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Preface

During the last few decades, the hydromagnetic flow and heat transfer of a viscous fluid
along fixed or moving surfaces is one of the basic and important problems in many
engineering and technological applications. For example, magnetohydrodynamics
(MHD) generators, pumps, meters, bearing and boundary layer control, liquid metals,
water mixed with a little acid, hot rolling, wire drawing, glass-fiber and paper production
and many others. First Pavlov [1] discussed the effects of transverse magnetic field on the
flow past a stretching sheet. Following the pioneering work of Pavlov [1], the flow over a
moving surface in the presence of a transverse magnetic field has been studied by many
researchers [2-17]. In 1988, Wang [18] has investigated the steady flow of a viscous fluid
outside of a stretching hollow cylinder in an ambient fluid at rest. Aldos and Ali [19]
discussed the MHD free forced convection from a horizontal cylinder with suction and
blowing/injection. Recently, Ganesan and Loganthan [20] presented the effect of the
magnetic field on a moving vertical cylinder with constant heat flux. Very recently, Ishak
et al. [21] reported the magnetohydrodynamics (MHD) flow and heat transfer analysis
due to a stretching cylinder. The dissertation is arranged as follows:

Chapter one contains some basic definitions and equations. Furthermore, the concepts
of solution methods also included.

Chapter two is concerned to present the work done by Ishak et al. [21]. The governing
partial differential equations are converted into non-linear ordinary differential equations.
All the result are reproduced by an implicit finite difference scheme known as Keller box
method [22] and perturbation technique.

Chapter three aims to extend the work of [21] into two directions: (i) to analyze the
flow in a porous medium and (ii) to include the effects of thermal radiation. The problem
is formulated in such a way that the flow equations are transformed into non-linear
ordinary differential equations by employing the similarity transformations. The
numerical and perturbation solutions of dimensionless velocity and temperature fields are
computed. The effects of embedded parameters on the flow and temperature profiles are
discuss through graphs. The numerical values of the skin-friction coefficients and the

Nusselt number for different parameters are also given.
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Chapter 1

Some basic definitions and equations

The main purpose of this chapter is to present the basic definitions and flow equations. More-
over the basic ideas of solutions techniques, namely, the Keller Box method and Perturbation

technique are explained.

1.1 Definitions

1.1.1 Velocity Field

In dealing with fluids in motion, we shall necessarily be concerned with the description of a
velocity field. At a given instant the velocity field, V, is a function of the space coordinates (
z, y, z) and time t. The velocity at any point in the flow field might vary from one instant to

another. Thus the complete representation of velocity is given by
V =V(z,y,2,t). (1.1)

1.1.2 Flow

A material that deforms continuously when different forces act upon it. If the deformation

continuously increases without limit,this phenomenon is know as flow.



1.1.3 Fluid

Any liquid or gas that cannot sustain a shearing force when at rest and that undergoes a

continuous change in shape when subjected to such as stress.

1.1.4 Viscosity

The internal friction of a fluid, produced by the movement of its molecules against each other.

Viscosity causes the fluid to resist flowing.

Shear stress

Vi ity = 1.2
1scosity rate of shear strain’ (1.2)
or
.
p=—, (1.3)
dy

1.1.5 Density

Density of a fluid is defined as the mass per unit volume. Mathematically, it is denoted by p

and defined as

. 0m
p= allfl_n.o v’ (1.4)

where v is the total volume element around the point C and dm is the mass of the fluid within

dv.

1.1.6 Kinematic Viscosity

It is the ratio of absolute viscosity p to the density. It is denoted by v and given as

I
v = o (1.5)



1.2 Classification of fluid

1.2.1 Ideal fluid

A fluid which does not depend upon viscosity is called an ideal fluid or perfect fluid. Practically
this type of fluid does not exist. However, the fluid with negligible viscosity may be considered

as an ideal fluid.

1.2.2 Real fluid

Real fluids are those in which the viscosity of the fluid has significant effects on the fluid motion.
In otherworld we can not neglect the viscosity effects on the motion. Real fluids are further
divided into two categories.

(i) Newtonian fluid

(i1) Non-Newtonian fluid

1.3 Types of Flow

1.3.1 Laminar Flow

A flow in which the paths of fluid particles are parallel to one another. During laminar flow,
all the fluid particles move in distinct and separate layers; there is no mixing between adjacent
layers.

1.3.2 Turbulent Flow

The flow of a fluid in which the path of the fluid particles at any point varies rapidly in both
magnitude and direction. Turbulent flow is characterized by mixing of adjacent fluid layers.

1.3.3 Uniform Flow

If the flow velocity has the same magnitude and direction at every point in the fluid it is said

to be uniform.



1.3.4 Non-Uniform Flow

If at a given instant the velocity of fluid is not the same at every point then the flow will be
non-uniform.

1.3.5 Steady Flow

A flow in which properties associated with the motion of the fluid are independent of the time
so that the flow pattern remain unchanged with the time, is said to be steady flow.

1.3.6 Unsteady Flow

A flow in which properties associated with the motion of the fluid depend on the time so that
the flow pattern varies with time, is said to be unsteady flow.

