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Preface

Fixed peint theorems deal with the assurance that the functional equation 2 = T2 has one
or more solutions Such solutions are known as fixed points of the inapping T A large vanety
of problems of analvsis and apphed mathematics relate to find solutions of nonlinear [unctional
equations which can be lormulated 1o terms of finding the fixed poimnts of nonhnear mappings
In fact fhxed pownt theorems are extremely substantial tools to deternune the ¢xistence and
uniqueness of solutions of various mathematical models exhibiting phenomena ansimg m a
broad spectrum of fields such as steady state temperature distribution c¢hemncal equations
neutron transport theory ccunomic theories, financial analy sis, cpidemics biomedical rescarch
and flow of lwids ete  These tesults are also used to study the prublems of optimal control
related to these systems

In 1922, the Polish mathematician Stefan Banach established a remarhable hived pomi
thevretn known as the “Banach Contraction Prinaple’ which = vne ob the most nuporianl
result of analysis and 1s considered to be the main source of metiie fived pomt theory 1o s the
most widely applied fixed point result in many branches of mathematics because 1t onls requures
the structurc of a complete metnc space with a contractive condition on the map which 1s easy
lo test in this setting The Banach Contraction Principle has been generalized in many different
directions In fact, there 1s a vast amount of literature dealing with extensions/generalizations
of thus remarkable theorein N

A multivalued function 1s a function which takes on sct values In the last fortv yoars the
theory of multivalyed functions has advanced mn a vanety of ways In 1969 the sysiematic
studv of Banach type fixed theorems of multivalued mappings was started with the woik of
Nadler [106]. who proved that a multivalued contractive mapping of a complcte metric space
X into the [amily of closed bounded subsets of .\ has a fixed point

In 2012 Samct et ai [114] introduced the concept of a-admivsible mappings and suggestod
a very mleresting class of mapping a--conttaclion mappings toimestgate Lhe eustence andl
umaqueness of a fixed point Further Mohammadi et al |99 extended some 1esults on fived
puints ol a-w-Ciric generabized multifunctions  Asl ot al  [57, introduced the notion of o°-

y-contractive multifunctions and established fixed pomt result for multilunctions Recently



Hussain et al {5Y] established certain new fined pomnt 1esults for multi-valued as well as single-
valued mappings satisfving an a-y-contractne conditions i a4 complete metiw space The
notion of an a-admissible mapping has been characterized 1n many direction  For details ~ee
(16, 30, 31, 73, 99 108, 109, 112, 118, 121}

In 2012, Wardowsk: [123] miroduced a new Lype of contraction called an F-contraction
and established a new fixed point theorem concerning F-contractions Wardowsk et al [124,
miroduced the notion of an F-weak contraction wlich generalizes some known results from the
literature He gave an interesting generalization of the Banach contraction prinaple Afteiwaids
Secclean [115] proved haed poini theorems consisting of F-contractions by iterated function
systems Piniet al [107] extended the result of Wardowsk: by applving soine weaker conditions
on the selfmap 1n a complete metric space Cosentino and Vetro [491 presented some fixed pomt
results of Hardy -Rogers-ty pe for self-mappings on complete metrnic spaces and complete ordercd
INEtrIC sPaces

Abbas ct al [4] further generalized the concept of F-contractions and proved cortanm fised
and common fixed pownt results Hussamn and Salimi [67] ntroduced an a-G F-contraction
with respect to a general family of functions G and established Wardowshi type fixed pomnt
results m metric and ordered metrnic spaces Altun et al [10] extended multivalued theorems
to mappimngs with a d-distance and established fixed pomnt results in complete metiie spaces
Acar et al [11] introduced the concepl of generahzed multivalued F-conlraction mappings
and cstablished a fixed point result which 1s a proper generahization of some 1nultnalued fined
point theorems including Nadler's result i [106] Recently Mmak [97, proved some fixed
point results for Cine type generalized F'— contractions on complete metrnic spaces  Sgrol and
Vetro [117] proved results for obtaiming fived points of multivalued mappings which generalize
Nadler’s theorem [106] Recently. Abbas ct al (2] introduced the concept of multivalued f-
almost F-contractions which gencralizes the class of rultivalued alinost contraction mappiigs
and obtained comadence pomt results Naturally many authors have started to invesngate the
cxistence and uniqueniess of a fixed pomnt theorem via -contrac ion mappings and vanabions
of the concept of F-contractive Ly pe mappings For more details see 119 15 86!

Azam et al [32] proved a sigmihcant result concerning the existence of hxed pomts of a

mapping satisfving contractive conditions on a closed ball of a complete metne space Shoaib



et al [27] exploited this concept of a closed ball 1 a dislocated metric <pace to approxituate the
unique solution of nonhnear functional equations He also establised fixcd pomt and <ominon
hxed point theorems for a pair of contractive dominated mappings on « closed ball 1 an ordoied
dislocated metrne space For more details sce [24, 28]

This dissertation consists of five chapters FEach chapler begins with a briel intreduction
which acts as a surnmary to the material therem

Chapter 1 15 a survey ammed at clarifying the terminology to be used and recalls basic
definitions and facts

Chapter 2 15 devoted to the study of the existence of haed and common fixed puwnts of
mappngs satisfying generalized contractive conditions The aim of this chapter 1 to improve
the notion of a Geraghtv contraction and to establish some fixed pomt theorems far a-admissible
mappings with respect to 1, satisfving a modified (& —n)-contractive condition 1o the framework
of complete metric spaces We prove new fixed point theorems for a-Geraghtv conttactions and
rational a-Geraghty contraction type mappings in compleie metric spaces

Chapter 3 deals with single-valued and multivalued F-contraction mappings We mtroduce
the concept of Cine tvpe a-p-G F-contractions and establish sotne new fixed puimnt theorems fu
single-valued and multivalued mappings 1n the setting of completc metin spaces e extend
the concept of a multinalied and an a.-7F-contraction and a,-g-7F-contraction and obtam
some new Wardow sk type fixed pomnt theorems in the framework ol complete metric spaces

Chapter 4 introduces the notion of a generalized dynamic process for generalized +f Lo-
almost F-contraciion mappings and cbtains coincidence and common ined pomt results lor such
processes We discuss applications of our theorem and obtain the existence and uniqueness of
common seclution of system of functional equations in dynamical programning and the exstence
and umiqueness of common solution of system of Vulterra type intcgral equations

Chapter 5 deals with locally F-contractions and introduces the concept of an I™-contraction
on a closed ball We establish some fixed point theorems for £ -contractions and GF-contractions

on a closed ball in complete metric spaces



Chapter 1

Preliminaries

The aim of this chapter 1+ to present some basic concepts and to explam the tetminology used
throughout this dissertation Some previously known results aie given without prool Section
11 1» concerned with the mtroduction of single-valued and multivalued contractions  Sectwon
1 215 devoted to some introductory material on the notions of commuting single-valued and
multinalued mappings In Section 13, we present the concept of a-admiswible mappings of
single-valued and multivalued mappings for an a-v-contraction Section 1 4 imtroduce the basic

concepts of single-valued and multivalued F-contraction mappings

1.1 Some basic concepts

Contraction mappings are a special type of umlforily continuous fun< bons defined on a metrnic
space Fxed pomt results for such mappmgs play an impoitant role i analvsis and applied

mathematics

1.1.1 Definition [5]

Let X be a nonempty set §T Y — X Then s € A 15 called a
{1) fixed pont :f the image Tz coincides with z {1 e ,T'r = )

{u) common fixed point of the par (5, 7)) [ Sz=Tr=r

{(11) cowncidence point of the parr (8 T)f Sz = Tz,

(1v) pownt of coincidence of the pair (5, T) for some y € X such that r = Sy = Iy



1.1.2 Definition

Let (X, d) be a metnic space A mapping T X — X 15 called

(1) a Banach contraction, 1if there 1s a positive real number 0 < A < 1 such that, forall r y € X,
dTx Ty) < Md(z,y)
(1) an Edelstein contraction
diTr Ty) <d(r,y) foreachr £y, t.ysc Y

(1) non-expansive 1f

diTr Tyi <d{r y) forallz ye X

{1v) expansive of

diTr Tyy > nydiz y) forall r y € X wherr > 1

(v) Ciric-typef
d{(Tz,Ty) < M(r.y),

where

AM{z,y) = max{d(z,y),d(2.Tz).d(y. Ty}, d(z Ty) -;— d(y T.r)}

Berinde [39] introduced the following concept of a weak contraction mapping

1.1.3 Definition [39]
Let {X d) be a metric space A self mapping f on X 15 called a weak contiaction if there exist
constants # € (0,1) and L > 0 such that

d{fz fy) <8d(x y) + Ld(y f1!

holds for cach x.y 1 X
For more detalls on weak contraction mappings. we refer to (12 13 and the references

thercin



1.1.4 Definition

Let X be a nonempty sct and 2% denote collection of all nonempty subsct of A Then T
X — 2% 1 called a multivalued mapping A point T € X 18 said (0 by a
(1) fixed point of T 2f r € Tx,
() comcidence pont of a pair of multivalued mappings (1 S)if fr 1S #49
(m) common fixed point of the pawr (T S)if r € Tx M Sz
Let (X, d) be a metnic space and
CB(X)={A4 A s nonempty closed and bounded subset of .}
CL{X) = the class of all nonempty closed subscts of X
K{X) = the famlv of all nonempty compact subsets of X
In order to make the family CB(X) into a metric space, we need to have a measurce of "distance”

between two sets A and B of € B(X) One such notion of distance 1o

diA, B =mf{dir y) 2€ 4, y€ B}

This delinition fails to discriminate sufficiently between sets We would hke rhe distance
between two sets to be zero only if the two sets ate the same both n shape and position For

this purpose, the follow ing concept 1s useful ([, [59,)

1.1 5 Definition

Let (X.d) be a metric space For A B € CB(A) and ¢ > 0 the sets M« Ay and £y g are
defined as follows

N, A ={re X d(z.A) <e}

Exp={¢ ACN(e B) B N(e 4)]

where d(z, 4) = wf{d(z,y) y € A} The distance function H on CB1 X} induced by o s

defined In
HAB =mlE\yg



whach 1s known as Hausdor[T metric on X

1.1.6 Lemma [106]

Let (X, d) be a metnic space, if A, B € CB(X) For A > (. ¢ € A theie cxasts a b € B such
that d{a,b) < H{A,B)+ A

1.1.7 Definition [106)

A mapping T X — CB{.X) 15 said ta be a multivalued contraction if there oxist~ a constant
a, 0 <a <1, such that, o1 all 2 y € X,

H{T1. Ty} < nd(z,y)

Nadler {106] generahzed the Banach contraction principle to multivalued mappmgs and

proved the following important fixed pownt result for multivatued contractions

1.1.8 Theorem [108]

Let (X, d) be a complete metric space and T X — CB({X) a multivalued contraction Then

T has a fhixed point

Beninde and Berinde [10] extended the notion of weak contraction mappings as follow -
1.1.9 Definition[40, 41]
Amappng T X — CL(X)1s called a multinalued weak contiaction if there ¢ xist two constants
¢ € (0,1) and L > U such that

H(Tr, Ty) <8d(xr y)+ Ldly 71}

holds for cach # ¥ 1In X
The followng definition of a generahzed multivalued {# L)—strict almost contraction map-

ping 15 due to Berinde and Pacurar [11]



1.1.10 Definition [41]

A mapping T X — CL(X}1s called a gencrahzed multivalued (8, L)—strict almest contraction

mapping 1f there exist lwo constants € € (0,1) and L > 0 such that
H(Tr.Ty) < 8diz.y) + Lmn{d(y, Tx),d{z, Ty). dlx T} diy, Ty)}

holds for cach r y in X
The following fixed point theorem appears 1n [41]

1.1.11 Theorem

Let (X, d) be a complete metnic space and T X — CL(X) a gencralized wultivalued (# 1) -stier

almost contraction mapping Then F{7T) # @ Morcover, for am p € I'(T) T 15 continuous at

P

Kamran [81] extended the notion of a multivalued weak contraction mapping to a lnlmd
pair {f,T'} of a single-valued mapping f and a multivalued mapping T For more discussion on

multivalued mappings we refer the reader to [13, 61] and the references therein

1.1.12 Definition

Let (X, d) be a metric space and f a sclfmap of X A multivalued mapping T X — CL{X) 18
called a generalized multialued (f, 4, L}—weak contraction mapping if therc exist (wo constants

# € {0,1) and L > 0 such that
(T, Ty) <OBd(fr jyy i Ldify I}

holds for cach .y in X

Abbas [1] extended the above definition as follows

1.1.13 Definition [1]

Let (X.d) be a metric space and f a selfmap on X A multivalned mapping ' X — CLLY)

15 called a generalized multivalued {f,8, L)—almost contraction mapping if there exist two



constants & € {0 1) and L > 0 such that

T Tyy <OAM(r,y)+~ L N1 y)

holds for all z.y 10 X. where

d(fr Tyy+dify Tx)

M(zr.y) = max{d(fr fy) d(fx.Tz),d{Jy.Ty) 7

N(z,y) = wmn{d(fz,Tx) d{fy.Ty).d(fx Ty).d(fy Tr)}

2

1.2 Single-valued and multivalued commuting mappings

Sessa {116] generahzed the concept of commuting mappings as [ollows

1.2.1 Definition

Let (X d) be a metnc space  Then two mappings f ¢ Y — \ are ~arl 1o be weakh

commuting if d{fgzr.gfz) < d{fr.gr) forall e X

1.2.2 Remark

Note that commuting mappigs are weakly cominuting but the converse is not truc n gen-
eral (sec [116]) Many authors have obtaned mce fixed point theorems utilicing this concept
However since elementary functions such as fr = 3 gr = 2:3 are not weakly commutative
Jungeh [76] introduced o luss restnictine concept of compatible mappings He alvo puinted out

tn [77, 78] the potential of compatible mappings for proving generahzed fived pomnt thearems

1.2.3 Definition [76]

Mappings f ¢ X — X are said to be compatible :if whenever there 15 o sequence {ra} 7 A
satishing IMp——oo fTn = MMpy_oe 925 = u, then imy s d(fgzn gfan) =0

1.2.4 Definition [79]

A parr (f T) of self-mappings on X arc said 1o be weakly compatible il thes commute (v ca I

comcidence point {1e fTr=Tf: whenever fu =Tt )

9



Junck [76] improved the Banach contraction principle for commuting mappings as follows

1.2.5 Theorem [76]

Let (X d) be a complete metric space and f ¢ X — X be two conunutimg mappmgs 1
there exists a constant a, O < @ < 1, such that g X C X digr gy) “ad{ fr fy) then [ and

¢ have a umque common fixed pont

1 2.6 Definition

let f X — XandT X — CL(X) a multivalued mapping The pair {f T) v called

{1) commutmg f T fr = fTr forall £ € X,

(n) weakly compatible 1if they commute at their commcidence points that v fT31 = Tfa
whenever z € C{f.T) {[79])

A map f 15 called T- weakly commuting at = € X of f2r € Tfx If a hybnd pair (f,T) 1s
weakly compatible at r € C{f T) then f 18 T-weakly commuting at r and hence f*(r} €
C{f,T) However, the converse 1s not true n general For a detailed discussion on the above
mentoned notions and their implications we refer the reader to [17] [72] 1756 76 77 78] and

the references therein

1.3 Single-valued and multivalued a-admissible mappings

Samct et al [114] mtroduced the notions of an a-admissible mapping

1.3.1 Definition [114]

Let § X — Xanda X x.X — [0,>) We say that § 15 a-admissible if .y € X, and

af{r.y) > 1 1imply that a{Sr Sy) > 1

10



1 3.2 Example [92]

Consider X = [0,2}. and define § X — Xanda X x XY — {0 x) by 5r = 27 for all

rye X, and
er Hr>yzr#0
a(r y}=
f 1<y
Then S 15 a—admissible
We define ¥ o be the family of nondecreasing functions v 0 - xj [0 + % ~uch tha

SR um(f) < +oc and v{0) =0 for cach t > 0 where v " s the r-1h power ol

n=1

1.3.3 Lemma [113]

Ifoed, then vty <fforallt >0

1 3.4 Definition [114]

Let (X.d) be a metric space and § X — X be a given mapping  We say that 5 15 an
a ~1'— contractive mapping if there exist two functions @ X x ¥ — [0 «x) and v € ¥ such
that

alr y)d(5r, Sy) < id{a y))

foralla.y e X

1.3.5 Definition [113]

Let S X — Xandletanp X x Y — [0 +x) be two functions We ~av thar 5 e
an a-admussible mapping with respect to naf for cach r y £ % ars yl > ypia oy umphies
that a(Sz,Sy) > n(S2 Sy} Note that if we take yir y) = 1 then this defimtion reduces to

Definition 131 Alse 1f we take al{r.y) = 1 then §1s an g-subadmissible mapping

1 3.6 Example

Let X =0 x)and § X — X be defined by Sr = r/2 Defincalsoa X x A — [0, +2c)
by alr,y) =3 and n(z.y) = 1 for all z y € X Then S 15 an a-admissible mapping with respect

lon

11



1.3.7 Definition (9]

Let 57 X X anda X x X — [0 +2) We say that the par (S T} 1» a-adnussihle f
for each r.y € X such that a(r,y) > 1 we have a(St,Ty) > 1 and o{Tr Sy) > 1

1.3.8 Example

Let X = [0,oc), and define a pair of self-mappmg S T X — X anda X x.X — [0 x) Ly
Sr=2 Tr=zforallz y€ X and

e afry>0
al{z.y)=
0 othorwise

Then the pair (S,7) 15 a-admissible

1.3.9 Definition [87]

Letd X —Xanda A xX — {0 +2) Wesa that 515 triangular a-admissible f 0y A
a(+ 3) > 1and a(z.y} > 1 imples that a{r y) > 1

1.3.10 Example [87]

Let X = [0, %) Sz =z’+¢" and

1 fz,yel0,])
a(r y) =
0 otherwisc

Then S is a triangular a-admissible mapping

1.3.11 Definition [87]

LetS X — Xanda A x.X —R Wesaw that 815 a triangular a-admnssible mappimg af
(T1) a{r,y) > 1 imphes a{Sr.Sy) > 1 forcachr ye X

(T2) a(r z) > 1 a(z y) = 1 unphes that a(z y) 21 for caclia y 20 N

12



1.3.12 Example [87]

Let X =R 87 = Jrand a{r y) = ¢ ™Y then S 15 a tnangular a-admssiblc wappme  [ndced f
aft y)=e"¥ > 1 then r > y which mplies that 51 > Sy [hatis afSr Syl =7 ™ > ]
Also ifa{r,2) > 1 alzy) > lthen r — 2 2 0, 2 —y 2 U that 1~ 1 -y » 0 and w0

a(r yy=e¥ 21

1.3.13 Definition (9]

Let §T X - Xanda X »X =R Wesay that a pair {$,T) 15 tnangular a-admissible 1f
(T1) a{r,y) > 1 imphes oSz Ty) > l and o(Tx Sy) > 1. foreach r y € Y
(T2) al{z,z2) 2 1, a(z,y) = 1, imphes that a(x y) > 1 foreach 1 y,2€ A

