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Abstract
In this dissertation, we have presented attitude dynamics and control of spacecraft 

using solar sails. The mathematical model for attitude motion of square solar sail by 

using solar radiation pressures/forces has been developed. First technique uses control 

boom for varying moment arm (Cm-Cp offset) whereas the other uses control vanes for 

deflecting the radiation pressure in order to produce rotational torques. We have used 

sliding mode approach to design attitude controller using Modified Rodrigues 

Parameters (MRPs) for sail craft attitude maneuvering. Stability is proved by 

Lyapunov’s theorem with a new Lyapunov candidate function. This approach is 

successfully tested in MATLAB simulation for both attitude regulation and tracking 

problem for a square sail example. We have also compared the simulation result for 

the sliding mode controller with a classical PD control approach using Euler angles. 

Sliding mode controller is foimd to be more robust in our simulation results.



Chapter 1 

1. Introduction

There is a significant need for advance space propulsion techniques with the potential 

for dramatic reduction in the cost of access to space, specifically for missions of 

longer duration e.g., interplanetary missions and travel in the space or for performing 

long term periodic motions in the space [1], Sailing, in the most general sense, is the 

technique of diverting a portion of a momentum flux for the purpose of propelling a 

vehicle. Sailing boats and ships achieve this with wind sails, which divert a small 

portion of the massive momentum flux of air. In space, a vehicle called solar sail 

spacecraft can achieve the same effect by diverting a portion of the massive flux of 

electromagnetic energy of the Sim and other shining stars using large and light weight 

mirrored sails. The clear picture of a solar sail is that of a large shining membrane of a 

thin, highly reflective, fihn held in tension by some gossamer structure [5] using 

momentum gained only by reflecting ambient light fi-om the Sun. Solar sail are used 

to

• Slowly but continuously accelerate satellites and spacecrafts

• Maintain the orbits and increase the life of satellites

• Control the attitude dynamics of satellites and spacecrafts

Since 1950, a lot of research papers have been published on solar sails. These papers 

have mainly discussed the orbital dynamics of solar sails and the trajectories they 

could follow around the Sim, the Planets and in the interplanetary space.

During the last three decades, a variety of advanced control systems for spacecrafts 
have been developed [2]. The recent advancements in this field is like a light weight 
deployable booms, ultra light sail films and small satellite technologies are spurring a , t 
renewed interest in solar sailing [6]. As a result, solar sail missions ^e  being 

developed and the associated sail craft technologies are growing rapidly. Solar sails 

have the potential to provide cost effective propellant-less propulsion that enables



longer mission lifetime and access to previously inaccessible orbits. Solar sail mission 

applications are:

• Irmer solar system missions

• Outer solar system missions

• Non-Keplerian orbits

• Autonomous space explorers

In attitude control systems (ACS) of sail craft, solar radiation pressure is used for 

attitude maneuvering trajectories ([8], [9] & 12). In this thesis, solar sail attitude 

dynamics and control system will be examined in detail. __

In particular, this work presents an overview of sail craft attitude control issues, like 

simple stabilization concept for countering the significant effect of a solar pressure 

disturbance torque, caused by an imcertain center-of-mass and center-of-pressure 

offset, on sail craft stability and pointing vector, low thrust used to control large 

attitude angles and dynamics due to external disturbances. A sail craft controlled by 

means of translating and/or tilting sail panels will also be described here. Different 

attitude control schemes have been compared. The overall study objective is to 

advance/enhance the existing sail craft attitude control technology so that a sail 

spaceflight experiment for validating sail attitude stability and controllability and 

thrust vector pointing and steering performance can be conducted in future.

1.1 Literature Review
For keeping up satellites, space station in their orbits, we need low cost propellant or 

propellant-less propulsion systems because of the long life of satellites and space 

systems. The NASA Advanced Propulsion Systems Concepts Program has been 

discussed in AIAA/ASME/ASEE Joint Propulsion Conference [I]. In Ref. [2] & [4] 
Bong Wei has discussed the development of attitude control system for solar sail 

flight mission in a sun-synchronous orbit. The impact on the achievalDle performance 
and some key structural characteristics in 100-m square solar sails of various design 

conditions and parameters is explored. Bong Wei has also discussed different PD and 

PID control schemes for solar sail craft attitude control like control through cp/cm 

offset, CMGs, Reaction Wheels or sliding masses etc. Upper-bound performance is



addressed with architecture of manageable mechanics and likely ultimate structural 

efficiency in this class of sails due to uni-axial tensioning in each quadrant, namely, 

the stripped sail. Ultra Sail is a next-generation high-risk, high-payoff sail system for 

the launch, deployment, stabilization and control of very large (km2 class) solar sails 

enabling high payload mass fractions for high AK Ultra Sail is an innovative, non- 

traditional approach to propulsion technology achieved by combining propulsion and 

control [3] systems developed for formation-flying micro-satellites with innovative 

solar sail architecture to achieve controllable sail areas approaching 1 km ,̂ sail
A

subsystem area densities approaching 1 g/m , and thrust levels many times those of 

ion thrusters used for comparable deep space missions. The problem of optimally 

controlimg the sail steering angle of a solar sail spacecraft is an important problem in 

space trajectories. It is consider by T. S. Jayarman [15] in detail. The optimized orbit 

transfer time of the solar sail spacecraft is compared with that of an ionic propulsion 
system in this paper. A comprehensive mathematical formulation of the thrust vector 

control (TVC) design problem of solar sail spacecraft is described by Bong Wie [16] 

and mission applications on stm-synchronous orbit are given in ref. [17]. A TVC 

system is part of an attitude and orbit control system (AOCS) of a sail craft, and it 

maintains the proper orientation of its solar sail to provide the desired thrust vector 

pointing. The solar pressure thrust vector direction of a sail craft is often described by 

its cone and clock angles with respect to a particular orbital reference frame. This 

paper describes various forms of orbital trajectory equations, which employ two 

different sets of the cone and clock angles, for the design and simulation of solar sail 

TVC system. Orbital mechanics concepts and mission application are analyzed by C. 

R. Mcinnes in [5j. Likewise the problems of optimality like optimal control law for 

interplanetary trajectories, optimum orbital control using solar radiation pressure and 

time-optimal orbit transfer trajectory for solar sail spacecraft has been discussed S.K. 
Shrivastava, Guido Colasurdo, Bemed Dachwald and J.C. Van Der Ha , V.J. Modit in 
ref. [11],[9],[12] and [10] respectively. A close-loop control design for space craft 

attitude control with large angle maneuvering and slew rate control using small 

rotational torques has been developed in recent few years. Bong Wei [4], Valadi S.R [ 

20] , Utkin V.I [21] etc are the big names in this area. They have been used simple 
feedback control schemes to control the attitude dynamics bounded by various



constraints. Many non-linear dynamic controllers are used to solve the attitude control 

problem as feedback controller. Crasssidis, J.L., Markley, F.L. [18] used non-linear 

sliding mode controller are an attitude control problem. A variable-structure controller 

is applied for space craft pointing and regulation. They also design an optimal 

variable-structure controller with Valadi S.R [20] which uses a feedback linearizing 

technique and an additional term aimed at dealing with model uncertainty. Robust 

adaptive variable-structure controllers are the achievements of the recent years as in 

ref. [22] & [23]. Advance dynamics modeling and analysis of rigid bodies are 

described in ref. [13], [14] & [24]. M. J. Sidi [24] given a practical engineering 

approach for the spacecraft dynamics and control. Recently K.D Kamar [25,26] used 

nonlinear adaptive sliding mode for attitude control of satellite (not a solar sail) using 

solar radiation pressure. However, they have considered a satellite with two flaps, 

used to provide the desired control torque only in pitch direction. Main propulsion

system is solar radiation propulsion. The adaptation law was designed for solar \

pressure and mass distribution parameters. Defined sliding surface is function of 

inertial pitch angle and its first and second derivatives.

The main objectives of this dissertation are

• Description of solar sails configurations and dynamics

• Description of physics of solar radiation pressures/forces

• Design of sliding mode control law for three axis attitude control of  ̂ i

spacecraft/satellites

Our work is on solar sail spacecraft with main propulsion system and use attitude

control to keep the sail on desired trajectories. In this thesis, a control boom and i

control vans (2 or 4) can be used to generate control torques for three axes attitude 

control. In our approach, we define a sliding plane which is the function of angular 

velocities and MRPs. Our approach works very well in the presence of external 
disturbances.

1.2 Statement of Need
Low cost and unlimited propulsion in the space is the dream of man from the ancient i

times. A renewed interest in the solar sailing due to its potential for propellant-less 
space propulsion is a major research area in space technology. Solar sails dynamic
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modeling and development of attitude control systems for satellites/spacecrafts is the 

main objective of this thesis.

1.3 Project Rudiments
The pre-requisite to this thesis is the knowledge of solar radiation pressure and force 

models, rigid body dynamics, solar sail orbital dynamics and fimdamentals of control 

theory.

1.4 Thesis Layout
The formulation of this document comprises of six chapters, including the preliminary ; 

Chapter 1, giving an overview of the thesis research work.

