NOVEL ANN BASED LOAD BALANCING
TECHNIQUE FOR HETEROGENOUS
ENVIRONMENT

Developed By

Muniza Salim (Reg# 146-CS/MS/2003)
Ammara Manzoor (Reg# 150-CS/MS/2003)

Supervised By

Prof.Dr.Khalid Rashid

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University
Islamabad
2007

In The Name Of
ALLAH

The Most Merciful
The Most Beneficent

Novel ANN based load balancing technique for Heterogeneous Environment Final Approval

Department of Computer Science

International Islamic University Islamabad

Final Approval

Date: 2.6.2007

This is to certify that we have read the thesis entitled “Novel ANN based load
balancing technique for Heterogeneous Environment” submitted by Muniza Salim,
Reg #(146-MS/CS/03),Ammara Manzoor , Reg # (150-MS/CS/03). It is our judgment
that this thesis is of sufficient standard to warrant its acceptance by the International
Islamic University, Islamabad for the degree of MS Computer Science.

Committee

External Examiner

Dr Abdus Sattar
Ex. Director General,
Pakistan Computer Bureau.

Internal Examiner

Ms Muneera Bano

Lecturer,

Dept of Computer Science,

Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

Supervisor

Prof.Dr Khalid Rashid

D,
Faculty of Basic and Applied Sciences,

International Islamic University, Islamabad.

A DISSERTATION SUBMITTED TO
DEPARTMENT OF COMPUTER SCIENCE,

FACULTY OF BASIC AND APPLIED SCIENCES,

INTERNATIONAL ISLAMIC UNIVERSITY, ISLAMABAD
AS
A PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE AWARD OF DEGREE OF
MS IN COMPUTER SCIENCE.

Dedicated to our dearest and affectionate parents
who encouraged us to work hard
and without their moral support
this work could never
become a reality.

Novel ANN based load balancing technique for Heterogeneous Environment Declaration

DECLARATION

We hereby declare that this software and accompanied thesis neither as a whole nor as a
part thereof has been copied out from any source. It is further declared that we have
developed this software and thesis on the basis of our own efforts and under sincere
guidance of our teachers. No portion of the work presented in this report has been

submitted in support of an application for another degree or qualification of this or any
other university or institute of learning.

Muniza Salim
146-CS/MS/03

Ammara Manzoor
150-CS/MS/03

Novel ANN based load balancing for Heterogeneous Environment Acknowledgement

ACKNOWLEDGEMENT

We bestow all praises, acclamations and appreciation to Almighty Allah the most
merciful and compassionate, the most gracious and beneficent, whose bounteous blessing
enabled us to perceive and pursue higher ideals of life. All praises and respects are for the
Holy Prophet Mohammad (Peace be upon him) who enabled us to recognize the creator.

Without the support and prayers of our families we could have never completed this
project work. They always helped us in our difficult times and boosted our morals. We
would like to convey them special thanks for their best wishes, encouragement and
support in not only this project but throughout our lives, without which we would have
not been able to achieve anything worthy.

We gratefully acknowledge the Supervision of Prof.Dr.Khalid Rashid Dean, Faculty of
Basic and Applied Sciences who was very kind and helpful throughout the project.

We would also like to thank Dr. M.Sikander Hayat Khiyal Head, Faculty of Basic and
Applied Sciences and all faculty members for their cooperation and healthy suggestions
through out our academic period at Islamic University, Islamabad.

Muniza Salim
146-CS/MS/03

Ammara Manzoor
150-CS/MS/03

i

Novel ANN based load balancing technigue for Heterogeneous Environment Project in Brief

PROJECT IN BRIEF

PROJECT TITLE : Novel ANN based Load balancing in
Heterogeneous Environment

OBJECTIVE : To develop a dynamic and adaptive ANN
based load balancing technique for the
heterogeneous systems.

UNDERTAKEN BY : Muniza Salim Reg # 146-CS/MS/03

Ammara Manzoor Reg # 150-CS/MS/03

SUPERVISED BY : Prof. Dr. Khalid Rashid
: Dean, Faculty of Basic and Applied sciences,
International Islamic University, Islamabad.

STARTED ON : SEPT 2004
COMPLETED ON : APRIL 2007

TOOLS : OpenMosix
Povray 3.0
Qt Designer 3.1
Rational Rose 2000
Visio 2002

OPERATING SYSTEM USED : Linux Red Hat 9

SYSTEM USED : Pentium II, Pentium III, Pentium IV

iii

Novel ANN based load balancing technique for Heterogeneous Environment Abstract

Abstract

Present study aims to solve load balancing decisions using ANN in heterogeneous
environment. Grid computing is an emerging computing paradigm and is distinguished
from distributed computing by its efficient and optimal utilization of heterogeneous,
loosely coupled resources tied to work load management. However, complexity incurred
in efficient management of heterogeneous, geographically distributed and dynamically
available resources has become one of the most challenging issues in grid computing. A
lot of parameters have to be taken into consideration to efficiently utilize the grid
resources. Since ANN are best at identifying patterns or trends in data, their ability to
learn by examples makes them very flexible and powerful. Experimental results suggest
that once trained, ANN outperforms other heuristic approaches for large tasks. However
for small tasks, ANN suffers from extensive overheads.

iv

Novel ANN based Load balancing technique forHeterogeneous Environment

Abbreviations

DSS
EJB

NOwW
OGSA
OGSI
POV
SASH
SOA
SOM
WTA

Abbreviations

Distributed Self Scheduling
Enterprise Java beans

Kohonen Neural Network
Network of Workstations

Open Grid Services Architecture
Open Grid Services Infrastructure
Persistence of vision

Self Adjusting Scheduling for Heterogeneous Systems
Service Oriented Architecture
Self-Organizing Map
Winner-take-all

Novel ANN Based Load balancing technigue for Heterogeneous Environment Table Of Contents

TABLE OF CONTENTS

CH.NO CONTENTS PAGE NO
1. INTRODUCTION 1
1.1 Grid Computing 2
1.1.1 Grid Architecture 3
1.1.2 Open Grid Services Architecture 4
1.2 Load Balancing h)
1.2.1 Static Load Balancing 6
1.2.2 Dynamic Load Balancing 6
1.3 Neural Network 6
1.3.1 Biological Neural Systems 7
1.3.2 Artificial Neural Networks 7
1.3.2.1 Artificial Neuron 8
1.3.2.2 McCulloch Pitts Neuron 8
1.4 Self-Organizing Map (Kohonen) 9
2. LITERATURE SURVEY 14
2.1 Problem Definition 15
3. PROPOSED SOLUTION 16
3.1 Methodology 17
3.2 Functional Modules 18
3.2.1 Resource Collector 18
3.2.2 Resource Monitor 19
3.2.3 Resource Analyzer 19
3.2.4 KNN Load balancer 19
3.2.5 Task Collector 19
3.2.6 Task Manager 20
3.2.7 Task Monitor 20
3.2.8 Performance Monitor 20
4. SYSTEM DESIGN 21
4.1 Object-Oriented Analysis and Design 21
4.1.1 Class Diagram 21
4.1.2 Sequence Diagram 22
4.1.2.1 Collect Resource Information 22
4.1.2.2 Analyze and Monitor Resource Information 24
4.1.2.3 Load balancing and Re-balancing 25
4.1.2.4 Performance Monitor 26
4.1.2.5 Task Scheduling 27
4.1.2.6 Task Log Generation 28

vi

Novel ANN Based Load balancing technique for Heterogeneous Environment Table Of Contents

4.2 System Architecture 29

5. SYSTEM DEVELOPMENT 31

5.1 Tools - 31

5.1.1 Languages 31

5.1.2 Editors 31

5.1.3 Office Tools 31

5.1.4 Benchmarking tools 31

5.1.5 Grid Management tools 32

5.2 Pseudo code 32

5.2.1 Resource Collector 32

5.2.2 Resource Evaluator 32

5.2.3 KNN Load Balancer 33

5.2.4 Task collector 33

6. RESULTS ' 34

6.1 Experimental Setup 34

6.2 Description of Experiments 34

6.3 Experimental Results 34

6.4 Conclusion 38

REFERENCES AND BIBLIOGRAPHY 39
APPENDIX-A A-l

APPENDIX-B B-1

vii

CHAPTER 1

INTRODUCTION

Chapter 1 ‘ Introduction

1. INTRODUCTION

Distributed Computing has been the holygrail of software industry for the last 3 decades,
solving problems in domains of business applications, scientific computations and large scale
collaborative systems to name a few. The motivation for parallel and distributed systems
comes from the applications as well as from hardware limitation. Complex applications
require complex machines; like scientific applications, solving NP complete problems or
analyzing massive amount of data. Some applications are inherently distributed like web
based applications, emails, news, electronic conferencing; multiplayer games etc. Besides,
there are applications that are easier to build in components.

As computation, storage, and communication technologies steadily improve, increasingly
large, complex, and resource-intensive applications are being developed both in research
institutions and in industry. It is a common observation that computational resources are
failing to meet the demand of those applications. The power of network, storage, and
computing resources is projected to double every 9, 12, and 18 months, respectively [1].
Those three constants have important implications. Anticipating the trends in storage
capacities (and price), application developers and users are planning increasingly large runs
that will operate on and generate petabytes of data [1]. Although microprocessors are
reaching impressive speeds, in the long run they are falling behind storage. As a result, it is
becoming increasingly difficult to gather enough computational resources for running
applications at a single location. Fortunately, improvements in wide-area networking make it
possible to aggregate distributed resources in various collaborating institutions

On the other hand, due to the high cost of dedicated parallel and cluster machines, one is forced
to look for alternatives to fulfill the requirement for high performance computing in modern
scientific research. In the early days of parallel computing, the only users of parallel computing
technology consisted of cutting edge researchers with multi-million dollar budgets. In the mid-
90’s, machines such as the Cray T3E [2] were the most powerful parallel machines available,
with expensive custom built interconnections between hundreds or even thousands of tightly
coupled processors in a single shared box [3]. For the ordinary researchers, these specialized
parallel machines have always been too expensive to be considered as a research tool. Distributed
computing emerged as a viable alternative to dedicated parallel computing. By harnessing the
spare clock cycles of idle machines, it is possible to emulate the computing power offered by
dedicated supercomputers. Vast advances and constantly declining costs of hardware
technology has also encouraged utilizing them in collaboration and cooperation.

Over the period, different architecture of software systems has evolved, typically following
the evolution of hardware systems from mainframes in the 70’s, client/server systems in the
80’s and early 90°s, thin-clients in the late 90’s and peer-to-peer distributed systems at the
start of this decade. Client/Server is a network architecture which separates the client (often a
graphical user interface) from the server. Each instance of the client software can send
requests to a server or application server. Client/Server architecture is intended to provide a
scalable architecture, whereby each computer or process on the network is either a client or a
server. Server software generally, but not always, runs on powerful computers dedicated for
exclusive use to running the business application. Client software on the other hand generally

Novel ANN based load balancing technique for Heterogeneous Environment 1

Chapter 1 Introduction

runs on common PCs or workstations. Clients get all or most of their information and rely on
the application server for things such as configuration files, stock quotes, business
application programs, or to offload computer-intensive application tasks back to the server in
order to keep the client computers (and client computer user) free to perform other tasks.

Another type of network architecture is known as a Peer-to-Peer architecture because each
node or instance of the program is both a "client" and a "server" and each has equivalent
responsibilities. Both client/server ‘and peer-to-peer architectures are in wide use. An
important goal in peer-to-peer networks is that all clients provide resources, including
bandwidth, storage space, and computing power. Thus, as nodes arrive and demand on the
system increases, the total capacity of the system also increases. This is not true of client-
server architecture with a fixed set of servers, in which adding more clients could mean
slower data transfer for all users. 3-tier architecture move the client intelligence to a middle
tier so that stateless clients can be used. This simplifies application deployment. Most web
applications are 3-Tier. N-tier architecture refers typically to web applications which further
forward their requests to other enterprise services. This type of application is the one most
responsible for the success of application servers. A computer cluster is a group of loosely
coupled computers that work together closely so that in many respects it can be viewed as
though it were a single computer. Clusters are commonly, but not always, connected through
fast local area networks. Clusters are usually deployed to improve speed and/or reliability
over that provided by a single computer, while typically being much more cost-effective than
single computers of comparable speed or reliability. Clusters are categorized as follows:
High Availability clusters (HA), Load Balancing Clusters, High Performance Clusters and
Grid Computing,

1.1 Grid Computing

Grid computing can be defined in many ways. According to Buyya “A type of parallel and
distributed system that enables the sharing, selection, and aggregation of geographically
distributed autonomous resources dynamically at runtime depending on their availability,
capability, performance, cost, and users' quality-of-service requirements” [4]. According to
Carl Kesselman “A computational grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities” [5].

Grid computing is an emerging computing model that provides the ability to perform higher
throughput computing by taking advantage of many networked computers to model a virtual
computer architecture that is able to distribute process execution across a parallel
infrastructure. Grids use the resources of many separate computers connected by a network to
solve large-scale computation problems. Grids provide the ability to perform computations
on large data sets, by breaking them down into many smaller ones, or provide the ability to
perform many more computations at once than would be possible on a single computer, by
modeling a parallel division of labor between processes[6].It offers a model for solving
massive computational problems by making use of the unused resources (CPU cycles and/or
disk storage) of large numbers of disparate, often desktop, computers treated as a virtual
cluster embedded in a distributed telecommunications infrastructure. Grid computing focus

Novel ANN based load balancing technique for Heterogeneous Environment 2

Chapter 1 Introduction

on the ability to support computation across administrative domains sets it apart from
traditional computer clusters or traditional distributed computing.Resource management in
grid is complex due to various factors like site autonomy, resource heterogeneity, co-
allocation of resources. In grid systems resources are added and removed dynamically. It
varies in different systems like Condor [7], Nimrod-G [8], globus [9], legion [10] etc.

Grid computing is often confused with cluster computing. The key difference is that a cluster
is a single set of nodes sitting in one location, while a Grid is composed of many clusters and
other kinds of resources (e.g. networks, storage facilities).Grids connect collections of
computers which do not fully trust each other, and hence operate more like a computing
utility than like a single computer. In addition, grids typically support more heterogeneous
collections than are commonly supported in clusters [11].