Note that of we take S = T then this definition reduces to Defimition 1 311

13.14 Lemma [46]

Let S X — X be a tnangular a-admissible mapping  Assume that there exists an 2 = ¥
such thal a{re Szo) > | Define a sequence {x,} bv £nyy — Son Then a(z, 1) 2 | for all

mneNU{l} withn <m

1.315 Lemma

Let S T X — X be a pair of tnangular a-admissible  Assime that there exists an oy = 3
such that a{rg, $7g) > 1 Define the sequence {rn} with 2.7 — 512 and g3, 1= Tiy
where1 =01 2, Then a(ry. Lm) > 1for all m,ne € NU {0} withn < m

13.16 Theorem [53]

Let (.X,d) be a metric space and § X — X a self-mapping Supposc that there exists a Je
such that, for all z,y € X
d{Sr Sy) < 3{d(x y))d(x.y)

Then S has a fixed unmique pomnt p € X and {S"r} converges to p lor cach r € X
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1.3.17 Definition [67]

Let (.X.d) be a metnie space and T & — Y a self mappmg Supposc that e 7 X x ¥ =
0 +2¢) arc two functions  We say 1that 7718 an o — p-continnous mappmg on 1 X 4l for a

given £ € X and sequence {z,} with
I, —mzrasn— x alry Th-1) 2 0lr, yalforldlne i =Tr, -1
In 1962 Edelstein proved the following version of the Banach contraction principl

13.18 Theorem [50]

Let {.X,d) be a compact metnic space and 7 X — X a self mapping Assume that
d(Tz Ty) < d(z,y) holds for cachxr y € X wmith r # y

Then T has a umque fixed point 1n X

Hussain et al [69] modified the notions of a.-admissible and a.-1 -contractive mappings as

[ollows

1 3.19 Definition [69]

Let T X — 2% be a mulufunction a, 7 X x X — [0 +3} (wo functions where yas hounded
We say that 7 1s an a,-admissible mappig with respect to 7 af add g3 > 01y tmplies
a.\T2.Ty) 2 n(Tr Ty) foreach z y € X where (A Oy = mi{alr y) 2+ 1 4+ {1} and
n.{A B) =sup{niz.y) r€ A ye B}

If p{z,y) = 1forall r y € X.then this defimtion reduces to Dehmtion 4 1|69 In Definition

1319 1fafr. y) =1 for all 1,y € X then T s called an n,-subadmissible mapping

1.3.20 Definition [94]

Let (X, d) be a metnc space Suppose T X — CL(X)anda X x A — 10 +x) 1> a
function We say that T 15 an a-continuous multivalued mapping on (CL{.X) H)af tor given

r € X and sequence {z,} with l_n_n diz,,t) =0 a{z,, rn-1) > 1 for all n € M nuphes that
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hm H{Tr, Tr)=0

n—oxa

1.3.21 Definition

Let (X, d) be a metric space Suppose that T X — CB{(X) and a,n X x X — [0, +x) arc
two functions We say that T 1s an a — #-contimuous multivalued mapping on (CB(X) H)f
for a given z € X, and scquence {z,} with r, 4 rasn— oo oIy, Tna1) 2 {2n Ta4) for
all n € N imples that Tz, =i T, that 15 1r111_r‘nmd(.r".:r) =0and afr,.Trp1) 2 lan. 2541) fo1

all n € Nimples that im H(Tz,. Tz} =0
n—

1.4 Single-valued and multivalued F-contraction mappings

Wordowski et al [123] defined F-contraction as [ollows

141 Definition [123]

Let (X,d) be a metric space A mappmg T X — X 15 said to be an I™-contraction 1t there

cxists a 7 > 0 such that
Yr,y€ X, d(Tr,Ty) >0=>7+ F(d{Te, Ty)) £ Fldlz.y)), (11}

where F R, — R 1s « mapping satisfying the following condilions

(F1) F 15 strictly increasing, 1 e, for all z.y € Ry such that © <y, Fla} < Fly)
(F2) For cach sequence {ay, }°, of positive numbers, limy, .oc 0n = 01f and onlyof ng,— o Flay, ) =
—x,

(F3) There exsts a k € {0,1) such that Ima — 0ta*Fla) =0

We denote by £ the set of all [unctions satisfying condition- (F11-{Fd

1.4.2 Example [123]

Let F R, — Rbegiven by the formula Fla) = Ina It clear that I satishes (F1 -F2-tE 3

for any k € {0.1) Note that {1 1) reduces to the [ollowmgd

diTz. Tyl < e "diz,y), foralxr y € X Tr Ty

15



It 15 clear that, for =,y € X such that Tr = Ty, the wmequality diTz Tyt <« i1, y) alwo
holds Hence T 15 a Banach contraction
14.3 Example [123]

If Fla) =Ina+ a, a >0 then F sausfies (F1}-(F3) and condition (1 1) 1« of the form

d(TI Ty:l d(T Ty —d _
Dot g fMTE TN W) < o7 forallrye X Ta Ty
d{z,y) Y 7

1.4.4 Remark

From (F1) and (1 1) 1t 1s easy to conclude that every F-contraction 15 necessanly continuous

Wardowski [123] stated a mnodified version of the Banach contiaction principle as follows

1.45 Theorem [123]

Let (X, d) be a complete metric space and T X — X an F-contraction Then [ has 4 umique
fived point z* € X and for every 1 € X the scquence {T7x),en converges to +F

Hussain et al [67! mtroduced the following famly of functions=

Let Ap denote the set of all functions G R*Y — R™ satsfung

(G) for all t1 t9.l3.tg € R™ with Ljdatsty = O Lthereexistsa t > 0 such that Gty £t 4y —

1.4.6 Definition [67)]

Let (X.d) be a metric space and T be a sclf-mapping of X Let e,y X x X — [0, +20} be two
function We say that T 15 an a-n-GF-contraction if, for .y € X, with p(r, Tr) < a{r,y} and
d{Tr Ty) > 0, we have

Gld(x Tzr) dly, Ty).dix Ty} dly Tx)) + F(d(Tr. Ty)) < F (dix y))

where G € A aud F e £
Acar et al [11] introdnced the concept of generalized multivalned £-contraction mappines

and established a fixed point result, which was a proper generalization of some mudtivaiued
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fixed point theorems. including Nadler’s

1.4.7 Definition {11]
Let (X d) be a metnie space and T X — CB{.X) be a mapping Then T s said to be a
generalized multivalued F-contraction if £ € F and there exists a 7 .- O such that

rye X, H{Tr, Ty) > 0= 7+ F(Il{Tr Ty)) < T (M{z y))

where
1
M(z,y) =max{d(r y) D(x Tx),D(y,Ty) 5{Dis.Ty) + D{y T1}]}
1.4 8 Theorem [11]

Let (X,d) be a complete metric space and T X — A(X) be u generalized multinalued
F-contraction If T or F 1s continuous then T has a fixed point in X

Sgrot and Vetro [117] proved the follow ing as a generahzation of Nadler s Theorem 106

1.4.9 Theorem [117]

Let (X,d) be a complete metnie space and T X = CLi Y ) & multnalued mappmg - Ao

that there exists an F € # and = € Ry such that
9 + F(H(Tz,Ty)) € Flad(z,y) - 3d(z Tr) - ~d(y Ty} ~adtr Tyt - Ldiy Tril

for all T,y € X, with Tx # Ty, where a, 3 4.6, L 20 a+ S+~ + 28 =1 and ~ # 1 Then {
has a fixed point

1.4.10 Definition [74]

Let (X d} be a metric space and 7 % — CL{X} be a multinalued operator T s called a
multivatued weakly Picard operator {bricfly MWP operator) if and only iforall r € ¥ and all
y € Tr, there exists a sequence {4y} such that

(1 rp=1 71 =1y,
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(n) znq1 € Tz, forall n e N U {0}
{m) the sequence {z,} 15 convergent and 1its himut 15 a fixed point of T
Recently Altun et al [18] proved the following resuit

1.4.11 Theorem [18]
Let { X, d) be a complete metric space and T X — CB(.X) Assume that there exast an F € f
and 7, A € R, such that [or any r,y € X we have

H(Tz Ty) > 0 1mphes that 7 + F(H(Tz Ty)) < F'd(a y1 - Ad{y T

Then T 15 a multivalued weakly Picard operator
For the defimtion of a multinvalued weakly Picard operator and telated results we reder to
[40)

Abbas et al [2] gives the following definition

1.4.12 Definition

Let f be a selfmap of a mctric space X and T X — ("L{.X) be a multivalued mappimg Then
T 15 called generahzed multivalued (f, L)—almost F—contraction mapping if there exist F' € f

and 7 € R, and L > 0 such that
2r+ F(H(Tx.Ty)) S F(M{z y)+ LMr oy

forcach r,y m X with Tr # Ty and

mar{d(fz fy) difz T<).d(fy Ty UK ]_u?_:.fﬂf!l 1 ;’r}

Alir y)

Ma.y) = mn{d{(fz.Tr) d{fy Ty) difz Ty).d(fy T}

1.4.13 Remark

Take F(z) = Inx in the Defimition {1 412) Then we have

27 + In(H(Tz Ty)) < In(M(z,y) + LMz, ¥}
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that 15,

Tz, Ty}l

[Fa)

M v+ LN

= HM(ry)+ LNz y)

where ) = ¢ % € (0,1) and L; = ¢ L > 0 Thus we have a generalized multivalued
(f, 81, Ly)—almost contraction mapping (1]
1.4.14 Remark

Take @ = J =9 =1/1 § = 1/8 = L Note that @ + 3 + v+ 20 = 1 Then the contraction

condition of Theorem 1 41 8 becomes

2r + F(H{Tt Ty))

I/

fla Ty) - diy 1
F(% (d(r y}+(d(r,']:}+d{u“py”+i{_; y) - diy I}))

L

I/

F(_%H.U{J y}l) = F{V{zy) 1 0V pin

for all 2,y € X, with Iz # Ty Thus, for L =0and f =7y

a d 1r)
max{d(fz fy) d(fz.Tz).d(fy Ty}, Ml_j);_ffq L)y

min{d(fz, fy),d([r,T1),d(fy Ty}

Az, y)

Mroy)

Thus, T an (f 0}—almost F—contraction, an 1s a special case of a genceralized multivalucd

(f L)—almost F—contraction ( for L =0 and 7 = 27y)
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Chapter 2

Fixed Points of Geraghty
Contractive Mappings in Metric

Spaces

2.1 Introduction

In 1973 Geraghty [53] mtroduced onc of the first generalizations of the Banach thearem s
extension was of significant importance and established some usetul frved pomt theorans Lo
the Geraghty contraction

In 2012 Samet et al [111] mtroduced the concept of -¢ - contractine B pe mappings an!
established various fixed pont theorems for admissible mappings m the setting ot complete
metric spaces Alterwards Karapiar et al [88] refined the notions and obtamed vanous fined
pont results Hussain et al [635), extended the concept of a-admuswible mappings and ohtamned
usctul fixed point theorems Subsequently, Abdeljawad [9] introduced pairs of a-admissible
mappings satisfying new sufficient contractive condibions different fromn those m [65 111, and
praved fixed pomt and common fixed point theorems Recently Sahmn et al [113] modified
the concept of a-v-contractive mappings and established fixed point results

Hussamn ct al {68] proved some fixed pomnt results for single-valued and set-valued a-i-

v-contractive mappings 1n the setting of a complete metric space  Mohammad: et al [94)
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introduced a new notion of a-o-contractive mappngs and showed thal this 1» a real general-
1zation of some previous results Hussain et al [59] derived generalized fived pomnt theorens
for multi-valued a-1-contractive mappings Since then manv papers have been pubhished oy
Geraghty contractive type mappings in varous spaces For more detail ~ce 80 a3 81 8%, and
the refercnces therein

In this chapter 1t 15 impossible to cover all of the known extensions/generalizations of the
Banach Contraction Principle However, an effort has been made to present some extensions
of the Banach Contraction Prinaiple and to explore fixed point and commen fixed point results
in complete metric spaces

In this chapter we continue these mnvestigations and explore iixed point and common fixed
point results 1n complete metric spaces In Section 2 2, we deal with Geraghty coutractions m
metric spaces and prove the existence and umgqeness of fived pomts ol a-admissible mappings
with respect to i satisfving an (@ — n)-contractive type condition Section 2 3 and 2 | deal wath
Geraghiy contractions in metric spaces In Section 23 we improve the notion of a Geraghis
contraction and establish sonie common fixed point theorems for a parr of a-adnussible maj-
pings under the improved notion of a-Geraghty contractive type condiion m a complete et
space In Section 2 4, we introduce the concept of a-Geraghty contraction 1spe mappings anel
estabhish some common fixed point theorems for o pair of a-admissible mappmgs under the new
approach of generalized rational a-Geraghty contractive type condition i o complele metric

Spaces

2.2 Modified Geraghty contraction involving fixed points in

metric spaces

Results given in this section have been published in [92]
In this section, Theorem 2 2 1 and Theorem 2 2 5 prove fixed point theorems for a-admissible
mappings with respect to 7, satishving a modified (o - n)-contiactive condition n a complete

metric space
We denote by € the family of all functions 3 [0 +2} — !0 11 such that for am butndedd

sequence {t,} of positine reals 3{1,} — L unphes {,, — 0
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2.2.1 Theorem
Let (X, d} be a complete metric space and § an a-admissible mapping with respect to - Assume
that there exasts a function 3 € Q such that

(d{Sx.8y) + et S0l 50 < (3(d(z y)) d(z y) + 7 S S (21

forall r y €.X where[ > 1 Also supposec that one of the following holds

(1) 5 15 continuous,

() af {zn} v a sequence i X such that alry, reag) 2 nlre read for all n & N'_ {0} and
I, +p€e X asn — +20 then

a{p Sp) 2 nip Sp)

If there exast zg z; € X such that a(rg, r1) > 7{zo,r1) then S has a umque fixed pomnt

Proof Lect 1g € X and define
Iney = Sty forell n >0

We shall assume that rn, # z.41 for each n Otherwisc there cxasts an n such that o, =
Iy-: Then r, = 8r, and r, 1= a fixed point of § Since alay ) = glryg rp) and S 15 an

a-admissible mapping with respect to n we have
afzy ) =aldzg S} > 9(Sre Y2y — ey 12}

Continuing i this way we have

L)
(B

Q(Iﬂ In-l)ZT?(In-Im1). {

for all n € NU {0} From (22) we have

Q[I,l_l.I|,)CI(I".I"+]) 2 n(Irl—luIn}q(Iﬂ Ly 1)
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Thus applying inequality (2 1), with z =1 | and y = ry we obtain

(d(zx. Thsy) + I)'?(Ik—l LEFRND L (ETOLE Y]

= {d(STi_], Sz} + ”?}(Ik 1 5z dntzie 2y )

1A

(d(SIk_l.SIk) + !)nr(zg,_| Sz yhalr, Szy)

(Sld{zyoy, T d{re-1, T4) + 1)rTe- 1S Ta-nta Saa

1/

which implies that

diry, xar) < 3(d{rgoy ax))dlre ) 12 3)

e obtain

dlag 2pqr) Sedlrg_y 1y}

Then we prove that d{r_,.ry} — 0 It 15 clear that {d{s4_y T5}} 1~ a decreasing sequence
Therefore there exists some nonnegative number g such that hm, _cd{4x i 1) =g Now we

shall prove that ¢ = 0 From (2 3}, we have

d(xy, Tisr)

TENER < Jd{xra-1 ) €1

Now by taking hmit & — > we have

1= é _ llmk—.x d{IksIk+1) < S(d(l,ﬁ—],‘-rk“ S 1

d limMg_oe d{zho1,76) ~

Im Jd{ze_, ) =1
A—=oc

By dchmition of 3 function we have imy o dlxy | 1) =10 Thus
hin dirg Tt =0 f2 4
A o=

Now we prove that the sequence {z,} 15 Cauchy sequence Suppos: on the contrary that {#,}

is not a Cauchy sequence Then there exists an € > 0 and sequences {r,,, } and {4} such
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that for all positive mmtegers k, we have n; > my, > &

d[l",“l llu,} Z e

and

d(rmtrfnk_lj <€

By the triangle inequalily, we have

€ S d(-rmk--rﬂk)
S d(-rmk‘ In, 1 ) + d(I“k 1 Iﬂk)
< e+ d(Tng_, Tny ) {2 5)

for all A € N Now taking the imut as & — 420 1n (2 5) and using {2 4) wc have

hm d(z,, 7. )=c¢ (26t
k—a

Using tnangle mequality we have
dilmk‘-rm.) < dt"‘:mk' I'm.LHJ + d(Imkll Ing )t A Tog ) dmy!

and

d(Zmy 1 Tnapr) € HEmp oy Iy ) + & ETmy T, ) + d(an, In,,,)

Taking the hmit as A — +oc and using (2 4) and (2 6) we obtain

kgrfmd(rmuz 'i'"ﬂi.+1]:C (2 7)



Using (2 1).(2 6) and (2 7}, we have

I3 Tm n SE
(G'FI:‘r‘"'“k+-1""':'11=~|-|}')f"]'[)]rjrlr STy JlEny STy )

S (d{Zmy e Tngyy) + ”u(zm" Srmelalong S )
< (d(8Tm,. TZn,) + J'r)l:nr(zu.k.f:‘:r-nj\h:-(:n,r Seng)
< (B(dlrm, ta)dlrm, Tn.)+ !I)”{:m" oM 2 Eng)

wluch irnphes that

r}'(-rl!l].+_1 1 Tl’H;;[) S a(d(Tﬂ!L rn,l :”d{ !ﬂl* IF“ ]

Therefore we have
HZIm,,, I"kH)

< m n <1
d(Iruk-Ink) — j{d(r k X k)) — {

L
e
—

Now taking the hmit as & — +oc m (2 8), we get

lm 3(d{Zm,.Zn,)) =1

—oC

Hence My o d{Tm,, Tn, ) = 0 < €, which1s a contradiction Hence {x,.} 15 a Cauchy sequence
Simce X 15 complete, there exists a p € X such that , — p We now prove that p = Sp

Supposc that {1} holds, that 1s, S 18 continuous Then we get
Sp=8Slmzp,=Im Szr,=lm 2,1 =p
n—oc i—00 n—2o0
and p = Sp Now wc suppose that {u} holds
alsn Ino) 2 3o Tosrl,

for all n € NU {0}, by the hypotheses of (n), we have

alp, Spia(zy, St} = yip. Sp){zi, Sri)
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Using the triangle inequality and (2 1} we have

(d(Sp, zpy1) + ()MPSPIEe Sz} (d{Sp, Szy) + [)1tP Soimlas Sxrd

1A

(d(Sp. Sxy) + [)etp Splatzy Sav

(3(d(p. x4))d(p, xy ) -+ 1) SPIITE STkl

IA

wluch 1mphes that

d(Sp, zy~1) < 8{d(p. x1))d(p, 14 )

Letting £ — oc we have d(p, Sp) =0 Thus p = Sp Suppose that g 1s another fixed pont of &

(dp.q) + I):.'(PSP)ﬂ(qbq) = (d(Sp.Sq) + ”q(p Spinlg Sg)

1A

(d(Sp. Sq) + Doty Spiaty S

< {(3{dip gidip g~ T

% hich 1mplies that
d(p.q) +1 < 3(d(p ¢))dlp ¢) +1

By defimtion of 4 function. 3{d(p ¢)) = 1, mmples d{p,q) = 0 Then we have p = ¢ Ilence &
has a unique fixed point m

If 7{z,y) = 1 1n Theorem 2 2 1, we get the following corollary

2.2.2 Corollary [65]

Let (X.d) be a complete metric space and § an a-adrmissible mapping  Assume that thee

exists a function 3 € £ such that
(d(Sx Sy) + D==502 50 < 3(d(z )} dix,y) + 1

forall x y € X. where [ > 1 Also suppose that cither
(1} § 1» continuous or

() 1f {rn} 15 A sequence 1n X such that a{r, Thpy) 2 1l allne NC (U} and 1, - p =\



as n — -+o0, then

a(p,Sp) > 1

Il there cxast 79 ry € X such that a{rg 79) > 1 then § has a fived poit

If a{x,y) = 1 in the Theorem 221 we get the following corollany

2.2.3 Corollary [92]

Let (X.d) be a complete metric space and § n-subadimssible mapping  Assume that there

exists a function 3 € § such that
(d(S1,8y) +1) < (B(d(z,y)) d(z,y) + )™= =l S¥)

for all z,y € X where ! > 1 Also suppose that one of the follow ing holds

{1} §1s continuons,

(1) 1f {£n } 15 a sequence in X such that {2, £nyy) < 1forall n € NuU{0}and 1, —pe X
asn — +o¢ then

n(p, Sp} < 1

It there cxists 1p r; € X such that n(zg z1) € 1 then $ has a fined point

2.2.4 Example

Let X = [0,0c) with the usual metne d(r y) = [t —yllor all ¢ y € Y and & X — A

@ Xx X = [0oolandd [0.+x)— [0,1] for all r,y € X be defined by

01f re[0,1] 1 iHr>y
Sr = Calry) =
VIafre (1,5 0 1<y
and B(t) = . 30)€ 0 1]

Vi

We prove that Corollary 222 can be appled to § Let r,y € X Clearls Sr < r and Sy <

y. so that S 15 an a-admissible mapping a(z,y) > 1, and aiz Sz) > 1, aly Sy} > 1 and



a(z, Srla(y. Sy) > 1 imphes that

(@S, Sy) + 1P $WS)  _ gr_Guyl— T G4l ——Y_ 4y
! Y VT + Y
2(r -~y
== +i=8
37—y + (diz y)) {d(2 ¥} +!

