TITLL PAGL

Minimization of TS using Whole Test Suite
Generation method with EA
(Multi-Objective Evolutionary Generation of the Whole test Suite)

;P:L _'.:_3: ﬁ"; T

(s = (S0P
i

. ":\
o
'

b
w
. 1
b
-

h-
-
-
3

Submitted by:
Sadia Ashraf
317-FBAS/MSSE/F10

ST Supervised by:
‘ Dr. Aamer Nadeem

el Co-Supervised by:
~:nX My, M Imran Saeed

Department of Computer Scicnce and Softwarc Cngincering

Faculty of Basic and Applied Sciences

[nternational Islamic University Islamabad

Mulii Olective Whole test Suite Generation

’ l& .)
P‘{ é{f. ‘J\((o
/ ..?

TITLE PAGL

Mulut Objective Whole test Suile Geagranon

T'HILE PAGE

Department of Computer Science and Software Engineering
International Islamic University Islamabad

Dare;

Final Approval

This is to certify that we have read the thesis submitted by Sadia Ashraf, 317-FBAS/MSSE/F]0.
[t is vur judgment that this thesis is of sufficient standard to warrant its acceptance by
International Islamic University, Islamabad tor the degree of Masters of Science in Software
bngineering (MSSE).

Committee:

External Examiner:
Dr Rafi us Shan
Associate Prolessor
Comsat Abbottabad

Internal Examiner:

Mr. Muhammad Nasir

Lecturer

Department of Computer Science
HUI

Supervisor:

Dr. Aamer Nadeem

Head of Department

Department of Bio Informatics
Muhammad Ali Nnnah U niversity

Co-supervisor:

Mr. Imran Saced

Assistant Professor

Department of Computer Science
& Sottware Engineering

HW|

Multi-Objeciive Whole test Suite Generation

DEDICATION

Dedication...

To my family especially my father. mother and sister
who are an embodiment of Diligence and Ilonesty.
without their Prayers and Support
this dream could have never

come true.

Multi-Objective Whole test Suite (eneration

DISSERTATION

A disscrtation Submitted to
Department of Computer Scicnee and
Software Engineering,
Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad
As a Partial Fulfillment of
the Requirement for the Award of the
Degree of Masters of Science in Software Engineering

(MSSE)

Multi-Objective Whele lest Suite Generalion

DECLARATION

Declaration

| hereby declare that this thesis “Minimization of TS nsing Whole Test Suite Generation
method with EA (Multi-Objective Evolutionary Generation of the Whole test Suite)” neither as
a whole nor as a part has been copied out [rom any sourcc. It is further declared that | have done
this research with the accompanied report entirely on the basis of my personal eftorts. under the
proficient guidance of my teachers. especially my supervisor Dr daner Nadeen. [f any part of
the system is proved to be copied oul from any source of found (0 be a reproduction ol any
project from amy of the training institute or cducational institutions. 1 shall siand by the

consequences.

Sadia Ashraf
317-FBAS/MSSE/F10

Vi
Multi-Objective Whole test Suile Generation

ACKNOWLLDGEMENT

Acknowledgement

In the namic of Allah. the passionate. whose blessings made it possible for me 1o complete this
complex and hard task. Its completion is a matter ol great enthusiasm and pleasure tor me. [Uis

all because ot Almighty Allah’s guidance that made me so able.

I am fortunate enough that a masterful intellect. in the mind of my supervisor Dr. Aamer
Nadeem. was with me. | offer my sincerest gratitude to him. who has supported me throughout
my thesis with his patience and knowledge whilst allowing me the room to work in my own way.
I attribute the level of my Masters degree to his encouragement and effort. T have no words to
thank the laborious and tiring contributions of this extraordinary personality. One simply could

not wish for a better supervisor,

| wish to express my deepest gratitude (o Mr. Imran Saced for his worthy support and kind
cooperation particularly near the completion of my thesis. | thank the members of my graduate
commiltee for their worthy coniments and valuable criticism. | am also gratelu! o my [ricnds

and colleagues tor their love and encouragement.

It will be failing in miy dutics il 1 miss to thank my beloved family. Tam indebted to my parents
and would like 1o express my deepest gratitude ¢ them for their comsiant encouragement.
affection and motivation. Their prayers always contribute a lot in completing difficult tasks. It is

due to their uneaplainable care and love that T am af this position 1oday.

My sister deserves my special appreciation for providing me her amusing companionship
during her tight and strained schedules. after which [always teel fresh and relaxed. She always

motivates me in my work whenever | got stuck in each and every step. Also appreciate her

Vi
Multi-Objective Whole test Suite Generation

ACKNOWLEDGEMENT

spiritual support that would be a key point of my achicvement and suceess. | am also thankful to
my {riends and batch fcllows. who encourage me 2 lot and guide me as well during (his whole
time. Fspecially one of my friends Saba who helps me in cach and cvery step of this rescarch

work.,

Sadia Ashraf

317-FBAS/MSSE/F10

v
Multi-Objective Whole test Suite Generation

PROJECT IN BRILF

Project In Brief

Project Title: Multi-Objective Fvolutionary Generation of the whole test Suite

Undertaken By: Sadia Ashrat
317-FBAS/MSSLAT 10

Supervised By: [»r. Aamcr Nadeem
Start Date: Apnl. 20]2
Completion Date: April. 2014

Tools & Technologies: Matlab R2015.
Documentation Tools: Microsoft Office Word 2007
Draw.io
Microsoft Office Excel 2007

Operaling System: Microsofl Windows 7. [lome Premium

System Used: Dell Precision M6500

Multi-Objective Whole test Suite Generation

ABSRACT

Abstract

Due (o the recent advances that were made in the field of sofsvare testmg. it is now possible 1o
automaticaliv generate test cases for the SUT which reach almost wny pomnt nr the source code
There are tvo busic issues with the approach of targeting one distinet coverage godal ut « time.
the first being thar the coverage goals (0 be covervd are inter-related and the second that it is nof
grerantced tha o generated test case will actually succeed 1 covermg the required gool

hecause some 1estmg goals are more difficult thain others and sone can he infeasibie too

Whole test suite generation. is a search-based technigue that atiempts to generate Whole Test
suites and optimize them nsing Genetic Algorithms so that the gencraled Test Suites fulfill the
coveruge criteria, instead of generated test cases for each coverage goal sepirately. Lsing this

technigque up 1o 18 times more coverage is achieved. compared to lurgeting single hranches

Whole test suite generation, generales o fest sufie which achieves desiruble coveruge
evolutionallv, using genetic algorithm. but the generaied test Suite is noi sunimized and has
redundant 1est cases in it. The Proposed Solution for this issue is 1o convers the whole test Suite
eneration fechmigue (o d mudti Objective genetic algorithm to eaable it to produce miinintized

sofutiont in one run

Multi-Objective Whole test Suite Generation

TABLE OF CONTENTS

Table of Contents

AbstraCt .‘0....“.0.‘0.0l....l......‘.“...0...‘0-."."."-‘.....0.
List of Figures

LiSt OF TaDBIeS «uveenneeiieervevnaseetneriassosannannmssanners

Acronyms and Abbreviations ..o vissssssserrn XXV
Chapter 1. INtroduction ..ot sririsisossiees 1
1.1 AULOMATEd LESLINE c.oeereereiemneiitim sttt s 3
1.2 Test DALA GENETATIGN vrveveeeeeeeeeees oo esemess et es s ee s cesees e mmas s s e s assasanse)
1.2.1 Random Test Data Generation...........cccove v oot oo
1.2.2 Symbolic Test Data Generationvveeemimi s 4
1.2.3 Dynamic Test Data GEenerationoovvrenen i
1.3 Test Suite OPUMIZALON. ccovvvvoreveereeeiesireeriie s
1.3.1 MINTMIZATION oot e e et e e e e aae e e oe et s ss e na e s caaaas st s it s
1.3.2 PHOTIZALON ..ottt en et a s st s st 5
1.3.3 SelRCEIOMN 1eoeveveesveenrmeeer oo eaaeasseseeneaseremaasee s siisea s srmnaecasesrasbe v e ioeanieran o taian et 6
1.4 Genetic AIZOTTTRIM « oo e, 6
1.5 Multi-Objective Genetic AlZOrithm ..o 8
1.6 Problem Statementovveiinienn, et eeereea— .o eeeteeiare e e et e et e st ranea i s 8

LR T R L L R Ll el X

.

1.7 Research Objective ...oooeiiiiiininnicinenn .8
1.8 HLYPOLIESTS . oo cenivet et s bbb b 9
1.9 Dissertation OUTINES . oot rba s r e b e s 9
Chapter 2. Backgrounda. i ermimrssecer it seseses s sisnsisssanss 13

Multi-Objective Whole test Suite Generation

Xl

TABLL OF CONTENTS

2.1 Test SUILe OPUIMIZALION vveviueir ittt bt 13
2.2 Technical DetiMItIONS ceveeiei i o cereierarie e e ettt e 13
2.3 Types OF 1EST CASES w.vcviiireiniiiinr it e 14
34 TeStCASC SCIECTION ervee oot ieree e ceeraeteerereessre s r e e et ne e st s 15

2.4.1 Modification Revealing test Cases oo 16

2.4.2 Modification Traversing test CaSes ... 16
2.4.3 Controlled Regression Testing ASSUmMplion ..., 16
2.5 Test €ase PriorTtizZation ...t s 17
2.5.1 Coverage Based Prioritizalion ... 18
2.5.2 Other APProaches.....cooiiiiies i 19
2.5.3 Cost-Aware test Case Prioritization.......cooovim oo, 19
2.6 Test SULLE MINTMIZATION wivvieiusierreerecaeeieraanessirasainsassnss i erns e aeis e s 20
2.6.1 Impact on fault-detection capability oo 21
2.7 TeSt Aala GENETALION o.cevevee e eee e breenr e sressaies s st ey e et 2
2.7.1 Test data Generation SYSEIM.....c.cooioiviiiniirin i 22
2.7.2 Type of Test Data GENETALOrS ...c.c.ccvvmiriiiisiniiitit e 23
2.7.3 Importance of Path Selector ..., 24
2.7.4 Problems with Automated Test Data Generation ... 25
2.7.5 Meta-Heuristic techniques for test Data Generation ...y 26
2 8 Whole Test Suite GENETAtION ...coc e v omiea et 27

2 9 Meta-Heuristic Techniques, Evolutionary Algorithms ... 29

2.9.1 HiStOry covvveecceeriaieinnnns et eretieieteeraaetasanaeerannnrae ey serereese b br b s s e 31
2.9.2 Popular Meta-Heuristic Algorithms ... 31
2.9.3 Genetic Algorithms ..o VT U TPV PIPOPTPO 33
Chapter 3. Related Workcocoviiinnneiiricceces revsresiereerersesensatasteaseasonsassrnsnsnsnnend 1
Xl)

Multi-Objective Whole test Suite Generation

TABLE OF CONTENTS

3.1 Test Suite Generation TeChMIGUES. ..o e reeerieer e 38
3.1.1 Pacheco €t al oo 00 38
312 MUHAMMAN €1 Al oo e 3
303J.C. B RID@ITO el Al woovieeiee e 39

314 Torella €1 Al o0 0

3.1.5 S, Wappler and F. Lammermann et al ... 4]
3.2 Test Suite Minimization TCChNIQUES. ..ot 42

3.2.1 Dale BIue et @l oo icvi et 42

3.2.2 Dennis Jeffrey and Neetam Gupta et al...onnn 43
Chapter 4. Problem Definition .o 46
4.1 Tssues with Regular Automated test Suite Generation and Evosuite................ 46
4.2 The Rescarch LIMITATION ...ooii e e 48
Chapter 5. Implemented Approach for MO-WTS Generation...ccecveeeeeeee 50
5.1 Implemented APProach ... 51
5.2 Diagram of Implemented Approach ... 52

5.3 Fitness FURCHON FOFMUIA woveveee oottt e seenans DD

5.4 Chromosome DESTEN ..o it s 56
5.5 Algorithm of whole test Suite Generation 36
5.5.1 Algorithm of WTS Generationcevevvrvrsrcnminneeresnneinnn 37
5.5.2 Algorithm of MO-WTS Generationccooeeevnivecininnnn . 60
5.6 Case Study used for Implemented Approach ..., 68
5.7 Flow Chart of the Proposed Approach ..., 70
Chapter 6. T00l IMPlemMentation. . e ciiimmiiiitiinsitsiasesnins crinren 08
XN

Multi-Objective Whale tesl Suite Generation

TABLE OF CONTENTS

6.1 TOO! AFCIILECIUTE 1ooevievvvreiassvesserconnasinser s e re s o 73
6.1.1 Multi-Objective Genetic Algorithm Program e e 12
6.1.2 Branch Coverage and Method Coverage TSSOSOV PRUUR PRSP)
6.1.3 Actual System s 13

6.1.4 TSt DIAIA SEU o oot a e s 73
6.2 Components or Implemented Genetic ALZOTTERIM vt 74
6.3 SySLEM COMPONENLS w..ovrvvsrereris vt 74
6.3.1 WT'S (eneration e T
6.3.2 MO-WTS GENETALION «oeveiviieimiiirier ettt 84
Chapter 7. Results and DiScussions c.c..oeerssses: vesseessransersorarassasnssarassessses § 00
7.1 EXPErimental IDIESIZN cooovuverioreimsrmssinssis st 100
ToEo L IDALA SEU oot ee e eees e eeemeeesassasan s s s e e T 100
7 1.2 Performance MEASUTEITIETILocoviiirenimnioiniansseri st e s 100
7 1.3 Parameters SETHIE .o.vovvveoreiemiaessameeens s sbsmsss st 100
7 1.14 Final Total Average Resulls ... 107
7 2 D ISCUSSION wovaveraesereresnssssssssseseseseamamssr bbbt b s b1 s 10
7.3 Threats t0 VALY coovveieeeremoesrmnsisn e e RN
Chapter 8. ConclUSION cuismmmmisssssmssmsisrmsersersstssss s W |
D 1 CONCIUSION 1avrvreereriarsessnsseeeearaeses s sesas s sas s s bbb a2 114
R D FULLFE WOTK «evesae e eer e sesesemssemeasememmem s sttt ab bbb 114
RETCIrEICES: vuvenrrersmsonmesssnsersasararssisesorssssnmsasanenssssassanaane bresesrsrossesnterenttsare R 118
Appendix A: Generated Code i 126
XV

Multi-Objective Whole test Suite Generation

LIST OF F1IGURES

List of figures:

Fig 1.1: Workflow of the Genetic Algorithm
Fig 1.2: Dissertation Quiline

Fig 2.1: Example from Elbaum et al

Fi
1

Fi

- Worklow of a Test Data (Generator

1]
Lo
F-a

- Waorkflow of “Whole test Suite Generation’

=
{1
I-J
[

[

4 Pseudo-code of *Whole test Suite Generation’

=~

r

)

Fig 2.5: Flow Diagram code of a Genetic Algorithm

Fig 5.1: Sicps of the implemented approach

Fig 5.2: WTS Gen Algorithm Initial Population

Fig 5.3: WTS Gen Algorithm Selection

Fig 5.4: WS Gen Algorithm Crossover

Fig 5.5: W I'S Gen Algorithm Mutation

Fig 5.6: WTS Gen Algorithm Main Program tlow

Fig 5.7: MO-WTS Gen Algorithm Initial Population

Fig 5.8; MO-WTS Gen Algorithm Fast Non-Domimant Sort
Fig 5.9: MO-WTS Gen Algorithm Crowding Distance

Fig 5.10: MO-WTS Gen Algorithm Selection

Fig 5.11: MO-WTS Gen Algorithm Crossover

Fig 5.02: MO-WTS Gen Algorithm Mutation

Fig 5.13: MO-W I'S Gen Algorithm Main Program Flow

Fi

Fig 5.15: Contratlow Diagram of the Multi-Objective Whole test Suite Generation Approach

5.14: Contraflow Diagram of the Example

=

Fig 6.1: Architecture of the implemented approach.
Fig 6.2; Main page of the tool.

Fig 6.3: Zoomed View of the Tool.

Fig 6.4: Initialize Process

Fig 6.5: Create test Cases.

Fig 6.6: Create test Suites

Multi-Objective Whole test Suite Generation

LIST OF FIGLURES

Fig 6.7: Calculate the inesses

Fig 6.8: Perform Selection

Fig 6.9: Perlorm Crossover

Fig 6.10: Pertorm Mutation

Fig 6.11: Fitness of the Child Population.
Fig 6.12: Display the Results

Fig 6,13: Main Interface

Fig 6.14: Zoomed View of the interface
Fig 6.15: Initialize the process

Fig 6.16: Create test Cases

Fig 6.17: Create test Suites

Fig 6.18: Calculate the fitnesses

Fig 6.19: Calculawe the Fitness Function2
Fig 6.20: Calculate the crowding distance.
Fig 6.21: Pertorm Selection.

Fig 6.22: Perform Crossover.

Fig 6.23: Perform Mulation.

Fig 6.24: Performing Ticrations.

Fig 6.25: Display the Results.

Fig 6.26: Culcutate Average of the existing approach’s results.

Fig 6.27: Calculate Average of the implemented approach’s results.

Fig 7.1: Total iterations Bar Chart. Experiment |
Fig 7.2: 1otal iterations Pic Chart. Experiment 1
Fig 7.3: Total Repetitions Bar Chart. Experiment |

Fig 7.4: Total Repetitions Pie Chart. Experiment |

Multi-Objectis e Whole test Sunte (Generation

Xl

LIST OF FIGURES

Fig 7.5: Total lterations Bar Chart, Expeniment |

Fig 7.6: Total lterations Pie Chart. Expertment |

Fig 7.7: licrations of both echniques.

Fig 7.8: Pie Chart of the lterations of both techniques
Fig 7.9: Total repetitions Bar Chart. Experiment 2
Fig 7.10: Total repetitions Pie Chart. Experiment 2
Fig 7.11: Total lterations Bar Chart. Experiment 2
Fig 7.12: Toual lierations Pie Chart. Experiment 2
Fig 7.13: Total lterations Bar Chart. Fxperiment 2
Fig 7.14; Total Iterations Pie Chart, Experiment 2

Fig 7.15: Iterations of both techniques.

Fig 7.16: Pic Chart of the lterations of both techniques.

Fig 7.17: Total repetitions Bar Chart. Experiment 3
Fig 7.18: Total repetitions Pie Chart. Experiment 3
Fig 7.19: Total lterations Bar Chart. Cxperiment 3
Fig 7.20: Total lterations Pie Chart, Experiment 3
Fig 7.21: Total lterations Bar Chart. Experiment 3
Fig 7.22: Total lerations Pie Chart. Experiment 3

Fig 7.23: Iterations of both techniques.

Fig 7.24: Pie Chart of the Tterations of both technigues.

Fig 7.23: Tolal repetitions Bar Chart. Experiment 4
Fig 7.26: Total repetitions Pie Chart. Experiment 4
Fig 7.27: Total iterations Bar Chart. Experiment 4
Fig 7.28: Total iterations Pie Chart. Experiment 4

Fig 7.29: Total iterations Bar Chart. Experiment 4

Multi-Objective Whole Lest Suile Generation

xvli

LIST GF TIGUIRES

Fig 7.30: Total iterations Pie Chart. Experiment 4

Fig 7.31: lterations of the both techniques. Cxperiment 4

Fig 7.32: Pie Chart of the lterations of the both techniques. Experiment 4
Fig 7.33: Total repetitions Bar Chart. Experiment 5

Fig 7.34: Total repetitions Pie Chart. Experiment 3

Fig 7.35: Total iterations Bar Chant, Experiment 5

Fig 7.36: Total iterations Pie Chart. Expetriment 5

Fig 7.37: Total ttcrations Bar Chart. Experiment 3

Fig 7.38: lotal iterations Pie Chart. Experiment 5

Fig 7.39: Tterations of the both techniques, Experiment 5

Fig 7.40: Pie Chart of the Iterations of the both techniques. Experiment 5
Fig 7.41: Total repetitions Bar Chart. Experiment 6

Fig 7.42: Toal repetitions Pie Chart. Experiment 6

Fig 7.43: Total iterations Bar Chart, Experiment 6

Fig 7.44: Total iterations Pie Chart. Experiment 6

Fig 7.45: Total iterations Bar Chart, Experiment 6

Fig 7.46: Total itcrations Pi¢ Chart. Experiment 6

Fig 7.47: Iterations of the both techniques. Fxperiment 6

Fig 7.48: Pic Chart of the [terations of the both techniques. Experiment 6
Fig 7.49: Total repetitions Bar Chart. Experiment 7

Fig 7.50: Total repetitions Pie Charl. Experiment 7

Fig 7.51: Total icrations Bar Chart, Experiment 7

Fig 7.52: Total iterations ’ie Chart, Experiment 7

Fig 7.53; Total iterations Bar Chart. Lxperiment 7

Fig 7.54: Total iterations Pie Chart. Expetiment 7

Xyl
Multi-Objective Whole test Suite Generation

LIST OF FIGLIRES

Fig 7.35

Fig 7.56:
Fig 7.37:
Fig 7.58:
Fig 7.59
Fig 7.60:
Fig 7.01:
Fig 7.62:
Fig 7.03:
Fig 7.04:
Fig 7.65:
Fig 7.66;
Fig 7.67:
Fig 7.68:
Fig 7.69:
Fig 7.70:
Fig 7.71:
Fig 7.72:
[1g 7.73:
Fig 7.74:
Fig 7.75:
Fig 7.76:
Fig 7.77:
Fig 7.78:

Fig 7.80:

- Iterations of the both techniques. Experiment 7

Pie Chart of the Iterations of the both technigues. Experiment 7
Total repetitions Bar Chart. Fxperiment 8

Total repetitions Pic Chait. Experiment 8

Total iterations Bar Chart, Expeniment 8

Total iterations Pie Chart. Experiment 8

Tolal itgrations Bar Chart. Expernment 8

Total iwcrations Pie Chart. Fxperiment 8

lierations of the both techniques. Experiment 8

Pie Chart of the lterations of the both techniques. Experiment 8
Total repetitions Bar Chart, Experiment 9

Total repetitions Pie Chart, Experiment 9

Total ilcrations Bar Chart. Experiment 9

Total iterations Pie Chart. Lxperiment 9

Total iterations Bar Chart. Experiment 9

Total iterations Bar Chart, Experiment 9

lterations of the both techniques. Fxperiment 9

Pie Chart of the lterations of the both technigues. Experiment 9
Total repetitions Bar Chart. Cxperiment 10

Total repetitions Pie Chart. Experiment 10

Total iterations Bar Chart. Experiment 10

l'otal erations Pic Chari. Experiment 10

Total iterations Bar Chart. Experiment 10

Total iterations Pie Chart. Experiment 10

Pie Chart of the Tterations of the both techniques, Expenment 10

KIX

Multi-Objective Whole test Suite Generation

LIST OF FIGURES

Fig 7.81: Cumulative Results bar Chart
Fig 7.82: Implemented Approach Pie Chart
Fig 7.83: Existing Approach Pie Chart

Fig 7.84: Average Cumulative results Bar chart
Fig 7.85: Average Cumulative results Pie chart
Fig A.1: Main page of the tool

Fig A.2: Zoomed View of the Tool

Fig A.3: Initialize Process

Fig A.4: Create test Cases

Fig A.5: Create test Suites

Fig A.6: Calculate the Fitnesses

Fig A.7: Perform Sclection

Fig A.8: Perform Crossover

Fig A.9: Perform Mutation

Fiy A.10: Fitness of the Child Population
Fig A.11: Display the Results

Fig A.12: Main Interface

Fig A.13: Zoomed View of the interface
Fig A.14: [nitialize the process

Fig A.15: Create test Cases

Fig A.16: Create (est Suites

Fig A.17: Calculate the Fitnesses

Fig A.18: Calculate the Fitness Function?
Fig A.19: Calculate the crowding distance.