1.1.1 Grid Architecture

Grid architecture has been developed for the establishment and management of cross-
organizational resource sharing. It identifies the basic components of a grid system. The grid
architecture defines the purpose and functions of its components, while indicating how these
components interact with one another.- The main focus of the architecture is on
interoperability among resource providers and users in order to establish the sharing
relationships {12]. This interoperability, in turn, necessitates common protocols at each layer
of the architectural model, which leads to, the definition of a grid protocol architecture as
shown in Figure 1.1. This protocol architecture defines common mechanisms, interfaces,
schema, and protocols at each layer, by which users and resources can negotiate, establish,
manage, and share resources. Fig 1.1 shows the component layers of the grid architecture and
the capabilities of each layer. The description of core features of each component layer is as
follows.

o Fabric layer defines the interface to local resources, which may be shared. This
includes computational resources, data storage, networks, catalogs, software modules,
and other system resources.

e Connectivity layer defines the basic communication and authentication protocols
required for grid-specific networking-service transactions.

e Resource layer uses the communication and security protocols (defined by the
connectivity layer) to control secure negotiation, initiation, monitoring, accounting,
and payment for the sharing of functions of individual resources. The resource layer
calls the fabric layer functions to access and control local resources. This layer only
handles individual resources, ignoring global states and atomic actions across the
resource collection pool, which are the responsibility of the collective layer.

e Collective layer is responsible for all global resource management and interaction
with collections of resources. This protocol layer implements a wide variety of
sharing behaviors using a small number of resource-layer and connectivity-layer
protocols.

o Application layer enables the use of resources in a grid environment through various
collaboration and resource access protocols.

Novel ANN based load balancing technique for Heterogeneous Environment 3

Chapter]

Introduction

Grid Application Application | | Internet
Protocol v Protocol
Architecture Architecture
Collective
¢ Resource Transport
Connectivity Internet
Fabric Link
Fig 1.1 Grid Architecture
Specialized Applications and Services
OGSA Plat form Services
Open Grid Services Infrastructure(OGSI) or
Web Services Resource Framework{ WSRF)
Hosting Environment
" and Protocol Binding +
Hosting Enwvironment Protacol

Fig 1.2 OGSA Platform Architecture

1.1.2 Open Grid Services Architecture (OGSA)

OGSA is a distributed interaction and computing architecture based around services, assuring
interoperability on heterogeneous systems so that different types of resources can
communicate and share information. OGSA has been described as a refinement of the
emerging Web Services architecture, specifically designed to support Grid requirements
[13).0GSA is a result of the alignment of existing grid standards with emerging service-
oriented architecture (SOAs) as well as with the Web. A service-oriented architecture (SOA)
is a specific type of distributed systemn framework which maintains agents that act as

Novel ANN based load balancing technique for Heterogeneous Environment

Chapter 1 Introduction

“software services,” performing well-defined operations.OGSA provides a uniform way to
describe grid services and define a common pattern of behavior for these services.OGSA is a
layered architecture, as shown in Figurel.2, with clear separation of the functionalities at
each layer. As seen in the figure, the core architecture layers are the Open Grid Services
Infrastructure (OGSI) and OGSA platform services [12]. The platform services establish a set
of standard services including policy, logging, service level management, and other
networking services. High-level applications and services use these lower-layer platform core
components to become a part of a resource-sharing grid.

1.2 Load Balancing

Load balancing includes techniques which aim to spread tasks among the processors in a
parallel processor to avoid some processors being idle while others have tasks queuing for
execution. Load balancing may be performed either by heavily loaded processors (with many
tasks in their queues) sending tasks to other processors; by idle processors requesting work
from others; by some centralized task distribution mechanism; or some combination of these.
Some systems allow tasks to be moved after they have started executing ("task migration")
others do not. It is important that the overhead of executing the load balancing algorithm
does not contribute significantly to the overall processing or communications load. The
primary function of a load-balancing strategy is to recommend decisions that will improve
performance. Performance here, mean to reduce the overall execution time or attain speed-up
over local execution of tasks or improvement in some other parameter compared to a base
strategy [14].

Distributed scheduling algorithms may be static, dynamic or preemptive. Static algorithms
allocate processes to processors at run time while taking no account of current network load.
Dynamic algorithms are more flexible, though more computationally expensive, and give
some consideration to the network load before allocating the new process to a processor.
Preemptive algorithms are more expensive and flexible still, and may migrate running
processes from one host to another if deemed beneficial. Load balancing is an important
technique to enhance the performance of distributed computing systems. The objective is to
make workload as equal as possible in order to achieve good speedup. Load distribution
seeks to improve the performance of a distributed system, usually in terms of response time
or resource availability, by allocating workload amongst a set of cooperating hosts. It
consists in taking benefit of the fact that, in the network, some machines are less loaded than
others (or even totally inactive), by running some processes on a less loaded machine.
Incoming requests should be evenly distributed among all the sites to achieve quick response
and to enhance the system throughput. Thus, the system resources can get full utilization

[15).

The workload of a site consists of the combined demands on its resources from all of the
local processes. The absolute and relative utilizations of various resources at each site, and of
various sites across the network, are highly dynamic quantities. The dynamic nature of load
causes frequent imbalances: certain resources local to a site may be overloaded even as
similar resources at a remote site are underutilized or idle. With increase in the speed of

Novel ANN based load balancing technique for Heterogeneous Environment 5

Chapter 1 Introduction

individual processors, and with growth in the scale of typical systems, there are parallel
increases in both the magnitude and the frequency of load imbalances.[16]

It has been proven that finding optimal schedules for the load-balancing problem is NP-
complete problem, even when the communication cost is ignorable [16]. Because of the
difficulty for reaching optimal schedules, most of the research efforts have been focused on
finding sub-optimal solutions by some approximate and heuristic approaches.

1.2.1 Static Load Balancing

Static load balancing schemes predetermine the individual processor loads prior to runtime.
Static load balancing lends itself best to applications that will be run on dedicated systems
with predefined characteristics. The various tasks are usually partitioned accordingly at
compile /link time. The assignment of tasks may be influenced by the problem size, number
of processors available, relative performance of individual processors, etc. However, once
the assignment is made, it is not changed at runtime. This is the simplest scheme of load
balancing and is usually done by mapping tasks to processors.

1.2.2 Dynamic Load Balancing

Dynamic load balancing is a method of load balancing that is done dynamically at runtime.
Tasks are spread evenly across the available processors and the workload is adjusted
accordingly. Dynamic load balancing lends itself to most parallel applications. This type of
balancing has the advantage of being customized to a particular system it is being run on at
any given time. In a dynamically balanced system, if one processor has more computing
power than second, the balancing algorithm can assign more of the workload to the first
processor, fully taking advantage of the processor with the greater horsepower. Some
methods may use past execution results to predict future patterns and adjust accordingly.
Other methods may use real time performance characteristics extracted from the system at
runtime to adjust the application accordingly. The type of algorithm used to balance the
system specifies what balancing mechanisms are used.

One of the obvious disadvantages to dynamic load balancing is the added runtime support
required to run the balancing algorithm. Typically, the algorithms monitor, exchange
information among processes, calculate workloads and distribute, and in some cases
redistribute, the workload [17]. Thus, an algorithm that perfectly balances the workload may
have the disadvantage that it itself takes too many cycles to run and effectively takes cycles
away from the application. However generally speaking, the added overhead of a properly
chosen algorithm can be offset by the improved performance of the dynamically allocated
and optimized application.

1.3 Neural Network

A neural network is a computational structure inspired by the study of biological neural
processing. There are many different types of neural networks, from relatively simple to very
complex, just as there are many theories on how biological neural processing works.

Novel ANN based load balancing technique for Heterogeneous Environment 6

Chapter | Introduction

1.3.1 Biological Neural Systems

The brain is composed of approximately 100 billion (101 1) neurons. From a computational
point of view we also know that the fundamental processing unit of the brain is a neuron

[18].

* A neuron consists of a cell body, or soma which contains a nucleus.

e FEach neuron has a number of dendrites which receive connections from other
neurons.

e Neurons also have an axon which goes out from the neuron and eventually splits
into a number of strands to make a connection to other neurons.

o The point at which neurons join other neurons is called a synapse.

e A neuron may connect to as many as 100,000 other neurons.

A simplified view of a neuron is shown in the diagram below.

\ Axon from another cell é
O\

A
(/

Synapses

Cell Body or Soma

Fig 1.3 Structure of a biological neuron

Signals move from neuron to neuron via electrochemical reactions. The synapses release a
chemical transmitter which enters the dendrite. This raises or lowers the electrical potential
of the cell body. The soma sums the inputs it receives and once a threshold level is reached
an electrical impulse is sent down the axon (often known as firing).These impulses
eventually reach synapses and the cycle continues. Synapses which raise the potential within
a cell body are called excitatory. Synapses which lower the potential are called 1nh1b1tory It
has been found that synapses exhibit plasticity.

1.3.2 Artificial Neural Networks

Artificial neural networks are computational paradigms based on mathematical models that
unlike traditional computing have a structure and operation that resembles that of the
mammal brain. Artificial neural networks or neural networks for short are also called
connectionist systems, parallel distributed systems or adaptive systems, because they are
composed by a series of interconnected processing elements that operate in parallel. Neural
networks lack centralized control in the classical sense, since all the interconnected

Novel ANN based load balancing technique for Heterogeneous Environment 7

Chapter 1 Introduction

processing elements change or “adapt” simultaneously with the flow of information and
adaptive rules[18].

1.3.2.1 Artificial Neuron
Neuron is the basic building block of the artificial neural network. A neuron is the processing
unit, which has more than one input and only one output. First each input x; is weighted by a

factor w; and the whole sum of inputs is calculated Y w;x;=a. Then an activation function f is
applied to the result a. The neuronal output is taken to be f (a).

L — f

rovd ,_

Fig 1.4 Basic Neuron

i

1.3.2.2 Mc Culloch Pitts neuron

McCulloch Pitts (1943) produced the first neural network, which was based on their artificial
neuron [19]. Although this work was developed in the early forties, many of the principles
can still be seen in the neural networks of today. Important features of McCulloch-Pitts
network are as follows

o The activation of a neuron is binary. That is, the neuron either fires (activation of one)
or does not fire (activation of zero).
For the network shown in fig 1.5 the activation function for unit Y is

f(y in)=1,ify in>=telse 0

-

where y_in is the total input signal received, t is the threshold for Y.

» Neurons in a McCulloch-Pitts network are connected by directed, weighted paths.

« If the weight on a path is positive the path is excitatory, otherwise it is inhibitory.

« All excitatory connections into a particular neuron have the same weight, although
different weighted connections can be input to different neurons.

« Each neuron has a fixed threshold. If the net input into the neuron is greater than the
threshold, the neuron fires.

« The threshold is set such that any non-zero inhibitory input will prevent the neuron
from firing.

« It takes one time step for a signal to pass over one connection.

Novel ANN based load balancing technique for Heterogeneous Environment 8

Chapter 1 Introduction

Fig 1.5 McCulloch Pitts Network
1.4 Self-Organizing Map (Kohonen Maps)

A neural network with a capability to learn by itself is called a self-organizing system. The
human beings are certainly capable of learning spontaneously, without the benefit of a tutor.
In essence, self-organizing systems try to mimic the biologically reasonable systems. One
type of a neural network with such capability is a competitive filter associative memory (also
known as a Kohonen feature map). This :is an example of a self-organizing map, SOM
[20].The unsupervised mode of training is also called self-organized learning because there is
no external teacher to preclassify the training examples.

The self-organizing neural networks consist usually of three layers:
1) An input layer that receives the data.

2) A competitive layer of neurons that compete with each other to determine to which cluster
the given input belongs.

3) An output layer which generates the result in a way suitable to the application.
Unsupervised training of such networks is carried out with algorithms using competitive
training rules. The competitive training rule implements a winner-takes all strategy: it
chooses the neuron with the greatest total input as a winner and turns it on, while all other
neurons are switched off.

Novel ANN based load balancing technique for Heterogeneous Environment 9

Chapter 1 Introduction

Competitive layer

Output layer
Input layer .

Fig 1.6 Schematic representation of self organizing maps

Self-organizing maps are a special class of artificial neural networks based on competitive
unsupervised learning. These are networks whose neurons are allocated into one (or two)
dimensional lattice structure. During the competitive learning process the neurons are tuned
selectively, that is the training data select the winning neurons. Since the locations of the
neurons are ordered with respect to each other, the lattice may be considered a kind of a
topographic map of the inputs. The locations of the neurons in the topographic map show the
statistical features of the provided input data. The neurons in a self-organizing network
transform the signals into a corresponding place-coded data distribution [20].

This is a loose simulation of the organization of the cells in the brain, which are assumed to
form topologically ordered maps that react to common sensory input signals. Different sensor
inputs are mapped into areas of the cerebral cortex in the brain in ordered way. That is why,
our intention as computer engineers is to design such computational network devices that
perform self-learning following the principle of topographic map formation in the brain.
According to this principle the location of a neuron in the lattice reflects a particular feature
from the input space.

®x2
x

Fig 1.7 One-dimensional self-organizing map

Novel ANN based load balancing technique for Heterogeneous Environment 10

Chapter | Introduction

A one-dimensional lattice of fully connected neurons to all input data is shown in the
figurel.7.This is a feed-forward network that trains its synaptic weights adaptively after the
arrival of each next input example. The training involves tree main phases:

e Competition: The neurons in the Kohonen layer compute a certain function, and thus
generates outputs that are compared for selection of a winner.

e Cooperation: The winner is taken as a basis for cooperation in the sense that it
determines the topological neighborhood within which the example falls.

e Adaptation: The neurons are adjusted to reflect the information in the provided

training example by updating their weights so that the neuron output changes
correspondingly.

Novel ANN based load balancing technique for Heterogeneous Environment 11

CHAPTER 2

LITERATURE SURVEY

Chapter 2 Literature Survey

2. LITERATURE SURVEY

Foster and Kesselmen(2002) presented OGSA(Open Grid Services Architecture) which
defines uniform exposed services semantics(the grid service) and standard mechanism for
creating, naming and discovering transient grid service instances, provides transparency
for service instances and supports integration with underlying native platform facilities
[13].H.Nishikawa(1993) presents load balancing architecture that can deal with
applications with heterogeneous tasks [21].However it lacks in several areas e.g.
proposed architecture has to be evaluated using more complex applications and larger
systems.Aditionally Interface of the current system is at low level and user has to spec1fy
large no of functions.

P.Mehra et.al(1993) demonstrated automated learning of meaningful load-index functions
from workload data [22].Load-balancing systems use workload indices to dynamically
schedule jobs. The approach uses comparator neural networks, one per site, which learns
to predict the relative speedup of an incoming job using only the resource utilization
patterns, observed prior to the job’s arrival. The learning algorithm overcomes the lack of
job-specific information by learning to compare the relative speedups of different 51tes,
with respect to the same job, rather than attempting to predict absolute speedups.