Solar sail configurations, different designs and solar radiation pressure (SRP) and 

solar radiation force SRF models are discussed in Chapter 2. To understand the 

control attitude of a satellite and space craft, it is important to comprehend the 

rotational dynamics. Chapter 3 gives a brief introduction to rotational kinematics and 

dynamics of satellites and spacecrafts. Rotational torques produced by actuators for 

attitude maneuvering and control are also explained in this chapter. Chapter 4 

discussed two control schemes in detail. Robustness and stability analysis has also 

been carried out for the designed controllers for the attitude control of solar sails using 

solar radiation pressure and forces. Simulation results of a square solar sail 

configuration are presented in Chapter 5. Comparison of two control scheme over the ■ 

same problem has been shown with figures. In Chapter 6, conclusions of the present 

work and ftiture work recommendations are described.

Concluding remarks are also given at the end of this chapter followed by some 
References for fiirther study and an appendix containing MATLAB codes used for 

the simulations ends the thesis. I



Chapter 2 

2.Solar Radiation Pressure Models

2.1 Solar Sail Configurations
The main objective of a solar sail design is to provide a large, flat reflective film 

which requires a minimum structural support mass [3]. The sail film must be kept flat 

through the application of tensile forces at the edges of the film. There are three basic 

types of solar sails ([3] & [5]) v̂ ĥich are shown in Figure 1.

Square Sail Disc Solar Sail

Figure 1 -  Solar Sail Configurations

These configurations have their own advantages and disadvantages in terms of control 
authority, controllability, packing, deployment and maintenance etc. The fundamental 
objective of any solar sail design is to provide a large sized area (surface area)  ̂

flatness and high reflective solar film which require a minimum of structural support 
mass [5]. Keeping the surface of a solar sail flat, we use tensile forces by cantilevered 

spars or by centripetal forces generated by spinning the solar sail film. These three 
types of sails are described below:

10



a) Square Solar Sail

Square solar sail has four deployable cantilevered spars from a central load 

bearing hub. This hub contains the payload and spar deployment mechanism. 

Attitude control of a square solar sail can be achieved in two different ways or 

by their combinations ([3] & [5]). In the first method, the control torques are 

introduced by articulated reflecting vans. It is lised mainly for roll and pitch 

control torques but a specific combination can also generate yaw torque. The 

second method uses relative translation of the center of mass and the center of 

pressure of the sail. In this method, the payload is mounted at the tip of the

Son-Wne

Figure 2 -  Square Solar SaU with Control Boom 

deployable boom, erected normal to the sail surface from the central hub. The 
boom rotation on a hemispherical surface will then displace the center of mass 
over a fixed center of pressure. This produces cm-cp offset and as a result  ̂
pitch and yaw torques are produced. Roll torque is, however, not possible in 

this case. We can generate roll torque by vane combinations as described in*̂ 
coming section 3.2.2. 1
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b) Heliogyro Solar Sail
In this configuration, the solar sail film is divided into a number of long 

slender blades (8 meter wide, 7.5 km long as in [5]) which are attached to a 

central load bearing hub shown in Figure 1. The blades are designed in such a 

way that they produce spin torque and the sail spins slowly which keeps it flat 

due to spin induced tension. Asymmetric force can produce precision motion 

in the sail. Such sails are easy to pack and deploy but cannot be used in three 

axes attitude control.

c) Disc Solar Sail
The intermediate concept between three axes stabilized square sail and 

heliogyro sail is the disk solar sail, hi its desi^, the triangular film strips are 

attached with structural bars. The sail is kept flat by using spin induced tension 

but without such long plates. The attitude control of a rotating disc can be 

done through torques induced by the offset of the center of mass and center of 

pressure. The induced torques will precess the spin axes. This precession can 

be used for orbit raising purpose.

2.2 Solar Radiation Pressure Model i
The source of force on solar sails spacecraft is the momentum transported to the 

spacecraft by radiation energy of the sun ([1] & [5]). In this chapter, the physics of 

solar radiation pressure will be explained by considering the physical description of 

momentum transfer process. The quantum description of radiation is as a packet of 

energy. Photons can be visualized as traveling radially outward from the sun and 

scattering off the sail, thus imparting their momentum to the sail. According to Planks 

law, a photon with frequency u has energy

E = hu (2.1/̂
In Einstein’s view, 3

E ' = m y + p ^ c ^  ........................  .(2.2)

12



where mo is rest mass, p  is linear momentum and c is the velocity of light. The 

intrinsic energy Eq = is the energy at rest of a body which is zero in case of a 

photon. Tlierefore, the above equation becomes

^ E  = p c

or

p  = E f c

Since the amount of energy transported through area A in time At is

AE = WAAt

Where W is the energy flux (the amount of energy per unit area in imit time).

But

Ap = A E f c  

Ap = WAAt I c 

A At c

And we know that rate of change of momentum is force

lim — = FA/-.0

But pressure ‘Pr’ is defined as

Or

For perfect reflective solar sail

Pr = ̂
A

W
Pr = —  (2.3)

c

2W
Pr = —  (2.4)

c

The energy flux FTat a distance ‘r’ from the Sun is

W = W ,{R Jrf

Where W ^ - L J  is radiation energy flux measured at the earth (1 AU).

13



^TtRl r A nr

where is solar luminosity whose value at 1 AU is 3.856x10^^, and/?£ is distance 

from the Sun to the earth (one astronomical unit).

The mean value of We = 1368 J/s-m ,̂ so putting value of W

Pr = — -

where
/

W
-^  = 4.563x10-®Af/TTj" at lA U

2.3 Solar Radiation Pressure Force Model
The solar radiation pressure (SRP) forces are generated due to photon impingement 

on the surface of a solar sail in space. Different assumptions can be made which result 

in different models for the magnitude and direction of SRP force acting on the sail. 

Generally, there are three models. The simplest model assumes an ideally reflecting 

sail surface named as the ideal reflection model (IR). When the solar sail is not ideally 

reflecting, as in the case of real solar sails, an overall sail efficiency factor is 

typically used in the solar sail related literature [1]. This factor reduces the magnitude 

of force while leaving the direction unaltered. This is termed as the /̂-perfect 

reflection model (j/PR). Since real sails are not perfect reflectors due to various 

reasons, therefore, both the direction and magnitude of the SRP force are different 

from the ideally reflecting solar sails.

2.3.1 Perfect reflecting solar sail
An analysis of a perfect reflection solar sail (IR) with a square design, as shown in 
Figure 3, is presented below:

14



For perfect solar sails

F as

F, = P r^  cosaw
I 5

where As is solar sail surface area, a is pitch angle and u and s are vectors in the 

directions" of incident ray and opposite to reflected ray, respectively. Therefore, the 
force due to reflecting rays is

F ^  = Pr cos a  { - s )

So the net force is

Now

and

F  = ~F,+F ,

F  = PrA^cosa(u -i-s) 

w + 5 = (c o s a «  + sinQff) + ( c o s a « “ S in a f)  

= 2cosa«

15



F  = 2 Pr 4  cos a  h (2.5)

is the force on solar sail in normal direction.

Two parameters are used to define the performance of a solar sail. One is 

characteristic acceleration and the other is the sail Hotness number  ̂

Characteristic acceleration is defined as

nir nir"̂ 0
When a = 0, i.e., the sun orientation is perpendicular to the solar sail, then

a .
2 ^ _ 2 P r ,

a .
(2.6)

where cfj = —  is mass to area ratio of the sail and mo is the total mass which is the

sum of payload mass and structural mass of the solar sail.

a . 2 P ro 4
pi S

2Pr„
- o .

a .

cr. =

Here as is the sail assembly loading. It consists of the mass of the sail film and other 

structural mass. For a 100m x 100m sail, the assembly loading is estimated to be 10- 
14 g/m  ̂[1]. For the f Figure 4, is taken as lOg/m  ̂[5]. The solar sail acceleration at 
any distance from the sun is

a  = ass c
R. \ 2

cos^a (2.7)

16



The characteristic acceleration depends upon the sail assembly loading, pitch angle 

and exposed surface area of the sail. For different characteristic accelerations, a 

square sail payload verses sail size relationship is shown in Figure 4.

Square sail diminssiom as function of payload

Figure 4- Pt^load Variation With Sail Area 

The second performance parameter is the sail lightness number po- It is the ratio of the 

sail acceleration, when it is normal to the sun, and the sun’s gravitational acceleration.

a .

GM_

When t ^ R e

a .

GM, 5.93mm/s‘

2 Pr„

5.93

17



2.3.2 Non-Perfect reflecting solar sail

A perfect solar sail is an idealized model. Since a real sail is not a perfect reflector, 

therefore, for a real solar sail moderreflection, absorption, transmission and emission 
coefficients are considered.

Figure S- Non-perfect Reflecting Solar Sail

If the assumption of perfect reflectivity is relaxed, a more exact model for the solar 
radiation pressure force may be modeled [5].

