with partial slip through a porous medium. The partial
slip condit.on is replaced by a general slip boundary condition in a recent article by Sajid
et ul. | 134] Anel et al. [135] analyzed the slip effects on the stretching flow of a Walter-B
fluid and obtained an cxaut solution of the problem The heat transfer analysis for the slip
flow ofa svcond grade flu.d is discussed by Hayat et al. [136] using the homotopy analysis
mcthod Sahoo [137] examined the partial slip on axisymmetric flow of an electrically
conducting viscoelastic fluid. More recently, Sahoo [138] provided the numerical solution
for the uxisymmetric slip flow of a second grade fluid over a radially stretching sheet.
Frusteri amd Osalusi [139) investigated the effects of slip at permeable disc. Impact of slip
for the flow through two stretchable disks is studied by Munawar et al. [140] using HAM.
Labropulu and Li [141] discussed stagnation-point flow of a second grade fluid with slip.

Latift et al [142] explored time-dependent forced bio-convection slip flow of a micropolar
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nanofluid vver a shrinking/streiching surface. Influence of multiple-slip in buoyancy-

driven bio- convection nanofluid flow is analyzed by Uddin et al. [143].

The study of flow phenomenon over a lubricated surface has important applications in
machinery components such as fluid bearings and mechanical seals. Coating is another
major application including the preparation of thin films, printing, painting and
adhesives. In biological tluids, the applications of such flows include flow of red blood
cells in narrow capillaries and of liquid flow in the lungs and eyes. A review of literature
suggests that various attempts are available for the flow over a lubricated surface. In
1230, Joseph [144] discussed boundary conditions for thin lubrication layers. Andersson
and Valnes [145] derived gencralized slip-flow boundary conditions for non-Newtonian
lubrication laycrs. The slip flow over a lubricated surface is considered by Solbakken and
Anderson {146]. The slip boundary conditions for the viscous flow past a power-law
lubricant was derived by Andersson and Rousselet [147] for the first time. They obtained
the similarity solution nuinerically for power-law lubricant by taking the value of power-
law mdex n = 1/3. The axisymmetric stagnation-point flow of a viscous fluid past a
power-law lubricant has been discussed by Santra ct al. [148]. Recently Sajid et al. [149]
extended the work of Santra et al. for a generalalized slip boundary condition proposed by
Thompson and Troian [130] on the basis of molecular dynamics simulation. In another
paper Sajid et al. [151] investigated stagnation-point flow of Walter-B fluid over a
lubricated surface. The axisymmctric stagnation-point flow of second and third grade fluids
over a lubricated surface has been examined respectively by Ahmed et al. [152] and Sajid

et al. [153]

A literature survey indicates that the literature is scarce on orthogonal stagnation-point flow
over a vertical lubricated surface, non-orthogonal stagnation-point flows over a lubricated
surface and flow over a lubricated rotating disc. Our aim in the present thesis is to discuss
the various aspects regarding stagnation-point flows and heat transfer of Newtonian / non-
Newtonian fluids over a plate/disc lubricated with power-law fluid. A new slip condition
at the intertace of the bulk fluid and power- law fluid has been derived and results for no-
shp and fuil-slip cases hav ¢ been deduced from the vbtained numerical solutions. The main

objective 15 to investigate the influence of emerging parameters on the flow and heat
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transfer characteristics in the presence of lubrication. The numerical solutions are

developed by using Keller -box miethod [154-161].

1.2 Continuity equation in rectangular and cylindrical

coordinates

The equation representing the mass conservation is given by

ap _
a0 + V(pV) =0,

(1.2)

in which p is density, ¢ is time and V = [u, v, w], where u, v and w are the components of

velocity in three orthogonal directions respectively. The continuity equation respectively

in rectang lar and cylindrical coordinates is given as

9, 9 9 9 -
5 T3 (pu) + 5 (pv) + P (pw) =0,

X
o, 18 19 2 ow) =
at + ro (rpu) +rd¢(pv) + 6z(pw) =0.

Equation (1.2) for steady mncompressible flow becomes

V.Vv=u

[n terms ot Cartesian and cylindrical coordinates, Eq. (1.5) gives

gu | ov A
ax dy az '

1.3 Equation of motion in rectangular and cylindrical

coordinates

Equation o motion in vector form is given by
p(%)+ p(V. V) = —VP + V.1 + pb,

di
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(1.5)

(1.6)

(1.7)

(1.8)



where T is the cxtra stress tensor. P is the pressure and b is the body force per unit volume.
Neglecting body force, Ey. (1.8) in component form for Cartesian coordinates yields

du w gg) _a_P+(ﬁn£+0fi+f’fl), (1.9)

dz dx da dy dz
av Y _ 8P (0Ty 0Ty arzy)
p(6t+ wtv y+waz) - 6y+(6r + 3% + az /' (1.10)
Ow 0w o Wy 0P (0T OTyz f’f_)
p\6r+u6x i a M 62)_ 62+(6x ay az /' (1.11)

Similarly, t:q. (1.8) in cylindrical coordinates gives

Qu o  vou wE o ou) 9P (10(rty) | 10T¢r Top | OTar
p(az t U rag r f—w"z)—— 6r+( 0 r d¢ r T oz ) (1.12)
v v voy ww ovy o 10P (100 try)  10Teg | Tzp | Ter=Tre
p(6t+u +r0¢+ "Waz)— rdg (rz ar +r do¢ + dz + r )'
(1.13)
Ow W vow oWy 9k (100 | 10Tes | 9Ty
P(a{ 6r+r6¢+wa)_ az+< ar +ra¢+az)' (1.14)
1.4 Encrgy equation in rectangular and cylindrical
coordinates
EEquation that governs the heat transfer in a fluid flow is given by
pep (54 V. OT) =k'VPT +T: VW, (1.15)

n which ¢, is the specific heat, 7" is the temperature, k* is the thermal conductivity and the
last term is due to the viscous dissipation. In terms of Cartesian and cylindrical coordinates

Wo Cdan wInie

a?Tr 9%t 9°T ou ov aw
( + +v +M ) k dx2+ay2+azz Ty, T Ty gy T Tz
du Bw du dIw
ry,—ay+r,y6y+ryz S+ Tgo T ,ya Y41, a/] (1.16)
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av

o1 ar  war i LT 1T 1 eiT 9T du
)=k Grera )+ [ G+

AU AT A NN - L9
p‘P(az+ 6r+ra¢ )z a2 rar+rZa¢>2 922

aw 1 du v 1 9v u 10w du v aw
T,, E + Tyr (;ﬁ— :) + Too (”—3; +- :) +T¢Z-r_5$+ Tzr'a';‘l’ TZ¢'0—Z'+TZZE]. (1.17)

1.5 Maxwell’s equations for magnetohydrodynamics

The subject which deals w ith the mutual interaction of the magnetic field and fluid flow is
called magnetohydrodynamics (MHD). Maxwell’s equations are the set of four equations
which relares the magnetic and clectric fields to their sources, current density and charge

density. These equations are described as

V.E = ’f (Gauss’s law in differential form), (1.18)
VXB= pof + 1€, g—:, (Ampere- Maxwell equation), (1.19)
VXE: - ‘:—? (Faraday's law), (1.20)
VxB:= 0, (Solenoidal constraint on B), (1.21)
F=J>B, (Lorentz force), (1.22)
] =0o(F+V XB), (Ohm’s law), (1.23)

in which p, 1s the magnetic permeability, B the magnetic field, E the electric field, J the
current density, p, the charge density, €, the permittivity of the free space and o the

clectrical conductivity. Conservation of charge density gives
0pe _
V. =0 (1.24)
In MIHD, the charge density p, has no significant role. Usually, p, is significant only in
Gauss’s law and we simplv drop Gauss’ law and ignore p,. Also in MHD the displacement

currents are negligible us compased with the current density J and so the Ampere-Maxwell

equation rcduces to the ditferential form of the Ampere’s law given by

VxB=u,. (1.25)

W ¢ summurize the clectrodynamics equations used in MHD as
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Ampere’s .aw and charge conscrvation
Vx8=yu,J VJ=0 (1.26)

Faraday's .aw and the sol-noidal constraint on B

er::—""a—f, V.8 = 0. (1.27)

Ohm’s law and the Lorentz foree

J=37WE+VxB), F=]xB. (1.28)

1.6 Newtonian and non-Newtonian fluids

1.6.1 Newtonian fluids

Fluids which obey the Newton's law of viscosity are called Newtonian fluids. Newton's
law of viscosity is given by

Ty = MA@ (1.29)
in which 7 is shear stress and Ay, s the first Rivlin-Ericksen tensor. The coefficient of

viscosity for Newtonian fluids is constant at all shear rates.

1.6.2 Non-Newtonian fluids

Fluids which deviates from Newton's law of viscosity are known as non-Newtonian fluids.
Viscosity o f non-Newtonian fluids is not constant and is a function of shear rate. Generally
non-Newto man fluids are complex mixtures e.g. slurries, pastes, gels, polymer solutions
ete. Due to complex natuie of these fluids, it is impossible to represent them with a single
constitutive relationship. T hese fluids exhibit different properties like shear thinning, shear
thickening normal stress effects, stress relaxation, stress retardation, micro-rotation,
cauple stresses, body couples etc. The detail analysis of non-Newtonian fluids can be seen
in the books by Bird et al [162]. Harris [163] and Chhabra and Richardson [164]. In this
thesis we have considered the constitutive relationships of second grade, couple stress and

power-law fluids and details arc given in following subsections.
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1.6.2.1 Second grade fluid

I'he compenents of the Cauchy stress tensor for an incompressible second grade fluid are
[Vo5]

T - Ay + AR + A Aa)k) (1.30)
Here ap and a, are the matenal moduli known as cross-viscosity and viscoelasticity
coefficients respectively. Fosdick and Rajagopal {166] argued that for a second grade

model to bv thermodynanucally compatible, following constraints should hold
u=0, a,20 u3+a,=0. (1.31)
The compenents of first and second Rivlin-Ericksen tensors Ay and A, are given by

A(l),[ = Vl,j + V},l and A(?-)‘} =a;, + a, + 2Vm,iVm,j' (]32)

where a,’s are the components of acceleration given by

av,

1.6.2.2 Couple stress fluid

Couple sticss fluid is another important non-Newtonian fluid that describes the polar
etlects. The couple stress tluid can be described by a new type of tensor called couple stress
tensor in addition to the Cauchy stress tensor. In such fluids, polar effects play a significant
role which are present due to the couple stresses (moment per unit area) and body couples
(moment per unit volume), Because ot significant importance of couple stress fluids in the
industrial and engineering applications, many researchers have analyzed these flows. Some
examples are animal blood, hquid crystals, polymer thickened oil and polymeric
suspensions. The constitutive equation for a couple stress fluid is

=15+ (1.34)

Ty 1

J
where T8 and 74 arc symmetric and antisymmetric parts of stress tensor T respectively and
are defined as

TiS/ = Ay Tf‘)’ = =2Wyak — gei}'klkr (1.35)
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in which W'; is the vorticity tensor, e;,, the alternating tensor and [, the body couples. The

tensor W;; 1s defined as

1

Wy 25 (V= Vig) (1.36)
Substituting the values of tfl- and r{‘)- in Eq. (1.34) we get
Ty = UAQ)i; — 20Wij ek '"gei/klk- (1.37)

In the absence of body couples, 1. (1.37) implies
Ty = Ay, — 20Wip k- (1.38)

1.6.2.3 Power-law fluid

F'he power law fluid is a pencralized Newtonian fluid which has been used extensively in
the industr 7 especially as 4 lubricant. The rheological equation of power-law fluid is given
by

Ty = k()T Ay (1.39)
where, k is apparent viscosity and n is the flow behaviour index. Fluid behaves as viscous,
shear thinmung and shear thickening, respectively forn = 1,n < 1and n > 1. y given in

Ey. (1.39) s the second invariant of the first Rivlin-Ericksen tensor and is defined as
. 1 o
Yy = J;(l)ijA(l)ij- (1.40)

1.7. Boundary conditions for a thin lubrication layer

1.7.1. Slip-Flow Boundary Condition

Navier | [20] proposed the idea of slip boundary condition on the assumption that fluid can
shide over w sohd surface. e assumed that velocity and shear stress at the wall are linearly

proportional. Mathematically:
u = fprs, (1.41)

where, f 15 the slip length or slip coefficient. The no-slip boundary condition can be
obtained bv taking f = 0. The Navier hypothesis holds at macroscale for which £ must

be small.
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1.7.2. Imerfacial boundary conditions due to lubrication

Joseph {144] derived an interfacial slip-flow condition over a lubricated surface. He
showed thet, at the interface, velocity gradient is proportional to the square of the velocity.
Inside the thin lubrication laver, he applied the lubrication theory and neglected the
intluence o f pressure gradient which sesults in the following interfacial condition

94 _ mut
5= (1.42)

where u, snd p are respedtively the viscosities of Jubricant and the bulk fluid. Moreover,
Q represents the constant volumetric flow rate of the lubricant. Joseph [144] suggested that
to accomnwdate the cffect of lubrication layer on the bulk fluid, the no-slip boundary
condition « an be replaced by the interfacial boundary condition (1.42) if the lubrication

filin 15 suff.ciently thin.
1.7.3. Interfacial conditions for a non-Newtonian lubrication layer

Andersson and Valnes [145] derived an interfacial boundary condition by taking the
lubricant a» a power-law fluid. The dctailed derivation is as under
The shear stress for the power-law fluid after applying the lubrication theory is given by

5, =k (g.‘y_’)' (1.43)

Here, U is the horizontal component of velocity of the lubricant. For n = 1, Eq. (1.43)
represents 4 viscous fluid with k as the dynamic coefficient of viscosity. The power-law
lubricant is confined to a very thin layer of variable thickness & (x) on the solid surface as

shown inthe Fig. 1.1,

u u(x,y)
Hu y 18(x) Ux.y)
)T I TTr T T rron T

Fig. 1.1 Tne geometry of the thin lubrication layer [144].
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Following Joscph [144], assuine that the lubrication layer is sufficiently thin so that
lubrication theory can be applicd. As a result of this assumption the non-linear convective
terms in the momentum eguation are negligible and the governing equation reduces to

g2 ()
0= dx+Kay(6y)' (1.44)

subjected to the no-slip coadition U(x, 0) = 0. At the interface y = §(x), the velocity and
shear stress of both 1luids must be continuous. Joseph [144] proved that the pressure
gradient dp /dx doces not depend upon the thickness §(x) of the lubrication layer and thus
d(¢) can be taken arbitrarily small so that the pressure gradient can be neglected.
Substituting dp/dx = 0 w1 Eq. (1.44) and integrating the resulting equation twice, we get
the linear solution U = U(x)y/8(x) Here, U denotes the velocity of both fluids at the
intarface. T his solution 1s the same as obtained by the Joseph [144] for the viscous lubricant
andd 15 recognized as the conventonal drag flow approximation. The principle for
neglecting the term dp/da in Eq (1.44) is that it is considerably smaller than K (T7/8)" /5.
Using the solution of Eq. ( 1.44), the cuntinuity of the shear stress at the interface y = §(x)
can be expressed as

K (g)n =u (145)

In order to eliminate the thickness §( ¢) of the lubrication layer, we define the volumetric

flow rate as [144)

Q=[P utxy)dy = 22 (1.46)

Substituting the value of 8 (x) in Eq. (1.45), we get

wEOH\' | dute)
K (“22) =4 P (1.47)

where the velocity U at the interface v = 8(x) has been replaced by the velocity u of the
bulk fluid. As the thickness of the lubrication layer is very small, therefore the interfacial
condition (1.47) can be imposed at y = 0 rather than at y = §(x). i.e.
w0\ oua o)
K (“22) =4 oo, (1.48)
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This is a ew mterfacial boundary condition for non-Newtonian lubricants, from which

Joseph’s proposed boundury condition (1.42) can be recovered forn = 1.

1.8 Keller-box method

The flow problems considered in different geometries are represented by nonlinear partial
ditfercntiai equations. In many cases these can be transformed to boundary value problems
through su.table assumptions The exact and analytical solutions are not easy to obtain. In
suvh situatons one would expect to compute a numerical solution of the problem to analyze
the flow suuation. In this thests our mathematical models result in nonlinear boundary
value problems with nonlinear boundary conditions. We have implemented an implicit
finite difference method to obtain numerical solutions of the modeled nonlinear boundary
value prob.ems. Keller-bo < Method is a two-point implicit finite-difference scheme, which
have becen used extensively to investigate the boundary layer flows in different geometries
by the researchers workiny in this area. The detail procedure of this scheme can be found
in the book of Keller and ( ebeci |156]) Here higher order differential equations are reduced
to system of first-order ditferential equations by introducing new functions. The obtained
first-order system is approximated on an arbitrary rectangular net with forward-difference
derivatives and averages at the midpoints of the net rectangle. As a result, the system of
o st order uifferential equation 1s reduced to system of linear/nonlinear algebraic equations.
The resulting system of algebraic equations which is if nonlinear then linearized by
Newton's inethod and solved by the block-elimination method.

The detaily of implemeination are cstablished by the following example of coupled

boundary »aluc problem in a semi-infinite domain. Consider the boundary value problems

f.rr _ Zflz +/:/ " +g= 0, (149)
g'—fg' +1'g =0, (1.50)
f10)=0, f'(0) =0, g(0) =1, f'(0) =0, g(oo) =0. (1.51)

To reduce Eqgs. (1.49) and (1.50) into a system of {irst order equations, we introduce new

variables in the following way

f=u, u=rv g =w (1.52)
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Iherefore. the above svstem of equations implies
v —2ut+fr+g=0,
w —fw+ug= 0. (1.53)
The transfi.rmed boundary conditions are
£0)=0, u(0) =0, g(0) =1, u(w) =0, g(o) =0. (1.54)
Assuming rhe following grid puints
n0=0 n=n_+h, j=123,..5; 1 =1«

and using the centered-difference gradients and averages at the mid points of the net, Eqgs.

(1 52)and  1.53) arc approximated by the relations

fy ;- uy-u 9;—9;-
Lilitay ,, I 9791 _ (1.55)

] 7

wa(a) 4 () () (9,0) =0 139

%= () () + (1) (o12) =0 (137

where [/_ = &% ctc Equations (1.56) and (1.57) are nonlinear algebraic equations
and therefore have 1o be Lineanized be fore the factorization scheme can be used. We write
the Newton iterates in the following way:
Forthe (j « 1) th iterates. we write

fia = [ +6f;, etc, (1.58)
for all dependent variables. By substituting these expressions into Eqs. (1.55)-(1.57) and
dioppmg tne quadratic amd higher-order terms in &, etc., a linear tridiagonal system of

equations will be obtained as follows:
8= 8fiy —h. (L) = ()1, (1.59)
‘ 2

Suj— S,y = ny (255 = () 1, (1.60)
2

’
P
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éql - 6‘9}'_1 - h,] ('-—_) = (rs), 1,

wiw, g

2 J=3

(V1) 6f; + (W2) 8f,—y + (¥3) Su; + (Ys) Suy_y

1 (¥s) ov, + (y6) 6v,, + () 6g; + (s) 0gj-1 = (n,)}._;,

(1) of, + (u2) 3f)1 + (u3) Su; + (1s) Suj_y

+ (us) 8g, + () 8g,. 1 + (uy) dw; + (ug) Ow;_y = (rs),_%,

st.bject 1o boundary condnions

where

éfo—_—o, 5u0: 0, 61’020, 6g0=0, SWOZO,

h
Y1), =), = Zl (VJ + Vj—l)'
(Y3), = (Yu); = "hj(uj + u]’-l)'

h,
(Ps); =1+ n (fi + f,-1),
h

(e), = -1+ 4—_(;/ +f1-1)'

h
(1/’7); = (1/’8),' = 5:

hl

(), = o), = =7 (wj + wj-1),

hy
(13), = (ua), = ;(gj +gj-1),

h
(#s), = (#6)/ = ’41(“1‘ + uj—l)'

!
(), = L=-2(f 1 fi)

.
(o), = -1= 2(f,+ 1),
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In matrix-y cctor form, we can write
Ad=r, (1.65)

i which

18.) [4.] [6,.]
L 5] [4]]

= ., el L (1.66)

where in Eg. (1.66) the ele ments are defined by

[ 1 0O o 0 0]
0 0 0 0
]
A= 0 0 0o 1 0 ’Q:E%
0 -1 -¢ 0 0
100 0 -1 —c
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7y,¢%7§/

8,] =

c]

il

151] =

o O O O O

e

oV
g

(7‘\1
a4

, l<j<d,

0 (w), W) | 2<j<J-1,

0 (ﬂs)/ (ﬂ7)J )
0 0 0

0 1 0 J
0 0 ]

(1), () | 2<i<J,

,I<j<d -1,
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() oy
(%)
Lr/]:: (7) iy | 1<,
(r4) —(172)
(7))
Now, we vt
A= L. (1.67)

where

5] [o]]

=

1)
1 |

where [/] i the unit matrix while [u,] and [F,] are 5x5 matrices whose elements are
determinec by the following equations:

[a]=[4].

[A,][I‘l]:|Cl],

[a,]=4, =[BT, ] j=23 .,

la, [T, ]- [C, ] j= 230d -0

Ey (1.67) :an be substitured nto Eq. (1.65) to get

30



LU =r. (1.68)

Defining

Uo=W. (1.69)
Equation (1.68) becomes

LW =r, (1.70)
where

]
[#:]
w=|[w],
7]
]

and the ¥ ,] arc 5x] cowmn matrices. The elements of W can be solved from Eq.

(1 70)

alln] L)
AR AREA LA

Once the e;ements of W are found, Eq. (1.69) then gives the solution &', the elements of

(1.71)

which are vbtained by the follow ing relations:

(-7,
(51w, 1[5,

Once the erements of & are found, Eg. (1.65) can be used to find the (j + 1)th iteration.