Fig A.20: Pertorm Selection.

Multi-Ohjective Whole test Suite Generation

XX

LIST OF FIGURES

Fig A.21: Perform Crossover

Fig A.22: Perform Mutation

Fig A.23: Performing licrations.

Fig A.24: Display the Results.

Fig A.25: Calculate Average of the existing approach’s results

Fig A.26: Calculate Average of the implemented approach’s resuits.

XX
Multi-Objective Whole lest Suite Generation

LIST OF TABLLS

List of tables:

Table 7.1 Parameters ol GA

Table 7.2: Fxperiment | Lxisting approach Readings
Table 7.3: Experiment 1 Implemented approach Readings
Table 7.4: Experiment 1 Cumulative Results

Table 7.5: Experiment 2 Lxisting approach Readings
Table 7.6; Experiment 2 Implemented approach Readings
Table 7.7 Experiment 2 Cumulative Readings

Table 7.8: Cxperiment 3 Existing approach Readings
Table 7.9: Experiment 3 Implemented approach Readings
Table 7.10: Experiment 3 Cumulative Readings

Table 7.11: Experiment 4 kxisting approach Readings
Table 7.12: Fxperiment 4 hnplemented approach Readings
Table 7.13: Experiment 4 Cumulative Readings

Table 7.14: Experiment 5 Existing approach Readings
Table 7.13; Experiment 3 Implemented approach Readings
Table 7.16: Cxperiment 5 Cumulative Readings

Table 7.17: Cxperiment 6 Existing approach Readings
Table 7.18: Experiment 6 Implemented approach Readings
Table 7.19: Experiment 6 Cumulative Readings

Table 7.20: Cxperiment 7 Lxisting approach Readings

Multi-Objective Whole test Suite Generation

XXl

LIST OF TABLLS

Table 7.21

Table 7.22:

Table 7.23;

Table 7.24:

Table 7.23:

Table 7.26:

Table 7.27:

Table 7.28:

Table 7.29:

Table 7.30:

Table 7.31:

Table 7.32:

Table 7.33:

Table 734

- Experiment 7 Implemented approach Readings
Cxperiment 7 Cumulative Readings
Experiment 8 Existing approach Readings
Eaperiment § Implemented approach Readings
Fxperiment 8 Cumulative Readings
Fxperiment 9 Fxisting approach Readings
Experiment 9 Implemented approach Readings
Faperiment 9 Cumulative Readings
Experiment 10 Existing approach Readings
Cxperiment |0 Implemented approach Readings
Experiment 10 Camulative Readings

Average of the Results

Final Sum-up of Readings

- Comparison of the Readings

Multi-Objective Whole test Suite Generation

XXM

ACRONYMS AND ABBREVIATIONS

Acronyms and Abbreviations

SDLC
IEP

kP

SE
MOGA
TS

WTS GEN
MOWTS GEN
APFD
FEP

ACO
BCO

PSO

CTD

CEG
ITSM
RSR
NSGA

System Under test

Class Under Test

Unified Modeling | anguage
Fvolutionary Algorithm

Genetic Algonthm

Svstem Development Life Cycle
Infeasible Paths

Feasible Paths

Software Engineenng

Multi Objective Genetic Algorithm
Test Sute

Whole test Suite Generation

Multi Objective Whole test Suite Generation
Average Percentage Fault Detection
Fault Exposing Potential

Ant Colony Optimization

Bee Colony Optimization

Particle Swarm Optimization
Combinatorial test Desigh

Control Flow Graph

Interaction Based Test Suite Minimization
Reduction with selective Redundancy

Non-Dominant Sorting Genetic Algorithm

Mukti-Objective Whole test Suite Generation

XXV

ACRONYMS AND ABBREVIATIONS

Multi-Objective Whole test Suite Generation

Chapter 1

INTRODUCTION

CHAPTER 1 INTRODUCTEHON

Multi-Objective Whole lest Suite Generation

CHAPTLR | INTRODUCTION

INTRODUCTION:

Software testing is one of the main and final steps in the software development life cycle.
Testing is important to ensure that the system works as it was intended to. Software testing is a
method of assessing the functionality ol a software program. lesting can be divided into many
categorics based on the (vpe of system it tests. the kind of faults it is looking for (load testing.
broken links ete.) or the method used for testing (automated. manual) but the main types are

black box testing and white box testing.

Testing can be done either manually or auwtomatically. Almost all software development
projects need testing. which makes testing a heavily used techniqgue. thus the testing phase of a
typical project take up to 50% of the total projeet effort. [1]and therefor contributes stgnificantly
to the project costs. Repeated changes in the system under test can afleet the results ol the tests.
For this reason testing has to be repeated often and this repeated testing ts called regTesson
testing. This is error-prone, time consuming and expensive. Automating the process may
significantly reduce the effort needed for running individual ests. | his implics that perfortming
the same fest becomes cheaper. or enc can do more tests within the same budget. Manual testing
is time consuming. unreliable and costly while Automated testing in contrast is reliable and

requires less investment 1n human resources.

Test data generation in program testing, is the process of tinding test cases which satisty the
chosen coverage critevia, A test data generator is a tool which iy used by a programmer (0
generate test data for testing the SLT [11]. Two main dynamic approaches are mosl conmmonly
used for generation of test cases. which achieve the required coverage. One being automatic path
selection using randomly selected inputs from the input field (2] and. another is to use meta-
heuristic scarch techniques. where SUT is treated as a problem for scarch optimization whose
goal is to look lor tests that provide as high coverage as is possible. Onc ol these mela-heuristics.
genctic algorithms. is the most widely used. Genetic Algorithms are particularly popular when
used for test case generation problems because test data generation is an undecidable problem for
which there exists no single optimum solution. For undecidable problem Genetic algorithms are

popular because they give a near optimum solution to the problen.

Multi-Objective Generation of the Whele test Suite |

CHAPTER | INTRODUCTION

In the computer science’s field of artificial intelligence. the genetic algorithms can be called a
digital manifestation of Darwin’s theory ot natural selection. This heuristic. (also sometimes
called a mecta-heuristic) belongs 1o the larger class of evolutionary algorithms (EA). which
generate solutions for problems that require optimization: using technigques inspired by nature.
such as Bee colony Optimization. Ant Colony Optimization. Particle Swarm Optimization. and

ete. and are used to generate usetul solutions to search problems [3].

When structural testing is performed. the test cases are generated based on the source code of
the SUT. keeping in mind the basic aim of covering the chosen testing criteria. The recent
advancements in the field of Software testing allow an efficient derivation of test data from the
source code. given the size of the program being considered is reasomable. A common approach
is to exercise each branch separately while generating test data for each branch individually [12].
[7]. Although teasible. the major issue with this way of test data generation is that it considers all
test goals of equal importance and equally reachable and it does not take collateral coverage into
consideration. Unfortunately. none of these assumptions holds. This problem is manifested in
many ways: Many coverage goals are impossible or infeasible. this means that there exist no test
casc that can Fulfill this coverage goal. this lies in the category of “undecidable infeasible path’
problem [13]. In addition 1o infeasible path problem the test case largeting a particular branch
will almost always cover addition untargeted branched unintentionally. this is called collateral
coverage or serendipitous coverage [5). This shows that the order in which the branches or goals

are targeted will always atfect the efficiency of the test process and the final result achieved.

Whole test suite generation. an innovative approach that overcomes the infeasible branches
and collateral coverage issucs by optimizing the whole test suite al once o cover the chosen
coverage goals instcad of targeting cvery single branch separaicty. Because the whole 1est Suite
coverage optimizes the entire test suite at the same time. this removes the infeasible branch
coverage issue plus the choice of the order of the coverage goals does not aftect the results

cither. the issue of collateral coverage disappears oo [1-4.

Wholc (est suile generation. optimizes the test Suile (o generate the final Test Suite which has the
desired coverage and smaller size but the generated test Suite has redundant test cases mat. 1o
remove redundancy from the generated test suite it is proposed that the technique should be

converted to a multi-objective optimization technique. In doing this the single objective genetic

Mulu-Objective Generation of the Whaole test Saute 2

CHAPTCR | INTRODUICTION

algorithm used by this technigue is modified into a multi objective genetic algorithm by adding

another fitness function to it which helps choose the solutions with less redundancy.

1.1 Automated Testing

The process of execution of pre-scripted tests or test cases on an application before its rejease
into production by the software testing tool is automated testing (Margarer Rowuse. 2014,
Basically it means automatic generation of test data. running of the (est cases on the system

under test and the validation of results. using predefined oracles.

With passing time and much advancement in technology. soltware engincers and project
managers face the ever growing challenge of producing a valid and almost fault free systems

within shrinking deadlines and lower budgets.

Hence organizations have lesser time to appropriately test there system and spend extended
periods on the task. This is why they tumn to automated testing which lets them test large volumes
of data in lesser time and using lesser effort to do so because manual testing is error-prone and
labor-intensive and it does not support the same kind of quality checks as there are possible with

automated Test tools ¢Effriede Dinstin, Jeff Rushka, John Pauf, 2008

An all-encompassing testing process helps in (est aulomation. but a suitable (est (automation)
plan is even more important. The test plan is responsible for decisions like. the kind of test to be
performed in the various stages of Software testing and what tests among these will be done

manually and which can be automated.

1.2 Test data generation

While testing software one often needs to know input values/parameters that will trigger a
particular part of the system being tested. doing which is extremely labor-intensive it done

manually. Theretore automation of the process is desirable.

To test a system. usually a test adequacy criteria is chosen. once the criteria is decided upon the
next step is to create test cases that will best satisfv the chosen test criteria, for which the test

cascs are generaled automatically 1o save time and effort,

-

Mulu-Obyective Generation of the Whole test Suile

CHAPTER | INTRODUCTION

It is shown through empirical research in the past. if test data is chosen based on an adeguacy
criteria. the fault detection capability of the test suite improves compared fo choosing random
test data [16. 17]. But test dara that is automatically generated does not guarantes the fulltlhnent

of the chosen adequacy criteria.

Many different types of paradigms of automatic test data gencration exist but the three most

common types are as follows,
1.2.1 Random Test Data gencration

In random (est data generation the test casces are generated randomly until a suitable test casc is
tound. This approach becomes inefficient | 19] when the adequacy criteria or the program gets
complex because the chances of triggering the very specific inputs that will satisfy the chosen

adcquacy crileria becomes lower while testing complex programs.
1.2.2 Symbolic Test data generation

In symbolic execution the program is executed using symbols instead of concrete values.
Symbolic execution consists of allocating symholic values 1o variables in the program being
tested. in order (o come up with an abstract. mathematical characterization of what the program
does. Thus. in an ideal case. test case generation can be converted into an algebraic expression
solution problem(C ristoph C. Michael. Gary £ McGran, Michwel 4 Schatz, Crartis C Walton,
1997y [18]. There are two main issues when practically generation (est dala using symbolic
execution. the first is the accurate representation of loops and the second is 1o find a way 1o

handle pointers.
1.2.3 Dynamic Test data generation

Dynamic generation is the third category of test data generation [20]. In this paradigm parts of
the program under test are treated as tunctions and the program is run until a certain location 1s
reached and one or more values of that location are recorded. These values are treated as if they
were the value of the functions. Such lunctions are not ¢asy to write but they can calculate the
input to reach any location in the program and finding a function that gives the minimal value for
the input to satisty the adequacy criteria is usually possible. in this way the test data generation

problem is converted to “function minimization™ problem.

Multi-Objcctive Generation of the Whole test Suite El

CHAPTER | INTRODLUCTION

1.3 Test Suite optimization

A test sujte is a collection of test cases meant to exercise a particular component of the SUT.
where the final state of one test is often a precursor or the mnitial state of the next test (D Jeyy
Mala. V. Mohan, 2009)21]. While optimizing a test Suite. the aim is (o generate effective (st
data that can exercise the adequacy criteria. consuming minimum possible resources. Following
are the three main test Suite optimization methodologies in literature.

1.3.1 Minimization

Minimivation is one of the three typical test Suite optimization methods. The formal definition of
Test Suite Minimization is as follows [22].

Given: A set of test requircments ry. 1. that must be satislicd to provide the desired testing
coverage of the program. a test suite T and subsets of 1.7Th. 1. one dinked with cach of the
r,'s such each test case exercises or fulfills some requirement.

Problem: Find a test suite 17, of test cases from T that [ulfills all the requirements 1,

The testing criterion is satistied when every test requirement in ry. . . iy is covered. A test
requirement. r, is satistied by any test case. t. that belongs to the test suite T, which is a subset
ol 'T'. Therefore. the representalive sct of test cases 13 the hitting set of the I)'s, Additionally. in
order to make the most of the effect of minimization. 1" should be the smallest possible hitting

set of the Ti's (S Yoo, M Herman, 2010)

1.3.2 Prioritization

The Formal definition for Test Suite prioritization is given below. This is a definition from Yoo

etal (2010)

Mulii-Objective Generation of the Whole test Suite 5

CHAPTER | INTRODUCTION

Given: A test suite. T. the set permutations of T. PT. and a function trom PT to rea) numbers. f

PT R

Problem: To find T° € PT such that (¥T”){T"* € PTIT" = T JIiT" } 2 AT"}]. Average Percent of
Fault-Detection {APFD) is commonly used to evaluate test case prioritization technigues. The
APFD value for T is calculated as follows (Schastian Ethaum. ¢ Alexey Malishevsky, 2002):

APDF = 1-((] Fi 44T FmY nm) + (1720 [23].

1.3.3 Selection

The formal definition of Test Case Selection is given below.

Given: The program. P. the modificd version of P. P and a test suite. |
Problem: Find a subset of T. T". with which to test P’

[n a given test suite. it can be said that the selection techniques in general aim to tind the
-modification-traversing” test cases. The details of how each technique goes about the process of
searching and identifying these test cases difter but the hasic underlying idea remains the same.

(Gregg Rothermel. ¢ Mary Jean Harrold, 1997)(23].

1.4 Genetic Algorithm

There are many difterent types of Evolutionary Algorithms: Evolutionary Algorithms are
Algorithms that mimic natural phenomena to solve problems. Genetic Algorithm is a variant of
Fvolutionary Algorithms that mimics the process of evolution from nature. e basic idea is that
given a population of individuals. crossover and mutation is performed on the population to find
the fittest solution as described by the fitness function. The basic genetic Algorithm has the

following three main steps [23].
Selection

Selection is the first step in the genetic Algorithm. The main purpose of this step 18 to improve

the overall finess of our population, for which purpose [ittest solutions are chosen for Turther

Mulii-Objective Generaton of the Whole 1es1 Suite 4]

CHAPTER | INTRODUCTION

operations while less fit individuals are discarded. There are many difterent types of selection
procedures but the main idea 15 the same. ie. to select the fitter individuals for the next

gencration.
Crossover

In this part the selected individuals are combined (o produce the offsprings. pairs of parent
population are made (0 produce offsprings. this step 1s performed (0 combine fit parents 10
produce even fitter child population and eventually a solution that fulfills the stopping criteria of

the algorithm.
Mutation

Mutation is performed to add randomness to the population otherwise. with each passing
iteration. the solutions might continue repeating without any improvement. this is done by

making small random changes in the individual solutions.

A —_
¥ -.
Termiration
Popuiation T L Cendiion met?
A T "

S Frogrett

R AU

gt atioee
Qffspring - Farents
: 9 N I TS~ L I P

Fig 1.1 Workflow of the Geneue Algorithm

Multi-Obrective Generation ol the Whole tesl Suile 7

CHAPTER | [INTRODLUCTION

1.5 Multi-objective Genetic Algorithm

Multi Objective Genetic Algorithms are Genetic algorithns that arc used when there is more
than one objective 10 satisty. An example of such problem is that when designing a bicycle we
want the design to be durable but use as little material as possible or it a car manufacturing
company wants to find out a reasonable balance between the cost of manufacturing and the
luxury of the car. Gienerally the methods used to solve probleins with multiple objectives can be
divided into two categories. The first one is to comvert the multipie objeciives into a single
representative formula using weights and the second technigue is 10 find the entire representative
Pareto optimal sct of solutions. A Pareto optimal consists ol solutions that are non-dominated
considering all the objectives 1o be Tulfilled. (Abcidiah Konak - David 1V Coit . Alice . Smith,
2005)[26].

1.6 Problem Statement

In literature there are many Test Suite generation techniques that automatically generate the Test
Suite but almost all the techniques are based on the coverage criteria and generate test cases for
all coverage poals separatcly. Whole test suite gencration. automatically gencrates the wholc
Test Suite for the System under Test using evolutionary algotithm. This overcomes the problems
of infeasible test coverage goals and collateral coverage at the sume time but the final Test Suite
which is generated after running the genetic algorithm may contain redundant test cases. This
means that this Test Suite can be further Optimized by reducing the number ol test cases in the

test sulte.

1.7 Research Objective

The method proposed is an improvement to the Automated “Whole Test Suite Generation™
technique which generates the whole tcst Suite using the evolutionary algorithm. Currently the
Test Suite is being generated using “Single objective Genetic Algorithm™. this produces a Test
Suite with redundant Test Cases and the test suite is run again to remove the redundant Test
cases. The proposed solution is to modity the Genetic algorithm by adding another fitness

function to it and converting it o a Mulli Objective Genetic Algorithm (M.O.G.A). The muld

Multi-Objective Generation of the Whele test Suite 3

CHAPTER | INTRODUCTION

Objective genetic algorithm to be implemented will be the Non Dominated Genetic algorithm

(N.S.G.A)

1.8 Hlypothesis

The hypothesis of this thesis is that by applying the whole test Suite generation technique
Evosuite. using Multi-objective Algorithm. the coverage objective can be achicved along with

the minimization objective,

1.9 Dissertation Qutline
Figure 1.2 illustrates the structure of this thesis:

Chapter 2: Describes the background for understanding the thesis by giving introductory
knowledge about Test Suite Optimization. Whole Test Suite generation and [Crolutionary
Algorithm (Genetic Algorithm). -

Chapter 3: Dcscribes work in literature to support MO-W1S Generation and Evolutionary
algorithms.

Chapter 4: Flaborates the hypothesis that we will attempt to prove.

Chapter 5: Describes the implementation of the approach for MO-WTS Gen.

Chapler 6: Introduces and describes the implemented tool for MO-W I'S Gen,

Chapter 7: Discusses compares and evaluates the results of our work with the existing work.

Chapter 8: Outlines the conclusion of this work and deliberates the findings.

Multi-Qlyective Generation ol the Whole test Suite Y

CHAPTER | INTRODUCTION

' ~
',l Chapter 2 Methodotog.es J l Cnapter 3 Re.atec Work ‘
! . (- . - e

tm—

Chapter 4 Probem Defirton

Our Research Work
Chapter 5. Implemented Chapter 6 Tool
Approach implementation

Chapter 7 Results &
D!s.'“ubsmn

Chapter 8 Corciusion

Fig 1 2. Dissertation Qutline

Multi-Objectine Generation of the Whole 1es1 Sulte g

Chapter 2

BACKGROUND

CHAPTLR 2 BACKGROUND

BACKGROUND:

This section is devoted to describe the background for understanding the thesis.

2.1 Test Suite optimization

As modifications are done in a code more test cases are added to the existing test suite. this
causes the (st suite 10 grow in size. the test therefore gets bigger with the cvolution ol software.
The larger the test suite is. the costlier it gets o run i. 1o overcome this problem many
techniques are studied in literature. These techniques aim to minimize the resources used while
running the test suite while improving the fault detection capability. Such techniques are called

test Suite optimization techniques and can be divided into three calecgorics.

i Minimization: Aucmpts to remove repeating i.e. redundant tesl cascs.
ii.Selection: Attempts to identify test cases that correspond to the mudification that needs to

be tested.

i Prioritization: Orders the (est cases to maximize the chances of carly fault detection.