F  = F ^ - F ^  + F  ̂

r  -\-a + T = 1 

P ^ a  = l  = 

u  =  c o s a f i  +  s m a t  

J = c o sa w -s in  orf V

18



Here F̂. is the force due to perfect reflection, F^is the force due to absorption of 

photons and is the force due to emission by re-radiation, such that the fraction of 

absorption, reflection and emission has coefficients

f + a + f = 1

Supposing r  =0 on the reflective side of the solar sail, then

r + a - l  = ^ a  = l - r

Now,

u + s = 2 c o s « «

Or 5 = - M + 2 c O S « «

The force exerted by the absorbed photons on the solar sail is

= Pr^COSQTM
Or

=Pr^cosa(cosa:n + sinaf) 

F^ =Pry4(cos^a« + coso;sinaf)
A fraction r of incident photon is reflected and another fraction of photons s is 

specularly reflected in the direction -s  , provides a force frs ̂ s  direction

f  ={rs)VTAojo&asrs

In addition, another fraction of photons will be uniformly scattered from the reflecting 

surface of the sail due to non-specular reflection. This component will generate a 

force f f ^ m n  direction given by

=BJr(\-F)PA(xi&an

where S/is coefficient of non-Lambertian surface (A Lambertian surface is that which 
appears equally bright when viewed from any aspect angle). Therefore the total force 
due to reflected photons is given as

19



F r  -  f r s  +  fru

Or writing the total force in terms of normal and transverse directions

= Pr A[{f s cos  ̂a + B^{l-s)r cos a ) f t - rs  cos a  sin a  f ]

The third component is due to those photons which have been absorbed and re­

emitted from both front and rear surfaces of the sail. Since the power emitted from the

unit area at temperature T is suT^, where e is emissivity coefficient and a  is 

Boltzmann constant, therefore, the force due to emission by re-radiation is given as

where and are the front and back emissivity coefficients. The sail temperature 

can be obtained by using thermal input and thermal output in the solar sail

X

T = (1 -r)cP rcosa
a { s f  + s , , )

Thus, the force exerted on the solar sail due to emission by re-radiation is

£  f B f  — S ty B l.
— ^ c o s a n  

S f + £ b

It is clear that this force is maximized by a larger value of fî ŷ and a smaller value of

Combining all these three components, the total force exerted on the sail can be 

written in terms of normal and transverse components as

(1+fs)co^ a +^(1 -5)r oosa

S f B ^— S f f ih  
- K l - ^  /  /  ^ c o s a

S f + S f ,

\
/V

>n
2.8)

20



= P r ^ ( l - r 5) c o s a s in a f  (2.9)
Bemd Dachwald gives, in Ref. [12], values of optical coefficients for a sail with a 

highly reflective aluminum coated front side and highly emissive chromium coated 

back side. These values are given in the following table:

Table 1- Optical Coefficients for anAVCr Coated Sail

Parameters
Front side 

(Aluminum Coated)

Back side 

(Chromium Coated)

r 0.88
S 0.94
S 0.05 0.55
B 0.79 0.55 ^

The magnitude of total force on a non-perfect solar sail due solar SRP is then 

calculated as

F  = (2.10)

Since the sail is non-perfect reflector, lie direction of this force is along the normal to 

the sail. The angle p, between the force vector and the sail normal is a centre line 
angle, is defined as

P  =  X m
- 1 Ft

K n
(2.11)

Magnitudes of normal and transverse components of the force and total force verses 
pitch angle of the sail by using the data of a sail in Table 1, are shown in Figure 6.
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Figure 6 - SRP Force Varies With Pitch Angle of Sail
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Chapter 3 

3. Fundamentals of Attitude Dynamics
The formulation of interplanetary spacecraft and satellite attitude dynamics and 

control problems involves considerations of both kinematics and dynamics. In this 

chapter, the rotational kinematics and dynamics of a satellite, imder a rigid body 

assumption, will be described.

3.1 Rotational Kinematics
In kinematics, we are primarily interested in describing the orientation of a body 

during its rotational motion. Rotational kinematics does not involve any associated 

forces. It is convenient to describe the orientation of a satellite or spacecraft with 

respect to some fixed inertisd frame by using some generalized coordinates. Direction 

cosines are not generalized coordinates, since they are not independent, but are related 

by a constraint. A set of generalized coordinates that may be selected to describe the 

orientation of satellite consists of Euler angles ([13] & [14]) Rodrigues Parameters, 

Modified Rodrigues Parameters ([18],[19],& [20] ) or quaternion.

3.1.1 Euler Angles

A  scheme to align a rigid body with the desired orientation is called body axis 

rotation. It involves three successive rotations about the axes of the rotated, body- 

fixed reference fi:ame. The first rotation is about any axis. The second rotation is 

about either of the two axes not used for the first rotation. The third rotation is then 

about either of the two axes not used in the second rotation. The choice of Euler 
angles is not unique but they involve three successive angular displacements for the 
transformation fi-om a set of Cartesian coordinates to another. TTie rotations are not 

about three orthogonal axes. The three components of angular velocity of a satellite 
can be expressed in terms of Eixler angles and their time derivatives.

In Fig. 7, the rectangular frame B is assumed to be a body coordinate system with a ^

right-handed set of three unit orthogonal vectors interested in
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describing the location of the body frame with respect to the reference frame A, 

having a right- handed set of three orthogonal vectors [ai,a2 ,«3 ]. A sequence of

rotations is used for the A frame in order that it coincides with the B frame. Let these 

rotations be yaw x; / , pitch 6 and roll <j> . These angles are called Euler angles ([2] & 

[14]).

Consider the rotational sequence of Ci(^) <—C2 (^) < -C3 (̂ î ) which are 

symbolically represented as

A ' - A  

C2(0): A '- A ' 

C , W : A " - A "

Then the angular velocity vector co of the satellite is given in Equation (3.1).

( b - y / b ^ + O J a + ^ a i (3.1)

where J q is an intermediate axis of rotation.
If Cj(^), C2{0) and C- {̂y/) be the direction cosine matrices of rotations.

Figure 7 - Euler Angles 

then equations (3.1) can be written as
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’o ' 0

a . = 0 e 0

0 0
y .

(3.2)

The direction cosine matrices are given as

" 1 0  o '

Ci(^)= 0 cos(^) sin(^) 
^0 -s in (^ )  cos(^)^

^cos(^) 0 -sin(^)
C2{0)=  0 1 0

^sin(^) 0 cos(^)

" cos(̂ f/̂ ) sin(^) 0̂

^3( ¥ ) =  cos(^) 0
, 0  0 1^

Using all the above three transformation matrices in equation (3.2), we get the angular 
velocity vector in body frame as

fi 0 -sin(^) ^ i

= 0 cos(^) sin(^)cos(^)
m
0 _ (3.3)

10 -sin(^) cos(^ )̂cos( )̂^ m
y .

By taking inverse of the coefficient matrix, the last equation becomes

6  = S(0)c5
Equations (3.4) are the kinematic equations of the satellite. Here,

(3.4)

o = 0

w

and S(0)
cos(^)

cos(^) sin(^)sin(^) cos(^)sin(^)^ 
0 cos(^)cos(^) -sin(^)cos(^)
0 sin(^) cos(^)
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Note that the equations (3.4) are not defined when cos(0) becomes zero. It is a

singularity for this sequence of Euler angles. For other sequences such singularities 

occur for other angles. To overcome this problem, they are rewritten by using 
Quaternion representation.

3.1,2 Quaternion Representation

The Euler angles are actually rotations about three different axes. The orientation can ̂ 

be described by a single rotation about some reference axis k by an angle . This is 

done by using unit quaternion q having four components [14]

’^1

L ^ 4j

These components are defined as

q , = c o s ( ^ )

q , = k ^ s m { ^ )

Conversion fi*om Euler angles to quaternion is given by following relations

=  sin(^ / 2) cos(0 / 2) co s{\i/ / 2) -  cos(^ / 2) sin(^ / 2) sin(y/ / 2) 
= cos(^ / 2) sin(^ / 2) c o s (\j/ / 2) + sin(<i> / 2) cos(^ / 2) / 2)

q^ =  cos(^ / 2) cos(0 / 2) sin(^ / 2) -  sin(^ / 2) sin(^ / 2) co s {y / / 2) 
q^ = cos(^ / 2) cos(^ / 2) cos(̂ i/’ / 2) + sin(^ / 2) sin(^ / 2) sin(̂ /̂̂  / 2)

Differentiating the above set of equations with respect to time, we get

q = i x ( o ) i (3.5)
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where the value of T(5)is given in Equation (3.7). Putting the value of <5 from 

Equation (3.4) in Equation (3.5), we get

(3.6)

t (6)S(6) =

^4 -^3 Ql <lx

?4 -9l <l2

-?2 ^4 %

-9l -93 ?4

(3.7)

Equation (3.6) can be further simplified as

1q = -G(q)o>
where

G(q) = T(0)S(0)
Equations (3.8) are the kinematic equations of the satellite in quaternion form.