B.S.Siegall et.al(1994) presented an architecture for a system that supports the automatic
generation of parallel programs with dynamic load balancing{23].The measurements
demonstrate that load balancing overhead can be kept low by proper adjustment of load
balancing parameters, and that the load balancer can rapidly adjust the work distribution
in a heterogeneous environment. The results also show that techniques that overlap load
balancing with computation are effective in reducing load balancing overhead. However
the nature of algorithm is best suited for cluster computing rather than load-balancing.
M.J.Zaki (1996) examined the behavior of global vs. local and centralized vs. distributed
load balancing strategies [24]. In this paper different schemes were analyzed for various
applications under varying program and system parameters. A hybrid compile-time and
runtime modeling and decision process is presented which customizes the best scheme
along with automatic generation of parallel code with calls to runtime library for load
balancing. However the method requires use of compilers specific to certain machines
and further suffers from the case that nodes themselves cannot act as server thereby
reducing scalability. .
M.Y.Wu(1995) presented parallel incremental scheduling which is a new approach for
load balancing [25].This paper provides an overview of parallel incremental scheduling.
It combines the advantages of static scheduling and dynamic scheduling, adapts to
dynamic problems and produces high quality load balance. However the presence of
central control makes it unsuitable for grid environments.

A Bevilacqua(1999)introduces a method to obtain efficient load balancing for data
parallel applications through dynamic data assignment and a simple priority mechanism
on a heterogeneous cluster of workstations assuming no prior knowledge about the
workload [26]. This strategy reduces the overhead due to communication so that it could

Novel ANN based load balancing technique for Heterogeneous Environment 12

Chapter 2 Literature Survey

be successfully employed in other dynamic balancing approaches. While this algorithm is
suitable for data centric applications/grids but performance deteriote rapidly for
computation centric applications/grids. S.Ichikawa et.al (2000)describes static load
balancing scheme for partial differential equation solvers in a distributed computing
environment[27].The method considers both computing and communication time to
minimize the total execution time with automatic data partitioning and processor
allocation. However, large scale and non-embarrassingly parallel applications are not
discussed. A.Osman et.al(2002) presented taxonomy for describing and classifying
growing number of different load balancing techniques [28].

C.Ermnemann(2002) addresses the potential benefit of sharing jobs between independent
sites in a grid computing environment [29].The usage of multi-site applications leads to
even better results under the assumption of a limited increase on job execution time due
to communication overhead. The results show that the collaboration between sites by
exchanging jobs even without multi-site execution significantly improves the average
weighted response time.

Jeniffer M Schopf(2002) presented a general architecture for scheduling on grid is
presented in [30]. A Grid scheduler (or broker) must make resource selection decisions in
an environment where it has no control over the local resources, the resources are
distributed, and information about the systems is often limited or dated. Furthermore, the
idea has not been put to practical use and experimental results limits to well behaved,
embarrassingly parallel examples. H.D.Karatza et.al(2003) presented load sharing and
job scheduling in a network of workstations (NOW) [31]. Along with traditional methods
of load sharing and job scheduling, it also examines methods referred to as epoch load
sharing and epoch scheduling respectively. Again the algorithm is not suitable for highly
flexible organization such as grid.

H D.Karatza et.al (2002) presented a load sharing is key to the efficient operation of
distributed systems [32]. This paper investigates load sharing policies in a heterogeneous
distributed system, where half of the total processors have double the speed of the others.
Processor performance is examined and compared under a variety of workloads. A priori
knowledge of job execution time is not considered in this paper which leads to high
overheads for estimating job times. Further for quite a long initial time the algorithm
gives erroraneous result. C.Juei Yu et.al(2005) presented a prediction-based scheduling
algorithm that predicts task execution time and then allocates tasks among workers
according to the predictions [33].This leads to high overheads for estimating job times.
Further for quite a long initial time the algorithm gives erroraneous results. Junwei Cao
et.al(2003) presented an agent based grid management infrastructure is coupled with a
performance-driven task scheduler that has been developed for local grid load balancing
[34].The agents require extensive interference at the client end thus reducing the
effectiveness.

Menno et.al(2004) presented the impact of fluctuations in the processing speed on the
performance of grid applications [35].Experiments shows that burstiness in the
processing speed has a dramatic impact on running times which heightens the need for

Novel ANN based load balancing technique for Heterogeneous Environment 13

Chapter 2 Literature Survey

dynamic load balancing schemes to realize good performance. Another aspect on which
more research has to be done on the aspect of selecting the best predicting methods for
processor speeds.

Babak Hamidzadeh et.al(1995) described a general model for describing and evaluating
heterogeneous systems that considers the degree of uniformity in the processing elements
and the communication channels as a measure of the heterogeneity in the system. The
performance of a class of centralized scheduling algorithms referred to as SASH in
computing environments with different degrees of heterogeneity is investigated. This
approach was compared over DSS in highly heterogeneous system and the work
demonstrated that, even with a small no of processors, performing a sophisticated
scheduling technique on dedicated processor can produce substantial improvements in
total execution times [36].

Aly E. EI-Abd et.al(1997) proposed a novel neural based solution to the problem of
dynamic load balancing in homogeneous distributed systems [37].The winner-Take-All
(WTA) neural network model is used for implementing the selection and location policies
of a typical dynamic load balancing algorithm. Again the process is well suited if initial
estimations are highly accurate which in uncentralized environment like grid computing
is not possible.G.Labonte et.al(1999)presented the implementation of self-organizing
map neural networks on distributed parallel computers consisting of identical and of
disparate workstations [38]. The implementation is able to reduce the computational time
required by SOMs to a fraction of the time required by a single computer. Issues related
to dynamic scheduling have not been discussed.

M.Atun et.al(2000) described a new implementation of Kohonen Self-Organizing Map
for static load balancing problem and examines variations of the algorithm [39]. The
algorithm preserves neighborhood relations. Load balancing is incorporated into SOM
algorithm. Because of the high degree of retention required in building neighborhood
trees it is difficult to use the algorithm for larger no of nodes.

Attila Gursoy et.al(2000) implemented static load balancing algorithm based on Self-
Organizing Maps (SOM) for a class of parallel computations where the communication
pattern exhibits spatial locality [40]. The communication overhead can be reduced if the
physically nearby and heavily communicating tasks are mapped to the same processor or
to the same group of processors. However issues related to dynamic load balancing has
been overlooked.Maris described back propagation neural network based dynamic load
balancing algorithm which distributes remote procedure calls among cluster servers,
based on statistics about execution time of remote procedure calls. The implementation
was used in cluster of Enterprise JavaBeans containers, although the described approach
can be used with any type of distributed components that uses synchronous remote
invocation protocol, for example, WEB services. Neural network based approach was
compared to traditional static algorithms of EJB load balancing. In test cases the
presented algorithm produced up to 176% performance increase compared with Round-
Robin load balancing policy. However this algorithm is much slower than static load
balancing algorithms. Neural network causes significant overhead [41].

Novel ANN based load balancing technique for Heterogeneous Environment 14

Chapter 2 Literature Survey

2.1 Problem Definition

Resource management and scheduling in Grid computing environments is a complex
undertaking. Users can literally submit thousands of jobs at a time without knowing - or
caring - where they will run. Given a set of processors, when a job arrives a decision
maker must decide where it should be served in order to maximize or minimize the given
performance measure.

Load balancing can be static or dynamic. With static load balancing, the task and data
distribution is determined at the compile time. Static load balancing is useful only to
problems that have a rather static workload among the processors through out execution.
Although static load balancing can solve many problems (e.g. those caused by processor
heterogeneity and non uniform loops) for most regular applications, the transient external
load due to multiple users on a network of workstations necessities a dynamic approach
to load balancing With dynamic load balancing work is assigned to nodes at run time and
information about the status of the node and application can be used to optimize the
assignment.

Traditional load balancing algorithms make several simplifying assumptions; (i)
completion time of a job is not affected by the loads on resources other than the CPU; (ii)
some moving average of CPU queue length is a significant determinant of completion
time; and (iii) simple decision rules such as always sending a job to the least loaded site,
can be determined a priori and perform well in reality.

Load balancing for heterogeneous applications is harder because different tasks have
different costs, and data dependencies between the tasks can be very complex. It poses
new challenge including dynamic and unpredictable behavior, multiple administrative
domains. We must ensure that no local workstation loses access to required local
resources by a task allocation from some external workstations.

Due to highly heterogeneous and complex computing environments, effective load
balancing is a very difficult problem, even though dynamic load balancing scheme is
used. Load balancing is very challenging to achieve. Traditional approaches to the load
balancing are either overly conservative or not portable. They require a human designer
to specify a formula for computing load, the load index as a function of the current and
recent utilization levels of various resources. They also require manual setting of all
policy parameters. Not only, there are many parameters, but also they are sensitive to
installation-specific characteristics of hardware devices as well as to the prevalent load
patterns.

The value of load average cannot guarantee that if a site with lower load average value is
given a job, it will complete earlier than another with higher value. They also ignore
resources other than the CPU.

Load balancing have been dealt with earlier, but traditional ways require manual setting
of parameters and are not efficient as they are not adaptive to the current state of grid. All

Novel ANN based load balancing technique for Heterogeneous Environment 15

Chapter 2 Literature Survey

these and other drawbacks make it necessary to make use of artificial intelligence and
machine learning in load balancing. With increasing demands for high precision
autonomous control over wide operating envelops, conventional control engineering
approaches are unable to adequately deal with system complexity, non-linearity, spatial
and temporal parameter variations, and with uncertainty.

The resources in the grid are heterogeneous and geographically distributed. Availability,
usage and cost policies vary depending on the particular user, time priorities and goals.

Load balancing in such an environment is very challenging to achieve. A lot of factors
have to be taken into consideration.

Novel ANN based load balancing technique for Heterogeneous Environment 16

CHAPTER 3

PROPOSED SOLUTION

Chapter 3 Proposed Solution

3. PROPOSED SOLUTION

The proposed solution comes as a solution to the problems mentioned in problem
statement. Load balancing is very difficult and challenging task to achieve. We consider
load balancing in the following manner: Assume a set of n parallel heterogeneous nodes
(N=1,2,3...n) and a set of m independent jobs(J=1,2,3..m); the jobs arrive one by one,
and has to be assigned to exactly one of the nodes, thereby increasing the load on that
node. The main objective of load: distribution is the division of workload amongst
available group of nodes in such a way so that overall completion time of the parallel
program is minimized. The workload of a node consists of the combined demands of
resources from all of the local processes. The task of load balancing can be viewed as a
strategy-learning task, which can be decomposed into learning of load indices and
policies. The load indices are used by the policies to make decisions to balance the load.
It is hard to find an optimal load balancing solution for a specific application due to rapid
changing requirements of application.

Initially each node has a list of jobs to be executed and the time when they have to start.
Based on the job’s characteristics as well as information about load history at various
sites, it is determined where to execute each incoming job. When job reallocation is
required, the appropriate jobs will be selected from the job queue on a node and
transferred to another node. A job is migrated from one node to another; so its net effects
are reduced load on resources local to the originating node and increased load on
resources local to the remote node.

We incorporated machine learning and artificial intelligence as a vehicle for automation
of load balancing. They have an ability to learn how to do tasks based on the data given
for training or initial experience Since Neural Nets are best at identifying patterns or
trends in data. Their ability to learn by examples makes them very flexible and powerful.
Either humans or other computer techniques can use neural networks with their
remarkable ability to derive meaning from complicated or imprecise data, to extract
pattern and detect trends that are too complex to be noticed. A trained neural network can
be thought of as an "expert” in the category of information it has been given to analyze.

The technique of Neural Networks which we adopted for load balancing in Grid is
Kohonen Maps. The Kohonen Map is a Self-Organizing Map of Neural Network
meaning that no expected output exists to judge by, and the network finds and reinforces
patterns on its own. -

3.1 Methodology

Our approach consists of clustering up of nodes and then mapping of tasks to these nodes.
Clustering is grouping up of objects that belong together. In our case objects are nodes
and clustering criteria is their utilization. The load conditions we assumed are lightly
loaded, normal load and heavy loaded nodes. The nodes are grouped up in term of current
and past information concerning load state, average memory, status and CPU speed. Each
node maintains load information and other parameter log ready to consume whenever
load balancing is invoked. The combined effect of load, memory, status and speed is
calculated using the following formula.

Novel ANN based load balancing technique for Heterogeneous Environment 17

Chapter 3 Proposed Solution

U = ((C1*Avg.Memory) + (C2*Load) - (C3*Node status) - (C4*CPU speed))
Where,

C1, C2, C3, C4 are weighting constants determining the contribution of each factor.
Avg. memory = Average used memory.

Status = Average uptime of the node.
CPU speed = current CPU speed.
Load (n) = (current CPU utilization / total possible CPU utilization).

Kohonen network is employed for the selection of a set of optimal nodes on to which
incoming tasks are to be transferred. Each neuron represents a host in the system. It
accepts as input the utilization of each node. During self organization process, the cluster
unit whose weight vector matches the input pattern most closely is chosen as a winner.
The winner neuron identifies the candidate host to which the utilization is minimum in
accordance with the available information about the system. After repetitive step of
learning and training the lightly loaded nodes in the network are identified. After that we
have the set of optimal nodes, we have to find a mapping, which minimizes the execution
time of the job. Tasks are divided into sub-tasks considering task information i.e. (task

type, task size).These sub-tasks are mapped to the optimal nodes already calculated by
the KNN load balancer.

Information Layer Resource c?llector & || Task collector &
Monitor Manager
Resource Info_/ Tasks Info

Load balancing Layer KNN Load balancer

Execution Layer> Executor

Fig 3.1 Layered Diagram

%

3.2 Functional Modules

Functional modules of the proposed solution are as follows:

3.2.1 Resource Collector

Novel ANN based load balancing technique for Heterogeneous Environment 18

Chapter 3 Proposed Solution

Resource Collector is the most significant module. As it functions as a daemon and

without this daemon the working of the system is impossible. This module communicates

directly with Linux kernel. Its functionalities are as follows:

¢ Gathers resource information in grid of cluster, particularly the information is related
to node id, node speed, node status, used memory etc.

o It creates and save the log file on the basis of accumulated information from each
node present in grid.

e Start or stop the Resource Monitor & Analyzer, Task Controller and KNN Load
Balancer daemon.

o It parses the generated log file according to the requirements.

¢ Allows process migration on each node.

3.2.2 Resource Monitor

It examines the resource information accumulated by Resource collector, displays it,
arrange the information in user readable form. The information is updated after the time
period specified by user.