The procedure described 1» implemented in Mathematica for the boundary value problems
consisting of nonlinear ordinary differential equatons together with nonlinear boundary

condinons considered in tne subsequent chapters.
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Chapter 2

Oblique flow towards a stagnation-point over

a lubricated surface

This chaprer deals with the oblique flow of an incompressible viscous fluid near a
stagnation point on a lubraeated plate. A generalized Newtonian fluid known as the power-
law fluid s used as the lubricant. To obtain the non-similar solution of the partial
ditfercntiai equations, coatinmty of shear stress and velocity of both fluids has been
imposed ar the interface The Keller-box numerical method is chosen to develop the
solutions «f the present tlow situation. The eftects of physical parameters on the fluid
velocity, wall shear stress, boundary layer displacement and streamlines are discussed

through graphs and tables

2.1 Mathematical formulation

Consider sieady, two-dimensional oblique stagnation-point flow of a viscous fluid past a
serai-infinke lubricated plite. A power-law fluid is used as lubricant. The lubricated plate

1s placed i the xz-plane as shown in Fig. 2.1.

Lubricant

Figure 2.1° Schematic diugram for the considered flow situation.
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W ¢ consider a free streans flow containing a combination of orthogonal stagnation-point
flow with strain rate a and a shear flow along the plate having strain b. If U and V
respectively are the velocry components of the pow er-law fluid in x and y directions, then
we have

0=V ) dy, Q.1)
where Q 1 the volumetic flow rate and § is the variable thickness of the lubricant.

Assuming u, v the velocity components of the bulk fluid in x and y direction, the steady,

incompressible, two-dimensional flow is governed by:

cu  ov

"';+a—y‘— 0, (2.2)
ou o o (1o 2

-t v = T aax FvVeu, (2.3)
av v 1ar 2

“ax+voy— > 3y FvVoy, 2.4)

where v = /p is the kinematic viscosity. Eliminating the pressure between Eqgs. (2.3) and

(2 4) we ohtain

aydx? ' ay3 ax3 axdy?

a%u %u a* %y 3u Bu 3 v
+tves u=--— -—-—v( )=0

dyox a2 ' a2 U.}xay (2.5

The expression for the shear stress is given by
du o
Ty —“($+5,)- (2.6)
The bound iry conditions 4t the surface, interface and free stream are as follows:

At the surface the no-slip poundary conditions imply

U(x,00=0, V(x,00=10 2.7
Assuming that the lubricant filin is very thin, we have
V{x,y) =0, vyel0,d(x)] (2.8)

The mterficial condition between the viscous fluid and the lubricant can be obtained by
imposing «ontinuity of ve locity and ~hear stress ot both the fluids. If y, is the apparent

viscosity ot the power-law fluid, the continuity of shear stress at y = §(x) gives

P(E) = (2.9)

ay) ~ Floay

where g, 1 defined as
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M=k (f',%)_ (2.10)

Assuming U(x,y) varics tinearly inside the lubricant, therefore

L(xy) =38 2.11)

Here U(x) denotes the velocity of both the fluids at the interface. Using Eq. (2.1), the

thickness ¢ (x) of the lubr .cant can be expressed as

_ 20
§x)= T (2.12)
Swostituun,, bgs. (2 10) - 2,12y, Eq. 12.9) suggests
a_ f_(i)" ij2r (2.13)
9  m\2Q ' '

The contin ity of horizonial velocity components of both fluids implies that
U=u. (2.14)

Thercfore tiq. (2.13) leads to the following slip boundary condition

@ _ k(1Y o
> _“(ZQ) u (2.15)

The continaity of vertical velocily components of both the fluids at y = §(x) implies

v (x, 5(x)) =V (x, 6(,1')). (2.16)
By using E . (2.8) one geis
v (x, 6(x)) =0 (2.17)

Asuming he tubrication layer 1o be very thin, we can apply boundary conditions (2.15)
a (2.17) ity = 0 1f' @ and b represent dimensional constants, then following Tooke and
Bivthe [23,, the boundary conditions tor the velocity components at free stream are

u, =ax+b(y- b), v, = -aly — a). (2.18)
T express the set of equations into dirnensionless form, following dimensionless variables

atv introduced

u=axf'(m) +ug’'(m), v=—Javf(n). n= y\lg, (2.19)

where prinwe denotes the ifferentiation with respect to 7 nad f and g measure the normal

and tangential components of the flow. In new variables boundary value problem takes the
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form

frHff" =2 f =0, (2.20)
g+ f 9" +fy" =19" -g'f" =0, 2.21)
fr0) =0, f"0)=A(f (0)*, f'(o)=1, (2.22)
T g 0)=0 g"i0)=2ndy'(0)(f (0", g"() =y (2.23)

The parameter A in Egs. (1.22) and (2 23) is given as

A=kl aix (2.24)

woatree)t

Equations 2,20) and (2.2 1) can be integrated once 1o give following equations upon using

the free strcam conditions
f'=f2+ff"+1=0, (2.25)
g"+fg" - f'¥+tyia—-p)=0, (2.26)
where @ = 1y, — f(o0) and f is a frec parameter.
Letting g'tn) = yh(n), E\. (2.20) reduces to

h'+fh —f'hra—fB=0, (2.27)

where y = b/a represents the shear in the free stream.

The relevaat boundary conditions become
h (0) = 2nAR(O)(f'(ON*™ 1, h'(w) = 1. (2.28)

From Eq. 12.24) we note that Egs. (2 25) - (2.27) possess a similarity solution when n =
1/2. The solutions for n £ 1/2 are non-similar and are also included in the chapter. The
pwameter 4 represents the ratio of viscous and lubrication length scales respectively as

follows
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= Luse (2.29)

Lap

N||a|<|
<

A=

Y
The case when Ly, 1s small, A becomes sufficient large and when A — oo, the no-slip
conditions f'(0) = 0, and h(0) = 0 are restored trom Eqgs. (2.22) and (2.28). The case
when L;,, attains a large value then 2 - 0 and the full-slip boundary conditions f''(0) =
0 and h'(1) = 0 arc obtuined Thus the parameter A can be utilized to control the slip
produced by the lubricant and 1s called slip parameter.

Employing (2.19), the dinensionless shear stress at the wall takes the form
Ty = xf"(0) + g '(0) = xf"(0) + yh'(0). (2.30)

[ find the location of sep-aration point (stagnation-point) xs on the surface, we put 7, =

0 Therefore

— gl o)
T Ty T Yy (2.31)

2.2 Numerical results and discussions

Tu find the impact of physical purameters A and § on the dimensionless quantities f', ",
h and A’ Eys. (2.25) and (.27) subject to boundary conditions (2.22) and (2.28) are solved
numericallv by implememing Keller-box method.

Intluence «f shp parametcr A on f' is demonstrated in Fig. 2.2 while Figs. 2.3-2.5 display
the effects of parameters 4 and § on h. The effect of flow behavior index n on f’ and h is
shown in the Figs. 2.6 and 2.7. Streamlines of the flow against the involved parameters are
shown in Fags. 2.8-2.10. A comparison of numerical values of @, f" (0) and h'(0) with the
enisting values in the literature s presented in Table 2.1. Impact of emerging parameters
on f"(0), x and h’(0) s shown in Tables 2.2 und 2.3. Table 2.4 is devoted for the
intluence ¢ fparameters y 4 and 8 on the stagnation-point.

The vanatwn of horizontal velocity component f* against A is displayed in Fig. 2.2. The
figure eluc dates that f' ac celerates by increasing slip at the surface. Hence the lubricant is
forcing the fluid to flow fast at the surface. To see the effects of A on the shear velocity A

n the abseace of B. Fig. 2 3 is plotted It is noted that h decreases by increasing A near the
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sutface (1 = 0). More prceisely 4 varies with A between n = 0 and n = 1 and after this it
beeomes independent of { and varies lincarly with n. Variation in h against A for two
diferemt values of f is Jepicted in Fig. 2.4. According to this figure 4 increases by
increasing he slip (1.e. by Jecreasing A) for negative values of . However, for the positive
vatues of £ the shear velos ity decreases by increasing slip. Fig. 2.5 elucidates the variation
o! h for di‘ferent values ¢ f 8 and for two differemt values of A. One can observe that the
shear velodity component h decreases when £ increases from negative to positive. Fig. 2.6
1s plotted to) illustrate the behavior of 7 under the influence of flow behavior index n when
= 2. Thss figure shows that f’ is an increasing function of n. Variation of h(n) for
ditferemt vilues of n when A = 2 is displayed in Fig. 2.7. We see that h increases by
increasing n when f# < 0 ind decreases when > 0. Figures 2.8-2.10 show the influence
o1 A and B on the streamhines pattern for y = 1 and y = 5 respetively. It is clear from Fig.
2.5 that scparation point moves to the right side along x-axis when 8 increases from
negative te positive. Fig 2.9 shows that by increasing slip (i.e. by decreasing A), the
separation point moves towards right on the x-axis when y < 3. However, fory > 3, the
separation point moves towards left by increasing slip as shown in the Fig. 2.10.
The comparison of numer «cal values of f"(0), @ and h'(0) with that of already available
values in tie literature [S4] in the limiting case is presented in Table 2.1. It is noted that
our numer <al values are w excellent agrecment with previously published data. This fact
validates the accuracy of vur developed numerical solution.
Table 2.2 i.lustrates the numerical values of f”(0) and a against A. This table demonstrates
that f''(0; and «a increascs by increasing A. Effects of parameter A on h'(0) for three
ditferent values of B are investiguted in Table 2.3. This table indicates an increase in h'(0)
by increasing A for f < 0. However, the values of h'(0) follow a reverse trend by
wereasing A for > 0. rhe separation points for various values of y,A and for three
ditfercot values of B arc shown in the Table 2.4. The tabular results do confirm the

observations made througn Figs. 2.8-2.10.
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Fig. 2.3. Varation of h(n) against slip parameter A when g = 0.
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Fig. 2.5. Effects of slip parameter A on h (1) for various values of S.
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Table 2.1: Comparison of numenical values of £/ (0), @ and h'(0) for no-slip case (1 = o)

wath refereace [54] Liet ol.

I h'(0)
_(gllgé}gon _w—fT(—OS a g=0 B =5 g =-5
Present | 1232593 | 0647903 | 1.406564 | —4.756416 | 7.569314
Rel [54] T 2_355«» 0.64790 | 1.40637 | —4.75656 | 7.56931
S o

Table 2.2: Numerical values of 1" (0) and a against A.

AN O! a A a
_661'_',’ (009938 | 0.0033200 | 3.0 | 0.934338 | 0.4151829
7005 | (048472 | 0.0163362 | 5.0 | 1.042591 | 0.4880532
00 J (: 094036 | 0.0320301 | 10 | 1.134289 | 0.5587490

(- 375887 | 0.1375776 | 20 | 1.182886 | 0.6007183
1.0 '7(593u.4 02318142 | 100 | 1.222604 | 0.6380184

20 (821453 | 03480926 | oo 1.232598 | 0.6479025

- — - .- [ [ S —— —~L

2 |
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Table 2 3: Numerical values of #1'(0) against A and 8 wheny = 1.

A s=0 [ =5 ] B=-5
C).01 | 0.0079443 | -0.0417440 0.0576325
C9.05 | 0.090407 | -0.2033187 0.2814000
0.1 | 0064200 | -0.3937s18 0.5466039
T 05 | T03:44730 | -1.5549615 2.2039084
1O | 05402318 [ -2.4270889 3.5075523
T 20 | 07976856 | -3.3097286 4.9050999
3.0 | 09412541 | -3.7304323 5.6129404
[ 50 | 1.0v26508 | 41203028 | 6.3056047
0 7 i 3deea T[T 44367471 | 69061319
C20 | 11828857 | -4.5977x31 7.2310617
100 | 1.3a7923% | -4.7250%88 7.5009358
500 | 14028093 | -4.7501721 7.5557906
T | 14065638 | -4.7564167 7.5695442

Table 2.4: influence of 2 and § on stagnation-point x; wheny = 1 andy = 5.

y |2 B=- B=0 B=3
“ZuT05 | 04906 | 34906 6.4906
50|  -06882 | 23118 53118
305 24119 ] 05881 3.5881
50 291 [ 00719 3.0719
1 0S| 3863z | —0s632 2.1368
5.0 -40480 | —1.0480 1.9520
2 |05 -a5849 | -1.5889 14111
SGTT T 46080 | ~1.4080 1.3920
“3 T0S T T 53145 [ -23145 0.6855
'sfo_i"' © 51679 | -21679 0.8321
T3 TS T 6768 | 37658 —0.7658
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1 *'o'.s—” ~10.394 —7.:4940 —4.3940
L
50 | 79.0877 —6.0877 —3.0877

__ 1-5-_0-}*‘-‘  -6.2879 ~3.2879 ~0.2879

2.3 Conclusion

In this chipter oblique flow of a viscous fluid towards a stagnation-point over a plate
lubricated ~ith a power-law flnd is investigated. In the present case we have solved the
fluw cquatons for n = 12 (sunilar solution) and n # 1/2 (non-similar solution). The
solutions ae developed using the Keller-box method. The motivation is to determine the
eftects ofte parameter B 1nd the slip parameter A on the flow characteristics ranging from
no -ship 10 1all-slip cases. 11 is found that slip increases the velocity and suppress the effects
o! frec stre am velocity for large values. Moreover, the separation point moves towards and

away from origin for variv.us values of involved parameters.
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Chapter 3
Non-orthogonal stagnation-point flow of a

second grade fluid past a lubricated surface

The stagnation-point flow of a second-grade fluid past a power-law lubricated surface is
analyzed i this chapter. it is assumed that the fluid impinges on the wall obliquely. A
suitable cloice of similarity transformations reduces the governing partial differential
equations .nto ordinary aifferential cquations. The thin lubrication layer suggests that
interface conditions betw cen fluid and lubricant van be imposed on the boundary. An
implicit fiy ite difference ~chenw known as Keller-box method is employed to obtain the
numerical olutions. The cffects of slip parameter and Weissenberg number on the fluid
vo.oaty alfsticamhnes a ¢ discussed through graphs. The limiting cases of partial and no-

shp can be deduced from 1he present solutions [54]
3.1 Mathematical formulation

Consider tne steady oblique stagnation-point flow of a second grade fluid over an infinite
plate lubriy ated with a th layer of power-law fluid. The x-axis is taken along the flow,
the y-axis s normal to thy plate and the origin O is located at the center of the plate. We
consider a tree stream flow containing a combination of orthogonal stagnation-point flow
with strain rate a and a shuar flow along the plate having strain b. The power-law lubricant
spreads on the plate with ¢ onstant flow rate Q and forms a thin lubrication layer of variable
thickness & (x). Owing to the mass conservation principle the flow rate Q is given by Eq.
(2 1) Unoxr these assumptions, the sieady two-diniensional flow of second grade fluid is

governed ty Eq. (2.2) und

a d%u d%u au\?  dufov  du
2212y B (20 oo ov)
ox dx dxdy dx dy \dx dy

0 14dp k 2 2 2 2
u -t+r- = -y 2 TR SRy A :
Ix 2 p Ix p +i axey Ix? ay? axdy
dy -2 (a_“a_" 2'_‘.‘?.‘.’.)
dx 0x dy dy

(3.1)
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v a%u a%v %u
Ui tu——+v—+ v
dx

9 axady dxdy ay?
Wty o 1dP 2 Jdx _ (B_ua_v ou Ov)
ud;“*tgg . po +VJU+- dx dx Oyay
a%v a°v dv
ety o) -2
2 { 0x0y v ay? oy

(3.2)

where k1 the second g1 «de fluid parameter. Elimination of pressure between Egs. (3.1)
ard (3 2y g ves

WWI'Y) _ gy — e ¥V 33
axy) =W p oxyr ' (3:3)

where u = 0y/dy and v = —0y/0x
The no-sliy» boundary coralitions are given by Eqs (2.7) and (2.8). The continuity of the

shear sties. at the interface y = §(x) suggests that

du du d u duory _  dU
ﬂb‘);+}\o(v5;§+lla);—25;‘é—})—ﬂLay. (34)
Using Egs (2.]) and (2.9) (2.1}, one obtains the fullowing slip condition
K 0 Q%u _ ndvy k(1N o
Ay + u + dxd) L Jy ay) T u (ZQ) us 3.5

The other oundary condr ion at the interfuce is represented in Eq. (2.17). The assumption
o) a thun Ivbrication layer allows us to impose boundary conditions (3.5) and (2.17) at the
sutface wheny = 0. The toundary conditions far away from the stagnation-point are given
in Eq (2. 8). The wall »hear stress is represented by the left hand side of Eq. (3.4).
Seosutuin L g (2 19y i kg 3.3) and integrating the resulting equations, one yields
frafrr = f2=we(ff =20 f" + ) £ G =0, (3.6)
9"+ f1"=f'g ~-Welfy”~1'g"+f'g"—f"g)+C;=0. G.7
In above e-quations, We = kqa/pv is the Weissenberg number. The boundary conditions
i new yar ables take the ,orm
10) =0 £7(0) +3We f1(01f"(0) = AF' (O, f'(@) =1, f'(®) =0, (3.8)
g0)=0 g'(@)=y, g"(w)=0, (3.9)
g '(0) +we(g'(0)f"(0) +2¢"(0)f'(0)) = 2n4 g'(0)(f' (0))*""1. (3.10)

fn Egs. 13.%) and (3.9), the boundary conditions arc augmented at the free stream because

the goveraing cquations are one order higher than the Navier-Stokes equations.
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Substitutin 2 the free strcam conditions give C; = ! and C, = y(a — B). Thus Egs. (3.6)
aad (3 7y cld
L= =W -2 )+ L =0, (3.11)
WU =g =~ We(fg = ['g" + 1" - fg ) +¥@=B)=0.  (.12)
Assuming j'(n) = yh(n) Eq. (3.13) reduces to

R+ fh' -f'h—We(fr" - f'h" +f"h" = f""h)+C =0, (3.13)
n which € = « — 8 and 1 e conesponding boundary conditions become

h'(0) 4 We (R(0)f"(0) + 2h'{0)f(0)) = 2nA h(0)(f'(0))*"1, (3.14)
h'(o0) = i, h''(o0) = 0. (3.15)

Employing (2.19), the din.ensionless shear stress at the wall takes the form
RGO+ We f(0)) +[g7(0) + We(g'(0)f " (0) + 2" (0)f' ()]

= xf"(0.[1+3We [ ()] +y[h'(0) + We (R(0)f"(0) + 2h'(0)f'(0))], (3.16)
= xR, Y G+ YR, P, (3.17)
where R, 2C, = f"(0) 1+ 3We '(0)| and

R, V'C.: h'(0)+We th(0)f(0) + 2h'(0)f'(1)).

To find the location of separation point (stagnation-point) x on the surface, we put
R,‘l/"C, = 0. Thercfore

g’ 0)+we( g'(0)f" 0)+24" (0)f' 2) . h'(0i+we (h(0)f" (0)+2h1(0)f1(0))
)13k e f'(0). B () 1+3we f'(0)]

(3.18)

3.2 Analysis of numerical results

Equations 3.11) and (3.]3) subject 10 boundary «onditions (3.8), (3.14) and (3.15) are
solved nui erically for ditferent values of parameter A, f and We by using Keller-box
method wt ich s already e «plained in detail in section 1.7. In order to see the effects of slip
pwameter | and Weissennerg number We on f', 1igs. 3.1 and 3.2 are plotted. Figs. 3.3-
3 6 have been displayed 1) sce the eftects of 4, We and 8 on h while the effects of flow
bohaviour ndex i on f"a,.d h are presented in Figs 3.7 and 3.8 The effects of parameters
on the Joction of stagnsdon-point have been shown in Figs 3.9-3.11. The numerical

values of b l/ZCfl and a for various values of A und We have been shown in Table 3.1
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while Tables 3 2 and 3 3 epresent the numerical values of Rexl/zCh for various values of
A, 3 and We. Tables 3.4 and 3.5 show comparison of numerical values of Rexl/szl, a and
R, ‘,1/2C,l for various valus s of We and f for no-slip case with those of [54].

The horizeatal velocity component f* for various values of slip parameter and for a fixed
value of We 1s shown = Fig 3.1 It 1s clear trom the figure that f'decreases by
increasing 4. This figure slustiates both full-slip and no-slip cases for A —» 0 and A — o,
respectivel v. The increase of velocity with increasinyg slip indicates the ability of the power-
law lubrici nt to increase the velocity of the fluid impinging on the surface. The variation
m he hort ontal velocny < omponent ¢ for different values of We and for a fixed value of
A s displa.ed in Fig. 3.2 Itas clear from the figure that f' follows a decreasing trend by
i reasing We Test compatations show that such a decrease is not significant for smaller
values of .«. This implies that the full-slip suppress the viscoelastic effects. Fig. 3.3 is
plotted to show the variaton of tangential velocity component h for different values of A
when We =0.5and f = J. It1s noted that h increases by increasing the slip at the surface.
Fig. 3.4 shows the variatsn o1 /i against A and f when We = 0.5. Here two interesting
situations «-ccur. For negarive values of B8, h decreases by increasing A. On the contrary, it
follows a -onverse trend by increasing A for positive values of . The later case also
confirms tne appearance of distinct regions of reversed flow corresponding to positive
values of [. The variation of h for ditferent values of S and for a fixed value of We both
for partial ind no-slip cases is depicted in Fig. 3.5. In either case it is observed that the
tangential velocity comp mem ncreases by varymg S from —5 to 5. Moreover, the
lubricant eahances the tar gential velocity Fig. 3.6 shows the effects of We on the shear
vo.outy hoor different va ues ol f when A = 4. We observe that h follows a similar trend
by varying 8 as observed in Fig 3.5 Moreover, a decrease in Weissenberg number We
enhances tne magnitude of tangential velocity. Thus enhancement in the magnitude of
tangential - elocity compo.ient owes tu a decrease in We or a decrease in A. Variation of f
for different values of n when A = 2 und for two ditferent values of We is depicted in Fig.
3 " 1tis char from this figure that f' 1ncreases by increasing n. This increase is more rapid
for lower v ilues of We Fig. 3.8 15 plotted 1o illustrate the behavior of h under the influence

of flow bel.avior index n when A = 2 We see that h increases by increasing n for negative
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values of [ and decreases for positive values of 8. Figs. 3.9 and 3.10 elucidate the effects
ol parameers A and ff «n the stresmlines. It i1s evident from these figures that the
stignation pomt moves to wards right on the x-axis by increasing the slip at the surface
lor B == 0 Hr by increasng B heeping A fixed. respectively. Fig. 3.11 shows that the
stagnation pomt moves to wards left on the x-axis by increasing We for fixed value of'slip
purameter vhen f = 0

The changy in numerical v alues of R, 172 Cr, and a tor various values of A when We = 0.5
arul We = 0.05 is display «d in Table 3.1. [t is clear from the Table 3.1 that the numerical
values of toth Rex”ch1 «nd a increase by varying A from 0 10 oo. Table 3.2 shows the
change Rexl/z(,‘h for ditferent values of A and ff when We = 0.5. It is clear from the
Table 3.2 trat an increase .o the value of A from 0 to oo results in increase in Rexl/2 Cy, when
f < 0. Howevcr, for the case when § > 0, Rexl/z(',1 decreases by increasing A. Table 3.3
clucidates he change m R,xl/z(.‘,, for various values of We and § when A = 5. We see that
for g >0, Rexl/2 Ch, increases with an increase in We. On the contrary, Rexl/zC,1 decreases
when 8 < . Tables 3 4 and 3.5 show comparison of numerical values of Rexl/szl, a and
R Y C 1 spectively tor various values of We and 8 when there is no-slip with those
caiculated by Li et al [*4]. It 1s observed that the numerical values of Rexl/sz1 and
R,‘WC,l in the limiting «ase when there is no-slip agrees well with the values already

reporied in the literature.
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Table 3.1: tmpact of ship  arameter A on Rexl/z(}f1 and a.