1.3.7 Compressible Flow

A flow in which the density of the fluid is not constant,is called compressible flow. All the gases
are, generally treated as a compressible flow.

1.3.8 Incompressible Flow

A flow in which the density of the fluid remains constant throughout the flow is called incom-

pressible flow. All the liquids are, generally considered as a incompressible flow.

1.4 Fundamentals of heat transfer

1.4.1 Conduction

When a temperature gradient exists in a body, experience has shown that there is an energy
transfer from higher temperature region to lower temperature region. We say that energy is
transferred by conduction and that the heat transfer rate per unit area is proportional to the

normal temperature gradient, given by

NS
SR



—

or

a0
q= —kAg‘;, (1‘6)

where g is the heat transfer rate, A is the area, 86/0z is the temperature gradient in the
direction of heat flow and k is the positive constant and is called the thermal conductivity of

the material.

1.4.2 Convection

It is well known phenomena that a hot plate of metal will cool faster in front of a fan than
when exposed to still air. We can say that the heat is convected away and we call the process

convection heat transfer.

1.4.3 Radiation

Radiation heat transfer is concerned with the exchange of thermal radiation energy between
two or more bodies. No medium need exist between the two bodies for heat transfer to take

place

1.4.4 Specific heat

Specific heat is the amount of heat or thermal energy required to raise the temperature of a
unit quantity of a body by one unit. It is denoted by c,. For example, at a temperature of
15°C, the heat required to raise the temperature of a water by 1K (equivalent to 1°C) is 4.186
kJkg 1K1

1.4.5 Fourier’s law of heat conduction

The Fourier’s law of heat conduction states that the time rate of heat transfer through a material
is proportional to the negative at the temperature gradient and to the area at right angles to
that gradient through which the heat is flowing.
Mathematically, it is given by
aQ _ dé

= = —kA—-, (1.7)

in which ‘Q’ is the amount of heat transferred.



1.4.6 Thermal conductivity

Thermal conductivity ‘k’ is the property of a material that shows its capability to conduct heat.
It appears basically in Fouriers Law for heat conduction. Thermal conductivity is measured in

watts per Kelvin per metre (WK _lm‘l) .

1.4.7 Maxwell’s equations

Maxwell’s equations are the set of four equations which relate the electric and magnetic field

to their sources, charge density and current density. These equations are described as

VE=2, | (1.8)
€0
V.B =0, (1.9)
0B
=—-— 1
VxE=-—, (1.10)

JE
VxB ———#0-]"}-#0605. (111)
In the above equations ¢ is the permitivity of the free space also called electric constant, pg
is the permeability of free space which is also called magnetic constant, g is the total charge
density and J is the total current density. The total magnetic field is B (=Bg + b), where b is

induced magnetic field. By Okm’s law in generalized form we have
J=0c(E+V xB), (1.12)

where o is the electric conductivity of the fluid. In the present case there is no applied
electric field, and the induced magnetic field is neglected due to low magnetic Reynold number.

Therefore, the Lorentz force in the direction of the flow in a pipe becomes
(J x B), = —oB2w, (1.13)

where By is the applied magnetic field and w is the velocity component normal to the magnetic

field and parallel to the flow.



1.5 Dimensionless numbers

1.5.1 Prandt]l number

It is the ratio of the product of dynamic viscosity and specific heat to the thermal conductivity,

and denoted by the symbol Pr and is given by

Pr= %"-. (1.14)

1.5.2 Reynolds number

It is the ratio of inertia force to the viscous force. It is denoted by the symbol Re and is given
by
Re = —, (1.15)

where L and V denote the characteristics length and characteristics velocity, respectively.

1.6 Fundamental equations of fluids

1.6.1 Equation of continuity

In any closed system, the mass is always invariant regardless of its changes in shape when
external forces are absent or the principle that matter cannot be created or destroyed. In fluid
mechanics, this law is named as equation of continuity. In other words the mass of the system
remains conserved. Mathematically, it is described as

% +V-(pV) =0. (1.16)

In cylindrical coordinates, this equation is given by

190 10v Ow
;E(TU)-F;%'{'E =0. (1.17)

10



1.6.2 Equation of momentum

When some bodies constituting an isolated system act upon one another, the total momentum
of the system remains same. In an inertial frame of reference, the general form of equations of

fluid motion or the law of conservation of momentum is

DV

where T is the Cauchy stress tensor, V is the velocity field, D/Dt is the total material derivative
and f is the body force. In cylindrical coordinates the momentum equation in components forms
is given by.

r-component:

@+u@_+2@_v2+ ow _ _@_‘_ o 13(
et vartrae  77%5:) = o T |ar \rae™) |t
10% 208% 8%
"[ﬁ@‘ﬁéﬁJ”b?]J”pf“ (1.19)

0-component:
ov ov vdv w ov\ 19p 0 (190
p(a*“a Y +T+“’$) = Trar tU [E (;%(“’)ﬂ *
10% 20u 0%
n [ﬁ@ + 28 + 3_22—] +pfo,  (1.20)
z-component:
ow Sw vow ow Op 10, ow
p ('a? et rae +“’a) = et [(FE(TBT))] *
[1 w 0w

U] 550—2+w] +pf=. (1.21)