3.2.3 Resource Analyzer

It display load statistics, read the log file generated by resource collector and generate
dynamic graphs for load, memory, time and status. The graphs are updated after regular
time period.

3.2.4 KNN Load Balancer

It is important module of our system.KNN algorithm is working here. Its functioning is as
follows:

e Read the parsed log file with respect to the parameters required by KNN-
Learning. In short it collects the offline information of resources.

¢ [Initialize learning rate and neighborhood parameters.
Initialize neurons (nodes) with random values.
Euclidean distance of input neurons is calculated to find the winner. Weights of
the neuron are updated and the process is repeated to find another winner-and all
winner nodes are clustered up in the form of optimized nodes.

e Cumulative weight load matrix is also calculated from node to node.

e Perform task rendering and provide output results.

e Forward the task and optimal nodes information to Task-Mapping Engine,
Process migration is also performed from this engine.

3.2.5 Task Collector

o It acknowledges tasks from external environment and keep them in a queue and
writes task information in log file which includes task size, type, starting time,
end time.

Novel ANN based load balancing technique for Heterogeneous Environment 19

Chapter 3 Proposed Solution

o Parses the log file to get required task information.

3.2.6 Task Manager

It gives interface to user for communication with our grid. Handles user requests for load
task, edit task, save task, create task and remove task.

3.2.7 Task Monitor

a) It examines all tasks present in queue and gives the status for each individual task,

whether it is running, finished, or about to finish.

b) It compares task completion time with its approximate weighted factor in order to
get the efficiency.

3.3.8 Performance Monitor

a) It extracts resource information from resource monitor and task information from
task monitor.

b) In case of load imbalance pass the current extracted information to KNN Load
balancer in order to balance the load on grid.

Novel ANN based load balancing technigue for Heterogeneous Environment 20

CHAPTER 4

SYSTEM DESIGN

Chapter 4 System Design

4. SYSTEM DESIGN

System design is the specification or construction of a technical, computer-based solution
for the business requirements identified in the system analysis. It is the evaluation of
alternative solutions and the specification of a detailed computer-based solution. It is
basically the design of the information processing system covering the activities of
determining detailed requirements, design of data/information flow, design of database,
design of user interface, physical design, and design of hardware/software configuration.

4.1 Object-Oriented Analysis and Design

Object-Oriented analysis is the discovery, analysis and specification of requirements in
terms of objects with identity that encapsulate properties and operations, message
passing, classes, inheritance, polymorphism and dynamic binding. It aims to model the
problem domain the problem to be solved by developing object oriented system. Object-
oriented design is the design of an application in terms of objects, classes, clusters,
frameworks and their interactions.

4.1.1 Class Diagram

In the unified modeling language (UML) a class diagram depicts the static view of the
model or part of the model, describing what attributes and behavior it has rather that
detailing the methods for achieving operations. Another purpose of class diagrams is to
specify the class relationships and the attributes and behaviors associated with each class.

A class is an element that defines the attributes and behaviour that an objetc is able to
generate. The behaviour is described by the possible messages which the class is able to
understand, along with operations that are appropriate for each message. Classes may
have definations of constraints, tagged values and stereotypes. Class diagram of our
system is shown in fig 4.1.

Novel ANN based load balancing technique for Heterogeneous Environment 21

Chapter 4 Svstem Design

Rosous sy

Task_Coliector
Gores_ink : resource_struct List, W—M ren_ink : resource_struct List : amrey
Spnode_id : int Ores_ink : List <Resources> Eoresource_loed © int Stask_inb : List <Task>
Soetatus : stiing L rate ©int ! e : int
Qame : string Qnode_id : int Satat_task_mor)
& g et &node_status : string Aget_resource_ind) Satop_task_mgr)
Rced : ink onode_nems : sting i Scraate_raesurce_mem_chart)! Sstart_task_monitorl)
Bocpu : int ototal_mam : int ! Screste_tesouce_losd_chert() “3top_task_monitor)
I [y ™ i
~—— _percent | i - { Sshow_resource_chaits() Stask_queue()
Sgei_resource_jnk rolcpu:int : - ———— S ———e—
Scomert_readable() \—————————f
y Sesource_inbo() Scheck_rodes() |
Spet_how_many_rodes() | P
Sget_node 0 : Log_Cenerator
—— S0et_node_statia) . @tank_info : task_struct List
KNN_Anslyzer_Balancer Spet_total_memg) \ Gorws_into : rescurce_struct List Tosk_Mgr_Monitor B
e T Aot load_percent)) f Roion_Sie : string ‘»uk_lnh T taok_struct Ust <Task
: Sout_cpu)) ' beize : sting
e Stan_rve_morior_analyzer)) Sorva_log) agjobe - it
ing_rate : fost Sstop_tes_monitor_sralyzer) | Sopen_logl) Qpinput_fis : sting
r_distance : foat Satart_task_mor) Scioss_logl) . fle ; string
el Sxtart_KNN_load_bslancer) Sout_rveource_inb) Rotype ; atring
ritislize_Weights0 Sget_node_reme() Sout_task_irk) ™S [@eub_cote_time : cuterime
SSet_Loaming_Rete) Sutntet) ritaton_rmarced . jon_dets_time : dateflime
5t} #Start Resource Cotlectorl) »_log_task() I_time ; double
Shormalize_Weights() ¥ Gyetatus : string
¥nGSet) M~
“Find Winner() T Spet_queved_teski)
‘SMaintsin_KNN_history() T~ — Sdigplay_task_lat)
Calculate_Emor() | \ Parser Screate_task)
SAdjusy_Weights(S . A perse_task . int 1 Slosd k()
‘SUpdate_Leaming_Parameters(); Goperse_ . st Socit_task()
i_resource() N . e - 30 ’lm_:ll())
Soet_paresd —_— 7 Sout_task_atirbute()
Lk - taek_ettributel)
Sopen, _task_statin()
190 S3et_taek_stabie]
Supdata_task()
Performance_Monitor Sexa_task()
k_inka ; task_struct Lint :-:;n_mw
_inko : resource_struct List ite_task_attribute()
Sget_awilatle_res_inb()
Sout_task_queuss_status() —
Suculyze_task_res_info() \

Fig 4.1 Class Diagram

4.1.2 Sequence Diagram

A Sequence diagram depicts the sequence of actions that occur in a system. The
invocation of methods in each object, and the order in which the invocation occurs is
captured in a Sequence diagram. It depicts the dynamic behavior of system. Because it
uses class name and object name references, the Sequence diagram is very useful in

elaborating and detailing the dynamic design and the sequence and origin of invocation
of objects.

4.1.2.1 Collect Resource Information

In this sequence diagram the sequence of actions is as user sends request to resource
collector to start. Resource collector fulfils the request and sends request for log
generation to log generator. Then request for write resource information is sent to log

generator. After log file generation log generator sends request for parsing log file to
parser.

Novel ANN based load balancing technique for Heterogeneous Environment 22

Chapter 4 System Design

G Grid User | Resource Collector | ! Lo _Generator

Start Resource Collector

i iStart Qgsource Collector{ }

Reque'st for log generation
s s S OBA1€_1OQ()

check_nodes()

get_how_many_nodes()

get_total_mem()

Regquest to wiite resource informalion
>)

|
|
|
|
|
y

Log file generated

TRequesl for parsing log
P ———_ open_log()

read

gg__rasource()

<
parse,_data_resource()

: Resource log parsed :
< _—

: Resource Log Generated

|t ;
i | start_task_mgr()
start_KNN_load_balancer()
<
ReFource Collector started successfully

‘ S(arl_ras__moni(or_anatyzer() i

|
|
|
|
|

Fig 4.2 Collect Resource Information

Novel ANN based load balancing technique for Heterogeneous Environment 23

Chapter 4 System Design

4.1.2.2 Analyze and Monitor Resource Information

In Fig 4.3 resource collector sends the request to start resource monitor. A request
is made from resource collector to start resource analyzer. Resource monitor and
analyzer are started successfully.

T T » T e
| Resource Collector : Regurce Monitor Resource_Analyzer

Start Resource Monitor

1, get_resource_info()

. |_comert_readable()

<

Resource Monitor started successfully
< — — — — ——
Start Resource Analyzer

ef y get_resource_info()

| .

create_resource_mem_chart()
I .

»_resource_load_chart()
* Resource Analyzer st‘?ned successfully

| !

| |

|
|
|
|

,_resource,_charts()

Fig 4.3 Analyze and Monitor Resource Information

Novel ANN based load balancing technique for Heterogeneous Environment 24

Chapter 4 System Design

4.1.2.3 Load balancing and Re-balancing

In Fig 4.4 request for load balancing and rebalancing is send from performance
monitor to KNN Analyzer-Balancer. Parsed data is sent from parser to KNN Load
balancer. After performing certain steps load balancing is performed successfully.

‘ PM_: H P_: Parger —“‘"",‘(‘,:H!Mea."_‘: ! E : :

™
Send Requestlfor Load Balancing & Rebalancing ‘]

[Send Parsed Data to KNN-Load Balancei';:

T ig_e_l_g_a_r‘sed_rasource()

i g rsed_task()
l | get_pa

i ize_Welghts()

<<.._
l Set_Leaming_Rate() '

< Set_ Neighbourhood()

<< ot

:No lize_Welghts()

-~

: Input_TrainingSet()
| = |
| | o |
| i Maintain_KNN_history()
| i) Sending KNN History =" ‘
! = S | Ssend Optimized Value for Mapp{ng)
| |

i
i i
distribute_task()
1 rendering()
di;
Output Displaye _Slisplay_output()
Load Balancing Done Succeasfully

|
'
[N
i i
| ,, I

Fig 4.4 Load balancing and Re-Balancing

Novel ANN based load balancing technique for Heterogeneous Environment 25

Chapter 4 System Design

4.1.2.4 Performance Monitor

In Fig 4.5 request from resource information and task information is sent to
performance monitor.

| Jask_Mgr Monitor { Berbanance Moaoi r' KNN_Analyzer Balancer|

Send Resoerce Information l Q

analyze_task_res_info()

Rejquest for Load Balancing or Re-BaIant}:ing

Sy

Fig 4.5 Performance Monitor

Novel ANN based load balancing technique for Heterogeneous Environment 26

Chapter 4 System Design

4.1.2.5 Task Scheduling

In fig 4.6 Parser sends the request to KNN load balancer for scheduling tasks.
After performing the functions optimized value is sent to task mapping engine.
And scheduling is done successfully.

. PiPamer KNNAB : TME ‘
I - KNN_Analyzer Balancer: Task_Mapping Engine

—

Send Parsed Data to KNN-Load Balance‘J ‘
o | get_parsed_resource()

AN

| | get_parsed_task()

Initialize_Weights()

T

ISet_Leaming_Rate()

T

Normalize_Weights()

N

!'{__Input_TrainingSet()

Find_Winner()

|

Calculate_Ermor()

i {Maintain_KNN_history()

i

<—
Set_Nelighbourhood() ‘
Send Optimized Value for Mapping l

get_task()

e

<
._get_resource()

- distribute_task()

|
rendering()
<
_display_output()
Scheduling Done Successfully | e
< VOOt

Fig 4.6 Scheduling Tasks

Novel ANN based load balancing technique for Heterogeneous Environment 27

Chapter 4

System Design

4.1.2.6 Task Log Generation

In fig 4.7 request for task log generation is sent from task monitor to log
generator. Request for parsing is sent from log generator to parser. Log is parsed

and generated successfully.

TMM : I LG ;

Request for Task Log Generation

Task Log Generated Successfully

get_task_info()
<_____j
write_log_task()

Request for Parsing

P : Parser

Task Log Parsed Successfully

Fig 4.7 Task Log Generation

|
|
|
|
|

read__lqg__task()

parse_data_task()

Novel ANN based load balancing technique for Heterogeneous Environment

28

Fa

d

Chapter 4

System Design

4.2 System Architecture

System Architecture is the design or set of relations between the parts of a system. It is
the most important, pervasive, top level, decisions, and their associated rationale about

the overall structure.

Resource Collector

Task Collector

3

y v

} |

v

Resource Resource
Monitor Analyzer

Log
Creator

Task

Task

Manager Monitor

—— | Balancer

Load balancing/Rebalancing Calculation

| 4
Parser

A 4
KNN Load

v

Weights
Initialization
A 4
Parameters
Initialization
\ 28

Load calculation
Y_

Winner

A 4
Updation

%

Mapping Engine
v

Renderer
v_

Show Output

P Performance Monitor

Fig 4.8 Architecture diagram

Novel ANN based load balancing technique for Heterogeneous Environment

29

Chapter 4 System Design

Resource collector is a daemon which directly communicates with Linux kernel to
collect resource information in grid. Resource monitor examines and arrange this
resource information. Resource analyzer displays resource information. Log generator
generates log or history file of each node and executed tasks. Tasks from the external
environment are handled by Task Collector. User’s requests for the execution or
termination of task are handled by Task manager. Task monitor keeps on monitoring the
task and give status information to each task for performance evaluation. KNN
loadbalancer starts with the initialization phase in which connection weights, learning
rate and neighborhood parameters are initialized. Kohonen layer is constructed based on
current and past information of the system resources. After repetitive steps of training a
set of underloaded nodes is the output. The Mapping engine maps the incoming task to
the less loaded nodes calculated by the load balancer. Performance monitor keep on

monitoring the task and resource information and signal the load imbalance to load
balancer.

Novel ANN based load balancing technique for Heterogeneous Environment 30

CHAPTER S

SYSTEM DEVELOPMENT

Chapter 5 System Development

5. System Development

System Development is the phase in which we transfer the proposed system into an
executable software. It is the execution, or practice of a plan, a method, or any design for
doing something. Implementation is the actual writing of the code. If the design has been
done correctly and with efficient detail then coding becomes a simple task. This step involves
making the final design decisions and translating the design diagrams and specifications into
the syntax of the chosen programming language. It also involves the practical development
process, to interactively compile, link and debug components.

5.1 Tools

Tools play an important role in the implementation of a system. A programming tool is a
program or application that software developers use to create, debug, or maintain other
programs and applications.These tools can be divided into different categories which are as:

5.1.1 Languages

A high-level programming language that is interpreted by another program at runtime rather
than compiled by the computer’s processor as other programming languages (such as C and
C++) are. As C++ is an object oriented programming (OOP) language so it provides all the
facilities of OOP.The languages used in the project are C/C++.

5.1.2 Editors

Editors are used for designing the interface and for editing any application. The editors used
in the project are as

e KWrite(KDE Environment)
o gedit
e Qtdesigner(Qt is a mature cross-platform GUI toolkit written in C++.