I a{z Szjaly Sy} =0 then we have
(d(Sx Sy)+ 1)@= 5oy = 1 < 3(d(x y))d{r y))+1
Let r =5 and y =2 Then
d(S5, §2)™5 *8)a(3.53) = 0 8218 < J(d(5. 3))(d(5 3)) = 1 4142

2 2.5 Theorem

Let (X.d) be a complcte metric space and S an a-admissible mapping with respect to 3 Assume

that there ewists a function 3 € Q2 «uch that
alz. Sz)aly, Sy)d(Sc Sy) < nlz, Szinly. Sy)3 (diz.y)) d(x y) (29)

for all r.y € X Also suppose that one of 1the following holds

(1) S 15 contimous,

() f {r,} 15 a sequence 1n X such that alay, Fyp1) 2 gl Tl for allm e N {0} and
Zn — p € .X asn -5 4+, then

alp. Sp) > nip Sp)

If there exists 1g, r1 € X such that a{zg, 7)) > n{ze r1). then § has a nmgue hixed (need Lo

pIove unigueness) poimnt

Proof. Let 2p € X and define
Intl = Sz, forall n >0

We shall assume thal r,, # z,41 for each n Otherwise there exists au n such that 2, =
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TH-1bT43

Tp.1 Then r, = Sz, and 1, 1 a fixed pomnt of § Since afsg 1,) = play 4b and 5 15

a—admissible mapping with respect to 7, we have

a{z1,z2} = a{Szp 511) 2 n{Sxy, S71) = (21 T9)

Continuing 1n this way we have

Q(In In+1) Znlr, 27|r1+l)

for all n € NU {0} From (2 10}, we have

alrn_a rn)a(imln+1) Zn(Iu-] Iniin 1ni)

Thus applying mequality (2 9), with r = rp_; and y = z;, we obtan

Map—1. Sag_1In(en, Sopjldize, oyprh

MTh—1, ST 1Tk, ST Jdl Sxp 1. 524}

(AN

al{rk-1.Sty_1)alry Szi)d(Sri_y, Sxi)

[

Mzpe—1, Sap1)n(Ee, Sxp )3 {(d{xs—, i) d(xy—1. T1)

which imples that

d(zy, Tey1) € 3 (d{@g-1. 1)) d{zri_1 1£4)

We wuppose that

dlri Th41) Sdlaz_y. k)

(21

(2 11)

Then we prove that dicg—;,xx) — 0 It 15 clear that {d{cy 1. 24} 15 a decreasing scquence

Therclore, there exists some positive number g such that hny, o d{sy, 13 1) = v Now we shall

prove that ¢ =0 From (2 11}, we have

d{xik, Thy1)

< Gld{zi_1 ex)) =1
W eer,re) = (d{za_1 )}
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Now, by taking the imut as k& — 0, we have

d hm,; ., d(Ik,IA H.)
1=2 = < 3dien o
d llmk_.w d(lk—l :'Eh) - ( {Ik l:Ik“ o

kllm Std(ri_r z)) =1
Using definition of 3, we have limy o d{zk_1 T&) =0 Thus
khm d{zy.Tp1) =0 {212)

Now we prove that the sequence {z,} 18 a Cauchy sequence Suppose on the contiaiy that
{Tn} 15 not a Cauchy sequence Then there exists an € > § and sequences {my } and {7z} such

that, for all positive mtegers &, we have ny > g > A
d{Tm, In ) > €

and

d(-rmt Ink-l} < €

By the triangle inequality, we have

¢ < d(Ifrq-Ink}
< d(.rm“.cm_,‘j + d{Tng_y1tn, )
< €+ d(Tn,_,,En,) {211}

for all k € N Taking the hmit as & — +2c m {2 13} and using (2 12) we have
him d{am, Tn, )= 219
F—o

Agan uwsing the tnangle inequality we have

d{Imk'Iﬂx) < d('rmx .I‘m*_H} +d('1mk+1'rﬂkﬂ:' "'_d‘I’h:ﬂ Jm)
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and

d(Tmy,, Tnoy) SdlTm ., Im )+ Tm, To ) +ATn, dn,_ )

Taking the limil as & — +2¢ and using (2 12) and (2 14}. wc obtain
kETm d(xmkn"rﬂkq} =¢ (2 15)

By using (2 9),{2 14) and {2 15), we have

r."(Im;_‘SkaJTI(-Tn“SInk)d(Iman-rn“,l |

S O(fmpSimk)ﬂ{rnkus-ruk)d{-lmk“nInL_l)
< ol rmySTm, Jaltn,, ST )d(STm, Try,)
< n[fm,. ! Slmk )n{-['rq ' Srnk ]ﬁ{d“ TRE L Hd[-rm;, v g )

which immplies that
d{:rﬂ'lg_,l -Tru,_H_J S J{d(rrnk Ly, ”d{-}mk Lay !
Therefore we have

d("rmkv'l t k41 )

216
d(I”'k ‘rﬁ.L) s J[d(rm*“r"k” < 1 ( }

Now, taking the limt as b — +oc 1n (2 16}, we get

bhm 3{d(zm, . En,)) =1

n—oo

Hence imy .o d{Tm, . £n, ) =0 <€, which 1s a contradiction Hence {z,} 15 o Cauchy scquence
Simce X 15 complete, there exists a4 p € X such that x, — p Now we prove that p = Sp

Supposc (1) hold that 1s, & i1s continuous wc get
Sp=8lmz,=lm Sr,, = lm 1,41 =p
n— A —aC n— oo
and p= Sp Suppose that {1} holds that, so we get Then

u(l'n Inll) 2 T?l(n J1’1+‘1}
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d|

for all n € NU {0}, by the hvpotheses of (n}. we have

alp Spla(ry Szi) > nip Spinioy, S1h)

Using the triangle mequality and (2 9), we have

nip, Sp)n(re, S )d(Sp, Tit1) n(p, Sp)n(zy. Sx,)d(Sp Sxi)

A

a{p. Sp)a(zy, Sxi)d(Sp, S11)

A

nip, SpIn{zk. Sz )(3(dip z,))d(p. ri)

wluch imphes that

A(Sp, 2k+1) < IHd(p, zx))d(p, zk)

Letting k& — oo we obtain d(p, §p) =0 Thus p = Sp Let ¢ be another fixed pomnt of §

nip, Spin (g, S¢) d(Sp Sq) < «alp Spla{y, 5¢)d(Sp Sq)

[/

nip Spiytyg SV 3tdip qridip qi

which implies that

d(Sp, Sq) < Jidip ¢))d(p q)

By defimtion of 3, 8{d{(p.q)) = 1, implies d(p,q) = 0 Then p = ¢ Hence S has a utique fived
{Requires proof) point o

If »{z,y¥) =1 in Theorem 2 2 5, get the following corollary

2 2.6 Corollary [65]

Let (X.d) be a complete metric space and § an a-admissible mapping  Assume that there

exists a function g € 2 such that

alr, Sr)a(y, Sy)d(Sz. Sy) < 3(d(z,y))diz. y)

for all .5 € X Also suppose that either
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(

{1) § 15 continuous, or
() 1f {zn} 15 a sequence 1n X such that a{z, rp41) > Lforalln e NU{O}and 7, — p€ ¥
as n — +oc then

a{p.Sp) > 1

If there evists 7g, 1) € X such that a{rg £1) > 1 then & has « fixed pomnt

2 2.7 Remark

Our results arc more general than those in [65 114 111 and improve sexcral 1esulis existing

in the hterature

2.3 Modified a-Geraghty Ciri¢ type theorems

Results given in this section have been published 1n [22].

In this section, we improve the notion of Geraghty contraction ty pe mappings and estabhish
some common fixed pownt theorems for a pair of a-admissible mappings under the unproved
notion of a-Geraghty contractive tyvpe condition n a complete metric space

Cho. Bae and Karapinar [46] established new fixed point theorems for a-Geraghty contrac-
tion type mappings in 4 complete metric spaces We have the following extension; generalization
of these results

Let (X d) beametncspaceand e X x X — Rbea functien Two mappimgs S I X — \
1> called a pair of gencralized a-Geraghty contraction 1y pe mappings il there ¢xists 1.7 QO wuch
that forall 2 y€ X

alz. yM(Sx Ty) < J(Mix y)y iz y) (217)

w here

M({z.y) = max {d(r‘y) dir,Sr). d(y Ty) dly Sz) -I)- di Ty)}

-

If § = T then T 15 called generalized a-Geraghty cantraction ty pe mapping if therc cxists 3 € €

such that for all 7,y € .Y,
a{r, y)d(Se, Ty) < 3 (Vi1 y)) N(7 y)

33



for all 1 € NU {0} Now

]

{ llr‘ y — iy o1 Sy
Mizo,z011) = Ina\{d(f_’:-lzﬁl)d[-r% Stg) dlear Trand Ara Fin )= T1h-) :‘?}

d{-l oL 22
= mdX {d(Iz.-1‘2:+1) d{ra. r2i41) dx2s 22-2) —2,,-2—tl}

d{z2. 2201) + AT 241 L2042) }

< max {d(rg.,r2,+1),d(12,+1,x2‘+2), >

= max {d(ra, Tas1), d(T21, Zn2)}

Thus

IFAS

d(r2c41. F242) B{M {12, Tar1)) Moy, ro)

< Bldiro. 2941)) il 2241) < d{T20, 0 23041) {2 1%

This 1mphes that

AT py Lra2) < A{Tn, Thi1) for all = teln {U}

So the sequence {d{xn Tny1)} 15 nonnegative and nomncreasing Now we prove thatd{r, 1., 1)
0 It w clear that {d{r,.Zn41)} 1 a decreasing sequence  Therefore there exits some nonney-

atine nurmnber 1 such that hig .o d{2,,.741) =7 From (2 18} wc have

dTyr1 Ln+2) < (d{zn, zur1)) €11
d{Ty, Tny1)

By taking the hmit n — oo, we have

1 < B3(d(Tn, Lns1)) £ 1,

that 15
Im 3{d(zn. Tns1)) =1
H—00
By dehnition of 8 we have
hm d(r,, 1) =10 121
Hn—1x

Now we show that sequence {r,} 1 Cauchy Suppose on the contrary that {1,.} = not a
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Cauchy sequence Then there cxists € > 0 and sequences {zm,, } and {z,,} such that for sll

positive integers & we have my > ny > k

d(2m, Tn,) > €

and

Aty Tny_ ) < ¢

By the triangle inequality we have

H
[A

d(rmk o)

(Fa¥

d(II’Hk|ITIk_1) + d(Ink_], I,Iﬁ-}

N

e+ d(xn, | Tn,) {2 20)
for all £k € N In the view of (2 20). (2 19), we have

hm d{Tm, . Tn,) =€ (221)
hle vl

Again, using the triangle mequality, we have
d(‘lfn* -rnk} S d{im;, J"‘-L-r-l \l + d{J—H:.11 JH,_I I = d !I“ - 4 ¥ i

and

d(Imk,pInk‘,l) S d{'l"fk‘pl -Trnt) +d(-]mk ""-Hk} +d‘ITq -Iru‘,;}

Taking the imit as & — +a¢ and using {2 19) and {2 21) we obtain

lim d{r ) y=¢€
k400 { LT TS Rt LTI |

By Lemma 13 15 a{zn, Im,,,) =1 Thus

d(-rnk+] Ly ¢—2) = d(Sim- T-rmk+1 } £ alfn, . Ty )d(SlﬂU Trom, 1)

< B{AM(xn T DM (2n  Tmg )
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Finally, we conclude that

d

Try i1 Tmy H} <8

M(zn, Imy,,) (Mixn, Tmey))

Keeping (2 19) tn mind and letting £ — +00 1n the above mequahty we obtam
k]-l—-n; J(d{fru ST )}I =1

So hmy o (T, , Ty, ) = 0 < ¢, which 15 a contradiction  Using sumular rechmgue tor otha
cases 1t can be easmly seen that {7,} 1~ a Caucly sequence Since X s complete there exiss
p € X such that r,, — p imphes that £3.41 — p and z2,4> — p As 5 and T are conhiuous we
get Tro,y1 — Tp and Sra,0> — Sp Thus p= Sp Similarly p=Tp sowehase Sp=Tp=1p
Then (§ T) have a commeon fixed point =

In the following Theorem 2 3 2, we have removed the continmty assumption

2.3 2 Theorem

Let (X,d) be a complete metnc space, @ X x X — R a fution and S T X — X o
mappings Suppose that the followmg hold

(1) (8.T) 15 a pair of generalized a-Geraghty contraction type mappuigs

{n) (5, T) 1» tnangular a-admssible,

{in) there existy an rg € X such that a(zg, Sxg) > 1,

(1v) 1f {z,} 15 a vequence 1n X such thal a(z, iq41) 2 1oralln e Mo {Q} anda, -p~ A
as n — +no then there exists a subsequence{r,, } of {1, } such that air,, pr _ Ltor Wl 4

Then {5, T) have a commmon fixed point

Proof. Using an argument similar to that of Theorcm 2 .3 1 Define a sequenee 73,41 = S 13
and 79,43 = T'rg 1, where: = 0. 1,2, comerges to p € X By hypotheses of (1n]) there exias
a subsequence {z,, } ot {z.} such that a{az,,.p) > 1 for all A Now by u~ng (2 17) for all &

we have

d(x2ny+1 TP) = d{Sx2q,,Tp) € alin, pid(Sizn, Tp)

FAN

3 A{(IZnL ) h{(IQIIk )
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On the other hand, we olitain

d{zan,, T dip, St
ﬂ'f(llnk 'P) = max{d(TEnMP)-d(IQnHSIan)‘d(P‘ TP)- (IZ . p) A (?) 2 L}}

2

Letting k — oo we have

kllm Mi{zy,, . p) = d{p.Tp) {222)

Suppose that d(p Tp) > 0 From {2 22) for & large enough we have (23, p} > 0 which
mmphes that

SiAM{za, ph) < Va2, 1

Then
d{x2n, . Tp) < M{zon, ) {223

Letting k — no mequahty (2 23) we obtain that d{p,Tp} < d{p.Tp) which 1s a contradic ion
Thus we hnd that d(p, Tp) = 0, implics that p=Sp Thus p=Ip=5p =
If Niz y) = max {d(.r,y) d(z.51), d(y. Sy), d—("’—sﬂ*z-'f(—’-bﬂ} and § = T n Theorem 231

and Theorem 2 3 2, we have the following corollanes

2.3.3 Corollary

Let (X, d) be a complete metric space and S an a-admussible mapping such that the followmng
hold

(1) 5 15 a generalized a-Geraghty contraction tvpe mapping

{11} § 15 trniangular a-admssible,

(111) there exasts an 1y € X wuch that a{ry Tp) > 1

(1v) S 15 continucus

Then S has a unique fixed point p € X and 5 1« a Puard operator that 15 {8™ry} converges

top

2.3.4 Corollary

Let (X, d) be a complete metric space and S an a-admissible mapping such that the [ollowing

hold
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(1) S 15 a generalized a-Geraghty contraction type mapping,

(n} & 15 tnnangular a-admissible,

{11} there exists an rg € X such that a{xg. Sz¢) > 1,

()i {z,} 13 a sequence in X such that a{ap.Tny1) > Lioralln s NU{0} and z,, — pe X
as n — +oc then there exists a subsequence{xn,} of {4} such that ce(z,,,p) 2 1 for all &

Then S has a umque fived point p € X and 515 a Picard operator that v {S™ 1) comerges
top

I Nir y) = max{d{z,y).dle,52) d{y Sy)} and 5 = T m Theorem 2 31 and Theorem

232 we obtain the following coiollares

2.3.5 Corollary [46]

Let (X.d) be a complete metric space, & X x X — R a function and § X — Y o mappng
Assume that the following hold

(1) S 15 a generalized a-Geraghty contraction type mapping

{n) S 1s triangular a-admissible,

{(m) there exists an 2 € X such thal a{zg, Srg) > 1

{(1v) § 1 continuous

Then 5 has a umque fixed point p € X, and S 15 a Picard operator that s {8714} comerges

top

2.3.6 Corollary [46]

Let (X, d) be a complete metric space o X x A — R a [uncuon and & N — U vmapping,
Assume that Lthe [ollowing hold

(1) 515 a generalized a-Geraghty contraction 1y pe mapping

{11) 5 15 tnangular g-adnussible

(1) there exists an rg € X such that a{zg, S16) > 1,

(1v) i {zn} 15 a sequence m X such that a(rp,7p41) > 1loralln e NU{O)andr, = pe X
as n — + then there cxists a subsequence {an, } of {2} such that al(r,, .p) > 1 for all £

Then S has a umque hixed point p € X, and S 1s a Picard vperator that 1s {824} comerges

to p
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2.3.11 Example

Let X = {7, 7.k} with metric

0 fr=v
Srye X —
d(I y) = 7 /] {J}
1ifr ye X —{k}
Ifeye X —{i)
and
1 frye ¥
alr,y) =
0 ovtherwise
Define a mappmg T X — X as follows
vaf 1
T(z) = #7
Eafer =1

and J [0 +2¢) — [0,1) Then

oz (T Ty) £ B(M(z,9) V(2.y)

Indeed, let r = 7 and y = k then

M k) = ma.x{d(].k)‘d(_) T(7)), (A T (A, E‘l.?_{f“]-:dlﬁ. I(}]j}

I

:
——
-'IIJ-
[~
*-JIUl
B | =
[ S—

1l
-1 o

Theorem 2 1[16] cannot be used to obtam a fixed pomnt of T «ince
a{) k) (T(). T(k)) £ BIMANMG K)

Now we prove that Theorem 2 31 can be applied to common fixed pomnt of S and T Let

& X — X bc a mapping such that Sz =1 foreach r € X
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where

M(7.k) = max{d(,A) d(7,. S(7)) dlk, T k),

d(3. T(k)) + d{k, S(J))}
2

{
{

AlSy, FkY=dii) =10
alr, (S Ty) < 3 Mie gt e yh

Hence all of the hy pothesis of the Theorem 2 3 L are satisfied ~a 5 and £ have a common fixed

point

2.4 Fixed point results for rational a~-Geraghty contraction

Results given 1n this section will appear 1n [21].