[ We=05
TR
000 | 0.019843
01 ] 00393900
05 01341689

10| 0334804

20 | 0.54062°6
50 | 07597807
C 0] 0830330
S0 | 0.8903610
Lo — L .

We = 0.05
ra A R, ¢y, a
0.0165893 0.05 | 0.0424031 0.0164028
0.0330210 0. | 0.0827249 0.0322846
01581293 | 0.5 | 0.3419276 0.1420064
0958945 | 1.0 | 0.5523375 0.2433985
0.4018014 | 2.0 | 0.7788879 0.3706274
0.7587700 50 | 0.9981635 0.5223289
0.8649429 | 10 1.0869816 0.5967908
0.9487069 | 50 1.1612002 0.6681064
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00 | 0.8905048 0.9588520 j 100 1.1705256 0.6778271
00 T 00013 T 09668995 1500 1.1779773 0.6857377

[ 00902501 54 d.%<5§95[541ioo"“"i'.l‘79'§39 [54] | 0.687734 [54]
[ —

Table 3.2: impact of A anu § on Rexl' ¢C, when We = 0.5.

A B =0 B =5 B =-5
TLos | Tuot3ls T =0.078110 0.1203731
T ] 00420940 —0.154856 0.2390438
)5 ] 02027522 —0.718091 1.1235950
L0 | 03818285 —1.292183 2.0558402

0 | 06533382 - —2.049776 3.3564525
TS0 | 09957851 —2.803089 4.7946595
10 | 11366289 —3.045024 5.3182823
T50 | 12455143 —3.205243 5.6982719

00 1207180 23222766 5.7421960

.00 12791666 —3236373 | 57767065 |
T o ;"—'1_.27_2 80 [S4]  —3.239720 [54] 5.785280 [54]

Table 3.3: impact of We wnd § on R, Y2¢, when 4 = 5.

we |  B=0 B =h B =-5
LoD 10895978 T Z4.243463 6.2554636
TL05 | 10731991 ~ —4.080050 6.0690204
T ] 10654379 23899551 5.8627391
s | 09957851 =2.972068 4.7946691
L0 | 09419525 =2.360739 4.0712972
45 ] 09m1453 T —1.979475 ~3.6009434
)0 1 0826599  —1525416 ~3.2506969
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Tuable 3 4: Companison st owing effects of We and ff on Rexl/ZCf] and a for the no-slip

case. The values written .
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the brackets arc calculated by Li et al. [54].

R

1/26}:—
1

€x

a

1.232594 (3.23259)

(134251 (1.13425)

0.6479022 (0.64790)

0.725040 (0.72504)

1.05%179 (1.05818)

0.793784 (0.79378)

1.996490 ((.99689)

11902435 (0 902485)
0752704 (0 752763)

1.856403 (0.85640)
).945682 (1.94588) | 0.914558 (0.91456)
10.968899 (0.96890)

1.202033 (1.20203) |

v.596775 (0 596775)

1.566224 (1.56622)

Table 3.5: Comparison shwing ¢ffects of We and f§ on Rexl/zCh for the no-slip case

(# = »). The values writt :n in the brackets arc cali ulated by Li et al. [54].

[ we B =1 B=5 B=-5
0 | 1406368 (1 40637) | -4.756558 (—+.75656) | 7.569314 (7.56931)
01 | 1.366218 (1 36622) | -4.304363 (-4.30436) | 7.036803 (7.03680)
02 | 1.335391 (1 33539) | -3.955234 (—3.95523) | 6.626002 (6.62600)
03 | 1310462 (1 31046) | 3.673611 (-3.67360) | 6.294509 (6.29451)
04 [ 1289708 (128971) | 3.439634 (—3.43963) | 6.019047 (6.01905)
0S5 , 1272168 (1 27217y ,  3.240309 (-3.24031) | 5.784649 (5.78465) |
10 - 12110721 21”-7»"; 2.551788 (-2.55179) | 4.975144 (4.97514)
20 | 1151269 (1 15127) | -1.832512 (- 1.83250) | 4.135046 (4.13505)
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3.3 Concluding 1 emarks

[n this chapster, we have i vestigated the non-orthogonal flow of a second grade fluid near

a stagnatio 1-point over a »late lubricated with pow er-law fluid. The governing equations

Al ng waith boundary con itons are sransformed 1o ordinary differential equations by a

stilable choice of transfo. mations. The governing cquations possess a similarity solution

when n = 1/2 The num-rical solutmons are developed using Keller-box method. Some

findings of the mvestigatin are

(I» The ir~rease in horiz mtal veloeny f' with increasing slip indicates the ability of the
power law lubricant '0 increase the velocity of the fluid. Moreover, f' decreases by
increa.mg We and in reases by increasing n.

(i Tangeatial velocity c..mponent h decreases by increasing A for § < 0 and it increases
when 2 > 0. Furthennore. h is a decreasing function of We.

(in) h incrv ases by mcreas»ing n for negative values of f and decreases for positive values
of 5.

(1v) The stignation-point moves towards right on the x-axis by increasing the slip or by
inciea mg £ and it moves towards left by increasing We.

R, 'z %, and @ inerease by oncre asing 4 while Rexl/sz1 decreases and «a increases by
augmeating We. It is also noted that Rexl/zCh increases by increasing A when f < 0

and it educces for f# = 0. An oppusite behavior is observed for Rexl/ZCh against We.
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Chapter 4

Oblique stagnation-point flow of a couple

stress fluid over a lubricated surface

In this chapter steady tw -dimensional oblique flow of a couple stress fluid towards a
stagnation- point on a flal plate 1s investigated nuinerically by implementing Keller-box
mcthod. Tre plate is lubncated with o slim coating of power-law fluid. Governing partial
ditfercntia equations of 1 couple siress fluid are converted into ordinary differential
equanions sing similarit. trans formetions. Analysis has been performed by imposing
centimuty Hf veloenty and shear stress of both the 1luids at the interface. Influence of slip
a4 cauple sticss paramet s on the horzontal and shear velocity components, wall shear
stiess and )orcation of'the s agnaton-point are presented graphically and in the tabular form.
The limutir ¢ cases for the viscous flund and no-slip condition have been deduced from the
present sohitions. The results are compared and found in excellent agreement with already

res orded o sults in the existing research articles |28, 54].

4,1 Mathematical) formulation

Consider t1e steady, two dimensional, oblique fluw of a couple stress fluid towards a
stagnation point over a lunricated plate. A power-law fluid is used as lubricant. The plate
i1s tixed in z-plane such that it 1s symmetric with respect to the origin. The fluid impinges
on the plat: with an angle y in the demain y > 0. (Fig. 2.1). We assume that power-law
lubricant s,ireads on the pate furming a thin coating with the flow rate given by Eq. (2.1).

The flow problem is gove: ned by the following cquations along with continvity Eq. (2.2).

u du 14p (b‘u 6"u) (64u a*u 6‘*u)

R B T ] SR Sl A s —, :
av av p v ox + a2 T\ax +2 ax?%dy? + ay* (4 D
Jdv v 1dp ah av atv atv atv

R B T R G - — . — .
dx | dy pady v (6C' + a;.z) V1 (6x" t2 dx29y? + 6y4)' (4.2)

where vy represents the . atio ol couple stress viscosity to the density. Eliminating the

pressure by tween Egs. (4. ) and 14.2) one obtains
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— - . —_—— C— = - — = —— —_—— e —_— —

a2%u d2u 02v v ( A3u . 9 a3v )

0ydx dy? ox? ax.ly dydx? a8yt 9x3  axay?
( 51 Su + Pu Dy 25y @5p ) _ (4 3)
1\aya axay3 | )yS  JxS ax3ayz  aaayt) ‘
‘The cxpression for the wa | shear stress is given as
u »fou
w2 -w(03)] (4.4)
Y7 =0 g y

B..undary onditions at th* sobd lubricant interface are given by Egs. (2.7) and (2.8). The

coatininy ofshiear stress L the miterfce y = §(x) \mplies
o dtu S
ey ==y S, 4.5
udy Coay! Hi dy ( )

in which g represents the viscosity ot the lubricant defined in Lq. (2.10).
Substituting Eqs. (2.11)-( .14) mto Ey. (4 5) we get

o qtetu k(1) n

o= (55) v (4.6)
The rest 01 the boundary « onditions are the same as mentioned in Egs. (2.17) and (2.18).
Following Santra et al. [1 48] the boundary conditions (4.6) and (2.17) can be imposed at
the fluid-sHlid interface. Boundary «onditions at free stream have been mentioned in
equation (C . 18).
Using trans formations giv :n in Eq. (2 19), the governing Eqgs. (4.3), (2.7), (4.6), and (2.17)

reduce to

FO 4 f 7 fIf = - KfT =0, 4.7)
gu 4 f g v fy" - 9" g f —Kg" =0 (4.8)
fQU) =), 17(0) =0, £ =K f¥(0) = A0 (0))*",

fi(w): 1, f'(0) =, (4.9)
g(0) =), g"(0) =u, g"(0)- Kg®(0) = 2ndg'(0)(f'(0))"", (4.10)
g"'(e) =y, g"'(): 0, (4.11)

where K = v,a?/v? is ca led the couple stress parameter. The parameter A given in Egs.
(4 9) and (=.10) is defined .n Eq 12.24). The boundary conditions f'(0) = 0 and g""'(0) =
0 are consequences of the vanishing of couple stiess tensor at the fluid-solid interface.

Iniegrating Eqgs. (4.7) and (4.8) aad using [ree stream conditions, we get

/’”—f" +/fll+1_KfV :0' (4-]2)
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G g - K =y (B -, (4.13)

I order to climinate y tro n lig 14.13) we let g'(n, = yh(n) to obtain

W' +1h ~f'h—Kh' =f - a. (4.14)
The bound«ry conditions .41 new variables become

h'(0) = 1, h'(0) — Kh "(0) =: 2na h(0)(f'(0))"" ", h'(0) = 1, h""(w) = 0. (4.15)
Equation ( 1.24) suggests that 10 obtain similar solution, one should have n = 1/2. The
parameter ( given m Ey. 1 2.24) 1aeasures slip produced by the lubricant on the surface.

Employing (2.19), the din ensionless wall shear stress is given by
Re,/2Cr = x (£7(0) = <f () 4 (g"(0) - Kyg™ (@)
=x(7(0) = Kf (W) 4 y(h'(V) = KR (0)), (4.16)
= xR, V*C;, + YR, Y*Ca, (4.17)
where R, "2C, = ["(0) - K/"*(0) and R, /*C, = h'(0) — K" (0).
Tv find the stagnation-powit x; on the surface, we st Rexl/2 Cr = 0 to get

g K k) “.18)

ST o kv Y T O0TkT Yoy
4.2 Discussions of the numerical results

Eyuations 4.12) and (4.15) are highly nonlinear and coupled along with nonlinear and
coupled boundyry conditiv as (4.9) and (4.15). Exact solution of such a system of equations
is not pussible To handle this systenn of equations numerically, we have employed the
Keller-box method whicl. is based on an implicit finite difference approach. Using this
scheme, the values of ' wad h™ are displayed graphically for different values of A, K and
£ i Figs. $.1-4.5. The i fluences of pertinent parameters on the streamlines have been
shown intigs. 4.6 and 4. while the impact of these parameters on Rexl/szl, a, Rf_,xl/2 Cy
and stagna ion-points s d splayed in Tables 4.1-4.5 A comparison of numerical values of
R,.l/;!C,l,-l and R,.xl/lC, in 1he special cases wath that of existing in the literature is
m sented 1 Tables 4.6.4 7

Fvpd 1 deplays the varia on in horwzontal velocity component under the influence of slip

parameter (. Dashed Imes show the results for viscous and solid lines for the couple stress
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flud. We bserve that f' decreases by decreasing 2. Moreover, couple stress parameter
enhances ihe cffects of »lip parameter. Analysis showing the impact of couple stress
parameter X on f* for fixed A is presented in Fig. 4.2. It is clear from this figure that f' is
a Jdecreasiyg function of €. Once can obscrve some alteration inside the boundary layer.
However, he curve becos-ies smooth at the free stream. Effects of slip parameter A on A’
for two vahies of § when X = 0 5 have been provided in Fig. 4.3. According to this figure
h' decreass s for positive alues of § and increases for negative values of f. Fig. 4.4 is
displayed 10 analyze the } e¢havior of A" under the iafluence of B both for the no-slip and
pirtial shp cases [t 1s not :d that an increment in the value of f§ results in the decrease of
h This docrease s more significant on the rough surtace (when A — o0). Influence of
parameter 3 on A’ for twy values of K when A = 2 is presented in Fig. 4.5. The analysis
shows that ' decreases b. increasing . This decrease is diminished by enlarging couple
stiess para neter K.

The strean lines explored a Fig. 4.6 show the intluence of § on the stagnation-point in the
presence o¢ slip when y - 8and K = 0.5. It has been observed that the stagnation-point
meeves tow ards left by in reasing . Streamlines showing the impact of slip and couple
stress para.aeters are expr. ssed in Fig 4.7. It is evident that stagnation-point shifts towards
right by in reasing A as well as K when 8 = 0.

Intlucnce « f parameters » and K on the skin friction coefficient Rexl/2 Cy, and boundary
laver displicecment ¢ has been provided through Table 4.1. It is observed through Table
4 | that R, 1/2(,}] increas: s by increasing A and de« reases by increasing K. Likewise, a is
in. reased | v enhancing A «ind A .ndependently. Impact of A on Rexl/2 Cp, is shown in Table
b lhas een observed nat A, Y€, gains the magnitude by enhancing A for 8 < 0 and

loses for £ > 0. Diata shc wing Rex“ “Cp, for various values of K is represented through

Tablc 4 3. it 15 observed tnat R, 1/ZC* gains the magnitude as K is accelerated for § = 0
am! loses 13 values for £ < 0. The movement of the stagnation-point under the influence
o! increasiig A, K and 8 is demonstrated through Tables 4.4 and 4.5. We observe that
stagnation po int moves tc wards right on the x-axis by raising both A and K while it shifts
lettwards t y augmenting g¢. The tabular results shown in Tables 4.4 and 4.5 do confirm the

i estigativons made thiough Figs. 4.6 and 4.7.

62



The numer cal data regardang R, 12¢ ., aand Rexl' 2, in the limiting case (when A = o)
acknowledges the values «lready reccrded in the research articles [28, 54]. This evidence

cortifies th - correctness o our investigation.

3 4 5 6
U

bag 4. . ttlects of s p parameter A on f'(n) tor viscous and couple stress fluids.
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Table 4 1:

Iinle

Vanation in R, '

0024513

0047914

0201357

0331885 ;
" 0.482678 |
0.645204 |
T0717872
| 0.782587 |
70791011 |
97793 |
799494 |

T
] \11

0.

O
N
O

I

 Vanation in R,

- and a under the influence of A.

)5 K=5 K =10
[ RMG | e | R @
0016329 | 0.011422 | 0.018947 | 0.008514 | 0.020793
0.032162 | 0.022481 | 0.037498 | 0.016793 | 0.041183
' 0142545 0099267 | 0172433 | 0.075344 | 0.1903459
02+'14 0171830 | 0.310541 | 0.132596 | 0.345523
0384176 | 0.266567 | 0.510465 | 0.210874 | 0.575286
0559482 | 0.385209 | 0.801933 | 0.315692 | 0.923349
0651212 | 0444105 | 0.969866 | 0.370759 | 1.130525
0.742733 | 0.498917 | 1.145315 | 0.423622 | 1.350408
0.755479 | 0.506158 | 1.170181 | 0.430701 | 1.381723
0.765898 | 0511999 | 1.190562 | 0.436424 | 1.407399
0.768534 F.513465 1.195725 | 0.437862 | 1.413905

V4, undec the influence of A and B when K = 0.5.

B =0 B = p=-5
057 T04.9505 0307015 0.551994
)1 | 0443315  0.203884 ~0.682746
)5 | 0542598  —0.463751 1.548947
L0 ] 0641277 -1.017849 2.300403
5.0 1 098302 —2270844 4.187448
10 | 1.0'6333  —2.537492 4.650558
50 | 115641  —2.764100 5075382
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- (7()'1
o0

X

Tablc 4 3: Vanation in R,

— 5o 1

00

5000 ,

111 3844

1119566 —2.7924%76 5.131708
110963 00 —2.815420 5.177246
 —2.820499 5.188695

1/2(‘,l undec the influence of K and £ when A = 1.

Tablc 4.4: Vanation in the stagnation

point (x) under the influence of parameters of A, 8

0996439 |

B =0 B =5 B =-5

0.540232  —2.427089 3.507552
0641277  —1.017849 2.300403
| 0670213  —0.749052 2.089478
0770745  —0.152261 1.693750
©0.844636 0138111 1.531161
0949295  0.709083 1.189507
0972800 0.840434 1.105165
094183 0.965210 1.023155

0.99400 1.002374

amly whew K = 1.

vy A B=-3 [ B0 B=3
1] os T .558763 | —0.4412284 —3.441220
504197895 | 01979019 —2.802092
2 |05’ w117527 | —0.8824568 —6.882440
S0 .395791 | 0.3958038 —5.604183
5 005 279382 | —2.2061420 —17.20610
"5'.0_"”—.5.?)%948 "1 09895095 —~14.01046
3 4"0_.5"'" .047011 | —3.5298270 —27.52976
u Ji‘)__ : -51%,?{1,1*6” : 1.53‘52—150 ~22.41673
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Table 4.5: Vanation in the stagnation point (x,) against K, f and y when 4 = 1.

v | K B=- B - I B=3
T1 [0S .667206 | -0.3327937 —3.332794
50 ..870132 | —0.1293493 —3.128831

"2 105 .334413 | —0.6655873 ~6.665587
50 ..740265 | —0.2586985 —6.257662

5 05 333603 | -1.6639680 —16.66397
50 435066 | —0.6467463 —15.64415

8 s 133765 | 26623490 |  -26.66235
S0 .296106 | -10347940 |  —25.03065

Table 4 6: Comparison of computed results of R, ‘/szl and a with that of Labropulu et
al [28] to1 no-shp case (4 = o)

R T 7
Present result [ Result bv_[2—8] Present result | Result by [28]
when K =0 | when £::0 when K =0 |when ¢=0
1232594 | 1.23259 | 0.6479025 0.64790

Table 4 7: Comparison of computed results of Rex)/zCh with that of Labropulu et al. [28]

amd Lieta [54] for no-sl p case (A = o)

%, ' Bes ] p=0 B = B=-a
* Presentresults | —4.75621 | 140651t | 2.205136 | 0.607917
| whenK =0 J
Re.ults by [28] | —4 7562 1.4065 2.2051 0.6079
wnen € =0
“Re-ults by [54] | 4.756 1.4063 2.2049 0.6077
MeeWe=0 | L
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4.3 Conclusions

In this chay-ter, oblique flc w of a couple stress fluid near stagnation-point over a lubricated

plate is i estigated A power law f11id has becen used as a lubricant. To obtain similar

sthtion of the tlow probl m, we have fixed n = 1/ 2. The Keller-box method is employed

1o sohve the flow probler v numericaily. Our interest is to figure out the effects of free

pirameter 3 and couple wress parameter K on the flow characteristics on the lubricated

suiface. [t 1as been concli ded that:

(1»  Shp produced on tle surface increases the velocity of the bulk fluid and abolishes
the e fects of frec st eam v :lociy for large values.

(in Thestagnation-puin is shitted towards right and left along x-axis under the influence
of pt-ysical paramel. rs in the presence of lubi ication.

(in) The kin friction cc efficicat R, rl/szl increases by increasing A and decreases by
increasing K. Howe ver, boundary layer displacement a is increased by enhancing A
and/i.r K

(1v) It ha. been observe.! that Rexl/ *Cy, gains the magnitude by enhancing A for 8 < 0

and »rscs for f > 0 Data show ing Re}(l/2 Cy, for various values of K is represented

throvgh Jable 3. {t1 obsvived taat Rex”zCh yains the magnitude as K 1s accelerated

for £ = 0 and loses its values for § < 0.
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Chapter 5

Slip flow of a second grade fluid past a
lubricated rotating disc

The chaptyr deals with the study of slip flow of 4 second-grade fluid past a lubricated
rotating di.c. The disc is lubricated with a power-law fluid. The interfacial conditions
between fiuid and lubric it are imposed on the surface of disc by assuming a thin
luvricabior layer A highiv accurate vechnique, the Keller-box method is used to obtain
nmumerical solutions. ‘The effects of Weissenberg number and slip parameter on three
componems of the {lud  elocuy and pressure are analyzed graphically while effects on
buth comp nents ot skin eiction are Jdemonstrated through tables. The obtained solutions

3y co well nothe special ¢ ise winh these of Andersson and Rousselet [147].