5.1.3 Office tools

Some of the office tools used in this project are as follows:

a) Adobe Acrobat 7.0 Professional
b) Rational Rose 2002

¢) Visio 2003

d) Gimp

e) MS Office XP/2006

5.1.4 Benchmarking tools

Benchmarking is identifying the highest standard of excellence, learning and understanding
those standards, and finally adapting and applying them to improve performance.Benchmark

Novel ANN based load balancing technique for Heterogeneous Environment 31

Chapter 5 System Development

is the result of running a computer program, a set of programs, or other operations, in order
to assess the relative performance of an object, by running a number of standard tests and
trials against it.The benchmarking tool we used is POV-Ray™ POV-Ray™ is short for the
Persistence of Vision™ Raytracer, a tool for producing high-quality computer graphics.
POV-Ray for Unix is essentially a version of the POV-Ray rendering engine prepared for

running on a Unix or Unix-like operating system (such as GNU/Linux).
5.1.5 Grid Management tools

Grid management tools are used to configure and use grid environment which will be
comprised of individual nodes interconnected and sharing computational resources. We

patched openmosix to Linux kernel. OpenMosix is a kernel extension for single-system image
clustering.

5.2 Pseudocode

Pseudo code is a language that uses the vocabulary of one language (i.e. English) and the
overall syntax of another (i.e. structured program language). It is free syntax of natural
language that describes processing features. '

5.2.1 Resource Collector

Resource Collector is the most significant module. The main steps carried out in this module
are as follows
1. Read linux proc file and gathers resource information in grid of cluster, particularly
the information is related to node id, node speed, node status, used memory, load
percent etc. '
2. It creates and save the log file on the basis of accumulated information from each
node present in grid.
Set cluster nodes according to configuration.
4. Start or stop the Resource Examiner & Evaluator, Task Controller and KNN Load
balancer daemon.
It parses the generated log file according to the requirements.
Allows process migration on each node.

[

SN

-

Openmosix View is not being used as a cluster management tool rather as a resource
monitoring tool which could gather information about any kind of heterogeneous resources
making a grid environment.

5.2.2 Resource Evaluator
1. It display load, memory statistics.

2. Read the log file generated by resource collector and generate dynamic graphs for
load, memory, time and status.

Novel ANN based load balancing technique for Heterogeneous Environment 52

Chapter 5 System Development

3. The graphs are updated after regular time period.
4. Tt analyzes load and memory of all nodes.
5. It gives information about all nodes.

5.2.3 KNN Load Balancer

It is important module of our system.KNN algorithm is working here. Its functioning is as

follows:

1.

bl

9.

Read the parsed log file with respect to the parameters required by KNN- Learning.
In short it collects the offline information of resources.

Initialize learning rate and neighborhood and other parameters.

Initialize neurons (nodes) with random values.

Euclidean distance of input neurons is calculated to find the winner.

Weights of the neuron are updated and the process is repeated to find another winner
and all winner nodes are grouped up in the form of optimized nodes.

The nodes are grouped up in term of current and past information concerning load
state, avg.memory, status and CPU speed. Each node maintains load information and
other parameter log ready to consume whenever load balancing is invoked.

Each neuron represents a host in the system. It accepts as input the utilization of each
node. During self organization process, the cluster unit whose weight vector matches
the input pattern most closely is chosen as a winner.

The winner neuron identifies the candidate host to which the utilization is minimum
in accordance with the available information about the system.

Cumulative weight load matrix is also calculated from node to node.

10. Forward the task and optimal nodes information to Task-Mapping Engine.
11. Perform task rendering and provide output results.

5.2.4 Task collector

1.

It gathers tasks from outside environment and store them in a queue and writes task
information in log file which includes status, size, starting time, end time, completion
time.

User submits the task by providing task input file, output file, type and size.

Parses the log file to get required task information.

Novel ANN based load balancing technique for Heterogeneous Environment 33

CHAPTER 6

RESULTS AND CONCLUSION

Chapter 6 Results and Conclusion

6. RESULTS AND CONCLUSION

In this chapter we discuss the experiments performed to validate the proposed solution and
the graphs generated from these experiments. The main objective of our thesis is load
balancing in heterogeneous environment using Artificial Neural Network. The performance
of our approach is proved by executing and testing our application with varying no of
processors, task size, no of tasks. The experimental setup on which the experiments were
performed is described as follows.

6.1 Experimental Setup

Our Grid system is a grid of cluster with 6 nodes of different specifications with Linux
Operating System installed on them interconnected via Ethernet LAN. As a fundamental base
we have adapted openmosix as the process/task monitoring and management tool.
Openmosix is used as a Linux Kernel patch for grid configuration.Povray is used as
benchmarking tool.

6.2 Description of Experiments

To prove the authenticity of our approach we performed the experiments with the case when
there is No scheduling i.e. no prior scheduling is performed when a job is submitted.
Secondly when a scheduler is in place and compared to other dynamic algorithms. We
conducted experiments with trained and not trained neural network. Different experiments
were performed with varying no processors, task sizes, no of processors. Input tasks of
different sizes were taken from Povray benchmarking tool. :

6.3 Experimental Results

The experiments were conducted on a Linux operating system kemel patched with
OpenMosix which is used as a fundamental base for grid. For comparison purpose we are
using Static Scheduling, Dynamic Scheduling, and No Scheduling. Povray is used as
benchmarking to observe the optimized performance of our system. The execution time is
used as a performance metric to analyze the performance of our ANN based grid application.
Graphs of different cases were generated from these experiments and which are as follows.

In fig 1 we see that the difference falls off very rapidly and KNN based soon outperforms the
no scheduler approach. The rapid decrease with increased task frequency is done due to the
fact that variable CPU time is available and in case of no scheduling the inability to migrate
the job to lesser loaded node increases job execution time.

In fig 2 initially we see that KNN takes longer time to complete the job but as no of tasks
increases the difference begins to fall off. This is because KNN consumes lot of time for
training. However for large no of tasks this slowly goes down and KNN based gain in
performance. A stage is reached at which time KNN actually outperform the No Scheduler

Novel ANN based load balancing technique for Heterogeneous Environment 34

Chapter 6 Results and Conclusion

case. This is because larger tasks inherently mean larger execution time thereby increasing
the probability of node being busy for extended period of time.

In fig3 KNN (With Training) is compared with other dynamic algorithms and we see that
execution time starts decreasing, as the no of processors increases thus improving the
performance as compared to others.

In fig 4 initially we see that execution time of KNN is higher but as no of processors
increases the difference begins to fall off. And its performance is better as compared to other
dynamic algorithms. This is because KNN consumes lot of time for training.

In fig 5 and fig 6 the general trend is same but in fig 6 we see that KNN takes less time in the
beginning as it is trained but as no of tasks increases, KNN takes more time to complete the
job as the no of processors is also fixed. But the performance of KNN is still better than other

dynamic algorithms. KNN incurs some delay as no of tasks increases due to context
switching between the processors.

Fig 7 and fig 8 shows that the general trend is same as before éxcept that in fig 7 we see that
KNN outperforms static scheduler after some time. We also see that the difference is much

smaller in the beginning because static scheduler also takes some time for their own
calculation. '

KNN(With Training) vs No Scheduler

—eo— KNN
~a— No Scheduler

Execution time(sec)

O A N W A OO N O

0 2 4 6 8 10 12 14 16 18 20 22
No of tasks

Fig 1 KNN (With Training) vs No Scheduler

Novel ANN based load balancing technique for Heterogeneous Environment 35

Chapter 6

Results and Conclusion

Execution time(sec)
O = NDwdHh OO N®

KNN(No Training) vs No Scheduler

—e— KNN

—#— No Scheduler

0 2 4 6 8 10 12 14 16 18 20 22
No of tasks

Fig 2 KNN (No Training)vs. No Scheduler

KNN(With Training) vs. Other Dynamic Algorithms

2 4 6 8 10 12 14 16 18 20
No of Processors

4
< 35
2 3
Q £
£ 25 % B8 KNN
5 :
c 2% W SASH
Q
g 1.5 § 0O DSsS
g 1
o 05

0

2 4 6 8§ 10 12 14 16 18 20
No of Processors
Fig 3 KNN(With Training) vs Other Dynamic Algorithms
KNN(No Training) vs. Other Dynamic Algorithms
4.5 o

T 4t
8 354
£ .37 8 KNN
g 2'2 W SASH
8 154 DDSS
S 14
b
uw 0.5

0

Fig 4 KNN (No Training) vs. other dynamic Algorithms

Novel ANN based load balancing technique for Heterogeneous Environment

36

Chapter 6 Results and Conclusion

6.5
6
__55
S 5
2 45
E .8 @ KNN
P m SASH
[=]
8 25 oDSS
o 2
%15
0.5
0

2 4 6 8 10 12 14 16 18 20
No of tasks

Fig 5 KNN (No Training) vs. other dynamic Algorithms w.r.t No of tasks

m

[+

)

£ @ KNN
= m SASH
[o]

g o DSS
[33

[]

>

18]

No of tasks

Fig 6 KNN (With Training)vs Other Dynamic Algorithms w.r.t No of tasks

KNN(With training) vs Static Scheduler

——KNN
—s- Static Scheduler

Execution time(sec)

0 2 4 6 8 10 12 14 16 18 20 22

No of Processors

Fig 7 KNN (With Training) vs Static Scheduler

Novel ANN based load balancing technique for Heterogeneous Environment 37

Chapter 6 Results and Conclusion

KNN(No Training)vs Static Scheduler

—a—KNN

—=— Static Scheduler

Execution Time(sec)

0 2 4 6 8 10 12 14 16 18 20 22

No of Processors

Fig 8 KNN (No Training) vs Static Scheduler

6.4 Conclusion

In this research we presented a load balancing technique based on artificial neural network in
heterogeneous environment for computationally intensive applications. Resource
management and scheduling in heterogeneous environment is challenging task to achieve.
Load balancing is done in such a way so as to minimize job execution time. We incorporated
SOM also known as Kohonen Networks a technique of ANN for automation of load
balancing. As the results shows the performance of Kohonen networks with respect to other
dynamic algorithms and the case where scheduler is in place. The results showed that the
performance was analyzed for large no of tasks, processors in response to execution time.
And we can see the fluctuation in execution time with varying no of processors, task sizes, no
of tasks etc. As Kohonen takes much time for training but once it is trained it gives better
performance in comparison with other dynamic Schedulers and Static Scheduler.

Novel ANN based load balancing technique for Heterogeneous Environment 38

REFERENCES AND BIBLIOGRAPHY

References and Bibliography

REFERENCES AND BIBLIOGRAPHY

{1] Henri Casanova. Disfributed computing research issues in grid computing. SIGACT
News, v.33 n.3, pp.50-70,ACM Press, Sept 2002.

[2] Anderson, E., Brooks, J., Grassl, C., and Scott, S. (1997) Performance of the CRAY

T3E multiprocessor, Proceedings of the 1997 ACM/IEEE conference on
Supercomputing, 1-17, San Jose, CA, ISBN-0897-9198-58.

[3] A.Grama,V.Kumar, A.Gupta and G.Karypis. (2003) An Introduction to Parallel

Computing: Design and Analysis of Algorithms, Second Edition, Pearson Addison
Wesley, ISBN-0-2016-4865-2.

[4] http://www.grid/Interviews/rbuyya.htm

[5] Ian. Foster and C. Kesselman, editors;“The Grid: Blueprint for a Future Computing
Infrastructure”Morgan Kaufmann Publishers, 1999. .

[6] http://www.teragrid.org/eot/glossary.html

[7]1 M.Litzkow, and M. Livny, “Experience with the Condor Distributed Batch System™;
In proceedings of IEEE Workshop on Experimental Distributed Systems,pp 97-101,
Huntsville, AL, USA, Oct 1990.

[8]1 R. Buyya, D. Abramson, J. Giddy, Nimrod-G: an architecture for a resource
management and scheduling system in a global computational grid, in: Proceedings of the

HPC ASIA"2000, China, IEEE CS Press, USA, 2000.

[9] LFoster, C.Kesselman, Globus: A Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer Applications, 11(2):115-128, 1997.

[10] Steve J. Chapin , Dimitrios Katramatos , John F. Karpovich , Andrew S. Grimshaw,
The Legion Resource Management System, Proceedings of the Job Scheduling Strategies
for Parallel Processing, p.162-178, April 16, 1999

[11] http://en.wikipedia.org/wiki/Grid_computing

[12] http://www.research.ibm.com/journal/sj/434/joseph.html
[13] Ian Foster,C.Kesselman, J.M. Nick, S.Tuecke; “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration”; Open Grid Service
Infrastructure WG, Global Grid Forum, June 22, 2002.

[14] http://www.cacs.louisiana.edu/~mgr/404/burks/foldoc/76/67 .htm

[15] http://meseec.ce.rit.edw/eecc756-spring2000/project99/load _bal.pdf

Novel ANN based load balancing technique for Heterogeneous Environment 39

References and Bibliography

[16] Chongbing Liu, “Dynamic Load Balancing in Parallel and Distributed Computation:
A survey”, http://www.cs.nmsu.edu/~cliw/

[17] Pankaj Mehra,Benjamin Wah; “Automated Learning Of workload Measures For
Load Balancing On A Distributed System”; Proc. of the International Conference on
Parallel Processing,CRC Press,vol. III, pp. 263-270, Aug. 1993.

[18] http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
[19] http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/006neuralnetworks/neural-networks.htm
[20] http://homepages.gold.ac.uk/nikolaev/311koh.htm

[21] Hiroshi Nishikawa,Peter Steenkiste; “A ﬁ eneral Architecture for load balancing in a
distributed memory environment”; Proc.of 13™ Intl. Conf. Dist. Computing Systems, pp.
47-54. IEEE, Pittsburgh May 1993.

[22] Pankaj Mehra,Benjamin Wah; “Automated Learning Of workload Measures For
Load Balancing On A Distributed System”; Proc. of the International Conference on
Parallel Processing,CRC Press,vol. III, pp. 263-270, Aug. 1993..

[23] B.S.Siegell,P.Steenkiste; “Automatic generation of parallel prograrhs with dynamic
load balancing”; Proc. of the Third IEEE International Symposium on High Performance
Distributed Computing; San Francisco, CA, 1994.

[24] M. Javeed Zaki, W.Li, S.Parthasarathy; “Customized dynamic load balancing for a
network of workstations”; Proc. Sth IEEE Int. Symposium on High performance
distributed computing, Syracuse, New York, August1996.