In this scction an cffort has been made to improve the notion of a-Geraghty contraction type
mappings and establish some common fixed pont theorems for a pair of a-admissible mappings
under the improved approach of a generalized rational a-Geraghty contractive type condition
in a complete metric space

Let (X.d) be a metric space, ¢ X x X — Rafunctionand §7 X — X 5and [ arc
called a pair of a generalized rational a-Geraghty contraction type mapping if there exists a

3 € €1 such that, for all .y € .¥

2
2]
1

alr,y)d(Sx. Ty) < 1(R(x,y)) Rl y {

where

d{z, Sc)d(y. Ty) dlz, SIJd(y‘i’yJ}

R(r,y):m&x{d(-’f‘y): 1+d(z y) ~ 1+d(Sz,Ty}

If § = T ithen T 1s called a generalized rational a-Geraghty contraction type mapping if there
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't

exists a J € 2 such that, for all r,y € Y,

al(x,y)d(Tz, Ty) < 3(Q(x.y}) Q(x.y).

where

_ diz Tz)dly Ty) d(z.Tz)d{y.Ty)
Qlr y) = max {d(:, y) 1+d{zx,y) ' 1+d(Tr Ty) }

2.4.1 Theorem

Let (X.d) be a complete metric space @ X x X — R a function and §.T X — A two
mappings such that the following hold

(1} (S, T) 1s pair of generalized rational a-Geraghty contraction tvpe mappmg

(n) (S, T) 15 triangular a-adnissible

{im) there exists an rg € X such that a{zrg, S1g) > 1

(iv) § and T are continuous

Then (S T) have a umque comnon fixed pomt

Proof. Let £ 1n X be such that 1y = S1¢ and 7, = Tr; Contunung (his process we

construct a sequence r, of pomnts 1n X such that
I3 = Sty and Toz = TT341. where t = 0.1, 2,
By assuraption a{rp 7;) > 1 and the pair {(§,T) 15 a-admissible by Leruma 1 3 15 We have
a{Iy Tyn41) > L for all n € NU {0}

Then

d[SIZhTIZr—rI} <aliz Jerl)d{Srlr T1x.1)

d(L241 1242}

1A

J {R(IZhJ:zHl)) R(IJI 7.1



for all : € NU {0} Now

R{Z3,Tae1) = mand(rz, £2.1) d(z. Sz )d{za41 Tragr) dlay Sxpld(ry . Tiaag)
T 2o Lhiv1), 1+d(13: 1214-1) 1 i—rfif'lz, .r]’_Jh—ll
= max {d(ry, I2r1) d{az. Ine1)d{d 241 Ta2) dlag Tz dltae tood
11 L1 ) 1+ d{z2 22041) L+ dirzeg ran-2!

< max {d{xryn, Ta+1) dT241 Tn42))

Thus

LA

d(T2,41, £ 242) 3 (fR(ra, Tz41)) Rixa, ra1)

Fa

3 (d(l‘z,.:2,+1)} d{{za, £o1) < dlas T241) {2 26)
which 1mplies
d2nsl Tns2) < d{(En Tap1) for all n € NU{0}

So the sequence {d{xy 2y41)} 18 nonnegatine and nomncreasing  We shall now prive that
d{ry. rn.1) — 0 1t 1s clear that {d{7n tn-1)} 1> a decreasing ~equence Thereloe there exists

souic nonnegative number r such that hmp 0 d{2, Iner) =7 Tiom (220} we have

d(:rn-}—l- Triz)

< <
d(.{n,lﬂ+1) = B(d(zn I -{1” =

Taking the hmit as n — oc, we have

1 < ﬁ[d(-rn‘-rn+l” S 1,

that 1s
hm 3(d(zn. Tas1)) =1
From defintion of 3 we obtain
hm d{zy, rhe1) =0 (2 27}
==

Nuw we shall show that sequence {z,} 15 a Cauchv sequence  Suppose on the contiary Lhat

{2n} 1> not a Cauchy sequence  Then there cvsts an ¢ > U and sequences { i, |and {1, }

d0

}



On the other hand, we obtamn

d{Tan, . Stop,) dlp Tp} d{12n, Szun,) dip TM}

Il n = an " !
(am, P) max{d{:r‘ « P) 1+d($zin) 1+ d(Sxm, Ip)

Letting & — oo we have
Jim R(rzn, p) = max {d{p. Sp),d(p.Tp)} (230

Casc I hmy_oc A(22,,.p) = d(p, Tp) Supposc that d{p, Tp} > 0 From (2 30}, for large cnough

% we have R(xrgn,,p) > 0 which imphes Lthat
J{R(xan, .p)) < R(x2n, P

Then we have

d{zom, TP} < R(z3n,,D) 0230

Letting & — 20 1n inequalitv (2 31}, we obtam thal di{p, Tp) < dip 7 pi, nhichis a contiadiction
Thus d{p, Tp) = 0 which imphes that p = Tp
Case II hmyg_o M{Z24,,p) = d(p,Sp) Similarly p=5p Thusp=Tp=5p ®

If Q{r,y) = max {d{r y) d(z Sr)d{y.Sy)/1 +d(z,y) d(r. Sr)d(y Sy)/l +d(Sx.5y}} and

S = T n Theorem 2 4 1 and Theorem 2 4 2, we have the following corollanes

2.4.3 Corollary

Let {X,d) be a complete metnic space and S an a-adnussible mapping such that the following
hold

(1) § 1s a generalized rational a-Geraghty contraction Lype mapping,

(11} S 1s triangular a-admissible,

(m) there cxasts an 1g € X such that a(zg, Szo) > 1,

{(1v) § 18 continuous

Then S has a umque fixed pomnt p € X, and 8 15 a Picard operator thatis {87 oy} conseiges

to p

19



2.4.4 Corollary

Let (X, d) be a complete metric space and § an o —-adnussible mapping such that the followmg
hold

{1) S 15 a generalized 1ational a-Geraghty contraction type napping

(1) § 18 tnangular a-adnuossible,

(m) there exists an zg € X such that a{zg, Sz¢} > 1.

(w)if {z,} 1s a sequence 1n X such that a(z,, Tn) > 1oralln c NU{0}and o, = p€ A
a5 1 — +oc then there exists a subsequence{z,, } of {r,.} such that alz,,.p) > 1 for all &

Then § has a unmique fixed point p € X, and 515 a Picard operator that 18, {S"z} converges
top

Let (X ) be ametric space, and let @, 7 A x.X — Rbetunctions Themaps ST A - X
are called the pair of a generalized rational a-Geraghty contraction type mappings if there exists

a 3 € 1 such that for all 7.y € X,
alx,y) > nplr,y) = di(Sz Ty) < 3(Rta y)Y R{x ) {232)

where

dlc, Sr)dly Ty) diz Sy ]’y1}

Rz ) = ma_\{d(.r 2 1L+d(r y) 14 dtSr Ty)

2.4.5 Theorem

Let (X, d) be a complcte metric space and {§, T') are a-admissible mappings with respect to y
such that the following hold

(1) {5.T) 15 a generahzed rational a-Geraghty contraction type mapping

() (5,7) 15 tnangular a-admissible,

{m) there exists an 19 € X such that a{zg Srg) > n{ry, Sro).

(1v) § and T are continuous,

Then {5, T) have a unique common fixed point

Proof Let r; in .X be such that r; = Sxrg and r» = T1; Continuing this process, we



construct a sequence {1,} of pomnts in X such that

Tn41 = Sty. and 10,43 = I'rpy where: =01 2

By assumption a{xg 71} > 9{zg £1), and the par {5 T} 15 a-admissible with respect to iy Chus

a{Sxq,Tr1) > n{Sxg, I'11), [rom which we deduce that a{r) rz) > niey £2) wlnch also unplies

that a(Txr;,Sxq) = n(Tx1,5z3)

for all n € NuU {0}

d{x241. T21+2)

= d(SIL’n TIE: I-l) < Q(IZI! T2+ )d(SIznT-r‘z: i—l}

Continuing 1n this wav we obtain (a1, Zny1) 2 91 i)

< S(R(r, z241)) R{22), r241)
for all : ¢ NU {0} Now
Rirsm 2ne1) = maxd d(za. rae1) d{r2,. Sag}d{ 2241, T2 541} d{zy SIZ:)d(£21+1|TIZL+1)}
e Rl 1+ d(r2, 29:41) 1 +d(8x3 Tyl

= max{d(rzg In41).

d{za ra+1)d{xns1 Ta) dixy Sipld(ro41. T2 1)

1+ dicz,212041)

< max {d{ry, ras1) dlrasr raa0d}

1+ dia a1 42022}

Frorm the dehuition of 3 the case R{4g. 22041) = dir o1 L2018 1mposable

P4

d{T341. L2: 12)

which 15 a contradiction Thus

d{xn41 T242)

This implies that

dline1. Tny2) < ATy, Tny1), for all n € NU{0}

J(R{ta, T2i1)) R(T2 22041)

3(d(zz+1 . T2+2) d{Tn1 Taa2) <dlEng 2042)

<

<

2 (R(I2n IZH—])) Rlry 1-').|+1}

‘3(d(I21‘121+1J}d((IJ|:IJJ*IJ < d(I?hIJH 1!

}



Using an argument similar to that of Theorem 2 4 1. p 15 unique common fixed point of S and

T m

2.4.6 Theorem

Let (X.d) be a complete metric space and (S T') a-admissible mappings with respect te » such
that the following hold

(1) {5.T) 1s a generalized rational a-Geraghty contraction type mapping

(n} (S.T) 1s tnangular a-admissible,

{m) there easts an 29 € X such that a{xg, Szg) = n{re Sao),

(1v) if {cn} 15 a scquence m X such that alry zh 1) 2 9len Lurt) for all = ¢ 5 {0}
and r, — p € X as n — +0o then there exists a subsequence {r,, } of {4} such that
aldq, . p) 2 nlen, p) for all &

Then S and T have a commen Axed point

Proof. The proof 1s simular to that of Theorem 242 =

If Q(r,y) = max {d(z,y) d{z, 5z)d{y. Sy)/1 + di{z,y) d(z,ST)d{y Sy)/1 +d(St Sy)} and

S = T 1n Theorew 2 4 5 and Theorem 246 we get the following corollanies

24.7T Corollary

Let (X d) be a complete metric space and § an a-admussible mapping with respect to 7 such
that the following hold

(1) § 15 a generahized tational a-Geraghty contraction ty pe mappmg,

{n) S 1s triangular a-admissible,

(1) there exists an zo € X such that al{zg, Sre) > nlzo, Srp)

(1v) & 1» continuous

Then S has a umque hixed point p € X and 5 15 a Picard operator that i~ {N"zy} comerges

tep

2.4.8 Corollary

Let (X d) be a complete metric space and § an a-admissible mapping with 1espect to 7 such

that the following hold
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{1) § 1 a generalized rational a-Geraghty contraction tvpe mapping

{n) § 1s tnangular a-admssible,

(1) there exists an 19 € X such that a(zg Srg) > {10 S10n)

(1) of {z.} 15 a sequence 1 X such that a{z, Tni1) 2 3(En, Tay) ot all s ML D} and
Zn — P E X a5 n — 400, then there exists a subscquence{ ry, } of {1,} such that afs,, p) >

1{In, . p) for all k

Then S has a unmque fixed point p € X, and S 1s a Picard operator, that 1s, {S"r¢} converges

top

2.4.9 Example

Let X = {1.2 3} with metnce
d13) = d3 1) =2 d(1,1) =d(22) =d(33)=0
4

7

~1icn

d(12) = d(21}=1,d(2,3)=d(3,2) =

1 fr.ye X,
a(z.y} =
0 otherwise

Dchne the mappings §,7 X — X as follows

Sr = lfoeachre X

T(1)

T(3) =1, T(2) = 3,
and 3 [0 +ac) — [0,1], and
a{r,y)d(Tr Ty) < 3(M(z,y))M(r.y)
Let r = 2 and y = 3 Then condition of Theorem 2 1 [46] 15 not satisfied

d(T(2),T(3)) = d(3.1} =

=-1] =t
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M(z,y) = max{d(2 3) d(2 T(2)) d{3 T1311}
— m {1‘ 4 E}_E
R A A B

and

a(2,3)d{(T(2), T(3)) £ S(M{(zx, y)AM(z.y)

I

~ d(2, 7(2))d(3,T(3)) 4(2.T(2))d(3.T(3})
Qz,y) = m“{d(2'3)' [+d(2,3) ' 1+d(I2 13) }

4 20 20 4
= max{ -, oo, — ¢ = =»
TUT 8 7

Then the contractive condition does not hold

a(2.3)d (1(2) T(3)) £ 3(Qlr y))Q(r ¥

We now prove that Theorem 241 can be apphed to § and T Let £,y € X Cleally {5 T)
cx—admussible mapping such that afe,y) > 1 Let 7,y € X and so that 51,7y € X and
a(Sr,Ty) =1 Hence (S.T) a-admussible We show that condition (2 25) of Theorem 241 15
satisfied If r.y € X then a(z,y) =1 Thus

a(z y)d(Sx, Ty) < 8(R(z,y)) (R(r,y)).

where
d(2. 5(20d(3 T(3)) d(2,5(2))d(3 T(3))
Rlz.y) = max {d(g'S)‘ 1+d2,3)  1+d(S213) }
{-1 20 20} 4
= max = ==\~ = =,
TIT 19 7
and

d{52,73)=d{1,1} =0

a{r y)d(Se, Ty) < 3(R(ry)) (Rir y))

51



Hence all of the hypotheses of Theorem 2 1 1 are satisfied. and 5 T hate a common fixed pomnt

2.4.10 Remark

For more detail, apphcations and examples see [46] aud thie references therem Qur results are
more general than those in 46 68 113] and mmprove several results existing m the hterature
Conclusion. This chapter contams some fixed and common fixed point theereins lor ~mgle
and a pair of a-admmssible mappings. under the more general notion of an a-Geraghtv con-
tractive type condition The presented theorems extend, generalize and 1mpiove many new
and classical results 1o fixed point theory, m particular, the very famous Banach contraction
prinuple The present version of these results make significant and useful contribution in the

existing literature
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Chapter 3

Single-valued and Multivalued
Theorems for F-Contractions in

Metric Spaces

3.1 Introduction

In metnic fixed point theory, the contractive conditions on underlying tunctions play an impor-
tant role 1o finding solutions of fixed point problems The Banach contraction pr wnciple 1314
Is a tundamental result 1n metric fixed pont theorv Due to 1ts mmportance and simpliats
several authors have gencralized/cxtended 1t in different directions In 2012 Wardowsk 123
presented a new type of contraction called an F-contraction and estabhished a Banadh fived
pumnt theorem for F-contraction His findings were followed by Secelean (115" Pniand human
(1071 Cosentino and Vetro [49] Acar Durmaz and Minak 11" Aca1 and \ltun '10° \linak
Halvaci and Altun [97) and many others have confynued these myvestuigation on { -contraction
and obtamned fixed pont theorems

Sgror et al [117) established fixed pomnt theorems for multivalued F-contiactions and ob-
tained the solution of certam functional and integral equations, which was a proper gencraliza-
tion of some multivalued fixed point theorems including Nadler's theorem Recently, Ahmad et

al [12, 58] using the concept of an F-contraction obtamned some fixed point and common fixed

36



point results n the context of complete metnic spaces Recently Kutbi ct al [93] extended the
concept of an F-contraction to obtamn some fixed point results in a complete metnic space

In Section 32 we extend the concept of an F-contraction and introduce the notion of a
Cinic type a-n-GF-contraction for a single valued mapping and obtain some new fixed point
theorems in a complete melric space

In Section 3 3 we mmprove the notion of a Cmé type a-n-G F-contraction for multivalued
mappings and obtam some new fixed point theorems

In Section 3 4 we introduce a generalization of an F-contraction and establish fixed pomt
theorems [or multivalued mappmgs under a.-7-F-contraction on & mefric space

In Section 3 5 we extend an c.-7-F-cOntraction to an «,-n-7/ -contraction and obtain ~omt

new Wardowsk: type fixed pomnt theorems m the setting of a complete metie space

3.2 Fixed point results for Ciri¢ type a-n-GF-contractions

Results given 1 this section have been published in [93]
In this section we define a new contraction, called a Cirie type o-1-GF-contraction, and
obtam some new fixed point theorems for such contractions n the ~etting of complete metnc

spaces We define a Cine type a-n-GF-contraction as [ollows

3.2.1 Definition

Let (X d) be a metric space and T a sell-mapping on X Also suppose that a 7y X < ¥ —
[0. +20) are two functions We say that T 15 Cinié type a--GF-contraction af for all 1 y & Y

with n(z T'r) € a(z,y) and d(Tx.Ty) > 0, we have
G(d(z Tx) dly Ty} dir Ty),dly Tr))+ PidiTe Tyny < Fidlts g R

w here

dix Ty)+diy T.{J}

M(z,y) = max {d(:: y). d{z. Tx),dly Ty), 2

Geldgand Fers

Now we state our result
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3.2.2 Theorem

Let (X d) be a complete metric space Suppose T 1s a Cirié type a-n-C F-contrac tion satisiying
the following assertions

(1) T 15 an a-admiseible mapping with respect to 7,

() there exists an g € X such that afrg. Txp) > n{20,T10),

{m) T 1 a — p-continuous

Then T has a fixed pont .n A’ Moreover T has a unique fixed point when a{r.y} > n{z, r}
for all .y € Fix(T)

Proof. Let o in X be such that alxg, Txg) > n{xg Trg) For 1y € X we construct a
sequende {Jn}:c=1 such that 19 = Trg o =Tr = Tiry Continung this process i,y =
Tr, =Tty forall w € N Now, since T 15 an a-admissible mapping with respert Loy then

a{zg 1) = a1y, Txp) > n{1y, Trg) = n{1g,r1) DBy continuing in this process, we have
N(rn_y Trn_1) = Plan-y o) S a{rn_1.75) foralnell (32

If there exists an o € N such that d(r,, Twy) =0 there s notlung to prose So we assume that

In # Iny1 with

d(Tzn 1, Tx,) =dlzn,Tr,) >0 ¥ne N

Since T s a Ciné type n-7-GF-contraction, for any n € N, we have

G(d(rn_l,T.rn_l).d{a"n,Trn),d(r,._l,T:cn).d(r,., lFr,

+F(d(TIn—l-TIn)) < F(ﬂI(In_l,Iq})
w hich imphes that

G{d(Iu—l rriJ1d(In~Ln+1} d{.-{n—l Il )