5.1 Problem statement

Consider 1ne steady, axi»ymmetric tlow of a second grade fluid over a rotating disc
luvricated with a shm ccating of power-law fluid. The disc is rotating with a uniform
vo.ocity w about z-axis which is taken normal to the disc. The origin O is located at the

ceater of the disc as show vin }ig. 5.1.

[ ubn ang

Figur - 5.1 A sketch of considered flow situation
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HJ,V,W e the velocity components of the power-law fluid, then its volume flow rate is
given by [ 47)

¢ = f:“ U(r,z) 2mrde, (5.1
v which » 15 the thickness of the power-law luoricant. The equations governing the

retational How are

e Lu v _g (5.2)
o v 'z
du su  vou 3P duy _ ar 1d(rt,.) Ttg¢ arzr)
p(61+ulr+r69 r 'Wau- 6r+(r ar r + az )’ (53)
ov v VOV uwy avy _  10P 1 9(r%1,9) . 81,9 Tgr—‘[rg)
P ( at r + rag T W 61) T rae + (r2 or + dz + r ! (54)
W O YL 0P (130T 6_1_)
p(ac+u>r+rau+w;z)" 6z+(7 ar | oz ) (3-5)
in which
3v? , vy )
T,, = 2pu + Ky T + ¢,° - -1+ 2wu,, + 2uu,.,.|,

v
L= Ty = U (Ur - ")

-2us wy,  3vu,  2uv,
+k(.—-—2»—-vl~+ - +uv, + u, v, + Wy, + uv,,|,
; .
v,
6 = 0, pu,+kol— T UW, T Uy + wiu,, — v, + uurz].

2uv
Tow = - -

Ko
to7 [—2u®- 3v? + 2ruu, +2rvv, + 2rwu, + r2v,? + r2v,2],

k
0
T, = Ty, = UV, + ~ [2vu, - wv, 4 ro,w, + rwu,, + Tuv,, |,

T, = 2uw, + kol--u,?- v,24 2ww,, |,

where [1,1, w] is the velcity vector of the second grade fluid and k, is the second grade

fluid paranieter. The boundary conditon at the surface are
(0= 0 V(@0 =, Wru =0, Pk 0)=0. (5.6)
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A the lubyication layes is very siim, therefore
Wi,z 0 vO<sr< 4. (5.7)

The contip iity of the shew stress at the interface z = §(r) for both the fluids suggests

vdv 4.0w a_uau 211017 owdw  dudw

_reE 2, owdw _=dx
du rdz @ 0z 9dzdr ads8r dzadr dror | _ 9V
» (dz) + ko u 12y Wazm I atw tu atw =H dz '’ (5.8)
2w aw
rdz az ordz ar?
(2) 4 b (B0 - 02 g vl i Sy o (5.9)
" \oz O\rgz oz #z2 1 ar  9r ar arez) — Hi az’ '

o : au _ au av oV
in which g | represents the viscosity of the lubricant. If we assume 5> <3 and 5 €30

then

u =k + (",1)’] ) (5.10)

(Y

[ty asstm od that U and b oare .u.carly proportional to z where 0 < z < 8. Thus following

F147]). welave

t(r,z) = %({’)—‘ (5.11)
V(r7) = wr - Lotz (5.12)

sry '

where U a«d V are the vilocity components of both {luids at the interface. Solving Egs.

S Dand (.11, we ga

l'O

dur) == i (5.13)

Like the stear stress, the 1 adial and avimuthal velocity components of both fluids are also

<

T

continuous at the interfacy  Therefore
U=u V= (5.14)
Substituting Egs. (5.10)-( +.14) into E gs. (5.8) and (5.9), one gets the following boundary

cendimions xnown as shp v onditinins.

v dv du wn hu du av a

1 ds de di E;); 5; a1

wi Ky ow n e 12y k(n)n n-1
“ 4 ke wow _ducy o Fu _k(m n,,2 — )2
S e R ) wrwtu? + (wr = v)*7, (5.15)
3%u a w 2w
+w022 +wa, I;+“ ??
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viow  dvdw % Q

udy _dvdw 0% Y n -
( roe 0xoz t o 0n ) = - £(2) (or =G + (wr = v T (5.16)
TV Tora ' tarad
Using the « ontinuity of ax.al velocity components of both fluids and Eq. (5.7), we have
w(re@)=w(ré())= 0. (5.17)
Following 147], we can 4npose boundary conditicns (5.15)-(5.17) at the surface of disc.
Furthermo- e
w(r,): 0 and v (r,'2) = 0. (5.18)
The radal shear stress 7, and 1angeniial shear streas Ty at the wall are respectively given
by

o ov :?u6w+0u6u+6uav+6w6w dudw
_— (6») rhe| 0z 9z 0r 0zOr 0¢dr 9z Or Or Or
zZ=u

0. . 0%w N d%u N a*w N 0w ’
U=— -+ W—t+W—tU—
droz 0z2 oroz ar? 2=0
v uw  how A%v  vow  dviw 9%y
TRTT¢ ;)z o T ko G wig+ s -2 “araz)z_o : (5.19)

Tu solve the Egs. (5.3)-(5 3), we intreduce the following dimensionless variables

—

n= z\i"v2 u=wrf(n), v=ourg(®), w=+vwrh(n), P = wup). (5.20)
The resulty ig system in nv w variables is given by
ho=-2,, (5.21)
J = hf =gt +welhf " + Vff" +29"°) =0, (5.22)
6 '~ hg =2fg+ Welag" +4fg" —2f'g')=0, (5.23)
po+2f" 2fh+We(1tff 4 2f h) =0. (5.24)
[ne coreshonding boundary corditioas take the form
h0)=0 p(0)=:0, (5.25)
J (0) + We[27(0)f'(0) - F(0In'(0) +h(O)F"(0)]
4 , -i/3
CAFO) () + (3 = g)’] (5.26)
g (0) + W[2/(0)g' (1) - g'(0)1.”(0) +h(0)g"(0)]
1 -13
~A(fO)(1=-g)] FO) +(-g@)] . (5.27)
Jroo) ==(, g(e) =0, (5.28)

where We = kgw/pv is th¢ Weissenberg number and A is the slip parameter defined as
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1 Y4
k\ \; T i_u):’
= DV Ty 5.29
¢ b (!) u)-li ( )

It \s worth mentionming thie we have vsed n = 1/3 in Egs. (5.21)-(5.24) in order to obtain

stailatny yolution. The coastant 4 given in Eq. (5.29) may be rewritten as

e

RS R VT (5.30)

Liyp

[

xix
AE |

A.cording 1o 1.q (3.30), he constant A defines the ratio of L, (viscous length) to the
L,.p (lubn :ation length). For highly viscous lubricant and small L,;, the parameter A
achieves a huge value Waen 4 > . one gets f(0) = 0 and g(0) = 1, from Egs. (5.26)
amd (5.27) commonly knwn as no-»lip conditions. Conversely when A — 0, we obtain
f'10) = 0 ind g'(0) = 0 called full-slip boundary conditions. Thus A measures the slip
produced by the lubrican . The non-Jdimensional jorms of both the components of skin

friction co fficients arc g 'en as
he, 1 = f1(0) + W :(h(0 £ (1) + 2£(0)f'10) = f (0K (0)), (531)
Ke,'*Cr, = g'(0) + W e(h(01g” () + 2£(0)g'(0) — g'(0)h'(0)) (5.32)
wrere ke, = ar?/v.(;, nd (), respectively at the wall are defined as
C. =1,/1V% Cg=1,/pV*

where V = wr
5.2 Numerical results and discussions

To analyz: the behaviour of parameters A and We on velocity and pressure profiles, the
Eqs. (5.21 -(5.24) togethe  with boun.ary conditions (5.25)-(5.28) are solved numerically
using Kell r-box method.

Figs. 5.2-5 6 are plotted 11 see the eftects of slip parameter A on velocity profiles f, g, h
and pressu e p for some 1ixed values of Weissenberg number while the effects of We in
the presen e of slip are .hown in F.gs. 5.7-5.11. Dashed lincs shown in Figs. 5.2-5.6
correspones to the results already ca<ulated by Andersson and Rousselet [147] through
K. ller-box method for the case ot Newtoman fluid ( .e. We = 0). Numerical computations

for both the components of skin friction coefficients under the influence of pertinent
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pirameters are presented w1 Tables 5.4 and 5.2.

Fig. 5.2 is lisplayed to shw the effed ts of slip parumecter A on axial velocity when We =
1 {t1s ioportant to mentis n here that 1s we increase the numerical values of A, an increase
in the valus of - i is obser ved. Also the thickness ot boundary layer region is increased by
increasing the numerical -alue of A. ¥Fig. 5.3 show s the variation in the radial velocity f
caused by he centrifugal orce under the influence of slip parameter. It is clear from Fig.
5.« that by incieasing slip on the surface, f decreases. The variation in radial velocity has
the same b :haviour as observed for tl€ viscous flund (dashed lines) except the peak value
which was near 0.18 wt n = 0.9 for the viscous fiuid when there is no-slip [147] and is
e v onear © 225 when o abow 1.1 -near unity) for the second grade fluid. The gradual
i« rease in the radial velo. ity in Fig. .4 with increasing value of 4 is directly related with
th distr b aons of'the -p vofile ~hownin Fig. 5.2, This is due to the direct relation between
f snd h shhwn in Eq. (5.7 1).

Enrect of +lip parameter in the azin-uthal velocity component g in the circumferential
duection i, depicted m }ig. S« It s obvious from Fig. 5.4 that by increasing A, the
numericdl salue of g v creased. Tle torque required to maintain steady rotation of the
dinc 1s cotrolled by thi. component ot the velocity. The imposed torque decreases
munotonically by increas ag shp on the surface. It is evident from Figs. 5.2-5.4 that the
variation 11 the thice vebicity components is more significant for smaller values of A
showing that power-law Lubricant increases the fluid velocity at the surface.

The vanat on in the pressure uader the influence of slip parameter when We =1, is
observed v Figs. 5.5 and -.6. It 1s clear from Fig. 5 6 that pressure increases by decreasing
shp. Howe ser, the behavie ur of pressure distribution near the full-slip is different as shown
in che Fig, 1.5, For 4 < 1 «he dise pressuare is less than the ambient pressure —p(o0), which
mw ans tha the flow 15 oriven towards the disc by the axial pressure gradient in this
pa ticular i ange of A,

Eitect ot W'e on h-prolile when 4 = 1.5 is shown in Fig. 5.7. It is obvious from this figure
thut by increasing We. tre axial velicity component is increased. The velocity profile
shwwn by .lashed Iine 1s {or viscous 1luid 1.e. when We = 0. Fig. 5.8 shows the variation
0 radial v locity compons at f when We ranges (romOto 5and A = 1.5. It is evident from

this figure that f increasss with an increase in Weissenberg number. We observe some
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reverse off :cts on the peas for higher values of We. The azimuthal velocity component g
1s presente fin Fig. 5.9. [t v evident from this figure that g increases by increasing the value
ol We when 4 is fixed. An opposite behaviour 1 the shear component of velocity is
olsserved b an the surfice Figs $.10aad S 11 are plotted for the pressure distribution using
v ious vawies of We whoa A :: 1.5 1t is clear from these figures that —p increases when
0 TWe < 08 Afier the pressare pofile shows an increase near the surface and then
dvcreases « ramatically.

Tuble S | cwcidates the cl.ange n nunwrical values of Re,/? Csr and Re,*/? Crg for various
viiues of 2 when We = 0 05 and We = 1 Itis clear from the Table 5.1 that as 4 increases
from 010 -0, the numeric. | valucs of Rer‘/szr invrease. However, the numerical values

ol Rer”z-'ﬂ, initially 1 crease and then start decreasing. The numerical values of

Rc',l/z(_"fr and Re, '/zCﬂ for ddffercnt values of We when A = 0.05 and A = 1.5 are
presented »1 Table 5.2. Ac cordny to tnis table as the numerical value of We increases, the

numerical -alues of Re," *C;, wcrease while those of Re,/?C; 4 decrease.

02,05, 1,2, 00 ]

......................
-------------------------
A T

..........
-----------

Fiy.. 5.2 Vuriation in --h(+) agamst A when We = L. Dashed lines are calculated by [147).
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T T T T T T T Y T

™ T T

Fu. 5.4 Vanation in g(n against A when We = 1 Dashed lines are calculated by [147].
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Fig. 5 6. Etfuct o1 slip on pressure when We = 1.
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Taole 5 1: Numerical valves of Ke, Csr and Re,’ /szg for various values of A.

We - 005 We =1
2] Reic, | Re G A Re,?C,, Re,/*Crq
| 0.0l | —0.000119 | ~ (.000056 | 0.00 | —0.000119 0.000055
©0.05 | <0.002743 | .002407 | 00> | —0.002556 0.002074
01 | —0.008848 |  (.007404 | 0.1 | —0.007839 0.006160
05 | —0.119575 | 0.077!70 | 05 | —0.086636 0.043736
C 1.0 | —0310114 | 0141201 1.0 | —0.220373 0.068210
20 | —0.614639 |  0.152993 2.0 | —0.518510 0.029763
50 | —0.90%031 | .056128 50 | —1.053342 —0.261694
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Table 5 2: Numerical vali.es of 1"er1/'

-
v

| 9.00]

S 20990542

1

-

-

-

T—1.032491

~1.035151

—1.036475

—1.036605

-

CA=0(65

_;/};1—/-’.(7/)_
—1.002753

—0.002753

1 -0.002751

1 720.002743

-0.002733

1 Z0.002635

—0.002556

—0.002461

—-0.002370

0002202

—0.001922 |

—0.001462

-

[ (.00468 10 —1.232311 —0.406746
~-0.02%260 50 | —1.320843 ~0.484123
-0.031489 106 | —1.326394 —0.489068

T 20.03.607 | 500 | —1.329053 —0.491426
-0.03.717 o —1.329155 ~0.491531

C¢r and Re,’ /2 Crg for various values of We.

) A=15
) (-1’6,1/" C,—g We | Rerl/szr Re,*Crq
0002827 | 0 | -0.478938 0.168179
T0002427 |0.001 | —0.479043 0.168021
70002423 |0.005| —0.479498 0.167321
70002107 | 0.0i | —0.480046 0.166445
70002388 | 0.0> | —0.483640 0.159458
70002206 | 01 | —0486222 0.150860
0002074 | 05 | —0.453483 0.096387
0001925 1 | -0.368705 0.062445
0001791 15 | —0.294832 0.046572
0001565 2 | -0.239556 0.037693
70001230 | 3 | -0.168367 0.027724
0000766 5 | -0.100475 0.018027
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5.3 Final remarks

In this chayster, we have e> amined the slip flow of a second grade fluid over a rotating disc

lubricated with power-law fluid. The governing cquations arc transformed to ordinary

ditfercntia equations by ¢ suitable choice of transfurmation. Self-similarity is achieved in

tha govern ng cquations fv rn == 1/3. T'he numerical solutions are computed using Keller-

B x methc 1. The motivat on is to determine the effects of the slip parameter 4 and We on

the flow ¢l aracterssties e mooa findings are sumimnarized as under.

(i»  The, omputed resul s show that spin-up by second grade bulk fluid near the rotating
disc s reduced by i1 creasing shyp.

(1 Numerical value of dll velocity components i» decreased as We is decreased.

(1) An vaexpected reveesal o the pressure gradsent has been observed for the smaller
valucs of A and We

(iv) The wmerncal valu. s of Herl/‘ Crr increase as A increases from 0 to oo. However,
the nimerical value. of Ke, /%( re itially increase and then start decreasing.

. . 1 .
(vi A Werssenberg nu aber We i1.crease, the numerical values of Re, /szr increase

whil thosc of Re,! ZC,e decreuse.
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( hapter 6

Heat transfer analysis in the time-dependent

slip flow over a lubricated rotating disc

In this cha.ter. we have performed an analysis to study characteristics of heat transfer in
unsteady 1 ow past a lubvicated rotating disc. A generalized Newtonian fluid obeying
power-law constitutive eq sation s employced to model the lubricant. A set of dimensionless
coordmate . is utilized to ¢ nvert given partial differ ential equations into nonlinear coupled
ondinary d (ferential equa ons Inter wcial conditioas have been derived with the help of
continunty of shear stres and velocity of the lubricant and core fluid. The obtained
beandary  aluc problem: are numeically solved with the help of Keller-box method.
Inpact of) hysical params ters in the presence of lubrication on fluid velocity, temperature
ardpressu ¢ s displayed graphucally The skin friction coeflicients and the local Nusselt
number an examined thr ugh tables. Comparison of the present results with the existing

results in t«e literature |1« 7] 1s also provided.

6.1 Formulation «f the problem

Cunsider t me-dependent incompressible three dimensional flow due to a rotating disc
which iy h bricated by a »lim ¢ oating of a power-law fluid. Core fluid strikes the disc at
ripht angle and spreads al around in the radial direction as shown in Fig. 5.1. The disc is
assumed to be rotating about ¢ axis with angular velocity w with center at origin. The
viscous fluid at the free tream moves with a velocity U, = wr/(1 — y,t) such that
Yot <1 wnere the param. ter y , has dimension (¢t ~*). The time-dependent temperature T,
o! hedise s given as

Ty = T b Ty(1--y,t) 32, (6.1)
woere Tooad 7, measare the temper.dures along the disc and at free stream respectively.
[he volumres flow rate of power-law 1luid is given by Eq. (5.1) The equations governing

the rotatio al flow und het trans fer are representec by Eq. (5.2) and
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. . 3 2 F] aZ
Sau -t awls 2y (T (M) L 2, (6.2)

o1 Jr r dz por arz | ar\r az?
%T+“Z_:+W%="%:§+"(%Z£+izt+azt) (6.4)
g e (22 ) =

wtere 7 s thermal diffisiviny  The boundary conditions at fluid-solid interface are
represente. by Eqs (5 6) ind (5 7). At the interface, radial and tangential components of

sEoarstres must be conti uous Ther sfore. according to [147]

a d

N ©6)
v av

u(s) =5 6.7)

in which u isrepresentec by Eq (5.10). The continuity of radial and azimuthal velocities
ol both flu.ds 1s given by Eq. 15.14). Substituting Egs. (5.10)-(5.14) into Egs. (6.6) and
(6 7), we gt the followiny slip boundary conditions

Wi k(m " "y S

s ) ut + U - ) (6.8)
wo k! _ ny R S

s " Q) Weo =0 W + U —v)?] 2. (6.9)

The contitaity of axial v locity conponents of both fluids is displayed in Eq. (5.17).
Following 147]. we can» npose bourdary conditioas (6.8), (6.9) and (5.17) at the surface
oi disc [h boundary con.itions at the frec stream are given in Eq. (5.18). The temperature
p1ofile satyofies the follow .ng buandary conditions

0) =1, and Tlr,c)=1,. (6.10)

The rate of heat transfer ¢~ at the wali is given by
aT
g = -K (5;)2:0, (6.11)

in which »™* denotes the mal condudtivity. To transform Egs (6.2)-(6.5) into ordinary

ditfercntia equations, the follow mg new variables are utilized.

'—\/z S = Lo fO v Ung(n), w = [ h(), (6.12)

P =2U.pM), T-T.=(1,-T,) 6. (6.13)
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Thzresultig system i no w variibles is given by continuity Eq (5.21) and

JUohf =AY ) v et =0, (6.14)
o' hg' -2fy- A(g fzé,'): (v, (6.15)
p = 2/h k2f =Sk + h) 20, (6.16)
6~ Prihg' +2(30 + 16"} =0, (6.17)
h0)=0 p(0)=0, 8(1)=1 (6.18)
1O AFOE|(r@ )+ (1-w@)] (6.19)
9 )= AP [1- g@I[(F) + (1 -y @)] ", (6.20)
(@) =u,  glw)=10, @(eo. =0, (6:21)

where A = ¥/ w denote s the unstea.diness parameter, Pr = v/a* is the Prandtl number.
Foc A = 0 equattons (0.1 4)-(6 17) represent the stcady case. The parameter A introduced

in £gs. (6. 9)-(6.20) is de ined as

1 ?
p = ()
p=" () 5 (6.22)
woere = w/i1 = yt) The oonstaat A given in kq. (6.22), is called slip parameter
dncussedr 1 detail earlier a chapter S The non-dimensional forms of local Nusselt number

1S given as

Ke, Y*Nu=—6'(0). (6.23)
6.2 Numcrical rcsults and analysis

Eyuations Eqs (6.14)-(6 17) subjec: to boundary conditions (6.18)-(6.21) are solved
numericall 7 with the help »f highly ac curate technique, the Keller-box method.

Tu sec the low behaviour sgainst the physical parameters Figs. 6.1-6.12 are plotted. Tables
6.} and 0.2 show the nume rical values of radial sheac stress, tangential shear stress and heat
traaster co :fficient under he influenc: of emerging parameters.

Fros 6 -¢ 4 arc displave 1 to observe the variation in velocity components and pressure
ag «inst the shp parameter A. Influence of A on axial velocity - h is depicted in Fig. 6.1.

[os tigare shows that ax abin bow s inereased by reducing the amount of lubrication on
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the surfuce of disc. A stemly case (when A = 0) is illustrated by dashed lines. Increase in
the axial v :locity 1s lessc e for the unsteady case. [t 1s due to the fact that parameter A
depends up on angular vele city «w whic h intern is a function of time. As the time ticks away,
w s decre 1sed causing tse reduction in the axial in flow. However, h-curves tends to
overlap for both cases in he absence of slip. Fig. ¢.2 shows the impact of slip parameter
on the radaal velocity f. This tigure shows that f is augmented on increasing A. An
nerement in the axial 1ward flow automatically gives rise to radial outward flow
acvording -0 continuity eq iation (5.21). The increase in f is more prominent for the steady
casc (A = )). A decremer tin the peac value of racial velocity with increasing amount of
luvricatwon 1s observed i he figure depending upon axial inward flow (Eq. 5.21). Fig. 6.3
1estrates he variation in he sacar v locity g showing that it is an increasing function of
A Accekeretion n the vah e of g 1s more significant for the steady case. It 1s worth noting
thet this cc mponent of veocity Jeterinines the torque which is responsible for the steady
rotation of the disc. As he siip on the disc surface is decreased, the imposed torque
decreases « nd accordingly the shear velocity reduces. Effects of A on the pressure profile
18 presente |in Fig. 6.4. A. cording to +his figure, prussure increases by reducing slip on the
surface wh:n 4 = 0 and ~ > 0 An extensive enhancement in the pressure is observed for
thy unsteacy case while noving no-shp to full-slip regime. However, a small deviation is
observed n:ar full-slip (fo smaller vaiues of 1) for the steady case as shown in Fig. 6.4(b).
The reasor for this surpris ng belavio ir is that for lowest values of slip parameter, ambient
prvssure e ceeds the disc sresswe which drives the flow towards the disc.

