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ABSRACT

Abstract

Due (o the recent advances that were made in the field of sofsvare testmg. it is now possible 1o
automaticaliv generate test cases for the SUT which reach almost wny pomnt nr the source code
There are tvo busic issues with the approach of targeting one distinet coverage godal ut « time.
the first being thar the coverage goals (0 be covervd are inter-related and the second that it is nof
grerantced tha o generated test case will actually succeed 1 covermg the required gool

hecause some 1estmg goals are more difficult thain others and sone can he infeasibie too

Whole test suite generation. is a search-based technigue that atiempts to generate Whole Test
suites and optimize them nsing Genetic Algorithms so that the gencraled Test Suites fulfill the
coveruge criteria, instead of generated test cases for each coverage goal sepirately. Lsing this

technigque up 1o 18 times more coverage is achieved. compared to lurgeting single hranches

Whole test suite generation, generales o fest sufie which achieves desiruble coveruge
evolutionallv, using genetic algorithm. but the generaied test Suite is noi sunimized and has
redundant 1est cases in it. The Proposed Solution for this issue is 1o convers the whole test Suite
eneration fechmigue (o d mudti Objective genetic algorithm to eaable it to produce miinintized

sofutiont in one run
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CHAPTLR | INTRODUCTION

INTRODUCTION:

Software testing is one of the main and final steps in the software development life cycle.
Testing is important to ensure that the system works as it was intended to. Software testing is a
method of assessing the functionality ol a software program. lesting can be divided into many
categorics based on the (vpe of system it tests. the kind of faults it is looking for (load testing.
broken links ete.) or the method used for testing (automated. manual) but the main types are

black box testing and white box testing.

Testing can be done either manually or auwtomatically. Almost all software development
projects need testing. which makes testing a heavily used techniqgue. thus the testing phase of a
typical project take up to 50% of the total projeet effort. [1]and therefor contributes stgnificantly
to the project costs. Repeated changes in the system under test can afleet the results ol the tests.
For this reason testing has to be repeated often and this repeated testing ts called regTesson
testing. This is error-prone, time consuming and expensive. Automating the process may
significantly reduce the effort needed for running individual ests. | his implics that perfortming
the same fest becomes cheaper. or enc can do more tests within the same budget. Manual testing
is time consuming. unreliable and costly while Automated testing in contrast is reliable and

requires less investment 1n human resources.

Test data generation in program testing, is the process of tinding test cases which satisty the
chosen coverage critevia, A test data generator is a tool which iy used by a programmer (0
generate test data for testing the SLT [11]. Two main dynamic approaches are mosl conmmonly
used for generation of test cases. which achieve the required coverage. One being automatic path
selection using randomly selected inputs from the input field (2] and. another is to use meta-
heuristic scarch techniques. where SUT is treated as a problem for scarch optimization whose
goal is to look lor tests that provide as high coverage as is possible. Onc ol these mela-heuristics.
genctic algorithms. is the most widely used. Genetic Algorithms are particularly popular when
used for test case generation problems because test data generation is an undecidable problem for
which there exists no single optimum solution. For undecidable problem Genetic algorithms are

popular because they give a near optimum solution to the problen.

Multi-Objective Generation of the Whele test Suite |



CHAPTER | INTRODUCTION

In the computer science’s field of artificial intelligence. the genetic algorithms can be called a
digital manifestation of Darwin’s theory ot natural selection. This heuristic. (also sometimes
called a mecta-heuristic) belongs 1o the larger class of evolutionary algorithms (EA). which
generate solutions for problems that require optimization: using technigques inspired by nature.
such as Bee colony Optimization. Ant Colony Optimization. Particle Swarm Optimization. and

ete. and are used to generate usetul solutions to search problems [ 3].

When structural testing is performed. the test cases are generated based on the source code of
the SUT. keeping in mind the basic aim of covering the chosen testing criteria. The recent
advancements in the field of Software testing allow an efficient derivation of test data from the
source code. given the size of the program being considered is reasomable. A common approach
is to exercise each branch separately while generating test data for each branch individually [12].
[7]. Although teasible. the major issue with this way of test data generation is that it considers all
test goals of equal importance and equally reachable and it does not take collateral coverage into
consideration. Unfortunately. none of these assumptions holds. This problem is manifested in
many ways: Many coverage goals are impossible or infeasible. this means that there exist no test
casc that can Fulfill this coverage goal. this lies in the category of “undecidable infeasible path’
problem [13]. In addition 1o infeasible path problem the test case largeting a particular branch
will almost always cover addition untargeted branched unintentionally. this is called collateral
coverage or serendipitous coverage [5). This shows that the order in which the branches or goals

are targeted will always atfect the efficiency of the test process and the final result achieved.

Whole test suite generation. an innovative approach that overcomes the infeasible branches
and collateral coverage issucs by optimizing the whole test suite al once o cover the chosen
coverage goals instcad of targeting cvery single branch separaicty. Because the whole 1est Suite
coverage optimizes the entire test suite at the same time. this removes the infeasible branch
coverage issue plus the choice of the order of the coverage goals does not aftect the results

cither. the issue of collateral coverage disappears oo [1-4.

Wholc (est suile generation. optimizes the test Suile (o generate the final Test Suite which has the
desired coverage and smaller size but the generated test Suite has redundant test cases mat. 1o
remove redundancy from the generated test suite it is proposed that the technique should be

converted to a multi-objective optimization technique. In doing this the single objective genetic
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algorithm used by this technigue is modified into a multi objective genetic algorithm by adding

another fitness function to it which helps choose the solutions with less redundancy.

1.1 Automated Testing

The process of execution of pre-scripted tests or test cases on an application before its rejease
into production by the software testing tool is automated testing (Margarer Rowuse. 2014,
Basically it means automatic generation of test data. running of the (est cases on the system

under test and the validation of results. using predefined oracles.

With passing time and much advancement in technology. soltware engincers and project
managers face the ever growing challenge of producing a valid and almost fault free systems

within shrinking deadlines and lower budgets.

Hence organizations have lesser time to appropriately test there system and spend extended
periods on the task. This is why they tumn to automated testing which lets them test large volumes
of data in lesser time and using lesser effort to do so because manual testing is error-prone and
labor-intensive and it does not support the same kind of quality checks as there are possible with

automated Test tools ¢Effriede Dinstin, Jeff Rushka, John Pauf, 2008

An all-encompassing testing process helps in (est aulomation. but a suitable (est (automation)
plan is even more important. The test plan is responsible for decisions like. the kind of test to be
performed in the various stages of Software testing and what tests among these will be done

manually and which can be automated.

1.2 Test data generation

While testing software one often needs to know input values/parameters that will trigger a
particular part of the system being tested. doing which is extremely labor-intensive it done

manually. Theretore automation of the process is desirable.

To test a system. usually a test adequacy criteria is chosen. once the criteria is decided upon the
next step is to create test cases that will best satisfv the chosen test criteria, for which the test

cascs are generaled automatically 1o save time and effort,

-
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It is shown through empirical research in the past. if test data is chosen based on an adeguacy
criteria. the fault detection capability of the test suite improves compared fo choosing random
test data [16. 17]. But test dara that is automatically generated does not guarantes the fulltlhnent

of the chosen adequacy criteria.

Many different types of paradigms of automatic test data gencration exist but the three most

common types are as follows,
1.2.1 Random Test Data gencration

In random (est data generation the test casces are generated randomly until a suitable test casc is
tound. This approach becomes inefficient | 19] when the adequacy criteria or the program gets
complex because the chances of triggering the very specific inputs that will satisfy the chosen

adcquacy crileria becomes lower while testing complex programs.
1.2.2 Symbolic Test data generation

In symbolic execution the program is executed using symbols instead of concrete values.
Symbolic execution consists of allocating symholic values 1o variables in the program being
tested. in order (o come up with an abstract. mathematical characterization of what the program
does. Thus. in an ideal case. test case generation can be converted into an algebraic expression
solution problem(C ristoph C. Michael. Gary £ McGran, Michwel 4 Schatz, Crartis C Walton,
1997y [18]. There are two main issues when practically generation (est dala using symbolic
execution. the first is the accurate representation of loops and the second is 1o find a way 1o

handle pointers.
1.2.3 Dynamic Test data generation

Dynamic generation is the third category of test data generation [20]. In this paradigm parts of
the program under test are treated as tunctions and the program is run until a certain location 1s
reached and one or more values of that location are recorded. These values are treated as if they
were the value of the functions. Such lunctions are not ¢asy to write but they can calculate the
input to reach any location in the program and finding a function that gives the minimal value for
the input to satisty the adequacy criteria is usually possible. in this way the test data generation

problem is converted to “function minimization™ problem.
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1.3 Test Suite optimization

A test sujte is a collection of test cases meant to exercise a particular component of the SUT.
where the final state of one test is often a precursor or the mnitial state of the next test (D Jeyy
Mala. V. Mohan, 2009)21]. While optimizing a test Suite. the aim is (o generate effective (st
data that can exercise the adequacy criteria. consuming minimum possible resources. Following
are the three main test Suite optimization methodologies in literature.

1.3.1 Minimization

Minimivation is one of the three typical test Suite optimization methods. The formal definition of
Test Suite Minimization is as follows [22].

Given: A set of test requircments ry. . . .. 1. that must be satislicd to provide the desired testing
coverage of the program. a test suite T and subsets of 1.7Th. .. .. 1. one dinked with cach of the
r,'s such each test case exercises or fulfills some requirement.

Problem: Find a test suite 17, of test cases from T that [ulfills all the requirements 1,

The testing criterion is satistied when every test requirement in ry. . . iy is covered. A test
requirement. r, is satistied by any test case. t. that belongs to the test suite T, which is a subset
ol 'T'. Therefore. the representalive sct of test cases 13 the hitting set of the I)'s, Additionally. in
order to make the most of the effect of minimization. 1" should be the smallest possible hitting

set of the Ti's (S Yoo, M Herman, 2010)

1.3.2 Prioritization

The Formal definition for Test Suite prioritization is given below. This is a definition from Yoo

etal (2010)
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Given: A test suite. T. the set permutations of T. PT. and a function trom PT to rea) numbers. f

PT R

Problem: To find T° € PT such that (¥T”){T"* € PTIT" = T JIiT" } 2 AT"}]. Average Percent of
Fault-Detection {APFD) is commonly used to evaluate test case prioritization technigues. The
APFD value for T is calculated as follows (Schastian Ethaum. ¢ Alexey Malishevsky, 2002):

APDF = 1-(( ] Fi 44T FmY nm) + (1720 [23].

1.3.3 Selection

The formal definition of Test Case Selection is given below.

Given: The program. P. the modificd version of P. P and a test suite. |
Problem: Find a subset of T. T". with which to test P’

[n a given test suite. it can be said that the selection techniques in general aim to tind the
-modification-traversing” test cases. The details of how each technique goes about the process of
searching and identifying these test cases difter but the hasic underlying idea remains the same.

(Gregg Rothermel. ¢ Mary Jean Harrold, 1997)(23].

1.4 Genetic Algorithm

There are many difterent types of Evolutionary Algorithms: Evolutionary Algorithms are
Algorithms that mimic natural phenomena to solve problems. Genetic Algorithm is a variant of
Fvolutionary Algorithms that mimics the process of evolution from nature. e basic idea is that
given a population of individuals. crossover and mutation is performed on the population to find
the fittest solution as described by the fitness function. The basic genetic Algorithm has the

following three main steps [23].
Selection

Selection is the first step in the genetic Algorithm. The main purpose of this step 18 to improve

the overall finess of our population, for which purpose [ittest solutions are chosen for Turther
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operations while less fit individuals are discarded. There are many difterent types of selection
procedures but the main idea 15 the same. ie. to select the fitter individuals for the next

gencration.
Crossover

In this part the selected individuals are combined (o produce the offsprings. pairs of parent
population are made (0 produce offsprings. this step 1s performed (0 combine fit parents 10
produce even fitter child population and eventually a solution that fulfills the stopping criteria of

the algorithm.
Mutation

Mutation is performed to add randomness to the population otherwise. with each passing
iteration. the solutions might continue repeating without any improvement. this is done by

making small random changes in the individual solutions.

A —_
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Fig 1.1 Workflow of the Geneue Algorithm
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1.5 Multi-objective Genetic Algorithm

Multi Objective Genetic Algorithms are Genetic algorithns that arc used when there is more
than one objective 10 satisty. An example of such problem is that when designing a bicycle we
want the design to be durable but use as little material as possible or it a car manufacturing
company wants to find out a reasonable balance between the cost of manufacturing and the
luxury of the car. Gienerally the methods used to solve probleins with multiple objectives can be
divided into two categories. The first one is to comvert the multipie objeciives into a single
representative formula using weights and the second technigue is 10 find the entire representative
Pareto optimal sct of solutions. A Pareto optimal consists ol solutions that are non-dominated
considering all the objectives 1o be Tulfilled. (Abcidiah Konak - David 1V Coit . Alice . Smith,
2005)[26].

1.6 Problem Statement

In literature there are many Test Suite generation techniques that automatically generate the Test
Suite but almost all the techniques are based on the coverage criteria and generate test cases for
all coverage poals separatcly. Whole test suite gencration. automatically gencrates the wholc
Test Suite for the System under Test using evolutionary algotithm. This overcomes the problems
of infeasible test coverage goals and collateral coverage at the sume time but the final Test Suite
which is generated after running the genetic algorithm may contain redundant test cases. This
means that this Test Suite can be further Optimized by reducing the number ol test cases in the

test sulte.

