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ABSTRACT

Hamilton Circuit Algorithm is one of the famous classical computation problems which
are considered as NP Complete. There is no complete algorithm exist which can solve it
in the polynomial time. The purpose of this research was to develop an algorithm to
determine the Hamilton Circuit in a given graph. This Algorithm will find Hamilton
Circuit in polynomial steps. First we divided the problem into different special cases e.g.
find a Hamilton Circuit in a graph in which every node has degree two then tried to find
Hamilton Circuit in a graph in which every node has degree three and so on. During these
experiments we found certain basic conditions which were very useful to find the
solution. We then combined these conditions and based on them, we designed a new

algorithm which finds Hamilton Circuit in polynomial time.
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Chapter 1 Introduction

1. Introduction

This Chapter will briefly discuss about the Hamilton Circuit Problem, its history, the

existing work and our proposed solution on it.
1.1. Brief History

In 1856, Sir Rowan Hamilton [1] described a certain mathematical game called the
Icosian played on the surface of a dodecahedron. Starting from a given vertex, the
objective was to find a path of consecutive vertices along the edges, visiting every vertex
exactly once and returning to the original vertex to complete a circuit. The general
problem of trying to find such Hamiltonian Circuits in arbitrary graphs turned out to be

very difficult to solve.

In 1952, Dirac [2] proposed a condition that guarantees the existence of a Hamiltonian
circuit in a simple graph G with n > 3 vertices: a lower bound on the minimum degree
d=n/2 sujﬁceé. This is the best possible lower bound because the graph consisting of
cliques of orders | (n + 1)/2] and [(n + 1)/2] sharing a common vertex has minimum
degree 8 =| (n - 1)/2] but has no Hamiltonian circuit. However, Dirac’s original proof is a

proof by contradiction that does not show how one may actually construct the stipulated

Hamiltonian circuit.

In 1972, Karp [3] showed that the problem of finding Hamiltonian circuits (respectively,
tours) in graphs is NP - complete. Thus, the existence or non-existence of a polynomial-
time algorithm for deciding whether a Hamiltonian circuit (respectively, tour) exists in
any given graph would resolve one of the most important open problems in mathematics

and computer science, the P versus NP question [4].
1.2. Definition

A path Xo, X1, X2, ..., Xn-1, Xn in the graph G=(V,E) is called Hamilton Path if V={ Xo,
X1, X2, ..., Xn-1, Xn } and Xi is not equal to Xj for 0 <i <j <n. A circuit Xo, X1, X2, ...,

Hamilton Circuit Algorithm : 1



Chapter 1 Introduction

Xn-1, Xn, Xo (with n>1) in a graph G=(V,E) is called a Hamilton Circuit if Xo, X1, X,
..., Xn-1, Xn is Hamilton Path [8].

1.3. Existing Solutions

Is there a simple way to determine whether a graph has a Hamilton Circuit or Hamilton
Path? At first, it might seem that there should be an easy way to determine this.
Surprisingly there are no known simple necessary and sufficient criteria for the existence

of Hamilton Circuit [8].
1.3.1. Theorems

Many theorems are known that give sufficient conditions for the existence of Hamilton

Circuit. But still these theorems don’t cover the major range of problem variations.
¢ Dirac’s Theorem:

If G is a simple graph with n vertices with n > 3 such that the degree of every

vetex in G is at least n/2, then G has a Hamilton Circuit [2].
e Ore’s Theorem:

If G is a simple graph with n vertices with n > 3 such that deg(u) + deg(v) > n for

every pair of non-adjacent vertices u and v in G, then G has Hamilton Circuit [3].
1.3.2. Algorithms

Although there is no algorithm exists which can find the Hamilton Circuit in a graph in
polynomial time. There is the only one algorithm which is meant to determine the
Hamilton Circuit in a graph and the technique used is called BACKTRACKING which

leads the algorithm to exponential time.
1.3.2.1. Backtracking Algorithm for the Hamilton Circuit Problem

A state space tree for this problem is as follows:

Hamilton Circuit Algorithm : 2
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Put the starting vertex at level 0 in the tree; call it the zeroth vertex on the path. At level
1, consider each vertex other than the starting vertex as the first vertex after the starting
one. At level 2, consider each of these same vertices as the second vertex, and so on.

Finally, at level n-1, consider each of these same vertices as the (n-1)st vertex.
Following considerations enable us to backtrack in this state space tree:

1. The ith vertex on the path must be adjacent to the (i - 1)st vertex on the path.
2. The (n- 1)st vertex must be adjacent to the 0™ vertex (the starting one).

3. The ith vertex cannot be one of the first i — 1 vertices.

The number of nodes in the state space tree for this algorithm is
1+(n-D)+@=172+... +@-D""'=@-1)"-1/(n-2)
which is much worse than the exponential.

1.3.2.2. Traveling Sales‘ Person Algorithm

Another variant of this problem is Traveling Sales Person problem. People shouldn’t get
confused with the similarity of domain for these two problems. In both Hamilton Circuit
and Traveling Sales Person Problem we require a path or tour which starts from any
given node and passes through all other nodes and ends again to the starting node. The
main difference between Hamilton Circuit and Traveling Sales Person is, Traveling Sales
Person is to find a tour from weighted, directed graph whereas Hamilton Circuit is the
tour from un-weighted, un-directed graph. In other words, we can say that Hamilton
Circuit is a special case of Traveling Sales Person in which graph is un-weighted and
undirected. Thus we can try the known algorithms of Traveling Sales Person for
Hamilton Circuit with little adjustment or modification. On the basis of this theory, we
now have a look at mathematicians work for the solution of Traveling Sales Person

Problem. We have two solutions for Traveling Sales Person:

1. Dynamic Programming Solution:

Hamilton Circuit Algorithm 3
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2. Brute Force Solution

Complexity:
Brute Force Algorithm: (n-1) (Worse than Exponential)
Dynamic Programming Algorithm: n22" (Exponential)

None of these solutions are Polynomial time.

1.4. Research Overview

The purpose of this research was to develop an algorithm to determine the Hamilton
Circuit in a given graph. This Algorithm will find Hamilton Circuit in polynomial steps.
First we divided the problem into different special cases e.g. find a Hamilton Circuit in a
graph in which every node has degree two then tried to find Hamilton Circuit in a graph
in which every node has degree three and so on. During these experiments we found
certain basic conditions which were very useful to find the solution. We then combined
these conditions and based on them, we designed a new algorithm which finds Hamilton

Circuit in polynomial time.

Hamilton Circuit Algorithm 4
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Chapter 2 Basic Concepts

2. Basic Concepts

In this chapter, we have discussed the basic concepts needed to understand this research
project. First we covered the graph concept, and then we focused on graph representation
methods, after that we discussed algorithms and finally we have gone through the

computational complexity theory.

2.1. Graph Concepts

Now we discuss the necessary graph theory which can be helpful to understand the

Hamilton Circuits and Hamilton Paths the research presented in the following chapters.
2.1.1. Graph

A graph or undirected graph G is an ordered pair G := (V, E) that is subject to the

following conditions:

o Vis aset of vertices or nodes,
e [ is a set of unordered pairs of distinct vertices, called edges or lines.

e The vertices belonging to an edge are called the ends, endpoints, or end vertices

of the edge.

V (and hence E) are usually taken to be finite sets, and many of the well-known results
are not true (or are rather different) for infinite graphs because many of the arguments
fail in the infinite case. The order of a graph is |V] (the number of vertices). A graph's
size is |E|, the number of edges. The degree of a vertex is the number of other vertices it

is connected to by edges.
2.1.1.1. Loops and Links

A loop is an edge (directed or undirected) with both ends the same; these may be
permitted or not permitted according to the application. In this context, an edge with two
different ends is called a link.
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2.1.1.2. Multiple Edges

Sometimes E and 4 are allowed to be multisets, so that there can be more than one edge
~ (called multiple edges) between the same two vertices. Another way to allow multiple
edges is to make F a set, independent of 7, and to specify the endpoints of an edge by an
incidence relation between V and E. The same applies to a directed edge set 4, except
that there must be two incidence relations, one for the head and one for the tail of each

edge.

2.1.1.3. Path

In graph theory, a path in a graph is a sequence of vertices such that from each of its
vertices there is an edge to the next vertex in the sequence. The first vertex is called the
start vertex and the last vertex is called the end vertex. Both of them are called end or
terminal vertices of the path. The other vertices in the path are internal vertices. A cycle
is a path such that the start vertex and end vertex are the same. Notice however that
unlike with paths, any vertex of a cycle can be chosen as the start, so the start is often not

specified.

The same concepts apply in a directed graph, with the edges being directed from each
vertex to the following one. Often the terms directed path and directed cycle are used in

this case.

A path with no repeated vertices is called a simple path, and cycle with no repeated
vertices aside from the start/end vertex is a simple cycle. In modern graph theory, most
often "simple" is implied; i.e., "cycle" means "simple cycle” and "path” means "simple

path", but this convention is not always observed, especially in applied graph theory.
A simple cycle that includes every vertex of the graph is known as a Hamiltonian cycle.

Two paths are independent (alternatively, internally vertex-disjoint) if they do not have

any internal vertex in common.
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The length of a path is the number of edges that the path uses, counting multiple edges
multiple times. In the graph shown in Figure 2.1, (1, 2, 3, 1, 4, 5) is a path of length 5,
and (5, 6, 7) is a simple path of length 2.

A weighted graph associates a value (weight) with every edge in the graph. The weight of
a path in a weighted graph is the sum of the weights of the traversed edges. Sometimes

the words cost or length are used instead of weight.

Figure 2.1: Path

2.1.1.4. Cycle

Cycle in graph theory and computer science has several meanings:

o A closed walk, with repeated vertices allowed. (This usage is common in
computer science. In graph theory it is more often called a closed walk.)

o A closed (simple) path, with no other repeated vertices than the starting and
ending vertices. (This usage is common in graph theory.) This may also be called
a simple cycle, circuit, circle, or polygon.

o A closed directed walk, with repeated vertices allowed. (This usage is common in

computer science. In graph theory it is more often called a closed directed walk.)

Hamilton Circuit Algorithm 7



Chapter 2 Basic Concepts

A closed directed (simple) path, with no repeated vertices other than the starting
and ending vertices. (This usage is common in graph theory.) This may also be
called a simple (directed) cycle.