The main point similar in all these techniques i$ that they assume the existence of a test pool
which is too large in size to run the complete test suite 127]. Therefor the techniques in all three

categorics basically try to overcome the problems that arisc due to the huge sizc of the test pool.

2.2 ‘Technical Definitions

Definition I (Test Suite Minimization Problem)

Given: A set of test requirements ri. Iy. that must be satistied to provide the desired testing

coverage of the pragram. a test suite T and subsets of T. Ty T,. one linked with each of the

r,s such cach (est case exercises or fulfills some requirement.

Problem: Find a test suite 17, of test cases (rom | that (utfills all the FCUITCICNLS 1y,

Multi-Objective Whole est Suite Generation 13

CHAPTECR 2 BACKGROUND

The testing criterion is satisfied when every test requirement in rp. .. 1y 15 govered. A test

requirement, r, is satisfied by any test case, t,. that belongs to the test suite T,. which is a subset
of T. Therefore. the representative set of test cases is the hitting set of the 1/'s. Additionally. in
order 1o make the most of the elfect of minimization. 17 should be the smallest possible hitting

set of the 1i's.
The minimal hitting set problem is an NP-complete problem as well as a dual problem ol the

*minimal set cover problem’ |28].

Definition 2 (Test Case Selection Probient)
Given: The program. . the moditied version of P. 2" and a test suite. T

Problem: Find a subset of T, 1. with which to test P'.

Definition 3 (Test Case Prioritization Problem)

Given: A test suite., T. the set of permutations of T. P7. and a function [rom /7 10 real numbers.

f:PT—R

Problem: To find T° € PT such that T 0T € PTHT " Tl /(T) 14T 7]

2.3 Types of Test Cases

According to Leung and White Test cases are of tive types based on how they are used in

optimization [29].

i. Reusable: These are the test cases that cxercise the part of the program or system under test
that is unmodified. This part is does not change in the newer versions of the Syvstem
under Test (SUT). These test cases are not exccuted when testing the moditied part of the

program bul they are kept safc for possible testing the code in the future.

Multi-Objective Whole test Suite Generation 14

CHAPTER 2 RACKGROUND

ii. Retestable: These are the test cases that exercise the modified part of the system under test

(SUT) P These test cases should be run again to Test P after the modification,

iii. Obsolete: The following rcasons arc why the test cases may become absolete.
o The requirement they were ercated (o test has been changed because of the change
of specifications so they are not needed anymore.
o [he program has been modified and the part they test does not ¢xist or has been
modified so that new test cases are needed to test it.
e They do not provide the required coverage of the structure of the program as belore

the moditications.

iv. New Structural: These test cascs arc created to test the madified part in the System under

test P which is no longer covered by the older test cases.

v. New Specification: These test cases are created 1o (es! the part of the program that has been
modificd or ereated as a resalt of modification of the specifications. 'They wo exercise the

modified part of the program P

2.4 T'est case selection

Test case Selection and the Test Suite Minimization problem is similar in the sense that both of
them attempt to reduce the size of the test Suite by elimination the unwanted test cases that do
not contribute to the test goal of choice. The only difference is that Test cases sclection focuses
on the modified part of the system under test while the Test Suite minintization trics lo reduce
the test suites size by eliminating repeated coverage and it focus remains within the same version

of the program.

Multi-Objective Whole test Suite Generation 15

CHAPTER 2 BACKGROUND

2.4.1 Modification Revealing Test Cases

This concept was given by Rothermel and Harrold. A Test Case tis modification revealing {30]
for P and P™ it and only if P(t) £ P (t). I the following two suppositions are correct then finding
the Fault Revealing test cases is possible after the modification revealing 1est cascs in P and P

are found.

e P-Correct-for-T Assumption: This assumption says that all the test cases in the test Suite
[executed properly and provided correet resulis when they were run on the unmodilicd

version of the program P.

e Obsolete-Test-identification Assumption: This assumption holds that for each test case t
in the test suite T° it can be correctly identified if that test case has become obsolete for

the modified version of the program P16}

With the above assumptions it is obvious that cvery test case in T provides a correct output [or P
i.c. P is fault [ree with regard to 1 and since no Lest case in 1 is obsolete for P all the test cascs
should give the same results for P and P*. So if'a test case is modification revealing it should also

be fault revealing.
2.4.2 Muodification Traversing Test Casc

A modification traversing test case is the test case that exercises new or changed part ot the

system under test P” or it used 1o execute code that has now been deleted in P
2.4.3 Controlled Regression Testing Assumption

This assumption says that all the factors that could attect the output when P s tested with test
case t except for the code are kept the same as they were when P was tested with t. [n the case
that the controlled regression testing supposition is truc. a test case t that is not obsolete can be
modilication revealing only if it is also modification traversing for the modified and original

code Pand P

If P-Correct-for-T as well as Obsolete-Test-identitication assumptions hold and the controlled

regression testing assumption holds true too then the tollowing relation between the subsets of

Multi-Objective Whole test Suite Gieneration 6

CHAPTER 2 BACKGROUND

fault revealing test cases. modification revealing test cases. Modification traversing test cases

and the Test Suite will be true too.

T: Ti = I © Ten G T by using this assumption it is possible to omil all the test cases that

dot reveal any faults.

2.5 Test case prioritization

This approach was introduced by wong et al[311. In test case prioritization the (¢St suite sive us
not altered but the test cases are rearranged in such a way so that any particular requited benetits
are improved in the early test cases so that it the execution is prematurely halted then most of the

benefit of festing i.c coverage. faull detection cte are already achieved,

Harrold and Rothermel [32. 33] did morc work on the technigue by analy zing 11 1 a mofe

general content.

Fottlt fovealogt Peoeal
Tt cares ' e N 1 = " - . "
A . N
I \ \ \ \
(‘ ~ - “ N . .
Al \
E Al

Fia 2.1 Cxample from Clbaum et at {35]

Considering the above table il the aim or prioritization is early fault detcetion then it is obvious
that if we arrange the test casc in the B-A-C-D-E formation then the carly fault detection
capability of the test suite will increase as compared to the original A-B-C-D-L arrangement. A
closer look at the table reveals that any arrangement that starts with C-C is superior to any other
arrangement because this arrangement detects maximum number of faults carly in the test swite
exccution. With this arrangement. if the testing is stopped before the whole test suite s exccuted.
then at least maximum possible faults will have been detected already. hence saviny time and

reSOuUrces.

Multi-Obgective Whole test Swnte Generation 17

CHAPTER 2 BACKGROUND

Although the example is based on fault coverage but the faults in the syvstem under test are not
known until it is actually tested for faults. so test case prioritization techniques use altemate
methods from lault detection capability. The aliernate goals lor prioritization arc meant Lo
improve fault detection, Some different popular goals based on which (he priorvitization

techniques are created are as tollows.

2.5.1 Coverage based prioritization

Coverage of the structure of the system under test is the metric which is most commonly used in
most test suite oplimization techniques {34-40]. 1118 assumed (hat carhy coverage ol the system
under test will detect more faults earlier. So in prioritizing the test cases based on the system the
real aim is to improve early fault detection of the system under test (SUT). Rothermel et al
further investigated prioritization techniques[34-40i. their study the same algorithms with

different test coverage goals. The coverage goals considered were

o Branch-total: Branch total considers the total considers the total number of branches

covered and prioritizes test cascs according to that.

o Branch Additional: Branch Additional considers the additional branches covered by the

test cases and prioritizes the test cases. This is an additional greedy technique.

o Statement Total: This considers the lotal number ol statement covered by test cascs and

prioritizes the test cases.

o Statement Additional: This considers the additional coverage of the statements achicved

by the test cases and prioritizcs based on that criteria.

e Fuault Exposing potential Total: Favlt Exposing potential of a test case is caleulated
using mutation testing. Mutations. i.c. faults are intentionally introduced in the program
and then the test cases are run on the program to calculate the fault exposing potential of
the test cases |42). The mutants(faults) exposed by the test cases are said to be killed by

the test cases. The mutation score of the test cases are culculated as follows:

Mutation Scorc = Killed mutants by the test case / Total Killable Mutants

Multi-Objective Whole test Suite Generalion 18

CHAPTER 2 BACKGROUND

The techniques based on FEP prioritizes based on the test cases hased on the mutation
score of the test cases
o Fault Exposing Total Additional: The techniques based on this criterion prioritize the

lest eases based on their additional mutation score of the st cascs,

While majority of the techniques in the literature use coverage of the svstem under test as a
goal for prioritization but somc icchniques also usc criteria other than coverage for

prioritization,

2.5.2 Other approaches

There are relatively fewer number of prioritization techniques not hased on coverage [42-45]. A
distribution based (cchnique is a technique that minimizes and prioritizcs the test suite based on
the distribution of the lest case profiles{42]. Dissimilarity wetri¢ is a number that represents the
difference between the input profiles of the two inputs of the test cases. The dissimilarity metric
can be used to cluster similar test cases together. Clusiering of the test cases gives us interesting

information about the similantics between the st cases.

e Test cases in a cluster may indicate a set of redundant test cases. Using this intormation it
may be possible to execute only one test case in the cluster and hence reduce the test suite

climinaling redundant test cases.

o It is possible that isolated cluster indicate that the test cases contained in these clusters
may induce unusual conditions which can expose errors. Using this information it might
be uscful 1o (st this arca of the profile more thoroughly since this arca is less oxercised

during testing.

o Areas in the profile space with a low-density may indicate that test cases contained in this
arca show unusual behavior. Rearranging the (est cascs so that the arcas that are isolated
and show unusual behavior are excreised first may help expose faults carlier in the testing

process.
Besides distribution based approaches there are Requirement based approaches. history based
approaches and Probabilistic approaches.

Multi-Objective Whele (est Suite Generabon 19

CHAPTER 2 BACKGROUND

2.5.3 Cost Aware Test Case Prioritization

Test case prioritization does not filter out test cases i.e. it does not reduce the size of the test suite
which means that it is assumed that the whole test suite will be executed. which is a not
practically leasible most of the times because of the resource Yimitations. A number of test suite
priotitization techniques address (his issue and propose solutions (hat cost aware while they
prionitize the test cases |38, 46, 47, 48], Elbaum et al improved the basic APFD metric so that it
can take into consideration the severity of the tault detected and the cost incurred 1o execute the

test cases. The new metric is called APFDc. Formal definition is as tollows.

More formallv. Let T be the set of m faults with severity values f1 ... fm and let T be the set of n
test cases with costs t1 ... tn.. For the purpose of ordering T°. let TFi be the order of the first test

case that rexcals the ith fault, APFDe of 17 is calculated using the following formula:

F—

ST (N e B — i
- L =1 i e i=7TF, ! SEVRE
APFD, = ! e L I

Do and Rothermel studied some existing prioritization techniques and they studied the effect of

time limitation on the cost cffectiveness of six different techniques.

2.6 Test Suite Minimization

Test suite minimization reduce the sive of the test suitc o optimize it. the main idea is to
remove redundant i.c. repeating Lest cases [rom the test suite so that the size of the test suile is
reduced without affecting its coverage or Fault detection capacity. Test stitc minimization i the
minima) hitting set problem. A minimal hitting set problem is a problem in which one needs to
find the smallest possible solution to using a given set ot {i nite population to fultill the criterta or
goal that is to be achieved. In test suite minimization the aim is to find the smallest possible set

of test cases that fulfitls the chosen criteria.

Multi-Objectuve Wheole test Suite Generation 20

CHAPTER 2 BACKGROUND

Test Suite Minimization is an NP-Complete problem [37). An NP-Complete problem is
something for which no solution exists that can solve it in linear time. The only way an NP-
Complete problem can be solved is through hearistics, A heuristic is an approvimate solution lor
the problem. which works well with the situation at hand but is not a universal solution for all
similar problems. All pat work done on the minimization techniques can be considered as the

development of Heuristics [49-52).

2.6.1 Impact on fault-detection capability

Test suite optimization techniques minimization. selection and prioritization successtully reduce
the size of the test suite (o be executed but its effects on the fault detection capability of the
system under test has been a widely discussed issue in the literature |23. 53-55]. Several studies

were done to determine this effect.

Wong et al randomly generated test suites and reduced them using the ATAC tool created by
Horgan and London. He used these test suites to fest 10 UNIX programs. Rothermel et al
gencrated lest suites from the test cases provided in the Siemens suite. Fle reduced the test suite
and then measured its fault detection capability using the same metrics as Wong ¢l al. e
conciuded that reduction of the test suite resulted in a much smalfer test suite trom before that
there is mathematical relation between the tetst suite reduction and the fault detection capability.
He reported that for the 1000 plus test suilcs he tested the lault detection capability was severely
affected by the reduction of the test suites. More than half ol them lost 530% ol their faull
detection capability and in a few cases the drop in the fault detection capability was about F0%.

A study by Yu et al too confirmed the findings of the study done bv Rothermel.

2.7 Test data generation.

Studies show that 50% of the cost of Software development is spent in Software testing. Efforts
10 reduce the cost of software testing arc always going on. One way (o do this is Lo automale the

process of testing. In awomaled testing the test cases are ecnerated automatically hased on the

Muli-Objective Whole (est Suite Generation 21

CHAPTLR 2 BACKGROUND

target that is to be tested. Generation of test cases is called test data generation in literature. Test

data generation techniques can be divided into three categories [S9).

e Random lest Daia generation
e Path Oriented Test Data generation

e Goal Oriented Test daia generation

2.7.1 Test Data Generation system

The figure below shows a typical Test data generation system. this consists ol three main parts

namely. program analyzer. Path selector and test data generator. With these three in place. many

search based solutions can be found for the problem [60. ol].

Fraogram

Analyser
Cemtrol
Controi Flosvgrapl
Flowgraph
Path
Data Selector
Dependence
Graph Test Path
Paths Infe
Test Data
Generator

Test Data

Fig 2.2 Workflow of a fest ata Generator

L

Multi-Objectsve Whole test Suiie Generation

CHAPTER 2 BACKGROUND

The automatic Test data generation problem can be defined as follows: Given a program P and
an unspecified path u generate input x € § such that x traverses u. A program analyzer is the part
of the generator that runs the code and provides the result wo the path selector. The path selector
selects Uhe paths based on the criteria chosen to fulfill and provides the chosen paths to the st
data generator part. Fhe test data generator part then creates test cascs based on the input

provided to it by the path selector.

Program Analyzer

All the information about the program is provided by the program analyscr. This information

contains data dependence graphs and control flow graphs ete.
Path selector

A path selector selects the paths for which the test data generator will generate test data. this
selection is done based on the kind of goals the test suite is meant to cover. The selected paths

are then transterred to the Test data generator.

Test Data Generator

A Test Data Generator generated inputs to exercise the selected paths. To do this first the path

predicated of the path are found and then solved in terms of the input variables.

2.7.2 Type of Test Data Generators
Test data gencration techniques can be divided into the following threc categorics
Random Test Data Generation

This is the simplest test data generation technique. Techniques in this category generate rundom
input values to create a test case. This data is generated withoul any attention to any testing

goals. Randomly gencrated test is hknown lo have low performance in terms of fault detection or
high coverage. The reason tor this is that such techniques usually miss inputs that are i trigger

rare errors hidden within the less approachable parts of the program.

12
-t

Mulli-Objective Whole test Suite Generation

CHAPTER 2 BACKGROUND

Goal-Oriented Test Data Generation

Goal oriented test data generation guides the test data generator to generate Inpuis that traverse
certain paths which result in test cases that cover the test goals. The path used to generate test
data in such techniques is an unspecified path. Unspecified paths are paths with some segments
of the path missing from them. Two methods that use this technique are the chaining approach

and the assertion oriented approach.
Path-Oriented Test Data Generation

Path oriented test data generation techniques. 1ike goal eriented 10015 it provides the gencrator
with a single path, but the path provided in this case is a speeific path. Following a specitic path
leads to a better coverage of goals but it makes the generation of inputs for the path harder since

infeasible path can also be a part of the specific path provided to generate test data.

2.7.3 Importance of Path Selector
The path selector is the part of the system that chooses the paths based on the test goals. {f the
path selection is done in an effective manner it improves the performance of the data generated
using these paths. The stronger a criteria 1o be fulfilled is the more paths arc needed lo generale
the data. Some of the typical criteria used to generate awomated test data are given helow.

e Branch coverage

¢ Statement Coverage

o Path Coverage

¢ Condition Coverage

» Multiple Condition Coverage

Multi-Objective Whole test Suite Generalion 24

CHAPTER 2 BACKGROLUND

2.7.4 Problems with Automated Test Data Generation

Test data generation is a complex problem. Because of the complexity of test data generation
most of the work in literature for test data generation results in programs that ate not suitable to

test real life problems.
Arrays and Pointers

Array and pointers create complications when generating data because they are not actual
variable bul they contain the address of the actual variables location. 1he actual yarable 1s not
known so this causes problems in the substitution and makes test data generalion more

complicated. A solution to this problem was proposed by Ramamoorthy|63].

Objects

Objects ar¢ even more complex than arrays and pointers, They are mostly dynamically allocated
and there exist the concepts of abstract arrays, inheritance and polymorphism to further

complicate the matters.
Loops

Loops are responsible for the repetition of the code in the program. Most of the times the no of
these repetitions that will take place is not known. they usually depend on a vanable. The loops
arc problematic only it they lic in the unspecific part of the programs path because 1o genceraic
data for a loop it is important that the path for (he closed form ol the loop is present.
Ramamoorthy |63] suggested a solution for this to execute the foop a randomly chosen number

of times. The number is chosen either by the use or by the system.
Modules

Programs are usually divided into modules and functions. This causes problems because the
called function's code is often not accessible because it mostly lies in precompiled libraries so a
complete analysis of the function is not possible. Ramamoorthy suggested to vse the inlined
version of the called function to overcome this problem or to analyse the lunction [irst and

generating its path separately [66].

(B
A

Multi-Objective Whole test Suite Generation

CHAPTER 2 BACKGROUND

Infeasible Paths

Infeasible paths are the paths in the flow graph of the system that cannot be reached. {n test data
generation the test cases are generated based on the path provided by equating the nath and
finding inputs to traverse the paths. This becomes very difficult when the path that needs to be
cquated to find the input is infeasible. The only known solution in the literature for this to
exercise the path a number of times betore concluding that it is infeasible and that an alternate

path should be taken.
Constraint Satisfaction

All the testing methods have to deal with constraints but test data generation [affected by it more
than other methods because there are function calls in the program and due to this symbolic
execution is not possible. Search methods arc usually used to solve constraints [66. 67. 63. 61.

64].
Oracle

1L is really important to have an oracle in automatically gencrated test because the number of test
cases generated is usually very high plus some test cases produced might be inconceivable. but
the problem lies in generating the test data’s oracles. To generate an oracle either extra

information about the specifications has to be provided or asserts have to be inserted in the code.

2.7.5 Metaheuristic technigques for test data generation

The Meta heuristics algorithms have been used by many researchers in (he reeent years [69. 70].
The search based algorithms are highly adaptable and ideal for the solution of any problem that
is classitied as NP-Complete or even NP-Hard. These programs have been applied in the

following areas of test data generation.

e To complete the coverage of a program under test. when it is being test using a white box

testing strategy.

=

s Exercising particular parts or aspect of the Sysiem under test according to the

specifications.

Multi-Objective Whole test Sute Generation 26

CHAPTLCR 2 BACKGROUND

s To automatically falsily asscrtions and regarding the systems safety and disprove grey-

box properties.
o To verifv non-functional properties of the system under test.

Techniques like simulated annealing. hill climbing and genetic Algorithm are popular among

researchers for the creation of automated test data generalors.

2.8 Whole Test Suite generation/Evosuite

When a program is being tested under structural testing. usually some sort of coverage criterion
is to be satisfied and the test cases arc generated with that aim in mind. Recent advances show
that now it is possible to automatically generate test cases for a moderately sized system. This
approach that is uscd to do this is that test cases are venerated (o satisfv cach goal after

considering every goal separately. Though this strategy works. it has the following main flaws:
o This technigue assumes that all the coverage goals are cqually important.

o i is assumed that all the coverage goals are equally difficult to reach. while in reality
many test cases are infeasible, these test cases are impossible or really difficult to reach

and they fake up a lot of systems time and ¢lort to handle.

o The technique also assumes that the goals are all independent of each other but actually
that is not the case. When one test case is targeted, it results in an automatic coverage of

many other coverage goals. This is called collateral coverage §72] or screndipitous

coverage.
Randony incad 1651 sunos Test cte culuien Mo mizoc 1061 Sue
wth maxtrnred coveranea
4 e lan e O
_ ~ 2 1_| hes el

ENEHEREN R

__ \/' > | Gl =]
ul 14 N

ﬁ .

| 7] I@IEH

Tig 2 3 Work{low ol “Wholc test Suite Generauon’

Multi-Objective Whele (est Suite Generation 27

CHAPTER 2 BACKGROUND

Whole test suite gencration/bEvosuite is a technique that gencrales a 1est suite (hal lrigs to
optimize the whole test suite at once without considering one coverage goal at a ttime. The test
suites generated this way are neither affected by the order of choice of the coverage goals to
satisfy nor are they atlected by the infeasible parts of the system under test. Fyosuite uses a
search based technigue to evolve a population of test suites 1o find a test suite thal achicves
coverage based on the coverage criteria of choice. This technique improves the following aspects

of the test suite opiimization research area |71).

o It handles dependencies among the predicates.

e It handles test case length dynamically, so that the exploration is not aftected by a tixed

size test cases and (est suites,

Below is the pseudo-code for the whole test suite optimization sottware also known as Lvosuite.