4+ 1 (d(Ten 1, T2n}) & F{M{In-1, ra)) 133

Now by the defimtion of G, d(z,—1 £n) d(zn Frsr} dlzy-1,70411 0 =0 there exisls a 7 > 0
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such that
G(d(In‘l In),d(In,In+1]‘d(In_1 In+1)-.0) =T
Therefore
Fd(an 2np1)) = F(d(T2p1,Tun)) S F(M{rp_y £,)) =7 (3 4)
Now
d N—l+=H+ +d Tlysn
AI(IH—I‘IH) = max {d (Tn—1,Tn) dTn-—I rn) d(r, In.1) (en-1.2 13 \Iny £ )}
d n—lr o+
B m“x{d (#nt, 20, d(Enot £n) d{2n Fai) ﬁ—'j—f_']}
n—l-1In o noin
< ma.x{d (Tn_1.Tn),d(Tn Lni1) ML}{_‘L_L_“J}
= max {d{r,_y ;). d(3, Tpi1)}
so wi have

F(d{an 1n41)) = F{d(Tza Trp)) € F(max{d(zn_1 ) d{Tn Tne1)}) -7

In this case M{zy_1.7,) = max{d(zp_1.7,), d{Ly Lny1)} = d{zy, v, 1), which 15 1mpossible

because

F(d{Iﬂ:-Tn+l“ = F(d(T-Tn—I Tln}) < F{d(TmIn‘i—l” —T< F{d[I“|In+lJ}

which 15 a contradiction So

Mira_1,20) = man{d{x, 1.7} d(ZTp.in| )} = dl1, 1. Ly}

Thus from (3 4), we have

F{d{tn, znn)) € Fd{za_1,20)) — 7
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Contmuing this process we get

Fld(za xp41)) < Fdlzpa.x0)1—7
= F{d(T2n2 Tina)) -7
< F(d{zp.a,an 1)) - 27
= F(diTrn_3 Trpn_2))—2r

< F[d(l‘n—a‘l‘n-z))"%

< F(dlro,n)) —nr
This implics that
F (d(zn, In41)) € Fd(ro. t1}) —nt {4 5)
From {3 5) we obtam hmp_x Fld{z, Tnp1)} = —2 Since o/ we have
im d(xy. Tnst) =0 (3 6)

From (F3), therc exists a k € (0.1} such that
Jm (1dEn 20 F (dan2ns1)) = 0 (37)
From (3 5) foralln € N we obtamn
(2 Zrg )V (F (@20, anp1)) = F (2o 1)) € — (@l 1)) 7 0 (38)
By using (3 6} (3 7) and letting n — oc 1n (3 8) we have
lim (n (d{zn In+1))") -0 (3 9)

We observe that from (3 9) there exasts an 1y, € N such thal n{d{:n,zn.l}}" < | tor all
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1 > m Thus

1
d{T,, Try1) < — for all n > m (3 1H
HIS

Now for m,n € N such that m > n > =y, using the tnangle inequahry, and from {3 10 we

have

d(l‘,,, Im) S d(lnvln—i-l) + d{-rn+l: In+2) + d[In+2n Tu+'1) + + d(Im-] fm}' (3 11 }

tm—1

= Z d(l‘.‘,,}'ﬂ,])
I=Ti

o
< Zd{IhIl"Fl)
< il—hk

=N

The series Zf’in i~V 1y conver gent By talking the it as n — >c 1 (3 11}, we have lim,, g —oc d{Th, T ) =
0 Hence {4n} 15 a Cauchy sequence Simnce X 15 a complete metric space there exasts an 1™ € X
«uch that r, — r* as n — 3 T 15 a-p-continuons and (rp_y ) S alrn_y In)foralln e
Thus Tp.y = Tz, — TI* as n — oc that 3 #* = Tx" Hence 715 a hixed pomnt of T To

prove umqueness, let r # y be anv two fixed ponts of 77 Then [rom {3 1) we have
Cldlx Tz} diy Ty) dlz Ty) d(y Teh — F{d(Tx Tyl < T (AT 41
which mmplies that
T+ F(d{z.y)) < Fldiz y))

which 15 a contradiction Hence z = y and therefore T has a unique fixed pomt ®

3.2.3 Theorem

Let (X, d) be a complete metric space  Suppose that T'is a self mapping satisfying the following
assertions

(1) T 1s an a-admissible mapping with respect to 7,

{u) T s Cinic type a-n-G F-contraction

{1} there ewists an g € .Y such that a(rg Iig) 2 y{re. { 30)
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{(1v) 1f {z,} 15 & sequence in X such that a(zn. Zn,1) 2 7(rn Zay)) withz, = 2% asn —
then cither

a(Tap, 1) 2 n(Tz,, TQI") or Q(szn.r] > (T, T r,)

hold for all n € N
Then T has a fixed point in .V Moreover T has a umique fined powut when aafr y) > nie 1)
for all 1.y € Fix(T)

Proof. The proof 15 similar to that of Theorem 322 We can
a(Tn, Int1) Z DT, ZTns1) and Ty — L7 av 1 — X

alTr,. ™) > n(Tz, T2z,) or a(T"r, 1*) > (T3 e, Tr,)

for all n € N This implies that
A(Zng1:2%) = PTra1s Ent2} OF 0(Tng2, T7) 2 H{Ins2s tnr )y foralln € N
Then there exists a subsequence {n,, } of {r,} such that
MTa, Ton)=nlLn, Tn+1) S alrn, 17)
From (31) we have

Gld{zn, Txp, ) diz", Tz),diz,, T27), d{z" Tap V)~ F{diTr, L2710

< F{M(xn,,2"))

= F (ma.x {d(rﬂkrlt)y d(zn, T2s, ), d(z". TT) deeny T27) j; d{a*, T, })

n 1T ")+ ‘1 n
- F(m”{d(r«m,:')‘d(.rm,:w;‘d(z'.Tz') A ) gd(r Ik“)})

Using the continuity of ¥ and the fact that

hm d{r,, z*)=0= hm dlr, 4+ ")
k—no L —oc
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we gbtan

T+ Fdiz".Tz")) < Fid(z2", T},

which 15 a contradiction Therefore d{z*, F'x™) = 0 umples that follows aloug lines similar to
those of the argument 1o Theorem 322 =

In the following we extend the Wairdowsk: type fixed pomt theorem

3.2.4 Theorem

Let T be a continuous self-mapping of a complete metric space ¥ If, tor o,y = Y with

div,T2) < d(z2 y)and d{T1,Ty) > 0 we have

Gid{zr Tx) diy Ty),dlxr Ty) diy Te) ~ F({d{Ta Ty~ F (A g

wherc

Mz, y) = max {d(:,y},d{I,TI},d(y'Ty) dir Ty) +~dly TJ]'}

2

G € Ag and F e f Then T has a fixed point in X
Proof Let us define a,7 X x X — [0,+20} In

aflz.y)=d{r,y)and plr y)=d{xr y) forall s y€ X

Now, dlz,y) < d{2,y) forall .,y € X, s0 afr,y) > y(2,y) forall 2 y € A That 15, cunditions
(1} and {(m) of Cheorem 322 hold true Since T 1s continuous T 1s a-p-contumous  Since

e, ry <o{r,y) and d(Tz,Ty) > 0 we have d{r, I'r) < d{x y) Then
Gldir Tr) diy Ty),dlxr Ty) dly, Tr))+ F{diTs Tyyy< T (Mg yh

That1s T 15 a Cinié ty pe a-1-G F-contraction mapping  Hence all of the conditions of Theorem
322 are satished and T has a fixed point Let T he a continuous self-mapping on a complete

metric space X If for r,y € X with dix Tx) < d{r y) and d{I'r Ty) >0 we hare

T+ F(d(Tz.Ty)) < F(M(x,y),
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where 7 > Q and F €, then T has a faed pont n X' ®

3.2.5 Corollary

Let T be a continuous sclfmapping on a complete metric space X If for 2 y € X with

d{z, Tr} < d{r.y) and d(Tx, Ty} > 0, we have
7+ F(d(Tr,Ty)) < F(d{z.y)},
where 7 > 0, and F € {7, then T has a fixed point 1n .X

3.2.6 Corollary [67]

Let (X, d) be a complete metrc space Supposc that 7 .X¥ — X 15 a sclt-inapping satisfying
Lhe following assertions

(1) T 1s an a-adnussible mapping with respect to 7,

{n) 7 15 an a-n-G F-contraction,

(1) there exists an zg € X such that e(ro Tr¢) 2 n{ze Try)

{1v) T 15 n — p-continuous

Then T has a fixed point in X Moreover 7" has a umque fixed pont when a{1.y) Z nic t)

for all £, y € Far(T)

3.2.7 Corollary [67]

Let (X,d) be a complete metric space Suppose that T X — Y 1s a4 self-mapping satisfying
the following assertions

(1) T 15 an a-admissible mapping with respect to ,

(u) T 15 an a-5-G F-contraction,

(1) there exists an xg € X such that a{xo, T'xo} 2 1o, Txg),

(whf {zn} 15 a sequence in X such that a{zn.1ne1) 2 MIn 2q1)Withry r2asn - X

then either

alTr, ) > p{Tzx, T?x,) or alTr, 1) 2 il %un T2,
holds for all n € N
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Then T has a fixed point ;n X Moreover, T has a umque fixed puint when n{r,y) = 7(r, z)

for all r,y € Faz(T)

3.2.8 Example

Consider the sequence,

S1=1x3

Sa=1x3+2x35

S3=1x3+2x5+3x7

S =1x3+24543~7 +r~2rn+l)=nn-+1lin+5)6

Let X={S, n€N} and d(z,y) = |z —y| Then (X d) 15 a complete metnic space  If
Fla)=a+Ina, a > 0 and G(t1,02 t3,t4} = 7 where 7 = 1 Define the mapping T Y — X
by, T(51) = S1 and T(S)) =S,1.n>l,and alz y) = 11f £ € X nla Tr) =172 for all

L2 G X wc have

I d(T1S:).T(51)) Lm Sn-1—3 (n—1l)nidn+ 1) - 13 )
_—_— = ] = =
A0 d(S,.51) nooc S, —3 ni{n+ 1)(dn +5) — 18

So we conclude the following two cases
Case 1
ForevernmeNm>2n=1orn=1land m>1 Then a(S,, S.) = (S T{5.1) and

we have
AT (Sn) T(S1)) acrismrion-nsa sy _ Smoi=3 s s,
ﬁf (Sm.‘sl) Sm -3
{fm~1)m{dm+1)- 18 _ i)
= e
m{m+ 1} {dm + 5) — 18
< e!
Case 2

Form>n>1 a(Su, 51) = 0(Sm.T{5n}), and
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d{T (Sm).T (Sn)) HTSm) T(Sn)) = M(50m S

M (55, 80)
_ Mcxgn_bn—l"'bm—l_sm
Sm — Sn

(m—1)midm+1) — (n - 1)n(dn + 1) nfn+1ji(-1rws, ILTVYLLIVE) < o1
m(m+1)(4m+5)-—n(n+1}(4n+5)e -

Thus all of the conditions of Theorem 3 2 2 and Theorem 3 2 3 are satished w0 I has a fixed
pomt m X

Let (X, d, <) be a partially ordered metric space Let I X — X such that for 7 ¢ = \
r < ynplies Tr = Ty then the mapping T 1s said to he non-decreasing  We derive followimng

inportant result in partially ordered metric spaces

3.2.9 Theorem

Let (X.d, <) be a complete partially ordered metric space Assume that the following asseitions
are irue

{1) T 15 nondecreasing and ordered (F-contraction

(n) therc exists an rg € .X such that zp < T'zg

(m) cther for a ginen r € X and sequence {7,} m X such that 1, — 1 as n — co and
Ln =% Ine for all n € N we have Tr, — Tz,

or if {ry}1s a sequence in X such that T, < 7,4+ with r,, — r as n — x then cither
)
Trp<ror T r, X

holds for all n € N

Then T has a fixed pont in .X

Define T = {¢ R* — R* ¢ 15 a Lebesgue integral mapping wluch 1s sumnuable
nonnegative and satishes jaﬁ(t)dt > 0, for each € > 0}

a]
We can easily deduce {ullowing result involving integral type megualities
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3.2.10 Theorem

Let T be a contimuous selfmapping on a complete metric space X If, for r.y € X and

dir.Tx) d(x.y) di{Tz, Ty}
/ o()dt < /qb[t)dt and / ¢(t)dl > 0,
[ 0 1]
we have
d{x Tr) dly Ty) d{z Ty d{y.Tx) d(7c Tu)
Gl / o(t)dt, / o(t)dt, / e(t)dt /o(r)dt}+r / o(t)dl
1] 4] 0 0 0
Af{z )
< F /o(flr!'{ \
]
where

Mz, y) = max {d(_r,y) d(z Tz).d(y. Ty) d(r,TU}-i}-igLf_rl}

'

¢el.GeAgand Fet Then T has a fixed point n X

3.3 Fixed point results for multivalued Ciri¢ type a-n-GF-contractions

Results given in this section will be published in {23].
In this section we wmtroduce multrvalued Ciné tvpe a-n-GF-contraction and estabhsh some
new fixed point results 1n o complete metric space We extend the concept of an F-contraclion

to multivalued mappings as follows

3.3.1 Definition

Let (X d) be a metnic space and T X — CB(X) Alsosuppose that o 4 A+ X — [ 4+~
are two functions Ve say that T 1 2 multivalued Ciric type a-n-GE -connaction 1t for 1y =\

with 9.{r, Tx) € a.|z y) and Tr # Ty we have

2G (D(z, Tz), D(y, Ty), D(z. Ty), D{y, Tz)} + F(H(Tt Ty)) < F(A{r y) (312)
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where

DG.Ty) v Diy, I'r) }

M(r, y) = max {d(r, y) D{z.Tr). Dy, Ty), 5

GecAgand FeF

3.3.2 Theorem

Let (X,d) be a complete metric space Suppose that T X — CB(X) satisfymmg the following
assertions

(1) T 15 an a.-admissible mapping with respect to 7,

{n) T 15 a multivalued Cinié type a-7-GF-contraction,

() there exists an zg € X such that e.{ro, T70) 2 5.{20. T'Lo),

(1) T 1» an a — np-continuous multivalued mapping

Then T ha- a fixed pomnt in X

Proof. Let g € X be such that a.(zo,Tzg) > n,(xp, Txg) Since T 1w an it -atlmssmble

mapping with respect to 7, there exists an r; € Tug such that
alrg £} = a9 Tax¢) 2 ytto Txo) = nire 11) 13141

If 71 € T2, then 1115 a fixed pomnt of T So we assume that ro # 1) then Fry #1711y Simce

F 1s continuous from the right, there exists a real number & > 1 such that

F(hH (Tzo,Tr1)) < F(H(Tzo,Tzi}))+
G(D(ﬂ:n,T.l'u),D(ILTI].),D(.IU‘TIIJ‘D(Il Tryl)

Now, from D (r, Tr1)} < hH (Tz0,T21), we deduce that there exists an ra € Ty such that

dixr1,13) < hH (T1g,Tx1) Consequently, we obtain

F(D(z1,Tx1)) £ F(hH(Tx0,T11))
< F(H(T.I‘Q,TJ’]))+G(D(ID,TI0),D(I1.TII) D(.T() Tr) D(Il Tz
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which mmplies that

2G (D(xg, Tz} D(z1,Tx1) D(zo,Tx)) D{x1.Tz0)) + F(D(x1 12))

1A

2G (D(rp, Trp), Diz1,Tx1), D{zo, Tm1). Diz1, Trp}) + F (H(Tzo.Tr1)) +

G {(D{(xq.T7g) Pi(z1.Tx1). D(xg Txy), D{ry Txp))

1A

F{M{rg 7D + G (DPlrg. Lrg), D{ry Tuo1), Dty Tryy Ding {10}

which mmplics that

G{D(x0,Txp). D{z1,.Tx1) Diz6.T1z1) 0} + F{(M{Try Try}) (§11
< F (mud(ro.rl)‘D(IU‘TIG;.D(n,Trl) D“”‘“”;D”“Tr”’)

Now since d{zp 71} d(xy I2) d{zp, z2) 0 =0, s0 from (G) therc cxists a 7 > 0 such that
G{D{(xo, Tro), D(21, Tx1), D(z0, T+1).0) =7
Therefore from (3 14}, we deduce that

T4+ F(d(x1,Tz1)})

D T D T
< ( a"{d(ID 1}, Dixo, Tzo}. D (1. T11), (zo Il"; &3 In}})
T D Toyt
= ma.x {dl-fu 1), D (1. Tzp) D (11, Tr)), Dty J—l": (ry Ly }) .
f Dt
= ( {d(l'o £} D{(xg Tro) Dixy, T1y) Diry %Il ”'}) .
< Fi{max{D(xy Tro).D (11 Tri)} -7 FERY

If max {D (ag.Txo), D (21.Tx1)} = D (£, Txy), then (3 15) becomes

F(D (.'L‘l TIl)) S F(D (.1.'1 TIl)} —
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which 15 not true Thus max {D {zo Trg).D (x, Tzx1)} = D(10.T7¢) Conscquently

F(D{x| Txy)) < F(D(xo.Tx0)}— 7

By contmmng this process and we obtain a sequence {rp} € X such that 2, ¢ Ttn Iny1 €

Tra.

MTac1 1n) =N (Ta1. T2ho1) S @z, Ton 1} = alagoy 1) (3 1)
and
T4+ F(d(zn, Int1)) £
1 H] T T D n T Ti—
F (ma.x {d(l‘n_l\-rn)mlo(-rn—l Tru-1), D {zn. TTn}, {Zn1 Tz )': (2, Tr 1,'})
n-— lI n

= F(md‘x{d(IF‘—l'I")‘D(In-—l-TI"_ll,D{xn TI“)'D(I 21 I )}) -
< F{max{D{(zno1 Ten1), D{an Tan)}) -7

Hmax{D(rq 1.Ttn 1), D(2n.T2p)} = D{&n, T1,) then
F(D(xp T1,)) £ F{(D{2yTx,)) — 7
Thus max {D{zr,-1,Ttn-1) . D{zn, Tzn)} = D {2n1.TTp-1) we obtamn
Fd(zn.on) € F(Dlayy Lot = 7 (317)

for all n e NU {0} By {317) we have

F(d(-rn -rn+])) < F{D(In-—l TIn—l” -7
5 F{D(IH—Q~TIH—2)) - 27
< F(P{zo Txp)) —mr {3 18}
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for aln € N Since F € {, by taking hmit as n — 3¢ m (3 18) we deduce that

m F(d{Tn,2n41}) == <= Im d{r, 7,.1)=0 {3 19)

n— 0 n—n=0

Fiom (F3). there exists a A, 0 < 4 < 1 such that

l_ll’ll [d[-ln-rnﬁ-l)]‘P[dirrlsln-i]“_U 1320,
By {3 17) we have
d(zn Tns1)* F(d(Tn Zas1)} = d (20, Zap1)" Fld(zg 71)) (321)

d(rrhIH-l-l)k [F(d(l'(),ﬂ']_) - TLT)] - d(IrnIrH—lJJL F(d (I(}\I]])

A

—nr(d (L, £ap1)]t <O

I

Letting m — oc n {3 21) and applying {3 19} and (3 20), we hae
hm nld {IH,I"+])]L =0 (322
n—~:oag

From (3 22), there exists an ny € N, such that n {d{x, g, an < 1 for all n > ny which implhes

that

1
d(r“ .]‘L‘n_'.l)"_;:l—]" for all n - my 1321
Tk

Now .t € N such that mt > n > n; Then, by the tnangle mequality and trom {3 23 we

have

(-rn,In i—l) + d(rn+lnrn——‘2) + d(-tn+2 Ly 3) + + d{zm_1 -Lm)

= dir,, T.41)

d(Th Tm)

IA
.