1.6.3 Equation of energy

The energy equation is described as

Do
PCr Ty =T-L-V.q, (1.22)

11



in which

L=VV. (1.23)
In cylindrical coordinates, it is given as

18 (8T 1 0°T 8%*T
_ Lo (0T 18T o°T 24
k[r@r (Tae)+r2ae2+az2]+“¢’ (1.24)

where ¢ is the viscous dissipation function.

fu—— W

QJ_" oT voT orT
ot or r oo Oz

1.7 Solution methodology

1.7.1 Finite difference method

Finite difference method is an approximate method in the sense that derivative at a point are
approximated by difference quotient over a small interval. Assume that a function H and its

derivatives are single valued, finite and continuous functions of z, then by Taylor’s series we

have 2 3
H(z+h) = H(2) + hH'(2) + ?H”(z) + —G—H'”(z) + O(hY), (1.25)
and
h? h3
H(z—h) = H(z) - hH'(2) + ?H"(z) - —G—H”'(z) +O(hY), (1.26)

where prime denotes the differentiations with respect to z. From Egs. (1.25) and (1.26), we

may write (%)zﬂ N H(z+ h’)l — H(2) ’ (1.27)
(%Izi)zﬂ N H(z) - f(z - h), (1.28)

with an error of order h, and neglecting the second and higher powers of h. Egs. (1.27)
and (1.28) are called forward difference formula and backward difference formula respectively.

Subtract Eq. (1.27) from (1.28) gives

(dH)z=z o H(z+h)—H(z—h) (1.29)

dz h ’

12



with a leading error on the right hand side of order h2.The equation (1.29) is called a cen-
tral difference formula. Similarly we can find the approximation for second and third order

derivatives.

1.7.2 Kaeller box method

There are many numerical methods for solving the boundary layer equations in the form of
ordinary or partial differential equations in fluid mechanics, but here we used the Keller box
method. It is a two point finite-difference scheme, we first express the differential equations
as a system first-order equations. The first-order equations are approximated on an arbitrary
rectangular net with "centered-difference" derivatives and averages at the midpoints of the net
rectangle difference equations. The resulting system of equations which is implicit and nonlinear
is linearized by Newton’s method and solved by the block-elimination method.

For example, we consider the energy equation for a two dimensional constant density flow
in a symmetrical duct with fully developed velocity profile, i.e.,

or v 8T

The solution of this equation, requires initial and boundary value conditions. We consider the

boundary conditions for Eq. (1.30) are given by

y = 0, T=T,,

y = 96, T="T. (1.31)
and the initial conditions are written in the form
z=1x9, T="T(y). (1.32)

To solve Eq. (1.30) by using Keller box method, we first express it in terms of a system of two

first order differential equations by assuming

/

T =g, (1.33)

13



and Eq. (1.30) as

. P. 8T
_ir ) 1.34
1 v v oz ( )

Here the primes denote the differentiation with respect to y. The finite difference form of the
ordinary differential equation (1.33) is written for the mid point (zn, Yy J_;_l) and the finite dif-
ference form of the partial differential equation (1.34) is written for the midpoint (z =1,y ,;_1) .
Egs. (1.33) and (1.34) can be written as

T —T" qr + q'."
J Jj=1 J Jj—1 n
= = q"_ 1.
h] 2 qzzl, ( 35)
_ _ n _ qn-1
1 Q? - q?—l + q? T q_;'l—l1 _ P, u_";1 T ;1 T ;1 (1 36)
2 h hj Ty F kr, ’ '

The above Eqs. (1.35) and (1.36) can written as

7 - T - %(q;-‘ +45-1) =0, (1.37)
(s1)iqf + (s2)595-1 + (s3);(T7 + T7,) = R'};j, (1.38)
where
(s1); =1, (s2); =—1, (s3); = —%, (1.39)
R?_;__f = —/\jT}-‘;j +ai —q (1.40)
A= 2P’uz%—;. (1.41)

The superscript on u i=1 is not necessary but is included for generality. Egs. (1.37) and (1.38)

are imposed for j =1,2,.....,J — 1. At j =0 and J, we have
To=Ty, T;="T.. (1.42)

Since Eqgs. (1.37) and (1.38) are linear, with boundary condition (1.42), the system may be

14



written in matrix-vector form as

with

1 0 0 0 1 [m]
-1 = = 90
(s3); (s2);j (s3)j (s1); O 0 T;
0 0 -1 '_h%ji 1 __h%ﬁ g
(s3); (s2); (s3); (s1)j Ty
0o 0o 1 0 | |a
(m)o = Tw, (n);j=R}E, 1<5<,

(T2)j = 0’ OS]SJ_L (T2)j=Te-

2

The system of equations given by Eq. (1.43) can be rewritten as

where

g
I

Ao Co

Ad =T,
, 0
Aj1 Cr
Bj Ay

15

(6

01

5J)

[ (r1)o]
(r2)o
(r1);
(r2);
(r1);
[ (2);]

rJ

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)



and A;,B;,C; are 2 X 2 matrices defined as follows

(1 0  (s1);
Ay = A= (s3)i (s1); 1<j<J-1,
-1 =k -1 Zhin
| ) 2
S S S ; S ;
A; = (s3)g (s1)g B, = (s3); (s1); 1<ji<d
1 0 0 0
0 0
c; = 0<j<J-1 (1.48)
1 —h21'+1