Multi-Objective Whole test Suite Generation 28

CHAPTER 2

BACKOGROUND

-Uf-.',()l‘lthm I The conctic

AR ru;mh.rffrlrf «— gCnerile T
> repeat

Z — clie of e J:f_J:raj.mrfuh.‘
while |Z| =

J |¢ IEN f,'f_},nnf.u.'.‘a"uh:

Jl”ﬂ[lllml applied m I:\n\l ik

andonm pupui ion

th

e do

P Dy — select we parents with rank selection

it crossover probabiline then
() () CromsOV e Pl‘f'g
else
(0.0 <= .
e € and €25
frr = st it st pﬂ.j’ffm
Foo — nrent fotnessiQyitetn
{1
foy = le u;;ﬂf‘-(’li
1=
if f, o fpootro=1p !
for () in {¢);.0).} do
it /- .ln;f;u()f LA
7 — 7 110
else
7 = 7

3

{1

i
a4

{1-)]_ (a1 [‘)_)l[
¢lse
7 — 7 ATy

TN ”,t__!w]uufnhuu -— 7

75 4o &

< ountil ~solution found or maximum

forgthid g

s P_) i

f .--,‘a'llf)'_:: i

e pgthe)y~ poth
— I H_[‘J?th[()ﬁ]
host individual of e Hf_jfrfi).f*-‘h‘ruf."(!.r:

<1 po then

then

Fesotrees spetll

TH

Fie 2.4 Pscuda-code of “Whole test Suite Generatton™ [71]

[
LB

7.9 Meta-heuristic techniques, Evolutionary Algorithms/Genetic Algorithms

The litera! meaning of the word heuristic is som

problem through experimental methods esp

Multi-Objective Whole 1est Surte Generation

ething that helps to learn. discover or sofve any

ecially through trial and crror. In the ficld of

29

CHAPTER 2 BACKGROUND

computer science a heurtste technique or algorithm is an algorithm that tinds an approximate

solution tor any given problem tor which the classic algorithms could not find a precise solution.

Heuristic techniques provide an approximate solution for the problem at hand which means that
the sotution provided may not be the best solution for the problem but itis stll a valuable
i,
solution because there do not exist any algorithms that would provide a definite solution for the

problem vet and this solution is provided in a reasonable time frame.

Meta means bevond or something that is ot a high level. So a Meta-Heuristic technique is a
technique that performs better than the regular heuristics. The term Meta-Heunstic was put
forward by Fred Glover (Fred 1986)[73]1. A Meta-l leuristic is something that combines other
heuristics 1o provide a betler heuristic solution. Another thing comimon is all the Mcta-Heuristic
algorithms is that they all contain a search space which they traverse to find a solution and they
keep randomizing the solutions to cover as much area as possible and not diverge towards the

local optima.

Solutions of good quality can be found within reasonable time but there is no guarantee that the
technique will definitely find the solution. i.¢. such techniques don”twork 100% times. All Mceta-

Heuristic technigues. according to (voss 2001} arc suitable o plobal optimization.

T'wo main features in all the metahueristic techniques arc intensilication and diversification or
also known as exploitation and exploration (Blum and Rol. 2003) [74]. These two work in

oppousite direction and are the opposite of each other.

Exploration/Diversification: Diversification means to introduce randonmess to the solution so
that more of the search space is covered. The more diverse the solutions are the more global the

focus ol the scarch becomes.

Exploitation/Intensification: Intensi fication mcans to focus on one arca in the scarch knowing
that betier solutions cxist in that arca. Too much focus on intensification can result in a solution
that is locally optimal and ignoring a better solution that exists globally. A good balance between
the two should be found to achieve a better solution that is capable of tinding 4 solution through

intensilication and can also focus on the global optima.

Multi-Objective Whole test Suite Generation 30

CHAPTER 2 BACKGROUND

2.9.1 History

Heuristic methods have been used during 1940s,50s and 60s in applications to solve problems
but they were not used a s a scientific method for optimizations. The breakthrough for the
heuristic techniques came with john Holland's Genetic Algorithim. John THolland imtroduced the
genetic algorithm in 1960 [75] alter which LI, Fogel [76] developed Genetic Programming in in

1966.

In 1983 kirkpatrick |77} developed Simulated Annealing. which was inspired by the annealing
process of the metals. In annealing the metals are heated at high temperatures and then cooled
down slowly to reduce their brittleness. 1n simulated annealing the algorithms slowly deercases
its acceptance of lower fitness solutions to improve the coming populations while exptoring the
search space. [n 80s Farmer et al developed the artiticial Immune systems and the Tabu search

by Glover was introduced t0o.

In the 90s Ant Colony optimization Algorithm by Marco Doringo 78] was published. This
algorithm was inspired by the social behavior of ants. John R Koza wrote a book on Genetic
Progranuning and James Kennedy and Russell C. Eberhart [79] introduced the Particle Swarm
Optimization. 1n 1997 R.Stom et al developed diffeeential evolution which proved more

effective than the genetic algorithm in many applications.

2.9.2 Popular Meta-heuristic Algorithms

Some of the popular Meta-Heuristic Technigues are as follows.

o Simulated Annealing [76]: In each iteration. the algorithm decides 10 move the system
from the current state "s” o some neighboring state "s” which cventually leads the system
to a state of lower energy. This process is repeated until the system reaches a state that s

good enough for the system.

o Evolutionary algorithms [75]: OF all the Meta-heuaristic techniques available in literature
the genetic algorithms are the most popular. the reason for this is their high adaptability.
with little or no modiftcation thev can be applied to a problem of any domain. Gienetic

algorithms are based on the theory of natural sclection by Charles Darwin. The process is

-

Multi-Objective Whole test Suite Generalion il

CHAPTLR 2 BACKGROUND

mainly divided into three steps. selection. crossover and mutation. The population of
given solutions is optimized using the three steps to find the required solution i.e. the

solution with the high cnough litness value.

o Differential Evoluiion: Ditferential evolution is a vector based version of the genetic
algorithm. 1t does everything i terms of vectors. the population 1s a set of vectors. The

three main steps mutation. crossover and selection are performed on the vectors.

o Ant Colony Optintization | 78]: Ant Colony optimization is a technique that is based on
the behavior of the ants when they collect food. Ants live in large colonies which can
reach upto 25 million, when an ant find a tood source il Jays a path of phetomone o it
which can be traced by other ants 1o and from (he food source. Bul the trace ol
pheromone is not permanent: it evaporates constantly. which means that the path that 1$
travelled more by the ants is a better food source than the one that is travelled less. This
idea is uscd 1o find the best food source that is the best solution lrom all the available

solutions.

o Bee Colomy Optimization: Bee Colony optimization Algorithm [80}1s 2 technique based
on the behaviors of the bees when they forage for flower patches. When a bee finds good
Nower patch it colleets the nectar and returs 1o Mre hive after which it performs a waggle
dance through which it communicates the location of the food source. If there are more
than one toad sources available the bees divide their forces so as to maximize the pectar

collected from the [lowers.

o Purticle Swarm optimization |79]: This Algorithm is based on the behavior of the swarms
of fish or birds when they flock or school. The particles (solutions) are moy ed through
the space towards a global optima which is constan(ly updated while other particles keep
finding better solutions. At the same time the particles immediate movement is guided by
its own best known location. but the particle shows random movement too. This way

eventually the whole swarm is moved towards global optima.

e Jubu Search [81]: labu scarch uscs the memony or the scarch history in is

computations. The tabu algorithm makes a tabu hst of recently visited tried solutions

(W]
{4

Multi-Objective Whole test Suite Generation

CHAPTLCR 2 BA(KGROUND

which helps it to ignore the local solutions. In the long run these tabu records help save a

Jarge amount of time and hence improve the efficiency of the search.

e [lurmome Search [82]: Vhis algorithm is based on the musician™s way of working. The
musician when he has to improvise has three options. 1) He can present the piece as is
without any adjustments: exactly as he remembers it 2) Play something similar but
slightly adjusting the pitch a bit. 3) Creale a new picee using random notes. These three
steps correspond Lo the use of the search space. the creation of new individuals and the

addition of randomness to the solutions.

o Firefly Algorithms [83): Firelly Algorithm is bascd on the mating habits ol real [irellics.
A firefly is attracted to another firelly based on its brightness. 1 he attraction between two
fireflies decreases based on the increase of distance between them, So if two tiretlies are
considered the brighter one will attract the dimmer one but if there is no ditference in
their light than a random move is made. In terms of the algorithm the fircflics are the
potential solutions and their brightness is determined by the position they hold m the

search space.

2.9.3 Genelic Algorithms

Genetic Algorithims [73] are the most popular methods used (or optimization. This algorithm is
highly adaplabic and thus can be applicd to problems [rom many domains with casc. The basic
idea behind the algorithm is based on the theory of natural selection by Charles Darwin from his

book Origin of Species.

Genetic Algorithms are applied in many different fields to find solutions for difficult problems
including. automotive design. cngincering design. robotics. ships and telcconmnunications
routing. encrvption and code breaking. marketing and commerce. genctics and hardware design

ate.

‘Yhe main body of a Genetic Algorithm has three main parts. Sclection. Crossover and
Mutation. The initizl population on which the genetic algorithm is run is stored in a population

pool. Individuals of the population are assigned a fitness value based on how well they display

td
-

Mulu-Objeetine Whole test Suite Geneeation

CHAPTLR 2 BACKGROLIND

the qualities we need. A predefined number of individuals from the population are chosen based

on their fitness to apply the three steps on.

Sefection: Selection is the process in which the individual from the population are selected to
apply crossover on them. The selection is done based on the fitness function of the population.
The better the fitness of the individual the greater the chances of it getting chosen are. Once the

individuals are chosen the next step is applied

Crossover: The selected individuals are crossed over to form a new set of child population. In
crossover the individuals are broken and swapped at a point which is usually randomly chosen.

I'his can be done in many ways but the simplest way is the single point Crossover.

Mutation- This part is used to introduce randomness in the solution so that they can better cover

the search space.

Muli-Objective Whole test Siite Generation 34

CHAPTER 2 BACKGROUND

After mutation. the resulting child population is checked for a solution that fulfills our fitness
criteria. It a solution is found. the search is halted. it not the whole process is repeated until

cither a required [itness s achieved or a pre-delined number of ilerations arc completed.

mtialize the population by randomhy ;.zc:\;‘r.mn;:,!

Hin s J

Fo aluate cach membser’s Tt ss aloe

- /‘-
Y Tl there any fitmess valine peocheng the ey
I < "

~— dersned sesuli” L

‘ Coloulate conldree aumbes b each memibe

Aprl crosseven w canddenni panned R omaosore

i

t
]
!
| ‘ Sty mulelion il cotam probabibin
[;
!
]
‘- ~
i f./" e
| —
i ,/-""‘f - T N
b - . -
, <7 Does numiber o perierafiol e e T —
. T -
! e e’ ~ e
i S P
| —— e
! -
! !
e 1

R

Frod

Tig 2.5: Flow Diagram code of a Genetic Algorithm

"M

Multi-Ohjcctive Whole iest Suite Generation 3

CHAPTER 2

Multi-Objective Whole test Suite Generation

BACKGROUND

36

Chapter 3

RELATED WORK

CHAPTER 3 RELATED WORK

RELATED WORK:

There are numerous techniques for Test Suite generation and minimization in the Yiterature: the

technigues proposed in recent literature are listed bejow.

3.1 Test Suite Generation Techniques

Techniques and algorithms proposed in recent literature for Test Suite generation ase as follows.
3.1.1 Pacheco el al (2007)

in this work the rescarcher describes an automated unit test case generalor called Randoop.
Randoop uses a technigue that is inspired by random testing which is based on execution
feedback. Feedback is gathered by executing the test inputs at the time of creation. The tests
generated are unit tests. RANDOOP [4] creates method sequences incrementally. by randomiy
selecting a method call to apply and selecting arguments from previously constructed scquences.
As soon as it is created. a new sequence is executed and checked against the set of contracts.

Sequences that [ead to contract violations are output to the user as contract-violating tests.

Sequences that exhibit normal behavior (no exceptions and no contract violations) are output as
regression tests. Finally. sequences that exhibit illegal behavior are discarded. Only normally-

behaving scquences are used to gENCrate new Sequences.

Limitations:
The tool is too code dependent.

It does not pertorm integration testing since it generates tests tor each unit separately.

3.1.2 Harman ct al (2010)

The researcher in this paper takes some basic steps towards tackling the re-formulated version of

the automated test data generation problem. making the following contributions:

Multi-Objective Whole test Suite Generation 38

CHAPTER 3 RELATLCL WORK

It introduces a new way to handle the problem of search based structural test data generation. n
which the main two goals are that of maximizing coverage and minimizing test suite size. while
keeping in mind the fact that the human oracle costs that will incur in cases of complen Yest
suites and it introduces three algorithms that form the new technique for test data generation
using search based testing {5]. The technique seeks to use test inputs of such a kind so that the
collateral coverage is maximized along with the targeted branch coverage. In this the total

number of test cases required 1o fulfill the coverage criteria is reduced.

Limitations:

The proposed algorithms are unable to handle infeasible branches.

3.1.3 Ribeiro et al (2008)

The focus of the researcher in this paper is to employ genetic algorithms to generate unit tests for
the SUT. which is an object oriented java program. Strongly typed genetic programming is used
1o evolve the test cases The results are (raced using instrumentation. the objects atre instrumented
to track the traversal of the SUT by the generated test data. The search process gives priority 10
the test cases that traverse the problematic areas of the code and the contro! flow graph. Test
objects” java Bytecode is used to perform instrumentation and static analysis of the system [64.
Imporatant contributions consist of the introduction ol innovative methodologics for automation.
search guidance towards early coverage ol troublesome parts and reduction of the input domain

plus a too] called eCrash is presented which automatically generates test cases.,

Evolutionary Computation in Java (CCI) package is used for the representation and evolution of
the test cases. Linearization of the STGP trees is used to yenerate the source code tor the test
cases. The tree linearization process produces the method call sequence: the source-code s
generaled by translation of the method call sequences using the method signature ¢ncoded in
cach node. The CEFG nodes that arc traversed by the test cases arc removed from the uncovered
nodes” list. The search ends when there are no uncovered CFG nodes lett or a pre-defined no of

iterations are made.

Multi-Objective Whole test Suite Generation 19

CHAPTLR 3 RELATLCD WORK

Limitations:
The proposed technique e-crash does not consider collateral coverage.

The 100l is code dependent and locuses only on object onented paradigm in Java.

3.1.4 Tonella et al (2004)

In this papcr. an evolutionary algerithm is exploiled to producc unit Icsts lor classes
automatically The chromosomes that make up the test cases arc the respensible for the decision
of what methods need to be called, what objects are to be created and what input values are to be
used. Mutation is performed on the test cases with the aim of maximizing the search space
covered. Further description ol the algorithm and a few implementation details are discussed

below.

The hasic process followed for the unit testing of classes consists of the following sleps.

applied to each method of the CUT and possibly repeated under ditterent execution conditions:

1. Object ercation of the class using any available constructors.

S

_“To bring the object to a desired state a sequence of method calls is exceuted,

_The method currently being tested 1s called.

Tad

4. To assess the results of Lhe test cases exeeution the (inal state ol the object alter the execution

of tests is examined |7].

This procedure can be applied functionally (black-box testing). by deriving the expected final
states from the class specitications. The thoroughness with which the testing is done can be
assessed using some coverage criteria for testing. Traditional coverage criteria (white-box
testing) can be used. for ¢.p. structural (like statcment. branch} coverage or data flow {¢.g.. all-

uses) coverage. The above steps can be repeated until the required coserage is achieved.

Multi-Objective Whole test Suite Generation A0

CHAPTER 3 RCLATCD WORK

Limitations:
The proposed technique cannot handle inteasible paths or collateral corerage.

The technique focuses only on object oriented paradigm and unit testing.

3.1.5 Wappler et al (2005)

This paper prescuts an approach for the automatic generation of test data Tor a SUL that is
object-oriented. Unit tests are generated for the system using Universal Cvolutionary Algorithms.
These evolutionary Algorithms are provided with popular toolboxes that are domain-independent
and provide a wide range of evolutionary operators. Using the popular testing frameworks the

generated test data can be converled into test classes [8].

For the purpose of using the universal evolutionary algorithms. object-oriented test programs
are encoded as basic (vpe value structures. Multi-level optimizations are considered 1o oplimize
search of the genetic algorithm. The encoding used does not a void the creation of individuals
which cannot be decoded back without issues. Therefore, three measures 10 be used by the
objective function are given using which the genelic algorithm can generate more and more (st

classes over Lime that can be successiully decoded.

Limitations:

The encoding and decading of clements adds complexity and does not handle inconvertible

clements.

Multi-Objective Whole test Suite Generation a1

CHAPTER 3 RELATLD WORK

3.2 Test Suite minimization Techniques

Technigues and algorithms proposcd in recent literature (that usc coverage as the basis for lest

Suite minimization are as follows.

3.2.1 Blue et al (2013)

Combinatorial Test Design (C'TD). also known as combinatorial tcsting. is an cifecuve tesl
planning technique. in which the test space is modeled by a sel ol parameters. their respective
values. and restrictions on the valuc combinations. The iest space represented by this model 18

any assignment of one value to each parameter, which does not violate the restrictions.

A subset of the space is then automatically constructed so that it covers all valid value
combinations (a.k.a interactions) of every t parameters. where t is usually a user mput. ln other
words. lor cvery sct of (paramel(ers. any combination of t values 10 them will appear at least once
in the test plan (unicss there is no valid st thal contains il. according (o the restrictions). In
general. one can require different levels of interaction for different subsets of parameters. The
most common application of CTD is known as pairwise testing. in which the interaction of every
pair of paranicters must be covered. Each test in the result of C11) is an assignment of values (o
all the parameters. and represents a high level test. or a test seenario. that needs o be (ranslated

(o a concrete executable test.

This work proposcs (o UsC [nteraction-based Test-Suite Minimization {[ISM} as a
complementary approach to CTD [9]. for cases where standard CTD may be best practice but
cannot be applied due to the requirements described above. Rather than constructing a new test
suitc (hat provides Tull interaction coverage. 118M reduces an existing test suite. while
preserving ils inleraction coverage. Similarly to C1D. IT'SM requires defining the parameters ol
the test space and their values. but it does not require defining restrictions between the values. [t
is then given a test suite. where each test i< in the torm of an assignment of values to the

parameters, and sclects a subset of the test suilc that preseryves its (-wisc value combinations.

Multi-Objective Whole test Suite Generalion 42

CHAPTER 3 RELATLD WORK

Limitations:

ITSM requires that the set of existing tests be represented as tuples of values 1o parameters.

3.2.2 Gupta et al (2007)

The key step of the approach is thal when a test case Uis sclected into a reduced suite because it
satisfies an additional requirement with respect to some testing criterion C. The following is then
checked: Among those other test cases R that become redundant with respect to C as a result of
the sclection of L. those test cases arc selected lrom R into the reduced suite that satisly additional
requiretments with respect (o some other (esting criterion. | hus. the approach sclecuvely retams
those test cases that are redundant with respect to initial testing criterion. 1t those test cases are
not redundant according to some other testing criterion. The approach is called “Reduction with
Selective Redundancy (RSR)™ [10]. 1t was implemented by the rescarchers and experiments were
conducted with several programs to cvaluate and compare the clTectiveness of the approach with

priot experimental studies on test suite minimization.

Limitations:

Increascs (he length of the test Suite as compared to traditional minimization techniques.

Muiti-Objectine Whole Lest Suite Generation 43

Multi-Objective Whole test Suite Generation

44

Chapter 4

PROBLEM
DEFINITION

CHAPTER PROBLIM DLTINITION

removes cach test case and check for any change in the fitness of the tesl suite, In case of amy

change in the fitness of the test suite the test cases is retained otherwise it is removed.
Main issues with this technique are as follows:

¢ High redundancy rate in the test suite after the Genetic algorithim and the simple

minimization is run
o Uigh rate of iterations nceded to optimize and minimize the (est suite.

» Optimization and minimization are both done separately ie. after Evosuite is run. it is
required to run the "Simple minimization Algorithm® separately after that to remove the

redundant Test Cases.

e Redundancy isn’t completely removed even after the *Simple minimization Algotithm” is

ru.

s This technique considers only one objective and its main logus is coverage not

optimization.

o A nced for a better more efficient optimization that considers more than one objective at

the same time 15 needed.

Our hypothesis is that if instead of using the single objective genetic Algorithm if multi-
Objective Genetic algorithm s used it will improve efficieney of the algerithm. The two
Objectives to be considered will be coverage and minimization at the same time. We believe that
this will reduce the number of iterations needed to pet an optimized Test suite and it will give as
output an optimized as well as minimized test suite allter running the genetic algorithm once. The
need o separately optimizc and minimize the test suite will not be required. Thus the main aim
of our work is to reduce the latency rate. the total no of iterations and the redundancy of the

algorithn and improve the overall efticiency of the algorithm,

Multi-Ohjective Whole test Suite Generation 47

CHAPTER 4 PROBLEM DLFINITION

4.2 The Rescearch limitation
The research gaps in the existing literature that motivated this work are listed below.

e All cnisting techniques are cither 0o programming language dependent or paradigm

dependent.

e The existing approach generates Test Suites with only coverage in mind and do not tocus

on minimization {71}
e Minimization and optimization are both done separately.

¢ 1wo techniques using multi-objective Algorithms. to generate test data but both ol them
do not consider collateral coverage and fail to alfectively overcome the issuc of infeasible

paths |84. 85|

Multi-Objective Whole test Suite Generation 48

Chapter S

IMPLEMENTED
APPROACH
FOR
MO-WTS
GENERATION

CHAPTLR = IMPLEMENTED APPROACH TOR WTS GENTRATION

IMPLEMENTED APPROACH FOR MO-WTS GENERATION

Chapter 4 and 5 include the literature survey of Multi-Objective Whole Test Suite generation.
through which the gaps and shortcomings in the existing techniques are identified. which forms
the basis and motivation for our work, The cureent chapter discusses the details of the

implementation of the approach which was proposed.