(3.8)

(3.9)

3.1.3 Modified Rodrigues Parameters

Modified Rodrigues Parameters (MRPs) are used to describe the kinematic equations 

of a spacecraft. This parameterization is derived by applying a stereographic 

projection of the quaternion. Since the quaternion representation is given by

^ 2
q =
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q=

q .3  = ^ 2  

^ 3

^13

= i^ s in (^ , 1 2 )

^,=cos(0,/2)

where ^  is a unit vector corresponding to the axis of rotation and 6  ̂ is the angle of 

rotation. The Modified Rodrigues parameters are defined as

Px

P = Pi

A

_  ^13

1 + ^ 4
(3;io)

The kinematic equation of motion are derived by using tiie spacecraft angular velocity 
are given by

? = ^ { ( i - r p ) i 3 . 3 + 2 [ p i + 2 p p ^ } f f l (3.11)

where is a cross product matrix defined by

■ 0 - A Pi

[p1= p^ 0 -Px

.-P2 A 0

3.2 Rigid-Body Dynamics
In this section, satellite dynamics literature is reviewed and some basic properties of 

satellite dynamics are established ([2] & [4]). Assume the satellite to be a rigid body
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with mass center B* as shown m Figure 8. Reference frame B is fixed in the body. 

Given the element of mass ^dm ’ whose location relative to B* is

r= rp ,+ rjj^+ r^b .

The moment of inertia matrix is defined by

where

( l u I n

1 = l u ■̂ 23

U s . I n

A .  =  J ) d m

^22 =  \ W  + r , ^ ) d m
B

■̂ 33 =  K '* ! '  + r , ^ ) d m

Figure 8- Reference Frame and Mass Element 
and the non-diagonal elements are given by the relation

(3.12)
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I i j = - ] r , r j d m  ,

B

Note that I is a symmetric matrix. If c6 is the angular velocity vector of the rigid body, 

then its angular momentum H is given by the following relation

H  =  Ic5 (3.13)

+-^13®3

— ^21^1 -̂ 22̂ 2 ■̂ 23̂ 3

/ / j  =  /31<»1 + + /33®3

The rotational kinetic energy is

Z Z Z i=i r i
(3.14)

The equations of motion are:

d t
=  T (3.15)

where T is the net torque acting on the body. By taking derivative of the angular 
momentum given by Equation (3.13), we get

d H  j. _ _ -
-----=  I® +  tOXlco =  T  (3,16)
dt

These equations have been derived for a rigid body but they can be applied to any 

system of particles and/or rigid bodies as long as the torques are computed about the 

reference point. We take center of mass of the system as our reference point for the 

angular momentum. If the axes are the principal axes then the inertia matrix becomes  ̂
a diagonal matrix and the equations of motion become

A 1^1 ^2^3  (^ 3  ”  A 2 ) “  ^

+  (Ô O)̂  (J 22 ~  -̂ 11) ~  ^

These are called Euler’s equations of motion for a rigid body.

(3.17)1
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3.2.1 Spin Stabilization of Solar Sail Spacecraft

A  simple solution to the problem of maintaining a desired orientation of a sail craft in 

the presence of a cm (centre of mass of the solar sail) and cp (centre of solar radiation 

pressure of the solar sail) offset is to spin the sail craft about its roll axis. A thrust 

vector misalignment with the roll axis caused by a cm/cp offset will cause the sail 

craft to tumble in the absence of spinning or active three-axis control. However, a 

spinning sail craft possesses a gyroscopic stiffiiess to external disturbances, and its  ̂

motion under the influence of external disturbances is characterized by the precession 

and nutation of the roll axis about the desired direction of the roll axis [4]. The 

orientation of a spinning sail craft can be changed by precession of the sail craft using 

thrusters. Three axis attitude control of a square solar sail can be achieved by several 

ways. One of these methods is to use control boom and vanes structure to displace the 

centre of mass relative to the centre of pressure of the sail. This can be achieved by 

mounting the payload on an articulated boom and utilizing boom rotations to control 

the centre of mass location. This architecture provides an effective precession control 

torque to a spinning sail craft with a large angular momentum. For the purpose of 

studying the effect of a cm/cp off set on a spinning sail craft, consider a sail craft

possessing a body fixed frame B with basis ^ ,^ 2 5 ^  vectors and with its origin at

the center of mass. Let the reference frame B coincides with principal axes. It is

assumed that the 1 st axis is the roll (spin) axis perpendicular to the sail surface and the 

2nd and 3rd axes are the pitch/yaw (transverse) axes. The solar pressure force vector 

is nominally aligned along ^  through the center of pressure of the sail craft, Euler’s 

rotational equations of motion of a rigid sail craft are given by

^22^2 ^1^3 (^11 “  3̂3 ) “  ^

^33^3 0)^0)2 ( / j j  “  A 1) ^

For a square sail craft, let 7̂ 2= hs =/then the rotational equations become
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/ „ ® , = 0

/ ® , - ® . < y 3 ( / - / „ )  =  7 ; r  ( 3 J 3 )

/ ® 3 - ® , < y 2 ( / „ - / )  =  7 ;

where T^and 7i are the solar pressure torque vector components due to centre of mass 

and centre of pressure offset. From first of the equations (3.18) we have

6>, = constant=Q (3.23)
For simplicity, let us suppose that pitch/yaw axes are chosen such that 7"2 = 0 and 

7̂3 = sF  where f  is a cm/cp offset distance and F is solar radiation pressure force. 

Thus, the last two equations (3.22) becomes

(3.19)
3 M ,

where X = n(/j ~J)f  I  and the disturbance acceleration p  = sF / 1 is due to the 

offset of cm/cp. We can describe the rotational motion of the spinning sail craft, as 

seen from an inertial reference frame, as a body-fixed rotational sequence of roll(^i), 

pitch(^) and yaw(^/). For this rotational sequence, we have the following kinematic 

differential equations

^  = q + ( 6 ^ s i n ^ + f t ^ c o s ^ ^ t a n ^  

^ 4 ^ ^ = s i n ^ + f t ^  c o s ^  /  c o s ^
(3.20)

The system of coupled non-linear equations (3.17) and (3.20) has been simultaneously 
solved, numerically, by using some appropriate ordinary differential equation (ODE) 

solver in MATLAB. The code is given in the appendix. Simulation results for a 

40mX 40m sail craft with a spin axis angular velocity of 0,5deg/s and all other

initial conditions set to zero, having the following parameter values, are shown in 
Figure 10.
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Table 2- Sail Characteristics

Parameter h Q F €

Value 6000 kg-m"̂ 3000 kgW 0.5 deg/s 0.01 N 0.1 m

This non-linear simulation result is in agreement with the linear analysis results 

presented in Ref. [5]. The subplot (2,2) in Figure 10 shows the path of the tip of the 

roll axis in space.

Figure 9 - Simulation Results for a cm/cp 0.1 m offset

Rigid body dynamics is a dynamical system with, in general, six degrees of freedom. 

Three degrees of freedom are associated with the translational motion while the other 
three are associated with the rotational motion. The spacecraft is considered to be a 
rigid body whose attitude can be described by two sets of equations. The dynamic 

equations given in Equ.(3.17) are coupled, non-linear and first order differential 
equations. When these equations are solved, we get the angular velocity components 

of the rigid body, no information is attained about the orientation of the body. So, we 

need the kinematic equations, given in Equ (3.20), to specify the orientation of the
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body. The kinematic equations incorporate the angular velocity components from 

dynamic equations and the Euler angles <!>̂ 0,y/ in the body frame. For the

orientation of the spacecraft, we use various parameterizations. Attitude 

representations can be done using three or four parameters. The three parameters 

attitude representation techniques are Euler angles, Caylay Rodrigues Vector or 

Modified Rodrigues Parameters (MRPs). The four parameter representation is in the 

form of quaternions. All these representations have their own advantages and 

disadvantages. For example, in Euler angle representation, the Jacobian matrix in the 

kinematic equations has singularities. The unit quaternion, globally represent the 

spacecraft attitude without singularities. But in this presentation an additional 

constraint equation is introduced which leads to non-minimal parameterization. Here, 

for one of our control scheme we use Euler angle parameterization and for the other 

one Modified Rodrigues Parameters (MRPs) are used. The advantage of MRPs is that 

we can perform extremely large rotations (up to 360®) while using minimal 
parameterization.

3.2.2 Rotational Control Torques Generation Using Control 
Boom and Control Vans

Three axis attitude control of a square solar sail may be accomplished by several 

means. One method is to displace the centre of mass of the solar sail with respect to 

the centre of pressure [4]. This cm/cp offset can be achieved by varoius methods [15]. 

One of these methods is to mount the payload on a gimbaled boom and utilizing boom 

rotations to control the centre of mass location. An alternative method of three-axis 

attitude control is the use of the spars tip-mounted vanes. The tip vanes are small 

reflective panels attached to the ends of the spars through drive motors. Although the 
forces generated by a tip vane are small but the large moment arm relative to the 
centre of mass of the sail can provide suitable control torques [5]. A better control 
authority can be achieved through the combination of both these methods. The 

architecture of a hybrid control method for a square sail is shown in Figure 2.

Consider an ideal flat solar sail with body axes (x,y,z) as shown in Figure 2. Yaw, 

pitch and roll rotations are defined about x-axis, y-axis and z-axis, respectively. Let
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njp be located at the end of the boom of fixed length I so that the position of the 
payload defined in the body axes is

Tp=l cos u COS + 1 COS V sin  ̂sin uê  (3.21)

Where V is the boom elevation angle and X  is the boom azimuth relative to the 

solar sail body axes and and are shown in Figure 2. If mass of the solar

sail, excluding the payload mass, is nis then the position of the centre of mass is 

defined in body axes as

f  =  — — ^ — r  
m + m ^

P s .