The solution of Eq. (1.45) by the block-elimination consists of two sweeps. In the forward

sweep we compute I';, A;, and w; from the recursion formulas given by

Ao= Ag, I'A;1=B;, Aj=A;-T;C;4, 1 <5< J,

(1.49)
wo=rg, Wi =r; —I;jw; 3, 1<j<J,
and I'; has the same structure as Bj, i.e.,
)T = (’Y11)j (’le)j »
J ’
0 0
and although the second row of A; has the same structure as the second row of A;,
A |(ea)i (en2);
J -1 ‘h21+1
In general we may write
A |(ea)i (en2);
j =
(021); (a22);]
In the backward sweep, d; is computed from the following recursion formulas:
Aj&j =Wy, Aj&j =W; — Cj6j+1, ] =J- 1, J— 2, ...... 0. (1.50)

Keller’s method, often referred to as the box method has several very desirable features that

16



make it appropriate for the solution of all differential equations. The main features of this
method are

1. Only slightly more arithmetic to solve as compared to other implicit method.

2. Second-order accuracy with arbitrary or nonuniform z and y spacings.

3. It allows very rapid x variations

4. This method allows easy programming of the solution of large numbers of coupled

equations

1.7.3 Perturbation Solution

In order to obtain solutions of equations, by using approximation methods, numerical solution,
for example perturbation (asymptotic) method. According to this technique, the solution is
given by the first few terms of an expansion. These expansions may be carried out in terms of
a parameter (small or large) which appears in the equations.

Let us consider an algebraic equation.

u=1+eud, (1.51)
when € =0,
u=1
For small e(# 0), we let
u=1+ eu; + ug + Sug + ..., (1.52)
and Eq. (1.51) becomes
(euy + €2ug + Suz + ...) = (1 + eug + €2ug + ug +...)3 = 0. (1.53)

Expanding for small € we rewrite Eq. (1.53) as

(eur + 2ug + Suz + ...) = e(1 + 3eus + 3€*(ug + ud) +...) = 0. (1.54)

17



Equating the coefficients of like powers of €, we have
e(ug — 1) + €2 (ug — 3uy) + €3(uz — 3ug — 3u?) + ... = 0. (1.55)
Since the above equation is an identity in €, each coefficient of € vanishes independently. Thus

u — 1= O,
ug —3uy =0, (1.56)

ug — Jug — Bu% =0,

implies that
Uy = 17
up = 3y =3, (1.57)

ug = 3ug + 3u% =12,

Therefore Eq. (1.52) becomes,

u=1+¢e+3e%+126 + ... (1.58)

which is an approximate solution of Eq. (1.50).

18



Chapter 2

MHD flow and heat transfer due to

a stretching cylinder

2.1 Introduction

This chapter deals with the numerical solution of flow and heat transfer due to a stretching
cylinder and constant magnetic field B is applied. The governing partial differential equations
are transformed to ordinary differential equations using similarity transformations. The non-
linear ordinary differential equations are solved both numerically using Keller Box method and
analytically using perturbation technique. The effects of various parameters on the velocity
and temperature profiles are discussed through tables and graphs. This chapter is a review of

the paper by Ishak et al {21].

2.2 Mathematical Formulation

We consider, the steady flow of an incompressible viscous fluid over a stretching cylinder as
shown in Fig. 1, where the z-axis is taken along the axis of the cylinder and the r-axis is in the
radial direction . It is assumed that the temperature at the surface of the cylinder is constant
‘T’ and the ambient fluid temperature is T,x,, where T}, > T. The uniform magnetic field By is
also appeared in the radial direction and the induced magnetic field is neglected, which is valid

when the magnetic Reynolds number is very small. Under these assumptions, the equations for

19



the flow and heat transfer analysis are given as

u
+H B
“ >
“— —»
fo «— ' > v
- —
A
o I S0 ¥ N |
L—»p 2
Fig. 2.1: Physical model and coordinate system.
O(rw) O(ru)
-~ N 2.1
0z T or 0, (2.1)
ow Ow 0w Ow ocB3w
L (2 Y 2.2
Ya: Var V(Brz +r8r) p (22)
ou Ou 10p v Ou u
8_T+ 3_T_i 62T+_8_1; (24)
Yo: T Vor T pep \Or2  ror)’ ’

where u and w are the velocity components in the r- and 2- axis direction, p is the density of the
fluid, o is the electrical conductivity, v is the kinematic viscosity, k is the thermal conductivity,
cp is the specific heat and T is the temperature of the fluid.

The boundary conditions of the problem are

u(r,z) =0, w(r,z)=w,, T=T, at r=a,
() =0, wlrz)=w,, T=T, -

w(r,z) -0, T —>Ty, as T — 00,

where wy, = 2c¢z is the stretching velocity of the wall and c¢ is the positive constant having

20



dimension (time)~!. We introduce the following similarity transformations,

n=(5)? u=—calf(n)/ya, w=2¢cf )z,
9(77)=(T_Too)/(Tw - Too)-

2.6

Using the Eq. (2.6), the continuity equation (2.1) is automatically satisfied and Eqgs. (2.2) and
(2.4) become

nf" +f - Mf +Re(ff - f*) =0, (2.7)
78" + (1L + RePr f)§' = 0. (2.8)

with
fQ)=0, f/(1)=1, f'(c0)=0,

(2.9)
(1) =1, 6(co) = 0.