The edge set of an undirected closed path without repeated vertices. This may also
be called a circuit, circle, or polygon.

An element of the binary or integral (or real, complex, etc.) cycle space of a
graph. (This is the usage closest to that in the rest of mathematics, in particular
algebraic topology.) Such a cycle may be called a binary cycle, integral cycle,
etc.

An edge set which has even degree at every vertex; also called an even edge set
or, when taken together with its vertices, an even subgraph. This is equivalent to
a binary cycle, since a binary cycle is the indicator function of an edge set of this

type.

2.1.1.5. Distance

In the mathematical subfield of graph theory, the distance between two vertices in a

graph is the number of edges in a shortest path connecting them. This is also known as

the geodesic distance.

There are a number of other measurements defined in terms of distance:

The eccentricity € of a vertex v is the greatest distance between v and any other
vertex.

The radius of a graph is the minimum eccentricity of any vertex.

The diameter of a graph is the maximum eccentricity of any vertex in the graph.
That is, it is the greatest distance between any two vertices. A peripheral vertex
in a graph of diameter d is one that is distance d from some other vertex—that is,
a vertex that achieves the diameter.

A pseudo-peripheral vertex v has the property that for any vertex u, if v is as far

away from u as possible, then  is as far away from v as possible. Formally, if the
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distance from u to v equals the eccentricity of u, then it equals the eccentricity of

V.

2.1.1.6. Degree

In graph theory, the degree (or valency) of a vertex is the number of edges incident to the

vertex. The degree of a vertex v is denoted deg (v).

For an undirected graph, the degree of a vertex is the number of edges incident to the
vertex. This means that each loop is counted twice. This is because each edge has two

endpoints and each endpoint adds to the degree.

In a directed graph, an edge has two distinct ends: a head (the end with an arrow) and a
tail. Each end is counted separately. The sum of head endpoints count toward the

indegree and the sum of tail endpoints count toward the outdegree.

The indegree is denoted deg * (v) and the outdegree as deg ~ (v)

2.1.2. Simple Graph

simple graph nonsimple graph nonsimple graph
with mulriple edges with loops
Figure 2.2: Simple and Non-simple graphs

A simple graph, also called a strict graph, is an unweighted, undirected graph containing
no graph loops or multiple edges. Unless stated otherwise, the unqualified term “graph”
usually refers to a simple graph. A simple graph with multiple edges is sometimes called

a multi-graph as shown in Figure 2.2.
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2.1.3. Multigraph

Figure 2.3: Multigraph

A multigraph (Figure 2.3) is a graph which is permitted to have multiple edges, (also
called "parallel edges") i.e. edges that have the same end nodes. Formally, a multigraph
G is an ordered pair G:=(V, E) with

e V aset of vertices or nodes,

e E amultiset of unordered pairs of distinct vertices, called edges or lines.

Some authors also allow mutigraphs to have loops, that is, an edge that connects a vertex

to itself.

A multidigraph is a directed graph which is permitted to have multiple arcs, i.e., arcs
with the same source and target nodes. A multidigraph G is an ordered pair G:=(V,A)
with

e Vs a set of vertices or nodes,

e A is a multiset of ordered pairs of vertices called directed edges, arcs or arrows.

A mixed multigraph G:=(V,E, A) may be defined in the same way as a mixed graph.
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2.1.4. Pseudograph

Figure 2.4: Pseudograph

A pseudograph is a non-simple graph in which both graph loops and multiple edges are

permitted as shown in Figure 2.4.

2.1.5. Labeled Graph

Figure 2.5: a) unlabled graph b) edge-labeled graph c¢) vertex-labeled graph

A labeled graph G = (V, E) is a finite series of graph vertices V' with a set of graph edges
E of 2-subsets of V shown in Figure 2.5. Given a graph vertex set Vn = {1, 2, ..., n}, the
number of vertex-labeled graphs is given by 2"™"?, Two graphs G and H with graph
vertices Vn= {1, 2, ..., n} are said to be isomorphic if there is a permutation P of Vn such
that {u, v} is in the set of graph edges E(G) iff {p(u), p(v)} is in the set of graph edges
E(H).

2.1.6. Null Graph

The empty graph of 0 nodes is called null graph.
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Use of the null graph is discouraged since it is felt by many in the graph theoretical
community that allowing the null graph causes much more trouble than it is worth. For
example, the null graph has no automorphism group, it cannot be imbedded on the sphere
obeying the polyhedral formula, it is connected and acyclic but has too many edges to be
a tree, and so on. It is an exception to so many things that the community (or most of it)

has decided that the only good null graph is a dead null graph.

2.1.7. Directed Graph

®
Figure 2.6: a) undirected graph b) oriented graph c¢) directed graph d) network

A directed graph or digraph G is an ordered pair G:=(V, A) with
e V, aset of vertices or nodes,

e A, aset of ordered pairs of vertices, called directed edges, arcs, or arrows.

An edge e = (X, y) is considered to be directed from x to y; y is called the head and x is
called the tail of the edge; y is said to be a direct successor of x, and x is said to be a
direct predecessor of y. If a path leads from x to y, then y is said to be a successor of x,

and x is said to be a predecessor of y as shown in Figure 2.6.

A variation on this definition is the oriented graph, which is a graph (or multigraph; see
below) with an orientation or direction assigned to each of its edges. A distinction
between a directed graph and an oriented simple graph is that if x and y are vertices, a
directed graph allows both (x, y) and (y, x) as edges, while only one is permitted in an
oriented graph. A more fundamental difference is that, in a directed graph (or
multigraph), the directions are fixed, but in an oriented graph (or multigraph), only the

underlying graph is fixed, while the orientation may vary.

Hamilton Circuit Algorithm 12



Chapter 2 Basic Concepts

A directed acyclic graph, also called a dag or DAG, is a directed graph with no directed

cycles.

A directed graph having no multiple edges or loops (corresponding to a binary adjacency

matrix with Os on the diagonal) is called a simple directed graph.
A complete graph in which each edge is bidirected is called a complete directed graph.

A directed graph having no symmetric pair of directed edges (i.e., no bidirected edges) is

called an oriented graph.

A complete oriented graph (i.e., a directed graph in which each pair of nodes is joined by

a single edge having a unique direction) is called a tournament.

2.1.8. Function Graph

"
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P
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Figure 2.7: Function Graph

Given a function f{x,, ..., x,) defined on a domain U, the graph of f is defined as the set
of points (which often form a curve or surface) showing the values taken by fover U (or
some portion of U). A graph is sometimes also called a plot. Unfortunately, the word
“gfaph” is uniformly used by mathematicians to mean a collection of vertices and edges
connecting them. In some education circles, the term “vertex-edge graph” is used in an
attempt to distinguish the two types of graph. However, as Gardner notes, “The confusion
of this term with the ‘graphs’ of analytic geometry is regrettable, but the term has stuck
[in the mathematical community].” In this work, the term “graph” will therefore be used
to refer to a collection of vertices and edges, while a graph in the sense of a plot of a

function will be called a “function graph” as shown in Figure 2.7.
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2.1.9. Sub-graph and Super-graph

A graph G” whose graph vertices and graph edges form subsets of the graph vertices and
graph edges of a given graph G. If G” is a sub-graph of G, then G is said to be a super
graph of G".

2.1.10. Graph Cycles or Circuits

A cycle of a graph G, sometimes also called a circuit, is a subset of the edge set of G that

forms a path such that the first node of the path corresponds to the last.

A cycle that uses each graph vertex of a graph exactly once is called a Hamiltonian

circuit. A graph containing no cycles of length three is called a triangle-free graph.

2.1.11. Bipartite Graph

—

Figure 2.8: Bipartite Graph

A bipartite graph, also called a bigraph (Figure 2.8), is a set of graph vertices
decomposed into two disjoint sets such that no two graph vertices within the same set are
adjacent. A bipartite graph is a special case of a k-partite graph with k = 2. Bipartite
graphs are equivalent to two-colorable graphs, and a graph is bipartite iff all its cycles are
of even length.
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2.1.12. Complete Graph

1&,\7

Figure 2.9: Complete Graph

A complete graph is a graph in which each pair of graph vertices is connected by an edge.
The complete graph with n graph vertices is denoted Kn and has n(n-1)/2 (the triangular
numbers) undirected edges, where nPk is a binomial coefficient. In older literature,

complete graphs are sometimes called universal graphs.

The complete graph on 0 nodes is a trivial graph known as the null graph, while the

complete graph on 1 node is a trivial graph known as the singleton graph.
The graph complement of the complete graph K, is the empty graph on ‘n’ nodes.

A complete graph is a regular graph of degree n — 1. All complete graphs are their own
cliques. They are maximally connected as the only vertex cut which disconnects the

graph is the complete set of vertices

~2.1.13. Connected Graph
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Figure 2.10: Connected Graph
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A graph which is connected in the sense of a topological space, i.e., there is a path from
any point to any other point in the graph. A graph that is not connected is said to be
disconnected. This definition means that the null graph and singleton graph are

considered connected, while empty graphs on # = 2nodes are disconnected.

2.1.14. Regular Graph

A graph is said to be regular of degree ‘r’ if all local degrees are the same number ‘r’.

A O-regular graph is an empty graph, a 1-regular graph consists of disconnected edges,
and a 2-regular graph consists of disconnected cycles. The first interesting case is

therefore 3-regular graphs, which are called cubic graphs.

3

S D B

Figure 2.11: Regular Graph

A strongly regular graph is a regular graph where every adjacent pair of vertices has the
same number 1 of neighbors in common, and every non-adjacent pair of vertices has the
same number n of neighbors in common. The smallest graphs that are regular but not

strongly regular are the cycle graph and the circulant graph on 6 vertices.

The complete graph Km is strongly regular for any m.
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2.1.15. Isomorphic Graphs

Two graphs which contain the same number of graph vertices connected in the same way
are said to be isomorphic. Formally, two graphs G and H with graph vertices
V={1,2,...,n} are said to be isomorphic if there is a permutation P of Vasuch that {& V}is

in the set of graph edges E(G) iff {7 &), p W}is in the set of graph edges E(H) .

Determining if two graphs are isomorphic is thought to be neither an NP-complete
problem nor a P-problem, although this has not been proved. In fact, there is a famous
complexity class called graph isomorphism complete which is thought to be entirely

disjoint from both NP-complete and from P.

However, a polynomial time algorithm is known when the maximum vertex degree is

bounded by a constant.