Since length of boom is fixed, the centre of mass location can be displaced on the 

surface of hemispherical radius nip Kjrip-  ̂ of the sunward face of the sail. For an 

ideal sail, the force exerted by the solar radiation as given in Equ. (2.5) is

F = F ,( s (3.23)

where S is a vector fi*om the Sun to the sail surface and n  is unit vector normal to the 

sail surface. Therefore, the vector equation of the torque exerted is

 ̂  ̂ m
T = - r  x F = - ( -----  — )r x F

The scalar form of the equation is
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T  =

71 =

)/ cos^ a  cos V cos x

m„ + mP s

)lcos  ̂a cosv sin X

t: = o
(3.24)

where 7| is yaw torque, is pitch torque and T-̂  is roll torque. When the sail is flat

and ideal then is zero but in case of non-ideal sail there is small roll torque. It can

be seen that the magnitude of the torque can be controlled using the elevation angle 

and the length of the boom while the direction of the torque can be controlled vide the 

boom azimuth. For an ideal solar sail in Sun-facing attitude, pitch and yaw torques 
are shown in Figure 11 and Figure 12.

Figure 10- Pitch Torque as a Function of Elevation and Azimuth
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Figure 11 - Yaw Torque as a Function of Elevation and Azimuth

For three axes control, tip vanes are used. Let us consider a square sail having two tip 

vanes at the ends of the x-axis of the sail as shown in Figure 2 . These vanes provide 

only pitch and roll torques but yaw torque can also be obtained by a combination of 
both pitch and roll torques.

It is assumed that the vanes may only be rotated about the spar axis through a 

clockwise rotation delta. The unit normal vector to each vane may be written in solar 
sail body axis as

n, =  sinS^e^ -  cosS^e^

= -  sin ̂ 2̂ 2 “ cos ̂ 2̂ 3
The components of these unit vectors are in y-z plane under above assumption. This is 

shown in Figure 12(a), and Figure 12(b).
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n.

(a) (b)
Figure 12 - Two Vans Orientation t

Let us make another assumption, for our ease, that the sun line is in x-z plane and (X

is the angle from sun line to z-axis as illustrated in Figure 13.

-/Vn
Figure 13- Sun Vector in Body Frame 

The Sun vector S in the sail body frame is expressed

s = sin(«)e, -  cos(a)e3

For simplicity another assumption is made that the center of mass is the geometrical 

center of the sail and distance from each van center to the center of the sail is taken as 

d. Two vans are shown in Figure 2 along x-axis, there position vectors are
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d , = d e ^

= - d  e.

From equation (3.23)

F = F (s
The torque which provides control from i* vane is

% = a , x F X i n , Y i , ,

where is the location of i* vane relative to the solar sail center of mass and is

the tip vane force obtained from the sun facing. In our case two vans are available, so 
the forces in body frame are

^  c o s ^ (a )c o s ^ (^ ,) s m (^ j)e 2 cos^(a)cos^(<5';)e3

=-F^cos^(a)cos^(^2)sin(^2)e2 -F cos^ (a)008̂ (̂ 2)63

and torques from the two vans are

T.= d 0 0
0 F  cos (̂a)cos (̂<5',)sin(<5',) - F  cos (̂ar)cos'

Ta= d 0 0
0 -F  ̂coŝ  (a)  coŝ  (<5,) sin( ,̂) -F^ coŝ  (a)  cos’

The component torque equations of combined torque T=Tj +  from the both 

vans are then

t;= o

=  F ^ d c o s^  a { o o ^  5^ - co s^  5 ^ )  

=  F ^ d  c o s^  a ( c o s ^  s i n ^  -  c o s^  s i n ^ 2 )
(3.25)
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Therefore, through appropriate combination of vane rotations, arbitrary pitch and roll 

torques may be generated. Roll torque is generated through a collective rotation of 

both vanes. Vane rotation angles and area of the tip vanes are used to generate the 

necessary maximum torque expected during the solar sail mission.

For an ideal solar sail in Sun-facing attitude, pitch and yaŵ  torques are shown in 

Figure 13 and Figure 14. It can be seen that full control authority can be achieved in 

both pitch and roll. If only yaw control is required, then it can be demonstrated that 

full three axis control can in fact be obtained with only two vanes located at the tips of 

the x-axis spar. The sail is firstly rolled by 90 degree using collective rotation to two 

vanes and then the sail is pitched to the desired attitude. Finally, it is rolled back 

through 90 degree. This full sequence of rotation then corresponds to the change in 
the sail yaw attitude.

Figure 14 - Pitch Torque qs a Function of Vane Roatiom
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Figure IS- Roll Torque as a Function of Vane Rotations

The tip vanes and centre of mass displacement have their own particular advantages 

and disadvantages for a solar sail attitude control [5]. In practice, combination of 

more than one method may provide the optimal solution for good three- axis attitude 
control.
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Chapter 4

4. Attitude Controller Design
This chapter begins from where the chapter on rotational dynamics and kinematics is 

left off. Maximum absolute torque achieved from both control boom and control 

vanes mechanism has ab-eady been studied in the previous chapter. In this chapter, we 

are going to introduce two non-linear control schemes which are more suitable for our 

problem. The control of spacecraft for large angle slewing maneuvers and for small 

torques achieved from actuator mechanism makes the problem difficult. These 

difficulties include a highly non-linear characteristic of the governing equations, 

uncertainties in modeling and structure of the spacecraft, control rate and saturation 

constraints and limits and incomplete state knowledge due to sensor failures or 

omission. In our case we also have larger maneuvers, smaller thrust and smaller 

maneuvering torques. The main problem addressed in this chapter is the attitude 

tracking control. We can also use the controllers developed here for the regulation 
problem. -

For our control problem, following controllers are described in details:

• State Feedback Controller
• Sliding Mode Controller

4.1 State Feedback Controller
The state feedback controller is developed on the basis of the dynamic and kinematic 

equations (3.17) and (3.20), respectively. The state vector x = \o\,(02->cô ,(l>̂ d̂ yf\\s

taken as feedback to the controller. This controller is used for the tracking problem, j  ̂

The tracking error is considered as the difference between the current Euler angles 
and the desired Euler angles.

Non-linear proportional derivative control logic is considered as follows:
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? ;=

T,=

-sat[K{<l>-<l>^) + c,co}  ̂

- s f { k , { 0 - e „ ^ )  + c,w,} 

- s a t [ K [ w - W , ^ )  + c,co^

(4.1)

where T = 7],7^,7^ is the maximum control torque available in each axis and

— ^  ^  2 
K = ki,k2,k2 and £  = [q , C2 , C3 ] are PD gains of the controller.

D is ttu rb a n c e  to rq u e s

dynam _acs

T o rq u e  S a tu ra tio n

S -F u n c tio n

R e f  a tti tu d e

wf[w1,»i2 ,w3]

R e f_ an g le s^ [p h i,th e ta ,p sO

erro r  ac tual

P D  C on tro ller

Figure 16: State feedback controller

4.2 Sliding Mode Controller
Modeling uncertainties have strong adverse effect on the non-linear control system. 

One of the most modem approaches to deal with these model imcertainties and 

inaccuracies in the system is the robust control. Sliding mode control is an important 
robust control approach. It is a nonlinear control strategy. This control can tackle the 

parametric and modeling uncertainties of a nonlinear system. A sliding mode 
controller design provides a systematic approach to the problem of maintaining the 
stability and consistent performance in the face of modeling imprecision. In sliding 

mode control strategy, a smooth surface or manifold S  is defined in the state space 

which represents a static relationship among the different state variables describing
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the behavior of the system [17]. If these relationships are enforced on the dynamics 

describing the system, the reduced order dynamics may contain highly desirable 

features. The idea is to specify a feedback control action of variable structure 

switching nature, which guarantees reach ability of the prescribed manifold. Once the 

manifold conditions are met, it proceeds to maintain the systems motion constraints to 

this sliding surface ([18], [19] & [20]). A sliding mode control design has various 

design options. Stabilization problem (rest to rest maneuvers), nutation problem (a 

periodic behavior of state variables), tracking problem (to achieve the desired values 

of the state variables), de-tumbling and constant spinning are also within the scope of 

this method with minor modifications.