3

T
=

gE

d{I||I1+1)

I
]

(VA
gk
.

il
=
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The senes Zfiﬂz'm‘ 15 convergent This implies that {z,} 15 a Cauchy sequence Since X 1s
a complete metric space, there exists an r* € X such that hm d{z,,,r") =0 By (3 16} and
H— 00

the a-p-continuity of the multi-valued mapping T, we get
hin H(Tz,, Tr*)=0
— 00
Now we obtain

D(r" Tr'y= Im D{ry1.T2")< hm Az, T27) =0
o

n—r

Therefore x™ € Tr™ and hence T has a fixed pomnt w

3.3.3 Theorem

Let (X.d) be a complete metric space Suppos¢ T X — (CB({X) sausfies the [ollowing
assertions

{(1) T 1s an a.-admssible mapping with respect to 7,

(1) T 15 a multivalued Cinié tyvpe a-7-GF-contraction

(1) therc exists an 1y € X such that a,(xg, Txo) 2 n.{xe Tan).

(v} 1f {z,.} 15 a sequence in X such that a(zn. Tpe1} 2 7(2n Ta-g) withz, — rasn—x

then either
Ct,(T‘T“ T) = 3}.(:{‘1':1 jrn+l] ofr a.(T1p4) T} 2 TJ-rrfrhl ’IJ,”_}]

holds for all n € N
Then T has a fined point in .Y

Proof The proof 15 similar to that of Theotem 3 3 2, we can condlude that
o(Tp.Tns1} 2 9{Tn Tost)and 1, — 7 a5 0 — <

0-(T-fm-£) Z r."-(T'J:m Tanyy) or a(Trnyy,0) 2 HalTang1, Tany2)
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holds for all n € N, we have

a{T,i1,7) 2 PZnt1 Tago) O a(Thaz.2) 2 {(ZThy2, Thta)

Thus there exists a subsequence {zn,} of {n} and r,, 41 € Tz, such that

T?-(Iﬂkl?.‘rﬂk) = T?(Inpl'nk+” S a‘(I"LII}

and so, from (3 12}, we deduce that

2G (D(x,, , Txn, ), Diz Ta) Diry, Tx) Dix,Tr, 0+ FIH(Tn, 1)

< F (max {d{fnwi)|D(lnk.7‘I,lkJ‘D[T‘TI)‘ Dizn, 115, 1: Dir Tip, })
that 1s
ZG(D(Ink,TInk)'D(I'TI)‘D(Iﬂk-T-T) D(-r‘T-TnkJ)'{'F(D(I’nk+I Tl))
S QG(D(ITJkrTInk)nD(I,TI) D(Ink.T.T)‘D{I TIn*)}+ F[II(TTH;‘T‘I]}
D{zn L) .
< F(ma.)({d(:ﬁnan)-D(InuTJEnk).D(I]TI)‘ (I ;.,TI &)2+D{.I‘ jInk)})

Using the contimuty of F and the fact that
hm d{zp,.7)=0= hm d(r 1 ¢)
k—oc h— oo

we obtain

T+ F{D(z,Tr)) € F{D{« T1))

that1s D{(z,Tx) =0 Smce T'r 15 closed we get that r € 71 and hence £ 15 a fixed pomt of

T m
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3.3.4 Theorem

Let T X — CB(.X) be a continuous multivalued mapping in a complete mette space ¥ If

for r,y € X with D(x Tr) < d{z,y) and Tr # Ty, we hare

2G{D(z.Tx), D(y, Ty). D(z. Ty). D(y. Tx)) + F(H(Tx Ty))

< Iz ¥

where

Af(z,y) = max {d(;r, y). Diz. Tz), D(y, Ty). Dix Ty)+ Diy TI}} ‘

2

and G € Ag, F € ¢, and T has a fixed pomnt in X
Proof. Define a,7 X x X — [0,+2c) by

alr y)=d{r,y) and p{r y) =d{r y) lorall 1 y € X

Now, d(r y) <d(zr y)forallr y € X soa(r,y} 2 y(r y)forallr y £ .X that conditions 1)
and {m) of Theorem 3 3 2 arc satisfied T 15 continuous and T'1s an a-7-continuous multy alued

mapping Let n.(r.71) € a.{2,y) and Tz # Ty Then D(z, [x) < dlu. y) with 71 = Ty, and

2G(D(x.Tx), D{y, Ty} D{x Ty) D(y Tx)) + F(H(Txr Tyl

< FM(zy),

that 15, T 15 a multnnalued Ciné type a-n-G F-contraction mapping Hence all of the conditions

Theorem 3 3 2 are satished and T has a fixed point @

3.3.5 Example

Let X =[0,1), T X — CB(X) be defined by T+ = [0,2/2] and d be the usual metrie o X
Detnean XxX —[0oc) @ R — At and F RY —— Ry

e fry=0 I | A T
alz y) = nir,y) =
{ otherwise 0 ctherwise
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G(ti1.t2,13,t4) = 7 where 7 =1n (\/1) and F() =Init) + ¢t forall ¢ :- 0 Then foralr y€ X
, Tz # Ty, we obtan

2G (D{(z.Tr), Diy. Ty) Diz,Ty). D{y, Tx)) + F(H(Tx Ty))
= 2+ F{H(T . T'y))
= Inf4) + In{H{Tx,Ty)) + H(Tz, [y}

1 1

= ln(4)+ln(§ly—:|}+§|y‘1|
< ln{4)+ln(%}+1n(%|y—xl)+%|y-'l'l
= F(d(z,y))
F(M{z,y))

[

Therefore T 15 a multivalued Ciric type a-n-G F-contraction Thus, all of the above condi-

tions of Theorem 3 3 2 are satisfied, and 015 a fixed pont of T

3.3.6 Theorem

Let (.X,d)} be a complete metnic spaccand T X — CB (X} satisfying the followng asscrbons
(1) T 15> an a.-admissible mapping
{n) T 1 a multivalued Ciné type a-G F-contraction
(1) there cxists an xg € X such that a.{rg, Try) = 1
{1v) T 1s continuous

Then T has a fixed point m X

3.3.7 Corollary

Let {X,d) be a complete metric space  Suppose that T X — X 1sa Cin¢ tape anp-GF-
contraction satisfying the following assertions

(1) T 1s an a-admussible mapping with respect to n,

{n) there exists an rg € X such that a(rg. TTe)'> n{ze. T20),

{n) T 18 a — p-continuous



Then T has a fixed pomt m X Moreover T has a umque fixed point when a(r, y} 2 n{r, x}
for all r,y € F1r(T)

3.3.8 Corollary

Let (X.d) be a complete metric «pace  Suppose that T' 15 a selfmap satisfving the [ollowmg
assertlons

(1) I 1s an a-admissible mapping with respect to

() T s Cind type a-n-G F-contraction,

(1) there exists an xg € X such that a{rq Izrg) > nlxg TTo)

() if {zn} 15 a sequence 1 X such that a(zn. Xpv1} 2 H{Tn, Lo} with 1y — 17 st — ¢
then cither

alTr,. z) > n(Trn,Tzin) or {1(1’12 Tn.I) > r,r(Tzlu,TB.rn}

holds for all n € N
Then T has a fixed pomnt i X Moreover T has a umque fived puint when al(r y) 2 7z, r)

for all 1,y € Fua(T)

3.3.9 Corollary

Let T be a continuous selfmapping of & complete metric space X If for T,y € X =with

d{r.Tz) < d(z y) and d(Tr.Ty) > 0, we have
T4+ F{dTr Ty)) < F{Miz y)h
where 7 > 0, and F € £ then T has a fixed pomnt n .Y

3.3.10 Corollary

Let T be a continuous selfmappng of a complete metric space X If, for r,4 € X with

diz,TT) < d(x y) and d(Tz,Ty) > 0, we have

T+ F(d{Tz. Ty)) < F (d(z.y))
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where 7 > 0, and F € F, then T has a fixed pomnt in X

3.3.11 Corollary [67]

Let {X.d) be a complete metric space Suppose that T X — X 1 a self-mapping satisfyimg
the following assertions

(1) T 15 an a-admissible mapping with respect to 7,

{n) T 15 an a-n-GF-contraction,

() there cxists an ro € X such that o{zo, Txo) = w{zg, Tro).

{1v}) T 1s a — np-continuous

Then T has a fived pomt mn X Moreover T has a umique fixed pumt when afz yj = iy 11

for all r y € Fix(T}

3.4 GCeneralization of fixed point results for F-contraction

The definition and results given in this section have been published in [63]
In this section we definc a contraction, called an a,.-7-F-contraction for a multivalued map-
ping and obtain some new fixed point theorems for such contractions in the setting of complete

metric spaces We define a multivalued a,-7-F-contraction as follows

3.4.1 Definition

Let {X,d) be a metric space and T X — CB(X) an a.-admissible multivalued mapping
Also suppose that 7 Ry — Ry 15 an increasing function We say that 7 15 a multivalued

@.-7-F-contraction if for r,y € X, and H(Tx Ty) > 0 we have

(M {z.y)) + au (T2, Ty} F (H(T1,Ty)) < F iz, y)) {324
w here
M(z y) = max {d(z y) D(z.Tx). D(y Ty}
a. (A B)=mf{a{r y) r€ A y¢& B},
and F € f
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Qur main result 15 the following

3.4.2 Theorem

Let (A d) be a complete metric space Supposc that T X — CBX) satisfies the following
assertions

() T 15 an o,-admssible multivalued mapping,

{n) T 1s multivalued a.-7-F-contraction

(1) there exists an 7o € X such that a.(ze. T20) 2 1,

(iv) Yesohmanf,_+ 7{s) > 0

(v) T 1 continuous

Then T has a fixed point in X

Proof. Let zg € X, such that a.{zg, Tzo) > 1 Swmee T 1> an «x,-adnussible niappiny theit

exists an 1y € T'rg such that

au{To, T2¢) 2 1

If 7; € Tx1, then ry 15 4 fixed point of ' So we assume that .o # 77 Then Txg # T1) Since

F 15 continuous from the nght. there exasts a real number A& > 1 such that
F(RH (Tzp.Tn)) < F{(H(Tzro,Tx,}) + 7 (max {d{xq.21)D(xg Tx0), D(11 Tiry)})

From D {11, Tr) < Wil (Ti1g, T2} we deduce that there exists an T2 € Tr; such that

d{z1,19) < hH (Tzo Tx)) Consequently we obtan

FiD(z, I'ry)) < F(hH{Txy Ta1))
< F{H(Txrg Tri))+ 7 {max {dizry r)D(x0 Txo) Diry T2}
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there exasts a ¢ > 0 and » € N such that 7 (d{zn Tns1)) > c for all n > g We then obtain

Fld{zn Tnt1)) < Fld(zn-1,2n)) = 7{d{rn-1 Tn))
< Fld{@n—2 Ta-1)) = T{d(¥n~2.2n-1)) = T(d(tn-1.7a))
< Fldlzg.21)) — 7l{d{zy 11)) — —7ld{in_1 Tnl}
= Fld{zg r1)) — {rld{zy, aV+  + 7ldlTn-1 2, )0
— (T(disny Tnge1)) +  F Tldlri 1 Ia)))
< Fld(rg.11)) — (n—nojc (3 2%)

Since F € F. by taking limit as n — 50 10 (3 25) we deducce that

hm F(d(Tn.Znt1}) = —2¢ <= lhm d{r, In41) =10 {3 206)
" —0OC l—0

From (F3), there exists a k, 0 < k < 1 such that

hm_[d(rn 2]’ Fld (@ zam)) =0 (3 27)
By (3 25) we have
d(In~In+l)A F(d(:l'” In—l—l}) - d(.[‘n,J'n+1)kF(d(In,I|J) (3 25)

d{zn zn-1)* [F (d{zo 21) — (n — no) )] = d(Tn £a)” Fid (26 1))

[V

- ('ﬂ, - "'U) C[d (:|:1ri|377|+1”L <0

Letting n — > 1 {3 28) and applying (3 26) and (3 27) we havt

Lhm n(d{Zn, Ta-1)]" =0 (3 29)

n—oo

We observe that from (3 29), there exists an ny € N, such that n(d?(:..v-n..r',,H))’L < 1 for all

n > n1, whch imphes that

d(Tn Ins1) < —lT for all # > ny (330}
n+
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Now m,n € N are such that m > n > n; Then by the triangle ynequality, and from (3 30}, we

have

d(InuImJ < d(zn, In+1) + d(In+1‘In+2) + d{Zn42 Ina) + A+ d{Tm Tm) (331)

m—1

= z d('rtrxt-i-l)

1I—n

Zd(IhIH-lJ

—T
=l

Fa

1

[/

1
—n tk

The series Zf‘in VLT comergent By taking the lmit asn — xin (331) wehavelimp g e dl 1y tml —
0 Hence {z,} 15 a Cauchy sequence Since X 1sa complete metrie space there exists an 0™ € X

such that lm d{z,,z") =0 By (v}, T 15 continuous Thus

n—0

hm H{Tr, T1")=0

A—aC

Now we obtamn
D, Tz") = m D{xp41, Tr™) € hm H(T21,, Tz*}=0
n—re Tt —t 20
Therefore = € Tz", and hence T has a fived puint =

3.4.3 Theorem

Let (X d) be a complete metric space and T X —— (B [X) saushes the tolloning assertiots
() T 15 multnalued a.-admissible mapping
() T 15 multivalued a.-7-F-contraction,
(m) there exists an zp € X such that a.(rp. Tso) 2 1,
() ¥i>pliminf,_ ya 7(5) > 0
(+) 1f {zn} 15 @ sequence 1 X such that au(zy, Tne1) 2 1 withr, ~ s aan — X then
o (rn, ") > 1 holds for all n € N

Then T has a fixed point in X
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Proof. The proof 1» similar to that of Theorem 342 DBy (V}, @a(Tny1 t7) = 1 [or all

rn € N Then there oxists a4 subsequence {zp, } of {zn} uch that
au(Zng 1.2 2 1
From (3 24) wec have
(M (Zn, %) +alTT,, . Tz )F (H(Tzn, . T2")) < F M1, 7))
which imples that

2r(max {d(zn,, %), D(zn, . T2n, ), D(z* T2} +a(Tan, T2V F(H{T2n, T17))

< F{max{d(an, 7%}, D{Zn,. Tzn,), D{(z*.Tz")})
Using the continuity of F and the fact (hat

hm d(zn,. 2 =0= lm d{ts+1 %),
k—x A—o

we obtan

27 (D{r". Tz")) + F (D(z*,Tx")) < F (Diz*,T1%)),

which 15 a contradiction Therefore 2° € Tr™ implies that ™ 15 a fixed pomt of T @

3.5 Modified fixed point results for F-contraction

The definition and results given in this section have been published in [63].
In this section we extend an a,-7-F-contraction to an a,-1-7F-(ontraction and obtain some
new Wardowski type fixed point theorerus in the setting of a complete metric space  We define

an a.-n-7F-contraction as follows
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3.5.1 Definition

Let (X, d) be ametric space and T X — CB(X) an a.-admussible multivalued mapping with
respect to 7, Also suppose that a7 X x X — [0,+2¢), 7 Ry — Ry arc three functions We
way that T 1» a multivalued a,-n-7F-contraction if tor all r y € X, with n.(r Ta) € adlr y)

and [{{Ta1.Ty) > 0, we have

2r(M(z, ) + D (H(Tz.Ty)) < F{M(z.y),

where

M(zr.y) = max {d(x,y), Dtz, Tx). D{y. Ty)}
o (A, B)=1f {a(z.y} 1 €A yeB}.n,(A B)=sup {n{r.y) r€A y€ B},

and F e f

Now we state our result

3.5.2 Theorem

Let (X, d) be a complete metric space and T X — CB(X) satisfies the [ollowing assciiions
(1) T 15 multrealued a,-admissible mapping with respect to g
(1) T 15 multivalued a,-g-7£-contiaction,
(m) there exsts an rg € X such that a.{rg Top) 21
(1v) V>0 hmmf, 4+ 7(5) > 0
{(v) 7 15 an a — n-continuous multinalued mapping
Then T has a fixed pomnt in X
Proof Let rg € X for which a.{zg Tuo) > n.{ro,Tze) Smce T 15 an cre-admissible

mapping with respect to 1, then there exists an 11 € Txp such that

alxg, 1) = axl{Lo, T1o} 2 ndxe, Txp) = Lo, 1)

If 77 € Tx1, then £y 15 a fixed pomt of T So, we shall that 2y # £ Then Try # T Since
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F 1s continuous from the right there exists a real number A > 1 such that
F(hH (I19.T71)) < F(H {Tx0,Tx1)) + 7 {(max {d{xg 71}D(z0 Tx0) Diz,, T}

From D (1,.Tz1) < hH (Trg, Tz}, 1t follows that there exists an 72 € T'ry such that d (z1 22) <

LH Tz, Txr1) Consequently we obtain

F(D{xy Tt1)) < F(RH(Tzq Tx))
< F(H{Tzg Tx1)) +T(m¢u\{d(1‘n ) Many Tag) Dixy TI]J}‘J

w hich imphes that

2r (max {d(zo, z1)D{T0 Txo). D(z1.T71)}) + Fld(r) 72))
27 (max {d{ro 71 }D(xo Tro), D(z1 TN + F(H(Tzy T+

[/

7 (max {D(zg, L'zo). D(x1,Tx1)})

I (max {D(xo, Tzo), D(x1,Tx1}}) + 7 {max {D{z0. TZo) Dir1, Tx1)})

1A

In this case, max {D{zg T1o), D{z1 Tx1)} = D(r1.T41) 15 imposuble becanse

F(D(Il,TJl)) a.(T:rD TI”F(H[T.LU Trih

[

< F(D(z).Tr)) - 7t . Tey})

< F{D(x TTI)}

Which 1s a contradiction Thus

FD(z1 Tr) € au(Tzo To)F(H(Tro Tr1))
< F{D(7¢,Txq)} ~ 7{D{xo Try))

Continung this process, we obtamn a sequence {7} C X such that rn & T'7p, Iny1 € Tn,

n(-’fn—l -rn) = ﬂ.(In-—LTIn—]) < Ou(rn—luTIn—l) = alrp_). rn)
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The rest of the proof 15 similar to that of Theorem 312 =

3.5.3 Corollary [67]

Let (X,d) be a complete metric spacc  Supposc that T X — X 15 a sclf-mapping satisfyiuy
the following asscrtions
(1) T 1s an a-admssible mapping with respect to 7,

() Tf, for =,y € X wath n(z,Tr) £ afr,y) and d(Tz,Ty) > 0, we have
T+ F(d{Tr Ty)) < Fid{z y)

where 7 > 0and F e

(m1) there exists an ro € X such that a{rg T1o) 2 n(zy Txo)

(1v) T s an a — n-continuous

Then T has a fixed pomnt m X Moreover, T has a unique fixed point when a{r, y) 2 mx, y)
for all x.y € Fux(T)

3.5.4 Example

Let X =[0.1), and T X — CB(X) be defined by Tz = [0, /3] and d be the usual metric on
X Defneca,y X xX —[0,00),7 Ry —m Ryand F Ry — R