2.1.16. Planar Graph

A graph is planar if it can be drawn in a p.lané without graph edges crossing (i.e., it has
graph crossing number 0). The number of planar graphs with# =12, . nodes are 1, 2, 4,
11, 33, 142, 822, 6966, 79853, ...

A planar graph already drawn in the plane is called a plane graph. A plane graph can be
defined as a planar graph with a mapping from every node to a position in 2D space, and
from every edge to a plane curve, such that each curve has two extreme points, which
coincide with the positions of its end nodes, and all curves are disjoint except on their

extreme points.

The equivalence class of topologically equivalent drawings on the sphere is called a
planar map. Although a plane graph has an external or unbounded face, none of the faces

of a planar map has a particular status.

There are a number of efficient algorithms for planarity testing, which are unfortunately

all difficult to implement. Most are based on the o(n3) algorithm of Auslander and Parter.
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2.1.17. Trees

A tree is a connected acyclic simple graph. A vertex of degree 1 is called a leaf, or
pendant vertex. An edge incident to a leaf is a leaf edge, or pendant edge. (Some people
define a leaf edge as a /eaf and then define a leaf vertex on top of it. These two sets of
definitions are often used interchangeably.) A non-leaf vertex is an internal vertex.
Sometimes, one vertex of the tree is distinguished, and called the root. A rooted tree is a
tree with a root. Rooted trees are often treated as directed acyclic graphs with the edges

pointing away from the root.

Trees are commonly used as data structures in computer science.
¢ A subtree of the tree T is a subgraph of T.
e A forest is an acyclic simple graph.
¢ A subforest of the forest F'is a subgraph of F.

e A spanning tree is a spanning subgraph that is a tree. Every graph has a spanning

forest. But only a connected graph has a spanning tree.
e A special kind of tree called a star is K| 4. An induced star with 3 edges is a claw.

e A k-ary tree is a rooted tree in which every internal vertex has k children. An 1-
ary tree is just a path. A 2-ary tree is also called a binary tree.

2.1.18. Spanning tree

A

-
(Figure 2.12: A spanning tree (light) of a graph (dark), superimposed)
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In the mathematical field of graph theory, a spanning tree T of a connected, undirected
graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G.
Informally, a spanning tree of G is a selection of edges of G that form a tree spanning
every vertex. That is, every vertex is connected to the tree, but no cycles (or loops) are

formed. On the other hand, every bridge of G must belong to T.

A spanning tree of a connected graph G can also be defined as a maximal set of edges of

G that contains no cycle, or as a minimal set of edges that connect all vertices.

More generally, a spanning forest of an arbitrary (possibly unconnected), undirected
graph G is a maximal forest that is a subgraph of G. Equivalently, a spanning forest is the

union of a spanning tree for every connected component of G.

In certain fields of graph theory it is often useful to find a minimum spanning tree of a

weighted graph.

2.1.19. Cliques

The complete graph Kn of order n is a simple graph with n vertices in which every vertex
is adjacent to every other. The example graph is not complete. The complete graph on n
vertices is often denoted by Kn. It has n(n-1)/2 edges (corresponding to all possible

choices of pairs of vertices).

A clique (pronounced "cleek") in a graph is a set of pairwise adjacent vertices. Since any
subgraph induced by a clique is a complete subgraph, the two terms and their notations
are usually used interchangeably. A k-clique is a clique of order k. In the example graph

above, vertices 1, 2 and 5 form a 3-clique, or a triangle.
The clique number (G) of a graph G is the order of a largest clique in G.

2.1.20. Strongly connected component

A related but weaker concept is that of a strongly connected component. Informally, a

strongly connected component of a directed graph is a subgraph where all nodes in the
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subgraph are reachable by all other nodes in the subgraph. Reachability between nodes is
established by the existence of a path between the nodes.

A directed graph can be decomposed into strongly connected components by running the
Depth-first search (DFS) algorithm twice: first, on the graph itself and next on the
transpose of the graph in decreasing order of the finishing times of the first DFS. Given a
directed graph G, the transpose GT is the graph G with all the edge directions reversed.

2.1.21. Knots

A knot in a directed graph is a collection of vertices and edges with the property that
every vertex in the knot has outgoing edges, and all outgoing edges from vertices in the
knot have other vertices in the knot as destinations. Thus it is impossible to leave the knot

while following the directions of the edges.

If a general resource graph is expedient, then a knot is a sufficient condition for deadlock

occurrénce.

2.1.22. Minors

A minor G2 = (V2,E2) of G1 = (V1,E1) is an injection from V2 to V1 such that every
edge in E2 corresponds to a path (disjoint from all other such paths) in G1 such that every
vertex in V1 is in one or more paths, or is part of the injection from V1 to V2. This can
alternatively be phrased in terms of contractions, which are operations which collapse a

path and all vertices on it into a single edge.

2.1.23. Weighted graphs and networks

A weighted graph associates a label (weight) with every edge in the graph. Weights are
usually real numbers. They may be restricted to rational numbers or integers. Certain
algorithms require further restrictions on weights; for instance, the Dijkstra algorithm
works properly only for positive weights. The weight of a path or the weight of a tree in a
weighted graph is the sum of the weights of the selected edges. Sometimes a non-edge is
labeled by a special weight representing infinity. Sometimes the word cost is used instead

of weight. When stated without any qualification, a graph is always assumed to be
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unweighted. In some writings of graph theory the term network is a synonym for a
weighted graph. A network may be directed or undirected, it may contain special vertices

(nodes), such as source or sink. The classical network problems include:
e minimum cost spanning tree,
e shortest paths,
e maximal flow (and the max-flow min-cut theorem)

2.1.24. Properties of graphs

Two edges of a graph are called adjacent (sometimes coincident) if they share a common
vertex. Similarly, two vertices are called adjacent if they share a common edge, in which
case the common edge is said to join the two vertices. An edge and a vertex on that edge

are called incident.

The graph with only one vertex and no edges is called the trivial graph. A graph with
only vertices and no edges is known as an edgeless graph, empty graph, or null graph
(there is no consistency in the literature). The graph with no vertices and no edges is
sometimes called the null graph or empty graph, but not all mathematicians allow this

object.

In a weighted graph or digraph, each edge is associated with some value, variously called
its cost, weight, length or other term depending on the application; such graphs arise in
many contexts, for example in optimal routing problems such as the traveling salesman

problem.

Normally, the vertices of a graph, by their nature as elements of a set, are distinguishable.
This kind of graph may be called vertex-labeled. However, for many questions it is better
to treat vertices as indistinguishable; then the graph may be called unlabeled. (Of course,
the vertices may be still distinguishable by the properties of the graph itself, e.g., by the
numbers of incident edges). If vertices are indistinguishable they may be distinguished by

giving each vertex a label, hence the name vertex-labeled graph. The same remarks apply
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to edges, so that graphs which have labeled edges are called edge-labeled graphs. Graphs
with labels attached to edges or vertices are more generally designated as labeled.
Consequently, graphs in which vertices are indistinguishable and edges are
indistinguishable are called unlabelled. (Note that in the literature the term labeled may
apply to other kinds of labeling, besides that which serves only to distinguish different

vertices or edges.)
2.2. Graph Representation

In this section we shall cover data structures and methods to represent and traverse the

graph and how to perform different operations on graphs.
2.2.1. Graph Data structure

In computer science, a graph is an abstract data type (ADT) that consists of a set of
nodes and a set of edges that establish relationships (connections) between the nodes. The

graph ADT follows directly from the graph concept from mathematics.

A graph G is defined as follows: G = (V,E), where V is a finite, non-empty set of vertices
and E is a set of edges (links between pairs of vertices). When the edges in a graph have
no direction, the graph is called undirected, otherwise called directed. In practice, some

information is associated with each node and edge.
2.2.2. Representation

In typical graph implementations, nodes are implemented as structures or objects. There

are several ways to represent edges, each with advantages and disadvantages:
e  Asan adjacency list

An adjacency list associates each node with an array of incident edges. If no information
is required to be stored in edges, only in nodes, these arrays can simply be pointers to

other nodes and thus represent edges with little memory requirement. An advantage of
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this approach is that new nodes can be added to the graph easily, and they can be
connected with existing nodes simply by adding elements to the appropriate arrays. A
disadvantage is that determining whether an edge exists between two nodes requires O(n)

time, where n is the average number of incident edges per node.
e  Asan adjacency matrix

An alternative way is to keep a square matrix (a two-dimensional array) M of boolean
values (or integer values, if the edges also have weights or costs associated with them).
The entry Mi,j then specifies whether an edge exists that goes from node i to node j. An
advantage of this approach is that finding out whether an edge exists between two nodes
becomes a trivial constant-time memory look-up. Similarly, adding or removing an edge
is a constant-time memory access. The shortest path between any two nodes can be
determined using the Floyd-Warshall algorithm. A disadvantage is that adding or
removing nodes from the graph requires re-arranging the matrix accordingly, which may

be costly depending on its size.
e  Other representations

Yet another way is based on keeping a relation (table) of edges, with key (source, target),
where source and target are the connected vertices. Known algorithms allow the table to

be manipulated and searched in loglinear time. Mneson takes this approach.

In the general case, a graph may consist of many edges between many vertices, and
unless the matrix representation for the edges is chosen, there may even be more than one

edge connecting the same pair of vertices. Edges can be bidirectional or unidirectional.

Most data structures that are graphs are more structured than the general graph. A graph
may, for example, be acyclic. In this case, each edge is unidirectional, and there is no
way to traverse the edges in such a way as to ever visit the same node twice. An example
of an acyclic graph is a directed acyclic word graph, a method of encoding a word-list for
computer versions of word games such as Scrabble. A simple example of an acyclic

graph is a non-circular singly linked list.
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In most cases, the only information contained by the edge is that there is a relationship
between the two nodes connected, and the information is stored in the node itself.
However, some graphs have numerical values associated with each edge. These graphs

can be used for different problems such as the Traveling salesman problem.

Additionally, there are graph-like structures where information is kept in the edges. One
data structure has all of the information in the edges, and none of the information is in the
nodes. This data structure can be very useful in modelling things like the pipes in a

factory, or the wires in an airplane.
2.2.3. Adjacency list:

In graph theory, an adjacency list is the representation of all edges or arcs in a graph as a

list.