1.7 Research Objective

The method proposed is an improvement to the Automated “Whole Test Suite Generation™
technique which generates the whole tcst Suite using the evolutionary algorithm. Currently the
Test Suite is being generated using “Single objective Genetic Algorithm™. this produces a Test
Suite with redundant Test Cases and the test suite is run again to remove the redundant Test
cases. The proposed solution is to modity the Genetic algorithm by adding another fitness

function to it and converting it o a Mulli Objective Genetic Algorithm (M.O.G.A). The muld
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Objective genetic algorithm to be implemented will be the Non Dominated Genetic algorithm

(N.S.G.A)

1.8 Hlypothesis

The hypothesis of this thesis is that by applying the whole test Suite generation technique
Evosuite. using Multi-objective Algorithm. the coverage objective can be achicved along with

the minimization objective,

1.9 Dissertation Qutline
Figure 1.2 illustrates the structure of this thesis:

Chapter 2: Describes the background for understanding the thesis by giving introductory
knowledge about Test Suite Optimization. Whole Test Suite generation and [Crolutionary
Algorithm (Genetic Algorithm). -

Chapter 3: Dcscribes work in literature to support MO-W1S Generation and Evolutionary
algorithms.

Chapter 4: Flaborates the hypothesis that we will attempt to prove.

Chapter 5: Describes the implementation of the approach for MO-WTS Gen.

Chapler 6: Introduces and describes the implemented tool for MO-W I'S Gen,

Chapter 7: Discusses compares and evaluates the results of our work with the existing work.

Chapter 8: Outlines the conclusion of this work and deliberates the findings.
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' ~
',l Chapter 2 Methodotog.es J l Cnapter 3 Re.atec Work ‘
! . (- . - e
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Chapter 4 Probem Defirton

Our Research Work
Chapter 5. Implemented Chapter 6 Tool
Approach implementation

Chapter 7 Results &
D!s.'“ubsmn

Chapter 8 Corciusion

Fig 1 2. Dissertation Qutline
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BACKGROUND:

This section is devoted to describe the background for understanding the thesis.

2.1 Test Suite optimization

As modifications are done in a code more test cases are added to the existing test suite. this
causes the (st suite 10 grow in size. the test therefore gets bigger with the cvolution ol software.
The larger the test suite is. the costlier it gets o run i. 1o overcome this problem many
techniques are studied in literature. These techniques aim to minimize the resources used while
running the test suite while improving the fault detection capability. Such techniques are called

test Suite optimization techniques and can be divided into three calecgorics.

i Minimization: Aucmpts to remove repeating i.e. redundant tesl cascs.
ii.Selection: Attempts to identify test cases that correspond to the mudification that needs to

be tested.

i Prioritization: Orders the (est cases to maximize the chances of carly fault detection.

The main point similar in all these techniques i$ that they assume the existence of a test pool
which is too large in size to run the complete test suite 127]. Therefor the techniques in all three

categorics basically try to overcome the problems that arisc due to the huge sizc of the test pool.

2.2 ‘Technical Definitions

Definition I (Test Suite Minimization Problem)

Given: A set of test requirements ri. . . . . Iy. that must be satistied to provide the desired testing

coverage of the pragram. a test suite T and subsets of T. Ty .. .. T,. one linked with each of the

r,s such cach (est case exercises or fulfills some requirement.

Problem: Find a test suite 17, of test cases (rom | that (utfills all the FCUITCICNLS 1y,
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The testing criterion is satisfied when every test requirement in rp. .. 1y 15 govered. A test

requirement, r, is satisfied by any test case, t,. that belongs to the test suite T,. which is a subset
of T. Therefore. the representative set of test cases is the hitting set of the 1/'s. Additionally. in
order 1o make the most of the elfect of minimization. 17 should be the smallest possible hitting

set of the 1i's.
The minimal hitting set problem is an NP-complete problem as well as a dual problem ol the

*minimal set cover problem’ |28].

Definition 2 (Test Case Selection Probient)
Given: The program. . the moditied version of P. 2" and a test suite. T

Problem: Find a subset of T, 1. with which to test P'.

Definition 3 (Test Case Prioritization Problem)

Given: A test suite., T. the set of permutations of T. P7. and a function [rom /7 10 real numbers.

f:PT—R

Problem: To find T° € PT such that T 0T € PTHT " Tl /(T ) 14T 7]

2.3 Types of Test Cases

According to Leung and White Test cases are of tive types based on how they are used in

optimization [29].

i. Reusable: These are the test cases that cxercise the part of the program or system under test
that is unmodified. This part is does not change in the newer versions of the Syvstem
under Test (SUT). These test cases are not exccuted when testing the moditied part of the

program bul they are kept safc for possible testing the code in the future.
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ii. Retestable: These are the test cases that exercise the modified part of the system under test

(SUT) P These test cases should be run again to Test P after the modification,

iii. Obsolete: The following rcasons arc why the test cases may become absolete.
o The requirement they were ercated (o test has been changed because of the change
of specifications so they are not needed anymore.
o [he program has been modified and the part they test does not ¢xist or has been
modified so that new test cases are needed to test it.
e They do not provide the required coverage of the structure of the program as belore

the moditications.

iv. New Structural: These test cascs arc created to test the madified part in the System under

test P which is no longer covered by the older test cases.

v. New Specification: These test cases are created 1o (es! the part of the program that has been
modificd or ereated as a resalt of modification of the specifications. 'They wo exercise the

modified part of the program P

2.4 T'est case selection

Test case Selection and the Test Suite Minimization problem is similar in the sense that both of
them attempt to reduce the size of the test Suite by elimination the unwanted test cases that do
not contribute to the test goal of choice. The only difference is that Test cases sclection focuses
on the modified part of the system under test while the Test Suite minintization trics lo reduce
the test suites size by eliminating repeated coverage and it focus remains within the same version

of the program.
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2.4.1 Modification Revealing Test Cases

This concept was given by Rothermel and Harrold. A Test Case tis modification revealing {30]
for P and P™ it and only if P(t) £ P (t). I the following two suppositions are correct then finding
the Fault Revealing test cases is possible after the modification revealing 1est cascs in P and P

are found.

e P-Correct-for-T Assumption: This assumption says that all the test cases in the test Suite
[ executed properly and provided correet resulis when they were run on the unmodilicd

version of the program P.

e Obsolete-Test-identification Assumption: This assumption holds that for each test case t
in the test suite T° it can be correctly identified if that test case has become obsolete for

the modified version of the program P16}

With the above assumptions it is obvious that cvery test case in T provides a correct output [or P
i.c. P is fault [ree with regard to 1 and since no Lest case in 1 is obsolete for P all the test cascs
should give the same results for P and P*. So if'a test case is modification revealing it should also

be fault revealing.
2.4.2 Muodification Traversing Test Casc

A modification traversing test case is the test case that exercises new or changed part ot the

system under test P” or it used 1o execute code that has now been deleted in P
2.4.3 Controlled Regression Testing Assumption

This assumption says that all the factors that could attect the output when P s tested with test
case t except for the code are kept the same as they were when P was tested with t. [n the case
that the controlled regression testing supposition is truc. a test case t that is not obsolete can be
modilication revealing only if it is also modification traversing for the modified and original

code Pand P

If P-Correct-for-T as well as Obsolete-Test-identitication assumptions hold and the controlled

regression testing assumption holds true too then the tollowing relation between the subsets of
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fault revealing test cases. modification revealing test cases. Modification traversing test cases

and the Test Suite will be true too.

T: Ti = I © Ten G T by using this assumption it is possible to omil all the test cases that

dot reveal any faults.

2.5 Test case prioritization

This approach was introduced by wong et al[311. In test case prioritization the (¢St suite sive us
not altered but the test cases are rearranged in such a way so that any particular requited benetits
are improved in the early test cases so that it the execution is prematurely halted then most of the

benefit of festing i.c coverage. faull detection cte are already achieved,

Harrold and Rothermel [32. 33] did morc work on the technigue by analy zing 11 1 a mofe

general content.

Fottlt fovealogt Peoeal
Tt cares ' e N 1 = " - . "
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Fia 2.1 Cxample from Clbaum et at {35]

Considering the above table il the aim or prioritization is early fault detcetion then it is obvious
that if we arrange the test casc in the B-A-C-D-E formation then the carly fault detection
capability of the test suite will increase as compared to the original A-B-C-D-L arrangement. A
closer look at the table reveals that any arrangement that starts with C-C is superior to any other
arrangement because this arrangement detects maximum number of faults carly in the test swite
exccution. With this arrangement. if the testing is stopped before the whole test suite s exccuted.
then at least maximum possible faults will have been detected already. hence saviny time and

reSOuUrces.
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Although the example is based on fault coverage but the faults in the syvstem under test are not
known until it is actually tested for faults. so test case prioritization techniques use altemate
methods from lault detection capability. The aliernate goals lor prioritization arc meant Lo
improve fault detection, Some different popular goals based on which (he priorvitization

techniques are created are as tollows.

2.5.1 Coverage based prioritization

Coverage of the structure of the system under test is the metric which is most commonly used in
most test suite oplimization techniques {34-40]. 1118 assumed (hat carhy coverage ol the system
under test will detect more faults earlier. So in prioritizing the test cases based on the system the
real aim is to improve early fault detection of the system under test (SUT). Rothermel et al
further investigated prioritization techniques[34-40i. their study the same algorithms with

different test coverage goals. The coverage goals considered were

o Branch-total: Branch total considers the total considers the total number of branches

covered and prioritizes test cascs according to that.

o Branch Additional: Branch Additional considers the additional branches covered by the

test cases and prioritizes the test cases. This is an additional greedy technique.

o Statement Total: This considers the lotal number ol statement covered by test cascs and

prioritizes the test cases.

o Statement Additional: This considers the additional coverage of the statements achicved

by the test cases and prioritizcs based on that criteria.

e  Fuault Exposing potential Total: Favlt Exposing potential of a test case is caleulated
using mutation testing. Mutations. i.c. faults are intentionally introduced in the program
and then the test cases are run on the program to calculate the fault exposing potential of
the test cases |42). The mutants(faults) exposed by the test cases are said to be killed by

the test cases. The mutation score of the test cases are culculated as follows:

Mutation Scorc = Killed mutants by the test case / Total Killable Mutants
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The techniques based on FEP prioritizes based on the test cases hased on the mutation
score of the test cases
o Fault Exposing Total Additional: The techniques based on this criterion prioritize the

lest eases based on their additional mutation score of the st cascs,

While majority of the techniques in the literature use coverage of the svstem under test as a
goal for prioritization but somc icchniques also usc criteria other than coverage for

prioritization,

2.5.2 Other approaches

There are relatively fewer number of prioritization techniques not hased on coverage [42-45]. A
distribution based (cchnique is a technique that minimizes and prioritizcs the test suite based on
the distribution of the lest case profiles{42]. Dissimilarity wetri¢ is a number that represents the
difference between the input profiles of the two inputs of the test cases. The dissimilarity metric
can be used to cluster similar test cases together. Clusiering of the test cases gives us interesting

information about the similantics between the st cases.

e Test cases in a cluster may indicate a set of redundant test cases. Using this intormation it
may be possible to execute only one test case in the cluster and hence reduce the test suite

climinaling redundant test cases.

o It is possible that isolated cluster indicate that the test cases contained in these clusters
may induce unusual conditions which can expose errors. Using this information it might
be uscful 1o (st this arca of the profile more thoroughly since this arca is less oxercised

during testing.

o Areas in the profile space with a low-density may indicate that test cases contained in this
arca show unusual behavior. Rearranging the (est cascs so that the arcas that are isolated
and show unusual behavior are excreised first may help expose faults carlier in the testing

process.
Besides distribution based approaches there are Requirement based approaches. history based
approaches and Probabilistic approaches.
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2.5.3 Cost Aware Test Case Prioritization

Test case prioritization does not filter out test cases i.e. it does not reduce the size of the test suite
which means that it is assumed that the whole test suite will be executed. which is a not
practically leasible most of the times because of the resource Yimitations. A number of test suite
priotitization techniques address (his issue and propose solutions (hat cost aware while they
prionitize the test cases |38, 46, 47, 48], Elbaum et al improved the basic APFD metric so that it
can take into consideration the severity of the tault detected and the cost incurred 1o execute the

test cases. The new metric is called APFDc. Formal definition is as tollows.

More formallv. Let T be the set of m faults with severity values f1 ... fm and let T be the set of n
test cases with costs t1 ... tn.. For the purpose of ordering T°. let TFi be the order of the first test

case that rexcals the ith fault, APFDe of 17 is calculated using the following formula:

F—
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Do and Rothermel studied some existing prioritization techniques and they studied the effect of

time limitation on the cost cffectiveness of six different techniques.