Variation »1 the velocity « omponents and pressure against the parameter A is depicted in
)8, 6.5-€ 8 for paitial (A = 0.2 and ao-slip (A = o) cases. Fig. 6.5 provides that axial in
flow -k i inversely rela ed with unsteadiness parameter A. It is due to the fact that A
deaends u onvime and U2 ax.a veleceity deereases with time. The decrease in the axial
veocity is more promine~t on the lunricated disc. The radial velocity f shows the same
benaviour 1s that of axis velocity - h as shown i the Fig. 6.6. It is due to the mass
conservatie n formula (5.2 1) as discussed carlier. Variation in the circumferential velocity
g with resy-ect to paramet .t A s anal vzed in Fig. 6 7 both for partial and no-slip cases. It
1s evident shat g reduces V y enhancing A. A lubricated surface appreciates this decrement

in the valu. of g as compi.ced to the rvugh surface. Impact of unsteadiness parameter A on
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the pressur @ is presented b Fig. 6.8. One can observe that pressure is an increasing function
ol A. The -eason is that »y incieasing A. angular velocity of disc reduces and thus the
prussure 01 the surface »icreases, It is also clear from this figure that increase in the
P1ossure 18 more promier ton -he lubeicated surfac 2.

Fi,.. 0.9 el borates the va) .ation i the temperature 8 by augmenting A when Pr = 1 both
o steady A= 0) and wosteads (A 2 01) cases 1t s concluded from this figure that 8
deereases wy decreasing i-mount of lubrication. This figure also shows that unsteadiness
appreciater the lubricatior effecis (solid hines). Influence of unsteadiness parameter 4 on
68 when P- =1 for bota no-slip (sashed lines) and partial slip (solid lines) cases is
claborated in Fig. 6 10. A. cording to this figure 6 increases by increasing A. This increase
can be enianced by apj lying the lubrication on the surface (4 = 0.5). Temperature
viuiations vith Prandt! m.mber P’r are shown in Fig. 6.11 when A = 1. The dashed lines
show the s cady case. [t has bevis obsi rved that 0 reduces by enlarging Pr. This reduction
1s more epdnent for the s.eady vase. The reason i» that thermal diffusivity decreases by
nyreasing Proand as a res dlt temperature is reduced. Fig. 6.12 1s devoted for the effects of
P on temyeerature profile 8 botl for steady and unsteady cases respectively. It is obvious
treom thys f gure as Pros 1icreased. a decrease in the value of 6 is observed which further
depreciate: on the labnea od surrace csolid hines). 1nfluence of A and A on the magnitudes
o! the rudi o shear stress “(0) tangantial shear stress - g'(0) is illustrated in Table 6.1.
\ cordiag o tins table b oth radial a.d tangential shear stresses reduce by decreasing A
(nwreasing ship) as well a) increasing ansteadiness parameter A. However numerical value
ol tangentsil shear stress :nhances by increasing A for the no-slip case. The variation in
heat transt:r coefficient «gainst the Jifferent paraineters is claborated in Table 6.2. We
ohserve thet - 0'(0) incre.ses 1u st an.d then decreases by increasing slip parameter for the
ditfercnt vilues of A and Pr. Jt is also obvious from this table that -~ 8'(0) decreases by
increasing insteadiness piscanmietc r. This table also shows that heat transfer coefficient gains
the magnit idc as Pr 1s inreased. Tables 6.3-6.4 show the comparison of f7(0), - g’(0)

and - 8'(0 respectively v ith available results in the special case [147].
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Fig. 6.3 Curcumnferential velocity g(o)) plotted against A. Dashed lines are calculated by

[147]
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0(1))

Foooo 1 emperature profile nottec against Prwhen A = 0.05. Dashed lines show no-

shp case.

Table 6.1: Numerical data reprevsenting radial shear stress f'(0) and tangential shear stress
- ¢'(0) under the influenc ¢ of 4 ind A. Numerical data for the steady case 1s calculated by

[147]

A R ON —-g'(0)
1=05 T . =1 1= (=05 A=1 A=oo0
000349916 | 0.1.087u4 | 05102327 | 0.2035352 | 0.3691274 | 0.6159221
01 00267485 | 0.0 4465 ¢, | 0 1897258 | 0.1946088 | 0.3661441 | 0.6526113
02 00191817 1 0.0'909 ¢ | 0 4697303 | 0.1833526 | 0.3611589 | 0.6891521

-— —_ - - 4 -

01 00076478 | 0.0 1320, | 0 $317947 | 0 1532713 | 03448532 | 0.7618598
|

07 09010026 ° 0.0 215% | 03824878 | 0.)986576

03051776 | 0.8700152

L 0001115 0078306 | 0 3429943 | 0.1590016 | 02531332 | 0.9752703

15 00000058 | 0.0116%1 | 0 2945197

0.0287541 | 0.1697148 | 1.1400861

"0 0000005 | 0.01019 ¢ | 0 2605667 | 0.0166259 | 0.1127152 | 1.2906812

97



[0l 6 3. Comparinon

A =0

\ urrent

Table 6.2: qumerical data
ol 1, AanlPr
A a2 Pr=01
0 [ o4 01453511
1 01509770
L2 01539012
S 01541508
s 01534810
Loos [ o0 01383725
T 17 01430042
2 0.1449088
5 0.1443032
T« 01433198
01 [on 01314763
1T oigsuen |
2 01359066 |
3 0.1353352
o« 01331045

<4

0]

epresvntiny heat transfer coefficient - 8'(0) under the influence

Pr =05 | Pr=1 | Pr=3 Pr=10 Pr=50
0.234.090 | 0.3390227 | 0.6352724 | 1.1941080 | 2.6764945
0.261,037 | 0.3928786 | 0.7303140 | 1.3519010 | 2.9779919
27380405 | 0.4155070 | 0.7556897 | 1.3600160 | 2.8867569
)27 1062 ‘ 0.4084500 | 0.7190101 | 1.2373179 | 2.4431712 |
)27 1 265 © 03967034 | 0.6823829 | 1.1339601 | 2.0908651
0.19 73339 | 0.2739340 | 0.5098213 | 0.9402619 | 1.9939607
0.2240405 | 0.3243281 | 0.5955467 | 1.0597740 | 2.1395281
0.2344962 | 0.3411682 | 0.6042143 | 1.0179513 | 1.8656158
0.2307425 | 0.3290773 | 0.5537606 | 0.8574734 | 1.2886016
0.224%784 | 0.3152027 | 0.5116052 | 0.7401919 | 0.8924005
0.1698910 ﬁ?2028204 103616739 | 0.6513216 | 1.2208393
0.1843787 | 0.2500794 | 0.4485049 | 0.7455582 | 1.2352766
0.18%7997 | 0.2614036 | 0.4423211 | 0.6544020 | 0.7740992
0.1871110 | 0.2547855 | 0.4130926 | 0.5576946 | 0.6160532
6*17;,750 102277805 | 0.3288278 | 0.3697265 | 0.3918378
f'(v, and - g'(0) with those of [147], [102] and [105] when
JERD) T 'g'7(0j T T
A2l ] 1=w A=05 A=1 A=o0
11108785 | 0.51023261 | 0.2035353 | 0.3691273 | 0.61592202
| 0.5102326 | 0.2035353 | 0.3691273 | 0.6159220
T 0.5102326 T - - 0.6159220
o 051023267 - - 0.61592201
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[ oale 64 onparison of wimetcal values of heat ransfer coefficient - 8'(0) with those

o 105w, en.l =0and = o

' pe=(72 1 7 Pr=6
Current | 032857011 1T T 70.92118502
By [105] | 0.285,010 o 0.92118503

6.3 Ceunclusion

Huat trunster analysis 11 the tume-Jdependent flew past a lubricated rotating disc is

my estigate.l in this manus ript T'he rv quired lubrication is provided by a power-law fluid.

T obtan 1ne similar solur on, we have set n = 1/3 The problem is solved numerically by

Kv ler-box method. Our a e is 1o figure out the effects of emerging parameters on the flow

charactecis ics in the presence of lubeication. Sonwe findings of the investigation are as

undler

0 Fhe abncant enbian os th ¢ velo aty aund pressare of bulk fluid. This increase is more
ranc for the unsteac v case

( A reduction in the luid v eloct v 1s observed with an increase in the unsteadiness
parameter A. The lu rricarion ennances the reduction.

(1)) And creasce in the v lue «f A causes an increase n the pressure distribution. This fact
s tru= for both steac y and ansteady cases.

(1v) The .omponents of radiul and +angential shear stress augment by enlarging A and
decrvase by enhancyig A However, tangential shear stress is an increasing function
of A .n the absence fslip.

(vi The neat transier co “fficient —¢'(0) increases first and then decreases by increasing
shp j-aramcter for the varwus velues of 4 and Pr.

(vi)y  —0'(}) decreases by incrvasing -insteadiness parameter and increases with increasing
PranIt] number. Ho vever, an uiexpected behaviour is observed for the higher values

ol Prand A atand i ear 1o slip ‘A — o).
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Chapter 7

Heat transfer analysis in the time-dependent
axisymmetric stagoation-point flow over a
lubricated surface

In this chay-ter time-depen lent. two-d.mensional, axisymmetric flow and heat transfer of a
vivcous 1 ompressible £ ad boyings g orthogona.ly on a disc is examined. The disc is
lu sricated aith a thun lay o1 of jowe -law fluid of variable thickness. It is assumed that
st face e periture o the dise 1y tim e-dependent. < Continuity of velocity and shear stress
at the inter ace layer betw een the flud and the lubricant has been imposed to obtain the
scwition o0 the governing partial dirferential equations. The set of partial differential
equations » reduced into ordinary ditferential equations by suitable transformations and
a1y solved aumerically by asiny Keller-box method Solutions are presented in the form of
g1 «phs and rables in order o ¢x uaine the influence of pertinent parameters on the flow and
hcat transi-r characteristh s. An acre ise in lubrication results 1n the reduction of surface
shear sties. and consegue-tly v iscous boundary lay.r becomes thin. However, the thermal
baundary sayer thickness incrcases by increasing tubrication. It 1s further observed that
surface ~shear stress and he at transfer 1 ate at the wal, grow duc to unsteadiness. The results
tor the sieady case are ded iced fiom the present solutions and are found in good agreement

with the ex1sting results i1 the jteratuce [148].

7.1 Mathematical formulation

Foousasst nethe unstoad | twe- limeisional, axisyinmetric stagnation-point flow and heat
traasfer of an incompress ble viscous fluid past a Jisc lubricated by a thin layer of non-

Nuwtonar. power-law flu d. The orig o O is located at the center of the disc (Fig. 7.1).
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The flow rate @ of the lub icam «omir.g out of a small point source at the center of the disc
1s given b. Lq. (51). Tlw stagnation flow velocity of the viscous fluid is of the form
U.(G.zt)=ar/(1 -y, ). wiure a > 0 and y, >- 0 are constants with dimensions ¢ .
12 tume- ependent tem eratur: T, of the disc 1s defined n Eq. (6.1). Under these
dsumphion s, the unsteady  twe <imensional, axisysnmetric flow of bulk fluid is governed

by the coninury g (5.2 hear ng. (0.5) and the following momentum equations

du P 3%« d fu o%u
—+u--+w—'——15-{1(; +5;()+-¢1z_2)’ (7.1)
Iw "W aw Lap da°w low  d-w
wruZrw s ey (T4 ) (7.2)
At free stream, u = U, (7 z,t) and therefore Eq. (7.1) reduces to
LR S T8 OU«» (62 () au)
at+u(,r+waz— Py +1, +v ar2+ - +az (7.3)

Tlw approjriate boundary conditions at z == 0 for the present flow situation is discussed in

derail by Santra et al. [ 14} | and are

iz 2 Vi—ygt

M) g P s ) = —22 —“—)2, w(r,8(r),t) =0. (74)
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The bound ry vondutions  ar away frc m the stagnaiion-point in the present case are given
by

ai .az
ulr,s,tr=U, = lj) P W(”,Z,l)— ’-;_—y'(’)?. (7.5)

The bound iry conditions o be satisfiv d by the temperature are presented in Eq. (6.10).

Imrcoduc ing the dimensior less variables

a S
= ‘[; o & T Iof (1), w=-2 (1_)51‘(17), (7.6)
e teap) Ee( ) =T = (T, )00, (17)

th flow s zoverned by

[ iff =0 A - f 1)+ 100, (7.8)
PHAIf 2 Af e f) =0, (7.9)
6 4 P-{2f0’ -234+90)}= 0, (7.10)
FO1= 0, pl0) =v, 17(0) =AF @), (=) =1, (711)
8(0)=1, 6(c):=1 (7.12)

where A = yp/a is the un-tead iness parameter and n has been taken 1/3 to obtain similar
sotution
Fo.-A = ( the problem i :duces to th e steady state case discussed by Santra et al. [148].
[ cparamter A gneron Cq (71D 1 ship paramet :r defined as

1

ok it jbi
Pt (Q) o (10.13)

w vhieh b =a/(1 - yg ).
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7.2 Discussion of mumerical results

To sce the influence of jertinent parameters on the velocity components, pressure and
teiperacut 3, Eyns. (7.8)-( ".10) subject to boundary conditions (7.11) and (7.12) are solved
monencdl by using Kel er-bey metiod. The numerical results are validated through the
cenpanso . of the presenr soluion w th the existing results 1n the literature in the special
Cir €S

Fyures. 7 2-7.11 are plo: ed t.» obse:ve the effects of emerging parameters on velocity
componems, pressure dis ributien and temperature profile. Numerical computations for
st face shear stress and he at transfer 1ate showing the influence of parameters A, A and Pr
ar, presenixd in Tables 7. and 7.2.

Tv see the :ffects of slip [ wramwter A n f, f' and - p, Figs. 7.2-7.4 have been plotted. The
dashed huw s in each case are the inve stigations of Santra et al. [148] when A = 0. Figure
7.2 1s dispmayed to show tae cfiects 0.'A on axial velocity component f. From this figure,
it 15 clear hat as we incn ase the slip on the surface (A is decreased), an increase in the
value of f s observed. f kecoines pre-portional to 1y as A = 0 i.c. when full-slip is applied
on the surfice. Figure 7.3 s disp.ayed to sce the influence of slip parameter A on the radial

voioaity ccmponent f° W sec that | decreases by increasing A. It is due to the fact that

Uorieator redaces the froction on the surtace. Tt is also clear from Figs. 7.2 and 7.3 that
pe ver-law lubricant enh: aces the ve locity of fluid at the surface. The variation in the
P ossure p ohiles —p witt n is preseated in Fig. 7.4 For the case of no-slip (classical
H.mann fHow), the presss re increases towards the surface in the stagnation zone and it
olwains .1 1inimum valuc at 7 =: 0. Che pressurc variation across the boundary layer is
in reased with increasing slip, and tle maximum pressure build-up is observed for full-
ship. The pressure increase s shigntly slow i the boundary layer region for the no-slip case.
A we inc rase the slip oy the wrface, the boundai y layer thickness reduces and pressure
sevms to 1 crease rapidly. (tis ¢ lvar from Fig. 7.4 that the pressure curves intersect slightly
bcvond 7: 1 when A = . If we inspect the graph closely, we notice that the crossings of
the differeat curves do ni« occw in cae single point. It is evident from Eq. (7.9) that the
prvssure is function of be th the radis| and the axial velocity components, which in turn

depends up on the ship. The point Hf inflection produced by pressure distribution is observed
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sconewlhat ibove the surl. ce for the ro-ship case. s we increase the slip on the surface,
th v mtleoron point seen s o smift twards the surface. But when A = 1, the point of
milection noves beyond g = 1 57 (solid lines) showing that boundary layer thickness
in reases by increasing th nunw rical value of paraineter A.

Ettect of farameter 4 bo:n fo1 1no-shy and partial- slip cases on the velocity components
am| pressu ¢ profile isillu tratcd in Figs. 7.5-7.7. Figure 7.5 shows that magnitude of axial
veocity fncreases by in reasing A sor both cases It is also evident from this figure that
lutricaton appreciates th efficts of A (solid lines). Figure 7.6 elucidates the effects of
parameter 1on the radial elocit v conponent f* both for no-slip (dashed lines) and partial-
shp (sohd lines) cases. It is ohserved from this figure that as A increases, f' increases.
Mureover, the lubricated - arfac e enhinces the effect of A (solid lines). i.e. Increase in the
radial velo ity beeomes nore 1apid by lubricating the surface. The effects of unsteadiness
pooamet:r Lor pressure p ofile i.dep cted in Fig. 7 7. The dashed lines are for no-slip case
aral sold ines for partio-slip :ase. This figure shows that the pressure increases by
do reasing 4 and s maxp wm ahen | = 0. It has 1lso been observed that the increase in
the pressur : becomes mos : sigrutican: by applying slip on the surface.

Variation « f @ for differest values of 4 when Pr :: 1 both for no-slip (dashed lines) and
patial slip (sohd lines) cases is vlabo-ated in Fig. ~.8. It is evident from this figure that 8
devreases by increasing A This Jecrc ase can be enhanced by applying the lubrication on
the surface (A =1). Figu e 7. Jepicts the variation in the magnitude of € for different
vaiues of » lip parameter « when Pro = 1 both for steady (A = 0) and unsteady (A = 2)
cases. [11s concluded fros 1 this figurs that @ increases with an increase in the value of A
(by decreas ing amount of ubrication) This figure aiso shows that unsteadiness depreciates
the effects of lubrication (sol.d lines). The influence of Pr on temperature profile is
clicidated in Fig. 7.10 wen A =1 hoth for no-slip and partial slip cases. According to
thes figure as I’r is mcre: sed, 1 decrease in the numerical value of 8 is observed which
o ther dep recrates on the lubr Cated surface (solic hnes). Figure 7.11 is devoted for the
cftzets of 'r on temperat e 6 hy coasidering steody and unsteady cases respectively. It
ho . beer noted from thes + gure tnhat @ decreases by (ncreasing Pr. It is also clear from this
fiyure that as unsteadwnes s incrcases. more decrease in the magnitude of temperature is

SCa NN
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Numeric al values ot the sain fiw tion oeflicient at the surface for various values of A and
A are illus rated i the Tiole 7 ) and are compared with [148] when A = 0. It is evident
from this able that f7'(( ) deviease by increasing slip on the surface and increase by
in« reasing ansteadiness ps came ter A. Hence the slip on the surface causes a decrease in the
vaiue of skin firction coet icient as expected. The yariation in local Nusselt number under
the influen.c of different yararmters s presented 1a Table 7.2 It is clear from the Table
7 that - 8'(0) decreas s by increasing slip parameter and increases by increasing

w tead.ng s parameter @ 1 Preodt] nuanber.

o

59

I

Fig 72 Vanation n f(q for hfferent valu:s of A whenA =0and A = 1.
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7.11. Variatio v in ¢(n) fc ¢ difterent vaiues of Pr and A when A = 1.

Numerical vali-s for the shin fiiction coefficient £ (0) for various values of A

values in the parenthesis ace given by Santra et al. [148].

009994 (0 00 999.4) |

049245 (1107 3240,

096639 (0 0 5631 |

414733 (V.41 473

687618 (0.6t 7613)

979046 (0.9° 9048)

75873 (127 5870) |

: 211821 (121 182u)“

..311853 (1.31185+4)

311956 (1. 31 1950.)

A=1 A= A=50 | A=100
0009995 | 0.009996 | 0.009998 | 0.009999
( 049254 ' ( 049364 | 0.049744 | 0.049815
( 096645 | (097474 | 0.098978 | 0.099264

1 0421773 | 0.440708 | 0.475200 | 0.481994
0714975 | 0.780883 | 0.904371 | 0.929885
1058510 | 1.249381 | 1.643876 | 1.733929
1384896 | 1854787 | 3.175248 | 3567803
1491554 | 2129354 | 4484463 | 5404635
| 1550981 | 2.313818 | 6.112016 | 8.336686
1554897 | 2327023 | 6.281861 | 8.712896
1556854 | 2.333675 | 6.371818 | 8.920022
1557046 | 2. 334332 | 6.380862 | 8.941168
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Twole 7 2 Nunernical vah

T

| el

)

0
0

0

- - -

;s 1o he - 8'(0) for varwous values of Pr.

101 R N e A= =10 | A=100
,_14-:._1._,_1_:__ izl ‘F_A=1 A= A=1
T 0.500049 0 ¢87:77 | 0461699 | 0.366244 | 1.161069 | 3.578919
078508 1128799 | 0.933355 | 0.714680 | 2.591787 | 8.001272
| .523383 | 140575 | 1.284502 | 0.985666 | 3.663082 | 11.31356
T1152020 ' 2 118342 | 1770419 | 1.359311 | 5177554 | 15.99468
1398468 3 (57,04 | 2717160 | 2.083981 | 8.181352 | 25.26648
4802738 4 ¢35L93 | 3.772494 | 2.888600 | 11.56521 | 35.67804

“PB.’??OZ&)_T 9316135 | 8.193578 | 6.244961 | 2582568 | 78.82254

0[5 7:721:[1 184586 | 1149833 | 8.749920 | 36.47870 | 109.8120

7.3 Canclusions

[ this e pter. we hay e

in ¢stiga ed heat transfer analysis in the time-dependent

ay syminel ‘ic stagnation-) oint flow o ver a disc lubeicated with power-law fluid. We have

tasetin = o/ 3 so thaties fts cat. be ¢ ympared 1n the special case. The numerical solutions

ol the gov- rming equatiorn » are aeveleped using Keller-box method. The motivation is to

doiermine he cffect of the slip para.neter A and unsteadiness parameter A on the flow

characteris ics. Main finde1gs ¢ { the peesent study are

(b

(1

(in)

(i\)

Numwrical values o f and f' increuse by increasing the unsteadiness parameter A

and 1y decreasing s «p parametc ¢ A.