If the graph is undirected, every entry is a set of two nodes containing the two ends of the
corresponding edge; if it is directed, every entry is a tuple of two nodes, one denoting the

source node and the other denoting the destination node of the corresponding arc.

Typically, adjacency lists are unordered.
2.2.4. Application in computer science

In computer science, an adjacency list is a closely related data structure for representing
graphs. In an adjacency list representation, we keep, for each vertex in the graph, all other
vertices which it has an edge to (that vertex's "adjacency list"). For instance, the
representation suggested by van Rossum, in which a hash table is used to associate each
vertex with an array of adjacent vertices, can be seen as an instance of this type of
representation, as can the representation in Cormen et al in which an array indexed by

vertex numbers points to a singly-linked list of the neighbors of each vertex.

One difficulty with the adjacency list structure is that it has no obvious place to store data

associated with the edges of a graph, such as the lengths or costs of the edges. To remedy
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this, some algorithms texts such as that of Goodrich and Tamassia advocate a more object
oriented variant of the adjacency list structure, sometimes called an incidence list, which
stores for each vertex a list of objects representing the edges incident to that vertex. To
complete the structure, each edge must point back to the two vertices forming its
endpoints. The extra edge objects in this version of the adjacency list cause it to use more
memory than the version in which adjacent vertices are listed directly, but are a

convenient location to store additional information about each edge.
2.2.5. Adjacency matrix

In mathematics and computer science, the adjacency matrix for a finite graph, G, on n
vertices is an 72 X 71 matrix where the nondiagonal entry aij is the number of edges
joining vertex i and vertex j, and the diagonal entry aii is either twice the number of loops
at vertex i or just the number of loops (usages differ; this article follows the former;
directed graphs always follow the latter). There exists a unique adjacency matrix for each
graph, and it is not the adjacency matrix of any other graph. In the special case of a finite,
simple graph, the adjacency matrix is a (0, 1)-matrix with zeros on its diagonal. If the

graph is undirected, the adjacency matrix is symmetric.

For sparse graphs, that are graphs with few edges, an adjacency list is often the preferred
representation because it uses less space. An alternative matrix representation for a graph

is the incidence matrix.

1001 0\
01010
10100
010011
10100
0010 0f

Figure 2.13: Adjacency Matrix
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2.2.6. Incidence Matrix

In mathematics, an incidence matrix is a matrix that shows the relationship between two
classes of objects. If the first class is X and the second is Y, the matrix has one row for
each element of X and one column for each element of Y. The entry in row x and column
yis 1 if X and y are related (called incident in this context) and 0 if they are not. There are

variations; see below.

In graph theory, the incidence matrix of an undirected graph G is a p x q matrix [bij]
where p and q are the number of vertices and edges respectively, such that bij = 1 if the
vertex vi and edge xj are incident and 0 otherwise. This matrix is also called the

unoriented incidence matrix.

The incidence matrix of a directed graph D is a p x q matrix [bij] where p and q are the
number of vertices and edges respectively, such that bij = — 1 if the edge xj leaves vertex
vi, 1 if it enters vertex vi and 0 otherwise. (Many authors use the opposite sign

convention!)

An oriented incidence matrix of an undirected graph G is the incidence matrix, in the
sense of directed graphs, of any orientation of G. That is, in the column of edge ¢, there is
a +1 in the row corresponding to one vertex of € and a -1 in the row corresponding to the
other vertex of e, and all other rows have 0. All oriented incidence matrices of G differ
only by negating some set of columns. In many uses, this is an insignificant difference, so

one can speak of the oriented incidence matrix, even though that is technically incorrect.
2.2.7. Graph Operations

Graph algorithms are a significant field of interest for computer scientists. Typical
operations associated with graphs are: finding a path between two nodes, like depth-first
search and breadth-first search and finding the shortest path from one node to another,
like Dijkstra's algorithm.
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2.2.7.1 Depth-first search

Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure,
or graph. Intuitively, one starts at the root (selecting some node as the root in the graph

case) and explores as far as possible along each branch before backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first child node
of the search tree that appears and thus going deeper and deeper until a goal node is
found, or until it hits a node that has no children. Then the search backtracks, returning to
the most recent node it hadn't finished exploring. In a non-recursive implementation, all

freshly expanded nodes are added to a LIFO stack for expansion.

Space complexity of DFS is much lower than BFS (breadth-first search). It also lends
itself much better to heuristic methods of choosing a likely-looking branch. Time
complexity of both algorithms is proportional to the number of vertices plus the number

of edges in the graphs they traverse.

o
(0) © @
ORORO

Figure 2.14: Depth First Search

When searching large graphs that can not be fully contained in memory, DFS suffers
from non-termination when the length of a path in the search tree is infinite. The simple
solution of "remember which nodes I have already seen" doesn't always work because
there can be insufficient memory. This can be solved by maintaining an increasing limit

on the depth of the tree, which is called iterative deepening depth-first search.

a depth-first search starting at A, assuming that the left edges in the shown graph are

chosen before right edges, and assuming the search remembers previously-visited nodes
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and will not repeat them (since this is a small graph), will visit the nodes in the following

order: A,B,D, F,E, C, G.

Performing the same search without remembering previously visited nodes results in
visiting nodes in the order A, B, D, F, E, A, B, D, F, E, etc. forever, caught in the A, B,
D, F, E cycle and never reaching C or G.

Iterative deepening prevents this loop and will reach the following nodes on the

following depths, assuming it proceeds left-to-right as above:

e 0:A
e 1: A(repeated), B,C, E

(Note that iterative deepening has now seen C, when a conventional depth-first search did

not.)
e 2:A,B,D,F,C,GE,F

(Note that it still sees C, but that it came later. Also note that it sees E via a different path,

and loops back to F twice.)
e 3:A,B,D,F,E,C,GE,F,B

For this graph, as more depth is added, the two cycles "ABFE" and "AEFB" will simply

get longér before the algorithm gives up and tries another branch.

2.2.7.2. Vertex orderings

It is also possible to use the depth-first search to linearly order the vertices (or nodes) of

the original graph (or tree). There are three common ways of doing this:

e A preordering is a list of the vertices in the order that they were first visited by the
depth-first search algorithm. This is a compact and natural way of describing the
progress of the search, as was done earlier in this article. A preordering of an

expression tree is the expression in Polish notation.

Hamilton Circuit Algorithm 28



Chapter 2 Basic Concepts

4 =596 8

A postordering is a list of the vertices in the order that they were last visited by
the algorithm. A postordering of an expression tree is the expression in reverse

Polish notation.

A reverse postordering is the reverse of a postordering, i.e. a list of the vertices in
the opposite order of their last visit. When searching a tree, reverse postordering

is the same as preordering, but in general they are different when searching a

Figure 2.15: Vertex Ordering

graph. For example, when searching the graph beginning at node A, the possible
preorderings are A B D C and A C D B (depending upon whether the algorithm
chooses to visit B or C first), while the possible reverse postorderings are A B C
D and A C B D. Reverse postordering produces a topological sorting of any
directed acyclic graph. This ordering is also useful in control flow analysis as it
often represents a natural linearization of the control flow. The graph above might

represent the flow of control in a code fragment like

if (A) then {
B
} else {

C
}
D
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and it is natural to consider this code in the order A B C D or A C B D, but not
natural to use the order ABD Cor ACDB.

2.2.7.3. Breadth-first search
In graph theory, breadth-first search (BFS) is a graph search algorithm that begins at the
root node and explores all the neighboring nodes. Then for each of those nearest nodes, it

explores their unexplored neighbor nodes, and so on, until it finds the goal.

BFS is an uninformed search method that aims to expand and examine all nodes of a
graph systematically in search of a solution. In other words, it exhaustively searches the

entire graph without considering the goal until it finds it. It does not use a heuristic.

From the standpoint of the algorithm, all child nodes obtained by expanding a node are
added to a FIFO queue. In typical implementations, nodes that have not yet been

examined for their neighbors are placed in some container (such as a queue or linked list)

called "open" and then once examined are placed in the container "closed".

2.2.7.3.1. Algorithm:

1. Put the ending node (the root node) in the queue.
2. Pull anode from the beginning of the queue and examine it.

o If the searched element is found in this node, quit the search and return a
result.
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e Otherwise push all the (so-far-unexamined) successors of this node into the
end of the queue, if there are any.

3. If the queue is empty, every node on the graph has been examined -- quit the
search and return "not found".
4. Repeat from step 2.

2.2.7.3.2. Applications of BFS

Breadth-first search can be used to solve many problems in graph theory, for example:

¢ Finding all connected components in a graph.

¢ Finding all nodes within one connected component

o Finding the shortest path between two nodes u and v (in an unweighted graph)
e Testing a graph for bipartiteness

2.3. Algorithms

In this section, we will discuss algorithms and related concepts like their efficiency and
complexity and importance of writing efficient algorithms. Different approaches to target

a particular problem and select the best algorithm for that problem.

2.3.1.Concepts and Definitions

A computer program is composed of individual modules, understandable by a
computer, that solve specific tasks (such as sorting). Our concem in this text is not the
design of entire programs, but rather the design of the individual modules that
accomplish the specific tasks. These specific tasks are called problems. Explicitly, we
say that a problem is a question to which we seek an answer. Examples of problems

follow.
Example 2.1 The following is an example of a problem:

o Sort the list S of n non decreasing order. The answer is the number in sorted

sequence



Chapter 2

Basic Concepts

By a list we mean a collection of items arranged in a particular sequence. For
example,

$=[10,7,11,5, 13, 8]

is a list of six number in which the first number is 10, the second is 7 and so on. We
say “non decreasing order” in Example 2.1 instead of increasing order to allow for the

possibility that the same number may appear more than once in the list.
Example 2.2 The following is an example of a problem.

o Determine whether the number x is in the list S of numbers. The answer is yes

ifx is in S and no if it is not.

A problem may contain variables that are not assigned specific values in the
statement of the problem. The variables are called parameter to the problem. In
Example 2.1 there are two parameters: S (the list) and n (the number of items in ). In
Example 2.2 there are three parameters: S, # and the number x. It is not necessary in
these two examples to make n one of the parameters because its value is uniquely
determined by S. However, making n a parameter facilitates our descriptions of

problems.

Because a problem contains parameters, it represents a class of problems one for each
assignment of values to the parameters. Each specific assignment of values to the
parameters is called an instance of the problem. A solution to an instance of a

problem is the answer to the question asked by the problem in the instance.