The test data generation techniques in Lhe past like Pacheco [4] ¢t al and Ribicro [6] ¢t al were
effective and efficient incthods of (cst data gencration but tiost of them were meant for unit
testing of the system under test and if the technique was not meant for unit testing then 1t either
heavily code dependent of paradigm dependent. Such techniques are inflexible because of their

lack of gencrality.

Genetic algorithims arc used to generate (est cascs automatically in the past but all these
techniques traversed the paths of the control flow graph based on the test goals. considering one
goal at a time |71]. This means that there is always some collateral coverage involved and no
work is done to overcome infeasible paths except the classic “wait till a pre-defined number of

attempts are made” approach.

The only approach that overcame the platform dependability. code dependability. collateral
coverage and infcasible paths problem is Fvosuite [71]. Fvosuite is a scarch-bascd test data
generation technique which has coverage as its main focus. I'he technique was tested on
industrial large scale case studies and it showed good results but this technique does not address
the issue of redundant test data. So to produce a technique that is more efficient than Evosuite
and which checks collatcral and infeasible coverage oo Mulli-Objective Wwhole lest Suite

generation Algorithm/technique was implemented.
The main reason or achicvements in implementing this technique arc as follows.

e Generation of Random test data that can cover the chosen coverage criteria in the single

run of the Genetie Algorithm.

e Reduce the sise of the resulting Lest suite while achicving a compleie coverage at the

same tme.

Mulii-Objective Whole test Suite Generation 50

CHAPTER & IMPLECMENTED APPROACH FOR WTS GENERATION

e Reduce repetitive coverage as compared to Evosuile.

o The implementation gives positive results and hence is an encouragement to pertorm

more work in this direction in the future.

e Reduce the number of repetitions required to achieve the desired coverage ol the chosen

test goals.

e The technique is platform. codc and paradigm independent and can be casily
implemented in any programming language without any modification to the basic

Algorithm,

¢ The technique is Nexible enough to be casily modifiable without losing efficiency. It can
easily be implemented for a different coverage goal from the one chosen in our work and

it will be just as efficient.

5.1 Implemented Approach

The approach that we implemented is called “Multi-Objective Whole Test Suite Generation®

and the details about this approach will be discussed in coming sections ol this chapter,

The Lxisting Approach known as "Evosuite’ is a single objective genetic algorithm based
technique that fests the sysiem under Test using ‘branch coverage’ as coverage criteria. The
initial population is gencrated randomly. which consists of a pool of Test suites. FVhe size of the
Test Suites is left random. Each Test Suite contains a random number of Test cases which too
have random sizes. The random sizes are so that the limit on the size may not atfect reaching the
required goal of coverage. 1o control the bloat affect which results from randomly sized suites, A

limit aftcr the size rcaches a certain maximum is kept.

A typical Test Case contains input values and the expected output but the test cases used in this
too] are based on Tonella’s [7] format of test cases which creates test cases with a set of random
function calls. initialization statements. and constructor statements from the code under test. The
code is completely object oriented so it is assumed that al some point complete coverage 18

possiblc.

Multi-Objecrive Whole test Suite Cieneration 51

CHAPTLR 3 IMPLEMENTED APPROACH FOR WTS GENLCRATION

Based on the fitmess of the Test suites a set number of test suites are selected. These Test Suites
are crossed over. [n crossover the test cases are swapped. which are independent of each other as
far as the code is concerncd after that the off-spring population is mutated. Mutation in this
approach is done onc of the three ways randomly. The three kinds of mutation is called insertion.

deletion and moditication [71].

The whole process is repeated iteratively until a Test suite with the required fitness (i.e. 0) is
achieved. Once the required titness is achieved the algorithm is terminated and the resulting Test

Suite is given as an outpul.

The resulting Test Suite is then minimized using a Simple minimization Algorithm to remove
any redundancy that can be removed without afTeeting the coverage of the test suite. The “simple
Minimization Algorithms™ runs the whole code to check the fithess after test suite after
attempting to remove each statement iteratively. This part of the algorithm areatly increases the

number of iterations required to minimize the system.

The technique that was proposed by s is multi-objective technique. The multi objective Genetic
Algotithm used in the technique is the classic Mulii-objective Algorithm. Non Dominant Sorting
Genetic Algorithm (NSGA) [87-89]. This algorithm was proposed by Kalvanmoy Deb ctal. The
efficient version of the algorithm was later proposed by the same authors and it was called

NSGAIL The algorithm used in this work 1s NSGAII [88].

The population used is the same as the existing technique for the purpose of comparison. the test
Suite and (est case size is still random as before. the sclection part is replaced by Lournament
selection and there are now two fitness functions that represent the (wo objectives. M the end the
results obtained by both the techniques ate compared to see if the hypothesis proposed was

proved or disproved.

5.2 Diagram of Implemented Approach

e The first step is to choose the code that will be our system under test. Since this technique
is 2 white-box testing technique we need the code to be able to test it using our technique.

The Code we selected is that of a scientific calculator. This code has 40 functions which

Multi-Objective Whole test Suite Generatien 52

CHAPTER 3 IMPLEMENTED APPROACH IFOR WTS GENERATION

can form a large number of combinations when combined randomly to form a Test Suite.

e Both Fvosuite and Multi-Objcctive Fvosuite are implemented 1o be able to draw a fair

comparison between the two approaches.

e First Evosuite is implemented in which a randomly generated population of test Suites Is
optimized by iteratively running the genetic algorithm on it until a suitable solution is

found.

e Secondly the multi-objective Evostuite is implemented. The Muiti-Objective Lvosuite uses
the same population as that of the Evosuile i.c. a pool of randomly gencrated 1est Suites.
The first step is to calculate the [itness [or all the solutions. using the fimess achieved
with two fitness functions the population is divided into fronts. The first set of non-
dominant selutions are put in the first front and removed trom the population. The
dominant solutions in the remaining population are put in the second [rond F2 and are
removed from the population pool. This process is repeated until the whole populavon is

divided into fronts.

Afler dividing (he data into fronts. the crowding distance of cach test Suite in cach front is

calculated. This crowding valuc and (he front value show how fit a solution is.

The next step is selection: the data is selected using tournament selection. In tournament

selection a set ol random data is selected and the fittest amonyg them is chosen.

The crossover and mutation remain the same in the multi-objective genetic algorithm 00.
The only difference in this phase is that now the values are chosen not on the basis of

fitness alote but on the basis of the *Crowding Comparison operator”

After this it 1s checked it a solution with a desired titness 1s found. It not the child

*

population and the parent population is combined to ensure elitism. This combined set of
test Suites forms the next population, The process is repeated until a desivable selution is

found.

The two fitness functions have contlicting objectives

Multi-Objective Whole test Swite Generation 53

CHAPTER 3 IMPLCMENTED APPROACH FOR WTS GENCRATION

o The first fitness function attempts to achieve complete coverage. Theretore it

attempts to find a solution that covers all the branches of the SUT.

. The second fitness function’s objective is to find a fest Suite that achieves the

coverage with minimum possiblc repetitions.

o The Chromosome structure is as follows: The Main Chromosome is each Test Suite and
the genes are the test cases that form the test Suite. Therefore when the crossover Is
applicd on the genes i.c. 1¢s1 cascs are swapped and when the mutation 1s perlormed it too

deals with the test cases (modification. addition or deletion ol the test cases) [71].

o The graphical flow of the process of the implementation phase is shown below.

Create a pool of Randomly generated Population of Test
Suites.

Implement Evosuite. which is Whole Test Suite Generation
Technigque with the objective of coverage.

Implement the the proposed terchnique which is a nwli-
Objective Test Suile generation Technique.

Run both the techniques on the data from the test pool and
record the results.

Conmpare the results obtained from runuing the twe
implemented approaches on the Test Data.

Fig 5.0: Steps ol the implemented approach

Multi-Objective Whole test Suite Cieneration 54

CHAPTER 5§ IMPLEMINTED APPROACH FOR WTS GCNLRATION

5.3 Fitness Function Formulae

Fitness function onc (1) deals with the coverage of the test Suite. ts subtracts the number of
covered methods from the total number of methods, calcutate the uncovered number of
methods. Then uncovered number of branches. within the method under consideration are then
added to the number of uncovered methods. Using this method the uncovered methods and

branches are calculated.
+ f(T) = M| - M| +Xpy g d(bK,T)

0 if the branch his been coveresd.

(e (BTY) 1T the predicate lias been
eveculod at least 1wice.

d(h.T) -- [
1 other s,
— T isthe current Test Suite
— M is the Methods (o be exceuted
— My is no of methods covered by the Test Suite.
— bk s the branch in the contol flow graph,
— B isthe total no of branches to be executed.
— d isa function that gives a normalized value for the branch distance covered

within a method.

Fitness Function two g(1) is responsible for the caleulation ol the repeated coverage. also known
as redundancy in the Lest Suite. It is caleulaied by adding the number of times lunctions are
repeatedly covered in the test Cases. In this way all the redundant method calls within all the test

cases in a test Suite are considered.
— miax
o g(T) - Etc=1 MReplc
-T is the test Suite under consideration.

Multi-Objective Whole test Suite Generation 55

CHAPTER & IMPLEMENTED APPROACH FOR WTS GENERATION

— MRep s the sum of the times any method is repeated within a test case,

— e is the 1est case under consideration.

5.4 Chromosome design

The chromosome design in the EBNF notation is given below.
<Chromosome>:: = <Test Suites>

<Test Suites>:: = <Test (Cases>

<Test Cages>:: = *| <Function calls>|<initialization statements>}<constructors=)
<Initial Population=::~ +}<Test Suitcs>)

<Paramcters>:: = 7<No of lterations>

<Generator=:: - *<Test Suite>

<Fitness Value=::=<Target Method - Traversed Method>

<Target Method>:: = Code statcments,

<Traversed Method>:: = Code statements.

5.5 Algorithms for whole test Suite generation

The Algorithm for the Existing echnique. the ~“Whole test Suite Generation (WS Gen)™ and the

implemented technique “Mult-Objective Whole test suite Generation (MO-WTS Gen)™ are

given below.

Multi-Objective Whole test Suite Generation

56

CHAPTER 5 IMPLEMENTED APPROACH FOR WTS GENERATION

5.5.1 Algorithm for Single Objective Whole test Suite Generation is as follows:

The Single objective WTS Gen Algorithm uses the Genetie Algorithm to Generate test Suites

which provide complete coverage without while overcoming the issucs ol collateral coverage

and infeasible path coverage. The Algortthm for the WTS Genis given below.

Generate Initial Population

The first step is to generate the initial population for the genetic algorithm. The inital population

consists of randomly gencrated (est suites of varying sizes. Each Test Suite Consists of a random

number ot Test Cases while each Test Case 1s a set of random function calls. constructor

statements and nitialization statements.

ARRAY AliStatements{]: (Populate array with statements from the systcm under Test):

v Generate TestCases. e,

FOR(i=0 TO MAXTestCase)
ARRAY TestCase[} = RAND(AllStatements[])

END FOR

FOR(i=0 TO MAXTestSuite)
ARRAY TestSuite []= TestSuite[] + TestCase[RAND]

END FOR

Fig 820 WIS Gen Algorithm Initial Population

Multi-Obrjective Whole test Suite Generation

57

CHAFPTER 3 IMPLEMINTED APPROACH FOR WTS GENERATION

Seleetion

The second step is to select the test cases based on thew fithess to torm the first parent
population. The no of (est Suites that are used for selection is taken as an input Irom the user and

the population size can be changed in cach run.

ceveoo.2Select the fittest SOIUIONS. oo e
FOR(i=0 TO MAXTestSuite)
ARRAY Fitnessfi] = M Total[i} - Mcovered[i]
END FOR
FOR(i=0 TO MAXPopulation)
ARRAY Sclected[] = max(Fitness[])

END FOR

Fig 5.3, WTS Gen Algorithm Selection

Crossover

Crossover is performed on the selected I'est Suites by swapping the test cases in the test suilcs
using One point Crossover, After crossover the child population of the same sive as the parent

population is generated.

... Crossover Selected Solutlons. ..o,

FOR (1=1 TO MAXPoputation: 1=1+2)
FOR (j=1 TO MAxTestCase)
Child[i][j] = Selected[i][jto(j/2)]+Selected[i+1][(/2HoMAX |
Child[i+1][j] =Selected[i+1][jto (j/2)|+Selected[i][(i2)to MAX]
END FOR

Multi-Objective Whole test Suite Generation 58

CHAFTER 3 IMPLCMENTED APPROACH FOR WTS GENERATION

END FOR

Fig 54: WTS Gen Algorithm Crossover

Mutation

Mutation is the Genetic Algorithm is meant to maintain diversity in the search space exploration.
In WTS Gen the mutation is of three types. A random nwmber is generated to decide what type
mutation should be performed. The three possible types are i. interstion ii. Deletion and it

Modification.

MutationProb = RAND(1-3)
... Remove a Random Test Case...............

If MutationProb = 1
MutationTestCase| | = TestCase]RAND]
Remove MutationTestCase [RAND]

ELSE IF MutationProb = 2
MutationTestCase[| = TestCase[RAND]
Add MulationTestCase [RAND]

ELSE IF MutationProb = e
MutationTestCase[| — TestCase[RAND]
Modify MutationTestCase [RAND]

END IF

Fig 3.5, W I'S Gen Algorithm Mutation

Multi-Objective Whole test Suite Generation

............................... i Add aRandom TestCase. o

................................. Perform Mutation on the child Population........... ...

.. Replace a Random Test Case......o.oooo i,

59

CHAPTER § IMPLEMENTED APPROACH FOR WTS GENCRATION

Main Flow of Algorithm

The Main tflow of the program performs Crossover and Mutation on the selected Popuiation in
each iteration until the coverage criteria is fulfilled i.e. the titness function f{ T) becomes 0.

I Initialize Population()

... Genetic Algorithm Tteration................ oo,

 FOR(}=1 TO MAX I(cration)

i Perform Selection(}
Pertorm Crossover()
Perform Mutation()
Check Filness()

IF (Fitness = RequiredFitness)
Terminate program
Output TestSuite

END IF

END FOR

Fig 5 6° WTS Gen Algorithm Mam Program tlow

5.5.2 Algorithm for Multi-Objective Whole Test Suite Generation is as follows:

The MO-WTS Gen Algorithm uses a Multi-Objective Test Suite based on the NSGA]
Kalyanmoy Deb [35]. Two Objectives are considered instead of onc. the additienal abjective

considered herc 1s minimization. I'he Algorithm is given below.

Mulii-Objective Whaole test Suite Generation €0

CHAPTER 5 IMPLEMENTED APPROACH FOR WTS GLNLCRATION

Generate Enitial Population

The first step is 1o generate the initial population for the genetic algorithm. The initial population
consists of randomly gencrated test suites of varying sizcs. Each Test Suite Consists of a random
nunber of Test Cases while each Test Case 1s a set of random function calls. constructor

statements and initialization statements.

ARRAY AllStatements(]: (Populate array with statements from the system under Test):
.. Generate TestCases...................

FOR(i=0 TO MAXTestCase)

ARRAY TestCascf] = RAND(AlISwatements|])

END FOR

... Grenerate TestSuntes. ...,
FOR(=0 TO MAXTestSuite) |
ARRAY TestSuite []= Tes(Suite[] + TestCase[RAND]

END FOR

Fig 3.7. MO-W TS Gen Algorithm (nitial Peputation

Fast Non-Dominated Sort

The Fast Non-dominated Sort is used to divide the initial population into fronts based on the two
Fitness functions. The non-dominated solutions in the whole population torm the first front, the
non-dominated solutions in the remaining population form the second front and this process is
repeated until the whole population s divided into fronts,

Multi-Objective Whole test Suite Generation 61

CHAPTER 5 IMPLCMENTED APPROACH TOR WTS GENLRATION

FOR(i=0 TO MAX TestSuite)
ARRAY Fitness![i] = MTotal[i] — Mcovered[i}

j=1

WHILE NOT End of TestCase
ARRAY [i] - SUM(TestCasemethodRepetetions[j])
it

END WHILE

| END FOR

k=1

e e [Fast Non Dominant SOTHNgcocoevvinveeciinineees
' WHILE ANY POPULATION NOT EMPTY
| WHILE NOT END OF POPULATION
| FOR(j=1 TO Population)
IF Fitness1|i] AND Fitness2|i] > Fitness1|j] AND Fitness2[)]
ARRAY DominantPool[] =TestSuite[i] AND REMOVE TestSuite[1] from Population
ELSE IF Fitness1[i] AND Fitness2[i] < Fitness![j] AND Fitness2[j]
ARRAY Remove TestSuite[i] From Dominant Pool[] AN Population = TestSuite [i]
Add TestSuite[j] to DominantPool[]
ELSE IT Fitness1[i] AND Titness2[i) # Fitness1[j] AND Fitness2|j]
Add lestSuite[i] AND TestSuite[j} to DominantPool[] AND Remove TestSuite[i] AND

TestSuite[j] from Population

.. Calculate both fINesSes. ... e e

Multi-Cbective Whole test Suite Generation

62

CHAPTER 3 IMPLEMILNTED APPROACH FOR WTS GENERATION

END IF

| i=i+1

END WINILE

ARRAY Front[k] =DominantPool[]
k=k+1

END WITLE

Fig 5.8: MO-WTS Gen Algorithm Fast Nou-Dominant Sort

Calculate Crowding Distance

Crowding Distance is caleulated for each solution after dividing the population into fronts. This
value represents the distance of a solution from its ncighbors in the scarch space. Soluttons with
higher values of the crowding distance arc given priority during selection, First the crowding
distance according to the first fitness function is calculated. then it is calculated based on the

second fitness function and finally the cumulative crowding distance is calculated.

........Calculate Crowding distance according 1o first [itness function. ...

FOR (i=0 TO MAXTronts)
Sort TestSuites by T'itness]
FOR (j=0 TO MAXTcstSuites)
If j=1 OR j=MAX)
crowdingDistance[[j] = «

ELSE
crowdingDistance 1{j] =ABSOLUE(Fitness1({TestSuitefj-1]) - Fitness1(TestSuite])-11))

END [F

Multl Objective Whole test Suite Generation 63

CHAPTER 5 IMPLCMENTED APPROACH FOR WTS GENERATION

END FOR
vvoerennCaleulate Crowding distance according to second fitness funclion.........oovi

Sort TestSuites by Fitness2
FOR (-0 TO MAXTestSuites)
If =1 OR j=MAX)
crowdingDistance2[j} = oo
ELSE

crowdingDistance2[j} =ABSOLULE(Fitness2(TestSuite[j- 1]} — Fitness2(TestSuite(j+1]))
END IF
END FOR
ceeroeJLaleulate The Cumulative Crowding Distance. ...
FOR (j=0 TO MAXTestSuites)
crowdingDistance[j] = crowdingDistancel[j] + crowdingDistance2[]]

END FOR

Fig 3 9: MO-WTS Gen Algoricthm Crowding Distance

Selection

The second step is to sclect the test cases based on their fitness to form the first parent
population. The no of test Suites that are used for selection is taken as an input from the user and

the population size can be changed in each run.

Multi-Objective Whole test Suite Generation 64

CHAPTER 5 IMPLEMENTLD APPROACH FOR WTS GENERATION

.......................... Select a pre-defined number of random test Swites.....o e,

FOR(i=0 TO PredefinedRand)
ARRAY RandomChoice[] = RAND(TestSuite[])
END IFOR
..-.......Choose the fittest among the randomly chosen...........................
FOR(i=0 TO Predefined Rand)

ARRAY Selected[] = Selected[] + MAX(CrowdingComparison Operator(Tes(Suite[i}})

REMOVE MAX({CrowdingComparison Operator(TestSuite|i])) !

END FOR

Fig 5 10: MO-WTS Gen Algorithm Selecuion

Crossover

Crossover 1s performed on the selected Test Suites by swapping the test cases in the test suites
using One point Crossover. After crossover the child population of the same size as the parent

population is gencrated.

.. Crossover Selected Solutions. ...]

FOR (i=1 TO MAXPopulation: i=i+2) ;
FOR (j=1 TO MAX TestCase)
Child[i][j] = Selected[i][jto(j/2)]+Selected[i+1]](/2)toMAX]
Child[i+1][j] =Selected[i+1](jto (j/2)]+Selected(i][(j/2)to MAX]

Multi-Objective Whaole test Suite Generation 65

CHAPTER 5 IMPLEMENTED APPROACH FOR WTS GENERATION

' END FOR
! END FOR

Fig 5 11: MO-WTS Gen Algorithm Crossover

Mulalion

Mutation 1s the Genetic Algorithm is meant to maintain diversity in the search space exploration.
In MO-WTS Gen the nudation is of three types. A random number 1s generated to decide what
type mutation should be pertormed. The three possible (vpes are 1. msertion 1. Deletion and ni.
Modification.