4.2.1 Dynamics and kinematics with MRPs

For a spacecraft attitude we use Modified Rodrigues parameters for the development 

of sliding mode controller. A non-linear model for the spacecraft motion is given [17]
as

p  — F(p).CO (Kinematic Equations) (4.2)

CO f(tO ) "1“ I T I (Dynamic Equations) (4.3)
3̂ 3where Ig R  is the constant, positive definite and symmetric inertia matrix, 

© = [©,, 6 ^, 6)3 ]^ is the angular velocity vector, f  = [Ti, 72 > ̂ 3 is the control torque

and %  = [f^ , f  is the total external disturbance torque. The dynamic matrix

and kinematic vector are defined as

F . . , ( p )  =  i  !(1  - p ' p ) l „  +  2 [ p ‘ ] + 2 p p '>  (4.4)

f , . , ( s ) = r ' [ i s - ] . a  <4.5,

The cross product matrix [ C l  = [^1 »G >4̂ 31 is defined as
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0 -^3

[C ]= 0 - c ,

. < 2 0

Let us define a vector S — CO - m (p )  which is a sliding surface and under ideal

condition the state trajectory moves onto the sliding manifold (s = 0). The quantity 

m(p) is obtained using a desired vector field fi'om desired kinematic relations and is 

given by

m ( p )  =  F ' ( p ) d ( p )  (4 .6 )

The quantity d(p) is defined as

d ( p )  =  A ( p - p J  (4.7)

where Pd is the desired reference trajectory of MRPs, and A is a diagonal matrix

with negative elements. The values of entries of A are chosen at the bases of 

performance of the system. This allows for decoupled sliding motion and exponential 

convergence towards the final desired orientation. The inverse of dynamics matrix is 
derived as

F'' (p) = 4( 1 + {(1 - p'̂ p)l3>,3 - 2[p" ]}— X

As s = CO - m(p)
Therefore, fi*om equations [4.2] and [4.3]

P = F(p)(s + m(p))
Also,
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s =

CO---- p
d p ^

f(cc)) + r't-^ F(p)w  
dp 

f(ro) + r ‘t  - ̂ [F(p)(s + in(p))]

Clearly, for remaining on the surface (s — 0) , the control law is

t  = -I{f(c5) - ̂ [F(p)(s + m(p))]} (4.8)

To minimize chattering, the saturation function is added in the control law. This 

function is defined by

1 for s. > s

sat{s^,s) =
s.
—  for S . . <  £

-1  for s .< -8

where is a small positive number. Finally, the control law becomes

T = -I{f(c5) - ̂ [F (p )(s  + m(p))]+ Ksat(s„e)} 
dp (4.9)

Where K3X3 is a positive definite, diagonal matrix.

What is Chattering ?:
For an ideal sliding mode is that it exists only when the state trajectory of controlled

spacecraft coincides with the desired trajectory at every time t for some . This

may require infinitely fast switching. The representative point is then oscillates within 

neighborhood of the switching surface. This phenomenon is called chattering.

r
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stabilization Problem:
In stabilization or regulation problem, the final position of a spacecraft is taken to be 

zero (i.e unity quaternion). The corresponding MRPs are also taken to be zero as 

^  = 0. Also, the matrix A is taken as scalar A times the identity matrix. Then,

m(p)=F'(p)AI„d(p) 

= 4A(1+p^p)'{(l -p^3,3 - 2(p^]+2pp^}p

Differentiating w.r.t p

5m
• ^ = u ( i + f p y  {1 , 3  -  2 ( 1 + p ‘p ) - 'P P '}

dp (4.10)

Tracking Problem: ^
Requirement for the tracking problem is to follow a desired reference trajectory of 

MRPs (or Euler angles). The function m(p) has the following form for the tracking 

problem

m(p) =  4^(1+ p 'pX'p  - 4yl(l+ p^p)

{ ( i - p m . - 2 i p ’‘] + 2 p p " } p ,

The partial derivative of the above equation w.r.t p yields

9m
= 4 ; i ( i+ p W { L 3 - 2 ( i+ p 'p r p p ' )dp
- 8A( 1 + p ‘ p f  {p p ^  p ^ + K  ] + (pi))l3.3} 

+ 1 6 ; i ( l + p W { ( l - p m 3  -2 [p 1 + 2 p p " }p ^
— -T

(4.11)

r
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4.2.2 Lyapunov's StabUity

Lyapunov analysis is used to check the stability of the sliding vector S . Lyapunov 

method is usually used to determine the stability of an equilibrium point without 

solving the state equations. For Lyapunov stability we have to define an equilibrium 

point and state the Lyapunov’s First or Direct Method.

Definition: The equilibrium point x = 0 of a nonlinear system x = f  (:v) is

(1 ) Stable if, for each S  >0, there exist S = S{s) such that

x (0 )|| < S ^  ||x(0 || < Vfi- > 0

(2) Unstable if not stable.

(3) Asymptotically stable if it is stable and S can be chosen such that 

x(0) <  ̂=> limx(/) = 0f-X»

Lyapunov Analysis

The sliding vector S =  ( 0  - l6 (p) can be shown using Lypimdv analysis. Consider 

the Lyapunov function candidate

F(s) = is^s, =»r(s)>O Vs

7̂) F ( 0 ) =  0  and F ( s ) > 0 , V s e D \ { 0 }

(2) V ( j ) ^ 0, Vs e  Z), then J = Ois stable.

and

(3) If ^ ( 5) < 0, V.S G Z) \  | 0 | , then 5 = Ois asymptotically stable.

In other word if a function F(5 ) is positive definite and its derivative is negative 

definite for all x then this assures the stability of the system.
j

Proof:

Differentiating P^(s) w.r.t t

r

48



F  =  s ^ s

- T r -=  S CO---- p]

= s'(f(a)) + I-'t-^F(p)a) (4 ,2,
a p

The control law is defined as:

t  = -I{f(®) - 5 [F(p)(s + in(p))] +

r ‘T = -f(® )+ ^ [F (p )(s  + m(p))] - Ksat(s„f) 
dp

Substituting in Equ (4.12)

V  = -s^Ksat(5,,f)
This implies that

F  < 0, Vs

0
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Chapter 5

5. Simulation Results

5.1 Simulation Results
The analysis of solar radiation pressure and forces shows that the solar radiation 

forces and rotational torques, produced by the cm/cp offset, using control boom 

mechanism and four control vanes mechanism produces the small rotational torques 

of order IN-m and acceleration of order 10“̂  deg/s^2. For different mission tasks like 

orbit raising, orbit maintenance and maneuvering of solar panel etc. we need large 

angular maneuvers. For this purpose, we have small rotational torques and large 

moments of inertia of the solar sail due to its larger size. Following three tables give 

solar sail characteristics. Table 3 shows sail characteristics, table 4 sEows the attitude 

control characteristics while the simulation parameters are given in table 5.

Table 3Solar Sail Characteristics
Solar Sail Size 40m X 40m

Payload Mass mp=116 Kgs

Sail Mass ms=40Kgs

Control Boom Length . 30m

Distance of the vans from center of Sail d= 50m

Solar Pressure P= 4.563x10-^^111^

Solar Force F= 11.6 xlO'^N
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Table 4~ Attitude Control Characteristics
Inertia Matrix

/  =
"6000 0  0  

0 3000 0 
0 0 3000

Yaw Control Torque by Boom 0.2587 Nm

Pitch Control Torque by Boom 0.2587 Nm

Roll Control Torque by 4 Vans 0.8924 Nm

Pitch Control Torque by 4 Vans 1.1586 Nm

Table 5- Simulation Parameters
Initial Euler Angles Yaw= 10 deg

Pitch =10 deg 

Roll =10 deg

Initial Angular Velocities Wi = 0  rad/s V

(a)2 =  0  rad/s -

0 )3 = 0  rad/s
^ a

Desired Euler Angles before 150 Sec Yaw = 0 deg 

Pitch = 0 deg
_ Roll =0deg '

Desired Euler Angles after 150 Sec Yaw =  0 deg 

Pitch = 60 deg

Roll =Odeg - -

Constant Disturbance Torques Tdi = 0.15Nm 

Td2 = -0 .2 0  Nm 
Td3 = 0.30Nm

1-:̂

Two controllers, PD controller and sliding mode controller are used to simulate this 

tracking problem. PD controller results are taken for the saturation limit of rotational 

torque at INm. The natural frequency and damping factor of the controller are chosen^ 

to be = 0.06 and ^ = 0.9 giving the proportional and the derivative gain vectors as
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•y
= K = \co\ and Kj = C = 2\^co  ̂ respectively. The numerical values of the gain

vectors are K=[21.6 10.8 10.8] and C=[648 324 324]. Plots of closed loop

trajectories of torques, angular velocities and Euler angles are given in Fig. 17, Fig. 18 

and Fig. 19 respectively.

Constant external disturbance torques used in simulation are 15% of yaw torque, 20% 

of pitch torque and 30% of roll torque. Due to these disturbance torques, we can see a 

steady state error in all Euler angles. This agrees with the theory of PD controller.

- with disturbance
- without disturtiance

Figure 17-PD Controller torques
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Figure 18-PD Controller Angular Velocities
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Figure 19- PD Controller Euler Angles

The sliding mode controller is tested and compared with PD controller for the same 
tracking problem as described above. A sliding mode controller is developed based on
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I ^

the modified Rodrigues parameters. The initial conditions for the modified Rodrigues 

parameters are given by [0.0397 0.0473 0.0397] which are converted from Euler 

angles y/= W , 6 - W  (j> = W .  The conversion of the Euler angles to the 

modified Rodrigues parameters is done vide the fimction eulerang2mrp.m. Finally, 

the tracking results in the form of Euler angles are obtained from the MATLAB 

routine mrp2eulerang.m. The desired Euler angles are set to zero and the 

corresponding MRPs before 150 seconds are p(f = 0) = [0 0 0]. After 150 seconds, 

the desired pitch angle is set to 60 deg while the yaw and roll angles are kept zero. 