Example 2.3 An instance of the problem in Example 2.1 is
S=[10,7,11,5, 13, 8] and n=6.
The solution to this instance is [5, 7, 8, 10, 11, 13]

Example 2.4 An instance of the problem in Example 2.2 is
S=[10,7, 11,5, 13, 8} n=6and x =5.
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The solution to this instance is, “yes, x is in S.”

We can find the solution to the instance in Example 2.3 by inspecting S and allowing
the mind to produce the sorted sequence by cognitive steps that cannot be specifically
described. This can be done because S is so small that at a conscious level. The mind
seems to scans S rapidly and produces the solution almost immediately (and therefore
one cannot describe the steps the mind follows to obtain the solution). However, if the
instance had a value of 1000 for n, the mind would not be able to use this method, and
it certainly would not be possible to convert such a method of sorting numbers to a
computer program. To produce eventually a computer program that can solve all
instances of a problem, (we must specify a general step-by-step procedure for
producing the solution to each instance. This step-by-step procedure is called an

algorithm. We say that the algorithm solves the problem.

Example 2.5 An algorithm for the problem in Example 2.2 is as follows.
Starting with the first item in S, compare x with each item in S in sequence until x is

found or until S is exhausted. If x is found, answer yes; if x is not found, answer no.

The following algorithm represents the list S by an array and, instead of merely
returning yes or no, returns x’s location in the array if x is in S and returns O
otherwise. This particular searching algorithm does not require that the items come

from an ordered set, but we still use our standard data type.

Algorithm 2.1:  Sequential Search

Problem: Is the key x in the array S of n keys?
Inputs: positive integer n, array of keys S index form 1 to n, and a key x.
Outputs: location, the location of x in S (0 if x is not in S).

procedure segsearch (n:integer;
S:array[1..n] of keytype;
x: keytype;
var location:index)

begin

TY
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location:= 1;

while location < n and S[location] # x do
location:=location+1;

end;

if location>n then
location:=0;

end;

end;

Besides the data type keytype, we often use the following, which might not be
predefined in a particular language data types;

Data Meaning

type

Index An integer variable used as an index.

Number A variable that could be defined as
integral (int) or real (float).

Bool . A variable that can take the values
“true” or “false” o

We use the data type number when it is not important to the algorithm whether the

numbers can take any real values or are restricted to the integers.
Sometimes we use the following nonstandard control structure:
®  Repeat (n times) { }

This means repeat the code n times. In programming languages, it would be necessary
to introduce an extraneous control variable and write a for loop. We only use a for

loop when we actually need to refer to the control variable within the loop.

When the name of an algorithm seems appropriate for a value it returns, we write the
algorithm as a function. Otherwise, we write the algorithm as a procedure (void
function in C++) and use reference parameters (that is, parameters that are passed by
address) to return values If the parameter is not an array, it is declared with an

ampersand (&) at the end of the data type name. For our purposes this means that the
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parameter contains a value returned by the algorithm. Because arrays are
automatically passed by reference in C++ and the ampersand is not used in C++ when
passing arrays, we do not use the ampersand to indicate that and array contains values
returned by the algorithm. Instead, since the reversed word const is used in C++ to
prevent modification of a passed array, we use const to indicate that the array does

not contain values returned by the algorithm.

In general, we avoid features peculiar to C++, so that the pseudocode is accessible to
someone who knows only another high-level language. However, we do write

instructions like i++ which means increment i by 1.

2.3.2. The Importance of Developing Efficient Algorithms

Previously we mentioned that, regardless of how fast computers become or how
cheap memory gets, efficiency will always remain an important consideration. Next

we show why this is so by comparing two algorithms for the same problem.

2.3.2.1. Sequential Search versus Binary Search

Earlier we mentioned that the approach used to find a name in the phone book is a
modified binary search, and is usually much faster than a sequential search. Next
we compare algorithms for the two approaches to show how much faster the

binary search is.

We have already written an algorithm that does a sequential search — namely,
Algorithm 2.1. An algorithm for doing a binary search of an array that is sorted in
non decreasing order is similar to thumbing back and forth in a phone book. That
is, given that we are searching for x, the algorithm first compares x with the
middle item of the array. If they are equal, the algorithm is done. If x is smaller
than the middle item, then x must be in the first half of the array (if it is present at
all), and the algorithm repeats the searching procedure on the first half of the
array. (That is, x is compared with the middle item of the first half of the array. If
they are equal, the algorithm is done, etc.) If x is larger than the middle item of the
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array, the search is repeated on the second half of the array. This procedure is
repeated until x is found or it determined that x is not in the array. An algorithm

for this method follows.
Algorithm 2.2 Binary search

Problem: Determine whether x is in the sorted array S of n keys.
Input: Positive integer, sorted (non decreasing) array of keys S
indexed from 1 to n, a key x.

Out put: location, the location of x in S (0 if x is not in S)
procedure binsearch (n: integer;

S: array[1..n] of keytype;

x: keytype,
var location: index )
var
low, high, mid: index;
begin
low :=1; high := n;
location := 0;
while low = high and location = 0 do
mid = [(low-+high) div 2;
if x=s[mid] then
location := mid
else if x < s [mid] then
high =mid —1;
else
low =mid +1;
end;
end;
end;
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Let’s compare the work done by Sequential Search and Binary Search. For focus
we will determine the number of comparisons done by each algorithm. If the array
S contains 32 items and x is not in the array, Algorithm 2.1 (Sequential Search)

compares x with all 32 items before determining that x is not in the array.

In general, Sequential Search does » comparisons to determine that x is not in
array of size n. It should be clear that this is the most comparisons Sequential
Search ever makes when searching an array of size ». That is, if x is in the array,

the number of comparison is not greater than n.

Next consider Algorithm 2.2 (Binary Search). There are two comparisons of x
with S[mid] in each pass through the while loop (except when x is found). In an
efficient assembler language implementation of the algorithm, x would be
compared with S[mid] only once in each pass, the result of that comparison would
set the condition code, and the appropriate branch would take place based on the
value of the condition code. This means that there would be only one comparison
of x with S [mid] in each pass through loop. We will assume the algorithm is
implemented in this manner. With this assumption, Figure 2.1 shows array of size
32. Notice that 6=1g32+1. By “1g” we mean log, The log; is encountered so often
in analysis of algorithms that we reserve the special symbol lg for it. You should
convince yourself that this is the most comparisons Binary Search ever does. That
is, if x is in the array, or if x is smaller than all the array items, or if x is between
two array items, the number of comparisons is not greater than when x is larger

than all the array items.

Suppose we double the size of the array so that it contains 64 items. Binary
Search does only one comparison more because the first comparison more
because the first comparison cuts the array in half, resulting in a subarray of size
32 that is searched. Therefore, when x is larger than all the items in an array of
size 64, Binary Search does seven comparisons. Notice that 7 = 1g 64+1. In
general, each time we double the size of the array we add only one comparison we

add only one comparison. Therefore, if # is a power of 2 and x is larger than all
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the items in an array of size n the number of comparisons done by Binary Search

islgn+1.

Table 2.1 compares the number of comparison done by Sequential Search and

Binary Search for various values of n, when x is larger than all the items in the

S[16] S[24] S[28] S[30] S[31]  S[32]
1st nd 3rd 5th

(Figure2.17 The array items that Binary search compares with x when x is larget than all the items in an array of size 32.
The items are numbered according to the order in which are compared)

array. When the array contains around 4 billion items (about the number of people
in the world), Binary Search does only 33 comparisons whereas Sequential Search
compares x with all 4 billion items. Even if the computer was capable of
completing one pass through the while loop in a nanosecond (one billionth of a

second), Sequential Search would take 4 seconds to determine that x is not in the

array, whereas Binary Search would make that determination almost
instantaneously. This difference would be significant in an on-line application or

if we needed to search for many items.

Table 2.1 The numbers of comparisons done by Sequential
Search and Binary Search when x is larger than all the
array items

Array Size Number of Number of
comparisons comparisons
by Sequential by Binary Search
Search
128 128 8
1,024 1,024 11
1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

For convenience, we considered only arrays whose size were powers of 2 in the
previous discussion of Binary Search. It is an example of the divide-and-conquer

approach.
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As impressive as the searching example is it is not absolutely compelling because
sequential search still gets the job done in an amount of time tolerable to a human
life span. Next we will look at an inferior algorithm that does not get the job done

in a tolerable amount of time.

2.3.3. The Fibonacci Sequence

The algorithm discussed here computes the nth term of the Fibonacci sequence,

which is defined recursively as follows:

fo = 0
f] = 1
fn = fn-l + fn-2 nz2

Computing the first few terms, we have

f = fi+fh=1+0=1
f; = forfi=1+1=2
fa = fyt+f,=2+1=3
fs = farfa=3+2=5 etc.

There are various applications of the Fibonacci sequence in computer science and
mathematics. Because the Fibonacci sequence is defined recursively, we use the

following recursive algorithm form the definition.

Algorithm 2.3  nth Fibonacci Term (Recursive)

Problem: Determine the nth term in the Fibonacci sequence,
Inputs:  anon negative integer n.
Outputs: fib, the nth term of the Fibonacci sequence.
function fib (n: integer): integer;
begin

if n<1 then

fib:=n;
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else
fib:=fib (n-1)+ fib(n-2);
end;

end;

By “nonnegative integer” we mean an integer that is greater than or equal to 0,
whereas by “positive integer” we mean an integer that is strictly greater than 0.
We specify the input to the algorithm in this manner to make it clear what values
the input can take. However, for the sake of avoiding clutter, we declare »# simply
as an integer in the expression of the algorithm. We will follow this convention

throughout the text.

Although the algorithm was easy to create and is understandable. it is extremely
inefficient. When computing fib (5), we need fib (4) and fib (3). Then to obtain
fib(3) we need fib (2) and fib(1) over and over again. For example, Fib (2) is

computed three times.