W lry>0

al{r,y) =
0 othcrwise
eIV afr>zy
nfz.y) =
{1 otherwise
—Int for t € (U,1)
T(t) =

Int for t € 1, 00)
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and F(t) = In{t) + ¢ for all ¢t > 0 Then, for allu y € X Ta # Ty wcobtan

r{Miz,y))+ F(d(Tz,Ty)}

= In(t) + In(d{Tx,Ty)) + d(T1.Ty)

< Inge) +In(ly — 2l + 5ly =

< () + (14 (5l — =) + Sl — 1
= Fldzy)

< F(M(z y)

Therefore T 15 an a.-n-7F-contraction, and all of the conditions of Theorem 3 3 2 and
Theorem 3 4 2 are satished

Conclusion: The main aim of our chapter is Lo present new concepts of a Cinc type F-
contraction for single-valued and multivalued mapping, different from the /™-contiactions given
n [67 107, 123] The exstence of fixed point results for sugle-valued and multinalued mapping
of F-contraction m a complete metric space are established In each ~ection we introduce
new concepts of F-contraction and cstablish some results The new coucepts Icad to further
mnvestigations and applications It will be also intercsting to apphy these concepls to dilferent

metric spaces
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Chapter 4

Dynamic Process for Generalized

(f, L)-Almost F-Contraction

The aim of this chapter 1 to introduce the notion of a dynamic process for generalized (f, L)-
almost F-contraction mappimgs, and to obtam concidence and common fixed pomt results
fo1 generahzed dynamic processes It 1o worth mentioning that our resulis do nol rely on the
commonly used range inclusion condition  We provide some examples o support onr results
As an application of our results we obtain the cxistence and umqueness of solutions ol dynamie
programmung and ntegral equations Our results provide an extension as well as substantial
generalizations and improvements of several well hnown results 1 the evisting comparable

literature

Abbas et al ([4]) extended the concept of an F-contraction mapping and obtamed common
fixed point results They cmployed their results to obtamn fixed pomnts of a gencraliced nonex-
pansive mappings on star shaped subsets of normeii lincar spaces Recently Abbas et al [2]
introduced the concept of a multivalued f-almost F-contraction which generahzes the class of
multrvalued almost contraction mappings, and obtamed coincidence pomt 1esults  Mimak [97]
proved some fixed point results for a Cine type generalized F- contractions on complete metric
spaces Very recently, Budhia et al [15] introduced two new concepts of an a-lype almost-F-
contraction and an a-type F Suzuki contraction and proved some fixed point theorems for such

mappings 1n a complete metric space
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4.1 Introduction

Theory, Examples and the definition given in this section have been published 1n
[60]
In this section we mtroduce a concept of a generalized dynamic process D(f 1" ro) Let 2¢

be an arbitrary but fixed element in X' The sct

D(J T 20) = {UTulnencioy Jon € Tayor for all n €N }

15 called a generalized dynarmc process of f and T starting at 7o Note that D{f T 1g) reduces
to the dynamic process of T' starting at xo if / = Ix (the identity map on A} [90] The
generalized dynamic process D(f, T, rg) will simply be written as (fry) The scquence {r.}
for whuch { f1,) 15 a generalized dynamac process 1s called an f 1terative sequence of T starting
at 1

Note that, if the hybnd pair {f T} 15 said to satisfy the range inclusion condition then for
any rg € X, construction of an f iteratnve sequence of T, startmg at rg, » 1mmediate and hence
D{f. T, zp) 1s nonemtpy

There are many situations where D{f.T, xg) is nonempty, even when the range nclusion

condition does not hold The following are the cxamples of such cases

4.1.1 Example

Let X =[0,%) Define f X — Xand T X — CLLX) by flub =20 12 = (1 +2 ~
respectinely  Note that one can construct several fiterative sequences ol T statting at some
pont rg € X

3
In = ;(1 + In-i)

15 an f 1teratne sequence of T starting at ¢

88



|

4.1.2 Example

Let X = [0.00) Define f X - X and T X — CL(X) by Jiz} = 2. Tr=12+1 x)

respeclively The sequence {x,}, where

Ip =\ Tn_1+2
15 an f 1iterative sequence of T starting at the pont 0

4.1.3 Example

Let X =R Define f X - XandT X —» CL(X}bv fir)=7-1/2 and

Tr [%,%] when ¢ > 0 |
{0} otherwise

respectively Define a sequence {r,.} by Ip = Zp—1 +1 1f o = 1, then

1 11
flz) = 56T10=[3‘§]

flze) = 1€T11=[% 1]

1
flzs) = gETI2=[1,g] and so on
Here
1 3.5
={-1 = .=,
DU T ={z1525 |

18 a gencralized dynamic process of f and T starting at 1y = 1

4.1.4 Definition

Let f X — X and rg be an arbitrary pomnt m X A multinalued mapping 7 X — CL{Y)
1 called a generalized multivalued (f L)—almost F—contraction with 1espect to a gencrahzed

dynarmic process D(f, T, .rp), if there exaist F,7 Ry — R, non deereasing, and L > 0 such
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that
YreN d(f-rmf:‘-"n+]) >0= T(-”(In—l Ira})+F(d(fIr: fravi)) = FiM(r,_1 2,)+LNiinoy )

where

A(frn_1, Tzn) +d(fzy, Tra_1}
5 1

f‘-f(Iﬂ_l,In) = max{d(f:rn_l, Jr-T-n)ud(f-rn—l‘TIn—l)rd(f-rm Try)

.\Y(In_l ln) = Imin {d(frn_l‘TI“_lJ.d(fIn.TIn)-d(f-rn—-l-T-rn’:d(f-rmTIrl—l”
and imnf, _,+7(s) > 0forallt >0

4.1.5 Remark

Take Fir} =Inzx m Defimtion 41 1 to obtamn
T{M(zn 1.20)) + In{d{fTn, fin+1}) SIn(M{tn | Ta) - LA {21n-1 Tn)
that 15

d(fLn. fTns1) e TMEEn T N7, g zp) + e TR TN (1)

[Fa

= 021‘f($n—lnrn) + L'ZN(Iﬂ—lr-Bﬂ)

where 8 = ¢ 7M1zt e (0 1} and Lo = e~ T(MEn120)) T > 0 Thus we obtan a general-
1zed multivalued {f, L)-almost F'—contraction with respect to a dyramic process
4.1.6 Example

Consider Example 4 13 For the arbitrary pomnts £ =0 and y = 2 we have

d( f0. 172) + di f2 TO)

MO0 2) = max{d(f0 f2) d{f0.T0) d(f2 T2) —— —— }
11 1 1.1 dt=d 0l nedild oo
= mdx{af(—E 5)d(=3 0) dig. g D — £ 5o
15
= mmx{l,E.U.E}=1
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N(0.2)

mun{d( £0.T0),d(f2, T'2) d(fu,T2),d(f2, 1'0}}
_ Ly 1l g
= min 7 1. 3 =

Take F{z) =Inz,7 >0, and L > 0 to get

or + F(H(TO T2)) £ F{M(0,2)+ LN(0 2))
2-r+ln% £ In{1)

Hence T 15 not a generalized multvalued (f, L)-almost F—contraction On the other hand
the contractive condition 1s satished for every point in the set D(f T' 1) For example, take %

and 1 1 the set I{f, T 1), we obtain

difst T T1
M(%.l) = m&x{d(f%~fI).d{f%,T%),d(fl,Tl). (f‘z““);’dul 2}y
_ 1 11 11, @=L L. +do ]
- max{d(_:l— 0)1':{(—]13:)"1{01[3!2])' 9
1113, 1
= medig it
and
’Vll— lelleld]Tldl']l"'1
-(5 ) = mn{ UE E) (f )3 UE' ) d(fl. 53}
B 1111)] 1
B mln{§3.§4}_1
We have

dUf(e2), flas)) = di1, 5) = 5 >0
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—In(t+ 1) for t € (0,1
F{z) =Inr and T(t)z{ nlt + ) for 5 and L =1,

In3 for ¢t € [1 )

1 1 1 1
T(.‘t[(i 1)) +F(§) < F(M{E 1}+LN(§ 1)
1 1 1
—1n1+1n% < ln';

Hence I 1» a generalized multivalued { f L)-almost F-contraction with respect to the generalized

dvnamic process D(f, T, 1)

4.1.7 Example

Let X =[0,1] and 4 be the usual metric on X Define f X - X andT X — CL(X) Iy

0xe[0,37) [0,%] 1t T € {0 1]
f(z)= and Ta = -
1 othernise 1,2)fxr=0

Then, for any two pomnts r = 0 and y = 1 we have

d(f0 T1} +4d(f1 TO)

MO.1) = max{d(f0, f1) d(f0,T0),d(f1 I'l), > }
1
= max {d(l) 1),d(0 1 2]} di(1 {0 ﬂ} @-Mj_d‘_ljl_ﬂ_‘}
= max{l1 %,0}——-1
and
N{0.1) = mn{d{(f0.T0),d(f1 T1),d(f0, I'1),d{f1 T0)}

mn {d(D. [L.2)), d(1, {l),ﬂ).d(o. [0. %]J,d(l.[l-'-?])}

1
min{1 5,0,0} =0
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Counsequently the contractive condition 15 not satisfied,
27+ F(H(T0,T1)) £ F(M(0,1} + LN{(0,1))
F(ry=Inrand 7 > 0and L >0 Then
1
2r+ln§ £1Inl,

and hence T 15 not a gencralized multivalued (f, L)-almost F-contraction

4.2 Fixed point results for generalized (f. L)-almost F-contraction

Results given 1n this section have been published in |60)]
In this section we assume that the mapping £ 15 right contimuons  In the sequel we will

consider vnly the dynamic processes ( f1,) satislying the following condition
(D) Forany nin N d{fzn, fEni1) > 0=4d{frn1 fIn) >0

If a dynamic processes (fr,) does not satisfy property (/) then there exists an ng € N
such that d{fz.,, fTny+1) > 0 and d{frag-1. fzng) = 0, which implies that fr,, 1 = fzn, €
T2 p,—1. that 15, the set of comneidence points of a hybrnid pair {f, ') 1s nonempty Under suitable

conditions on the hvbrid pair (£, T), one obtain the existence of a common fixed point of (£, T7)

4.2.1 Theorem

Let g be an arbutrary pout m X and 7 X — C'L(X) a gencralized multnalued ( f L)- alinost
F- contraction with respect to a dyname process D{f, T, rg) Then C(f,T) = ¢ provide that
f(X) 1~ complete and F 15 continuous or T 18 a closed multinvalucd mapping Moreover £ f T
# 0 1f one of the [ollowing conditions holds

(a) for some z € C(f T) f 15 T- weakly commuting at « f?r = fu

{b) f{C(f.T)) 15 a singleton subset of C{f T)

Proof Let rg be a given point in X' Since 7T 1s a gencrahced multivalued (f, L)- almost
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F- contraction with respect to dynamic process D{ f. T, ry) we have

T("I(lﬂ_l,.]'")}*'F(d{fI" f—Tﬂ+1}) < F{.‘J{In_l,l‘"i-f{,.\'{r,, 1 Tall

which 1mplies that

F(d(frm fIn-}-l)]

A

[Fal

AN

F(ma-x{d(f-'fn—l‘ffn)‘d(frn—l-TTn-I) d(fl’,. TI,,)

d{fzn_y. Ten) +d(fin Tznoa),
2 P
+Lmin{d( frp1. TTn-1). d(fTn. Tzp) d{ frn_1,. T2n) . d{frn, Taxn_1)})
'_T(ma-x{d(f-rn—-l;fInJ.d(fIn_l Tl'n_]) d(fl'n T.Bn) d(fl'n_l.,TIn);d(II",II"_]J
d(f:n—l f$n+1) + d(f-cn-fIn)

F(ma‘x{d(frn—l frn)~d(f1n-1~fln)-d(fln-ffrwl) 3 ]
+Lmln{d(fln—l|f-rh) d{frrnf1'n+]}:d{f-rn—1:frn-rl):d(f:rn: fInJ})
—r{max{d{fTn1, fin) ATy f2n) d{fr fanyy) DSEnt LIne) 3 A dn Jin)

2
Fima{d(fz, 1. fra),d(fn frny), STzt L Enn) 2 A2 fitndy

—rlmax(d(f zay, fza) [, [ry) DTS E A G2

F(Ina\{d(f-rn—l ffn) d(fﬁr: f‘lﬂ-f—])}i - T{Ula-:\‘{d(frn—l Fu) d[Jr‘Jr f{,‘+ll}ﬁ

Then we have a sequence {z,} i X such that fr,, y € Tz, T T(Y) and 1 ~atishes

F(d(frn‘fru‘i—l)) < F(m(\x{d(f-fn—-hf-rn)‘d(f-rn fI'n+1)}}—-T{nld}\‘{d[fT“_1 f—lnf d{_}rrn ffu~lj}‘1

for all n € N As F 15 strictly increasing

If

for some n, then

d(flm frna) < ma-l{d{f-rn—L f-rn) d(f-rn-flrwl)}

mal{d(frn—-l f—rn]sd(f-cn‘f-rn+l] = d(fln f-rﬂ.+])

d(frn-f:fn-—l) < d(f-rn- finsn)
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give a contradiction and hence we have

d(f-lm fIn+1} < d(fln—lnf-fnj

Consequently,

T(d{f:':ﬂ—l‘f:n)) + F(d(fImfIn+]}) < F{d(fl'“_l‘fi")}

for all n € N DBy the assumption on 7. there exaists a b > 0 and an n € N such that

7 (d{Tn, Tns1)) > b for all n > ng Thus we obtain that

F(d(fa‘l,,.f’fn+1)) < F(d(fﬁ"n—hfln)) _T(d(f-rn—lufrn”
F(d(f-rn -2, f—rn—l)) - T(d(fxn—2~fln—1)) - T(d(f-rn—l-f:cn))

14

[ A

Fld(fzo, fr1)) — T{d(fxo. fz1)) =  —7id{frna f1a))
= F(d(f‘rﬂ~frl)) - (T(dff.r[).f.[‘ﬂ) + + T{d(fl-n.o—l ffnn))]'
_(T(d(frno fInnH)J'f +T[d(f-rn—l f-fn]}}'

< Fld(fro f1)) - (n—)b

On taking the imit as n — oo, we have hm F{d(fz, frat1)) = -2 By iF2y I d{fon Jinar? -
n—os n—

0 By (F3) there exists an 7 € (0.1) such that

"ll_.mm {d{frn, fran1}} F(@(fTn, fZni1)) = —¢

Hence 1t {ollows that

{d(f:[‘n.fIn+1)}FF(d(qu f1‘ﬂ+l)) - {d(flihfrl’l"-l)}: F(d(f-l'o fIl)}
d(f'rn'f-rn+1}r [F (d (IIU, fIIJ —i{n- nﬂ) b)] - d(Im-rnfl)r F(d U.IO f—rln

~(n—ng)b[d(fzs, frns1)]” <0

1A

H
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On taking hmit as n tends to oo we obtain that lm n {d(fzn, fzn1)} =0, that s

bm n!7d(fr,. fras1) =0

n—oc

o
This mmplies that 3" d(fzn, fzn41) 15 convergent and hence that the sequence {fr,} Is a
n=1

Cauchy sequence mn f(.X) There 1s a p € f{.X) such that lm fr, = p Suppose that there
-— 20
exists @ u” 10 X such that fu” =p We ddam that fu* € Tu”™ Ifnot then difu” fu7) >0 as

Tu” 1s closed Since F 1s strictly increasing we deduce from Dehmition 144 11 that
H(Tzp, Tu") < M{Zn,u") + LN(x, u")
for all n € N Therefore
d(f2ne1 Tu) < H(Tz,, Tu™) < M{r,,u') + LN{rn u")
From condition {F1) we have
Mz, u" ) + F(d(fIny1, Tu")) € FIM{zn, u®) + LN {£n, ")),
for all n ¢ N Next suppose that £ 15 continuons Since

hm d{fe,, Tu*)=d(fu” Tu")

no o=

we deduce that

hm M(x,, u") =d(fu* Tu")

a—
Moreover

lim Nz, "} =0

so, by the contimuty of F,

r(d(fu, Tu™)) + Fd(fu', Tu*)) < Fld(fu", Tu))
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which 15 a contradiction We conclude that d{fu™, Tu*) = 0, and thus fu” € Tu"

Now suppose that (a) hold, that 1s lor r € C{f, T), f 1s T—weakly commuting at £ We then
get f2r € Tfr By the given hypothess, fr = f2r and hence fx = f%r € Tfz Consequently
fr € F(f,T) (b) The conditions f(C(f,T)) = {r} (say } and r € C{f T) unply that
r=freTx Thus F(fT)#0 m

4.2,2 Example

Let X = [1 oo) be the usual metnie space Define f X — XN, 7 Ry — R, T V= CL{V)

—Int lort €0 1
by fr = z?2 and Tz = [r + 2,oc) for all r € X and 7{!) = anil
Ind fort-. 11

F(#) =In{t) for all £ > 0 Note that f{.X)1s complete It 1 casv to chech that lor all 3y = A

with Tr # Ty {equvalently with £ # y), one has
Mz )+ F(H(Tz,Ty)) < F{M{a.y) + LN (1, y))

Now apply Theorem 421

4.3 Applications

Applications given in this section have been published in [60]
In this scction, we discuss applications of Theorem 121 We have obtained the existence and
uniquencss of a commeon solulion of a system of [unctional equations i dynamical programng

and the existence and unigquencss of common solution of system of mtegral cquations
(1) Application to functional equations in dynamic programming.

Decision space and a stale space are two basic components of dynamic programming prot»
lems The state space 15 a set of states including untial states action states and transitional
states So a state spacce 1s set of parameters representing different states A deusion space 15
the sct of possible actions that can be taken to solve the problemn These general settings allow
us to formulate many prublems in mathematical optimization and computer programming In

particular the problem of dvnamic programming 1elated Lo multistage process reduces Lo Lhe
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problem of solving functional equations

plr) = sgg{g(r.y} + Gz, y, plé{z, y))}, for r € UL (11}
g(z) = bgg{g’(z‘y) + Galz.y, q(€x YIN}, for r € W, (12)
Y

where U and V" are Banach spaces, 1 C I/ and D € V and

13 WxD— I,
9.9 W xD—R

G, G WxDxR—R

For more details on dynamic programming we refer to [35 36, 37 38 105] Suppose that #and
D are the state and decision spaces respectively  ¥We ain to give the existence and uniquerniess
of common and bounded solutions of functional equations given m {4 1) andd (12 Let B{I)
denote the set of all bounded real valued functions on B For an arbitrary h € B{I1 ) define
IA|l = supyey |R(z)] Then {B(W), [ |I} 15 a Banach space endowed with the metric d defined
as

d{h, k) = sup |hr — k1| {13}
el

Suppose that the following conditions hold
(C1) G).Ga.g, aud ¢’ are bounded
(C2) for xr € W, h e B(W)and b> 0, define

Kh(r) supyep{g(z. ¥) + Giiz,y &L YN} (34

1

Jh{z} = sup,ep{giry) +Gala.y W&l yint (1

Moreover, assume that 7 R, — R, and L > [ are such that for everv {r y) ¢ W ~ D

h ke B(W) andt € W, .