2.6 Test Suite Minimization

Test suite minimization reduce the sive of the test suitc o optimize it. the main idea is to
remove redundant i.c. repeating Lest cases [rom the test suite so that the size of the test suile is
reduced without affecting its coverage or Fault detection capacity. Test stitc minimization i the
minima) hitting set problem. A minimal hitting set problem is a problem in which one needs to
find the smallest possible solution to using a given set ot {i nite population to fultill the criterta or
goal that is to be achieved. In test suite minimization the aim is to find the smallest possible set

of test cases that fulfitls the chosen criteria.
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Test Suite Minimization is an NP-Complete problem [37). An NP-Complete problem is
something for which no solution exists that can solve it in linear time. The only way an NP-
Complete problem can be solved is through hearistics, A heuristic is an approvimate solution lor
the problem. which works well with the situation at hand but is not a universal solution for all
similar problems. All pat work done on the minimization techniques can be considered as the

development of Heuristics [49-52).

2.6.1 Impact on fault-detection capability

Test suite optimization techniques minimization. selection and prioritization successtully reduce
the size of the test suite (o be executed but its effects on the fault detection capability of the
system under test has been a widely discussed issue in the literature |23. 53-55]. Several studies

were done to determine this effect.

Wong et al randomly generated test suites and reduced them using the ATAC tool created by
Horgan and London. He used these test suites to fest 10 UNIX programs. Rothermel et al
gencrated lest suites from the test cases provided in the Siemens suite. Fle reduced the test suite
and then measured its fault detection capability using the same metrics as Wong ¢l al. e
conciuded that reduction of the test suite resulted in a much smalfer test suite trom before that
there is mathematical relation between the tetst suite reduction and the fault detection capability.
He reported that for the 1000 plus test suilcs he tested the lault detection capability was severely
affected by the reduction of the test suites. More than half ol them lost 530% ol their faull
detection capability and in a few cases the drop in the fault detection capability was about F0%.

A study by Yu et al too confirmed the findings of the study done bv Rothermel.

2.7 Test data generation.

Studies show that 50% of the cost of Software development is spent in Software testing. Efforts
10 reduce the cost of software testing arc always going on. One way (o do this is Lo automale the

process of testing. In awomaled testing the test cases are ecnerated automatically hased on the
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target that is to be tested. Generation of test cases is called test data generation in literature. Test

data generation techniques can be divided into three categories [S9).

e Random lest Daia generation
e Path Oriented Test Data generation

e Goal Oriented Test daia generation

2.7.1 Test Data Generation system

The figure below shows a typical Test data generation system. this consists ol three main parts

namely. program analyzer. Path selector and test data generator. With these three in place. many

search based solutions can be found for the problem [60. ol].
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Fig 2.2 Workflow of a fest ata Generator
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The automatic Test data generation problem can be defined as follows: Given a program P and
an unspecified path u generate input x € § such that x traverses u. A program analyzer is the part
of the generator that runs the code and provides the result wo the path selector. The path selector
selects Uhe paths based on the criteria chosen to fulfill and provides the chosen paths to the st
data generator part. Fhe test data generator part then creates test cascs based on the input

provided to it by the path selector.

Program Analyzer

All the information about the program is provided by the program analyscr. This information

contains data dependence graphs and control flow graphs ete.
Path selector

A path selector selects the paths for which the test data generator will generate test data. this
selection is done based on the kind of goals the test suite is meant to cover. The selected paths

are then transterred to the Test data generator.

Test Data Generator

A Test Data Generator generated inputs to exercise the selected paths. To do this first the path

predicated of the path are found and then solved in terms of the input variables.

2.7.2 Type of Test Data Generators
Test data gencration techniques can be divided into the following threc categorics
Random Test Data Generation

This is the simplest test data generation technique. Techniques in this category generate rundom
input values to create a test case. This data is generated withoul any attention to any testing

goals. Randomly gencrated test is hknown lo have low performance in terms of fault detection or
high coverage. The reason tor this is that such techniques usually miss inputs that are i trigger

rare errors hidden within the less approachable parts of the program.

12
-t
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Goal-Oriented Test Data Generation

Goal oriented test data generation guides the test data generator to generate Inpuis that traverse
certain paths which result in test cases that cover the test goals. The path used to generate test
data in such techniques is an unspecified path. Unspecified paths are paths with some segments
of the path missing from them. Two methods that use this technique are the chaining approach

and the assertion oriented approach.
Path-Oriented Test Data Generation

Path oriented test data generation techniques. 1ike goal eriented 10015 it provides the gencrator
with a single path, but the path provided in this case is a speeific path. Following a specitic path
leads to a better coverage of goals but it makes the generation of inputs for the path harder since

infeasible path can also be a part of the specific path provided to generate test data.

2.7.3 Importance of Path Selector
The path selector is the part of the system that chooses the paths based on the test goals. {f the
path selection is done in an effective manner it improves the performance of the data generated
using these paths. The stronger a criteria 1o be fulfilled is the more paths arc needed lo generale
the data. Some of the typical criteria used to generate awomated test data are given helow.

e Branch coverage

¢  Statement Coverage

o Path Coverage

¢ Condition Coverage

»  Multiple Condition Coverage
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2.7.4 Problems with Automated Test Data Generation

Test data generation is a complex problem. Because of the complexity of test data generation
most of the work in literature for test data generation results in programs that ate not suitable to

test real life problems.
Arrays and Pointers

Array and pointers create complications when generating data because they are not actual
variable bul they contain the address of the actual variables location. 1he actual yarable 1s not
known so this causes problems in the substitution and makes test data generalion more

complicated. A solution to this problem was proposed by Ramamoorthy|63].

Objects

Objects ar¢ even more complex than arrays and pointers, They are mostly dynamically allocated
and there exist the concepts of abstract arrays, inheritance and polymorphism to further

complicate the matters.
Loops

Loops are responsible for the repetition of the code in the program. Most of the times the no of
these repetitions that will take place is not known. they usually depend on a vanable. The loops
arc problematic only it they lic in the unspecific part of the programs path because 1o genceraic
data for a loop it is important that the path for (he closed form ol the loop is present.
Ramamoorthy |63] suggested a solution for this to execute the foop a randomly chosen number

of times. The number is chosen either by the use or by the system.
Modules

Programs are usually divided into modules and functions. This causes problems because the
called function's code is often not accessible because it mostly lies in precompiled libraries so a
complete analysis of the function is not possible. Ramamoorthy suggested to vse the inlined
version of the called function to overcome this problem or to analyse the lunction [irst and

generating its path separately [66].

(B
A
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Infeasible Paths

Infeasible paths are the paths in the flow graph of the system that cannot be reached. {n test data
generation the test cases are generated based on the path provided by equating the nath and
finding inputs to traverse the paths. This becomes very difficult when the path that needs to be
cquated to find the input is infeasible. The only known solution in the literature for this to
exercise the path a number of times betore concluding that it is infeasible and that an alternate

path should be taken.
Constraint Satisfaction

All the testing methods have to deal with constraints but test data generation [ affected by it more
than other methods because there are function calls in the program and due to this symbolic
execution is not possible. Search methods arc usually used to solve constraints [66. 67. 63. 61.

64].
Oracle

1L is really important to have an oracle in automatically gencrated test because the number of test
cases generated is usually very high plus some test cases produced might be inconceivable. but
the problem lies in generating the test data’s oracles. To generate an oracle either extra

information about the specifications has to be provided or asserts have to be inserted in the code.

2.7.5 Metaheuristic technigques for test data generation

The Meta heuristics algorithms have been used by many researchers in (he reeent years [69. 70].
The search based algorithms are highly adaptable and ideal for the solution of any problem that
is classitied as NP-Complete or even NP-Hard. These programs have been applied in the

following areas of test data generation.

e To complete the coverage of a program under test. when it is being test using a white box

testing strategy.

=

s Exercising particular parts or aspect of the Sysiem under test according to the

specifications.
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s To automatically falsily asscrtions and regarding the systems safety and disprove grey-

box properties.
o To verifv non-functional properties of the system under test.

Techniques like simulated annealing. hill climbing and genetic Algorithm are popular among

researchers for the creation of automated test data generalors.

2.8 Whole Test Suite generation/Evosuite

When a program is being tested under structural testing. usually some sort of coverage criterion
is to be satisfied and the test cases arc generated with that aim in mind. Recent advances show
that now it is possible to automatically generate test cases for a moderately sized system. This
approach that is uscd to do this is that test cases are venerated (o satisfv cach goal after

considering every goal separately. Though this strategy works. it has the following main flaws:
o This technigue assumes that all the coverage goals are cqually important.

o i is assumed that all the coverage goals are equally difficult to reach. while in reality
many test cases are infeasible, these test cases are impossible or really difficult to reach

and they fake up a lot of systems time and ¢lort to handle.

o The technique also assumes that the goals are all independent of each other but actually
that is not the case. When one test case is targeted, it results in an automatic coverage of

many other coverage goals. This is called collateral coverage §72] or screndipitous

coverage.
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Whole test suite gencration/bEvosuite is a technique that gencrales a 1est suite (hal lrigs to
optimize the whole test suite at once without considering one coverage goal at a ttime. The test
suites generated this way are neither affected by the order of choice of the coverage goals to
satisfy nor are they atlected by the infeasible parts of the system under test. Fyosuite uses a
search based technigue to evolve a population of test suites 1o find a test suite thal achicves
coverage based on the coverage criteria of choice. This technique improves the following aspects

of the test suite opiimization research area |71).

o It handles dependencies among the predicates.

e It handles test case length dynamically, so that the exploration is not aftected by a tixed

size test cases and (est suites,

Below is the pseudo-code for the whole test suite optimization sottware also known as Lvosuite.
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7.9 Meta-heuristic techniques, Evolutionary Algorithms/Genetic Algorithms

The litera! meaning of the word heuristic is som

problem through experimental methods esp
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computer science a heurtste technique or algorithm is an algorithm that tinds an approximate

solution tor any given problem tor which the classic algorithms could not find a precise solution.

Heuristic techniques provide an approximate solution for the problem at hand which means that
the sotution provided may not be the best solution for the problem but itis stll a valuable
i,
solution because there do not exist any algorithms that would provide a definite solution for the

problem vet and this solution is provided in a reasonable time frame.

Meta means bevond or something that is ot a high level. So a Meta-Heuristic technique is a
technique that performs better than the regular heuristics. The term Meta-Heunstic was put
forward by Fred Glover (Fred 1986)[73]1. A Meta-l leuristic is something that combines other
heuristics 1o provide a betler heuristic solution. Another thing comimon is all the Mcta-Heuristic
algorithms is that they all contain a search space which they traverse to find a solution and they
keep randomizing the solutions to cover as much area as possible and not diverge towards the

local optima.

Solutions of good quality can be found within reasonable time but there is no guarantee that the
technique will definitely find the solution. i.¢. such techniques don”twork 100% times. All Mceta-

Heuristic technigues. according to (voss 2001} arc suitable o plobal optimization.

T'wo main features in all the metahueristic techniques arc intensilication and diversification or
also known as exploitation and exploration (Blum and Rol. 2003) [ 74]. These two work in

oppousite direction and are the opposite of each other.

Exploration/Diversification: Diversification means to introduce randonmess to the solution so
that more of the search space is covered. The more diverse the solutions are the more global the

focus ol the scarch becomes.

Exploitation/Intensification: Intensi fication mcans to focus on one arca in the scarch knowing
that betier solutions cxist in that arca. Too much focus on intensification can result in a solution
that is locally optimal and ignoring a better solution that exists globally. A good balance between
the two should be found to achieve a better solution that is capable of tinding 4 solution through

intensilication and can also focus on the global optima.
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2.9.1 History

Heuristic methods have been used during 1940s,50s and 60s in applications to solve problems
but they were not used a s a scientific method for optimizations. The breakthrough for the
heuristic techniques came with john Holland's Genetic Algorithim. John THolland imtroduced the
genetic algorithm in 1960 [75] alter which LI, Fogel [76] developed Genetic Programming in in

1966.

In 1983 kirkpatrick |77} developed Simulated Annealing. which was inspired by the annealing
process of the metals. In annealing the metals are heated at high temperatures and then cooled
down slowly to reduce their brittleness. 1n simulated annealing the algorithms slowly deercases
its acceptance of lower fitness solutions to improve the coming populations while exptoring the
search space. [n 80s Farmer et al developed the artiticial Immune systems and the Tabu search

by Glover was introduced t0o.

In the 90s Ant Colony optimization Algorithm by Marco Doringo 78] was published. This
algorithm was inspired by the social behavior of ants. John R Koza wrote a book on Genetic
Progranuning and James Kennedy and Russell C. Eberhart [79] introduced the Particle Swarm
Optimization. 1n 1997 R.Stom et al developed diffeeential evolution which proved more

effective than the genetic algorithm in many applications.