Tempeerature @ inc1- ases with «n increase in A and decreases for large values of A

and 1'r.

f' () increases by incicasing both A and 1. Thus slip on the surface causes a

redus tion in the vah ¢ of £ '(0)

—1)'()) decreases b+ increusing A. However, 1t increases by increasing A and Pr.
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Chapter 8

MHD mixed convection stagnation-point flow
of a viscous fluid over a lubricated vertical

surface

[n his cnaj ter we have dis ussc ¢ the MHD mixed convection flow impinging orthogonally
o anseraedlubncated st face A po wer-law fluid is utihzed for the Jubrication purpose.
M hemat al model tor he consideced flow problem is illustrated by a set of partial
diiferemia equations. 'To ybtaw the raterfacial conditions, it is assumed that the velocity
arel shear tress of both he fliuds are continuous at the interface layer. Dimensionless
viuiables a ¢ invoked to t ansfirm the original system in the form of ordinary differential
equations. The Keller-bo« method 1+ implemented to obtain numerical solutions. The
impact of physical parum ters on the flow characteristics is given in the shape of graphs
aml tables. A comparison Jf present wnd available results in the special case validates the

olwained namerical solutiv ns [* 7-81, 159]

8.1 Machematical formulation

Consider n.ixed convectio 1, ste aldy, two-dimensional flow towards a stagnation-point over
a certicul ) late A power aw libricart spreads over the surface forming a thin layer. We
assume 1, x) and T, as t ¢ sw lace a 1d ambient tesnperatures respectively such that T, <
[ lo e eooted and £, > (s fbor the heated plate. A magnetic tield having uniform
st ength B s imposcd nor aal to -he tlat plate. The plate 1s resting in xz-plane and the fluid

flv ws aboy ¢ the plate hav g frec stream velocity u, (x), as shown in Fig. 8.1 below.
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Figure 8 1 Flowing phen »mer.oa she wing assisting and opposing flow.

Temen- | ] proved that he sia mation-point flow has the same attributes regardless the

shape 01 tl ¢ ligure. Ihe jower -law f uid comes out from the centre of the plate with the
(lowate ¢ given by Fagov L1).
Avsuming [, and u, as tle linc ac functions of x we have
» 2
mun7w+neyuﬁng) (8.1)
where L 1, and U, are ¢l aracteristic length, reference temperature and reference velocity

rewpectivel y. The equation s repee senting the boundacy layer flow and heat transfer are (2.2)

amd
WO g Qg ey Dy (T = To) + 7 (e — 1) (8.2)
dx ay- ¢ dx Vay £gr. ® ‘ el e ! ’
JaT ar . 9%r
Ll;)-; +1 3}—’ = a Iy , (83)

in which v, ¥,, ¢ and I represent cespectively 1he gravitational acceleration, thermal
exansion coefficient ¢ sctrical co Wductivity ani magnetic field. The positive sign

m- ntioned m Fq (8.2)1s <r th: issis ing and negative sigh for the opposing flow.
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To discuss present flow situavion, the boundary conditions are applied at the surface,
ine 2rfiice 0. both the fluia s and at infunity The no-slip boundary condition at the surface
ar. represcated by Egs. (2 7) and (2.8) and

. o (E

r(60) T +75(5) (84)
Snailarly, he interfacial « ondivivns a-e given by (2°.15) and (2.17). The conditions at the
free strean imply

X
u(x0) = U, (3), F(x, o) =Ty, (8.5)

Du fining tke dimensionles 5 vai wbles
{ ' . X i — & B — i
:yﬁ,h-qu)<q,u JLvﬂm, T=T,+Te()00.  (86)

Forposen e cquanions eld

YL T L 04 MO [ =0, (8.7)
WP fe - f10) =), (8.8)
y0)=-0 "(0)=2 "(0;%, f'(o)=1, (3.9)
v(0)=:1 6(c) =0, (8.10)

BL,, . . .
where M = g -=U, isthe . lartnwnn number and d : = Gr/Re? represents mixed convection
/F

parameter, n which Gr = gy, [, L3/ /% is Grashof and Re = U, L/ v is Reynolds number.
It s 1imponant to mentior that @ > 0 and d < 0 respectively correspond to assisting and

opposing f ows. The shp j aran.cter A in Ey. (8.9) is defined as
k '/; eZn 2 2Zn—1

" ,3/2 ZQ)” ’ (8.11)

A ==

wherc e = U, /L.

8 ) Results and discussion

[ valuer of f'  f7 0 @ 160" ue obramed by solving Egs. (8.7) and (8.10) using Keller-
be < metho | for certain va aes of pertmient parametcrs.

Tv find tie influence o Hartnann number M, slip paramcter A, mixed convection
pwrameter {, Prandtl number Pr- ind fow behavior index n on f'and 0, Figs. 8.2-8.10 have

been plotte d. The respons. of pertinent parameters on f(0) and —6'(0) have been given
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in [ables ¢ 1-8 3.

Figs. 8.2 a1d 8 3 arc displ«yed W ana yze the behayior of wall slip due to lubricant on the
veocity ard temperature distiibutior s. Fig. 8.2 depicts the dependence of f' (velocity
co npon:n along x axiss) on s paraneter 4. According to this figure f' increases with
doe raasag the magmitude HfA Jomes ns the lubricant increases the fluid velocity. For the
cave when A approaches o zer(, i.c. in the casc of full-slip, the effects of viscosity are
stppressec by the lubrici-it. Fig. 8.3 demonstrates how the shp parameter A effects the
temperatur @ profile & W : observe that the numerical value of temperature profile 8 is
i reased 1y increasing s) p parametec A showing that temperature of the fluid is reduced
by augnmer<ing lubricatior on tne plate.

The impac of Hartmann wmber M ¢n f'and @ when A = 3,Pr = 1,d = 0.1 is depicted
0 Figs. 3.« and 8.5 Fig. ¢ 4 1llustrate s that applied magnetic field excites the bulk motion
aiel suppo-ts the lubricar on « frects. According to Fig. 8.5, the temperature profile 6
decreases by increasing the nuincricas value of M. Moreover, an increase in the numerical
value of M reduccs the thy rmal bounoary layer thickness.

To observe the etfects of { on f and #/ for fixed A, M, and Pr both for assisting as well as
opposing 1 ows, Figs. 8.6 ind x 7 are plotted. Fig. 3.6 depicts that velocity profile f and
m.<ed con ection parame <r d ve dirzctly proportivonal to each other for the assisting flow
ardare neersely proport nal ter the opposing flow. Influence of d on temperature 6 is
prosented o kg &7 T1 s figuce sbows that by increasing d the temperature of fluid
ducreases wor the case of . ssisting flow and it increases when there is opposing flow. Fig.
8 » elucid-tes how Pranstl number Pr cffects the temperature € in the existence of
lutricaton when M = 1iadd :: 0.1 From this figure, it is clear that as we increase the
nwmerical alue of Pr tor some 1ixed value of A. the temperature profile decreases. As we
meve from no-slip 10 full- Jlip (e A oecreases), this decrease is more rapid. The impact of
flvw behay ior index non f’ and 6 is illustrated in Figs. 8.9 and 8.10. Fig. 8.9 shows that
thw horizoi.lal velocity co apoment f' 1s increased by increasing n. According to Fig. 8.10
the temper iture 6 decreas :s by increasing flow behaviour index n.

Intluence « I'slip paramete A on /"' (01 and —6'(0) when M = 1 and Pr = 1 are presented
n Table 8. . The cases oy :he assistiny. flow and opjrosing flow are considered. We observe

th thy nceasng A, /(1) 1s bicreased and —0'(0) is decreased. However, the rate of
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i rease 0. decrease is sk wer s tien taere 1s opposing flow. The numerical computations
for A = x e carried outia A = 4000 The impact ¢f M on ' (0) and —0'(0) is elucidated
in (able 8. when A, Prayd d are constant. It has bcen observed that by increasing M, both
f' (0) and —0'(0) inc1ea €. The effe:ts of Pron 7" (0) and —6'(0) for assisting as well
as opposing ﬂo.ws, are shc wn in {able 8.3 A close wok at this table clarifies that as the Pr
1s increased, f(0) is d.creawd ani —0'(0) is increased in the assisting flow case.
However, roth quantities re ircrease-] in the opporing flow case.

Numerical values of f” (1) and —6' [0) tor the no-slip case agree well with the values

alicady Jde cribed in the i eratune [77 81, 159] and are presented in Tables 8.4-8.6.

T
|
r
:

Fig. ¢.2. Response « €f'(raganstAwhenM =1,Pr =1,d=01,n=1/2,
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0.8";

£°0217)

0.0, M=05,2.§ 100

S o T T
l-kﬂ"’-T“ = ~
\ - . it
/\‘/ ,

02_-_-_ 1 1 L

0 1 2 3

Fig. 4.4. Response « £ f'(n1 aga.nst M when 4 = 5,Pr = 1,d = 0.1,n = 1/2.
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Table 8 1: Influence of shp parametee A on f”(0) and —6'(0) when M = 1and Pr =1

when d =11 (assisung fl w) anl d = — 0.1 (opposing flow).

Y I ~6'(0) f(0) ~6'(0)

| (assisting flc +) (ass.sting flow)  (opposing flow) | (opposing flow)

S 001 0010112, 12599325 0.0097796 1.2427839

C 005  0.049515% 12525857  0.0478723 1.2354619

L0l 0 0965221 12437203  0.0932823 1.2266314

0S5 03994490 1 1837080  0.3850065 1.1667000
1.0 0.632757 11290828  0.6276409 1.1129564

© 20 T 09466ST1- 10593235 0.9075208 1.0442861

© 50 1276901t 09700909  1.2198865 0.9570234

CO100 14346700 09220959 1.3682181 0.9103471

C 500 1.5837308 08725170  1.5079733 0.8623061
100 T603sKTC 08654437  1.5268410 0.8554656

C500 0 1.620257t 08596270  1.5421597 0.8498433

o w 1.624392 08581573  1.5460290 0.8484232

Taole 8 2: Influence of & on /*'(0) and -6'(0) when A =1 and Pr =1 when d = 0.1

tosistmz - ow andd - 01 ¢ppos ng flow)

M e O —6(0)

| (assisting flc w) (asswsting flow)  (opposing flow) | (opposing flow)

01 0.614955- 11057394  0.5831787 1.0845621

05 0.633587» 11174154 0.6052519 1.0988763
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1.0 0652757
T 20 0.682219
TS0 T 07608

0 (7827 14

50 0880034
Co100 0910861
L5000 0957473
T1000 T 0.909476
T 2000 0978189
T500000  0.995549f
Cw 0999999

1 1290828 0.6276409 1.1129564
11463037  0.6615126 1.1333866
11753963 0.7220656 1.1671049
1 1975075 07733190 | 1.1924990
12343744  0.8771720 1.2329398
12424560  0.9092798 1.2416976
12500954 0.9571130 1.2505353
12519452 0.9692902 1.2518645
12520083  0.9780941 1.2525678
12532860  0.9955459 1.2532844
12533220 0.9999987 1.2533211

Table 8 3: (nfluence of P1 dt] number Pron f”(0) and —6'(0) when A = 1and M =1

when d =v.1 (assisting fl w) anl d = — 0.1 (opposing flow).
I £ -6'(0) £0) =00 ]
(assisting tlo v) (ass sting flow)  (opposing flow) | (opposing flow)
©0.05 0.6593%1a 03047311  0.6208986 0.3009513
01 0658438 T 03913332 0.6218514 0.3852558
T 05 0.654711¢ 08142949 0.6256484 0.8015589
CO1.0 06527570 11290828  0.6276409 1.1129564
20 06507810 1 5655846  0.6296540 1.5457547
T 50 T 064%3054 24160414 0.6321715 2.3911373
© 100 0.6466401 33625665  0.6338614 3.3339433
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©0.643693%

7 3144593

0.6368419

7.2785393

1 2620591

T 0.6377242

10.2237614

Taole 8 3. Jomparison sh swin the b fluence of P2 on f"(0) when A = co, M = 0 and

Pr

Ramad handran

eta [77]

1. 063

[ Devi et al.
78]
1 1064

"D et d TToketal | Hissanien & | Fazlina et al. Present
7¥] ALY Crorla [79] [81]
0T6h | 07641 | 076406 | 0.7641 0.764073
T e . 0.8708 0.870788
o . o N

Lok et al. | Hassanien & _ Fazlina et al. Present
[80] Crorla [79] [81]
7004 | 1.70632 1.7063 1.706333
s - 1.6754 1.675450
S1X0 o C 15179 | 1517922
o 149284 14928 | 1492848
4486 | - 1.4485 1.448492
L4102 | - 1.4101 1.410067
1130903 | - T 13903 1.390283
373 | - 13774 1.377401
1 3677 | 1.38471 1.3680 1.368043
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T1.224 [ 17224
T2.4576 | 214574
IO N
3,514 ] assr
3.1095 -
4116 42115

1.7226 - 1.7224 1.722480
1 - 194461 | 1.9446 1.944644
24577 | - 2.4576 2.457652
31023 | - 3.1011 3.101146
35560 | - 3.5514 3.551412

" 39195 : 39095 ] 3910052 |
12289 | 423372 | 42116 4.213370

Taole 6 Chmparison showing wfluerce otf'd on f' (0) and —6'(0) when A =00, M =0

ael Pro=).7.
I ) N 11 (') N AT ) —6"(0)
Almed & N.zar ' Present work | Ahmed & Nazar Present
1159 | [159]
06| 09194 | 09193778 0.6673 0.6672568
081 08079 | 08078%04 |  0.6510 0.6510393
10 06917 | 0.6916%68 ©0.6332 0.6332424
T2 T T T 056 T T 04696416 | 0.6134 0.6134485
14 04401 7 04301302 | 0.5909 0.5908937
-16 03003 T 0.003289 | 05574 0.5574276
o0 T 12823 L T1.2823140 07157 0.7157189
T 0.5 | 14755 714755318 | 0.7383 0.7382642
00 T T TI6610 T 16610101 ~0.7591 0.7591422
T 0e T T 907 T T TI0mss | T 0916 07916414
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8.3 Cenclusions

In <his cnay ter, MHD mix d convecticn flow stagnited over a vertical wall lubricated with

pe ver-law fluid 1s investigateo Numrical solutions are attained to analyze the influence

(V)

slip para-neter A, Hartnwenn namber M, imixed convection parameter d, power- law index

n and Prar dtl number Proon the flow characteristic s. Results are presented in the form of

tatles and figures for ce tain values of parameters by considering assisting as well as

opposing f ow situations. vome lindir gs of this study are

(1 The lubricant cxcr ¢s the base fluid velocity inside the boundary layer. Moreover,
the cffects of visce sity wr: suppressed by the lubricant in the case of full-slip.

(v The temperature o the Lase flu id decreasces Iy increasing lubrication on the surface.

(in) By ncreasing the : lip on the surface, the wail shear stress, i.e. f''(0) decreases and
hea transfer cocfl ciem, re. - 8'(0) increases but the rate of increase or decrease
15 I ss in magnituo : for the opyosing flow.

(iv)  The similarny soh«ions ¢nly ¢ xist for n = 1/2. A non-similar solution is obtained

vwhnnz 172
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Chapter 9
Effects  of lubrication in MHD mixed

convection stagnation-point flow of a second

grade fluid adjacent to a vertical plate

The presem chupter descrsies etiects «f mixed cony ection on MHD flow of a second grade
1o above anv crtucad plat - The Turd mpinges orthogonally on the plate which has a slim
ceating ol hower-law lubr cant A system of ordina.y differential equations is obtained by
erploying the similarty cansmcmatmons 1o the onginal partial differential equations. To
hiandle tne sresent flow s1 aatica it is assumed that velocity and shear stress of the second
g ade fluic and the lubriv ant wr: cor tinuous at the interface. A well reputed numerical
techmque :alled Keller-lox nucthod is utilized to solve coupled nonlinear equations.
Intluence + £ shp, magnet ¢ and mix¢d convection parameters, Weissenberg and Prandtl
numbers o 1 the velocity, » «in inction coelficient, temperature and heat transfer rate at the
sw face 1s | resented i the forn of graphs and tabular data for both assisting and opposing
flvws The results in the c. se o1 deduc ed no-slip condition are compared with the available

menerical lata [159]). A g vod sgreem:nt of these r¢ sults certifies our effort.

9.1 Problem dest ription

Cv.nsider s eady, mixed ¢ nvecbon, t vo-dimensional flow of a second grade fluid due to
sEoaraten e Cadacent yay e beal aabricated ple.e A power law fluid has been utilized
for the b ication purpos  The plate temperature 7, 1s linearly dependent to the distance
x -tom the ongin. It s . ssun<ed thae the plate is resting in xz-plane and a transverse
mmgnetw { ¢ld B is applie 4 onbe pla.e as shown in Fig. 8.1.

Evuations epresenting th boundary ayer flow are (2.2), (8.3) and the following equation

lzm . Ju u du, . 9 u + (u 3 u bu %u  du J%v v63 u)
el i —-= - - —_— - - —_— —_— —
de dy ¢ a» 352 ¢ dxdy?  cr dy? ' 3y dy? ay?
. o B2
tygyy O =Ty) to S e u). 9.1
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Te discust present flow ituadion, the boundary conditions are applied at the surface,
mierface ¢ I both fluids «nd tece sheam Eqgs. (2 7) and (8.4) represent the boundary
conditions it fluid-sohd n«erfacc whie the boundary conditions at fluid-fluid interface are

representes by Eqs (2.17 and (0.5). The conditiors at the free stream imply

NOED R ??f-f,i;f{ =9, T(¢) =T, (9.2)

[mcoducin, Eq (8.0), onc gets the foliowing systeni ot equations.
P v e = [P = ffY) +dO+ M- f') =0, (9.3)
7(0)= C fUO)+ 30 f(0 fr)=2af"(0)™, f'(0)=1, f'(0)=0. (94)

Tre hear ewuation and 1eli «ive boundacy conditions are mentioned in Egs. (8.8) and (8.10).

The param:ter A 1s detinew in I . (8.1 1).

9.2 Nwumerical rosults and discussion

The value: of f', f”, 0 a .d 8" are ol-tained by solving Egs. (9.3), (9.4), (8.8) and (8.10)
using Kell r-box method or cenain v alues of pertinent parameters.

[+ alws.ra ¢ the imtluened of nwgneta: parameter M, slip parameter A, mixed convection
parameter [, Weissenbery nuniber W e and Prandt. number Pr on f' and 8, Figs. 9.1-9.9
hi ve been Hslotied. Numer cal values Hf wall shear stress Rexl/sz and and local Nusselt
number Re .Y *Nu, are » tven tm Tabies 9.1-9.4. This numerical data is utilized to discuss
the influep € of involved sarame ters v Rexl/sz aand Rex_l/ZNux.

Fagures 2.0 and 9.2 are dis plays o to aalyre the bel.avior of slip parameter on the velocity
aml temper ature profiles. 'ig 4., dep.cts the depemience of f' (velocity component along
X ax18) onlip parameter . Aceording to this figure f' increases when slip is increased at
the surface It means tha lubrivant :xcites the i locity of the fluid. The case when A
approache to zcro, ie. 1.l- slip regime, the effects of viscosity are suppressed by the
lubricant. ‘ig. 9.2 demon trates how the slip paraimeter A effects the temperature 8. It is
observed t om this figure hathe flusd temperature is suppressed by increasing slip. This

18 because velocity is enianced by mcreasing shp and as a result the impact of wall
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tesperacn ¢ on the lowing flund is reduced.

Figs. 9.0 ard 9 4 display t-€ variation in f'and 6 foc various values of magnetic parameter
M when P, d and We ar. fixed May netic parameter can affect the fluid velocity in three
ways eithe 11 excites the fluia velocity or it suppresses the fluid velocity or alters the
baandary ayer thickness In the present case Fig. 9.3 illustrates that with increasing M
veocity is nereased and 1 o nium boundary layer thickness is decreased. Following the
S@10e arpu ent for the pre 7ious set of figures the ternperature 8 decreases by increasing M
(F1g.9.41. ) urthermore, th  ther mal boundary layer thickness is reduced by increasing M.
Variation 1 f' and ¢ tor 11e intluencs of viscoelasiic parameter We for fixed A, M, d and
Ps has becn reported in 1 .gs. 9.5 anc 9.6 Fig. 9.5 shows that f’ decreases by increasing
We. The noason is that by increasing We, the visceus effects for the viscoelastic fluid are
mw.re pron ment and as a esub veloc ty of the fluid is decreased. A reverse phenomenon
ho - beer o werved neac th surd e as shp s increas :d. [t means slip dominates the viscous
eftects wasele the boundas  lays1 Tenperature in this case is a decreasing function of We
arsl results are shown inl g. 9 6 To «nalyze the eftects of d on f'and 6 both for assisting
aid oppos ag flows. Figs 9.7 and 9.3 are plotted. Fig. 9.7 depicts that velocity f' is an
10~ reasing tunction ot th mixed co.vection parameter d for the assisting flow and is
dcereasing function for the: opyosing flow The reason is that when the fluid is in contact
wsh the hc ated plate, the nolecules « fthe fluid are excited and as a result the velocity of
the flind e hances. On the other hand. velocity of the fluid decrcases near the cooled plate.
Fiy.. 9.8 shhws the influer ce o1 +{ on the temperatuce 8. We observe that by increasing d
thh temperature of fluid reduevs for assisting flow situation and it increases for the
opposing 1.ow. Impact or Pr .1 the numerical vatues of 6 is displayed in Fig. 9.9. As
expected tomperature @ re Juce s tor lacge values of Pr. From the explicit definition of Pr,
wy observs that it 1s inve iely telated to thermal diffusivity a*. Therefore, increasing Pr,
results inthe decrement o a” «ausing a decrease i heat transfer. This reduction becomes
mw.re pron nent tor the in reas.x«l ship case.