G (2, 3. k() — Gr(z y k(] < e[ (A(1).K(6) + LN((8).A(1)] (16)
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where

MhE) k() = max{d(Jh{t) JA{N, dUFk{) KA diThit Ahitn
di Th(l}, K&(L)) + d(Jk(t), f\’fl_“_)l}

2 1
min{d(h(t) Kh(t)),d(k{t) KA(tD), d(hit) Kiit)) d(k(0), Khif))}

N({{h(t) ki)
(C3) for any h € B{W') there exists a k € B(W) such that, for r € W
Khiz) = Jk(z}
(C'1) There exists an A € B{W) such that
Kh{z) = Jh{x} mplies that JRKR(z) = K Jh{z)

4.3.1 Theorem

Assume that conditions {C'1) — (C4) are sanisfied If J(B(H ) 15 a closed convex subspace
of B{}"), then the tunctional equations (4 1) and {4 2) have a umique common and bounded
solution

Proof. Note that (B(W).d) 15 a complete metnic space By (Cl) J A are sclfmaps ol
B{W) The condition {3} implies that K(B(WY C J(B(UY Tt [ollows from i1y Lhat
J and K commute at their comadence pomts Let A be an arbitrary positive number and

hi,hy € B{W) Choose 2 € W and y1,y2 € D such that

Khy < gz )+ Grla, . bylEy) + A (47)

where , = £{2,3,), 7 = 1,2 Further, from {14} and (4 5}, we have

Kh]

v

g(x.y2) + Gilx, yz Rilz2))s (4 )

Kha

v

o(z.yn) + Gi{x w helr b (19}
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Then {4 7) and (49) together with (4 6), 1mply

Khl(i“') - I\’hz(ﬂ!‘} < G](I, y11h1(-‘c1}) - G](I,y1,h2{12)l + A

IA

|Gr{z, g1 ha{21)) — Gilz g ha(z2))] + A

1A

e TOAMUR(D . K()) + LN(R(t), k(1)) + A (410}
Then (4 7} and (4 8), together with {1 6), imply

Khotz) - Khitz) £ Gilz.y haiza)) — Gilr gy hy{z)

< |Gl y hatx)) = Gy oy hales))
< e AL A(L)) + LN A(L) D) 111,
From (4 10) and {4 11} we have
|Khi(e) — Kha(r)] < e TOAL{R(D) A{L)) + LNh(E) A())) (412)

Incquality (4 12) unphes
d{Khi(z) — Khal(z)) < 7O((M (L), k(1)) + LNA(E) A1)

() + In[d{ Kk (r) - Khy(z))] < In{iM{(R(2) k() + LNAR(E) A(1)))]
Therefore, by Theorem 4 2 1, the pair (&, J) has a common fixed point A® thalt s h*(r) 15 the
unique, bounded and common solution of (4 1} and (4 2) =
(2) Application to systems of integral cquations.

We now discuss an application of a fixed point theorem which we have proved 1 the previons

section 1n solving the system of Volterra type integral equations Such a syster s given by the
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following equations

i

u(l) = /Kl(t.s.u(s})da + g} (113)
Dt

wit) = /Kg[t s,uw(s))ds + () (4 14)
i

for £ € [0,a], where @ > 0 We first find a solution of the systems (4 13} and (4 14) Let
C(]0, ], R) be the space of all continuous functions defined on [0.a] For v € C([0.a].R), define
supremum norm as |Jull, = sup {u(t)e”"()} where 7 Ry — K. 15 taken as 4 function Let

te]0,e]
C([0 a],R) be endowed with the metric

do(u,v) = sup | 1ui(t)— vt |, {115
1€[0 a
for all u,v € C([0,a},R) With thesc, settmg C([0,¢] R. || |-} becames a Banach spacc
Now we prove the following theorem to ensure the existence of a ~olution of the sy«<tum of

mtegral equations For more details on such applications we refer the reader to |29 103]

4.3.2 Theorem

Assume the following conditions are satisfied
(1) K1, K, [0,a] x[0.a] xR —Rand f g [0.a] — R are continuous
(1) define

?

/Kl(t.s. u(s)lds + g(t},

0
t

Su(t) = /Kg(t,s uls))ds + f(1)

0

Tu(t)

Suppose therc exist 7 R — Ry and L > 0 such that

|KL (¢ s u) — Kot s,o)] < 70" [Mw ) v LN )
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for all t, s € [0,a] and u, v € C{[0,a],R), where

N |Su(t) — Te(t)] + [Sv(t) — Tult)l

M{u,v) = max {|Su(t) — Su{t)] jSu(t) - Tu(t)] . |Su(l) — Tul 5

Nwv) = mm{lu(t) - Tu(e)], o) - To()] Ju(t) — Te)! () - Tu)l}

{m) there exists u € C([0,a],R) such that Tu{t) = Su(t) imples TSu(t) = STu(t) Then the
system of mtegral equations given in (4 13) and {4 14) has a solution

Proof. By assumption (1)

i

fufl(t‘s.u(s: CKts vis)))lds

0
t

[7(t)¢_7(')[[1"1(u v) + LN{u tr]](_"“)‘)(*lf}bd,‘

I Tu(t) — To(t)|

[P

0
t

< /T(C)(‘””||4".I(u )+ DA G, o) e T
0

¢
T(t)e T(!J||‘U{u. L‘}_'_L'V(H‘HHT/ETHJ‘({‘\
0

1
(e O M (u, v) + LN (u, u}||,;{t—)ef“’l

< e "W\ M(u,v) + LN{u, v)|lre™"

1A

This 1mplies that
ITu(t) — To(t) e ™ < e ™M (u v) + LN (v v)|s.

that 1
NTu(t) — Toe)ll- < e R (u, ) + LN, v}

which further 1implies that

T+ In || Tu() — Teitil- <In My v+ LM -
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So all of the conditions of Theorem 4 2 1 are satisfied Hence the svstem of integral equations

grven m (4 13) and (4 14) has a umque common solution W

Conclusion- The main aim of our chapter 1s to present new concepts of generaliced dy namnu
process for generalized (f L)-almost F-contraction, different from the [ -contractions given i
[67 107 123} The cxastence of coinadence and common fined tor geni ralized dynamie process
In a complete metnic space are established  Our results provide extention as well as subslantial
generalizations and improvements of seiveral well known results 1 the existmg and comparable
literature The new concepts lead to further mvestigations and applications It will be also

interesting to apply these concepts to different metric spaces
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Chapter 5

Fixed Point Theorems for Local
F-Contraction on a Closed Ball in

Metric Spaces

5.1 Introduction

This chapter 15 a continuation of the mnvestigation of F-contractions W ntroduce a new
approach of Cirié type F-contractions on a closed ball, and establish fixed pont theorems for
an F-contraction on a closed ball in the framework of a complete metric space There arc
many situations in which such mappings are nol contractive on the whole space, but Lhey are
contractive on its subsets

In 1971, Cinié [47) introduced generahized contractions and proved some fixed pont theorems
Since then many generalizations have been given i the literature see [48] and many others
Shoaib ct al [119] presented sigmificant results cone crmng the existence of hxed points of
dominated self-mappings satislying some contractive condilions on a ¢ lowed ball 1 a O-complere
quast-partial metric space Other results on a closed ball can be seen i 27 2> 32 3]

Forr € X and ¢ > 0 Bilr.e) = {y € X diz,y) < z} 15 a dlosed ball m (% ¢ lhe
following result, regarding the existence of the fixed pont of the mapping satisfiing a contractine

coudition on the closed ball, 1s given mn [91 Theorem 51 1] The result 1s very useful n the
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sense that 1t 1equires the contraction of the mapping only on a closed ball instead of on the

whole space

5.1.1 Theorem [91}

Let (X d) be a complete metric space T X — X be a mapping r > 0 and ro be an arbitrary

pomt mn X Suppose that there exists a & € [0, 1} wath

d{Tz, Ty) < kd(t,y), forall £,y € Y = B(xg 7)

and d(1g Tzp) < (1 —A)r Then there exists a unmque pant £° 1 B{zy,7) such that = =7T:"

5.2 Fixed point theorems for Ciri¢ type F-contraction on a

closed ball

The result given in this section has been pubhished n [64]

In this section we ntroduce a fixed pomnt theorem for a modified # —coniraction on a closed
ball 11 a complete metric spaces

Now we state our Theorem
5.2.1 Theorem
Let T be a continuous sclf-map 10 a complete metric space (X, d) and zg an arbitrary point 1n
X Assume that 7 > 0 and F € £ for all z.y € Blxg,r) C X with d{Tr, Ty) > 0 such that

T4 F(d(Tx,Ty)) < F(M{r y)) (51)

where

5

“

a Y+~ dly 1
Miry)= mdx{d(.r y) dlz Tr) diy Ty A Ty (y f_’l}

Moreover
H

Zd(ro,T:cu) <r forall je N andr >0
=0

,-—-.
|
(]
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Then there cwusts a point z° 1 B{ap,7) such that Tr™ = z*
Proof. Choose a pomt z1 in X such that r; = Trg Continung this wav we have
fney = Tin, for all n > 0 and this mmples that {rp} 15 & nOMINCreasing scyuence First we

<how that &, € Blzg,r) for all n € N by using mathematical mduction Tiom (5 2} we have

d{zg 1) =dlrg Txo) <1 (5 3)

Thus, z; € B{zo.7} Suppose that z3 I, € B{zp, 1) for some y € N From {51) we obtain

Fld(z, z,01)) = F(d{Tz,-y Tr,)) < F(M(z)-1.1))) =7

= F (max{d(rj_l,‘r_,) d{z;-1,7,),d{7;,T;41)

d(x,-1, ;1) + d(a;, 75} }) g
2]

“

dir,_
— F(mdx{d('rj-—l IJ)‘d(IJ—ll‘IJJ‘d(Ij|IJ+1J E_'I_lgjj—-_!_)-}) - T
diz, 1 .r;}+d(-‘—"y-r}+1}}) _

< F(mdx {d(rj—lnrj)vd(IJ'IJ+l)‘ 2

= F{max{d{z,_1 v,),d{z; rp-1)}) -7
So we have
F(d(z,,2,41)) = F(d(T7)~1.Tx,)) € F(max{d{zs -1 Tns dlzn 2n1)}) 7
Tu this case, max {d{r, -1 2n}),d(Tn Tus1)} =d{2y 2n-1) 15 unpossible, becaune
F(d{z, 1;41)) < Fld(z,, 1,11})) — 7.
which nples that 7 < 0, a contradiction So
max {d{z; 1.2;), d(Z;, 1541)} = ;1. 75)
As F 1s strictly increasing we have

d(x;.7;41) < d{z;-1 7,) (54)
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Now

d{IUvIJ-I-l) S d(IO,I])‘l‘ +d(IJ\TJ+1}
N

> dlzg,z1) <1

=0

1A

Thus 2,41 € B{xe,r} Henee rpn € Blug.7)} for all n € ¥ Contmuing Lhis process we get

F(d{x,.Tnt1)} Fldlzn 1, ta)) -7

< F{d{TIn—-E T:rn-lh -7
< F{df‘ln_g,.r"_lJ)-QT

< F{d(Tan-3.Txn-2)} =27
< F{d{zn-a Ta-2)) — 37

< Fld{zo 1)) —n7

This 1imphes that
Fd{£n zns1)) € Fd(zg.21)) — 07

From (5 5) we obtain g0 F(d{2n,Tn+1)) = —00 Smce F c F wehave
hm d{ag, Iny1) =0

n—2

From {F'3}, there exists a » € (0 1) such that
i ((dan,7u41))” F (@00 701)) = 0

From (5 5) for all n € N, we obtain

(d(-{n J—n+l))h (F (d(in in+1)) - F(d{lﬂ-fl }J) < - (d{:'-"m-"r1+l)lh nt <0
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By wsing (56) (57) and letting 1 — > 1n (5 8}, we have

nll_r.n (n{d(x, Tn1))") =0 (59}
We observe that, from (59), there exists an n; € N such that n{d{zn, Tns1))” < 1 for all

n > ny, so that we get
1

L
[

d(Ta . Tnii) € for all n > m (510}

n
Now, let m.n € N be such that m > n > n; Then by the tnangle incquahty and from (5 10),

we have

d(xn. Tm)

1A

d{l‘" Insl) +d(Tne1 Tny2) + + el b o1 L) RS

m—1
= 3 di T

=N

iA
irl—| Ll

1

The senesS. > 171/% 15 convergent By taking the it asn — 00,10 (511) we have imyp s ALn 4m) =

0 Hence {r,.} 15 a Cauchy sequence Since X 15 a complete metnc space there exists an
1" € B{rg,1) such that z, — " as n — X Since T 1s a continuons, iy = 17, — T2°
as 1 — ¢ that s, r* = Tr* Hence r” 1s a fixed pont of T To prore umqueness let

I,y € Bp(xp,7) and T # y be any two fixed pont of 7, then from (5 1), wec hase
7+ F(d(Tz, Ty)) < F(M(x. y)),

from which we obtamn

r+ Fd{z.y}) < Fld(r y}

which 1s a contradiction Hence r =y Therefore T has a umgue fined pomnt n Birgr) =
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5.2.2 Example

Let X = R* and d(r.y)} = |r — y| Then (X d) 15 a complete metric space Define the mappme
1 Y = X by,
Tre(dl
T = i [0 1]
T - % ifz € (1 x)

rg=1,r=2B(zer) =101 If Fla)=Ina a>0and v >0, then

d(1.T1)

i

il
l-~|==-«r
4 1

If 1 y € Blzq.r), then

]
-_— — < —
1 jz - yl Iz — ¥l

Ir Y
44<lry|

d(Tz,Ty) < diz y) < Miry)
This implics Lhat
T+ Fd(Ts Ty =7+ IndiTz. Ty <InMr v = FiMir yp

If r,y € (1,0c}, then

T —yl

T+ |Te-Tyl > |lr—-y¥

r+ F(d(Tz, Ty)) > Fld(z y))

then the contractive condition does not hold on X
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5.3 Fixed point theorems for Ciri¢ type GF-contraction on a

closed ball

The result given in this section has been published in [64]
In this section we define a new contraction called an a-n-GF-contraction, on a closed hall
and obtain a fixed pomnt theorem for such a contraction, i the setting of complete metiic spaces

We define a Ciné type a-1j-G F-contraction on a closed ball as follows

5.3.1 Definition

Let 7 Le a self mapping 1n a metric space (X, d) and let rp be an arbitrary pomnt in A Alo
suppose that @ X x X — {—oco} L {0.42),7 X x X — R¥ are two functions We sav that
T 15 called a Cinié type a--GF-contraction on a closed ballif for all r y € _B(_’LB_,T) C Y, with
n{z,Tx) < alx.y) and d(Tz, Ty) > 0, we have

Gld(c, Tx).d(y Ty).d(z,Ty),d(y. T1)} + F(d(Tz, Ty) < F{(M(z y)) {5 12)
where
d diy T
Mz, y) = max {d(.r y)dlz, Tx),dly, Ty). ﬂ—;—{g—ﬂ—}} .

and

N

S d(z,T1g) <, forall j € N and 7 >0 (5 13)

=0

where G € Agand FET

5.3.2 Theorem

Let (X,d) be a complete metric space Let T X — X be a Cimé tvpe a-1-GF-contraction
mappmg on a closed ball satisfying the following assertions

(1) T 1s an a-admissible mapping with respect to 9,

(1} there cxists an 19 € X such that e(ze Txg) 2 7(xa, Txo).

(m) T 15 a — n-continuous

Then there cxusts a point z* 1 B(zq.r) such that Tz™ =z~
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Proof. Let £y in X be such that a(zo, Tz} > n{zp. Trp} For rg € .X we construct a
scquence {Tp}oe, such that 1y = Trg, 22 = Ty = T?rs Continuing this way, Tpi1 =
Tx, =T " lzq. for all n € N Now, since T 15 an a-admissible mapping with respect to 7. then

a(xg, 1) = a(zo, Txo} 2 n{ze Try) = n{Zo,z1) By continumg in this this manner we have
N(Zn-1.TLno1) = 7lan_1 Ia) € alrny 1,) forallneN (5 1)

1f there exsts an n € N such that d(x,, Tr,) = 0, there 15 nothing to prove So we assume that
Iy ?é In+l with

d(Ttn-1.Tzn) = dl2, Txy) >0, lorallneN

Fusl we show that 1, € Btrg,r) foralln € N Since T 1s a Ciné vy pe a-n-GF-contraction on

a clused ball, we have

d(ro. 1) =d(zog Txp} <7 {5 15)
Thus. 77 € Blzg,r) Suppose that 7 I, € B{rg.r} for some 3 € .V, such that

G(d(zr,-1,Tz,-1) dixy Tx)) d(z;-1.Tr;).dlz; Tay-1))

+F{d{Tr; TIJ)) < F(I\I(’r_,_l.:rj))
Then

G[d(lj_] $J‘\d(lJ TJJ—I} d'--r_] L Tj+]_‘ll O}

+F(d{Tr;_1.T1,;)) < FiM{x,—1,4,)) {5 161

Using the defimbion of G, d(z,-1 z;} d{x, z,41) d(z;—) 2;+1) 0 =0 there casts a7 > 0 such
that
Gld(z,1 2,).d(z;.2,41) d(z;-1, 2p41) G} =7

Therclore

Fdlx,.7;51)) = F{d(Tz;-1.Tx;)) € FiM{z,my, 1) =7 {517)

The rest of the proof 1s similar to that of Theorem 521 Since X 15 2 complete metric space
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there exists an z° € B(xo r) such that , — z* as n — o0 Since T 15 an a-f-continuous and
MTn1,2n) € @{Zn_1,Tn), foralln € N 1,4y = Tx, — Tr" asn — x thatis = =Tr*

Hence z° 15 a hxed pomnt of T =

5.3.3 Example

Lot X = R+ and d be the usual metoicon X Definc T X = X o XxX — {—oc}u(0 +x)
7 XxX—=R'G (R*} =R"and F R' =R by

JI irefol], e Vaf r e [0 1]
Tr = alr y) =
2r ifre(l x), % otherwise
nir.y) = 1/2forallr.ye X Gt taly Ly =7 >0and Fi) =Int witht >0
Ig = 12,r =1,B(zg r} =0 1] then
1 1 1 1
L To)=|z— —|=020710 <
d(2 fz) ]2 \/El 7 T

If  y € Blzy.7), then alz,y) = &V 2 1 = n(z,y) On the other hand Tz € [0.1] for
all € [0 1] Thus ofTr Ty) 2 niz,Tz) with d(Tr.Ty) = |vT -3 > 0 and, clearly
a{0,70) > n{0.70) Hence we have

d(Tz.Ty) = ﬁ_£:£+ﬁ _

I—¥

<lz -yl < Mz y)

Consequently,
r+ Fd(Tr Ty) =7+ Wmd(Tr Ty) <ln Vi y)— FAM{O oy
Ifzr¢ B(rp r)ory¢ Blrg r) then alr y) = 1/3 2 1/2 = y{2 y) ather

2z —yl > Iz -yl
127—2y| > I'r_y|

Tz ~Tyl > |z -yl

112



i«

or

74 F(d(Tz,Ty)) > F(d(z,y)})

Then the contractive condition does not hold on X

Conclusion: The mam amm of our chapter 15 to present new concepts of a Ciric tvpe
F-contraction on a closed ball, different from the F-contractions given 1n [67 107 123] The
exastence of fixed point results for such a type of F-contraction on a closed ball 1n a complete
metnc space are established The results of such a study are very uscful, in the sense that they
require the F-contraction mapping 1s defined only on a closed ball instead of on the whole space
The new concepts lead to fmther mvestigations and apphcations It will be also nteresting to

apply these concepts to different metrie spaces
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