How inefficient is this algorithm? The algorithm computes the following numbers

of terms to determine fib (n) for 0 <n < 6;

n Number of Terms computed
0 1

1 1

2 3

3 5

4 9

5 15

6 25

The first six values can be obtained by counting the nodes in the subtree rooted at
fib(n) for 1 < n< 5. Whereas the number of terms for fib(6) is the sum of the
nodes in the tree rooted at fib (5) and fib (4) plus the one node at the root. These

numbers do not suggest a simple expression like the one obtained for Binary

Hamilton Circuit Algorithm 40



Chapter 2 Basic Concepts

Search. Notice, however, that in the case of the first seven values, the number of
terms in the tree for Fibonacci series is more than doubles every time n increases
by 2. for example, there are nine terms in the tree when n = 4 and 25 terms when
n = 6. Let’s call T(n) the number of terms in the recursion tree for n. If the number
of terms more than doubled every time n increased by 2, we would have the

following for n a positive power of 2:

Tmy>2xT(n~2)
>2%x2xT(n-4)
>2x2x2T(n~-6)

*

>2x2x2x..x2.xT(®
. ~

-
n/2 terms

Because T(0) = 1, this would mean T(n) > 2"?,

Algorithm 2.4 nth Fibonacci Term (iterative)

Problem: Determine the nth term in the Fibonacci Sequence.
Inputs: a non negative integer n.
Outputs: fib 2, the nth term in the Fibonacci Sequence.

function fib2 (integer n):integer;

var
i: index;
f:array[0..n] of integer;
begin
f[0] :=0;
if n>0 then
fl1]1=1;

fori:=2tondo

fli] == £ [i-1] + f[i-2];
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end;
end;
fib2:=f[n];

end;

Algorithm 2.4 can be written without using the array f because only the two most
recent terms are needed in each iteration of the loop. However, it is more clearly

illustrated using the array.

To determine fib2(n) the previous algorithm computes every one of the firstn + 1
terms just once. So it computes n+1 terms to determine the nth Fibonacci term.
Recall that Algorithm 2.3 computes more then 2" terms to determine the nth
Fibonacci term. Table 2.2 compares these expressions for various values of n. The
execution times are based on the simplifying assumption that one term can be
computed in 10® second. The table show the time it would take Algorithm 2.4 to
computes the nth term on a hypothetical computer that could compute each term
in a nanosecond, and it shows a lower bound on the time it would take to execute
Algorithm 2.4. By the time #» is 80, Algorithm 2.3 takes at least 18 minutes. When
n is 120, it takes more then 36 years, and amount of time intolerable to a human
life span. Even if we could build a computer one billion times as fast. Result can
be obtained by diving the time for the 200" term by one billion. We see that
regardless of how fast computer become, Algorithm 2.3 will still take an
intolerable amount of time unless » is small. On the other hand, Algorithm 2.4
computes the nth Fibonacci term almost instantaneously. This comparison shows
why the efficiency of an algorithm remains an important consideration regardless

of how fast computer become.

Table 2.2 A comparison of Algorithms 4.3 and 4.4

Execution Lower Bound
n n+1l 2n/2 Time Execution Time
Using Using Algorithm
Algorithm 4.4 4.3
40 41 1,048.576 41 ns’ 1048 us’
60 61 1.1x10° 61 ns 1 s
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80 81 1.1x10%? 81 ns 18 min

100 101 1.1x10% 101 ns 13 days

120 121 1.2x10'8 121 ns 36 days

160 161  1.2x10% 161 ns 3.8x1017 years

200 201  1.3x10°° 201 ns 4x10'° years
1 ns = 10" second

*lus = 10 second

Algorithm 2.3 is a divide-and conquer algorithm. Recall that the divide-and-
conquer approach produced a very efficient algorithm (Algorithm 2.2: Binary
Search) for the problem of searching a sorted array. The divide-and-conquer
approach leads to very efficient algorithms for some problems, but very
inefficient algorithms for other problems. Our efficient algorithm for computing
the nth Fibonacci term (Algorithm 2.4) is an example of the dynamic

programming approach. We see that choosing the best approach can be essential.

We showed that Algorithm 2.3 computes at least an exponentially large number
of terms, but could it be even worse? The answer is no. It is possible to obtain an
exact formula for the number of terms, for further discussion of the Fibonacci

sequence.
Algorithm 2.5  Add array members

Problem: Add all the numbers in the array S of n numbers.
Inputs:  positive integer n, array of numbers S indexed from
1 ton.

Outputs: sum, the sum of the numbers in S.

function sum (n:integer; S:array[1..n] of number): number;
var

i: index;

sum: number;

begin
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sum := 0;
fori:=1tondo

sum := sum + S[i] ;
end;

end;

2.3.4. Analysis of Algorithms

To determine how efficiently an algorithm solves a problem, we need to analyze the
algorithm. We introduced efficiency analysis of algorithms when we compared the
algorithms in the preceding section. However, we did those analyses rather
informally. We will now discuss terminology used in analyzing algorithms and the
standard methods for doing analyses. We will adhere to these standards in the

remainder of the text.

2.3.4.1. Time Complexity Analysis

When analyzing the efficiency of an algorithm in terms of time, we do not
determine the actual number of CPU cycles, because this depends on the
particular computer on which the algorithm is run. Furthermore, we do not even
want to count every instruction executed, because the number of instructions
depends on the programming language used to implement the algorithm and the
way the programmer writes the program. Rather, we want a measure that is
independent of the computer, the programming language, the programmer and all
the complex details of the algorithm such as incrementing of loop indices, setting
of pointers etc. We learned that Algorithm 2.2 is much more efficient than
Algorith 2.1 by comparing the numbers of comparisons done by the two
algorithms for various values of n, where n is the number of items in the array.
This is a standard technique for analyzing algorithms. In general, the running
time of an algorithm increases with the size of the input, and the total running
time is roughly proportional to how many times some basic operation (such as

comparison instruction) is done. We therefore analyze the algorithm’s efficiency

Hamilton Circuit Algorithm 44



Chapter 2 Basic Concepts

by determining the number of times some basic operation is done as a function of

the size of the input.

For many algorithms it is easy to find a reasonable measure of the size of the
input, which we call the input size. For example, consider Algorithms 2.1
(Sequential Search), 2.2 (Binary Search) and 2.5 (Add Array Members). In all
these algorithms, n, the number of items in the array, is a simple measure of the
size of the input. Therefore, we can call » the input size. In some algorithms, it is
more appropriate to measure the size of the input using two numbers. For
example, when the input to an algorithm is a graph, we often measure the size
of the input in terms of both the number of vertices and the number of edges.

Therefore, we say that the input size consists of both parameters.

Sometimes we must be cautious about calling a parameter the input size. For
example, in Algorithms 2.3 (nth Fibonacci Term, Recursive) and 24 (nth
Fibonacci Term, Iterative), you may think that » should be called the input size.
However, n is the input; it is not the size of the input. For this algorithm, a
reasonable measure of the size of the input is the number of symbols used to
encode n. If we use binary representation, the input size will be the number of bits

it takes to encode n, which is (floor) [Ig n] + 1. For example
n= 13 = 1101, (4 bits)

Therefore, the size of the input » = 13 is 4. We gained insight into the relative
efficiency of the two algorithms by determining the number of terms each
computes as a function of », but still » does not measure the size of the input. It
will usually suffice to use a simple measure, such as the number of times this
instruction or group of instructions is done. We call this instruction or group of
instructions the basic operation in the algorithm. For example, x is compared
with an item S in each pass through the loops in Algorithms 2.1. Therefore, the

compare instruction is a good candidate for the basic operation in each of these
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algorithms. By determining how many times Algorithm 2.1 do this basic
operation for each value of n, we gained insight into the relative efficiency of the

algorithm.

In general, at time complexity analysis of an algorithm is the determination of
how many times the basic operation is done for each value of the input size.
Although we do not want to consider the details of how an algorithm is
implemented. We will ordinary assume that the basic operation is implemented as
efficiently as possible. For example we assume that Algorithm 2.1 is implemented
such that the comparison is done just once. In this way, we analyze the most

efficient implementation of the basic operation.

There is no hard and fast rule for choosing the basic operation. It is largely a
matter of judgment and experience. As already mentioned, we ordinarily do not
include the instructions that compose the control structure. For example, in
Algorithm 2.1 we don’t include the instructions that increment and compare the
index in order to control the passes through the while loop. Sometimes it suffices
simply to consider one pass through a loop as one execution of the basic
operation. At the other extreme, for a very detailed analysis one could consider
the execution of each machine instruction as doing the basic operation once. As
mentioned earlier, because we want our analyses to remain independent of the

computer, we will never do that in this text.

At times we may want to consider two different basic operations. For example, in
an algorithm that sorts by comparing keys, we often want to consider the
comparison instruction and the assignment instruction each individually as
compose the basic operation, but rather that we have two instructions together one
being the comparison instruction and the other being the assignment instruction .
We do this because ordinarily a sorting algorithm does not do the same insight

into the efficiency of the algorithm by determining how many times each is done.
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As discussed earlier, a time complexity analysis of an algorithm determines how
many times the basic operation is done for each value of the input size. In some
cases the number of times it is done depends not only on the input size, but also
on the input’s values. This is the case in Algorithm 2.1 (Sequential Search). For
example, if x is the first item in the array, the basic operation is done once,
whereas if x is not in the array, it is done n times. In other cases, such as
Algorithm 2.5 (Add Array Members), the basic operation is always done the same
number of times for every instance of size n. When this is the case, T(n) is defined
as the number of times the algorithm does the basic operation for an instance of
size n. T (n) is called the every-case time complexity of the algorithm, and the
determination of T (n) is called an every-case time complexity analysis. Examples

of every-case time complexity analysis follow.

2.3.4.2. Every-Case Time Complexity Analysis of Algorithm 2.5
Basic operation: the addition of an item in the array to sum.

Input size: n, the number of items in the array.

Regardless of the value of the numbers in the array, there are » passes through the

Sfor loop. Therefore, the basic operation is always done » times and
T(n)=n.

As discussed previously, the basic operation in Algorithm 2.1 is not done the
same number of times for all instances of size n. So this algorithm does not have
an every-case time complexity. This is true for many algorithms. However, this
does not mean that we cannot analyze such algorithms, because there are three
other analysis techniques that can be tried. The first is to consider the maximum
number of times the basic operation is done. For a given algorithm, W(n) is called
worse case time complexity of the algorithm, and the determination of W(n) is
called a worst case time complexity analysis. If T(n) exists, then clearly W(N) =

T(n). The following is an analysis of W(n) in a case where T(n) does not exist.
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2.3.4.3. Worst-Case Time Complexity Analysis of Algorithm 2.1
Basic Operation:  the comparison of an item in the array with x.
Input size: n, the number of items in the array.

The basic operation is done at most n times, which is the case if x is the last item

in the array or if x is not in the array. Therefore,
W(n)=n.