N .meris al values of Re,’ ZCf nd Re ., "V Nu,, for the influence of A when M=1, K= 0.5
atel Pr 1 arc presented s « Tal:l 9.1 The cases for assisting and opposing flows has been

dicusscd. it 1s observed nat ke /%0 is an increasing and Re, /2 Nu, is a decreasing
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functior. 0 A fpr both the cascs But magnitude o! increase or decrcase is smaller when
there is a1 opposing fle w. Vable .2 s devoted for the analysis of Rexl/sz and
Re .~ 2 N, ¢ for the influc nee £ magyetic parametc r M. We see that by increasing M, both
R (”Zc,c ind Re, ViNy gain the raagnitude. The rate of increase of both quantities is
targer in fi Il-shp regime . ad is smaller in no-slip regime for both the cases. Effects of Pr
on Re,' 2(, and Re,_’/2 ~u, «nthe | ibricated surface has been depicted in Table 9.3. The
re uloy a0 v that by merc sing 1'r, Hex‘/"C[ decrc ases and Re,”*?Nu, increases in the
case of ass sting flow ano both quantdies accelerats: in opposing flow situation. Table 9.4
im. orporats s the effects of Ve «n Re, /ZC, and Re, 'l/zNux during assisting and opposing
fhews for, =3 M 1an Pr 1. W:see that Re, 1/sz and Rex_l/zNux are reduced by
cr.nancing #e ineach ca ¢. Tubles 9 5 and 9.6 are developed to examine the variation in
Re M2 iad Re,” " Nu  for the intluence of We, M and Pr. A comparison of obtained

results witr those of Ab aed and Nazar [159)] validates the accuracy of the provided

sewations.,
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ig. 9.1: Impac of A «n f'in) when M = 1,We =05,d =0.1,Pr = 1.
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Table 1.1: Influence « €A 01 Rexl/sz and Re, '1/2Nux when We = 05,M = Pr =

1 buth for :lssisung fl. w(a =0.3) and opposing tlow (d = —0.1).

‘ Rex 1/2 (f
(assisting flov
0.0396940

(). 1880087

U.34v01 32

0.5924081

1.9224511]

T 10695407

1.18539.12

Table 1.2: [nfluence «

We = 0.5 both for as

M

Rey, PNu, | ReMZc Re, *Nu,

) assist ng flow) | (upposing flow) | (opposing flow)
T 1.2468289 | 0.0392670 1.2329180
T 11962807 | 0.1855159 1.1817533
1.1296209 0.3431851 |  1.1246462
©1.0a98891 | 0.5784548 1.0350918
09185478 | 0.8898624 0.9065654
1 0.8454430 | 1.0263591 0.8456094
T 0.8(32163 11337357 0.7951291
T 0.7%68415 | 1.1465225 0.7889483
07417803 | 11566146 0.7840427
T0.7%05292 | 1.1591178 0.7828222

{ M 1. Re, *C, and Re, "/*Nu, when 1 = Pr = 1 and

istin flow (d = 0.1) and opposing flow (d = —0.1).

" keeg

(assisting tle

(e}
()
L
=
o
o
|

QI
d
o
[
S|
Ned!
e

(=]
el
thn
N
o
~
|
>

~0365515)

0.340173¢ |

Rey VNu, | Re,*C, | Rey VPNu,
tassis ing flow) | ,opposing flow) | (opposing flow)
11164548 | 03322275 1.0965899

11181423 | 03378313 1.1108543

1 11396209 | 0.3431851 1.1246462
11562173 | 03507113 1.1442641
11333976 | 0.3626590 1.1757119
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Table 9 3: .nfluence of Pr

0. both fc r assisting tlow

Pr

(

703478845
T 03474948

03468439

e,
assistuig o
10.3509393

=

0.35065

w

{

=~
|
w

Y

344955

0.349

=1
b
ol

1

0.3406601

12937015 | 03714764 1.1987397

12361132 T0.3863820 | 1.2347291
T 712133106 | 0.3903140 1.2425701
T1 12508222 | 03956649 1.2506633
T 12519991 | 03969371 1.2519187
T 12531760 | 0.3990285 1.2531679
T 12532920 |7 03995564 12532904
T 12533220 | 0.3999820 1.2533220

on Hexl/zl'f and Re, " *Nu, when A = M = 1 and We =
(d = 0.1) ind opposing flow (d = —0.1).

[ ke PN | RG] Re T,
) twsistng llow)  (Hpposing tlow) | (opposing flow)
1 0.3039639 70.3411310 0.3003373
T 03%03749 | 0.3414380 0.3845350
1 0.8 74892 1 0.3426122 0.8054638
] 1.1.496209 0.3431851 1.1246462
[ 24762945 "0.3443735 24541926
" 3430150 70.3447793 3.4441100
- 7.6403326 | 0.3454490 7.6103073
110762119 7 0.3456363 10.730519
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Table +.4: Influence « 1 We on Re (I/ZCf and Re, Y*Nu, when Pr = M = 1 and

= 3 hoth for ussisti g {lcw (d: 0.1) and opposing flow (d = —0.1).

We T Re G ke PN | e, | Rey N,
(assisting flov ) .wssist ng flow) | (opposing flow) | (opposing flow)

T0.0x 10747540 1.0137079 | 1.0298616 0.9996494
008 10540099 1.0114689 | 1.0107714 0.9974826
SO 0003ReS T T 0065586 | 09668427 0.9927064

0.3 0.85811 34 0.9¢39400 | 0.8292726 | 09802323 |
06 0.7009658  0.9872453 | 0.6878929 0.9732819
7097 T 06005525 09880183 | 0.5875407 0.9737522
127 05200170 09925383 | 05113612 0.9780998

Taole 9 5: Congparison shwing the i1fluence varivus parameters on Re,*/* Cr when A =
o for ass-sting as well a opposing low situations. The numcrical values written in the

brackets a1 : calculated by {159,

] er=u2 1 Pr =10
M | We  d4=02 | d=-02 | d=02 | d=-02
C 02 1 5301)) ) 9561434 . 11058027 | 1.0096210 |
| (.559) (0.9561) (1.1058) (1.0096)
v [ 02 17443) | 068443491 | 0.7905304 | 0.7141263
i (t 8174) (0.0844) (0.7905) (0.7141)
T T2 T 0172373 05432061 | 0.6291413 | 0.5636410
| (( 647.") (0.4432) (0.6291) (0.5636)
T 7102 [ Tes54268 | 12948136 | 14171454 | 1.3346086
R [f?}_L ~(-l._2948) 1 _(1.41711 (1.3346)

136



Taole 9 6: Jomparison sh ewing the ifluence various parameters on Rex_l/2 Nu, when

A = 0o, tor assisting as we il as Hpposwg flow situaiions. The numerical values written in

1.0513271 [ 0.9470308 | 1.0312133 | 0.9682148
(1 0511) (0.9470) (1.0312) (0.9682)
0.4 419355 | 0.7617252 | 0.8286659 | 0.7758104
(C 8414 (0.7617) (0.8287) (0.7758)
30220050 | 2.9400916 | 3.0066963 | 2.9555134 |
(¢ 022u) (2.9401) (3.0067) (2.9555)
D 2046615 | 21901398 | 22338363 | 2.1979406
' (. 241n) (2.1901) (2.2338) (2.1979)
L LE193Z15 | 17805365 | 1.8143020 | 1.7856210 |
l (1 8194 (1.7805) (1.8143) (1.7856)

th. brac«er s are caleulatec by [ 119]

- —r--
M ! We
¢ 02
B
' l
oz
__{_l__
:

!
1] 02

T pe=02 1 Pr=10
d=02 '] d=-02 | d=02 | d=-02 |
04261270 | )4096336 | 1.7909049 | 1.7564229 |
(( 426 ) (0.4096) (1.7909) (1.7564)
T 0.2)1939F | 93784332 | 1.6090485 | 1.5763975
(€ 391%) (0.3784) (1.6090) (1.5764)

" (03167 04288206 | 19159220 | 1.8907467
(440 ) (0.4288) (1.9159) (1.8907)
0.)8521) | 0.3993254 | 17320370 | 1.7096146 |
(( 408") (0.3993) (1.7320) (1.7096)
0.4332037 | 0.4795827 | 2.3335900 | 2.3242681

( 483.") (0.4795) (2.3336) (2.3243)
| 0.438532) | 04555471 | 2.1333937 | 2.1258812
(€ 458+) (0.4555) (2.1334) (2.1259)
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9.3 Cenclusions

In this pap 1. effects of I sricanon in MHD mixed convection stagnation point flow of a

scoond gra le fluid adjuce 1t 1o a vert<al plate has been investigated. A thin coating of a

pewver-law flnd 1s used or the lubrication purpcese Numerical solutions are found to

arulyze th - insluence of Wlip peramdter A (ranging from no-slip to full-slip), magnetic

pimanmeter M, mixed cosvectun pirameter d aad Prandtl number Pr on the flow

characteris ics. Results an preseated -n the form of tables and figures for certain values of

pwameters by considering assisting a.« well as oppesing flow situations. Some findings of

this study . re

()

(n
(i)

(wv)

(v)
(v

(vi))

(viii»

(x)

(x1)

(xu)

[he lubricant \ «cite s the v :locity f’ of tne fluid and the effects of viscosity are
suppressed by he v keicar. in the case ¢ f full-slip

Che fluid temy sratuse 8 1s suppressed b/ mcreasing slip on the surface.

f' 1s increase+ and mon entum boundary layer thickness is decrecased by
augmenting th mag netic aarameter M.

0 decreases b - incrvasing M and the thermal boundary layer thickness is
reduced.

f' decreases ar J @ wmicreas :s by increasing We.

f' s an incre sing 1unct on of the mixed convection parameter d for the
assisting flow nd devreas ng function for the opposing flow.

The temperatu ¢ of hiid ro duces for assisting flow situation and it increases for
the opposing {-»w

6 reduces by b creasing the values of Prandtl number Pr.

Skin frction cocftivcient Re, l/sz decreases and local Nusselt number
Re, ""/2Nu, i creases by ncreasing slip on the surface.

Re,' "¢ unc Re, "°N i, gan the magnitude by increasing magnetic
parumeter M,

Re,'/*C; decr ases aad R 2, 7' *Nu, increases during assisting flow and both

Juantitics incr ase curing Hpposing flow by increasing Pr.

Both Rex]/zt ¢ and Re,” 2Nu, are reduced with an increase in We.

138



Bibliography

RK

[2]
3

(4,

ISV

]
1]

I14]

|14]

1.. rrandtl, In Verl andhungen aes dritten ints rnationalen Mathematiker-Kongresses
) leidelberg 190, A. Krazer, ed., Teubner, Leipzig, Germany, p. 484, 1905.
1. schhchting. Bc inday Layer Theory, M« Graw-Hill, New York, 1964.

K. licmenz. Die ¢ renzschich an cinem in Jen gleichformingen Flussigkeitsstrom
cin et chton 2rac o K oaiszy inder. Dingless Polytech. 1. 326, 321-324, 1911.
.. Chiam, Stag ation pon. flow towards a stretching plate, J. Phys. Soc. Jpn,,

63,2443 2444, 1* 4.

.. 7. Wang, Stag ation flow towards a shrinking sheet, Int. J. Nonlinear Mech.,
43. 377 -382, 200

)", Momann, Der E afluss grosser Zahigkeit nei der Stromung um den Zylinder und
um dic Kugel, 7. . ngew Matn. Mech, (ZAMVIM), 16, 153-164, 1936.

N. frossling, Ver tunsiuag, Warmeubertragung und Geschwindigkeitsverteilung
hei zw.cidimens'i(n aler ind rotations symmmetrischer laminarer Grenzschicht-
strc mung, Lunds 1 niv. Arssky N.J*. Avd. 2 35, No. 4, 1940.

}.. lowarth, The 1yunaa y layer in three-dwnensional flow. Part II: The flow near
a shagnation-point Phil Mag. VII, 42,1433 1440, 1951

. Javey, Bounds y lay et flow at a saddle joint of attachment, J. Fluid Mech., 10,
~9. 610, 1961,

bo I Yang Unst ady Lminor boundary lyers in an incompressible stagnation
flovs, ASMLE J. Ap. Mach,, 25, 421- 427, ,958.

.. C Wilhams. N¢ 1-ste uly sti gnation-point flow, AIAA J., 6, 2417-2419, 1968.
b, L W. Cheng, » L N Ozisia and J. C. W dliams, Non-steady three-dimensional
stay nation-point fi «w. ASME 1. App. Mech , 38, 282--287, 1971.

K. Jazar, N Ami D }nip ard 1. Pop, Unsteady boundary layer flow in the region
of 1 1e stagnation--rint w1, a st etching sheet Ini. J. Eng. Sci,, 42, 1241-1253, 2004.
1. “ang and C. F Lee. "i'hree -dimensional wall-bounded laminar boundary layer
wit 1 sp;;n~W'ise cre ss fiee stream and moviny boundary, Acta Mech., 204, 235-248,

2009,

139



[25]

Iv.?h]

herg and S Q )a, A umformly vahd series solution to the unsteady

staynation-point 1.>w 1y varde an impulsively stretching surface, Sci. in China
wer es (i: Phys . v :ch. 8 Asto., 53,521-516, 2010.
Y. 7hong and 1.1 ing, ( nsteady stagnatior -point flow over a plate moving along
the Jirection of flc ¥ imyngement. Int. J. Heat Mass Trans., 54, 3103-3108, 201 1.
I FopandT Y N, Unsicady flow past a stretching shect, Mech. Res. Comm., 23,
410 422 1996.
L1 Stuart, The v scouws flow near a stagnation-point when the external flow has
wni ormvorucity, . Aeec. Sci, 26, 124-12-, 1959.
K. I. Tamada, ['w)-diiwnsioaal stagnation-point flow impinging obliquely on a
plase wall, J. Phy: Soc Ipn., 16, 310-311, (979.
J. M. Dorrepaal, 2 a exact solution of the Navier-Stokes equation which describes
no1 -orthogonal sti gnatmyn-posat flow in twe dimensions, J. Fluid Mech., 163, 141-
14", 19%06.

"1 bomrepaal. twe - imie isional obligie stagnation-point flow unique? Can.
Ap . Math. Quurt 8, 61 -66, 000
F. razin and N. 1 iley, 1he N avier-Stokes cquations: a classification of flows and
«Xa ot sulutions, T mdoa Matmematical Sodiety Lecture Note Series, Cambridge
Un Press, Cambr dge, 334, 1 -196, 2006.
K. VM. Tooke and M ti Bly'h, A note on oblique stagnation-point flow, Phys.
Flu ds, 20, 033101 2008
A 3onelli, G. Gioates»» and M. C. Patria, MIID oblique stagnation-point flow of
« Newtonian fluid ZAMP, 63 271-294, 20.2.
Y. (. Lok, ). H Merkit und I Pop, MHD oblique stagnation-point flow towards a
strotching/shrinkin ¢ sur tace, Mecca., 50, 2949 2961, 2015.
Y. Y. ok, N. Ann ard I. Pup, Non-orthogonal stagnation-point flow towards a
strctching sheet, Iy ¢ J. Nonlincar Mech., 41 622-627, 2006.
1. 5. Talley and T D. Weidman, Oblique two-fluid stagnation-point flow, Eur. J.
"o h 1T 08 21000190
. .abiopulu and A. (laffar Oblique Newtonian fluid flow with heat transfer
1ow ards a stretchin ¢ she et, Comp. Prob. Eng., 307, 93-103, 2014.

140



[3.]

137

130]

I34)

3]

[44]

I, 0. Weidman nd V' Puikaradze, Axisymmetric stagnation flow obliquely
ym) nging on a cit ular cylinder, Eur. J. Mech. B 22, 123-131, 2003.

A. jhatfari. T Ja ed aal F. rabropulu, Onlique stagnation-point flow of a non-
Ne vtonian nano? uid cover stretching surface with radiation: A numerical
stu ly, Thermal Sc , do: 0. 2:98/TSCI150411163G, 2015.

1. aved, A. Ghaf ari aad H. \hmad, Numerical study of unsteady MHD oblique

stapnation-point 1 ow «th beat transfer vver an oscillating flat plate, Can. J.
Phys. 93, 1138-1143, 2015,

A.vgharfari. T, Jav -d and A. Majeed, Influer<e of radiation on non-Newtonian fluid
1oac tegon of o hgue stagn ation-point fw in a porous medium: A numerical
stuly, Tran. Porov « Med |, 113, 245-266, 2016.

L1 Stuart, A ol tion ofthe Navier-Stoke s and energy equations illustrating the
1esyoonse of skin Tictrn ana temperature of an infinite plate thermometer to

tlus tuations in the strea.n velowity, Proc. Reyal Soc. Lon., Series A, 231,116-130,
195,

K. ». R. Gorla, He, ctrar ster in an axisymmerric stagnation flow on a cylinder, App.
Scr Rey., 32, 541 353, 1976.

K. saleh and A B Rabani, A <isyinmetric »tagnation-point flow and heat transfer
of « viscous fluid on a yooving cylinder w ith time-dependent axial velocity and
uni ormi transpirat on, J #luids Eng., 126, 997 -1005, 2004.

A. . Abbastand . .. B. Rahin (, Three-dime nsional stagnation-point flow and heat
teay sfer on 4 flat pte with trarspiration, J. Thermophys. Heat Trans., 23, 513-521,
009,

v Anbasiand B Rahin o Investigatic n of two-dimensional stagnation-point
lorv and hceat tra) sfer mping ing on a flat plate, J. Heat Trans., 134, 024501-1-
12«501-6, 2012.

M. Massoudi and V1. Razemaa, Heat transier analysis of a viscoelastic fluid at a
sta, nation-point, t fech Kes. ¢ 'omm., 19. 1.°9- 134, 1992,

I’V A Tlbashi eshy and M. A. A, Ba-id. Heat Transfer over an Unsteady
strotching Surtice J. Be it Mass Trans., 41 1-4, 2004.

K. R Rajagopal, (:n the >oun lary conditions for fluids of the differential type, in:

141



[4:]

|44]

[4°]

fae]

{4s]

[44]

ED

A. Sequeira (Ed.  Nawer-S-okes Equaticns and Related Nonlinear Problems,

I’le 1a. Press, New York, 273-78, 1995.

3. W. Beard and K. Walter., Elastico-viscous boundary layer flows. I. Two-

din ensonal flow ear & stagns tion-point, Proc Cambridge Phil. Soc., 60, 667-674,
9¢ da.

K. <. Rajagopal, a «d P, . Kawni, Some reraarks on boundary conditions for flows

of luids of the di ferentaal type, Control Mechanics and its Applications, Hemi.

Pre.s, New York, 989

K. R Rajagopal, " Y WNaad A S. Gupia, Flow of a viscoelastic fluid over a

stroching sheet, R eol Acta, 23, 213--215, 1984,

K. £ Rujagopalai.1 A, 5 Gupea, An exact sv+lution for the flow of a non-Newtonian

tlusd past an intin e plate, Mecca.. 19, 158, 1984,

. 2. Srivatsava, ‘he flew of a non-Newtcnian liquid near a stagnation-point, Z.

Ancew Mail Phys, 9 50-84 1958,

¢i. Rajeswari and S. 1. Rathna, Flow of a particular class of non-Newtonian

vis. oclastic and v sco-.nelast< fluids ncar a stagnation-point, Z. Angew. Math.

I'hyvs., 13, 43-57, . 962,

. W RBeard and <. Walters. Elastco-viscius boundary layer flows. Part [: two-

ain ension How 1 :ar & stagration-point, Yroc. Camb. Phil. Soc., 60, 667-674,
19t 4b.

V. £ Garg and K R. Rajagoj al, Stagnatior-point flow of a non-Newtonian fluid,

Me :h. Res. Comn |, 17, 415-421, 1990.

P. ). Ariel, On ex ra bundar 7 condition i the stagnation-point flow of a second

prale fluid, tat. ). ing. S:1, 49, 145-162, 2002,

M. Ayub. H Zam:i 1, M Najid ind 'I'. Hayat, Analytical solution of stagnation-point
Io-v of a viscoels «tic tluid t-wards a streiching surface, Comm. Nonlinear Sci.

Nu n. Simul . 13: 8221335, 2008.

1.1 abropulu, J. M Dorrepaal and O. P. Chandna, Viscoelastic fluid flow impinging

on « wall with suc ©on ¢ r blow ing, Mech. Rvs. Comm., 20, 143, 1993.

1. €. Mahapatra, . Dbo.ey and A. S. Gupta, Oblique stagnation-point flow of an

¢ «mpressible vi coclastic fluid 1owards « stretching surface, Int. J. Nonlinear

142



[54]

{54]

[5+]

|50]

[ 6]

6]

|64]

[64]

(6]

Me h., 12,484-494,20) ",

V. ) abropulu, X. » u an! M. C hinichian, Unstcady stagnation-point flow of a non-
Ne vtonina secong grade fluid Int. J. Math. Math. Sci., 60, 3797-3807, 2003.

). ., F. Labropua an{ I. Pop, Oblique stagnation-point flow of a visco-elastic
1lue1 with heat tras sfer, [1t. J. Nonfinear M ch , 44, 1024-1030, 2009.

V. £, Swokes, Cou sle strisses n fluids, Phys. Fluids, 9, 1709-1715, 1966.

M. Devakar and © K. V. Iyeagar, Run up flow of a couple stress fluid between
par diel plates, No Winear Ana .: Mod. Cont , 15, 29-37, 2010.

M. Devakar and T K.V lyer gar, Stokes” problems for an incompressible couple
stre ss flid, Nonli ear Anal.: Mod. Cont., 1 181-190, 2008.

1. ayat, M. Mus afa, 7. Ighal and A. Alsaedi, Stagnation-point flow of couple
stre ss Buid with n :lting heat weanster, App. Math. Mech., 34, 167-176, 2013.

K. Authwray. S Sioaivar wnd Le. Lourdu limnaculate, Heat and mass transfer effects
on VIHD fully de elop «t flow of a couple stress fluid in a vertical channel with
vis. ous dissipatior and « scilleting wall teniperature, Int. J. App. Math. Mech,, 9,
9S- 117, 2013.

D. srimvasacharys . N. Siinivasacharyulu, and O. Odelu, Flow and heat transfer of
cot ple stress fluio in a porour channel witl. expanding and contracting walls, Int.
¢'o am. Heat Mas: Trar s, 36. 180 185, 2009.