MutationProb = RAND([-3)

If MutationProb = 1
Mutation TestCase[] — TestCase[RAND]
Remove Mutation1estCase [RAND]

ELSE IF MutationProb = 2
MutationTestCase[] = TestCase[RAND)]
Add MutationTestCase [RAND]

ELSE [F MutationProb = e
MutationTestCase[] = TestCase[RAND]
Medify MutationTestCase [RAND]

END IF

Fig 312, MO-WTS Gen Atgorithm Mutation

Main Program Flow

Multi-Objective Whole test Suite Generation 66

CHAPTER 5 IMPLLMENTED APPROACH FOR WTS GENLRATION

The Main low of the program performs Fast Non-Dominated Sort. Crossover and Mutation on
the selected Population in each iteration untal the required Objectives are tultilled 1e. the fitness
function f{T) becomes 0 and the second fitness function g(1') which is responsible for keeping

track of redundant coverage hecomes 7ero 100.

cvveeenoo Jleratively Run the genetic Algorithm until optimized. minimized solution found.............
. Generate [nitial Population
FOR(i=0 TO Population)
Fitnessl = titness{ TestSuite[i})
Fitness2 = {iness(TestSuite[i])
Front{i] = FastNonDominantSort(Population)
END FOR
FOR(i=0 TO NO OF Fronts)

WHILE NOT END OF FRONT
crowdingDistance|i] = crowdingDistance(TestSuite[i])

END WHILE
END FOR
Selected |] = TournamentSelection{Fronts(])
ChildPopulation[] = Crossover(Selected(])

MutatedPopulation = Mutation{ChildPopulationf])

If (FiincssI{Population) And Fitness2(Population) = RequiredFitness! AND RequiredFitness2)
I
Terminate Program |t

Return TestSuite[] with Required Fincsses

ENDIF

Fig 5 13: MO-WTS Gen Algorithm Main Program Flow

Multi-Objective Whale test Sutte Generation 67

CHAPTER 5 IMPLCMENTED APPROACH FOR WTS GLNLRATION

5.6 Case study used for implemented approach

The Example used in the case study is a program for a “Scientific calculator”. All the functions of
the program are divided into classes. There are 40 classes which are randomly called to form the
test cases. The test cases are randomly combined to form test Suites of varyving sizes. The partial

diagram of'the Example used in the case study as a System under test (SULY s given below,

The example was chosen because it has enough loops and conditions so that it can provide
enough challenge to test. The functions in the example are called by the program during testing
to exercise code and the relevant branch. Evosuite uses @ strong example to validate its cause but
now the example will be used 1o run both the Single objective Whole test Suite Generation and

Multi-Objective Whole test Suite Generation.

The intention is of testing this example through both the approaches. It is expected that our
hypothesis will be proved and we will succeed in making improvements in the technique by

reducing the number of run and the repetitions in the test Suite.

Multi-Objective Whole test Suite Generation &8

(CHAPTER 5

IMPLEMENTLED APPROACH TOR WTS GENCRATHON

L
o
S)
|
1
!
: .
| Mo e u i e
. g ahy Puptiaks R T an
T P p " . -
| “w ™ "~
1
| e . anie M- A w e s
! .t - « ot
| .
_.l f i v
T____ — e e AL [P T FLTeTLIY
i
— |
! i
e Hu He
reegmr e e P
) — a-~ . v T e - - —
]
et e o "
| eraads e dhatmd it et RS LT LRSART Lok ot e
H - =Pt L « Hel
| . . .
| i i 4 4
[] T 2y A, ©enaanee, Ao Ru —
! ! - i
' : l I
!
ey r W
| Puok s aserahe - et P
PRI g _— - i
e g e e
LR L Sge an ¢ THITEAL A, T
z -Best - -temel R
1 ' |
+ . ['
11 ave Maee P Lins -zl T w4 Pt A
'
i :
| 1
¥ ¥
f ‘
i
T ",
| Sagiuia diaptala LI LEOr™
iy S EL woemt " T T e
i
I T wes e Yo
| S v R L R v T,
i L] <Py o =t r “Pmp
HE | . . ;
| | - + ' . +
I H LY EoN L i et PRy W) v K
i
i f f
' X
[|
' i . .
) —_—
! iy N ho \ ha
| e e 4-;:% - Wl e
| ot i o <o
Lirars avon. Cymar oipmawl PR ke bl owns
ELEEN] et R BT
! | | |
, L3 l ¥ L3
i L 74 Hesm [REE . I e
I i : .
H |
H + + '

Fig 3 {4 Contratlow Diagram of the Example

Multi-Objective Whole test Suite Generation

69

CHAPTLCR 5 IMPLEMENTLD APPROACH FOR WTS GENCRATION

5.7 Flow Chart of proposed approach

The tflow Chart of the proposed technigue is given below. The nttial population 1s generated
randomly. 1t 1s divided into fronts and the crowding distance 15 calculated of the Test Suites in
each front. Selection, crossover and Mutation is pertormed on the selected data and to maintain
ehitism the parent and child population after each tteration is combined. This process is repeated
until a Test Suite which fulfills both the objectives is tound.

Generate N Fast Non Dominated Sort Ca'culate Crowding
Random Test Suites (Divide Test Suites into Distance for the Test
Fronts) Suites ineach Front

. r selectir
Calculate Crowding Tournament Selectinn

Bistance for the Test
Suites in each Front

Crossover

Fast Non Dominated Sort

Divide Test Suites mto .

{ : 1 Mutation

Fronts)

Combine the parent and Mo Stopping Yes
child population in order Criteria
to maintain elitism {2M) Met>

Cutput the
first FrontF1

Fig 5.15: Contraflow Diagram of the Multi Objective
Whole test Suite Generalion Approach

Multi-Objective Whole test Suite Generation 70

Chapter 6

TOOL
IMPLEMENTATION

CHAPTER 6 TOOL IMPLEMINTATION

TOOL IMPLEMENTATION:

The tool was implemented successfully and tavorable results were tound. This section of the

write-up 1s devoted to the tool™s features and working.

Section 6.1 presents the architecture ot the tool, the implementation details of the tool are

explained in section 6.2 and the user interface is illustrated in section 6.3.

6.1 Research Methodology

The diagram illustrating the abstract architecture of the implemented approach is given helow.

(INPUT)
Systermn undar Test : ACTUAL SYSTEM
(CUTPUT)
{(INPUT) GA Implementation
SUT Branch diagram Data Set after
comparison
UNPUT) Muit- Gyjestive GA
GA Parameters ‘ implemeneatation

Fig 6.1. Architecture of the implemented approach

6.1.1 Multi-Objective Genetic Algorithm Program

Multi-Objective Genetic Algorithm is actually an extension of an existing work. The existing
work has been extended to fultill multiple objectives simullaneously instead of working on cach
objective separately. Both the approaches use the same (est data pool and apply two dilferent

Kinds of GA on them to optimize them.

Multi-Objective Whole test Suite Generation 72

CHAPTER 6 TOOL IMPLEMENTATION

6.1.2 Branch coverage and method coverage

Our programs basic target is to check for the coverage of the methods but it checks the hranch
coverage of the methods too. This provides an in depth and thorough coverage check. This

coverage criterion is what one of the main fitness functions of the system is based on.
6.1.3 Actual System

The actual system is what processes the input and provides results. The two main things in the
actual system are the Single Objective Genetic Algorithm and the Mulii-Objective Genetic

Algorithm.

The two genctic Algorithms are implemented based on the filness criteria we aim o achieve. The
first part of the main system has one fitness function. This fitness tunction contains two parts.
The first part is the number of methods that are as yet uncovered and the second part calculates
the number of branches within a method that are uncovered. After combining these two
calculations the complete fitness function that calculates the overall coverage achieved by the

test Suite 18 lormed.

The second part of the actual system is the Multi-Objective Genetic Algorithm. This contains
two Fitness functions. The first fitness function remains the sume. since we still need to take into
account the amount of coverage achieved but the second fitness function calculates the
redundancy while achicving the required coverage. And it attempts to minimize this redundancy.
This fitness function caleulated the repeated number of methods within a est Case. And after
calculating the sum of the repetition in each test case calculates the cumulative Repetition or

redundancy in the test suite.

6.1.4 Test Data Set

The test Data sel contains the results achieved by the sysiem afler the comparisons are made
between the approaches. These results are achieved after a thorough analysis of the results given

by the two approaches s done.

Multi-Objective Whole test Suite Generation 73

CHAPTLR 6

6.2 Components of implemented Genetic Algorithm

['he implemented Gengetic Algorithm has the following components,

Gengeration of the initial population
Calculation of the two titness functions

Fast Non-Dominant Sort [88. 89]

Calculation of the crowding value

Performing the crowding comparison operation
Selection of the Test Data

Crossing over of the Test Data

Mutation of the test Data

Eliast recombination of the test data.

6.3 System Components

TOOL IMPLEMENTATION

The following Section presents the system components of the Implemented tool.

6.3.1 Wholc test Suite Generation

The System Components for the whole test Suite generation 1s given below.

Multi-Objective Whole test Suite Generation

74

CHAPTER & TOOL IMPLEMENTATION

Initial menu

-+ PO R

Trbi AL D ATATE LN

!

; Eaaaf e Sasel

i Y O dnat

\ Clepetton

| The e Hdea gz e Test Bul oo Ll 1

Fig 6.2: Main page ol the wol

Multi-Objective Whole test Sunte Generation 75

CHAPTER ¢ TOOL IMPLEMENTATION

A zoomed view of the letft side of the main interface.

~3Cay FaraTeieTs

Soreents F4T 3w &-fferert carameters
SisLady Instrugcten

Execute Funchen rese!

o Of tteration 7

Repettion o

The number of Hestions when Test Suit s Minimuzed

Fig 6.3: Zoomed View of the Tool

Multi-Objective Whole test Suite Generation

76

CHAPTER & TOOL IMPLEMENTATION

Initialize the process by pressing the Execute Function button Atter the process is initialized the

Create test Cases Button is activated and made clickable.

|- v e
Cia Fadvess [T eead QRN A _gune
-
| bl 2
Vlne svarcnees
TADY Ltz oe-
jmr——— =
i wa Tan Tugry e
e o e v rees r——
LT
Tere b
i B 1 Rt -7 IR PR by

Fig 6.1: Initialize Process
Enitial Population Generation

Randomly generate the test cases by clicking the Create test Cases Button. The test cases are
randomly generated the selected random method calls etc. to form test cases. which are
combined to form Test Suite.

|

r;,..,,.. .. R . - B s

Foohors BT T-ven Tazews

Lz repipas an #g tng ovaa fags oy s)

Multi-Ohjective Whole test Suite Generation 77

CHAPTELR 6 TOOL IMPLEMENTATION

Fig 6.5, Create test Cases

After clicking this button the initial population of random test Cases is generated. Lach line
represents | test cases and the numbered area is the part that contains methods while the part
with zeros is the empty part of the matrix. The first test case has 7 methods while the 8" test case
has 20 methods. This is because the test cases are randomly generated and their size is kept
variable. After the test cases are generated the create test Cases button is disabled and the Create
test Suite button is activated.

Randomly generate the test Suites by clicking the Create test Suites Button.

Shiasn

Foak

LRCRA LY

RN UNS LRI 1}

Tes 3l il

HE e ER T AT L AL R]

Fig 6.6. Create test Suites

This wil) generate a random number of test Suites from the fest cascs created in the previous
step. After this the Create test Suites button is disabled and the Calculate fitness function button
is activated. The generated test suiles and the test cases contained in them are showed in the
panel on the lett.

Multi-Objective Whole test Suite Generation 78

CHAPTER 6 TOOL IMPLECMENTATION

Fitness Function Calculation

Calculate the Fitness of each test suite that was generated by clicking the Calculate Titness
function button. When this button is pressed. the fitness for all the test Suites in the system is
calculated. The calculated tinesscs are displayed in the panel on the left side. After this the
Calculate Fitness function button is disabled and the Best Select bution is activated. After this
step all the harizontal butlous arc disabled and the core GA operation are the only thing leli, he
buttons for these are histed vertically.

B o

(L0 B T

Fags

T-ewmnre Al v oo Tas S0 2 Ll -iZen

Fig 6 7 Calculate the Finesses

Multi-Ohjective Whole test Suite Generation 79

CHAPTLR 6 TOOL IMPLTMINTATION

Selection

Perform Selection by ¢licking the Best Selected button. On clicking this button the test Suites
with the best fitness are selected and the button for selection is disabled.

[getn iiew)
i
1 v, |
L : B Sampit
i ! o 0
i
1
i PPSTTE T U LA
! B
|
|
H [
'
i
|
L
H
i P
I L Mg
Fépaain 3
T+ L BES0 TTIUITES o her T Ty Nan “edes !

Fiw ¢.8. Perform Selection

The fitness valucs of the sclected test Suites is displayed in the pancl on the lelt.

Multi-Objective Whole test Suite Generation 80

CHAPTER 6 TOOL IMPLEMENTATION

Crossover

Perform crossover by ¢licking the Crossover button. On clicking this button the test Suites with
the best fitness are crossed over and the button tor crossover is disabled.

B o
| . I
! L LYk o L =it .
f 3]
CI E R T L
H -
v
S T
.
=
!
3
-t U
1
1 -z
'
i
Tatsd
11 s
] Figst hon
H Tow aoge A mo e Tes Smons g 1
LA - —

Fig 6.9: Perlorm Crossover

Clicking this button will generate the child population after the crossover and the resulting test
Suites are displaved in the panel on the left side.

Mulri-Objective Whole test Suite Generation 81

CHAPTER 6 TOOL IMPLLMENTATION

Mutation

Perform mutations by clicking the Crossover button. On elicking this bution the child population
is mutated. Mutation is performed in three different ways

e A random test case is added to the Test Suite,
s A random test Case is removed {rom the Test Suite
e A Random test case 1s moditied in the Test Suite

The test Suite after Mutation is displaved in the panel on the lett. The mutation button s disabled
and the child fitness function s enabled.

i

- - i

LA R L]

1
=

[T T B

TR B g

Sapmuig e Ay emer Te G o2 4 el

Fig 6.10: Perform dMutation

Calcudare the fimess of the child popdation. The ¢hild population is a new set of test Suites
whose lttness value is as vet unknown. This step caleubates the fitness value for all the test Suites
in the child population. The fitncss values for the new population is displayed in the pancl on the
left. After this the child fitness button is disabled.

Multi-Objective Wlhiole test Suite Generation 82

CHAPTCR 6 TOOL IMPLEMENTATION

'ﬁ'ge_.,,;"‘“ ., . PR e - - .

R T I e i - ety Tmgepe
U] i

I PR R P TR

e
| S—
Sp oy anias
Teae
L L
mrgadlinn
Tre mehEt I - gter Tegl Tl e e

S, JR— e— . .

Fig 6.11" Finess of the Child Populatuon

After this button is clicked the program runs the subsequent iterations of the GA auvtomatically
without pressing the buttons. this is repeated until a test Suite with the coverage value “07 s
{found.

- FERE

T T TRar g Freany L gea pare fueioiea Zape e

T e - o
LE D qd i | Sy = |
_ - C2e 7o ! .o 4
B : cmoww e AT, 5 i } Vil g -
i ! ! I Ty D g i | e 3
i a - I a | R 5
L ; .\ [. n ; | B " .
; .’ - - oW bl M : ' b : 1
o e - ed i ! LRI = :
i s 4 VoA 4

| gt = - v E
N 8 | T
D e tahen S 3 ' Pl
P A ' . 4

. ;
b 2 . L 57
c e g - Ej’ . I sLE E .
- ol -
Troe Tt e . []
, 11, | . 4 :
. 1 ! ! 2,
. . ? ; H ol 1 1 2 1
f ' g | . 3
A . e G

8 | = 20
P (S G RRN T PT :
i | e e)

[The wcrtm Fliaien 5l 1 Tasl 30 < hn wigws T3 }

Mg 6.12. Display the Results

Multi-Objective Whole test Suite Generation 83

CHAPTER & TOOL IMPLEMENTATION

Once the test Suite with the fitness value 0" is found. The program displays the aterations it took
to generate the result and the amount of redundancy in the resulting test suste. If the display
functions button is pressed the test suites functions are displayed in the panel on the right side.
With the Reset button the whole process can be repeated without having to rerun the program.

6.3.2 Multi-Objective Whole test Suite Generation

The interface and its working for the Multi-Objective Whole Test Suite Generation is given
below.

Main Menu

Start the program and open the initial form. The initial interface is divided into three parts. The
leftmost panel gives information about the data currently being processed. The horizontal buttons
are related to test data generation activities and the vertical set ol butlons arc used to perform the
actual process. The Panels on the right display the test Suite that is achicyed as an oulput afler
the proccss 1s done.

B Caeame pmacel R .

- T Cacpat Foaman Seoadis
e

3 atars by ArEWR

amtoe
! llgeation

[

Fig 6.13. Main Interface

The zoomed vicw of the interface is given below,

Multi-Objective Whole rest Suite Generation 54

CHAPTER 6

TIREI . Parameters

Soreen ty depiay Mlferem paraneers

Exgoutt Fundtizn

Fig 6.14: Zeomed View of the interface

Multi-Objective Whole test Suite Generation

TOOL {IMPLEMENTATION

Lieplayr Instructer

Stan e

[toration

85

CHAPTER 6 TOOL IMPLEMENTATLION

Initialize Initial Population

Initialize the process by pressing the Cxecute Function button. After the process is initialized the

Create test Cases Button is activated and made clickable.

|-+ EEEREERT N

LN gy
T Trane: ey

Tatlpe B3N,

. —ay - Bl R
DRaE T Tubss

ferar -

v

Fig 6 15 Initialize the process

After clicking the “create test cases’ button, the initial population of random test (‘ases is

generated. Each line represents | test cases and the numbered part is that which contains methods

while the part with zeroes is the empty part of the matrix.

Multi-Objective Whole test Suite Generation

86

CHAPTCR 6 TOOL IMPLCMINTATION

ummlu._.--a,!:

e d ot

LR

Ryt on

Fir 6,16 Create test Cases

Randomly generate the test Suites by clicking the Create test Suites Butlon,

Pree e - b “'.n
- B th: .
i}]
i R
] : RN
1 P
! !
e et e —
e
I3
1 -
3
5
H
| :
=
l .
\
v -t l M
i
| cum
! renl
! AR Fremey Tl 0
|
'
LI__ — - — — L imiar e eete ;e meam e emeen _ e . — - — -

Fig 6.17: Create test Suites

This will generate a random number of test Suites from the test cases created in the previous
step. After this the Create test Suites button is disabled and the Calculate fitness function button

Multi-Objective Whole test Suite Generation a7

CHAPTER 6 TOOL IMPLEVINTATION

is activated. The generated test suites and the test cases contained in them are showed in the
panel on the left.

Fitness Calculation

Caleulate the Fitness of each (est suite that was gencrated by clicking the Caleulate Fitness
function button. When this button is pressed. the first fimess function lor the entire population is
calculated. The calculated fingsses are displaved in the panel on the left side. After this the
“Caleulate Fitness function” button is disabled and the “Fitness Function2” button is activated.

'_S '.'e--cb.-_.'-'-s.e.' o ’ h . ’ . ""‘W

st men s

L. E

AT 3

lig 6.18 Calculate the I'itnesses

Calculate the Second Fitness function lor all the test Suites by clicking (he “Fiiness Function2’
button. When this butlon is pressed. the second fitness [unction for the entire population is
calculated. The calculated finesses are displayed in the pancl on the left side. Alter this the
-Fitness function?" button is disabled and the “Crowding Distance” button is activated.

Multi-Objective Whole test Suite Generation 28

CHAPTCR 6

TOOL IMPLEMENTATION

Ceapnt tenal ot g
|
L £
T L AL o
. 1 0 1y
{ 1 w2l ey siTeee
N I
H :
H)
: |
: i
i |
!
i
I |
t .
! :
H [
' o
| UM |
i
.
'
! Hara' o
i R
[P — S — T T T

Fig 6.19: Calculate the Fitness l-unction?

Multi-Objective Whole test Suite Generation

89

CHAPTER 6 TOOL IMPLEMENTATION

Crowding Distance

Caleulate the crowding distance of the population by clicking the "Crowding Distance” button
When this button is pressed. two things are done. The tirst is that the entire population is divided
into fronts by performing the Fast Noun-Dominant Sort on it and then the crowding distance for
each individual in all the tronts is calculated. The calcutated crowding distances are displaved in
the panel on the left. This concludes the part of the program which is meant Lo gencraic the (est
data.

m Saeatt na st

[! 0 o
Lo "
! |
Pl
E§
r:
v
L
B
bl
AN
| P
Itarannn

Fig 6.20: Calculate the crowding distance

Multi-Obiective Whole test Suite Generation 90

CHAPTER 6 TOOL IMPLEMINTATION

Selection

Pertorm Selection by clicking the Best Selected button. On clicking this button the test Suites
with the best fitness are selected and the button for selection 1s disabled.

R . L]

. e Tapenls tordloay ERECICY
B I LN R 1P Y)

FEHER DRRLe] < R Bl s

Tedatlan

Fig 6.21: Pertorm Selecton.

Multi-Objective Whole test Suite (Generation 91

CHAPTER ¢ TOOL IMPLEMENTATION

Crossover

Perform crossover by clicking the Crossover button. On clicking this button the test Suiles with
the best fitness are crossed over and the button for crossover is disabled.

PO N

cram I

LRIy

Fig 6.22. Perform Crossever

Clicking this button will generate the child population after the crossover and the resulting test
Suites are displayed in the panel in the left side.

Mutation

Perform mutations by clicking the Crossover button. On elicking this button the child population
is mutated. Mutation is performed in three different ways

¢ A random test casc is added to the Test Suite.
e A random test Case 1s removed from the Test Suite

o A Random test case is modified in the Test Suilc

The test Suite after Mutation is displaved in the panel on the lett. The mutation button is disabled
and the child fitness tfunction is enabled.

Multi-Objective Whole test Suite Generation 92

CHAPTER 6 TOOL IMPLEMCNTATION

- T ITEATEW

s sa 2
e esTra L e e
b s it e vap
Ir Epwanx Fr-cnne
T
lerah 2

Fig 6 23 Perform Mutation

Multi-Objective Whole test Siite Generation 93

CHAPTCR 6 TOOL IMPLEMENTATION

General Program Flow

Calculate the titness of the child population. The child population is a new set of test Suites
whose fitness value is as vet unknown. This step calculates the fitness value for all the test Suites
in the child population. The fitness values for the new population is displaved in the panel on the
lett. Atter this the child fitness button is disabled.

e

ldpy P

e

LSRR | E

Fig 6.24: Pertorming lterations

When this button is pressed the program performs the subsequent iterations of GA automatically
without any intervention frem the user. The iterations are repeated until a test Swite with both its
fitness [unctions as zero ts found. When this 1s done the number of iterations required to reach
this result are shown. The two fitness unctions of the entire test Suite are displayed in the pancl
on the left side,

Multi-Objective Whole test Suite Generation 94

CHAPTCR 6 TOOL IMPLEMENTATION

Display the results by clicking the “display Functions™ button. The test Suite which has the
fitness value tor both its Fitness functions as zero is displayved in the panel on the right side.
when the “displas functions™ button is clicked.