Although the worst case analysis informs us of the absolute maximum amount of
time consumed, in some cases we may be more interested in knowing how the
algorithm performs on the average. For a given algorithm, A(n) is defined as the
average (expected value) of the number of times the algorithm does the basic
operation for an input size of n. A(n) is called the average case time complexity of
the algorithm, and the determination of A(n) is called an average case time

complexity analysis. As is the case for W(n), if T(n) exists, then A(n) = T(n).

To compute A(n), we need to assign probabilities to all possible inputs of size. It
is important to assign probabilities based on all available information. For
example, our next analysis will be average case analysis of Algorithm 2.1. We
will assume that if x is in the array, it is equally likely to be in any of the array
slots. If we know only that x may be somewhere in the array, our information
gives us no reason to prefer one array slot over another. Therefore, it is reasonable
to assign equal probabilities to all array slots; this means that we are determining
the average search time when we search for all items the same number of times. If
we have information indication that the inputs will not arrive according to this
distribution, we should not use this distribution in our analysis. For example if
chosen at random from all people in the United States, an array slot containing the
common name “John” will probably be searched more often that one containing
the uncommon name “Felix”. We should not ignore this information and assume

that all slots are equally likely.
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As the following analysis illustrates, it is usually harder to analyze the average

case than it is to analyze the worst case.

2.3.4.4. Average-Case Time Complexity Analysis of Algorithm 2.1
Basic operation: The comparison of an item in the array with x.
Input size: n, the number of items in the array,

We first analyze the case where it is known that x is in S, where the items in S are
all distinct, and where we have no reason to believe that x is more likely to be in
one array slot than it is to be in another. Based on this information, for 1 <k <n,
the probability that x is in the kth array slots is 1/n. If x is in the kth array slot, the
number of times the basic operation is done to locate x (and, therefore, to exit the

loop) is k. This means that the average time complexity is give by

A(n) = nZ (kx1/n)=1/nx n(n+ 1)2 =(nt+ 1)/2.
k=1

Next we analyze the case where x may not be in the array. To analyze this case we
must assign some probability p to the event that x is in the array. If x is in the
array. We will again assume that it is equally likely to be in any of the slots from
1 to n. The probability that x is in the kth slot is then p/n, and the probability that
it is not in the array is 1 - p. Recall that there are & passes through the loop if x is
found in the kth slot, and » passes through the loop if x is not in the array.

The average time complexity is therefore given by

A(n) =2 (k x p/n) +n(1-p)
=1
=pmnxn(n+l)/2 +n(l-p) =n(l-p/2) +p/2
The last step in this triple equality is derived with algebraic manipulations. If p =

1, A(n) = (n + 1)/2, as before, whereas if p=1/2, A(n) = 3n/4 + 1/4. This means

that about 3/4 of the array is searched on the average.
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Before proceeding, we offer a word of caution about the average. Although an
average is often referred to as a typical occurrence, one must be careful in
interpreting the average in this manner. For example, a meteorologist may say that
a typical January 25 in Chicago has a high of 22F because 22F has been the
average high for that date over the past 80 years. The paper may run an article
saying that the typical family in Evanston, Illinois, earns $50,000 annually be
cause that is the average income. An average can be called “typical” only if the
actual case do not deviate much from the average (that is, only if the standard
deviation is small). This may be the case for the high temperature on January 25.
However, Evanston is a community with wealthy areas and fairly poor areas. It is
more typical for a family to make either $20,000 annually or $100,000 annually
than to make $50,000. Recall in the previous analysis that A(n) is (n + 1)/2 when
it is known that x is in the array. This is not the typical search time, because all
search times between 1 and n are equally typical. Such considerations are
important in algorithms that deal with response time. For example, consider a
system that monitors a nuclear power plant. If even a single instance has a bad
response time, the results could be catastrophic. It is therefore important to know
whether the average response time is 3 second because all response times are

around 3 seconds or because most are 1 second and some is 60 second.

A final type of time complexity analysis is the determination of the smallest
number of times the basic operation is done. For a given algorithm, B(n) is
defined as the minimum number of times the algorithm will ever do its basic
operation for and input size of n. So B(n) is called the best case time complexity
of the algorithm, and the determination of B(n) is called the best case time
complexity analysis. As is the case for W(n) and A(n) if T(n) exists, then B(n)=
T(n). Let’s determine B(n) for Algorithm 2.1.

2.3.4.5. Best-Case Time Complexity Analysis of Algorithm 2.1

Basic operation: the comparison of an item in the array with x.
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Input size: n, the number of items in the array.

Because n>1, there must be at least one pass through the loop. If x = S[1],there

will be one pass through the loop regardless of the size of n. Therefore,
B(n)=1

For algorithms that do not have every case time complexities, we do worst case
and average case analyses much more often than best case analyses. An average
case analysis is valuable because it tells us how much time the algorithm would
take when used many times on many different inputs. This would be useful, all
possible inputs. Often, a relatively slow sort can occasionally be tolerated if, on
the average, the sorting time is good. For most of the applications, a best-case

analysis would be of little value.

We have only discussed analysis of the time complexity of an algorithm. All these
same considerations also pertain to analysis of memory complexity, which is an
analysis of how efficient the algorithm is in terms of memory. Although most of
the analysis in this text is time complexity analyses, we will occasionally find it

useful to do a memory complexity analysis.
2.3.4.6. Usage of Analysis Theory

When applying the theory of algorithm analysis, one must sometimes be aware of
the time it takes to execute the basic operation, the overhead instructions, and the
control instructions on the actual computer on which the algorithm is
implemented. By “over head instructions” we‘ mean instructions such as
initialization instructions before a loop. The number of times these instructions
execute does not increase with input size. The basic operation, over head
instructions, and control instructions are all .properties of an algorithm and the
implementation of the algorithm. They are not properties of a problem. This
means that they are usually different for two different algorithms for the same

problem.
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We are assuming that the time it takes to process the overhead instructions is
negligible. If this were not the case, these instructions would also have to be

considered to determine the efficiency of an algorithm.

2.4. Algorithm Classes

There are various ways to classify algorithms, each with its own merits.

24.1. Classification by implementation

One way to classify algorithms is by implementation means.

Recursion or iteration: A recursive algorithm is one that invokes (makes reference
to) itself repeatedly until a certain condition matches, which is a method common
to functional programming. Iterative algorithms use repetitive constructs like
loops and sometimes additional data structures like stacks to solve the given
problems. Some problems are naturally suited for one implementation or the
other. For example, towers of hanoi is well understood in recursive
implementation. Every recursive version has an equivalent (but possibly more or
less complex) iterative version, and vice versa.

Logical: An algorithm may be viewed as controlled logical deduction. This

notion may be expressed as:
Algorithm = logic + control

The logic component expresses the axioms which may be used in the computation
and the control component determines the way in which deduction is applied to
the axioms. This is the basis for the logic programming paradigm. In pure logic
programming languages the control component is fixed and algorithms are
specified by supplying only the logic component. The appeal of this approach is
the elegant semantics: a change in the axioms has a well defined change in the

algorithm.
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e Serial or parallel: Algorithms are usually discussed with the assumption that
computers execute one instruction of an algorithm at a time. Those computers are
sometimes called serial computers. An algorithm designed for such an
environment is called a serial algorithm, as opposed to parallel algorithms, which
take advantage of computer architectures where several processors can work on a
problem at the same time. Parallel algorithms divide the problem into more
symmetrical or asymmetrical subproblems and pass them to many processors and
put the results back together at one end. The resource consumption in parallel
algorithms is both processor cycles on each processor and also the communication
overhead between the processors. Sorting algorithms can be parallelized
efficiently, but their communication overhead is expensive. Iterative algorithms
are generally parallelizable. Some problems have no parallel algorithms, and are
called inherently serial problems.

e Deterministic or non-deterministic: Deterministic algorithms solve the problem
with exact decision at every step of the algorithm whereas non-deterministic
algorithm solve problems via guessing although typical guesses are made more
accurate through the use of heuristics.

e Exact or approximate: While many algorithms reach an exact solution,
approximation algorithms seek an approximation which is close to the true
solution. Approximation may use either a deterministic or a random strategy.

Such algorithms have practical value for many hard problems.

2.4.2. Classification by design paradigm

Another way of classifying algorithms is by their design methodology or paradigm.
There is a certain number of paradigms, each different from the other. Furthermore,
each of these categories will include many different types of algorithms. Some

commonly found paradigms include:

e Divide and conquer: A divide and conquer algorithm repeatedly reduces an
instance of a problem to one or more smaller instances of the same problem

(usually recursively), until the instances are small enough to solve easily. One
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such example of divide and conquer is merge sorting. Sorting can be done on each
segment of data after dividing data into segments and sorting of entire data can be
obtained in conquer phase by merging them. A simpler variant of divide and
conquer is called decrease and conquer algorithm, that solves an identical
subproblem and uses the solution of this subproblem to solve the bigger problem.
Divide and conquer divides the problem into multiple subproblems and so
conquer stage will be more complex than decrease and conquer algorithms. An
example of decrease and conquer algorithm is binary search algorithm.

¢ Dynamic programming: When a problem shows optimal substructure, meaning
the optimal solution to a problem can be constructed from optimal solutions to
subproblems, and overlapping subproblems, meaning the same subproblems are
used to solve many different problem instances, we can often solve the problem
quickly using dynamic programming, an approach that avoids recomputing
solutions that have already been computed. For example, the shortest path to a
goal from a vertex in a weighted graph can be found by using the shortest path to
the goal from all adjacent vertices. Dynamic programming and memoization go
together. The main difference between dynamic programming and divide and
conquer is, subproblems are more or less independent in divide and conquer,
where as the overlap of subproblems occur in dynamic programming. The
difference between the dynamic programming and straightforward recursion is in
caching or memoization of recursive calls. Where subproblems are independent,
there is no chance of repetition and memoization does not help, so dynamic
programming is not a solution for all. By using memoization or maintaining a
table of subproblems already solved, dynamic programming reduces the
exponential nature of many problems to polynomial complexity.

e The greedy method: A greedy algorithm is similar to a dynamic progrémming
algorithm, but the difference is that solutions to the subproblems do not have to be
known at each stage; instead a "greedy" choice can be made of what looks best for
the moment. The difference between dynamic programming and the greedy
method is, it extends the solution with the best possible decision (not all feasible

decisions) at an algorithmic stage based on the current local optimum and the best
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decision (not all possible decisions) made in previous stage. It is not exhaustive,
and does not give accurate answer to many problems. But when it works, it will
be the fastest method. The most popular greedy algorithm is finding the minimal
spanning tree as given by Kruskal.

o Linear programming: When solving a problem using linear programming, the
program is put into a number of linear inequalities and then an attempt is made to
maximize (or minimize) the inputs. Many problems (such as the maximum flow
for directed graphs) can be stated in a linear programming way, and then be
solved by a 'generic' algorithm such as the simplex algorithm. A complex variant
of linear programming is called integer programming, where the solution space is
restricted to all integers.

e Reduction: This is another powerful technique in solving many problems by
transforming one problem into another problem. For example, one selection
algorithm for finding the median in an unsorted list is first trahslating this
problem into sorting problem and finding the middle element in sorted list. The
goal of reduction algorithms is finding the simplest transformation such that
complexity of reduction algorithm does not dominate the complexity of reduced
algorithm. This technique is also called transform and conquer.