2.9.2 Popular Meta-heuristic Algorithms

Some of the popular Meta-Heuristic Technigues are as follows.

o Simulated Annealing [76]: In each iteration. the algorithm decides 10 move the system
from the current state "s” o some neighboring state "s” which cventually leads the system
to a state of lower energy. This process is repeated until the system reaches a state that s

good enough for the system.

o Evolutionary algorithms [75]: OF all the Meta-heuaristic techniques available in literature
the genetic algorithms are the most popular. the reason for this is their high adaptability.
with little or no modiftcation thev can be applied to a problem of any domain. Gienetic

algorithms are based on the theory of natural sclection by Charles Darwin. The process is

-
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mainly divided into three steps. selection. crossover and mutation. The population of
given solutions is optimized using the three steps to find the required solution i.e. the

solution with the high cnough litness value.

o Differential Evoluiion: Ditferential evolution is a vector based version of the genetic
algorithm. 1t does everything i terms of vectors. the population 1s a set of vectors. The

three main steps mutation. crossover and selection are performed on the vectors.

o Ant Colony Optintization | 78]: Ant Colony optimization is a technique that is based on
the behavior of the ants when they collect food. Ants live in large colonies which can
reach upto 25 million, when an ant find a tood source il Jays a path of phetomone o it
which can be traced by other ants 1o and from (he food source. Bul the trace ol
pheromone is not permanent: it evaporates constantly. which means that the path that 1$
travelled more by the ants is a better food source than the one that is travelled less. This
idea is uscd 1o find the best food source that is the best solution lrom all the available

solutions.

o Bee Colomy Optimization: Bee Colony optimization Algorithm [80}1s 2 technique based
on the behaviors of the bees when they forage for flower patches. When a bee finds good
Nower patch it colleets the nectar and returs 1o Mre hive after which it performs a waggle
dance through which it communicates the location of the food source. If there are more
than one toad sources available the bees divide their forces so as to maximize the pectar

collected from the [lowers.

o Purticle Swarm optimization |79]: This Algorithm is based on the behavior of the swarms
of fish or birds when they flock or school. The particles (solutions) are moy ed through
the space towards a global optima which is constan(ly updated while other particles keep
finding better solutions. At the same time the particles immediate movement is guided by
its own best known location. but the particle shows random movement too. This way

eventually the whole swarm is moved towards global optima.

e Jubu Search [81]: labu scarch uscs the memony or the scarch history in is

computations. The tabu algorithm makes a tabu hst of recently visited tried solutions

(W]
{4
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which helps it to ignore the local solutions. In the long run these tabu records help save a

Jarge amount of time and hence improve the efficiency of the search.

e [lurmome Search [82]: Vhis algorithm is based on the musician™s way of working. The
musician when he has to improvise has three options. 1) He can present the piece as is
without any adjustments: exactly as he remembers it 2) Play something similar but
slightly adjusting the pitch a bit. 3) Creale a new picee using random notes. These three
steps correspond Lo the use of the search space. the creation of new individuals and the

addition of randomness to the solutions.

o Firefly Algorithms [83): Firelly Algorithm is bascd on the mating habits ol real [irellics.
A firefly is attracted to another firelly based on its brightness. 1 he attraction between two
fireflies decreases based on the increase of distance between them, So if two tiretlies are
considered the brighter one will attract the dimmer one but if there is no ditference in
their light than a random move is made. In terms of the algorithm the fircflics are the
potential solutions and their brightness is determined by the position they hold m the

search space.

2.9.3 Genelic Algorithms

Genetic Algorithims [73] are the most popular methods used (or optimization. This algorithm is
highly adaplabic and thus can be applicd to problems [rom many domains with casc. The basic
idea behind the algorithm is based on the theory of natural selection by Charles Darwin from his

book Origin of Species.

Genetic Algorithms are applied in many different fields to find solutions for difficult problems
including. automotive design. cngincering design. robotics. ships and telcconmnunications
routing. encrvption and code breaking. marketing and commerce. genctics and hardware design

ate.

‘Yhe main body of a Genetic Algorithm has three main parts. Sclection. Crossover and
Mutation. The initizl population on which the genetic algorithm is run is stored in a population

pool. Individuals of the population are assigned a fitness value based on how well they display

td
-
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the qualities we need. A predefined number of individuals from the population are chosen based

on their fitness to apply the three steps on.

Sefection: Selection is the process in which the individual from the population are selected to
apply crossover on them. The selection is done based on the fitness function of the population.
The better the fitness of the individual the greater the chances of it getting chosen are. Once the

individuals are chosen the next step is applied

Crossover: The selected individuals are crossed over to form a new set of child population. In
crossover the individuals are broken and swapped at a point which is usually randomly chosen.

I'his can be done in many ways but the simplest way is the single point Crossover.

Mutation- This part is used to introduce randomness in the solution so that they can better cover

the search space.
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After mutation. the resulting child population is checked for a solution that fulfills our fitness
criteria. It a solution is found. the search is halted. it not the whole process is repeated until

cither a required [itness s achieved or a pre-delined number of ilerations arc completed.
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RELATED WORK:

There are numerous techniques for Test Suite generation and minimization in the Yiterature: the

technigues proposed in recent literature are listed bejow.

3.1 Test Suite Generation Techniques

Techniques and algorithms proposed in recent literature for Test Suite generation ase as follows.
3.1.1 Pacheco el al (2007)

in this work the rescarcher describes an automated unit test case generalor called Randoop.
Randoop uses a technigue that is inspired by random testing which is based on execution
feedback. Feedback is gathered by executing the test inputs at the time of creation. The tests
generated are unit tests. RANDOOP [4] creates method sequences incrementally. by randomiy
selecting a method call to apply and selecting arguments from previously constructed scquences.
As soon as it is created. a new sequence is executed and checked against the set of contracts.

Sequences that [ead to contract violations are output to the user as contract-violating tests.

Sequences that exhibit normal behavior (no exceptions and no contract violations) are output as
regression tests. Finally. sequences that exhibit illegal behavior are discarded. Only normally-

behaving scquences are used to gENCrate new Sequences.

Limitations:
The tool is too code dependent.

It does not pertorm integration testing since it generates tests tor each unit separately.

3.1.2 Harman ct al (2010)

The researcher in this paper takes some basic steps towards tackling the re-formulated version of

the automated test data generation problem. making the following contributions:
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It introduces a new way to handle the problem of search based structural test data generation. n
which the main two goals are that of maximizing coverage and minimizing test suite size. while
keeping in mind the fact that the human oracle costs that will incur in cases of complen Yest
suites and it introduces three algorithms that form the new technique for test data generation
using search based testing {5]. The technique seeks to use test inputs of such a kind so that the
collateral coverage is maximized along with the targeted branch coverage. In this the total

number of test cases required 1o fulfill the coverage criteria is reduced.

Limitations:

The proposed algorithms are unable to handle infeasible branches.

3.1.3 Ribeiro et al (2008)

The focus of the researcher in this paper is to employ genetic algorithms to generate unit tests for
the SUT. which is an object oriented java program. Strongly typed genetic programming is used
1o evolve the test cases The results are (raced using instrumentation. the objects atre instrumented
to track the traversal of the SUT by the generated test data. The search process gives priority 10
the test cases that traverse the problematic areas of the code and the contro! flow graph. Test
objects” java Bytecode is used to perform instrumentation and static analysis of the system [64.
Imporatant contributions consist of the introduction ol innovative methodologics for automation.
search guidance towards early coverage ol troublesome parts and reduction of the input domain

plus a too] called eCrash is presented which automatically generates test cases.,

Evolutionary Computation in Java (CCI) package is used for the representation and evolution of
the test cases. Linearization of the STGP trees is used to yenerate the source code tor the test
cases. The tree linearization process produces the method call sequence: the source-code s
generaled by translation of the method call sequences using the method signature ¢ncoded in
cach node. The CEFG nodes that arc traversed by the test cases arc removed from the uncovered
nodes” list. The search ends when there are no uncovered CFG nodes lett or a pre-defined no of

iterations are made.
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Limitations:
The proposed technique e-crash does not consider collateral coverage.

The 100l is code dependent and locuses only on object onented paradigm in Java.

3.1.4 Tonella et al (2004)

In this papcr. an evolutionary algerithm is exploiled to producc unit Icsts lor classes
automatically The chromosomes that make up the test cases arc the respensible for the decision
of what methods need to be called, what objects are to be created and what input values are to be
used. Mutation is performed on the test cases with the aim of maximizing the search space
covered. Further description ol the algorithm and a few implementation details are discussed

below.

The hasic process followed for the unit testing of classes consists of the following sleps.

applied to each method of the CUT and possibly repeated under ditterent execution conditions:

1. Object ercation of the class using any available constructors.

S

_“To bring the object to a desired state a sequence of method calls is exceuted,

_The method currently being tested 1s called.

Tad

4. To assess the results of Lhe test cases exeeution the (inal state ol the object alter the execution

of tests is examined |7].

This procedure can be applied functionally (black-box testing). by deriving the expected final
states from the class specitications. The thoroughness with which the testing is done can be
assessed using some coverage criteria for testing. Traditional coverage criteria (white-box
testing) can be used. for ¢.p. structural (like statcment. branch} coverage or data flow {¢.g.. all-

uses) coverage. The above steps can be repeated until the required coserage is achieved.
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Limitations:
The proposed technique cannot handle inteasible paths or collateral corerage.

The technique focuses only on object oriented paradigm and unit testing.

3.1.5 Wappler et al (2005)

This paper prescuts an approach for the automatic generation of test data Tor a SUL that is
object-oriented. Unit tests are generated for the system using Universal Cvolutionary Algorithms.
These evolutionary Algorithms are provided with popular toolboxes that are domain-independent
and provide a wide range of evolutionary operators. Using the popular testing frameworks the

generated test data can be converled into test classes [8].

For the purpose of using the universal evolutionary algorithms. object-oriented test programs
are encoded as basic (vpe value structures. Multi-level optimizations are considered 1o oplimize
search of the genetic algorithm. The encoding used does not a void the creation of individuals
which cannot be decoded back without issues. Therefore, three measures 10 be used by the
objective function are given using which the genelic algorithm can generate more and more (st

classes over Lime that can be successiully decoded.

Limitations:

The encoding and decading of clements adds complexity and does not handle inconvertible

clements.
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3.2 Test Suite minimization Techniques

Technigues and algorithms proposcd in recent literature (that usc coverage as the basis for lest

Suite minimization are as follows.

3.2.1 Blue et al (2013)

Combinatorial Test Design (C'TD). also known as combinatorial tcsting. is an cifecuve tesl
planning technique. in which the test space is modeled by a sel ol parameters. their respective
values. and restrictions on the valuc combinations. The iest space represented by this model 18

any assignment of one value to each parameter, which does not violate the restrictions.

A subset of the space is then automatically constructed so that it covers all valid value
combinations (a.k.a interactions) of every t parameters. where t is usually a user mput. ln other
words. lor cvery sct of ( paramel(ers. any combination of t values 10 them will appear at least once
in the test plan (unicss there is no valid st thal contains il. according (o the restrictions). In
general. one can require different levels of interaction for different subsets of parameters. The
most common application of CTD is known as pairwise testing. in which the interaction of every
pair of paranicters must be covered. Each test in the result of C11) is an assignment of values (o
all the parameters. and represents a high level test. or a test seenario. that needs o be (ranslated

(o a concrete executable test.

This work proposcs (o UsC [nteraction-based Test-Suite Minimization {[ISM} as a
complementary approach to CTD [9]. for cases where standard CTD may be best practice but
cannot be applied due to the requirements described above. Rather than constructing a new test
suitc (hat provides Tull interaction coverage. 118M reduces an existing test suite. while
preserving ils inleraction coverage. Similarly to C1D. IT'SM requires defining the parameters ol
the test space and their values. but it does not require defining restrictions between the values. [t
is then given a test suite. where each test i< in the torm of an assignment of values to the

parameters, and sclects a subset of the test suilc that preseryves its (-wisc value combinations.
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Limitations:

ITSM requires that the set of existing tests be represented as tuples of values 1o parameters.

3.2.2 Gupta et al (2007)

The key step of the approach is thal when a test case Uis sclected into a reduced suite because it
satisfies an additional requirement with respect to some testing criterion C. The following is then
checked: Among those other test cases R that become redundant with respect to C as a result of
the sclection of L. those test cases arc selected lrom R into the reduced suite that satisly additional
requiretments with respect (o some other (esting criterion. | hus. the approach sclecuvely retams
those test cases that are redundant with respect to initial testing criterion. 1t those test cases are
not redundant according to some other testing criterion. The approach is called “Reduction with
Selective Redundancy (RSR)™ [10]. 1t was implemented by the rescarchers and experiments were
conducted with several programs to cvaluate and compare the clTectiveness of the approach with

priot experimental studies on test suite minimization.

Limitations:

Increascs (he length of the test Suite as compared to traditional minimization techniques.
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removes cach test case and check for any change in the fitness of the tesl suite, In case of amy

change in the fitness of the test suite the test cases is retained otherwise it is removed.
Main issues with this technique are as follows:

¢ High redundancy rate in the test suite after the Genetic algorithim and the simple

minimization is run
o Uigh rate of iterations nceded to optimize and minimize the (est suite.

» Optimization and minimization are both done separately ie. after Evosuite is run. it is
required to run the "Simple minimization Algorithm® separately after that to remove the

redundant Test Cases.

e Redundancy isn’t completely removed even after the *Simple minimization Algotithm” is

ru.

s This technique considers only one objective and its main logus is coverage not

optimization.

o A nced for a better more efficient optimization that considers more than one objective at

the same time 15 needed.

Our hypothesis is that if instead of using the single objective genetic Algorithm if multi-
Objective Genetic algorithm s used it will improve efficieney of the algerithm. The two
Objectives to be considered will be coverage and minimization at the same time. We believe that
this will reduce the number of iterations needed to pet an optimized Test suite and it will give as
output an optimized as well as minimized test suite allter running the genetic algorithm once. The
need o separately optimizc and minimize the test suite will not be required. Thus the main aim
of our work is to reduce the latency rate. the total no of iterations and the redundancy of the

algorithn and improve the overall efticiency of the algorithm,
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4.2 The Rescearch limitation
The research gaps in the existing literature that motivated this work are listed below.

e All cnisting techniques are cither 0o programming language dependent or paradigm

dependent.

e The existing approach generates Test Suites with only coverage in mind and do not tocus

on minimization {71}
e Minimization and optimization are both done separately.