[25] M.You Wu; “Parallel Incremental Scheduling”; Parallel Processing Letters,vol
5,No(4):659-670, 1995.

[26] A.Bevilacqua; “A Dynamic Load Balancing Method on a Heterogeneous Cluster of
Workstations”; Informatica (Slovenia), 23(1); March 1999. R

[27] S.Ichikawa ,S.Yamashita; “Static Load Balancing of Parallel PDE Solver for
Distributed Computing Environment” Proc. ISCA 13th Intl Conf. Parallel and
Distributed Computing Systems (PDCS2000); pp. 399--405 (2000).

[28] A. Osman , H. Ammar; “Dynamic load balancing strategies for parallel computers
Scientific Annals of Cuza Univ;vol 11: 110-120,2002.

[29] Carsten Ernemann, Volker Hamscher, Uwe Schwiegelshohn, Ramin Yahyapour,“On
Advantages of Grid Computing for Parallel Job Scheduling”;2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID'02), 2002.

Novel ANN based load balancing technique for Heterogeneous Environment 40

References and Bibliography

[30] Jeniffer M Schopf, “A general Architecture for scheduling on the grid”, special issue
of Journal of Parallel and Distributed Computing on grid computing, 2002.

[31] Helen D. Karatza,”A Comparison of Load Sharing and Job Scheduling in a Network
of Workstations”; Int’l journal of Simulation: Systems, Science Technology, UK
Simulation Society, Volume 4, no: 3&4, pp. 4-11, 2003.

[32] Helen D. Karatza, Ralph C. Hilzer “Load Sharing in heterogeneous distributed

systems”, Proceedings of the 2002 Winter Simulation Conference (WSC'02) - Volume 1,
2002.

[33] Cheng-Juei Yu , Po-Han Chen, and Sheng-De Wang ; “Adaptive Task Scheduling
Algorithms for Master-Worker Applications in Grid Computing”; Eleventh Workshop on
Compiler Techniques for High-Performance Computing,2005.

(34] Junwei Caol, Daniel P. Spooner, Stephen A. Jarvis, and Graham R. Nudd; “Agent-
Based Grid Load Balancing Using Performance-driven Task Scheduling”; Proc.of 17th
IEEE International Parallel & Distributed Processing Symposium (IPDPS 2003); Nice,
France; April 2003. '

[35] Menno Dobber, Ger Koole, Rob van der Mei; “Dynamic Load Balancing for Grid
Applications™; 1 1" Int’] Conference, Proceedings HiPC;Bangalore,India, dec19-22,2004.

[36] Babak Hamidzadeh, David J. Lilja, Yacine Atif, “Dynamic scheduling Techniques
for Heterogeneous Computing Systems”, Concurrency: practice & Experience, Vol. 7,
No. 7,pp. 633-652,0ctober 1995.

[37] Aly E. EI-Abd and Mohamed 1. EI-Bendary, “A Neural Network Approach for
Dynamic Load Balancing In Homogeneous Distributed Systems”, 30th Hawaii
International Conference on System Sciences (HICSS) Volume 1: Software Technology
and Architecture, 1997. 4

[38] G. Labonté and M. Quintin; "Network Parallel Computing for SOM Neural
Networks",To appear in the proceedings of the High Performance Computing
Symposium 1999.

[39] Murat Atun and Attila Giirsoy, “A new load-balancing algorithm using self-
organizingmaps”;Euro-Par2000,ParallelProcessing.6thinternational Euro-ParConfererence
Germany,2000.

{40] Attila Giirsoy, Murat Atun, “Neighborhood Preserving Load Balancing: A Self-
Organizing Approach”, Euro-Par Parallel Processing, LNCS 1900, pp. 324-41, 2000.

[41] Maris Orbidans, “A Neural Network based dynamic load balancing Algorithm”,
http://maris.site.lv/loadbalancing/

Novel ANN based load balancing technigue for Heterogeneous Environment 4]

APPENDIX-A

Appendix-A Publication

A. A NOVEL ANN-BASED LOAD BALANCING TECHNIQUE
FOR HETEROGENEOUS ENVIRONMENT

Muniza Salim, Ammara Manzoor,Khalid Rashid
Dept. of Computer Science, Faculty of Basic and Applied Sciences,
International Islamic University, Islamabad, Pakistan.

Abstract i

Grid computing is an emerging computing paradigm and is distinguished from distributed computing
by its efficient and optimal utilization of heterogeneous, loosely coupled resources tied to work load
management. However, complexity incurred in efficient management of heterogeneous, geographically
distributed and dynamically available resources has become one of the most challenging issues in grid
computing. A lot of parameters have to be taken into consideration to efficiently utilize the grid resources.
Many heuristics has been proposed in the literature to address this complex problem. Our research aims to solve
load balancing decisions using Artificial Neural Networks (ANN). Since ANN are best at identifying patterns or
trends in data, their ability to learn by examples makes them very flexible and powerful. In this research we
have developed and evaluated a completely new scheduling-cum-load balancing module for a scaleable grid.
Experimental results suggest that once trained, ANN outperforms other heuristic approaches for large tasks.

However for small tasks, ANN suffers from extensive overheads.

Keywords: Grid Computing, Load balancing, Artificial Neural Networks

INTRODUCTION

Advances in networking infrastructure and
ever changing computational requirements have led
to the development of grid infrastructure that
provides a way to meet the needs of these
demanding applications. Grid provides predictable,
consistent and uniform access to geographically
distributed resources like computers, data
repositories, scientific instruments, and advanced
display devices (Foster and Kesselman, 1999).

Grids are often considered as the
successors of distributed computing. Grid
computing is the more general case of distributed
computing which enables collaborative multi-site
computation (Foster et al.,, 2001).Grid integrates
and coordinates resources and users that live within
different control domain as they lack central control
(Foster, 2002).Moreover the Computational
capabilities of a Grid vary significantly over time as
the resources are added and removed
dynamically.OGSA (Open Grid Services
Architecture) which defines uniform exposed
services semantics (the grid service), defines
standard mechanism for creating, naming and
discovering transient grid service instances,
provides transparency for service instances and
supports integration with underlying native
platform facilities. (Foster and Kesselmen, 2002).

The objective of load balancing is to
minimize the response time and execution time of a

program by trying to equally spreading the load on
processors and maximizing. their utilization. The
goal of grid task scheduling is to achieve high
system throughput and to meet the application
needs within available computing resources.

Kohonen network or Self-Organizing Map
(SOM) is a type of neural network that works with
unsupervised training. Its takes input data and trains
itself. Kohonen based his neural network on the
associative neural properties of the brain (Kohonen,
2001).Self-Organizing Map is called a topology-
preserving map because there is a topological
structure imposed on the nodes in the network.
Self-organizing behavior is the spontaneous
formation of well-organized structures, patterns or
behaviors, from random initial conditions.

In this paper we address load balancing
heuristic based on Self-organizing neural network
which allows adaptive and reliable management
and scheduling of tasks. Load balancing is
accomplished by scheduling of the tasks.

The basic description of problem domain is
as follows: Resource management and scheduling
in Grid computing environment is a very complex
task. Thousands of jobs are submitted by users
without knowing where they will execute. When a
job arrives, the decision maker must decide where
it should be served on a given set of processors in
order to maximize or minimize the given
performance measure. Load balancing can be static
or dynamic. Static load balancing determines the

A Novel ANN based load balancing technique for heterogeneous environment A-1

Appendix-A

Publication

task and data distribution at compile time. It is
useful only to problems that have predictable
resource requirements and load variations.
Although it can solve many problems i.e. those
caused by processor heterogeneity and non uniform
loops for most regular applications, the transient
external load due to multiple users on a network of
workstations necessities a dynamic approach to
load balancing. With dynamic load balancing work
is assigned to nodes at run time and information
about the status of the node and application can be
used to optimize the task.

Traditional load balancing algorithms make
several simplifying assumptions; (i) completion
time of a job is not affected by the loads on
resources other than the CPU; (ii) some moving
average of CPU queue length is a significant
determinant of completion time; and (iii) simple
decision rules such as always sending a job to the
least loaded site, can be determined a priori and
perform well in reality. Load balancing for
heterogeneous applications is difficult because
different tasks have different costs, and data
dependencies between the tasks can be very
complex. It creates new challenge including
dynamic and unpredictable behavior, multiple
administrative =~ domains. Due to highly
heterogeneous and complex computing
environments, effective load balancing is a very
difficult problem even though if dynamic load
balancing is used, load balancing is - very
challenging to achieve. Load imbalance is another
serious problem in which load from heavily loaded
nodes is migrated to lightly loaded ones by the use
of efficient load balancing. Traditional approaches
to the load balancing are either overly conservative
or not portable as they require a human designer to
specify a formula for computing load, the load
index as a function of the current and recent
utilization levels of various resources. They also
require manual setting of all policy parameters and
are not efficient as they are not adaptive to the
current state of grid. They are also sensitive to
installation-specific characteristics of hardware
devices as well as to the prevalent load patterns.
Load average value cannot guarantee that if a site
with lower load average value is given a job, it will
complete earlier than another with higher value.
They also ignore resources other than the CPU. All
these and other drawbacks make it necessary to
make use of artificial intelligence and machine
learning in load balancing,

The literature surveyed for analysis of
problem domain is as follows: Load balancing
architecture that can deal with applications with
heterogeneous tasks is presented by Nishikawa and
Steenkiste (1993). However it lacks in several areas
e.g.the architecture has to be evaluated using more

complex applications and larger systems.
Additionally Interface of the current system is at
low level and user has to specify large no of
functions.

Mehra and Wah(1993) demonstrated automated
learning of meaningful load-index functions from
workload data.The approach uses comparator
neural networks, one per site, which learns to
predict the relative speedup of an incoming job
using only the resource utilization patterns,
observed prior to the job’s arrival. The learning
algorithm overcomes the lack of job-specific
information by learning to compare the relative
speedups of different sites with respect to the same
job, rather than attempting to predict absolute
speedups.

Siegall and Steenkiste(1994) presented an
architecture for a system that supports the
automatic generation of parallel programs with
dynamic load balancing. The measurements
demonstrate that load balancing overhead can be
kept low by proper adjustment of load balancing
parameters, and that the load balancer can rapidly

-adjust the work distribution in a heterogeneous

environment. The results also showed that
techniques that overlap load balancing with
computation are effective in reducing load
balancing overhead. However the nature of
algorithm is best suited for cluster computing rather
than load-balancing.

Zaki et al (1997) examined the behavior of global
vs. local and centralized vs. distributed load
balancing strategies. Different schemes were
analyzed for various applications under varying
program and system parameters. A hybrid compile-
time and runtime modeling and decision process is
presented which customizes the best scheme along
with automatic generation of parallel code with
calls to runtime library for load balancing. However
the method requires use of compilers specific to
certain machines and further suffers from the case
that nodes themselves cannot act as server thereby
reducing scalability. -

Parallel incremental scheduling, a new approach for
load balancing is presented by M.Y.Wu (1995).1t
combines the advantages of static scheduling and
dynamic scheduling, adapts to dynamic problems
and produces high quality load balance. However
the presence of central control makes it unsuitable
for grid environments.

Bevilacqua (1999) introduces a method to obtain
efficient load balancing for data parallel
applications through dynamic data assignment and
a simple priority mechanism on a heterogeneous
cluster of workstations assuming no prior
knowledge about the workload. This strategy
reduces the overhead due to communication so that
it could be successfully employed in other dynamic

A Novel ANN based load balancing technique for heterogeneous environment A-2

Appendix-A

Publication

balancing approaches. While this algorithm is
suitable for data centric applications/grids but
performance detoriate rapidly for computation
centric applications/grids.

S.Ichikawa et al. (2000) describes static load
balancing scheme for partial differential equation
solvers in a distributed computing environment.
This method considers both computing and
communication time to minimize the total
execution time with automatic data partitioning and
processor allocation. However, large scale and non-
embarrassingly parallel applications are . not
discussed. The taxonomy for describing .and
classifying growing number of different load
balancing techniques is presented by Osman
(2002).The potential benefit of sharing jobs
between independent sites in a grid computing
environment is discussed by Ernemann (2002).In
this paper the usage of multi-site applications leads
to even better results under the assumption of a
limited increase on job execution time due to
communication overhead. The results showed that
the collaboration between sites by exchanging jobs
even without multi-site execution significantly
improves the average weighted response time.
Schopf(2002) presented a general architecture for
scheduling on grid. A Grid scheduler (or broker)
must make resource selection decisions in -an
environment where it has no control over the local
resources, the resources are distributed, and
information about the systems is often limited or
dated. Furthermore, the idea has not been put to
practical use and experimental results limits to well
b$ehaved, embarrassingly parallel examples.
Karatza (2003) et al. presented load sharing and job
scheduling in a network of workstations
(NOW).Along with traditional methods of load
sharing and job scheduling, it also examines
methods referred to as epoch load sharing and
epoch scheduling respectively. Again the algorithm
is not suitable for highly flexible organization such
as grid.

Load sharing policies in a heterogeneous
distributed system is investigated by Karatza
(2002), where half of the total processors have
double the speed of the others. Processor
performance is examined and compared under a
variety of workloads. A priori knowledge of job
execution time is not considered in this paper which
leads to high overheads for estimating job times.
Further for quite a long initial time the algorithm
gives erroraneous result. Cheng.JueiYu et al.
(2005) presented a prediction-based scheduling
algorithm that predicts task execution time and then
allocates tasks among workers according to the
predictions. This leads to high overheads for
estimating job times. Further for quite a long initial
time the algorithm gives erroraneous results.

Cao et al. (2003) presented an agent based grid
management infrastructure is coupled with a
performance-driven task scheduler that has been
developed for local grid load balancing. The agents
require extensive interference at the client end thus
reducing the effectiveness. The impact of
fluctuations in the processing speed on the
performance of grid applications is presented by
Dobber et al. (2004).Experiments shows that
burstiness in the processing speed has a dramatic
impact on running times which heightens the need
for dynamic load balancing schemes to realize good
performance. Another aspect on which more
research has to be done on the aspect of selecting
the best predicting methods for processor speeds.
Babak Hamidzadeh et al. (1995) described a
general model for describing and evaluating
heterogeneous systems that considers the degree of
uniformity in the processing elements and the
communication channels as a measure of the
heterogeneity in the system. The performance of a
class of centralized scheduling algorithms referred
to as SASH in computing environments with
different degrees of heterogeneity is investigated.
This approach was compared over DSS in highly
heterogeneous system and the work demonstrated
that, even with a small no of processors, performing
a sophisticated scheduling technique on dedicated
processor can produce substantial improvements in
total execution times. Aly E. EI-Abd(1997) et al.
proposed a novel neural based solution to the
problem of dynamic load balancing in
homogeneous distributed systems. The winner-
Take-All (WTA) neural network model is used for
implementing the selection and location policies of
a typical dynamic load balancing algorithm. Again
the process is well suited if initial estimations are
highly accurate which in uncentralized environment
like grid computing is not possible.