Here Re = ca?/2v is the Reynolds number, Pr = puc,/k is the Prandtl number and M =
o B2a?/4vp is the Hartman number or magnetic parameter. The primes denotes differentiation
with respect to dimensionless variable 7.

The pressure can be determined from Eq. (2.3) in the form

P—Po _ Re Y
v nf2(n) 2f (n). (2.10)

The physical quantities of interest are the skin friction coefficient and the Nusselt number,

which are defined as

T aqw
Cj=——, Nu= e,
I w22 k(Tw — Too)

The shear stress 7,, at the wall and the heat flux ¢,, at the wall are given by

Ow orT

Using Egs. (2.6) and (2.12), Eq. (2.11) becomes

(2.11)

Cs(Rez/a) = f"(1), Nu = -2¢'(1). (2.13)
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2.3 Solution of the problem

2.3.1 Perturbation solution for small M

Following Ariel [23], we can get approximate solutions of Egs. (2.7) and (2.8) with boundary

conditions (2.9), which is valid for M << 1. We assume the solution of the form

f) =Y filn)M?, (2.14)
=0

6(n) = _ 0i(n)M". (2.15)
i=0

After using Egs. (2.14) and (2.15) into Egs. (2.7) and (2.8), we obtain the following set of
equations with boundary conditions.

Zeroth-order system:

"t

nfy + fo +Re(fofy — fo) =0,
n8g + (1 + RePr fo)8, = 0,
fo1)=0, foll)=1, folo0)=0,
6o(1) =1,  p(c0) = 0.

(2.16)

First-order system:

"

([ nf" + £ +Re(fofi + fufy — 2f2£1) =0,
n6] + RePr 16, + (1 + RePr f)8) = 0,
AQ) =0, fi(1)=0, fl(o0)=0,
6:(1) =0,  6;(c0) = 0.

(2.17)

\
Second-order system:

He

( 1 ’ 1 " " ’ ’ I
nfs + fy — f1 +Re(fofs + fifi — fafy = 2fofy — £17) =0,
n65 + RePr f16] + RePr fo6y + (1 + RePr fo)6) = 0,

62(1) =0,  f(c0) = 0.

(2.18)
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In general, we can write the solution in the form

nfzf” +fz fz— +R‘e(z f]fz—] Zf]fz—] ’ (219)
n; +6;+RePr_ f;6;_; =0, (2.20)
§=0

for 7 > 1, subject to the boundary conditions

fi1) = 0, £i(1) =380, 6i(1)=du, (2.21)
fi() = 0, 6i(c0)—0.
5,-,-:{ L=y (2.22)
0 if i#j.

The above non-linear ordinary differential Eqs. (2.19) and (2.20) with boundary conditions
(2.21) are solved numerically using shooting method with Runge-Kutta algorithm. The skin

friction coefficient and Nusselt number in Eq. (2.11) are given by

Cs(Rez/a) = fo (1) + fy V)M + f, (1) M?, } (2.23)

Nu = =2(6p(1) + 61 (1) X + 65(1))A%).
2.3.2 Numerical solution

The non-linear Egs. (2.7) and (2.8) subject to the boundary conditions (2.9) are solved nu-
merically by using an implicit finite difference method, known as Keller box scheme, which is

described in the book by Cebeci and Bradshaw [22].
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2.4 Results and discussion

Table 2.1: Values of skin friction coefficient f* (1) for several values of M when Re = 10.

M | Numerical | Small M { Wang {18]
0 -3.3444 | -3.3445 | —3.34445
0.01 | —-3.3461 | -3.3462
0.05 | -3.3528 | —3.3529
0.1 -3.3612 | —3.3613
0.5 —3.4274 | —3.4273
1 -3.5076
2 -3.6615
5 —4.0825

Table 2.2: Values of the Nusselt number —§'(1) for several values of M at Re = 10.

Pr = 0.7 (air) Pr = 7 (water)
M | Numerical | Small M | Wang {18] | Numerical | Small M | Wang [18]
0 1.5687 1.5687 1.568 6.1592 6.1592 6.160
0.01 1.5683 1.5682 6.1588 6.1588
0.05 1.5665 1.5665 6.1573 6.1573
0.1 1.5644 1.5643 6.1554 6.1554
0.5 1.5478 1.5479 6.1402 6.1403
1 1.5284 6.1219
2 1.4924 6.0864
5 1.4012 5.9855
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Table 2.3: Values of skin friction coefficient f”(1) for several values of M and Re.

M |Re=1 Re=5

Numerical | Small M | Wang [18] | Numerical | Small M | Wang [18]
0 -1.1780 —1.1780 | —1.17776 | —2.4174 —24175 | —2.41745
0.01{ —-1.1839 —1.1839 —-2.4199 —2.4199
0.05 | —1.2068 —1.2068 —2.4296 —2.4297
0.1 | —-1.2344 —1.2339 —2.4417 —2.4418
0.5 | —1.4269 —1.3928 —2.5352 —2.5338

Table 2.4: Values of the Nusselt number —9/(1) for several values of M and Re when Pr = 7.