¢ 1wo techniques using multi-objective Algorithms. to generate test data but both ol them
do not consider collateral coverage and fail to alfectively overcome the issuc of infeasible

paths |84. 85|
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IMPLEMENTED APPROACH FOR MO-WTS GENERATION

Chapter 4 and 5 include the literature survey of Multi-Objective Whole Test Suite generation.
through which the gaps and shortcomings in the existing techniques are identified. which forms
the basis and motivation for our work, The cureent chapter discusses the details of the

implementation of the approach which was proposed.

The test data generation techniques in Lhe past like Pacheco [4] ¢t al and Ribicro [6] ¢t al were
effective and efficient incthods of (cst data gencration but tiost of them were meant for unit
testing of the system under test and if the technique was not meant for unit testing then 1t either
heavily code dependent of paradigm dependent. Such techniques are inflexible because of their

lack of gencrality.

Genetic algorithims arc used to generate (est cascs automatically in the past but all these
techniques traversed the paths of the control flow graph based on the test goals. considering one
goal at a time |71]. This means that there is always some collateral coverage involved and no
work is done to overcome infeasible paths except the classic “wait till a pre-defined number of

attempts are made” approach.

The only approach that overcame the platform dependability. code dependability. collateral
coverage and infcasible paths problem is Fvosuite [71]. Fvosuite is a scarch-bascd test data
generation technique which has coverage as its main focus. I'he technique was tested on
industrial large scale case studies and it showed good results but this technique does not address
the issue of redundant test data. So to produce a technique that is more efficient than Evosuite
and which checks collatcral and infeasible coverage oo Mulli-Objective Wwhole lest Suite

generation Algorithm/technique was implemented.
The main reason or achicvements in implementing this technique arc as follows.

e Generation of Random test data that can cover the chosen coverage criteria in the single

run of the Genetie Algorithm.

e Reduce the sise of the resulting Lest suite while achicving a compleie coverage at the

same tme.
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e Reduce repetitive coverage as compared to Evosuile.

o The implementation gives positive results and hence is an encouragement to pertorm

more work in this direction in the future.

e Reduce the number of repetitions required to achieve the desired coverage ol the chosen

test goals.

e The technique is platform. codc and paradigm independent and can be casily
implemented in any programming language without any modification to the basic

Algorithm,

¢ The technique is Nexible enough to be casily modifiable without losing efficiency. It can
easily be implemented for a different coverage goal from the one chosen in our work and

it will be just as efficient.

5.1 Implemented Approach

The approach that we implemented is called “Multi-Objective Whole Test Suite Generation®

and the details about this approach will be discussed in coming sections ol this chapter,

The Lxisting Approach known as "Evosuite’ is a single objective genetic algorithm based
technique that fests the sysiem under Test using ‘branch coverage’ as coverage criteria. The
initial population is gencrated randomly. which consists of a pool of Test suites. FVhe size of the
Test Suites is left random. Each Test Suite contains a random number of Test cases which too
have random sizes. The random sizes are so that the limit on the size may not atfect reaching the
required goal of coverage. 1o control the bloat affect which results from randomly sized suites, A

limit aftcr the size rcaches a certain maximum is kept.

A typical Test Case contains input values and the expected output but the test cases used in this
too] are based on Tonella’s [7] format of test cases which creates test cases with a set of random
function calls. initialization statements. and constructor statements from the code under test. The
code is completely object oriented so it is assumed that al some point complete coverage 18

possiblc.
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Based on the fitmess of the Test suites a set number of test suites are selected. These Test Suites
are crossed over. [n crossover the test cases are swapped. which are independent of each other as
far as the code is concerncd after that the off-spring population is mutated. Mutation in this
approach is done onc of the three ways randomly. The three kinds of mutation is called insertion.

deletion and moditication [ 71].

The whole process is repeated iteratively until a Test suite with the required fitness (i.e. 0) is
achieved. Once the required titness is achieved the algorithm is terminated and the resulting Test

Suite is given as an outpul.

The resulting Test Suite is then minimized using a Simple minimization Algorithm to remove
any redundancy that can be removed without afTeeting the coverage of the test suite. The “simple
Minimization Algorithms™ runs the whole code to check the fithess after test suite after
attempting to remove each statement iteratively. This part of the algorithm areatly increases the

number of iterations required to minimize the system.

The technique that was proposed by s is multi-objective technique. The multi objective Genetic
Algotithm used in the technique is the classic Mulii-objective Algorithm. Non Dominant Sorting
Genetic Algorithm (NSGA) [87-89]. This algorithm was proposed by Kalvanmoy Deb ctal. The
efficient version of the algorithm was later proposed by the same authors and it was called

NSGAIL The algorithm used in this work 1s NSGAII [88].

The population used is the same as the existing technique for the purpose of comparison. the test
Suite and (est case size is still random as before. the sclection part is replaced by Lournament
selection and there are now two fitness functions that represent the (wo objectives. M the end the
results obtained by both the techniques ate compared to see if the hypothesis proposed was

proved or disproved.

5.2 Diagram of Implemented Approach

e The first step is to choose the code that will be our system under test. Since this technique
is 2 white-box testing technique we need the code to be able to test it using our technique.

The Code we selected is that of a scientific calculator. This code has 40 functions which
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can form a large number of combinations when combined randomly to form a Test Suite.

e Both Fvosuite and Multi-Objcctive Fvosuite are implemented 1o be able to draw a fair

comparison between the two approaches.

e First Evosuite is implemented in which a randomly generated population of test Suites Is
optimized by iteratively running the genetic algorithm on it until a suitable solution is

found.

e Secondly the multi-objective Evostuite is implemented. The Muiti-Objective Lvosuite uses
the same population as that of the Evosuile i.c. a pool of randomly gencrated 1est Suites.
The first step is to calculate the [itness [or all the solutions. using the fimess achieved
with two fitness functions the population is divided into fronts. The first set of non-
dominant selutions are put in the first front and removed trom the population. The
dominant solutions in the remaining population are put in the second [rond F2 and are
removed from the population pool. This process is repeated until the whole populavon is

divided into fronts.

Afler dividing (he data into fronts. the crowding distance of cach test Suite in cach front is

calculated. This crowding valuc and (he front value show how fit a solution is.

The next step is selection: the data is selected using tournament selection. In tournament

selection a set ol random data is selected and the fittest amonyg them is chosen.

The crossover and mutation remain the same in the multi-objective genetic algorithm 00.
The only difference in this phase is that now the values are chosen not on the basis of

fitness alote but on the basis of the *Crowding Comparison operator”

After this it 1s checked it a solution with a desired titness 1s found. It not the child

*

population and the parent population is combined to ensure elitism. This combined set of
test Suites forms the next population, The process is repeated until a desivable selution is

found.

The two fitness functions have contlicting objectives
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o The first fitness function attempts to achieve complete coverage. Theretore it

attempts to find a solution that covers all the branches of the SUT.

. The second fitness function’s objective is to find a fest Suite that achieves the

coverage with minimum possiblc repetitions.

o The Chromosome structure is as follows: The Main Chromosome is each Test Suite and
the genes are the test cases that form the test Suite. Therefore when the crossover Is
applicd on the genes i.c. 1¢s1 cascs are swapped and when the mutation 1s perlormed it too

deals with the test cases (modification. addition or deletion ol the test cases) [71].

o The graphical flow of the process of the implementation phase is shown below.

Create a pool of Randomly generated Population of Test
Suites.

Implement Evosuite. which is Whole Test Suite Generation
Technigque with the objective of coverage.

Implement the the proposed terchnique which is a nwli-
Objective Test Suile generation Technique.

Run both the techniques on the data from the test pool and
record the results.

Conmpare the results obtained from runuing the twe
implemented approaches on the Test Data.

Fig 5.0: Steps ol the implemented approach
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5.3 Fitness Function Formulae

Fitness function onc (1) deals with the coverage of the test Suite. ts subtracts the number of
covered methods from the total number of methods, calcutate the uncovered number of
methods. Then uncovered number of branches. within the method under consideration are then
added to the number of uncovered methods. Using this method the uncovered methods and

branches are calculated.
+ f(T) = M| - M| +Xpy g d(bK,T)

0 if the branch his been coveresd.

(e (BTY) 1T the predicate lias been
eveculod at least 1wice.

d(h.T) -- [
1 other s,
— T isthe current Test Suite
— M is the Methods (o be exceuted
— My is no of methods covered by the Test Suite.
— bk s the branch in the contol flow graph,
— B isthe total no of branches to be executed.
— d isa function that gives a normalized value for the branch distance covered

within a method.

Fitness Function two g(1) is responsible for the caleulation ol the repeated coverage. also known
as redundancy in the Lest Suite. It is caleulaied by adding the number of times lunctions are
repeatedly covered in the test Cases. In this way all the redundant method calls within all the test

cases in a test Suite are considered.
— miax
o g(T) - Etc=1 MReplc
-T is the test Suite under consideration.
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— MRep s the sum of the times any method is repeated within a test case,

— e is the 1est case under consideration.

5.4 Chromosome design

The chromosome design in the EBNF notation is given below.
<Chromosome>:: = <Test Suites>

<Test Suites>:: = <Test (Cases>

<Test Cages>:: = *| <Function calls>|<initialization statements>}<constructors= )
<Initial Population=::~ +}<Test Suitcs>)

<Paramcters>:: = 7<No of lterations>

<Generator=:: - *<Test Suite>

<Fitness Value=::=<Target Method - Traversed Method>

<Target Method>:: = Code statcments,

<Traversed Method>:: = Code statements.

5.5 Algorithms for whole test Suite generation

The Algorithm for the Existing echnique. the ~“Whole test Suite Generation (WS Gen)™ and the

implemented  technique “Mult-Objective Whole test suite Generation (MO-WTS Gen)™ are

given below.

Multi-Objective Whole test Suite Generation
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5.5.1 Algorithm for Single Objective Whole test Suite Generation is as follows:

The Single objective WTS Gen Algorithm uses the Genetie Algorithm to Generate test Suites

which provide complete coverage without while overcoming the issucs ol collateral coverage

and infeasible path coverage. The Algortthm for the WTS Genis given below.

Generate Initial Population

The first step is to generate the initial population for the genetic algorithm. The inital population

consists of randomly gencrated (est suites of varying sizes. Each Test Suite Consists of a random

number ot Test Cases while each Test Case 1s a set of random function calls. constructor

statements and nitialization statements.

ARRAY AliStatements{]: (Populate array with statements from the systcm under Test):

v Generate TestCases. e,

FOR(i=0 TO MAXTestCase)
ARRAY TestCase[} = RAND(AllStatements[])

END FOR

FOR(i=0 TO MAXTestSuite)
ARRAY TestSuite []= TestSuite[] + TestCase[RAND]

END FOR

Fig 820 WIS Gen Algorithm Initial Population

Multi-Obrjective Whole test Suite Generation
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Seleetion

The second step is to select the test cases based on thew fithess to torm the first parent
population. The no of (est Suites that are used for selection is taken as an input Irom the user and

the population size can be changed in cach run.

ceveoo.2Select the fittest SOIUIONS. oo e
FOR(i=0 TO MAXTestSuite)
ARRAY Fitnessfi] = M Total[i} - Mcovered[i]
END FOR
FOR(i=0 TO MAXPopulation)
ARRAY Sclected[] = max(Fitness[])

END FOR

Fig 5.3, WTS Gen Algorithm Selection

Crossover

Crossover is performed on the selected I'est Suites by swapping the test cases in the test suilcs
using One point Crossover, After crossover the child population of the same sive as the parent

population is generated.

............................................... Crossover Selected Solutlons. ..o,

FOR (1=1 TO MAXPoputation: 1=1+2)
FOR (j=1 TO MAxTestCase)
Child[i][j] = Selected[i][jto(j/2)]+Selected[i+1][(/2HoMAX |
Child[i+1][j] =Selected[i+1][jto (j/2)|+Selected[i][(i2)to MAX]
END FOR
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END FOR

Fig 54: WTS Gen Algorithm Crossover

Mutation

Mutation is the Genetic Algorithm is meant to maintain diversity in the search space exploration.
In WTS Gen the mutation is of three types. A random nwmber is generated to decide what type
mutation should be performed. The three possible types are i. interstion ii. Deletion and it

Modification.

MutationProb = RAND(1-3)
........................................... Remove a Random Test Case...............

If MutationProb = 1
MutationTestCase| | = TestCase]RAND]
Remove MutationTestCase [RAND]

ELSE IF MutationProb = 2
MutationTestCase[| = TestCase[RAND]
Add MulationTestCase [RAND]

ELSE IF MutationProb = e
MutationTestCase[| — TestCase[RAND]
Modify MutationTestCase [RAND]

END IF

Fig 3.5, W I'S Gen Algorithm Mutation

Multi-Objective Whole test Suite Generation

............................... i Add aRandom TestCase. o

................................. Perform Mutation on the child Population........... ...