Labonte (1999) presented the implementation of
self-organizing map neural networks on distributed
parallel computers consisting of identical and of
disparate workstations. The implementation is able
to reduce the computational time required by SOMs
to a fraction of the time required by a single
computer. Issues related to dynamic scheduling
have not been discussed. Atun (2000) described a
new implementation of Kohonen Self-Organizing
Map for static load balancing problem and
examines variations of the algorithm. The
algorithm preserves neighborhood relations. Load
balancing is incorporated into SOM algorithm.
Because of the high degree of retention required in
building neighborhood trees it is difficult to use the
algorithm for larger no of nodes.

Gursoy (2000) implemented static load balancing
algorithm based on Self-Organizing Maps (SOM)
for a class of parallel computations where the

A Novel ANN based load balancing technique for heterogeneous environment A-3

Appendix-A

Publication

communication pattern exhibits spatial locality. The
communication overhead can be reduced if the
physically nearby and heavily communicating tasks
are mapped to the same processor or to the same
group of processors. However issues related to
dynamic load balancing has been overlooked.Maris
described back propagation neural network based
dynamic load balancing algorithm which distributes
remote procedure calls among cluster servers,
based on statistics about execution time of remote
procedure calls. The implementation was used in
cluster of Enterprise JavaBeans containers,
although the described approach can be used with
any type of distributed components that uses
synchronous remote invocation protocol, for
example, WEB services. Neural network based
approach was compared to traditional static
algorithms of EJB load balancing. In test cases the
presented algorithm produced up to 176%
performance increase compared with Round-Robin
load balancing policy. However this algorithm is
much slower than static load balancing algorithms.
Neural network causes significant overhead.

MATERIALS AND METHODS :

The methodology comes as a solution to
the problems mentioned in problem domain. Load
balancing is very difficult and challenging task to
achieve. We consider load balancing in the
following manner: Assume a set of n parallel
heterogeneous (N=1,2,3...n) and a set of m
independent jobs(J=1,2,3..m); the jobs arrive one
by one, where each job has an associated load
vector and has to be assigned to exactly one of the
nodes, thereby increasing the load on that node.
The main objective of load distribution is the
division of workload amongst available group of
nodes in such a way so that overall completion time
of the parallel program is minimized. The workload
of a node consists of the combined demands of
resources from all of the local processes. The task
of load balancing can be viewed as a strategy-
learning task, which can be decomposed into
learning of load indices and policies. The load
indices are used by the policies to make decisions
to balance the load. It is hard to find an optimal
solution to achieve load balancing for a specific
application due to dynamic nature and non-
reliability of computational environment.

Initially each node has a list of jobs to be
executed and the time when they have to start.
Based on the job’s characteristics as well as
information about load history at various sites, it is
determined where to execute each incoming job.
When job reallocation is required, the appropriate
jobs will be selected from the job queue on a node
and transferred to another node. A job is migrated

from one node to another; so its net effects are
reduced load on resources local to the originating
node and increased load on resources local to the
remote node.

We incorporated machine learning and
artificial intelligence as a vehicle for automation of
load balancing. They have an ability to learn how to
do tasks based on the data given for training or
initial experience. Since Neural Nets are best at
identifying patterns or trends in data. Their ability
to learn by examples makes them very flexible and
powerful. Either humans or other computer
techniques can use neural networks with their
remarkable ability to derive meaning from
complicated or imprecise data, to extract pattern
and detect trends that are too complex to be
noticed. A trained neural network can be thought of
as an "expert" in the category of information it has
been given to analyze.

Neural networks with their remarkable
ability to derive meaning from complicated or
imprecise data can be used to extract patterns and
detect trends that are too complex to be noticed by
either humans or other computer techniques. A
trained neural network can be thought -of as an
"expert" in the category of information it has been
given to analyze (Chris Stergiou, 1996).

The technique of Neural Networks which
we adopted for load balancing in Grid is Kohonen
Maps. The Kohonen Map is a Self-Organizing Map
of Neural Network meaning that no expected
output exists to judge by, and the network finds and
reinforces patterns on its own.

Functional Modules
Functional modules of the system are as follows:
Resource Collector

Resource Collector is the most significant
module of our grid. As it acts as a daemon and
without this daemon the working of the system is
impossible. Its functionalities are as follows:

o Gathers resource information in grid.

o It creates and save the log file on the basis of
accumulated information from each node
present in grid.

s Start or stop the Resource Monitor & Analyzer,
Task Controller and KNN Load Balancer
daemon.

o It parses the generated log file according to the
conditions.

Resource Monitor

It checks the resource information
accumulated by Resource Collector, displays it,

A Novel ANN based load balancing technique for heterogeneous environment A-4

Appendix-A

Publication

arrange this information in user readable form. The
information is updated after the specified time
period given by user.

Resource Analyzer

It display load statistics, read the log file
generated by Resource Collector and generate
dynamic graphs for load, memory, time and status.
The graphs are updated after regular time period.

Knn Load Balancer

This is another important module of our grid.
The features of KNN Load Balancer are as follows:
» Read the parsed log file with respect to the
parameters required by KNN-Learning. In

short it collects the offline information of

resources.

e Initialize learning rate and neighborhood
parameters.

o Initialize neurons (nodes) with random
values.

e Euclidean distance of input neurons is
calculated to find the winner. Weights of
the neuron are updated and the process is
repeated to find another winner.

e Perform task rendering and provide output
results,

» Forward the task and optimal nodes
information to Task-Mapping Engine,
Process migration is also performed from
this engine,

Task Controller
It has three sub modules.
Task Collector

It acknowledges tasks from external environment
and keep them in a queue and writes task
information in log file. It parses the log file to get
required task information.

Task Administrator

It gives interface to user for communication with
our grid. Handles user requests for load task, edit
task, save task, create task and remove task.

Task Monitor

o It examines all tasks present in queue and
gives the status for each individual task,
whether it is running, finished, or about to
finish.

* [t matches task completion time with its
approximate weighted factor in order to get
the efficiency.

Performance Monitor

e |t extracts resource information from
resource monitor and task information from
task monitor.

* In case of load imbalance pass the
current extracted information to KNN
Load Balancer in order to balance the

load on grid.
i]

Tak Task
Mamager || Monitor

Loat tlacigReanciig

Figure 1: Architecture diagram
ALGORITHM
Step 1: Initialize size of network, no of iterations.

Step 2: Set initial and final values of learning rate a
and neighborhood radius 6 respectively,

Step 3: Initialize the weight vectors w;; of the nodes
randomly.

Step 4: Calculate the load of each node by using
the formula

Load=current CPU utilization/total possible CPU
utilization

Step 5: While (t #t,,,,) do

o Select lightly loaded node from the nodes.

A Novel ANN based load balancing technique for heterogeneous environment A-S

Appendix-A

Publication

e Select random input vector X from the
input space S.

e Compute the Euclidean distance of each
neuron j by using the formula

DG)=Z(W; —x;)2
1

e Find Index j such that D(j) is minimum.

o Update weight vectors of nodes by using
the formula

Wij (new) =wij (Old) +a [Xi-Wij (Old)]

o1

Step 6: Update learning rate. 4

Step 7: Reduce Neighborhood Radius.
Step 8: Update load of each node.

Step 9: Repeat from step 5 until max iterations is
not reached.

EXPERIMENTAL SETUP

Our system consists of 100 nodes with Linux
Operating system on them interconnected via
Ethernet LAN. As a fundamental base we:;'have
adapted openmosix as the process/task monitoring
and management tool. We benchmark two
computationally intensive applications which are
matrix multiplication and PovRay.For the sake of
comparison we compare our results with the case
when dynamic scheduler is in place. We also
compare our results with static scheduler.

RESULTS

KNN(With Training) vs. Other Dynamic Algorithms

w

I

-

BKNN
B SASH

KNN(No Training) vs. Other Dynamic Algorithms

BKNN
BSASH
aDSssS

Execution time(sec)

2 4 6 8 10 12 14 18 18 20
No of Pracessors

Fig 3: KNN (No Training) vs. other dynamic Algorithms

Initially we see that execution time of KNN is
higher but as no of processors increases the
difference begins to fall off. And its performance is
better as compared to other dynamic algorithms.
This is because KNN consumes lot of time for
training,

6
55
,g 5
4.5
¥ 4
5 35 BKNN
g 3 E M SASH
8 2..’2) i oDSS
’ﬂ‘ 15
Wy
0.5
0

2 4 6 8 10 12 14 16 18 2
No of tasks

Fig 4: KNN (With Training) vs. Other Dynamic Algorithms

w.r.t No of tasks

65

5
.55
g5

45
T H [mKNN
29 I |msasH
g 25 H looss
g 2
g s

05

0

0DSS

Execution time(sec)

o
oL =Wt WA

No of Processors

| SR

2 4 6 8 10

12

14

16

18

>F ig 2: KNN (With Training) vs. Other Dynamic Algorithms

In the above graph KNN is compared with other
dynamic algorithms and we see that execution time
starts decreasing, as the no of processors increases
thus improving the performance as compared to
others.

No of tasks

Fig 5: KNN (No Training) vs. Other Dynamic Algorithms w.r.t
No of tasks

In fig 4 and fig 5 the general trend is same but in
fig 4 we see that KNN takes less time in the
beginning as it is trained but as no of tasks
increases, KNN takes more time to complete the

job as the no of processors is also fixed. But the

performance of KNN is still better than other
dynamic algorithms. KNN incurs some delay as no
of tasks increases due to context switching between
the processors.

A Novel ANN based load balancing technique for heterogeneous environment A-6

Appendix-A

Publication

KNN(With training) vs Static Scheduler

—+— KNN
~#— Static Scheduler

Execution time(sec)

0 2 4 6 8 10 12 14 16 18 20 22

No of Processors

Fig 6: KNN (With Training) vs. Static Scheduler

comparison with other
Schedulers.

dynamic and Static

REFERENCES

Aly E. EI-Abd and Mohamed I. EI-Bendary, 1997.
“A Neural Network Approach for Dynamic Load
Balancing In Homogeneous Distributed Systems”,
30th Hawaii International Conference on System
Sciences (HICSS) Volume 1: Software Technology
and Architecture, 1997.

Alessandro Bevilacqua,1999. “A Dynamic Load
Balancing Method on a Heterogeneous Cluster of
Workstations”; Informatica (Slovenia), 23(1);1999.

KNN(No Training)vs Static Scheduler

—~ 35

(2]

& 3

g 25

= 2 ——KNN

_g 1.5 ~—8— Static Scheduler
2 1

% 05

=

o

0 2 4 6 8 10 12 14 16 18 20 22

No of Processors

Attila Glrsoy, Murat Atun, 2000. “Neighborhood
Preserving Load Balancing: A Self-Organizing
Approach”, Euro-Par Parallel Processing, LNCS
1900, pp. 324-41, 2000.

A. Osman,H.Ammar,2002.“Dynamic loadbalancing
strategies for parallel computers™; Scientific: 110-
120, 2002.

Babak Hamidzadeh, David J. Lilja, Yacine Atif,
1995.“Dynamic scheduling Techniques for

Fig7: KNN (No Training) vs. Static Scheduler

These figures show that the general trend is same as
before except that in fig 6 we see that KNN
outperforms static scheduler after some time. We
also see that the difference is much smaller in the
beginning because static scheduler also takes some
time for their own calculation.

CONCLUSION

In this paper we presented a load balancing
technique based on artificial neural network for
heterogeneous environment for computationally
intensive applications. Resource management and
scheduling in heterogeneous environment is
challenging task to achieve. Load balancing is done
in such a way so as to minimize job execution time.
We incorporated SOM also known as Kohonen
Networks a technique of ANN for automation of
load balancing. As the results shows the
performance of Kohonen networks with respect to
other dynamic algorithms and the case where static
scheduler is in place. The results showed that the
performance was analyzed for large no of tasks,
processors in response to execution time. And we
can see the fluctuation in execution time with
varying no of processors, task sizes, no of tasks etc.
As Kohonen takes much time for training but once
it is trained it gives better performance in

‘ Heterogeneous Computing Systems”, Concurrency:
practice & Experience, Vol. 7, No. 7,pp. 633-
652,0ctober 1995.

Bruce.S.Siegell, Peter Steenkiste, 1994. “Automatic
generation of parallel programs with dynamic load
balancing”, Proc. of the Third IEEE International
Symposium on High Performance Distributed
Computing; San Francisco, CA, 1994.

Carsten Ernemann, Volker Hamscher, Uwe
Schwiegelshohn, Ramin Yahyapour, 2002. “On
Advantages of Grid Computing for Parallel Job
Scheduling”; 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGRID'02), 2002. .
Cheng-Juei Yu ,Po-Han Chen, and Sheng-De
Wang,2005.“Adaptive Task Scheduling Algorithms
for Master-Worker Applications in Grid
Computing”; Eleventh Workshop on Compiler
Techniques for High-Performance Computing,
2005.

Chris Stergiou, 1996. “What is a Neural Network”,
http://wwwhomes.doc.ic.ac.uk/~nd/surprise_96/jou
rnal/voll/cs1 1/articlel.html.

Gilles Labonté and Marc Quintin, 1999. “Network
Parallel Computing for SOM Neural Networks”, In

A Novel ANN based load balancing technique for heterogeneous environment

A-7

Appendix-A

Publication

the proceedings of the High Performance
Computing Symposium 1999,

Hans Urich Heiss, M. Dormanns, 1993. “Task
Assignment by Self-Organizing Maps”;In
proceedings Hd93, Internal Report No. 17/93, Dep.
of Computer Science, University of Karlsruhe.

Helen D. Karatza, Ralph C. Hilzer, 2002. “Load
Sharing in heterogeneous distributed systems”,
Proceedings of the 2002 Winter Simulation
Conference (WSC'02) - Volume 1, 2002.

Helen D. Karatza, 2003. “A Comparison of Load
Sharing and Job Scheduling in a Network of
Workstations”; Int’l journal of Simulation:
Systems, Science Technology, UK Simulation
Society, Volume 4, no: 3&4, pp. 4-11,2003.