Re=1 Re = 100
M | Numerical | Small M | Wang [18] | Numerical | Small M | Wang [18]
0 2.0587 2.0587 2.059 19.1587 19.1587 19.12
0.01 2.0572 2.0573 19.1586 19.1586
0.05 2.0516 2.0517 19.1581 19.1581
0.1 2.0449 2.0451 19.1576 19.1576
0.5 1.9978 2.0082 19.1530 19.1531
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Fig. 2.3: Temperature profile (n) verses n for various values of M and Pr: solid line for

Pr = 0.7 and dashed line for Pr = 7 when Re = 10.
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Fig. 2.4: Velocity profile f’ (n) verses 7 for various values of Re when M = 0.1.
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Fig. 2.5: Temperature profile 6(n) verses 7 for various values of Re when M = 0.1 and Pr = 7.
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Fig. 2.6: Pressure distribution (p — ps)/(pcv) obtained from Eq. (2.10) for various values of
Re.

Figs. 2.2 — 2.6 are plotted to see the effect of the Reynolds number Re, the Prandtl number
Pr and magnetic parameter M on the velocity field f () and temperature profile 8(7). Tables
2.1 — 2.4 show the numerical values of the skin friction coefficient and the Nusselt number.
Fig. 2.2 shows the velocity profile f (n) for various values of the magnetic parameter M with
Re = 10. The velocity profile show that the rate of transport is significantly reduced with the
increase of the magnetic field. This reduction in the velocity curves is caused by the fact that
variation of M, leads to produce more resistance to transport phenomena. Fig. 2.3 presents
the change in temperature profiles for various values of M, and Pr when Re = 10, both (solid
line for Pr = 0.7) and (dashed line for Pr = 7) when Re = 10. The temperature is started to
increase as M increases, but it decreases as the distance from the surface increases, and lastly
vanishes at some large distance from the surface. For a particular value of M, the thermal
boundary layer thickness decreases as Pr increases. Figs. 2.4 and 2.5 demonstrate the velocity
and temperature profiles respectively, for various values of Reynolds number Re with Pr = 0.7
and M = 0.1. It is noted that the Reynolds number Re indicates the relative significance of
the inertia effect compared to the viscous effect. It is also found that both the velocity and
temperature profiles decrease as Re increases, which shows similar results as those of Wang

[18] for M = 0. It is also noted that boundary layer thickness decreases as Re increases. Fig.
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2.6 gives the pressure distribution for different values of Reynolds number Re. All curves show
that the pressure far away from the surface. Moreover, smaller values of Re result in slower
algebraic decay. Table 2.1 show the values of the skin friction coefficient for small values of M
when Re = 10. The magnitude of the skin friction coefficients are increased as M increase. For
small M, both the numerical and perturbation solutions are in good agreement. Table 2.2 gives
the values of the Nusselt number —6' (1) for different values of M and Pr when Re = 10. It is
noted that the local Nusselt number —6’(1) decreases for large values of M and increases as Pr
increases. The change in the skin friction f”(1) for small values of M at Re = 1 and 5 is given
in table 2.3. The skin friction increases as both M and Re are increased. Table 2.4 presents
the values of the Nusselt number —¢ (1) for small values of M when Re = 1100 and Pr = 7.
It is found that the Nusselt number —01(1) increases as Re increases. The comparison of both

numerical and perturbation solutions found in excellent agreement with each other and with

the results discussed by Wang [18].
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Chapter 3

Flow and heat transfer over a
stretching cylinder in a porous

medium

3.1 Introduction

In this chapter, we investigate the heat transfer analysis for MHD flow of a viscous fluid due to a
stretching cylinder in a porous medium. The effects of the thermal radiation is also considered.
The governing non-linear partial differential equations are transformed into a system of non-
linear ordinary differential equations by employing similarity transformations. The resulting
non-linear ordinary differential equations are solved numerically using the implicit finite differ-
ence scheme, known as Keller box method and analytically using perturbation technique. The
physical influences of the involving parameters on the flow and temperature fields are discussed
through graphs and tables. A comparison is made between these two solutions and found in

excellent agreement. This chapter is an extension of the work done by Ishak et al [21].

3.2 Formulation of the problem

Consider, steady two-dimensional flow of an incompressible viscous fluid in a porous medium

over a stretching cylinder of a radius ‘a’ in the axial direction, where the z-axis is considered
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along the axis of the cylinder and the r-axis is taken in the radial direction. The temperature
at the surface of the cylinder is constant denoted by ‘Ty,’, and the ambient fluid temperature
is Too, where T, > Too. A constant magnetic field of strength B = (B,,0,0) is applied in the
radial direction and the induced magnetic field is assumed to be negligible, which is valid when
the magnetic Reynolds number is small. Under these assumptions, the equations for the flow

and energy are given as [21,24]:

dz + or =0, (3.1)
w-‘ggwg—’::-%w(g—j’; %“—%) (3.3)
W T p_’;% (-681) - p_}:;-g- (rar) (3.4)

Where » and w are the velocity components in the r- and z- directions respectively, p is the
density of fluid, v is the kinematic viscosity, o is the electrical conductivity, k1 is the permeability
of the porous medium, T is the temperature, ¢, is the specific heat, k is the thermal conductivity
of the fluid and g, is the radiative heat flux.