The corresponding MRPs then come out to be p(/>150) = [0 0.2679 0]. The 

diagonal elements of K in Equ. (4.9) are all set to value 1.0. The constant X is set to 

- 0.07. The parameter e, in the saturation function, in the control law is chosen as

0.01. It suitably covers the chattering problem in the control profile. The closed loop 

MRPs are shown in fig. 19. The plots of MRPs, applied control torque trajectories, 

angular velocities, and tracking trajectories of Euler angles, with and without external 

torque disturbances, are shown in Fig. 20, Fig. 21 Fig 22 and Fig. 23 respectively. 

This shows the capability of the controller to overcome the model uncertainties and 

extemal disturbances.

r
— 4

Figure 20- Modified Rodrigues parameters
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Figure 21 -  Sliding Mode Torques

Figure 22-Sliding Mode Angular Velocities
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§.

Figure 23 - Sliding Mode Euler Angles 

Euler Angles

o>V"O
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Figure 24 PD & SM Euler Angles with disturbances 

In Fig. 24 euler angles tracking trajectories for both PD and sliding mode controller

are compared. This proves the robustness of sliding mode as compare to PD confrol.

Phase portraits of the stâ te variables are shown in Figs. 25, 26 and 27 below:
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Figure 26 - Phase Portrait (02 Vs p 2

51



Figure 27 ~ Phase Portrait Gi2  Vs p 2 wHh s = 9,005

In Fig. 25 sliding line is shown. In Figure 27 chattering effect is shown for smaller 

value of e. Sliding coordinates are shown in Figs. 28, 29 and 30. It is seen that they 

convert the tracking problem of state variable into a stabilization problem. Therefore, 

all sliding coordinates must settle to zero as shown in figures.
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Figure 28 -  Sliding Coordinate Sj Vs time

Figure 29-Sliding Coordinate S2  Vs time
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Figure Sliding Coordinate S3  Vs time
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Chapters

6.Conclusion and Recommendations for
Further Research

6.1 Conclusion

In this dissertation, a PD controller and sliding mode controller are developed to 

simulate the tracking problem of spacecraft attitude maneuvering. Small rotational 

torques are produced by boom and vanes mechanism using solar radiation pressure 

and forces. These torques are xised for large angle maneuvering. The provided torques 

are in the limits of 1.0 N-m.

PD controller is used for the torque of 1.0 N-m. It has given smoother trajectories of 

torque and angular velocities. There is no chattering issue has been seen in the torque - 

and angular velocity profiles. Lesser switching took place in the control torques 

generated by the PD controller as compare to sliding mode controller. For PDr 

controller we used Euler angles. The disadvantages of the PD controller are 

singularities for the large angle maneuvers. For example, the sin^arities occur at 90® 

and 270° in the pitch angle maneuvering. So we cannot use it for pitch maneuvering 

greater 90°. It has been validated through the simulation. Proportional gain and 

derivative gain adjustment is also difficult. On the other hand, the sliding mode 

controller uses the Modified Rodrigues parameters. The Modified Rodrigues 

parameter represent minimal parameterization as compare to quaternion 
representation with singularity only at 360° as compare to the Euler angle 
representation. Therefore, it is able to control the attitude of a spacecraft for large 
angular maneuvers.

There are two major advantages of the sliding mode controller over the PD controller. 

One is the auto gain adjustment and other is the transformation of higher order 

systems into first order sliding surface. The proportional and derivative gain
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adjustment'is a difficult problem in PD controller for non linear systems. 

Maneuvering rates, whether faster or slower, are decided as per these gains. Sliding 

mode controller is robust in comparison to the PD controller and has no such issue. 

We transform the original higher order tracking problem into a simple 1̂  order 

stabilization problem in the sliding surface parameter S. In the first order system, the 

intuitive control strategy is, ’if the error is negative, push is exerted in the positive 

direction and if the error is positive, push is exerted in the negative direction’. This 

characteristic of sliding mode control covers the uncertainties due to modeling and 

external disturbances from the environment. The disadvantage of sliding mode 

controller is high switching of the controller which causes chattering. This is not 

desirable, since it involves high control activity. It can be reduced by using different 

techniques. Robustness and computational simplicity of the controller recommends it 

for online applications.

6.2 Recommendations for future research
Different control teclmiques for spacecraft attitude control using solar radiation forces 

and torques have been studies in this dissertation, but some issues have not been 

addressed in details or at all. So it is suggested that these issues should be addressed 

in future research.

1. Actuator dynamics has not been used in the present studies and in the 

simulation results. Only a low torques of with the saturation limits of 1.0 N-m 

have been used. The actuators dynamics and actual torques produces by this  ̂

mechanism can also be used for attitude control

2. Due simplicity and robustness of sliding mode control technique, we can use it 

for on line problems as well.

3. These control technique are also suitable for internally produced torques like 
torques produced by thrusts, electric propulsion and momentum transfer 
reaction wheels.

4. Some mission specific application like earth pointing spacecraft in elliptic 

orbits, sun pointing spacecraft in elliptic orbits, orbit maintenance and escape 

orbit trajectories can also be solved using these techniques.
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APPENDIX

MATLAB Code for Simulations Performed for Solar Torques and Forces 

Generation

I M- FUe \
\ \

% This program generates three axis stabilized torque on 
%solar sail using boom 
r2d = 180/pi;
mp = 116; % Payload mass in kg 
ms = 40; % solar sail mass in kg.
len= 15; % Control boom length in meters
theta =0:0.1:pi/2; 
phi = 0:0.1:2*pi; 
alpha = 0.0;
F = 11.6*10^-3;
for i =1:length(theta) 

for j=1:length(phi)
Mx U  : j ) = -

F*{mp/(mp+ms))*len*cos(alpha)^2*cos(theta(i))*sin(phi(j)) 
/

My(i,j) = -
F*(mp/(mp+ms))*leh*c6s(alpha)^2*cos(theta(i))*cos(phi(j)) 
/

end
end
tx_max = max(max(Mx)) 
tx_min = min(min(Mx)) 
ty_max = max(max(My)) 
ty_miri = min(min(My)) 
figure(1)
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surf(Mx);grid
xlabel('Boom Azimuth \phi (rad)'); 
ylabeK'Boom elevation \theta (rad)'); 
zlabel('Pitch Torque \tau_x (N-m)'); 
figure(2) 
surf(My);grid
xlabel('Boom Azimuth \phi (rad)'); 
ylabeK'Boom elevation \theta (rad) ') ; 
zlabeK'Yaw Torque \tau_x (N-m)');

I M-File
____________________________I

clear all 
clc
% This program generates three axis stabilized torque on solar sail
% using Control Vanes
r2d = 180/pi;
dell = -pi/2:0.1:pi/2;
del2 = -pi/2:0.1:pi/2;
alpha = 0.0;
d = 28.28; % Distance from center of sail to vanes
F = 11.6*10^-3;
for i =1:length(dell)

for j=l:length(del2)
My(i,j) = F*d*cos (alpha) ̂ 2* (cos (dell (i) ) ""3 - cos (del2 (j ) ) “̂3) ; 
Mz(i,j) = F*d*cos (alpha) "̂ 2* (cos (dell (i))'^2*sin(dell (i)) + 
cos(del2(j))"2*sin(del2(j ) )); 

end
end
tz_max = max(max(Mz)) 
tz_min = min(min(Mz)} 
ty_max = max(max(My)) 
ty_min = min(min(My)) 
figure(1) 
surf(My);grid
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xlabel('Vanel Rotation \delta_l (rad)’); 
ylabel(’Vane2 Rotation \delta_2 (rad)'); 
zlabel('Pitch Torque \tau_x (N-m)'); 
figure(2) 
surf(My);grid
xlabel('Vanel Rotation \delta_l (rad))'); 
ylabel('Vane2 Rotation \delta_2 (rad)'); 
zlabel('Yaw Torque \tau_x (N-m)');

\ M- Ffle I
I . \

clear all 
clc
%This Program gives Solar Radiation Force (SRF) vs sun 
%angle(pitch angle)for a non-perfect sail of 40m by 40m 
r2d = 180/pi;
Bf = 0.79; Bb = 0.55; % non-lambertian coefficients
ef = 0.05; eb = 0.55; % surface emission coefficients
r = 0.88; % reflectivity of front surface
s = 0.94 ; % specular reflection coefficient
P = 4.563*10^-6; % Solar Pressure in N/m^2
A - 40*40; % Sail Area
a = 0:0.01:pi/2;
Fn = P*A*{(l+r*s)*cos(a) .̂ 2+Bf*r*(1-s)*cos(a)+ {ef*Bf-
eb*Bb)* (1-r)*cos(a)/ (ef+eb));
Ft = P*A*(l-r*s)*cos(a).*sin(a);
F sqrt(Fn.^2 + Ft. 2̂) /

max(F)
beta = atan2{Ft,Fn); % Angle of the force with surface 
figure(1)
plot(a*r2d,Fn,’r»,a*r2d,Ft,»r--',a*r2d,F);grid;shg
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title ('Sun Angle Vs Normal,Tangential Force & Total 
Forces’)
xlabel('\alpha (deg)');ylabel{'Forces {N*m)'); 
legendCFn’, ’Ft’, 'F') 
figure(2)
plot(beta*r2d);grid
title ('Angle b/w Net Force & Surface Normal') 
xlabel('time (sec)');ylabel('\beta (deg)');