................................................ Replace a Random Test Case......o.oooo i,
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Main Flow of Algorithm

The Main tflow of the program performs Crossover and Mutation on the selected Popuiation in
each iteration until the coverage criteria is fulfilled i.e. the titness function f{ T) becomes 0.

I Initialize Population()

............................................... Genetic Algorithm Tteration................ oo,

 FOR(}=1 TO MAX I(cration)

i Perform Selection(}
Pertorm Crossover()
Perform Mutation( )
Check Filness()

IF (Fitness = RequiredFitness)
Terminate program
Output TestSuite

END IF

END FOR

Fig 5 6° WTS Gen Algorithm Mam Program tlow

5.5.2 Algorithm for Multi-Objective Whole Test Suite Generation is as follows:

The MO-WTS Gen Algorithm uses a Multi-Objective Test Suite based on the NSGA ]
Kalyanmoy Deb [35]. Two Objectives are considered instead of onc. the additienal abjective

considered herc 1s minimization. I'he Algorithm is given below.
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Generate Enitial Population

The first step is 1o generate the initial population for the genetic algorithm. The initial population
consists of randomly gencrated test suites of varying sizcs. Each Test Suite Consists of a random
nunber of Test Cases while each Test Case 1s a set of random function calls. constructor

statements and initialization statements.

ARRAY AllStatements(]: (Populate array with statements from the system under Test):
.............................................. Generate TestCases...................

FOR(i=0 TO MAXTestCase)

ARRAY TestCascf] = RAND(AlISwatements|])

END FOR

............................................... Grenerate TestSuntes. ...,
FOR(=0 TO MAXTestSuite) |
ARRAY TestSuite []= Tes(Suite[] + TestCase[RAND]

END FOR

Fig 3.7. MO-W TS Gen Algorithm (nitial Peputation

Fast Non-Dominated Sort

The Fast Non-dominated Sort is used to divide the initial population into fronts based on the two
Fitness functions. The non-dominated solutions in the whole population torm the first front, the
non-dominated solutions in the remaining population form the second front and this process is
repeated until the whole population s divided into fronts,
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FOR(i=0 TO MAX TestSuite)
ARRAY Fitness![i] = MTotal[i] — Mcovered[i}

j=1

WHILE NOT End of TestCase
ARRAY [i] - SUM(TestCasemethodRepetetions[j])
it

END WHILE

| END FOR

k=1

e e [Fast Non Dominant SOTHNg ......cocoevvinveeciinineees
' WHILE ANY POPULATION NOT EMPTY
| WHILE NOT END OF POPULATION
| FOR(j=1 TO Population)
IF Fitness1|i] AND Fitness2|i] > Fitness1|j] AND Fitness2[)]
ARRAY DominantPool[] =TestSuite[i] AND REMOVE TestSuite[1] from Population
ELSE IF Fitness1[i] AND Fitness2[i] < Fitness![j] AND Fitness2[j]
ARRAY Remove TestSuite[i] From Dominant Pool[] AN Population = TestSuite [i]
Add TestSuite[j] to DominantPool[]
ELSE IT Fitness1[i] AND Titness2[i) # Fitness1[j] AND Fitness2|j]
Add lestSuite[i] AND TestSuite[j} to DominantPool[] AND Remove TestSuite[i] AND

TestSuite[j] from Population

................................................ Calculate both fINesSes. ... e e

Multi-Cbective Whole test Suite Generation
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END IF

| i=i+1

END WINILE

ARRAY Front[k] =DominantPool[]
k=k+1

END WITLE

Fig 5.8: MO-WTS Gen Algorithm Fast Nou-Dominant Sort

Calculate Crowding Distance

Crowding Distance is caleulated for each solution after dividing the population into fronts. This
value represents the distance of a solution from its ncighbors in the scarch space. Soluttons with
higher values of the crowding distance arc given priority during selection, First the crowding
distance according to the first fitness function is calculated. then it is calculated based on the

second fitness function and finally the cumulative crowding distance is calculated.

........Calculate Crowding distance according 1o first [itness function. ...

FOR (i=0 TO MAXTronts)
Sort TestSuites by T'itness]
FOR (j=0 TO MAXTcstSuites)
If j=1 OR j=MAX)
crowdingDistance[[j] = «

ELSE
crowdingDistance 1{j] =ABSOLUE(Fitness1({TestSuitefj-1]) - Fitness1( TestSuite])-11))

END [F
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END FOR
vvoerennCaleulate Crowding distance according to second fitness funclion.........oovi

Sort TestSuites by Fitness2
FOR (-0 TO MAXTestSuites)
If =1 OR j=MAX)
crowdingDistance2[j} = oo
ELSE

crowdingDistance2[j} =ABSOLULE(Fitness2( TestSuite[j- 1]} — Fitness2(TestSuite(j+1]))
END IF
END FOR
ceeroeJLaleulate The Cumulative Crowding Distance. ...
FOR (j=0 TO MAXTestSuites)
crowdingDistance[j] = crowdingDistancel[j] + crowdingDistance2[]]

END FOR

Fig 3 9: MO-WTS Gen Algoricthm Crowding Distance

Selection

The second step is to sclect the test cases based on their fitness to form the first parent
population. The no of test Suites that are used for selection is taken as an input from the user and

the population size can be changed in each run.
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.......................... Select a pre-defined number of random test Swites.....o e,

FOR(i=0 TO PredefinedRand)
ARRAY RandomChoice[] = RAND(TestSuite[])
END IFOR
..-.......Choose the fittest among the randomly chosen...........................
FOR(i=0 TO Predefined Rand)

ARRAY Selected[] = Selected[] + MAX(CrowdingComparison Operator(Tes(Suite[i}})

REMOVE MAX({CrowdingComparison Operator(TestSuite|i])) !

END FOR

Fig 5 10: MO-WTS Gen Algorithm Selecuion

Crossover

Crossover 1s performed on the selected Test Suites by swapping the test cases in the test suites
using One point Crossover. After crossover the child population of the same size as the parent

population is gencrated.

.......................................... Crossover Selected Solutions. ... ]

FOR (i=1 TO MAXPopulation: i=i+2) ;
FOR (j=1 TO MAX TestCase)
Child[i][j] = Selected[i][jto(j/2)]+Selected[i+1]](/2)toMAX]
Child[i+1][j] =Selected[i+1](jto (j/2)]+Selected(i][(j/2)to MAX]
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' END FOR
! END FOR

Fig 5 11: MO-WTS Gen Algorithm Crossover

Mulalion

Mutation 1s the Genetic Algorithm is meant to maintain diversity in the search space exploration.
In MO-WTS Gen the nudation is of three types. A random number 1s generated to decide what
type mutation should be pertormed. The three possible (vpes are 1. msertion 1. Deletion and ni.
Modification.

MutationProb = RAND( [-3)

If MutationProb = 1
Mutation TestCase[] — TestCase[RAND]
Remove Mutation1estCase [RAND]

ELSE IF MutationProb = 2
MutationTestCase[] = TestCase[RAND)]
Add MutationTestCase [RAND]

ELSE [F MutationProb = e
MutationTestCase[] = TestCase[RAND]
Medify MutationTestCase [RAND]

END IF

Fig 312, MO-WTS Gen Atgorithm Mutation

Main Program Flow
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The Main low of the program performs Fast Non-Dominated Sort. Crossover and Mutation on
the selected Population in each iteration untal the required Objectives are tultilled 1e. the fitness
function f{T) becomes 0 and the second fitness function g(1') which is responsible for keeping

track of redundant coverage hecomes 7ero 100.

cvveeenoo Jleratively Run the genetic Algorithm until optimized. minimized solution found.............
. Generate [nitial Population
FOR(i=0 TO Population)
Fitnessl = titness{ TestSuite[i})
Fitness2 = {iness(TestSuite[i])
Front{i] = FastNonDominantSort(Population)
END FOR
FOR(i=0 TO NO OF Fronts)

WHILE NOT END OF FRONT
crowdingDistance|i] = crowdingDistance(TestSuite[i])

END WHILE
END FOR
Selected | ] = TournamentSelection{Fronts(])
ChildPopulation[] = Crossover(Selected(])

MutatedPopulation = Mutation{ChildPopulationf])

If (FiincssI{Population) And Fitness2(Population) = RequiredFitness! AND RequiredFitness2 )
I
Terminate Program |t

Return TestSuite[] with Required Fincsses

ENDIF

Fig 5 13: MO-WTS Gen Algorithm Main Program Flow
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5.6 Case study used for implemented approach

The Example used in the case study is a program for a “Scientific calculator”. All the functions of
the program are divided into classes. There are 40 classes which are randomly called to form the
test cases. The test cases are randomly combined to form test Suites of varyving sizes. The partial

diagram of'the Example used in the case study as a System under test (SULY s given below,

The example was chosen because it has enough loops and conditions so that it can provide
enough challenge to test. The functions in the example are called by the program during testing
to exercise code and the relevant branch. Evosuite uses @ strong example to validate its cause but
now the example will be used 1o run both the Single objective Whole test Suite Generation and

Multi-Objective Whole test Suite Generation.

The intention is of testing this example through both the approaches. It is expected that our
hypothesis will be proved and we will succeed in making improvements in the technique by

reducing the number of run and the repetitions in the test Suite.

Multi-Objective Whole test Suite Generation &8
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5.7 Flow Chart of proposed approach

The tflow Chart of the proposed technigue is given below. The nttial population 1s generated
randomly. 1t 1s divided into fronts and the crowding distance 15 calculated of the Test Suites in
each front. Selection, crossover and Mutation is pertormed on the selected data and to maintain
ehitism the parent and child population after each tteration is combined. This process is repeated
until a Test Suite which fulfills both the objectives is tound.

Generate N Fast Non Dominated Sort Ca'culate Crowding
Random Test Suites (Divide Test Suites into Distance for the Test
Fronts) Suites ineach Front

. r selectir
Calculate Crowding Tournament Selectinn

Bistance for the Test
Suites in each Front

Crossover

Fast Non Dominated Sort

Divide Test Suites mto .

{ : 1 Mutation

Fronts)

Combine the parent and Mo Stopping Yes
child population in order Criteria
to maintain elitism {2M) Met>

Cutput the
first FrontF1

Fig 5.15: Contraflow Diagram of the Multi Objective
Whole test Suite Generalion Approach
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CHAPTER 6 TOOL IMPLEMINTATION

TOOL IMPLEMENTATION:

The tool was implemented successfully and tavorable results were tound. This section of the

write-up 1s devoted to the tool™s features and working.

Section 6.1 presents the architecture ot the tool, the implementation details of the tool are

explained in section 6.2 and the user interface is illustrated in section 6.3.

6.1 Research Methodology

The diagram illustrating the abstract architecture of the implemented approach is given helow.

(INPUT)
Systermn undar Test : ACTUAL SYSTEM
(CUTPUT)
{(INPUT) GA Implementation
SUT Branch diagram Data Set after
comparison
UNPUT) Muit- Gyjestive GA
GA Parameters ‘ implemeneatation

Fig 6.1. Architecture of the implemented approach

6.1.1 Multi-Objective Genetic Algorithm Program

Multi-Objective Genetic Algorithm is actually an extension of an existing work. The existing
work has been extended to fultill multiple objectives simullaneously instead of working on cach
objective separately. Both the approaches use the same (est data pool and apply two dilferent

Kinds of GA on them to optimize them.
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6.1.2 Branch coverage and method coverage

Our programs basic target is to check for the coverage of the methods but it checks the hranch
coverage of the methods too. This provides an in depth and thorough coverage check. This

coverage criterion is what one of the main fitness functions of the system is based on.
6.1.3 Actual System

The actual system is what processes the input and provides results. The two main things in the
actual system are the Single Objective Genetic Algorithm and the Mulii-Objective Genetic

Algorithm.

The two genctic Algorithms are implemented based on the filness criteria we aim o achieve. The
first part of the main system has one fitness function. This fitness tunction contains two parts.
The first part is the number of methods that are as yet uncovered and the second part calculates
the number of branches within a method that are uncovered. After combining these two
calculations the complete fitness function that calculates the overall coverage achieved by the

test Suite 18 lormed.

The second part of the actual system is the Multi-Objective Genetic Algorithm. This contains
two Fitness functions. The first fitness function remains the sume. since we still need to take into
account the amount of coverage achieved but the second fitness function calculates the
redundancy while achicving the required coverage. And it attempts to minimize this redundancy.
This fitness function caleulated the repeated number of methods within a est Case. And after
calculating the sum of the repetition in each test case calculates the cumulative Repetition or

redundancy in the test suite.

6.1.4 Test Data Set

The test Data sel contains the results achieved by the sysiem afler the comparisons are made
between the approaches. These results are achieved after a thorough analysis of the results given

by the two approaches s done.
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6.2 Components of implemented Genetic Algorithm

['he implemented Gengetic Algorithm has the following components,

Gengeration of the initial population
Calculation of the two titness functions

Fast Non-Dominant Sort [88. 89]

Calculation of the crowding value

Performing the crowding comparison operation
Selection of the Test Data

Crossing over of the Test Data

Mutation of the test Data

Eliast recombination of the test data.

6.3 System Components

TOOL IMPLEMENTATION

The following Section presents the system components of the Implemented tool.

6.3.1 Wholc test Suite Generation

The System Components for the whole test Suite generation 1s given below.
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Initial menu
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Fig 6.2: Main page ol the wol
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A zoomed view of the letft side of the main interface.