Under the Rosseland approximation for radiation (Brewster [25]), the radiative heat flux g,

is given by
40* T4
=T o

(3.5)

where ¢* is the Boltzman constant, and k* is the mean absorption coefficient. Under the
assumptions of temperature differences within the flow are sufficiently small, we may express
the term T as a linear function of the temperature in a Taylor series about T, and neglecting
higher terms, one can obtain

T2 4T3 T - 3T4. (3.6)

With the help of Eqs. (3.5) and (3.6), Eq. (3.4) can be written as

T  oT & 16T30*\ & [ 8T
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subject to the following boundary conditions

U(T‘, Z) = 01 ’U)(T', Z) = Wy, T= Tw at r=a, (38)

w(r,z) -0, T—Tw, as T —o00.

Where w,, = 2cz, is the stretching velocity and c is a constant (> 0), has the dimension

(time)~!. To simplify the problem, we introduce the following similarity variables

n=(2)?, uw=-ca(fm)/yA), w=2f()z

(3.9)
9("7)= (T_Too)/(Tw —Teo).

Using Eq. (3.9), the continuity Eq. (3.1) is automatically satisfied. Egs. (3.2) and (3.7) become
nflll+fll—Afl-‘-Re(ffI’—flz):O’ (310)
76" + (1 + kgRePr f)¢' =0, (3.11)

fy=o0,  F®)=1,  fl(e0)=0, } (3.12)

6(1) =1,  6(c0)=0.

Here a prime denotes the differentiation with respect to 77, Pr = pcp/k, is the Prandtl number,
Re = ca?/2v is the Reynolds number, Rd = k*k/40*T3, is the radiation parameter and kg =
3Rd/(3Rd + 4), and A = (cBga?/4vp + a®/4k1) is a combined parameter due to an applied
magnetic field and the permeability of a porous medium. It is noted that, for non-conductivity
fluids, ¢ = 0, and as a result A = a®/4k; corresponds to the classical permeability parameter,
and for non porous medium k; — 00, as a result, A = 0 B2a?/4vp corresponds to the classical
Hartman number or the magnetic parameter. It is also worth mentioning here that the classical
energy equation (3.11), without thermal radiation influences can be obtained by taking Rd — oo
(i.e. kg — 1).

After finding the values of velocity from Eq. (3.10), one can be determined the pressure

from Eq. (3.3) in the following form

= ——f%(n) - 2'(n). (3.13)
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The skin friction coefficient and the Nusselt number are defined as

Tw aqw
_Te Nye (3.14)
Cr=cwie VU RT, - Tw)

The shear stress 7., at the wall and heat flux g,, at the wall are given by

Tw:“(ﬁ)m’ q“’z"’“((” 3k*k )(é?)): (8.13)

Using Eqgs. (3.9) and (3.15), from Eq. (3.14), we get

Ci(Rez/a) = f(1), Nu= —%9'(1). (3.16)

3.3 Solution of the problem

3.3.1 Perturbation solution for small A

Following Ishak et al. [21] and Ariel {23], we can get approximate solutions of Egs. (3.10)
and (3.11) with boundary conditions (3.12), which is valid for small A << 1. We assume the

solution of the form

fo)y =Y fimX, (3.17)
=0

b(n) =) Bu(m)X" (3.18)
1=0

Using Egs. (3.17) and (3.18) into (3.10) and (3.11), we obtain the following set of equations

and boundary conditions.

Zeroth-order system:

"

nfo + fo +Re(fofy — fo) =0,

n8y + (1 + kg Re Pr fg) 6y = 0,
fo1) =0, fo(1)=1, foloo) =0,
{ 6o(1) =1,  gloo) = 0.

(3.19)
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First-order system:

([ nfl+ 5+ Re(fofl + fify = 2o1) =0,
n6} + RePr f185 + (1 + ko RePr fo) 6} =0, (3.20)
{ 6:1(1)=0,  6i(c0) =0.
Second-order system:
1 " ! H " 173 A 2
nfy + fa — fL +Re(fofy + fufy — fafo —2ffa— 1) =0,
n0% + ko Re Pr f10] + ko Re Pr fofly + (1 + koRePr fo) 65 = 0, (3.21)
£2(2)=0, f3(1)=0, fz(c0) =0,
L 02(1) = 0, 02(00) =0.
In general, we can write the solutions of the Egs. (3.19 — 3.21) in the following form.
i+ = fioa+Re(S S5 =S fif) =0, (3.22)
=0 =0
n6; +0; +koRePr>_ fi6;_; =0. (3.23)
=0
fori > 1,
(1) =0 (1) = 8i0,  6;(1) = b,
f't( ) I > fz( ) 0 ( ) 0 (3.24)
fi(00) =0, 6i(00) — 0.
1 ifi=j,
by = s (3.25)
0 if i+

The above non-linear ordinary differential Egs. (3.22) and (3.23) with the help of boundary
conditions (3.24) are solved numerically for small values of A using the shooting method with

Runge-Kutta algorithm. The skin friction coefficient and the Nusselt number in Egs. (3.16)
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are approximately given by

Cr(Rez/a) = 3 (1) + £ (DA + o ()X, } (326)

Nu = —2(8(1) + 81 (1)A + 05(1)X2) /ko.