I M-FUe

clear all 
clc
% Payload vs square sail side when characteristic acc. is 
% known. Taking Payload as 1/3 of the total mass of the sail

PO = 4.563*10^-6; % solar radiation pressure at lAU
eta =0.85; % sail efficiency
mt =0:150; 
ms = mt/3;
ca =[0.5 1 3 6] *1000; % characteristic acc. in m/s' 2̂
figure
hold all
for i=l;length(ca)

for j=l:length(mt)
area = ca(i)*mt(j)/(2*eta*P0); 
side(j)=sqrt(area);

end
plot(ms,side/1000)

end
legend('0.5 mm.s'^-2',’1 mm.s""-2','3 mm.s'^-2’,'6 mm.s"^-2') 
xlabel('Payload (kg)'); 
ylabel('Sail Side (m)'); 
hold off
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MATLAB Code for Spin-Stabilization Simulation

I Function File |

% Function File of dynamic equations of solar sails spin 
% stabilization 
fiinction out = Dynam_equ(t,x) 
global J P epsi 
d2r = pi/180; 
wl = x(l,l) 
w2 = x{2,l) 
w3 = x(3,l) 
r = x(4,l) 
p = x(5,l) 
y = x(6,1)
T1=0;
T2 = 0;
T3=epsi*F;
wldot = ((J{2) -J(3))*w2*w3 + Tl)/J(l) 
w2dot = ((J(3) -J(l))*w3*wl + T2)/J{2) 
w3dot = ((J(l) -J(2))*wl*w2 + T3)/J(3) 
rdot = wl + (w2*sin{r) + w3*cos(r))*tan(p) 
pdot = w2*cos{r) - w3*sin(r); 
ydot = (w2*sin(r) + w3*cos(r))/cos(p); 
out =[wldot;w2 dot;w3 dot;rdot;pdot;ydot];

I M-File I

clear all 
clc
% Attitude control by spin stabilization using cm/cp offset 
global J epsi F 
d2r = pi/180;
r2d = 180/pi;
J = [6000;3000;3000]; % Inertia Matrix
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Omega =0.5; % Spin axis angular Velocity in deg/s
epsi =0.1; % cm/cp offset in meters
F =0,01; % SRPF in Newtons
t_span = [0 2 0003;
%initial conditions for angular velocities and Euler angles 
xO = [Omega; 0; 0; 0; 0; 0]*d2r; 
options=odeset('MaxStep',1);
[t,x] = ode45{@Dynam_SS,t_span,xO,options);
figure(1)
subplot(2,2,1)
plot(t,x(:,5)*r2d);grid
xlabel{'time (sec)');ylabel('Pitch(deg)');
subplot(2,2,2)
plot(t,x(:,6)*r2d);grid
xlabel(’time (sec)');ylabel('Yaw(deg)'); 
subplot(2,2,3)
plot(x(:,5)*r2d,x(:,6)*r2d);grid 
xlabel(’Pitch(deg)');ylabel('Yaw(deg)'); 
siibplot (2,2,4)
plot (x (: , 2) , X (: , 3) *r2d) ; grid
xlabel('\omega_2 deg/s');ylabel('\omega_3 deg/s');

MATLAB Code for Simulation with Sliding Mode Control
Z I

TI Function FileI

% Function Files used to convert Modified Rodrigues Parameters to
%Euler Angles and vice versa
fxanction p = angle2mrp (ang)
d2r=pi/180;
ang = ang*d2r;
q = angle2quat(ang(1),ang(2),ang(3));
P =[q(l);q(2);q(3)]/(l+q(4));

%

71



function ang = mrp2angle(p) 
r2d = 180/pi;
q4 = (1-(norm(p))^2)/(1+(norm(p))^2); 
ql = p(l)+p(l)*q4;
q2 = p(2)+p(2)*q4; ^
q3 = p(3)+p(3)*q4;
[yaw, pitch, roll] = quat2angle([ql,q2,q3,q4]); 
ang = [yaw;pitch;roll]*r2d;

i Function File If a :

% Dynamics of sliding mode 
function out = slidingmode_dyn(t,x) 
global fid J K lemda epsi p_d 
d2r = pi/180;
if( t > 150) - -

p_d = [0.866025403784439;0;0.5] ;
end
W = [x(l,D ; x(2,l) ; x(3,l)] ; 
p = [x(4,D; x(5,l); x{6,l)];
Jw = J*w;
Jwx = [0 -JW(3) Jw(2);Jw(3) 0 -Jw{l);-Jw(2) Jw(l) 0];
px =[0 -p(3) p(2);p(3) 0 -p{l);-p(2) p(l) 0];
pdx =[0 -p_d{3) p_d(2);p_d{3) 0 -p_d(l);-p_d(2) p_d(l) 0];
P =((1-p'*p)*eye(3) + 2*px + 2*p*p')/4; 
f = inv(J)*Jwx*w;
%-----------Control Law ( for tracking)----------
terml =lemda/(1+p’*p);
term2 =lemda/(1+p'*p)*2;term3=lemda/(1+p'*p)^3; 
m = 4*terral*p - 4*term2*((1-p'*p)*eye(3)- 2*px + 2*p*p')*p_d;
delml = 4*terml*(eye(3)-2*p*p'/ (1+P'*p));
delm2 = B*term2*(p*p_d' -p_d*p’+pdx+(p_d'*p)*eye(3));
delm3 = 16*term3*((1-p'*p)*eye(3)- 2*px + 2*p*p*)*p_d*p';
delm = delml - delm2 + delm3;
s = w - m;
for j=l:3

if( s(j,l) > 0)
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sat_s (j , 1) =min(s (j , 1) , epsi) /epsi;
else

sat_s(j,1)=max(s (j,1),-epsi)/epsi;
end

end
ang= rarp2angle(p);
u = -J*(f - delm*(F*m + F*s) + K*sat_s); 
u=sign(u).*min(abs(u),l*ones(3,1)); 
wdot = f + inv(J)*u; 
pdot = P*w;
fprintf{fid,’%f %f %f %f %f %f %f %f %f %f %f %f %f 
\n',t,u(l),u(2),u(3),ang(l),ang(2),ang(3),w{l),w(2),w (3},s (1),s (2),s ( 
3));
out = [wdot;pdot];

1

I M-FUe

clear all 
clc
global fid J K lemda epsi p_d 
fid = fopen('xd.dat’,'W') 
d2r = pi/180; 
r2d = 180/pi;
J = [6000 0 0;0 3000 0;0 0 3000]; % inertia matrix
K = 0.01*eye(3);
lemda = -0.07;
epsi = 0.1;
t_span = [0 4 00] ;
ang =[10;10;10]; % initial euler angles
W = [0 ; 0 ; 0 ] ;
p = angle2mrp(ang);
p_d =[1;0;0]; % Desired MRPs
%initial conditions - modified rodrigues parameters and 
%angular velocity components 
xO = [w;p] ;
options=odeset(’MaxStep',1);
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[t,x] = ode45 (@slidingmod.e_dyn, t_span,xO, options) ;
fclose(fid);
load xd.dat
figure(1)
subplot{3,1,1)
plot(t,x(:,4));grid
xlabel('time (sec)’);ylabel('pi');
s\ibplot (3,1,2)
plot(t,x(:,5));grid
xlabel('time (sec)’);ylabel('p2');
siibplot (3,1,3)
plot(t,x(:,6));grid
xlabel('time (sec)');ylabel('p3');
figure(2)
subplot(3,1,1)
plot(t,x(:,1));grid
xlabel(’time (sec)');ylabel('\omega_x (rad/s)'); 
subplot(3,1,2) 
plot(t,x(:,2));grid
xlabel('time (sec)');ylabel('\omega_y (rad/s)'); 
subplot(3,1,3) 
plot(t,x(:,3));grid
xlabel('time (sec)*);ylabel('\omega_z (rad/s)');
figure(3)
subplot(3,1,1)
plot(xd(:,1),xd(:,2));grid
xlabel('time (sec)');ylabel('\tau_x (N-m)');
s-ubplot (3,1,2)
plot(xd(:,1),xd(:,3));grid
xlabel('time (sec)');ylabel('\tau_y (N-m)');
subplot(3,1,3)
plot(xd(:,1),xd(:,4));grid
xlabel(‘time (sec)');ylabel('\tau_z (N-m)');
figure(4)
subplot(3,1,1)
plot(xd(:,1),xd(:,5));grid
xlabel('time (sec)');ylabel('yaw in deg');
subplot(3,1,2)
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plot(xd(:,1),xd(:,6));grid
xlabeK'time (sec)’) ;ylabel ('pitch in deg');
subplot(3,1,3)
plot(xd(:,1),xd(:,7));grid
xlabel('time (sec)');ylabel{'roll in deg');
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