Hiroshi Nishikawa ,Peter Steenkiste,1993.“A
general Architecture for load balancing in a
distributed memory environment”; Proc.of 13" Intl.
Conf. Dist. Computing Systems, pp. 47-54. IEEE,
Pittsburgh May 1993.

Tan Foster and C. Kesselman, editors(1999). The .

Grid: Blueprint for a Future Computing
Infrastructure, Morgan Kaufmann Publishers.

Ian Foster, C. Kesselman, and S.Tuecke, 2001.“The
Anatomy of the Grid-Enabling Scalable Virtual
Organizations”;International Journal of High
Performance Computing Applications, Vol. 15, No.
3, 200-222.

lan Foster, 2002. “What is the Grid? A Three Point
Checklist”, GRIDToday, no.100136.

Ian Foster,C.Kesselman, J.M. Nick, S.Tuecke,2002.
“The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems
Integration™; Open Grid Service Infrastructure WG,
Global Grid Forum,

Jeniffer M Schopf, 2002. “A general Architecture
for scheduling on the grid”, Special issue of Journal
of Parallel and Distributed Computing on grid
computing.

Junwei Cao, Daniel P. Spooner, Stephen A. Jarvis,
and Graham R. Nudd, 2003. “Agent- Based Grid
Load Balancing Using Performance-driven Task
Scheduling”;Proc.of 17th IEEE International
Parallel & Distributed Processing Symposium
(IPDPS 2003); Nice, France; April 2003.

MarisOrbidans,“ANeuralNetworkbaseddynamicloa
dbalancingalgorithm”;http://maris.site.lv/loadbalan
cing/

Menno Dobber, Ger Koole, Rob van der Mei, 2004.
gnamic Load Balancing for Grid Applications”;
1®Int’1Conference, ProceedingsHiPC; Bangalore,
Indla, dec19-22, 2004.

Min You Wu, 1995. “Parallel Incremental
Scheduling”; Parallel Processing Letters,vol
5,No(4):659-670.

Mohammed Javeed Zaki, W.Li,
S.Parthasarathy,1997. “Customized dynamic load
balancing for a network of workstations™; Proc. 5th
IEEE Int. Symposium on High performance
distributed computing, Syracuse, New York,
August1997.

Murat Atun and Attila Giirsoy, 2000. “A new load-
balancing algorithm using self-organizing maps”;
EuroPar2000,Parallel Processing.6™ International
Euro-Par Conference Germany,2000

Pankaj Mehra, Benjamin Wah, 1993. “Automated
Learning of workload Measures for Loadbalancing
on a Distributed System”;Proc. of the
InternationalConferenceonParallel Processing, CRC
Press,vol. 111, pp. 263-270, Aug. 1993,

Shuichi Ichikawa, S.Yamashita, 2000. “Static Load
Balancing of Parallel PDE Solver for Distributed
Computing Environment” Proc. ISCA 13th Intl
Conf, Parallel and Distributed Computing Systems
(PDCS2000); pp. 399--405 (2000).

Teuvo Kohonen, 2001. “Self-Organization and
Associative Memory”; Third, Extended Edition,
Springer-Verlag, Berlin Heidelberg.

A Novel ANN based load balancing technique for heterogeneous environment A-8

APPENDIX-B

Appendix-B User Manual

B. USER MANUAL

The user manual contains the screenshots to give an insight into the software developed.
Fig 1 is the main application window. Green color shows the nodes which are available
or online and the red shows which are unavailable or offline. The progress bar of load
and memory shows the load and currently used memory from the available memory on
each node. The label to the right shows all memory. Fig 2 shows file execution. Any
executable file can be executed from this window by selecting the criteria as shown in fig
2. Resource analyzer will display the resource information in the forms of graphs as
shown in fig 3 and fig 4. Graphs will be generated on the basis of speed, memory, load
and status and will be updated after user defined time (refresh rate).Fig 5 shows memory
overview. Figure 6 shows Processes on Node. Fig 7 shows Task Submission. Fig 8 shows
Queued tasks buffered in grid Scheduler. Fig 9 shows Runmng Jobs. Fig 10 shows Grid

Node and Resource Infonnatlon Fig 11 and figl2 shows lo
openMosmvnewl‘; T T R

}_
Eile ' View Config. ‘Collector 'Belp .

......... é}‘&] g ;}_ISDl Al*?l refres|

clusternodes load-balandng efidency .

172.16.1.66 N 29%
172,16.1.87 | reruee s LT ' 48%

172.16.1.86 i) 10%

L—_J
' DR

172.16.1.88 Vo] I 1 98%

1183 TR

172.16.1.89 25 {2539 [1005 9%

| A
Eiiresten

17216190 |(Zz3 ol ' 0%

lReady.

V OpEH H’IOSIXVIEW

&% openMosixview Advanced Executmn

llrootljbproject}jfreechan-l.O.U.zip l
(you can now spedify additional command-line arguments)
{2 no migration : ‘ _
O runhome - r~host-chooser '
@ rnon iy ____‘, ~“runjob on
O cphjob R J‘f o _cluster-node
Qiojob ' (@[
O no decay \\//" :
QO slow decay
O fastdecay ~
O paraliel [% - execute]

—

Fig 2 File Execution

Novel ANN based load balancing technique for Heterogeneous Environment B-1

Appendix-B

User Manual

L OpenpMosixAanalyzer 1.5

saxoseTar T Amos 0201
hﬁﬂh.ﬂth J‘ L Py ..th.ﬂ
,. Rl
hd
< . 2
Fig 3 Load Overview
| [l svtorekesh (10 &4 LOAD - OVERVIEW ;-
. ’ ummJ
| nformations about the cluster VL e
NED fom: | 9.92006-191630 - "'is:. | 3.102006-028.42
Load Load-balancing = Memory avail.MB CPUs
ﬁ_‘.“.;l:.d BRI - = means] 254 o MAAA.AI . ..‘ﬂ’
\ E oo ' in 5 i 2
o1 max : 255 1
&=
Eal P
8 7,
|5
2
x|~
Al
= 1
s |
s
¢ | =
taa
Gl -
s b4
‘I % ik % I
displaying chister inf
z = 'én

Fig 4 Resource Overview

Novel ANN based load balancing technique for Heterogeneous Environment

B-2

Appendix-B

User Manual

1v OpenMosixAnalyzer 1.5 -1t
File Help _ TR : & o
Z| B[P |ON?] [faworehesh] [10 &ls MEMORY- OVERVIEW
P 200%.

displaying the memory overview now

Fig 5 Memory Overview

-

M processes on node03.homenet R - |

m:ﬁé"ﬁéé“'}l all e pro%ésseg :, | last managed process:
pid _ln#‘ ! lock lnmigs lmiggr Istat [cmdline Inice id l

€1 o0 o 0] s init o 0

B0 o o 0 0 S kjournald 0 o

A1 o o 0 0 S oM_migd o 0

812 o o 0 0 s oM_infoD 0 o

&13 0o o 0 0 S memsarter 6 0

B2 o o 0 0 S keventd 0 0

A3 o o 0 0 S kapmd 0 o
337780 0O 0 0 s sshd 0 0

B4 o0 o 0 0 S ksoftrqd_CPU0 19

£240150 © 0 0 S mingetty 0 0
£240160 0 0 0 s mingetty 0 o
£240170 0 0 0 s mingetty 0 O

£240180 0 0 0 5 mingetty 0 0
£3%40190 O 0 0 s mingetty 0 0
$5240200 0 Q (] s mingettv 00
[manage procs fromremote] [80 processes onthis system

Fig 6 Processes on Grid Node

Novel ANN based load balancing technique for Heterogeneous Environment

B-3

Appendix-B

User Manual

- Opﬁohs

Sub joﬁs 8
width :
Heigth:

tnput file :
Output file :

Output type:

Attributes :

ulusr/local/share/pcwray-B.Gfscenes/advanced/blscI l ces]

Eusr/local/share/povrav—3.6/scenesfadvanced/out:l I ese I

“TaskiD «

Jinput i

Fig7 Task Submission

iE 0k

Size
1 BOOX600
10 800x600
11 B800x600
12 BOOX600
13 800x600
14 800x600
15 800x600
TSN s00x 500
2 800x600

fustflocal/share/povray-3.6/scenes/advanced/desk.pov /mnt/E/MUNIZAOUTPUT /4tasksB800x600/bl.
Justflocalfshare/povray-3.6/scenesfadvanced/desk.pov MUNIZAOUTPUT/16tasks800x600/b10.xpm , S
Justflocalfsharefpovray-3.6/scenes/advanced/desk.pov /MUNIZAOUTPUTY/16tasks800x600/n11.xpm
Jusrflocal/share/povray-3.6/scenes/advanced/desk.pov MUNIZAOUTPUT/16tasks800x600/b12.Jpeg
fustflocal/share/povray-3.6/scenesfadvanced/desk.pov /MUNIZAOUTPUT/16tasks800x600/b13.Jpeg
Justflocalfshare/povray-3.6/scenesfadvanced/biscult.pov /MUNIZAOUTPUT/16tasks800x600/b14.jpeg
Justflocalfsharefpovray-3.6/scenes/advanced/desk.pov /MUNIZAOUTPUT/16tasks800x600/b15.png
fustflocalfshare/povray-3.6/scenes/advanced/desk.pov /MUNIZAOUTPUT/16tasks800x600/b16.xpm
fusrflocalfsharefpovray-3.6/scenesfadvanced/desk.pov /mni/E/MUNIZAOUTPUT/4tasks800x600/b2. e

Sub job 1D

v

)2 Wk el)

B AN e BT A e B

End Line Jremp file i¢ Istatus o Perd : o .

1
2

299 ftmpftmpKL3iB9.ppm FINISHED 96 %]
599 AMptmMpTIPFYQ.ppm FINISHED 98 % -

Fig 8 Queued Tasks Buffered in Neural Network Scheduler

Novel ANN based load balancing technique for Heterogeneous Environment B-4

Appendix-B User Manual

19 Show running jobs

Taskid ~]Jobid {Pid | Node 1d |
1 13 7344 local
1 14 7345 tocal
1 15 7346 local
1 16 7347 local
1 17 7348 local
1 18 7349 local
1 19 7350 local
1 20 7351 local
1 21 7352 local
1 22 7353 3
1 23 7354 3
1 24 7355 3
1 25 7356 3
1 26 7357 6
1 27 7358 6

11 28 7359 6

41 29 7360 6
1 30 7361 6

Fig 9 Show Running Jobs

b Grid Resource information '

~Local

Node 1d "§5 } I

Automatic proc, mlgiatlon: ltrue }

~Nodes

id v [Cpus]Load]Avall. Mem fSpeed]Status I
1 -101 <101 0O Mb -101 1
2 -101 ~-101 oMb -101 1

l Refresh]

Ok

Fig 10 Grid Node and Resource Information

Novel ANN based load balancing technique for Heterogeneous Environment B-5

Appendix-B User Manual

L1 TaskLogfile - WordPad

Fia Ed View Insort Format: Hep

L@ o B |

DeH &R AL e L :
Size Jobs STATUS SUBMIT DATE/TIME COMPLETE DATE/TINE TOTAL_TIME
2600x400 84 BFINISHED 806 06 06 / 11:55 PN Q06 06 06 / 11:56 PX 80.166667
8Node ID 81

BAvg Mem Used 812

@Avg Load 83

8CPUs @1

@Speed @25559

@Status BOnline

@600x400 B4 QT INISHED 806 06 06 / 11:58 PH 807 06 06 / 12:03 AM 80.18
@Node 1D @1

@ivg Mem Used 812

2Avg Load 84

BCPUs 81

@Speed 025559

@Status @0nline ’

21024x768 04 @FINISHED 805 06 06 / D1:49 AM 807 06 06 / 12:10 AN R0.416667
€Node ID 81

@ivg Mem Used Q148

@Avg Load 8135

BCPUs 21

@Speed 825559

8Scatus @0nline

8600x400 84 8F INISHED 807 06 06 / 12:15 AR 807 06 06 / 12:16 AX 60.05
8Node ID @1

@Aivg Mem Used 812

84vg Load @1

€CPUs 81

83peed 925559

@Status @Online

8700x500 82 BFINISHED 807 06 06 / 12:20 AM Q07 06 06 / 12:22 aX 80.0166667
8Node ID 81

8Avg Mem Used @12

8Avg Load 8205

8CFUs 81

@Speed 825559

8Scatus ROnline

R800x500 as @FINISKED 807 06 06 / 12:19 AN 807 06 06 / 12:22 AN 80.0333333
Btiode ID Q1 .

8Avg Mem Used 8312

8Avg Load 8244

8cPus 81

A&nesd R26658Q

For Help, prass FL

Figll Task Log file

Novel ANN based load balancing technique for Heterogeneous Environment B-6

Appendix-B User Manual

v 3 Imodified] - KWrite

flle Edit View Bookmarks Tools Settings Help

NHE AV oOLareR R A

ate Time Load Speed Total Mem Used_Mem No_of_Cpus
.3.2007-13.16.49 0 0 ©
.2007-13.16.48 0 0 O
.2007-13.16.49 0 0 O
.2007-13.16.49 0 0 O
.2007-13.17.2 12 42039 503 46 1
.2007-13.17.14 24 42039 503 46 1
.2007-13.17.26 26 42039 503 46 1

1

1

[~

[=N~}

V]
o]
[¢]
o]

.2007-13.17.38 17 42039 503 46
.2007-13.17.50 17 42039 503 46
.2007-13.18.2 32 42039 503 46 1
.2007-13.18.14 0 42039 503 45 1
.2007-13.18.26 0 42039 503 45 1
.2007-13.18.38 1 42039 503 45 1
.2007-13.18.50 O 42039 503 45 1
.2007-13.19.2 0 42039 503 45 1
.2007-13.19.14 7 42039 503 46 :
.2007-13.19.26 5 42039 503 45 :
.2007-13.19.38 4 42039 503 45 :
.2007-13.19.50 5 42039 503 45 :
.2007-13.20.2 6 42039 503 45 1
.2007-13.20.14 4 42039 503 45 1
.2007-13.20.26 3 42039 503 45 1
.2007-13.20.38 3 42039 503 45 1
.2007-13.20.50 3 42039 503 45 1
.2007-13.21.2 4 42039 503 45 1
.2007-13.21.14 4 42039 503 45 1
3 2007-13.21.26 5 42039 503 45 1

ne: 1 Col: 21 INS NORM *

mmmmmmmmmmmmmmmaaaaaaap

UJUJWWWWWWWWWWWWWWWWWWWWWWW

: Gﬁﬂ)m

Fig 12 Resource Log file

Novel ANN based load balancing technique for Heterogeneous Environment B-7