3.3.2 Numerical solution

The non-linear ordinary differential Eqgs. (3.10) and (3.11) subject to the boundary conditions
(3.12) have been solved numerically using an implicit finite difference scheme known as Keller

box method, which is described in the book by Cebeci and Bradshaw {22] in detail.

3.4 Result and discussion.

Figs. 3.1 ~ 3.7 are made in order to see the eflects of the involving parameters, for example,
), Re, Pr and Rd, on the velocity component f () and thé temperature field #(n). The values
of the skin friction coefficient and Nusselt number for different parameters are given in Table
3.1 — 3.4. The result for A << 1, in terms of perturbation solutions are incorporated in these
tables.

Table 3.1: Numerical values of skin friction coefficient f”( 1) for several values of A when

Re = 10.

A | Numerical | Small A
0 —3.3444 | —3.3445
0.01 | -3.3461 | —3.3462
0.05 | —3.3528 | —3.3529
0.1 | -3.3612 | —3.3613
0.5 | —3.4274 | -3.4273

1 -3.5076
2 -3.6615
5 —4.0825
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Table 3.2: Numerical values of the Nusselt number Nu for several values of A and Pr when

Rd = 0.2 and Re = 10.

Pr = 0.7 (air) Pr = 7 (water)

A | Numerical | Small A | Numerical | Small A
0 3.0721 3.0721 14.3323 | 14.3323
0.01 3.0710 3.0710 14.3289 | 14.3289
0.05 3.0667 3.0667 14.3156 | 14.3156
0.1 3.0615 3.0615 14.2991 | 14.2991
0.5 3.0234 3.0262 14.1709 | 14.1726

1 2.9821 14.0186
2 2.9130 13.7380
5 2.7645 12.9924

Table 3.3: Numerical values of the skin friction coefficient f”(1) for several values of A and

Re.

Re=1 Re=5

A | Numerical | Small A | Numerical | Small A
0 —-1.1780 | -1.1780 | —2.4174 | —2.4175
0.01 | —-1.1839 | -1.1839 | —-2.4199 | —2.4199
0.05 | —1.2068 | —1.2068 | —2.4296 | —2.4297
0.1 | —1.2344 | —1.2339 | —2.4417 | —2.4418
0.5 | -1.4269 | —1.3928 | —2.5352 | —2.5338
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Table 3.4: Numerical values of the Nusselt number Nu for several values of A, Re and Rd

when Pr=17.

Re=1 Re = 100
A | Rd | Numerical | Small A | Numerical | Small A
0 |07 34180 3.4180 | 30.1440 | 30.1441
0.01 3.4131 3.4131 30.1438 | 30.1437
0.05 3.3942 3.3944 30.1425 | 30.1420
0.1 3.3718 3.3730 30.1409 | 30.1400
0.5 3.2187 3.2847 30.1274 | 30.1266
0.1 [0.0]| 2.0450 19.1576
0.7 3.3718 30.1409
1 3.0499 27.5730
1.5 2.7647 25.2457
2 2.6071 23.9388
3 2.4368 22.5101
5 2.2895 21.2603
L0} ) -
0.8t
i\“ 0.6t i A= 10,5210
:: )

Fig. 3.1: Velocity profile f’ (n) against 7 for various values of A when Re = 10.
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Fig. 3.2: Velocity profile f () against n for various values of Re: solid lines for A = 0 and
dashed lines for A = 0.1.
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0.8

Fig. 3.3: Temperature profile 8(n) against n for various values of A: solid lines for Pr = 0.7

and dashed lines for Pr = 7 when Rd = 0.7 and Re = 10.
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Fig. 3.4: Temperature profile 6(n) against for various values of A: solid lines for Rd — oo (i.e.

ko — 1) and dashed lines for Rd = 0.7 when Pr = 0.7 and Re = 10.
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Fig. 3.5: Temperature profile (7)) against 7 for several values of Pr: solid lines for A = 0 and

dashed lines for A = 1 when Rd = 0.7 and Re = 10.
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values of A and Pr when Rd = 0.2 and Re = 10. It can be seen from this table that the values
of the Nusselt number decreases as X increases. It is also found that as we increase the values
of Pr, the temperature gradient at the surface of the cylinder increases. The numerical value of
the skin friction coefficient f"( 1) for various values of Re is given in Table 3.3 when 0 < A € 0.5
(small values of A). For particular values of A, the skin friction coeflicient is increased by
increasing the values of Re. Table 3.4 shows the numerical values of the Nusselt number Nu for
different values of the A, Re, Rd when Pr = 7 is fixed. It is observed from this table that the
temperature gradient at the wall or the Nusselt number is increased by increasing the values
of the Rd and Re. In all these tables, the comparison between the numerical and perturbation

solutions is given for small values of A (0 < A < 0.5) and found in good agreement.
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