B e bkl - w_v}
F Sar i r e
RS T Y O TR e) L v
et oy s < 4ich + 2 e 4 et T i s i e
-] 2 i R 5 1
3 ~ ~ e -
- FEREy|
. Few Feagy SLTITREME B 3T RIE T < : |
: v 2 z
S 2 Vo oR A II
2 t s2ea 202 2 Aol z E
! ze.l 2 “ L 2
1 P oz 2 - Tt 2
{ . z 2 T T L
. '
. . 4 e 11
"
' E .. z P ek 4
. ' T [1 v = aius 3 S
. i PN AR R 3 Phinoal + Ial ek 3 |l
= eyme bag 1 Lot 2 [
N T T JERE
1 2|
T L A i _
| - 1 SIm = E
- v M -
1 Z H
N i - ‘; FYRE I TL -
S
Itergmem H ard PR - I
5" i 2 2
o - " A ~ H
z L
. i EAN| ¥
L i e - R e e mamam et
[J— - - - -

Fig 6.25: Display the Results.

Cliching the *Start Qver” butlon can atlow us Lo repeal the process sithout having Lo restart the
program,

Multi-Objective Whole test Suite Generation 05

CHAPTER 6 TOOL IMPLEMUNTATION

6.3.3 Caleulate Average number of runs.

To calculate the average number of runs the tollowing pait of the program is used. The panel

shown below caleulates the average of the results after running the *Whole test Suite Generation”

technigue for a given number of times

-
B NewCenane 1z .

input 20
Nurnber of Runs 100
Number of lteration(s} 1

Repetitions 90

Minimized solution 91

Average of Minimized 87.38
Solution

Run

Fig 6.26: Calcuiate Average of the existing approach’s results

Multi-Objective Whole test Suite Genetation

96

CHAPTER 6

TOOL IMPLEMENTATION

The average calculation tor the “Multi-Objective Whole test Suite Generation™ technique is given

below.
r Pl et plmied . » WT
Input Between 20 ‘:
0
Number of Runs 100
Number of {teration{s) 30
Average Iterations 29.56
i
Run ;
e E—————————r— e ———————

Fig 6.27: Calculate Average of the implemented approach’s results.

Multi-Objective Whaole test Suite Generation

97

CHAPTER 6

Multi-Objective Whole test Suite Generation

TOOL IMPLCMENTATION

98

Chapter 7

EXPERIMENTAL
DESIGN, RESULTS
AND DISCUSSIONS

CHAPTER 7 CXPERIMENTAL DESIGN. RESUETS AND DISCUSSIONS

EXPERIMENTAL DESIGN, RESULTS AND DISCUSIONS:

7.1 Experimental Design:

This chapter includes the evaluation of results and discussion, the experimental design that is set

for the tmplementation is as follows:

7.1.1 Datasei

Following arc necded for the experiment:

Code the “Whole 1¢st Suite Generation® technique.
Cade the “Multi-Objective Whole Test Suite Generation™ technigue.
Svstem to be tested.

Control flow diagram of the System Under (cst.

7.1.2 Performance Measuremen|(

Performance is measured on the basis of the comparison between the Existing approach
and the implemented approach. The following two factors are taken into consideration

Efficiency

Effectiveness

7.1.3 Parameter Sctting

The parameters set in the cxperiment are the paramcters of the Genetie Algorithm. The
basic parameters of the Experiment are as follows:

Initial Population Size 50

Selection Method Tournament Selection
Crossover Method Single point crossover
Mutation Method One point Mutation

Table 7.1: Paramieters of G A

Multi Objective Generation of the Whole test Suite 100

CHAPTER 7 EXPERIMENTAL DLCSIGN, RESULTS AND DISCUSSIONS

7.1.4 Experiment 1:

The Final Results of the *Whole Test Suite Generation™ technigue are as follows. The population
size is 50 here. The program is run 50 time and the average iterations and repetitions are
calculated. This is repeated 10 umes for confirmation. i.e the program is run 500 times with the
initial population set as 0.

Whole test Suite Generation Results

The Results alter running the test suite for a total ot 500 times arc given in the abic below. The
Average of every (ifly readings is shown. The population size is 50.

Srno Total Repetition Total Iterations
1 69 84.14
2 69 82.32
3 oo 26 14
b 72 84 .92
5 50 80.14
6 68 84.54
7 92 89.08
8 58 86.78
9 86 87
10 141 86.02

Table 7.2: Experiment | Existing approach Readings

multi-Objective Generation of the Whole test Suite 101

CHAPTLER 7 EXPERIMENTAL DESIGN. RESULTS AND DISCUSSIONS

The bar Chart for the total number of iterations. atter calculation the average of the results
obtained from every 50 runs is given below.

Total lterations

9
G0
88
o ¥
. LB wTE i
84 ,';ﬁ ze,% uw "j),% ;'”” 4
&) L7 5 E <. o Total iterations
& L7 % o o i
A T :
. L . or g E
P PR
%&4 i f.:?;{ e ;-g‘ ,% - ’t" - é
74 i e s / b .
1 ?) 4 5 6 / g 0 10

Fig 7 1: Toral nerations Bar Chart. Cxperiment)

The pie Chart of the readings obtained is given below. Cach reading is an average of the readings
obtained after running the program 50 times,

Total lterations

10%

11%

Multi-Objective Generation of the Whole test Suite 102

CHAPTER 7 [XPCRIMENTAL DESIGN. RESULTS AND DISCUSSIONS

Fig 7.2, Lotal iterations Pie Chart, Fxperiment |

Repetitions here mean redundancy. The redundancy caleulated in the program in 10 runs s
shown below.

Total Repetitions

160
140
120 i
“
100
s Zg:”
A0 ok 45 sk
) Vi b %' - Total RBepehitians
oy ' N
“ PR L - % ? s #
ao g Y R S
A o E
om0 o S w0
1 2 3 4 5 6 7 3) 10
Fig 7 3° Total Repetitivns Bar Chart. Experiment |
The pic chart of the redundancy thal was calculated is given below.
Total Repetitions
% 1
w1
5
£
7
&
n

Fig 702 l'otal Repetitions PMe Chart. baperiment |

Multi-Objective Generation of the Whele test Suite 103

CHAPTER 7

Multi-Objective Whole test Suite Generation Results

EXPERIMENTAL DESIGN. RESULTS AND DISCUSSIONS

The Readings after running the MO-W'T'S implementation afier a total 300 times are shown, The
value arc the average of value obtained from 50 runs,

s5rno

0 oAV R W N =

f—
[~]

Total Repetition

0

o O Q o o O o o QO

Total lterations
2596
27.62
30.26
27.54
25.59
259
29.88
29.28
316
25.36

table 7.3, Experiment | Implemented approach Readings

The average of the Total lterations after every 30 runs in the MO-WIS Gen implementation is

shown below in the Bar chart.

5

30

25

20

15

j0

Multi-Objective Generation of the Whole test Suite

Total Iterations

H

‘. i
&‘." ’ o " g
¥ s .7
¥ %
L . T N
%’" o o I
X s 9%’
R ik,
7% P s
e ':. :& -;,{{' i .”‘
. o F S T
e ;
C Y
v R e
e L

5, .

- -

0
3 4 g

woTotal terations

104

CHAPTER 7 CXPERIMENTAL DESIGN. RESULTS AND DISCUSSIONS

Fig 7.5. Total lterations Bar Chart, Experiment }

The Pie Chart of the 1otal lterations is given below,

Total Iterations

11%

10

Fig 7 6: Toal Iterations Pre Chart. Expernnent |

Final Cumulative Results

The Average of all the above results is shown in the table below for comparison

Whole test Suite Generation iterations 85.198
Multi-Objective test Suite Generation iterations 27.894

Table 7 4: Experiment | Cumulative Results

Muiti-Objective Generation of the Whole test Suite 105

CHAPTLR 7 EXPCLRIMENTAL DLSIGN, RESULTS AND DISCUSSIONS

The Total iterations for the two techniques are given below in the bar chart.

afl
A0
7
60
< WIS generahion

: MOWTS gerweratinn

Fig 7.7: Iterations of both techniques

The pie Chart of the percentage of total number of lterations in the twe techniques 15 given
below.

o MOWTS Gener ation

WS Generation

Fig 7.8: Pre Chart of the lrerations of both technigues

Wutti-Objective Generation of the Whole test Suite 106

CHAPTLR 7 CXPCRIMENTAL DLSIGN. RESULTS AND DISCUSSIONS

7.1.14 ¥Final Total Average Results:

The total final sumed up results of the existing approach and implemented approach that 1s
shown below:

Experiment no Existing Approach implemented approach
1 85.198 27.894
2 85.584 27.406
3 82.374 26.8
4 82.42 29.428
5 82.594 29.104
6 84.55 29.438
7 82.842 28.152
8 83.82 28.086
9 84.732 28.814
10 85.268 28.394

Tabte 7.32; Average of the Results

The bar Chart of the number of iterations in all the experiments in the existing and implemented
approaches is given below.

18
EH %'f 0= pt ¥ #
80 % & L & S
25 :} + : ,..’) 1 s .»".{. ‘;": 4
B0 4 .’ .
50 .)
A) Fxisting Appraach
w0 = GoLos g
P kil ©mplemented approach
A o 1
W i . o
0 be o % Gm T
% W o S vl
q % T T ”""“’"”‘, . 5@5} Fhe
A S
- ST TR e
. Fag, B : ‘.
10 ::; i é}j I;f),ef &‘i’ v;i : i
0 h P %'ggc o Rt

Fig 7.81: Cumulative Results bar Chart

Multi-Objective Generation of the Whole test Suite 107

CHAPTER 7 EXPCERIMENTAL DESIGN. RESULTS AND DISCLISSIONS

The Pie (hart for the results obtained in all the experiments for the Whole Test Suite Generation
approach 1s given below,

Implemented approach 21

%}

At

LR
10% 5
5
10% .
7
3
G
i

Fig 7.82: Implemented Approach Pie Chart

The Pie Chart for the results obtained in all the experiments for the Multi-Objective Whole Test
Suite Generation approach is given below.

Existing Approach

Fig 7.83: Laisting Approach Pie Chart

Multi-Objective Generation of the Whole test Suite 108

CHAPTER 7 EXPCRIMONTAL DESIGN. RCSULTS AND DISCUSSIONS

Total Average Sum-up of Results

The average of the results achieved in all the expetiments tor both the approaches are given
below.

Whole test Suite Generation iterations 83,9382
Multi-Objective test Suite Generation iterations 28 3516

lable 7.33. Final Sum-up of Readings

The average of the *number of iterations’ achieved in all the experiments for both the approaches
is given below in the Bar Chart.

No of Iterations

Miovof iterations

whnle tesl Suite Gengration Miiltl Obie ctive tost Suile
itetakrons Generationiterations

Fig 7 81: Average Cumulative results Bar chart

Multi-Objective Generation of the Whole test Suite 109

CHAPTLR 7 EXPERIMENTAL DESIGN, RESULTS AND DISCUSSIONS

The pie chart of the average no of iterations in in all the experiments tor both the approaches is
given below,

No of Iterations

Whirles te st Suite
Generatbon rershons

m Multr- Objet tive Lest Suile
Ooereation nerations

Fig 7.85: Average Cumulative results Pie chan

7.2 Discussion

In section 7.1 of "experimental design”. we discussed what parameters were used in the
experiment and how the experiment was performed considering [0 different initial values of the
initial population starting from 50 and reaching up to 10000,

Afler running the program with each initial value the resulls werc shown in a bar chart and the
pie chart. This section will compare the results with the existing work to access the
improvenents made in the implemented approach.

We implemented both the existing approach and the proposed approach and ran them on the
same example with the same initial test data pool and then compared the vesults. the results
showed a clear improvement in not just one but three area ot the technique. The improvements
were made in the tollowing areas.

o [he no of iterations to achieve an optimized test Suite was reduced.
s The redundancy in the Final test Suite was removed along with the optimization.

s Optimization and minimization were done simultaneously instead of one atter the other
and multiple objectives were achieved in a single run of the Genetic Algorithm,

Multi-Objective Generation of the Whole 1est Suite 110

CHAPTER 7 EXPCRIMENTAL DESIGN. RESULTS AND DISCUSSIONS

e Hence a reduction in the size of the test sulte was achieyed. the time 1aken w achicve the
complete coverage was reduced {Ierations) and the redundant coverage was chiminated.

‘I he results were compated on the following basis.
e No ol kerations of GA
e Amount of Redundant coverage.

¢ No of Objectives achieved.

Both the approaches were run multiple times on the chosen example and the results that were

achieved are shown in the table below.

Experiment Population ~ WTS Generation Approach MOWTS generation
No Size Approach
No of Average Total No of Average Total
[terations Repetitions Iterations Repetitions
1 50 85.198 771 27.894 0
2 t00 85.584 83.2 27.406 0
3 500 82.374 100.7 26.8 0
4 1000 8§2.42 849 29.428 0
5 1500 82.594 88.6 29.104 0
6 3000 84.55 81.8 25.438 0
7 4000 82.842 80.4 28.152 0
8 5000 83.82 82 28086 O
9 7000 84.732 74.6 28.814 0
10 10.000 85.268 76.6 28.394 0
Average 83.9382 82.99 28.3516 0

Table 7 34: Comparison ol the Readings

Muivi-Objective Generation of the Whele test Suite 111

CHAPTER 7 EXPERIMENTAL DESIGN. RESULTS AND DISCUSSIONS

7.3 Threats to Validity
in threats to validity. factors which have atfected the results are as follows:

e Ifthe tools are tested on a ditterent example which is more complex and larger in scale

then the results might dilfer.

e The results may vary when tested with different combinations of the GA parameters.

o The population size may also affect the results.

Multi-Obiective Generation of the Whole test Suite 112

Chapter 8

CONCLUSION

CHAPTCR § CONCLUSION AND FUTURE WORK

CONCLUSION AND FUTURE WORK:

This section sums up our main contribution for this thesis. gives some directton tor the tuture
work and also includes some concluding remarks. [t proposes some enhancements to the
implemented approach too.

8.1 Conclusion

Testing is the most time-consuming phase in software Development lite- cvele. That is the
reason why a lot of work is done in the literature in the direction of automating software testing.
One of the parts of software test automation is the automation of the generation of test data,

Our work focuses on the automated generation of the test Data. The approach has two parts. the
first part deals with the generation of the test suite. and the second part deals with the
optimization of the test data i.e. minimization. Thus our main contribution with this approach is
to create a tool that gencrates the test data which is optimized. I'hat is the (est Suite generated s
not redundant while it provides complete coverage.

The technology our work is based on is the genetic algorithm. The existing technique used the
genetic algorithm (0 achicve coverage but our approach uses Mulii Objective Genetic Algorithms
to achieve multiple targets. The (ools was validated after its creation through the use ol multiple
experiments. On the basis of the sclected parameters our work 1s more effMecient as compared 10
Arcuri ¢l al(2012). We proved our hypothesis that by using a multi-objective genctic algorithm
an improvement can be made in the *Whote test Suite Generation® techmque.

8.2 Future Work

For the future work we aim to apply the technique on a large scale industrial case study to
further validate the results we achieved. Since this work focuses on the white-box testing of the
data we are planning on working on the black-box testing with this techmque too.

As this technique is highly adapiable. it can generate interesting results to change the completion
criteria from branch coverage to some other criteria like mutation detection.

Categorizing our results on the basis of the GA paramciers and the initial population will help us
further understand the tinding of our research in more detail.

Mutti-Objective Generation of the Whole test Suite 114

CHAPTLCR 8 CONCLUSION AND M'UTURE WORK

Currently only two targets are being considered in the Multi Objective test Suite generation of
the whole test suite technique. It can be considered to add further objectives to the technigue and
assess the results. The new Objectives can be run-time reduction etc.

Multi-Objective Generation of the Whole test Suite 115

REFERENCES

REFERENCES

REFERENCES

(1]

[3

[4]

(3]

16]

(7]

(8]

(9]

[10]

Koopman, Pieter. Artem Alimarinc. fan Tretmans, and Rinus Plasmeijer. "Gast:
Generic automated software testing.” In Implementation of Functional [Languages. pp.
84-100, Springer Berlin Heidelberg, 2003,

Gupta. R.. Aditva P. Mathur. and Mary Lou Softa. "Generating test data for branch
coverage." Automated Software Lngineering. 2000. Proceedings ASL 2000. The
Fifteenth [EEE International Conference on. ILELE. 2000,

Melanie. Mitchell. "An mtroduction te genetic algorithms.” Cambridge. Massachusetts
London. England. Fifth printing 3 (1999}, ISBN:0-262-13316-4.

Pacheco. (Carlos. and Michacl 1. Ernst. "Randoop: Teedback-direcied random testing
tor Java." Companion to the 22nd ACM SIGPLAN conference on Object-oriented
programming systems and applications companion. ACM. 2007.

Harman, Mark. et al. "Optimizing for the number of tests generated in search based test
data generation with an application to the oracle cost problem.” Sofiware Testing.
Verification. and Validation Workshops (ICSEW). 2010 Third International
Conference on, IERE, 2010,

Ribeiro. José Carlos Bregieiro. "Search-based test case generation for object-oriented

java software using stronglyv-typed genetic programmung.” Proceedings of the 2008

GECCQ conference companion on Genetic and evolutionary computation. ACM. 2008.

Ponella. Pacle. "Evolutionan testing ol classes.” ACM SIGSOFT Software
Engineering Notes. Vol. 29. No. 4. ACM. 2004,

Wappler. Stelan, and Frank Lammermann. "Using cvolutionary algorithms (or the unit
testing of object-oriented software." Proceedings of the 2005 conlerence on Genetic
and evolutionary computation. ACM. 2005,

Blue. Dale. et al. "Interaction-based test-suite minimization.” Proceedings of the 2013
International Conference on Software Engincering, [EEE Press. 2013,

Jeftrev. Deanis. and R. Gupta. "Improving fault detection capability by selectively
retaining test cases during (est suile reduction.” Software Engineering. |EEE
Transactions on 33.2 (2007): 108-123.

[:FSM Based Evolutionary Testing for Multiple Paths Coverage 117

REFERCNCES

[11] Korel. Bogdan. "Automated software test data generation.” [CEE Transactions on
Sotftware Cngineering. 16.8 {1990): §70-879.

[12] Harman. Mark. and Phil McMinn, "A theoretical and empirical study ol scarch-based
testing: L.ocal. global. and hybrid search.” IEEE Transactions on Software Engincering.
36.2 (2010): 226-247.

[13] Goldberg, Allen, Tie-Cheng Wang. and David Zimmerman. "Applications of feasible
path analysis to program testing." Proceedings of the 1994 ACM SIGSOFT
international symposium on Software testing and analysis. ACM. 1994,

[14] Fraser. Gordon, and Andrca Arcuri, "Evolutionary gencration of whole test suites.”
Quality Soltware (QSIC). 2071 11th International Conlerence on. 1EkE, 2011,

[151 Blackwell, Barry Mark. ct al. "T'esting tool comprising an auntomated multidimensional
traccability matrix for imptementing and validating complex sofiware systems.” LS.
Patent No. 7.490.319. 10 Feb. 2009.

[16] Rothermel. Gregg. et al. "An empirical study of the cffects of minimization on the fault
detection capabilities of test suites.” 1998, Proceedings.. International Conference on
Sottware Maintenance. [EEL. 1998.

[17] Andrews. James H.. et al. "Using mutation analysis tor assessing and comparing testing
coverage criteria." ICCE Transactions on Software Cngineering. 32.8 (2006): 608-624.

[18] Michacl. Christoph C.. et al. "Genetic algorithms for dynamic (cst data
generation.” Automated Soltware knginecring. 1997, Proccedings. 12th 1RFE
International Conference. IEFE. 1997

[19] Terguson, Roger, and Bogdan Korel. "The chaining approach tor software test data
generation.” ACM Transactions on Software [Cngineering and Methodology

(TOSEM) 5.1 (1996): 63-86.

[20] Korel. Bogdan. and Janus/ 1aski. "Dynamic slicing ol computer programs."Journal ol
Systems and Soltware 13,3 (1990): 187-193.

FESM Based Fvolunonary Vesting for Multiple Paths Coverage 118

REFERENCES

[21] Mala. D. Jeya. and V. Mohan. "ABC Tester-Artificial bee colony based software test

[271]

[29]

(30]

(3

1

suite optimization approach.” International Journal of Software Engineering2.2 (2009):
15-43.

Rothermel G Tlarreld ML Analssing regression (est selection techniques, [kRER
Iransactions on Soltware Engincering 1996: 22(8):529 551,

Rothermel G. Harrold M. Ronne J, Hong C. Empirical studies of test suite reduction.
Software Testing. Verification. and Reliability 2002: 4(2):219-- 249,

Goldberg, David C.. Bradley Korb. and Kalvanmoy Deb. "Messy genetic algonthms:
Motivation, analysis. and [irst results.” Complex systems 3. no. 5 (1989): 493-330.

Golberg. David E. "Genetic algorithms in scarch. optimization. and machine
lcarning.” Addion wesley 1989 (1089). [SBN:020T157675.

Konak. Abdullah. David W. Coit. and Alice L. Smith. "Multi-objective optimization
using genetic algorithms: A tutorial.” Reliabifity Cngineering & System Safety 91.9
(2006} 992-1007.

Yoo. Shin. and Mark Harman. "Regression lesting minimization. sclection and
prioritization: a survey.” Sofltware Testing. Verilication and Reliability 22.2 (2012): 67-
120.