~3Cay FaraTeieTs

Soreents F4T 3w &-fferert carameters
SisLady Instrugcten

Execute Funchen rese!

o Of tteration 7

Repettion o

The number of Hestions when Test Suit s Minimuzed

Fig 6.3: Zoomed View of the Tool
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Initialize the process by pressing the Execute Function button Atter the process is initialized the

Create test Cases Button is activated and made clickable.

|- v e
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Fig 6.1: Initialize Process
Enitial Population Generation

Randomly generate the test cases by clicking the Create test Cases Button. The test cases are
randomly generated the selected random method calls etc. to form test cases. which are
combined to form Test Suite.
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Fig 6.5, Create test Cases

After clicking this button the initial population of random test Cases is generated. Lach line
represents | test cases and the numbered area is the part that contains methods while the part
with zeros is the empty part of the matrix. The first test case has 7 methods while the 8" test case
has 20 methods. This is because the test cases are randomly generated and their size is kept
variable. After the test cases are generated the create test Cases button is disabled and the Create
test Suite button is activated.

Randomly generate the test Suites by clicking the Create test Suites Button.

Shiasn

Foak

LRCRA LY

RN UNS LRI 1}

Tes 3l il

HE e ER T AT L AL R ]

Fig 6.6. Create test Suites

This wil) generate a random number of test Suites from the fest cascs created in the previous
step. After this the Create test Suites button is disabled and the Calculate fitness function button
is activated. The generated test suiles and the test cases contained in them are showed in the
panel on the lett.
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Fitness Function Calculation

Calculate the Fitness of each test suite that was generated by clicking the Calculate Titness
function button. When this button is pressed. the fitness for all the test Suites in the system is
calculated. The calculated tinesscs are displayed in the panel on the left side. After this the
Calculate Fitness function button is disabled and the Best Select bution is activated. After this
step all the harizontal butlous arc disabled and the core GA operation are the only thing leli, he
buttons for these are histed vertically.
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Fig 6 7 Calculate the Finesses
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Selection

Perform Selection by ¢licking the Best Selected button. On clicking this button the test Suites
with the best fitness are selected and the button for selection is disabled.
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Fiw ¢.8. Perform Selection

The fitness valucs of the sclected test Suites is displayed in the pancl on the lelt.
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Crossover

Perform crossover by ¢licking the Crossover button. On clicking this button the test Suites with
the best fitness are crossed over and the button tor crossover is disabled.
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Fig 6.9: Perlorm Crossover

Clicking this button will generate the child population after the crossover and the resulting test
Suites are displaved in the panel on the left side.
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Mutation

Perform mutations by clicking the Crossover button. On elicking this bution the child population
is mutated. Mutation is performed in three different ways

e A random test case is added to the Test Suite,
s A random test Case is removed {rom the Test Suite
e A Random test case 1s moditied in the Test Suite

The test Suite after Mutation is displaved in the panel on the lett. The mutation button s disabled
and the child fitness function s enabled.
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Fig 6.10: Perform dMutation

Calcudare the fimess of the child popdation. The ¢hild population is a new set of test Suites
whose lttness value is as vet unknown. This step caleubates the fitness value for all the test Suites
in the child population. The fitncss values for the new population is displayed in the pancl on the
left. After this the child fitness button is disabled.
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Fig 6.11" Finess of the Child Populatuon

After this button is clicked the program runs the subsequent iterations of the GA auvtomatically
without pressing the buttons. this is repeated until a test Suite with the coverage value “07 s
{found.
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Mg 6.12. Display the Results
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Once the test Suite with the fitness value 0" is found. The program displays the aterations it took
to generate the result and the amount of redundancy in the resulting test suste. If the display
functions button is pressed the test suites functions are displayed in the panel on the right side.
With the Reset button the whole process can be repeated without having to rerun the program.

6.3.2 Multi-Objective Whole test Suite Generation

The interface and its working for the Multi-Objective Whole Test Suite Generation is given
below.

Main Menu

Start the program and open the initial form. The initial interface is divided into three parts. The
leftmost panel gives information about the data currently being processed. The horizontal buttons
are related to test data generation activities and the vertical set ol butlons arc used to perform the
actual process. The Panels on the right display the test Suite that is achicyed as an oulput afler
the proccss 1s done.
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Fig 6.13. Main Interface

The zoomed vicw of the interface is given below,

Multi-Objective Whole rest Suite Generation 54



CHAPTER 6

TIREI . Parameters
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Fig 6.14: Zeomed View of the interface
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Initialize Initial Population

Initialize the process by pressing the Cxecute Function button. After the process is initialized the

Create test Cases Button is activated and made clickable.
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Fig 6 15 Initialize the process

After clicking the “create test cases’ button, the initial population of random test (‘ases is

generated. Each line represents | test cases and the numbered part is that which contains methods

while the part with zeroes is the empty part of the matrix.
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Randomly generate the test Suites by clicking the Create test Suites Butlon,
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Fig 6.17: Create test Suites

This will generate a random number of test Suites from the test cases created in the previous
step. After this the Create test Suites button is disabled and the Calculate fitness function button

Multi-Objective Whole test Suite Generation a7



CHAPTER 6 TOOL IMPLEVINTATION

is activated. The generated test suites and the test cases contained in them are showed in the
panel on the left.

Fitness Calculation

Caleulate the Fitness of each (est suite that was gencrated by clicking the Caleulate Fitness
function button. When this button is pressed. the first fimess function lor the entire population is
calculated. The calculated fingsses are displaved in the panel on the left side. After this the
“Caleulate Fitness function” button is disabled and the “Fitness Function2” button is activated.

'_S '.'e--cb.-_.'-'-s.e.' o ’ h . ’ . ""‘W

st men s
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lig 6.18 Calculate the I'itnesses

Calculate the Second Fitness function lor all the test Suites by clicking (he “Fiiness Function2’
button. When this butlon is pressed. the second fitness [unction for the entire population is
calculated. The calculated finesses are displayed in the pancl on the left side. Alter this the
-Fitness function?" button is disabled and the “Crowding Distance” button is activated.
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Fig 6.19: Calculate the Fitness l-unction?
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Crowding Distance

Caleulate the crowding distance of the population by clicking the "Crowding Distance” button
When this button is pressed. two things are done. The tirst is that the entire population is divided
into fronts by performing the Fast Noun-Dominant Sort on it and then the crowding distance for
each individual in all the tronts is calculated. The calcutated crowding distances are displaved in
the panel on the left. This concludes the part of the program which is meant Lo gencraic the (est
data.
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Fig 6.20: Calculate the crowding distance
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Selection

Pertorm Selection by clicking the Best Selected button. On clicking this button the test Suites
with the best fitness are selected and the button for selection 1s disabled.
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Fig 6.21: Pertorm Selecton.
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Crossover

Perform crossover by clicking the Crossover button. On clicking this button the test Suiles with
the best fitness are crossed over and the button for crossover is disabled.

PO N

cram I

LRIy

Fig 6.22. Perform Crossever

Clicking this button will generate the child population after the crossover and the resulting test
Suites are displayed in the panel in the left side.

Mutation

Perform mutations by clicking the Crossover button. On elicking this button the child population
is mutated. Mutation is performed in three different ways

¢ A random test casc is added to the Test Suite.
e A random test Case 1s removed from the Test Suite

o A Random test case is modified in the Test Suilc

The test Suite after Mutation is displaved in the panel on the lett. The mutation button is disabled
and the child fitness tfunction is enabled.
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Fig 6 23 Perform Mutation
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General Program Flow

Calculate the titness of the child population. The child population is a new set of test Suites
whose fitness value is as vet unknown. This step calculates the fitness value for all the test Suites
in the child population. The fitness values for the new population is displaved in the panel on the
lett. Atter this the child fitness button is disabled.
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Fig 6.24: Pertorming lterations

When this button is pressed the program performs the subsequent iterations of GA automatically
without any intervention frem the user. The iterations are repeated until a test Swite with both its
fitness [unctions as zero ts found. When this 1s done the number of iterations required to reach
this result are shown. The two fitness unctions of the entire test Suite are displayed in the pancl
on the left side,
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Display the results by clicking the “display Functions™ button. The test Suite which has the
fitness value tor both its Fitness functions as zero is displayved in the panel on the right side.
when the “displas functions™ button is clicked.
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Fig 6.25: Display the Results.

Cliching the *Start Qver” butlon can atlow us Lo repeal the process sithout having Lo restart the
program,
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6.3.3 Caleulate Average number of runs.

To calculate the average number of runs the tollowing pait of the program is used. The panel

shown below caleulates the average of the results after running the *Whole test Suite Generation”

technigue for a given number of times

-
B NewCenane 1z .

input 20
Nurnber of Runs 100
Number of lteration(s} 1

Repetitions 90

Minimized solution 91

Average of Minimized 87.38
Solution

Run

Fig 6.26: Calcuiate Average of the existing approach’s results
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The average calculation tor the “Multi-Objective Whole test Suite Generation™ technique is given

below.
r Pl et plmied . » WT
Input Between 20 ‘:
0
Number of Runs 100
Number of {teration{s) 30
Average Iterations 29.56
i
Run ;
e E—————————r— e ———————

Fig 6.27: Calculate Average of the implemented approach’s results.
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CHAPTER 7 CXPERIMENTAL DESIGN. RESUETS AND DISCUSSIONS

EXPERIMENTAL DESIGN, RESULTS AND DISCUSIONS:

7.1 Experimental Design:

This chapter includes the evaluation of results and discussion, the experimental design that is set

for the tmplementation is as follows:

7.1.1 Datasei

Following arc necded for the experiment:

Code the “Whole 1¢st Suite Generation® technique.
Cade the “Multi-Objective Whole Test Suite Generation™ technigue.
Svstem to be tested.

Control flow diagram of the System Under (cst.

7.1.2 Performance Measuremen|(

Performance is measured on the basis of the comparison between the Existing approach
and the implemented approach. The following two factors are taken into consideration

Efficiency

Effectiveness

7.1.3 Parameter Sctting

The parameters set in the cxperiment are the paramcters of the Genetie Algorithm. The
basic parameters of the Experiment are as follows:

Initial Population Size 50

Selection Method Tournament Selection
Crossover Method Single point crossover
Mutation Method One point Mutation

Table 7.1: Paramieters of G A
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7.1.4 Experiment 1:

The Final Results of the *Whole Test Suite Generation™ technigue are as follows. The population
size is 50 here. The program is run 50 time and the average iterations and repetitions are
calculated. This is repeated 10 umes for confirmation. i.e the program is run 500 times with the
initial population set as 0.

Whole test Suite Generation Results

The Results alter running the test suite for a total ot 500 times arc given in the abic below. The
Average of every (ifly readings is shown. The population size is 50.

Srno Total Repetition Total Iterations
1 69 84.14
2 69 82.32
3 oo 26 14
b 72 84 .92
5 50 80.14
6 68 84.54
7 92 89.08
8 58 86.78
9 86 87
10 141 86.02

Table 7.2: Experiment | Existing approach Readings

multi-Objective Generation of the Whole test Suite 101



CHAPTLER 7 EXPERIMENTAL DESIGN. RESULTS AND DISCUSSIONS

The bar Chart for the total number of iterations. atter calculation the average of the results
obtained from every 50 runs is given below.
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Fig 7 1: Toral nerations Bar Chart. Cxperiment )

The pie Chart of the readings obtained is given below. Cach reading is an average of the readings
obtained after running the program 50 times,

Total lterations

10%

11%
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Fig 7.2, Lotal iterations Pie Chart, Fxperiment |

Repetitions here mean redundancy. The redundancy caleulated in the program in 10 runs s
shown below.
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Fig 7 3° Total Repetitivns Bar Chart. Experiment |
The pic chart of the redundancy thal was calculated is given below.
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Fig 702 l'otal Repetitions PMe Chart. baperiment |
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Multi-Objective Whole test Suite Generation Results

EXPERIMENTAL DESIGN. RESULTS AND DISCUSSIONS

The Readings after running the MO-W'T'S implementation afier a total 300 times are shown, The
value arc the average of value obtained from 50 runs,

s5rno

0 oAV R W N =

f—
[~]

Total Repetition

0

o O Q o o O o o QO

Total lterations
2596
27.62
30.26
27.54
25.59
259
29.88
29.28
316
25.36

table 7.3, Experiment | Implemented approach Readings

The average of the Total lterations after every 30 runs in the MO-WIS Gen implementation is

shown below in the Bar chart.
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Fig 7.5. Total lterations Bar Chart, Experiment }

The Pie Chart of the 1otal lterations is given below,

Total Iterations

11%

10

Fig 7 6: Toal Iterations Pre Chart. Expernnent |

Final Cumulative Results

The Average of all the above results is shown in the table below for comparison

Whole test Suite Generation iterations 85.198
Multi-Objective test Suite Generation iterations 27.894

Table 7 4: Experiment | Cumulative Results
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The Total iterations for the two techniques are given below in the bar chart.

afl
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Fig 7.7: Iterations of both techniques

The pie Chart of the percentage of total number of lterations in the twe techniques 15 given
below.

o MOWTS Gener ation

WS Generation

Fig 7.8: Pre Chart of the lrerations of both technigues
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7.1.14 ¥Final Total Average Results:

The total final sumed up results of the existing approach and implemented approach that 1s
shown below:

Experiment no Existing Approach implemented approach
1 85.198 27.894
2 85.584 27.406
3 82.374 26.8
4 82.42 29.428
5 82.594 29.104
6 84.55 29.438
7 82.842 28.152
8 83.82 28.086
9 84.732 28.814
10 85.268 28.394

Tabte 7.32; Average of the Results

The bar Chart of the number of iterations in all the experiments in the existing and implemented
approaches is given below.
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Fig 7.81: Cumulative Results bar Chart
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The Pie (hart for the results obtained in all the experiments for the Whole Test Suite Generation
approach 1s given below,

Implemented approach 21

%}

At

LR
10% 5
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10% .
7
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i

Fig 7.82: Implemented Approach Pie Chart

The Pie Chart for the results obtained in all the experiments for the Multi-Objective Whole Test
Suite Generation approach is given below.