1.t Hremath anc P. M Patiy Free conveciion effects on the oscillating flow of a
cor ple stress fluid .hrowgh a porous mediuny, Acta Mech., 98, 143-158, 1993.

JoC o Umavathy, A ). Chamks, M. H. Manmla and A. Al-Mudhaf, Flow and heat
trar sfer for o couy e stiess flud sandwiched between viscous fluid layers, Can. J.
Ihys., 83, 705-720 2005

K. Ramesh and M Devakar, iiffects of Heut and Mass T'ransfer on the Peristaltic
“reasport of MH ) Ceuple Stress Fluid through Porous Medium in a Vertical
As munetrie Chan el, J luid s, 163832 (19 pages), 2015.

A, 1 Chamkha, ):ydrc mag etic mixed convection sitagnation-point flow with
suc ion and blowi ¢, In. Comren. Heat Mas» Trans., 25, 417-426, 1998.

A. . Chamkha an{ C. (ssa, Mixed conveciion effects on unsteady flow and heat

ey sfer over a stre ched surface, Int. Comm Heat Mass Trans., 26, 717-727, 1999.

143



[ ] ;]

6]

[74]

[74]

|7¢]

17]

M. Kumiari, Varial te vi>cosity effects on frec and mixed convection boundary layer
1lorv from a horizc atal »ucface on in a satureted porous medium-variable heat flux,
Me :h. Res. Comn |, 28 +39-348, 2001.

K. /. Prasad, K. \ ajravetla ard P. S. Datti, Mixed convection heat transfer over a
no1 linear stretchir g surface with variable fluid properties, Int. J. Nonlinear Mech,,
45.320-330. 2010

A A, Hyo o masneti stagnation-pomt flow with heat transfer over a
per neable surface Aran. J. Sci. Eng., 28, 107-112, 2003.

M. Kumari and G Nath, Stea.ly mixed convection stagnation-point flow of upper
vor vected Maxwe | flu«ds with magnetic ficld, Int. J. Nonlinear Mech., 44, 1048-
10:5, 2009.

). t.ingh, N. S. To ner w1«d D Sinha, Nwaerical study of heat transfer over
strctching surfice «1 porous me dia with trans verse magnetic field, Proc. Int. Confer.
Ch-llemge Appl. N ath. 3:1. Tech., ISBN 023-032-875-X, 422-430, 2010.

. »vingh, A Jang. |, N N. Tomer and D. Sinha, Effects of thermal radiation and
ma ¢netic ficld on inste ady stretching permeable shect in presence of free stream
velocity, Int. J. Eng Matn. Sc ., 6, 163-169. 2010.

1]. 7Z1ya, M. Kums and V. Bi»ht, Radiation heat transfer effect on a moving semi-
infiaite tilted poro s hewt.:d plate with unifor m suction in the presence of transverse
ma netie field Gaaita, &), 69 79, 2009

t. iya and M. Kunar, Jranseent MHD fred convection flow of an incompressible
vis: ous disstpative fluic vhrough inclined purous plate, Int. J. Essential Sci., 2, 18-
=7, 2008.

1. . Mabhapatra, ». K. Nandy and A. S. Gupta, MHD stagnation-point flow of a
pov-er-law fluid tc vards 1 streeching surface, Int, J. Nonlinear Mech., 44, 124-129,
2009,

M. M. Abdclkhal €, The skir friction in the MHD mixed convection stagnation-
por it with mass tr nsfer, Int. ('omuin. Heat Mass Tran., 33, 249-258, 2006.

0). \ydin and A. Kaya Mixed convection of a viscous dissipating fluid about a
ver ical flat plate, \pp. Math. Modelling, 3., 843-853, 2007.

N. Ramachandran T. S. Cher and B. F. Armaly, Mixed convection in stagnation

144



[74]

7]

[&v1]

[&:]

18]

(8]

[83]

[80]

[t

tlovvs adjucent 10 v ertic o) surfaces, ASML: J Heat Tran., 110, 373-377, 1998.
.08, Devi (7, (0 S. Takhat and G. Nath, Unsteady mixed convection flow in
stap nation region »djacent to « vertical surface, Heat Mass Tran., 26, 71-79, 1991.
). \. Hassanien ad k. S. k. Gorla, Combined forced and free convection in
stay nation flows ¢ ‘miceopola- fluids over vertical non-isothermal surfaces, Int. J.
by Sci., 2K, 783 192, 1)90.

Y. ¥. Lok, N. Am a anl [. Pop, Unsteady mixed convection flow of a micropolar
Musl n'car the stay natic-o poir< on a vertical surface, Int J. Thermal Sci., 45, 1149-
I 117,2006

J. A Al R Naz.r, N M. Acifin and I. Pop, MHD mixed convection boundary
lay r flow toward a stagnatic a-point on a vertical surface with induced magnetic
fiekd, J. Heat Tran wvol 133/022502-5, 201 .

. shak, R Naze ane i. Po,, Magneto hydrodynamic (MHD) flow of a micro
pola lud toware g s 1natkn-point on a vertical surtace, Comp. & Math. with
Aposl, 56, 3185-3 94, 7 (08.

.. shak, R Naza | N. dachox and [. Pop, MHD mixed convection flow near the
stay nation-point o « a weitical permeable sur face, Physica A: Stat. Mech. & Appl.,
~8¢,40-46, 2010.

1. layat, Z. Abb.s ami 1. Pup, Mixed coavection in the stagnation-point flow
adj«cent 10 a vert. -al s.oface in a viscocelastic fluid, Int. J. Heat Mass Tran., 51,
3200-3206, 2008.

i [ay:;t, Z Abbu., I Yop anlS. Asghar, liffects of radiation and magnetic field
on he mixed conv :ctio 1 stagration-point flow over a vertical stretching sheet in a
porus medium, b« J. dlcat Mass ‘['ran., 53 466-474, 2010.

A. YMalvandi, M. R Safae, M. H. Kaffash and D. D. Ganji, MHD mixed convection
1n « vertical annu as filled w th AL,O3 warer nanofluid considering nanoparticle
miy ration, ] Mag & Ma,. Mat., 382, 296106, 2015.

Ao Aeando N s H eimourr and D). oghraie, Effects of magnetic field on
tres convection in nclined cylindrical annuras containing molten potassium, Int. J.

Ap.s. Mech., 07,1 :500y,20.5.

145



[8%]

v |

19°]

[91]

[94]

19°]
[90]

[ ]

(93]

[97]

110

M. R. Safaer, H. " ogw, K. Vafai. S. N. Kazi and A Badarudin, Investigation of
hes transfer cmyanceaient in forward-facing contracting channel using
I'M WCNT nanofl. ids, Num. }leat Tran. Part A: Appl,, 66, 1321-1340, 2014.

M. Naveed, Z. Ab as ard M. sajid, Hydromagnetic flow over an unsteady curved
strc tching surface. Eng. Sci. Tech., anInt. ], 19, 841-845, 2016.

A. «halid, ] Khan A. Klan and S. Shafic, Unsteady MHD free convection flow of
(:a;son fluid past + ver «n osci lating vertical plate embedded in a porous medium,
I'n Sct Tech ar Int. 118,309 317, 2015

N. sandecp. C. S lochue an i B. R. Kumar, Unsteady MHD radiative flow and
hea transfer of'a d sty anoflud over an cxponentially stretching surface, Eng. Sci.
Tech anlint J., 1+, 22 -240, 2016.

¢ ». K. Raju, N. Sanceep, V. Sugunammua, M. Jayachandra Babu, and J. V. R.
Res dy. Heat and mas. tramsfer in MHD Casson fluid over an exponentially
per ncable stretchy (g suclace, ing. Sci. Tecn,, an Int. J,, 19, 45-52, 2016.

1. V. Karman, Uoer }uninare und turbulente Reibung, ZAMM-J. App. Math.
Me h., 1,233-257 192

W. G. Cochran. T ¢ flc w duc to a rotating disc, Proc. Camb. Phil. Soc., 30, 365-
A7, 1934,

). ®. Benton, Ontee flew due to a rotating oisk, J. Fluid Mech., 24, 781-800, 1966.
I M. Spantow ard J. [ Grnogg, Mass traasfer, flow, and heat transfer about a
1ot«ting disk, ASN E J. teat 1 ran.. 82, 294- 302, 1960.

© Kak ot Tlvd bma.aetic dow due to ¢ rotating disk, J. Phys. Soc. Jpn., 17,
144 6-1506, 1962,

). M. Spartow a1 d R. 1. Cless, Magnetchydrodynamic flow and heat transfer
abcat a rotaung di k, ASME ) App. Mech. 29, 181-187, 1962.

(i. 5. Pande, On t € cfiects 01 uniform high suction on the steady hydromagnetic
How due to a rotal ag dek, App. Sci. Res., 1 1, 205-212, 1971.

l. . Watsonund 2. Y Wanyg, Deceleration of a rotating disk in a viscous fluid,

Phys. Fluds, 22,7 267-'69, . 979

146



101

1.2

[193)

[104)

[105)

[106)

M7

18]

[119]

|1.0)

(1.1

[.2]

3

S. b Kumnar, W.) Thacker and L T. Watson, Magnetohydrodynamic flow past a
porHus -otating dis < in .. ircu ar magnetic {.eld, Int. J. Num. Mecthods in Fluids, 8,
05 -66Y, 1988

M. Miklavew and 7. Y Wang, The flow due to rough rotating disk, J. App. Math.
Phys., 54, 1-12, 2t04.

N..asghar, M. Jali M. ylassar. and M. Turk yiliazoglu, Lie group analysis of flow
anc hcat transter « ver » stretcning rotating Jisk, Int. J. Heat Mass Tran., 69, 140-
14e, 2014,

M. Turkyilmazogi«, Mi 1 flud flow and beat transfer due to a shrinking rotating
diss , Comp. & Flu ds, Y0, 51- 56, 2014,

M. Turkyilmazog 4 an.d P. S:nel, Heat and mass transfer of the flow due to a
10tating rough and porous dis}t, Int. J. Thernal Sci., 63, 146-158, 2013.

M. Turkyilimazog«, A implcit spectral inethod for the numerical solution of
unseady flows wit 1an application to rotating disk flow and heat transfer, Isi Bilimi
Ve Teknigi Dergis /). tlerme| Sei. & Tech , 32 (2), 99-106, 2012.

"1 Twhkyilmazog o, F ict solutions for the incompressible viscous fluid of a
po1Hus rotating dir « flow Int. J. Nonlinear Mech., 44 (4), 352-357, 2009.

M. Turkyilmazogh ¢, Thee e dit iensional MHD stagnation flow due to a stretchable
10t-ting disk, Int.  Hewt Mas» Tran., 55, 6959-6965, 2012,

JI. <. Kuken, Th effice of yiormal blowbig on the flow near a rotating disk of
wfiaite extent, J. I uid Mech.. 47, 789-798, 1971.

. Natanabe and (. Ovi.ma, Magnetohydrodynamic boundary layer flow over a
10tting disk. Z, Ay gew Math. Phys. (ZAMT'), 71, 522-524, 1991.

(DS \P;’ang, Oftf-¢ ‘nter o stag nation flow twards a rotating disc, Int. J. Eng. Sci.,
46, 391-396, 20086

S. ) [ Nourbakhsh A. A. P. Zanoosi and A. R. Shateri, Analytical solution for off-
cer-ered stagnatio 1 flow towards a rotating disc problem by homotopy analysis
me hod with two . uxil.ny parameters, Comm. in Nonlinear Sci. & Num. Simul.,
16, 2772-2787,20 1.

1osunanrand GoNatk o 'nstady MHD filin flow over a rotating infinite disk, Int.

JoEng. Sci, 42, 1499--1117, 204.

147



|1.4]

[1.3]

[116]

1.7}

[T 8]

[T 9]

[1:0]

[1°1]

12

[1°3)

[1'5]

116}

[1:7]

N Munawar, A Mchmec d and A Ali, Time -dependent stagnation-point flow over
1oteting disk 1mph ging oncondng tiow, Appl. Math. Mcch. -Engl. Ed., 34, 85-96,
203
W. [. Thacker, S. K. Kumar «nd I.. T. Watson, Magnetohydrodynamic flow and
hea transfer abou a rctating disk with suction and injection at the disk surface,
Co ap. & Fluids, 15, 183 193, 1983.
1. M. Hannah, F. rced flow 1gainst a rototing disc, British Aeronaut. Research
(o incil Rep. and +lem... No 2772, Uni. Michigan, 1947.
A. N. Tifford and * . T. ¢ hu, O the flow around a rotating disc in a uniform stream,
wromaul Soi 9025422800192

N..asghar, K Han £ T, trayat and C. M. Khalique, MHI) non Newtonian flow due
10 .on-coaxial rot stions >f ar accelerated Jlisk and a fluid at infinity, Comm. in
No dincar Sci. & T.um. Simul | 12, 465-485, 2007.
H. . Attia, Stead: flow over . rotating disk in a porous medium with heat transfer,
No ilincar Anal: Mod. & Comnx., 14, 21-26, 1009.
H. M. L. C. Navr, Mvmobe sur les lois du mouvment des fluids, Memoires
del Acaderie Roy ae dus Sci. de I'lnst. de I rance, 6, 389-440, 1823.
1ol Maxwell. In svesses In rarefied gases arising from inequalities of
ten perature, Phal. [ran 1€ So.. London, 179, 231-56, 1879.
(5. 5. Beavers and ). D Josepn. Boundary condition at a naturally permeable wall,
). 1 uid Mech., 30 197 207, 1967.
A. (eckel, 1. Stro «g and S. Mddleman, Viscous film flow in the stagnation region
of e jet impingir £ on pianar surface, AIChE J., 40, 1611-1617, 1994.

1 G S3hu and Pe s ihad s Stagnation pomnt flow aganst a liquid film on a
plae wall, Acta N ech. 180, . 03-219, 200+,
W. A. I'bert andd | M. sparrow, Slip flow «nd in rectangular and annular ducts, J.
Ba:ic Eng., 87, 10 8-24, 196¢
L. M. Sparrow, ¢ S, Beavers and L. Y. Hung, Flow about a porous-surfaced
10t-ling dis¢, Int.. Hewt Mas: Tran,, 14, 993-6, 1971.
1. . Sparrow, G 3. Beavers «nd L. Y. Hung. Channel and tube flows with surface

mna s trensfer and  eloc it/ slip, Phys. Fluids, 14, 1312-9, 1971.

148



[1:8)

[19]

[1+0]
[1+1)

112

[143]

[114]

[1)5]

116

|1:7]

| 148

[1+9]

[140]

[141]

{142]

(.. Y. Wang, Staynatic o flows with slip: Exact solutions of the Navier-Stokes

(quations, Z. Angs w Math. Plys., 54, 184-, 89, 2003.

(. (. Wang, Flow Juc w a stretching bounogary with partial slip: An exact solution

of e Navier-Stob s c¢a ition.. Chem. Fng Sci., 57, 3745-7, 2002.

1. . Anderson, Sl ¢ floa past a stietching sarface, Acta Mech., 158, 121-5, 2002.

P. ). Ancl, Axisy ame ric flow due to a stretching shect with partial slip. Comp.

Ma h. Appl., 54,1 69-.183,:007.

], uman, A Isha) and | Por, Slip effects on mixed convective stagnation-point

flow and heat tran fer over a vertical surface, SKASM, October 29-30, 2013.

M. sajud, [. Ahmas and 1. Havat, Unsteady boundary layer flow due to a stretching

she :t in porous mx lium: with partial slip, J. Porous Media, 12, 911-7, 2009.

M. Saj;d, N. Ali Z. wnbas and T. Javed. Stretching flows with general slip

hot ndary conditio «, Int 1. Mcd. Phys. B., 30, 5939-47, 2010.

I'. ). Ariel, T. Hu zat and S. .Asghar. The flow of an elastico-viscous fluid past a

stre tching sheet weh partal sl p, Acta Mecl.., 187, 29-35, 2006.

1. vlayat, T. Javed nd 7. Abbas, Slip flow and heat transfer of a second grade fluid

pas a strctching s seet 1hrough a porous space, Int. J. Heat Mass Tran., 51, 4528-
4 100%

13. ahco. Etfects  fpartal slip on axisymmetric flow of an electrically conducting

vis. oclustic {luid | 1st a siretcl-ing sheet, Ceat. Eur. J. Phys., 8, 498-508, 2010.

RB. sahoo, Effects »f slip viscous dissipatioa and Joule heating on the MHD flow

wn¢ heat transfer o a sevond grade tluid past a radially stretching sheet, Appl. Math.

Me :h., 31, 159-73 2019

). ) rusteri and E. - )salus , On MHD and slip flow over u rotating porous disk with

var able properties Int. ( omn.. in Heat Mass Tran., 34, 492-501, 2007.

S. Vlur;a\var, A. vlehmod and A. Al dffects of slip on flow between two

strc tchable disks 1 sing optimal homotopy snalysis method, Can. J. App. Sci, I,

s0- 68, 2011.

1.1 abropulu and 1. Li, Stagnation-point flow of a second grade fluid with slip, Int.

1. Monhincar Mcect |, 43. 941-9 47, 2008.

N. A, Abdul Lati § M J. Uddin, O. A. Iteg, A. 1. Ismail and O. Anwar Bég,

149



[143])

1144

[145}

146}

| 147)

[148)

[149]

|10

11

(2]

[1°3]

Un teady forced Hiocenvectson slip flow of a micropolar nanofluid from a
strc «ching/shrinkir.¢ she e Proceedings of the Institution of Mechanical Engineers,
l'ar N: J. Nano-Ey . and Nanu-Sys., doi: 10 1177/1740349915613817, 2015.

M. 1. Uddin, M. N Kabsw ind (1. Anwar Bég Computational investigation of Stefan
blo ving and mull ple-slip effects on buovancy-driven bioconvection nanofluid
tlow with microor canis:ns, Im J. Heat Mass Tran., 95, 116-130, 2016.

13. D. Joseph, Biundary corditions for thin lubrication layer, Department of
Ae ospace Lingine ring snd Mechanics, Uni. Minnesota, Minneapolis, Minnesota
35455, 1980.

1. . Andersson, ( . A, Valnes, Slip-flow buundary conditions for non-Newtonian
Jub ication layers, #lui¢ })yna Res., 24, 21:-217, 1999.

N. solbakken, H. . Ardersor, Shp flow cver lubricated surfaces, Flow Turbol.
(:o nbust., 73, 77- 13,2 04,

1. Andersson as d M Kousselet. Slip flow over a lubricated rotating disc, Int. J.
Heat Fluid 1low, © 7, 379335 2000.

3. vantra, B S Da dapat and ). . Andersson, Axisymmetric stagnation-point flow
ovor a lubricated s arface. Acte Mech,, 194, 1-10, 2007.

M. sajid, K Mah) wod and Z Abbas, Axisymmetric stagnation-point flow with a
pereral ship bouno ay conditicn over a lubr«cated surface, Chin. Phys. Letters, 29,
(12470272012,

P..\. Thompsona-d S. \( Tr.ian, A general boundary condition for liquid flow at
sol-l surfaces, Nai ire, 89, 3(0-362, 1997.

M. Sajid, T. Javec Z. Abbas ind N. Ali, Stagnation-Point Flow of a Viscoelastic
}Flu.d Over a Lubr cated Surface, Int. J. Nonlinear Sci. & Num. Simul., 14, 285-
29, 2013.

M Sajid. M Ahnmd. T Ahmad, M. Taj an¢ A Abbasi, Axisymmetric stagnation-
poi it flow ol a ths d-gr wte flud over a lubi cated surface, Adv. Mech. Eng., 7, 1-
5,015

M. Ahmad, I. Ahvad »nd M Sajid, Heat lransfer Analysis in an Axisymmetric
Stagnaton-point I ow «f Secoad Grade Flusd over a Lubricated Surface, Columbia

Int Pub. America) J. Heat Mass Tran., 3, 1 14, 2016.

150



(14

[115]

[1°6]

|1°7)

| 18]

[1:9]

[1¢0]

[101]

(102

[13]
[114)

|105)

|106]

1", . Na, Comput, tions| Metlods in Enginc ering Boundary Value Problem, Acad.
I’re ss, New York, 979

1. ebeer and P, dradshaw, Physical and «Computational Aspects of Convective
I leat Transfer, Spr nger Verlag. New York, 1984.

H. 8. Keller and [. C:beci, Accurate Nuinerical Methods for Boundary Layer
)le s 1: Two Dir enticeral T rbulent Flows, ATAA Journal, 10, 1193-1199, 1972.
P.oatradshaw, 1T ( :becr ond | H. Whitelaw Engineering Calculation Methods for
Twoulent Flows, «cad London, 1981.

H. B, Keller, A ew .bffereace scheme ror parabolic problems, in Numerical
Sobation of Partia -Difserential Equations (J. Bramble, ed.), Vol. 1I. Acad., New
Yo k, 1970

K. \hmad and R. Yaza., Unsicady MHD mxed convection Stagnation-point flow
ofi viscoelastic flv id o1 a vertcal surface, J Quart. Meas. Anal,, 6, 105-117, 2010.
W. Ibrahimand B Shank.r, Unsteady MHD flow and heat transfer due to stretching
she :tin the presen e of heat source or sink, Comp. Fluids, 70, 21-28, 2012.

N. M. Sarif, M. ; SaMch anl R. Nazar, Numerical Solution of Flow and Heat
Transfer over a S cetching Sl eet with Newtonian Heating using the Keller Box
Me-hod, Proc. Iiny |, 53 ~42 254, 2013.

K. Bird, R. C. A mstyoag ard O. Hassage:, Dynamics of polymeric liquids, Fluid
Me h . I Wiley a1 1So . vol 1. 1987,

J. Farns, Rheolog  and r.on-Mewtonian flow, Longman Group Ltd., 1977.

K. . Chhabra anc J. F Richardson, Non-Newtonian flow and applied rheology:
)iny incering Appl atio.ws, 2" Edi. Elsevier, 2008,

13, 0. Coleman «1d W Noll, An approximation theorem for functional with
apy lications in co1» inuva. mec hanics, Arch. Ration. Mech. Anal,, 6, 355-370, 1960.
K. .. Fosdick anc K. k. Rajegopal, Anomulous features in the model of second

oro.r fluids, Arch Rat. Vech. Anal., 70, 145-152, 1979

151