Garey MR, Johnson DS. "Computers and Intractability: A Guide to the Theory of NP-
Completeness. " W.H.Freeman and Company: New Yorko NY. 1979 ISBN-10:
(0716710455,

l.cung HKN. White E. “Insight into regression testing. " Proccedings ol the
International Cenference on Software Maintenance (10SM 1989, TFEE Computer

Socicty Press: Silver Spring, M. 1989: 6069,

Rothermel G. Harrold MJ. "A framework tor evaluating regression test selection
technigues.” Proceedings of the 16th International Conference on Software Lngineering
(1CSE 1994). IEEE Computer Press: Silver Spring, MD. 1994: 201-210.

Wong WE. Horgan JR. london S, Mathur AP, "Ellcet of tesl set mimimization on [ault
detection effectivencss.” Software Practice and Experience 1998: 28(4):347-369.

EFSM Based Fvolutionary | esting for Multiple Paths Coverage 119

RETCRENCLES

[32] Harrold MJ. "Testing evolving software.” The Journal ot Systems and Software 1999;

[34]

136)

(38]

139]

[40]

1]

47(2 3x173 181.

Rothermel G. Untch RH. Chu C. Harrold MJ. "l'cst case prioritization: An cmpirical
study.” Proceedings ol the International Conference on Sofiware Maintenance (1CSM
1999). IEEE. Computer Press: Silver Spring. MD. 19992179 188,

Rothermel G. Untch RH. Chu C. Harrold M. "Test case prioritization: An empirical
study.” Proceedings of the International Conference on Software Maintenance (ICSM
1999). IEEE Computer Press: Silver Spring, MD. 1999: 179--188.

Seinivas. Nidamarthi. and Kalyanmoy Deb. “Muiltiobjective optimization using
nondominaled sorting in genetic algorithms.” Evolutionary computation 2,3 (1994):
221-248.

Elbaum S. Gable D. Rothermel (. "Understanding and measuring the sources of
variation in the prioritization of regression test suites.” Proceedings of the Seventh
International Sottware Metrics Symposium (METRICS 200 1). IEEE Computer Press:
Silver Spring. MDD, 2001: 169-179.

Elbaum. Sebastian. Alexey Malishevsky. and Gregg Rothermel. "Incorporating varying
test costs and fault severities into test case prioritization.” Proceedings ot the 23rd
International Conference on Software Fngineering. TEEE Computer Society. 2001.

Malishevsky A. Rothermel G. Flbaum S. "Modcling the cost-benefits tradeofts [or
regrcssion testing techniques. " Proceedings of the Intcrnational Conlerence on
Software Maintenance (ICSM 2002). ICEE Computer Press: Silver Spring. MDD 2002:
23(1-240.

Rothermel. Gregg. Sebastian Elbaum. Alexey Malishevsky. Praveen Kallakuri, and
Brian Davia. “The impact of test suite granularity on the cost-etfectiveness of
regression testing." In Proceedings of the 24th International Conference on Software
Engineering. pp. 130-140. ACM. 204(2.

Rothermel G. Untch R). Chu C. "Prioritizing test cases [or regression iesting,” 1EEE
Transactions on Software Engineering 2001: 27(10):929-948.

Budd TA. "Mutation analvsis of program test data.” PhD Thesis. Yale University. New
Haven. CT. U'.S. A.. 1980.

EFSM Based Evolutionary Testing for Multiple Paths Coverage 120

RLFCRENCES

142

[43]

[44]

[45]

[46]

[47]

[48]

(49]

[50]

Leon D. Podgurski A. "A comparison of coverage-based and distribution-based
techniques for filtering and prioritizing test cases." Proceedings of the IELE
International Symposium on Software Reliability Engincering (ISSRE 2003, 1EEE
Computer Mress: Silver Spring. MDL 2003 412--456.

Tonella P. Avesani P. Susi A, "Using the case-based ranking methodology lor test case
prioritization.” Proceedings of the 22nd International Conference on Software
Maintenance (ICSM 2006). [ECE Computer Society: SilverSpring. MD. 2006: 125~

133.

Yoo §. Harman M. lonella P. Susi A. "Clustering test cases to achieve cffective &
scatable prioritization incorporaling expert knowledge.” Proccedings ol the
International Symposiumn on Software Testing and Analysis (ISSTA 2009). ACM
Press: New York, 2009: 201 211,

Srikanth H. Williams L. Osbomne). "System test case prioritization of new and
regression test cases.” Proceedings of the International Symposium on Empirical
Software Engineering. TEEE Computer Society Press: Silver Spring. MD. 2005; 64 73.

walcott KR. Soffa ML, Kapthammer GM. Roos RS. “lime awarc (csi suite
prioritization.” Proccedings ol the Intcrnational Symposiuin on Software l'esting and
Analysis (ISSTA 2006). ACM Press: New York. 2006: 1 1.2,

Voo S. Harman M. "Pareto efficient multi-objective test case selection.” Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA 2007). ACM
Press: New York. 2007: 140--150.

Do M. Mirarab SM. Tahvildari [.. Rothermel G. "An cmpirical study of the effect of
lime constraints an the cost-bencfits of regression testing”. Procecdings of the 16th
ACM SIGSOFT international Symposium on Foundations of Soltware Fngincering.
ACM Press: New York. 2008: 71-87.

Chen TY. Lau MF. "Dividing strategies for the optimization of a test suite.”
Information Processing Letters 1996: 60(3):135--141.

Harrold MJ. Gupta R, Soffa ML. "A methodology for controlling the size of a test
suite.” ACM Transactions on Software Fngineeting and Methodology 1995: 231270~
285,

£FSM Based Fvolutionary testing for Multiple Paths Coverage 121

REFERENCLS

[51]

[53]

[54]

155)

{561

[57)

(58

[591

160]

Horgan J. London S. "ATAC: A data tlow coverage testing tool for ¢. Proceedings of
the Symposium on Assessment of Quality Software Development Tools." IEEE
Computer Society Press: Silver Spring. MD. 1992: 210}

Offutt J. Pan J. Voas J. "Procedures for reducing the size ol coverage-based (est sets.”
Procecdings of the 12th International Conference on Testing Computer Software. ACM
Press: New York, 19952111 -1235.

Rothermel G. Harrold MJ. Qstrin J. Hong C. "An empirical study of the eftects of
minimization on the fault detection capabilities of test suites”. Proceedings of the
International Conference on Software Maintenance (JCSM 1998). TEEL Computer
Press: Stlver Spring. MD. 1998: 3443,

Wong WE. lorgan JR. ILendon S. Mathur AP, "Elfcet of test set minimization on fault
detection effectiveness.” Soltware Practice and Experience 1998: 28(4):347--369.

Wong WE. Horgan JR. Mathur AP, Pasquini A, "Test set size minimization and fault
detection effectiveness: A case study in a space application " The Journal of Systems
and Software 1999: 48(2):79-89,

Yu. Yanbtng. James A. Jones. and Mary Jean llarrold. "An empirical study of the
effects of test-suite reduction on [lault localization.” Proceedings of the 30th
intcrnational conflercnce on Soltware engineering. ACM. 2008,

Zhong. Hao. 1.u Zhang. and Hong Mei. "An experimental comparison of four lest sute
reduction technigues.” Proceedings of the 28th international conference on Software
engineering. ACM. 2006.

McMaster S. Memon AM. "Call stack coverage for test suite reduction.” Proceedings of
the 21st 1GCL International Conference on Software Maintenance ([CSM03). ICEE
Computer Society: Washington. DC. U.S.A..2005: 539-548.

Edvardsson. Jon, "A survey on automatic test data gencration.” Proceedings of the 2nd
Conference on Computer Science and Fngincering, 1999.

W. H. Deason. D. Brown. K. Chang. and J. H.Cross 1. "A rule-based sottware test data
generator.” ICEE Transactions on Knowledge and Data Cngineering. 3(1):1087117,
March 1991.

EFSM Based Evolutionary Festing tor Multiple Paths Coverage 122

REFERENCES

[61]

62]

[65)

jo4]

[65)

[66]

[67]

[68]

(691

[70)

(711

R. Ferguson and B. Korel. "The chaining approach tor software test data generation.”
IECE Transactions on Software Engineering. 5(1):63 {86. January 1996.

C. V. Ramamoorthy. S. F. Ito. and W. I, Chen. "On the automated generation of
program lest da." IEFE ‘Transactions on Software Fngincering, SE-2(43:293300.
Dceember 1976,

W. H. Deason. . Brown. K. Chang. and J. H.Cross [1. "A rule-based software test data
generator.” IEEC Transactions on Knowledge and Data Engineering. 3011085117,
March 1991,

N. Gupta. A. I. Mathur. and M. L. Sofla. “Automated test dala generation using an
ierative relaxation method.” In Proccedings of the ACM SIGSOFT sixth international
symposium on Foundations of software engineering. pages 231-244. November 1998.

R. E. Prather and 1. P. Myers. Ir. "The path prefix software testing strategy.” 1CCE
Transactions on Sottware Engineering. SC-13(7):76 1-765, July 1087.

N. Tracev. I. Clark. and K. Mander. "Automated program Naw finding using simulated
annealing.” In Proceedings of ACM SIGSOFT inlcrnational symposium on Software
testing and analysis. volume 23. pages 73-81. March 1998.

C. Michael and G. McGraw. "Automated software test data generation for complex
programs.” In 13th 1EEE International Conferance on Automated Software
Engincering. pages 136-146. October 1998.

MeMinn. Phil. "Search-based sofiware test data generation: a survey.” Software testing.
Verification and reliability 14.2 (2004): 105-156.

M. Harman and B. Jones. "Search-based soliware engineering.” Information and
Soltware Technology. 43143833 {839. 2001.

I Clark. J. 1. Dolado. M. Harman. R. Hierons. B. Junes. M. Lumkin. B. Mitchell. §.
Mancoridis. K. Rees. M. Roper. and M. Shepperd. "Reformulating software
engineering as a search problem.” IEEL Proceedings-Software. 150(3):161-175, 2003

Fraser. Gordon. and Andrea Arcuri, "Evolutionary generation of whoic icst suites.”
Quality Software (QSICL 2011 Tth International Conference on. IEFE. 2011,

EFSM Based Evolutionary [esting for Multiple Paths Coverage 123

RETLRENCES

172] M. Harman. S. G. Kim. K. Lakhotia. P. McMinn. and S. Yoo.. "Optimizing for the

[73]

[74)

[75]

1791

number of tests generated in search based test data generation with an application to the
oracle cost problem.” in SBST 10: Proceedings of the Intemational Workshop on
Search-Based Software Testing. [EEE Computer Society. 2010. pp. 182- 191,

Glover.F. €. Macmillan (1986). "I'he General Employce Scheduling Problem: An
Integeration of Management Science and Artificial Intcligence.” Coemputers and
Operations Research. 15:5. 563-593.

Blum. Christian. and Andrea Roli. "Metaheuristics in combinatorial optimization:
Overview and conceptual comparison.” ACM Computing Surveys {CSUR) 353
(2003); 268-308.

Holland. John H. “Adaptation in natural and artificial systems: an mtroductory analysis
with applications to biology. control. and artificial intelligence.” U Michigan Press.
1975. ISBN 0472084607 9780472084609,

Fogel. l.awrence J.. Alvin J. Owens. and Michacl J. Walsh. "Arilicial intelligence
through simulated evolution.” (1966).

Kirkpatrick, Scott. “Optimization by simulated annealing: Quantitative studies.” Journal
of statistical physics 34.5-6 (1984): 975-980. Coe T

Dorigo. Marco. Vittorio Manicz-0. and Alberto Colorni. "Ant system: optimization by a
colony of cooperating agents.” Systems. Man. and Cybernetics. Part B: Cybemetics.
IFEF I'tansactions on 26.1 (1996): 29-41.

Cherhart. Russ C.. and James Kenneds. "A new optimizer using particle swarm
theory.” Proceedings of the sixth international symposium on micre machine and
human science. Vol. 1. 1995,

[80] Karaboga. Dervis. "An idea based on honcy bee swarm for numerical optimization.”

|81

182]

vol. 200. lechnical rcport-r06. Erciyes universily. ¢nginecring faculty. computer

engineering department, 2005,
Glover. Fred. “Tabu search-part 1." ORSA Journal on computing 1.3 (1989 190-206.

Geem. Zong Woo. Joong Hoon Kim. and G. V. Loganathan. "A new heuristic
optimization algorithm: harmony search.” Simulation 76.2 (2001): 60-68.

[T T —

EFSM Based Evolationary lesting for Multiple aths Coverage 124

REFERENCTS

(83)

(84]

1859

[86]

Lukastk. Szyvmon. and Slawomir Zak. "Firefly algorithm for continuous constrained
optimization tasks.” Computational Collective Intelligence. Semantic Web, Social
Networks and Multiagent Systems. Springer Berlin Heidelberg. 2009. 97-106.

Asoudeh. Nesa. and Yvan |.abiche. "A multi-objective genetic algorithm for generaling
lest suites from extended finite state machines.” Search Based Software Engincering.
Springer Berlin Heidetberg. 2013. 288-293,

Gong. Dunwei, Tian Tian: and Xiangjuan Yao. "Grouping target paths for evolutionary
generation of test data in parallel.” Journal of Systems and Software 85.11 (2012)
2531-2540.

Obuchowicz. Andrscj. "Multidimensional mutations in evolutionar algorithms based
on real-valued represemation.” ntermational Journal of Systems Science 34.7 (2003):
469-483.

|87| Deb. Kalvanmoy. "Multi-objective optimization using evolutionary algorithms.” Vol.

[88]

16. John Wiley & Sons. 2001, [SBN: 978-0-471-87339-6.

Deb. Kalyanmoy. et al. "A fast and elitist multiobjective genetic algorithm: NSGA-IL"
IEEE Transactions on Evolutionary Computation. 6.2 (2002): 182-197.

FFSM Based Fyvoltutionary esting for Multiple Paths Coverage 125

REFERENCES

EFSM Based | volutionary Lesting for Multiple Paths Coverage 126

APENDIX A:
GENERATED CODE

APPENDIX B GENERATEDR CODC

GENERATED CODE:

Algorithm for whole test Suite generation
Algorithm for Single Objective Whole test Suite Generation is as follows:

Generate Initial Population

ARRAY AllStatements[]: (Populate array with statements from the system under Test):
eeJGenerate TestCases. e
FOR(i=0 10 MAX TesiCase)
ARRAY testCase[] = RAND{AllStalemenls[])

END FOR

ceJGencrate TestSules. o
FOR(i—0 TO MAX TestSuite)
ARRAY TestSuite []= TestSuite[| + TestCase[RAND|

END FOR

Selection
oo Select the fittest Solutuions....................

FOR(=0 TO MAXTestSuite)

ARRAY Fitness[i] = MTotal[i] - Mcovered[1]
END FOR
FOR(i=0 TO MAXPopulation)

ARRAY Selected|| = max(Fitness[])
END FOR

Crossover

Multi-Objective Whole test Suite Generation 129

APPENDIX B

GENLRATLD CODLC

.. Crossover Selected SolUtONS. .. .o

FOR (i= 1 TO MAXPopulation: 1 -1+2)
FOR (j=1 TO MAxTestCase)
Child|i][j] = Selected|i][jtog)/2)]+ Selected]i+]](j/2noMAX]
Child[i+1][j] =Selected[i+ 1[jto §2]+Sclected[il[(j/2)0 MAX]
END FOR

END FOR

Mutation

. .Perform Mutation on the child Population. ...

MutationProb = RAND(1-3)

... Remove a Random TestCase. ... i i

If MutationProb - 1
MutationTestCase[] = TestCase| RAND|

Remove Mutation TestCase [RAND]

o Add a Random lestCase. v i,

ELSLC [T MutationProb = 2
Mutation TestCase[] = T estCase[RAND]

Add MutationTestCase [RAND]

.............................. e Replace a Random test Case. oo

FiL.SE IF MutationProb = ¢
Mutation l'estCasc[] = TestCase[RAND]
Modify MutationTestCase |[RAND|

END IF

Multi-Objective Whale test Suite CGeneration

130

APPENDIX B GENCRATED CODE

Main Flow of Alporithm

Initialize Population
.. Genetic Algorithm Neration. ...
FOR(I=1 TO MAXIteration)
Perform Sclection
Perlorm Crossover
Perform Crossover
Check Fitness
IF (Fitness = RequiredFimess)
Terminale program
Output TestSuite
END [F

END FOR

Algorithm for Multi-Objective Objective Whole test Suite Generation is as follows:

Generate Initial Population

ARRAY AllStatements||: (Populate array with statements from the system under Test):
.. Generate TestCases. oo
FOR(i=0 TO MAX TestCase)

ARRAY TestCase[] = RAND(AllStatements] |)

END FOR

.. Gencrate TeSISUITES . oo et ar e eeriens

Multi-Objective Whole test Suite Cieneration 131

APPENDIX B GENERATLED CODE

FOR{i=0 TO MAXTestSute)
ARRAY TestSuite ||= TestSuite[] « TestCase| RAND|

END FOR

Fast Non-Dominated Sort

o Calculate both fINesses.. o e

FOR(i=0 TO MAXTesiSuite)
ARRAY Fitnesst[i] = MTotal[i] - Mcovered|i]
i=
WHILE NOT Fnd of I'estCasc
ARRAY }i] = SUM(Test(asemethodRepetetions]j |}
=it
END WHILE
END FOR
1=0

k-1

oo Fast Non Dominant SOTIE ..o e b

WHILE ANY POPULATION NOT EMIPTY
WHILE NOT END OF POPULATION
FOR(j=1 TO Population)
IF FitnessH[i] AND Finess2[i] > Fitness1[j] AND FitnessZ[j]
ARRAY DominantPool[] - TestSuitefi] AND REMOVE TestSuite[i] from Population
ELSE IF Fitness| (i) AND Fitness2|if < Fitness1])] AND Fitness2{j)

ARRAY Remove TestSuite]i] From Dominant Pool[| AND Population = TestSuite |i]

Multi-Objective Whole test Suite Cieneration

132

APPENDIX B GONERATLD CODL

Add TestSuite[j] to DominantPool|]

ELSE IF Fitness!{i] AND Fitness2[i) # Fitness1{j] AND Titness2|]
Add TestSuite[i] AND TestSuite[j] to DominantPooll] AND Remove TestSuite[i} AND
TestSuite[j] from Population

END IF

i=1+1

END WHHLE

ARRAY Frontfk] =Dominantl’ool[]

k=k+1

END WHILLE

Calculate Crowding Distance

.............. Calculate Crowding distance according to first fitness function....... ..
FOR (=0 TO MAXFronts)
Sort TestSuites by Fitness]
FOR (=0 TO MAX CSISUICS)
If 4= 1 OR j=MAX)
crowdingDistance1[j] =
ELSE
crowdingDistance1{j] =ABSOLUE(Fitess 1 L estSuite[j-17) - Fitness 1 LestSuitefj FP)
END ¥
END FOR
. Calculate Crowding distance according to second fitness funCtion. ...

Sort TestSuites by Fitness2

Multi-Objective Whole test Suite Generation 133

APPENDIX B GLNCRATLED CODL

FOR (j=0 TO MAXTestSuites)
If g=1 OR j=MAX)
crowdingistance2[j] =
ELSE
crowdingDistance2[j] =ABSOLULE(Fitness2(TestSuite[j-11) - Fitness2(TestSuite[j+ 1)
END IT
END [FOR
. Calculate The Cumulative Crowding IIS1ENCC, oo
FOR (j=0 TO MAXTestSuites)
crowdingDistance[j] = crowdingDistancel[j] + crowdingDistance2]]]

END FOR

Selection

........................... Select a pre-detined number of random test Suites. ..

FOR(i=0 10O PredefincdRand)
ARRAY RandomChaice[] = RAND(T'estSuite{])
END FOR
........................... Choose the fitlest among the randomly chosen. ..ot
FOR(i-0 TO PredeflinedRand)
ARRAY Selected| | = Selected]] -+ MAX(CrowdingComparison Operator(TestSuite| 1))
REMOVE MAX(CrowdingComparison Qperator(TestSuite]i]})

END FOR

Multi-Objective Whole test Suite Generation 134

APPENDIX B GENLCRAFTL CODL

Crossover
... Crossover Selected Solutions. ..o
FOR (i=1 10O MAXPopulation: i=i+2)
FOR (j-1 1O MAXTestCasc)
Child[i][l] = Selected]i]{jto(i/2)]+Selected|i+1]{(j2)oMAX]
Child[i+1]j] =Selected|i+1]{jto (/2)]+Selected|i][(H/2)to MAX]|
END FOR

END FOR

Mutation

................................. Perform Mutation on the child Population..........oooi

MutationProb = RAND(1-3)}

If MulationProb = 1
MutationTestCase[] = TestCase| RAND]
Remove MutationTestCase |RAND|

ELSF IF MutationProb - 2
MutationTestCase[| = 1estCase[RAND]
Add MutationTestCase [RAND]

ELSE [F MutationProb = e
MutationTestCase| | = TestCase{RAND]
Modify MutationTestCase [RAND]

END [F

Main Program Flow

oo Iteratively Run the genetic Algorithm until optimized. minimized solution found..........

Multi-Objective Whole test Suite Generation 135

APPCNDIX B GENERATLED (ODE

(Fenerate Initial Population
FOR(i=0 TO Population)
Fitnessl = fitness(TestSuite[i])
Fitness? = fitness(TestSuite[ih
Front[i] = FastNonDominantSort{Population)
END FOR
FOR(i=0 TO NO OF I'ronts)

WHILE NOT END OF FRONT
crowdingDistance|i] = crowdingDistance(TestSuite[i])

END WHILE

END FOR

Selected [] = TournamentSelection{FrontsT])

ChildPopulation[] = Crossover(Sclected[])

MutatedPopulation = Mutation{ ChildPopulation] §}

If (Fitness | (Population) And Fitness2(Population) = RequiredFitness| AND RequiredlFimess2)
Terminate Program
Return TestSuite[| with Required [inesses

END IF

Multi-Objective Whole test Suite Generation 136