Existing Approach

Fig 7.83: Laisting Approach Pie Chart
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Total Average Sum-up of Results

The average of the results achieved in all the expetiments tor both the approaches are given
below.

Whole test Suite Generation iterations 83,9382
Multi-Objective test Suite Generation iterations 28 3516

lable 7.33. Final Sum-up of Readings

The average of the *number of iterations’ achieved in all the experiments for both the approaches
is given below in the Bar Chart.

No of Iterations

Miovof iterations

whnle tesl Suite Gengration  Miiltl Obie ctive tost Suile
itetakrons Generationiterations

Fig 7 81: Average Cumulative results Bar chart
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The pie chart of the average no of iterations in in all the experiments tor both the approaches is
given below,

No of Iterations

Whirles te st Suite
Generatbon rershons

m Multr- Objet tive Lest Suile
Ooereation nerations

Fig 7.85: Average Cumulative results Pie chan

7.2 Discussion

In section 7.1 of "experimental design”. we discussed what parameters were used in the
experiment and how the experiment was performed considering [0 different initial values of the
initial population starting from 50 and reaching up to 10000,

Afler running the program with each initial value the resulls werc shown in a bar chart and the
pie chart. This section will compare the results with the existing work to access the
improvenents made in the implemented approach.

We implemented both the existing approach and the proposed approach and ran them on the
same example with the same initial test data pool and then compared the vesults. the results
showed a clear improvement in not just one but three area ot the technique. The improvements
were made in the tollowing areas.

o [he no of iterations to achieve an optimized test Suite was reduced.
s The redundancy in the Final test Suite was removed along with the optimization.

s Optimization and minimization were done simultaneously instead of one atter the other
and multiple objectives were achieved in a single run of the Genetic Algorithm,
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e Hence a reduction in the size of the test sulte was achieyed. the time 1aken w achicve the
complete coverage was reduced {Ierations) and the redundant coverage was chiminated.

‘I he results were compated on the following basis.
e No ol kerations of GA
e Amount of Redundant coverage.

¢ No of Objectives achieved.

Both the approaches were run multiple times on the chosen example and the results that were

achieved are shown in the table below.

Experiment Population ~ WTS Generation Approach MOWTS generation
No Size Approach
No of Average Total No of Average Total
[terations Repetitions Iterations Repetitions
1 50 85.198 771 27.894 0
2 t00 85.584 83.2 27.406 0
3 500 82.374 100.7 26.8 0
4 1000 8§2.42 849 29.428 0
5 1500 82.594 88.6 29.104 0
6 3000 84.55 81.8 25.438 0
7 4000 82.842 80.4 28.152 0
8 5000 83.82 82 28086 O
9 7000 84.732 74.6 28.814 0
10 10.000 85.268 76.6 28.394 0
Average 83.9382 82.99 28.3516 0

Table 7 34: Comparison ol the Readings
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7.3 Threats to Validity
in threats to validity. factors which have atfected the results are as follows:

e Ifthe tools are tested on a ditterent example which is more complex and larger in scale

then the results might dilfer.

e The results may vary when tested with different combinations of the GA parameters.

o The population size may also affect the results.
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CHAPTCR § CONCLUSION AND FUTURE WORK

CONCLUSION AND FUTURE WORK:

This section sums up our main contribution for this thesis. gives some directton tor the tuture
work and also includes some concluding remarks. [t proposes some enhancements to the
implemented approach too.

8.1 Conclusion

Testing is the most time-consuming phase in software Development lite- cvele. That is the
reason why a lot of work is done in the literature in the direction of automating software testing.
One of the parts of software test automation is the automation of the generation of test data,

Our work focuses on the automated generation of the test Data. The approach has two parts. the
first part deals with the generation of the test suite. and the second part deals with the
optimization of the test data i.e. minimization. Thus our main contribution with this approach is
to create a tool that gencrates the test data which is optimized. I'hat is the (est Suite generated s
not redundant while it provides complete coverage.

The technology our work is based on is the genetic algorithm. The existing technique used the
genetic algorithm (0 achicve coverage but our approach uses Mulii Objective Genetic Algorithms
to achieve multiple targets. The (ools was validated after its creation through the use ol multiple
experiments. On the basis of the sclected parameters our work 1s more effMecient as compared 10
Arcuri ¢l al(2012). We proved our hypothesis that by using a multi-objective genctic algorithm
an improvement can be made in the *Whote test Suite Generation® techmque.

8.2 Future Work

For the future work we aim to apply the technique on a large scale industrial case study to
further validate the results we achieved. Since this work focuses on the white-box testing of the
data we are planning on working on the black-box testing with this techmque too.

As this technique is highly adapiable. it can generate interesting results to change the completion
criteria from branch coverage to some other criteria like mutation detection.

Categorizing our results on the basis of the GA paramciers and the initial population will help us
further understand the tinding of our research in more detail.
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Currently only two targets are being considered in the Multi Objective test Suite generation of
the whole test suite technique. It can be considered to add further objectives to the technigue and
assess the results. The new Objectives can be run-time reduction etc.
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APPENDIX B GENERATEDR CODC

GENERATED CODE:

Algorithm for whole test Suite generation
Algorithm for Single Objective Whole test Suite Generation is as follows:

Generate Initial Population

ARRAY AllStatements[]: (Populate array with statements from the system under Test):
eeJGenerate TestCases. e
FOR(i=0 10 MAX TesiCase)
ARRAY testCase[] = RAND{AllStalemenls[])

END FOR

ceJGencrate TestSules. o
FOR(i—0 TO MAX TestSuite)
ARRAY TestSuite []= TestSuite[| + TestCase[RAND|

END FOR

Selection
oo Select the fittest Solutuions....................

FOR(=0 TO MAXTestSuite)

ARRAY Fitness[i] = MTotal[i] - Mcovered[1]
END FOR
FOR(i=0 TO MAXPopulation)

ARRAY Selected|| = max(Fitness[])
END FOR

Crossover
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................................................ Crossover Selected SolUtONS. .. .o

FOR (i= 1 TO MAXPopulation: 1 -1+2)
FOR (j=1 TO MAxTestCase)
Child|i][j] = Selected|i][jtog)/2)]+ Selected]i+ ]](j/2noMAX]
Child[i+1][j] =Selected[i+ 1[jto §2]+Sclected[il[(j/2)0 MAX]
END FOR

END FOR

Mutation

. .Perform Mutation on the child Population. ...

MutationProb = RAND(1-3)

............................................... Remove a Random TestCase. ... i i

If MutationProb - 1
MutationTestCase[] = TestCase| RAND|

Remove Mutation TestCase [RAND]

o Add a Random lestCase. v i,

ELSLC [T MutationProb = 2
Mutation TestCase[] = T estCase[RAND]

Add MutationTestCase [RAND]

.............................. e Replace a Random test Case. oo

FiL.SE IF MutationProb = ¢
Mutation l'estCasc[] = TestCase[RAND]
Modify MutationTestCase |[RAND|

END IF
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Main Flow of Alporithm

Initialize Population
.............................................. Genetic Algorithm Neration. ...
FOR(I=1 TO MAXIteration)
Perform Sclection
Perlorm Crossover
Perform Crossover
Check Fitness
IF (Fitness = RequiredFimess)
Terminale program
Output TestSuite
END [F

END FOR

Algorithm for Multi-Objective Objective Whole test Suite Generation is as follows:

Generate Initial Population

ARRAY AllStatements||: (Populate array with statements from the system under Test):
.............................................. Generate TestCases. oo
FOR(i=0 TO MAX TestCase)

ARRAY TestCase[] = RAND(AllStatements] |)

END FOR

.......................................... Gencrate TeSISUITES . oo et ar e eeriens
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FOR{i=0 TO MAXTestSute)
ARRAY TestSuite ||= TestSuite[] « TestCase| RAND|

END FOR

Fast Non-Dominated Sort

o Calculate both fINesses.. o e

FOR(i=0 TO MAXTesiSuite)
ARRAY Fitnesst[i] = MTotal[i] - Mcovered|i]
i=
WHILE NOT Fnd of I'estCasc
ARRAY }i] = SUM(Test( asemethodRepetetions]j |}
=it
END WHILE
END FOR
1=0

k-1

oo Fast Non Dominant SOTIE ..o e b

WHILE ANY POPULATION NOT EMIPTY
WHILE NOT END OF POPULATION
FOR(j=1 TO Population)
IF FitnessH[i] AND Finess2[i] > Fitness1[j] AND FitnessZ[j]
ARRAY DominantPool[] - TestSuitefi] AND REMOVE TestSuite[i] from Population
ELSE IF Fitness| (i) AND Fitness2|if < Fitness1])] AND Fitness2{j)

ARRAY Remove TestSuite]i] From Dominant Pool[| AND Population = TestSuite |i]

Multi-Objective Whole test Suite Cieneration
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Add TestSuite[j] to DominantPool|]

ELSE IF Fitness!{i] AND Fitness2[i) # Fitness1{j] AND Titness2|]
Add TestSuite[i] AND TestSuite[j] to DominantPooll] AND Remove TestSuite[i} AND
TestSuite[j] from Population

END IF

i=1+1

END WHHLE

ARRAY Frontfk] =Dominantl’ool[]

k=k+1

END WHILLE

Calculate Crowding Distance

.............. Calculate Crowding distance according to first fitness function....... ..
FOR (=0 TO MAXFronts)
Sort TestSuites by Fitness]
FOR (=0 TO MAX CSISUICS)
If 4= 1 OR j=MAX)
crowdingDistance1[j] =
ELSE
crowdingDistance1{j] =ABSOLUE(Fitess 1 L estSuite[j-17) - Fitness 1 LestSuitefj FP)
END ¥
END FOR
. Calculate Crowding distance according to second fitness funCtion. ...

Sort TestSuites by Fitness2
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FOR (j=0 TO MAXTestSuites)
If g=1 OR j=MAX)
crowdingistance2[j] =
ELSE
crowdingDistance2[j] =ABSOLULE( Fitness2( TestSuite[j-11) - Fitness2(TestSuite[j+ 1)
END IT
END [FOR
. Calculate The Cumulative Crowding IIS1ENCC, oo
FOR (j=0 TO MAXTestSuites)
crowdingDistance[j] = crowdingDistancel[j] + crowdingDistance2]]]

END FOR

Selection

........................... Select a pre-detined number of random test Suites. ..

FOR(i=0 10O PredefincdRand)
ARRAY RandomChaice[] = RAND( T'estSuite{])
END FOR
........................... Choose the fitlest among the randomly chosen. ..ot
FOR(i-0 TO PredeflinedRand)
ARRAY Selected| | = Selected]] -+ MAX(CrowdingComparison Operator(TestSuite| 1))
REMOVE MAX(CrowdingComparison Qperator(TestSuite]i]})

END FOR
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Crossover
............................................. Crossover Selected Solutions. ..o
FOR (i=1 10O MAXPopulation: i=i+2)
FOR (j-1 1O MAXTestCasc)
Child[i][l] = Selected]i]{jto(i/2)]+Selected|i+1]{(j2)oMAX]
Child[i+1]j] =Selected|i+1]{jto (/2)]+Selected|i][(H/2)to MAX]|
END FOR

END FOR

Mutation

................................. Perform Mutation on the child Population..........oooi

MutationProb = RAND(1-3)}

If MulationProb = 1
MutationTestCase[] = TestCase| RAND]
Remove MutationTestCase |RAND|

ELSF IF MutationProb - 2
MutationTestCase[| = 1estCase[RAND]
Add MutationTestCase [RAND]

ELSE [F MutationProb = e
MutationTestCase| | = TestCase{RAND]
Modify MutationTestCase [RAND]

END [F

Main Program Flow

oo Iteratively Run the genetic Algorithm until optimized. minimized solution found..........
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(Fenerate Initial Population
FOR(i=0 TO Population)
Fitnessl = fitness( TestSuite[i])
Fitness? = fitness( TestSuite[ih
Front[i] = FastNonDominantSort{Population)
END FOR
FOR(i=0 TO NO OF I'ronts)

WHILE NOT END OF FRONT
crowdingDistance|i] = crowdingDistance(TestSuite[i])

END WHILE

END FOR

Selected [] = TournamentSelection{FrontsT])

ChildPopulation[] = Crossover(Sclected[])

MutatedPopulation = Mutation{ ChildPopulation] §}

If (Fitness | (Population) And Fitness2(Population) = RequiredFitness| AND RequiredlFimess2 )
Terminate Program
Return TestSuite[| with Required [inesses

END IF
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