¢ Search and Enumeration: Many problems (such as playing chess) can be
modeled as problems on graphs. A graph exploration algorithm specifies rules for
moving around a graph and is useful for such problems. This category also
includes the search algorithms and backtracking.

¢ The probabilistic and heuristic paradigm: Algorithms belonging to this class
fit the definition of an algorithm more loosely.

1. Probabilistic algorithms are those that make some choices randomly (or pseudo-
randomly); for some problems, it can in fact be proven that the fastest solutions
must involve some randomness.

2. Genetic algorithms attempt to find solutions to problems by mimicking biological
evolutionary processes, with a cycle of random mutations yielding successive

generations of "solutions". Thus, they emulate reproduction and "survival of the
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fittest". In genetic programming, this approach is extended to algorithms, by
regarding the algorithm itself as a "solution" to a problem. Also there are

3. Heuristic algorithms, whose general purpose is not to find an optimal solution, but
an approximate solution where the time or resources to find a perfect solution are
not practical. An example of this would be local search, taboo search, or
simulated annealing algorithms, a class of heuristic probabilistic algorithms that
vary the solution of a problem by a random amount. The name "simulated
annealing” alludes to the metallurgic term meaning the heating and cooling of
metal to achieve freedom from defects. The purpose of the random variance is to
find close to globally optimal solutions rather than simply locally optimal ones,
the idea being that the random element will be decreased as the algorithm settles

down to a solution.

2.4.3. Classification by field of study

Every field of science has its own problems and needs efficient algorithms. Related
problems in one field are often studied together. Some example classes are search
algorithms, sorting algorithms, merge algorithms, numerical algorithms, graph
algorithms, string algorithms, computational geometric algorithms, combinatorial
algorithms, machine learning, cryptography, data compression algorithms and parsing

techniques.

Fields tend to overlap with each other, and algorithm advances in one field may
improve those of other, sometimes completely unrelated, fields. For example,
dynamic programming was originally invented for optimisation of resource
consumption in industry, but is now used in solving a broad range of problems in

many fields.

24.4. Classification by complexity

This is actually problem classification in the strict sense. Some algorithms complete
in linear time, and some complete in exponential amount of time, and some never

complete. One problem may have multiple algorithms, and some problems may have
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no algorithms. Some problems have no known efficient algorithms. There are also
mappings from some problems to other problems. So computer scientists found it is
suitable to classify the problems rather than algorithms into equivalence classes based

on the complexity.

2.5. Order of Algorithm

We just illustrated that an algorithm with a time complexity of n is more efficient
than with a time complexity of n2 for sufficiently large values of n, regardless of how
long it takes to process the basic operations in the two algorithms. Suppose now that
we have two algorithms for the same problem, and that their every — case time
complexities are 100n for the first algorithm and 0.01n2 for the second algorithm.
Using an argument such as the one just given, we can show that the first algorithm
will eventually be more efficient than the second one. For example, if it takes the
same amount of time to process the basic operations in both algorithms and the
overhead is about the same, the first algorithm will be more efficient if

0.01n2 >100n
Dividing both sides by 0.01n yields

n > 10,000.
If it takes longer to process the basic operation in the first algorithm than in the
second, then there is simply some larger value of n at which the first algorithm

becomes more efficient.

Algorithm with time complexities such as n and 100n are called linear —time
algorithms because their time complexities are linear in the input size n, whereas
algorithms with time complexities such as n2 and 0.01n2 are called quadratic-time
algorithms because their time complexities are quadratic in the input size n. There is a
fundamental principle here. That is, any linear-time algorithm is eventually more
efficient than any quadratic-time algorithm. In the theoretical analysis of an
algorithm, we are interested in eventual behavior. Next we will show how algorithms
can be grouped according to their eventual behavior. In this way we can readily

determine whether one algorithm’s eventual behavior is better than another’s.
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2.5.1. Introduction to Order
Function such as 5n® and 5n” +100 are called pure quadratic functions because
they contain no linear term, whereas a function such as 0.1n? +n+100 is called a
complete quadratic function because it contains a linear term. Table 1.3 shows
that eventually the quadratic term dominates this function. That is, the values of
the other terms eventually become insignificant compared with the value of the
quadratic term. Therefore, although the function is not a pure quadratic function,
we can classify it with pure quadratic functions. This means that if some
algorithm has this time complexity, we can call the algorithm a quadratic time
algorithm. Intuitively, it seems that we should always be able to throw away low
order terms when classifying complexity functions. For example, it seems that we
should be able to classify 0.1 n® +10n*+5n+25 with pure cubic functions. We will
soon establish rigorously that we can do this. First let’s impart an intuitive feel for

how complexity functions are classified.

The set of all complexity functions that can be classified with pure quadratic
functions is called ®(n?), where © is the Greek capital letter “theta.” If a function
is a member of the set @(n%), we say that the function is order of n’. For example,
because we can throw away low order terms,

G (n) = 5n? + 100n +20 E O(n?)

which means that G(n) is order n’.

When an algorithm’s time complexity is in ©(n?), the algorithm is called a
quadratic time algorithm or a ®(n?) algorithm. We also say that the algorithm is
O(n?). Exchange Sort is a quadratic time algorithm.

Table 2.3 The quadratic term eventually dominates

N 0.1 n? 0.1 n?+n + 100
10 10 120

20 40 160

50 250 400

100 1,000 1,200
1000 100,000 101,100

Hamilton Circuit Algorithm 58



Chapter 2 Basic Concepts

Similarly, the set of complexity functions that can be classified with pure cubic
functions is called ®(n’), and functions in that set are said to be order of n’, and so
on. We will call these sets complexity categories. The following are some of the

most common order categories:

Table 2.4 Some common order catagories

Notation Name Example
O(log n) logarithmic Finding an item i1in a
: sorted list
O((log n)°) polylogarithmic Deciding if a number is

prime with the  AKS
primality test

O(n) Linear Finding an item in an
unsorted list
O(n log n) Linearithmic, Sorting a list with
Loglinear, or heapsort
Quasilinear
0(n?) Quadratic Sorting a list with
insertion sort
O(n°), ¢ > 1 Polynomial, Finding the shortest
sometimes path on a weighted
called digraph with the Floyd-
algebraic Warshall algorithm
o(ch) exponential, Finding the (exact)
sometimes solution to the
called traveling salesperson
geometric problem
o(n!') Factorial, Determining if two
sometimes logical statements are
called equivalent
combinatorial

In this ordering, if f(n) is in a category to the left of the category containing g(n)
then f(n) eventually lies beneath g (n) on a graph. One might expect that as long
as an algorithm is not an exponential time algorithm, it will be adequate.
However, even the quadratic time algorithm takes 31.7 years to process an
instance with an input size of 1 billion (10°). On the other hand, the ®(nlgn)
algorithm takes only 29.9 seconds to process such an instance. Ordinary an
algorithm has to be O(nlgn) or better for us to assume that it can process

extremely large instances in tolerable amounts of time. This is not to say that
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algorithms whose time complexities are in the higher order categories are not
useful. Algorithms with quadratic, cubic, and even higher order time complexities

can often handle the actual instances that arise in many applications.

Here we develop theory that enables us to define order. We accomplish this by

presenting two other fundamental concepts. The first is “ big O”

2.5.1.1. BigO

For a given complexity function f (n), Big O written as O(f (n)) is the set of
complexity functions g(n) for which there exists some positive real constant ¢ and

some nonnegative integer N such that for alln> N
g(n) <cx f(n)

If g(n) € O(f(n)), we say that g(n). g(n) eventually it falls beneath cf(n) and stays
there. Although n? +10n is initially above 2n” in that figure, for n > 10

n?+10n <2 n?
We can therefore take ¢ = 2 and N = 10 in the definition of “big O” to conclude
that

n*+10n € 0(n%)
If for example, g(n) is in O(n®), then eventually g(n) lies beneath some pure
quadratic function cn” on a graph. This means that if g(n) is the time complexity
for some algorithm, eventually the running time of the algorithm will be at least
as fast as quadratic. For the purposes of analysis, we can say that eventually g(n)
is at least as good as a pure quadratic function ““ Big O” (and other concepts that
will be introduced soon) are said to describe the asymptotic behavior of a function
because they are concerned only with eventual behavior. We say that “big O” puts

an asymptotic upper bound on a function.

Just as “big O” puts an asymptotic upper bound on a complexity function, the

following concept puts an asymptotic lower bound on a complexity function.
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2.5.1.2. Omega “Q)”
For a given complexity function f(n), Q(f(n)) is the set of complexity functions
g(n) for which there exists some positive real constant ¢ and some nonnegative
integer N such that, for all n>N.
gn) 2 cx f(n)
The symbol Q is the Greek capital letter “omega” If g (n).

As is the case for “big O there are no unique constants ¢ and n for which the
conditions in the definition of Q hold. We can choose whichever ones make our

manipulations easiest.

If a function is in Q (n2) then eventually the function lies above some pure
quadratic function on a graph. For the purposes of analysis, this means that
eventually it is at least as bad as a pure quadratic function. However, as the

following example illustrates, the function need not be a quadratic function.

If a function is in both O(n?) and Q (n®). We can conclude that eventually the
function lies beneath some pure quadratic function on a graph and eventually it
lies above some pure quadratic function on a graph. That is, eventually it at least
as good as some pure quadratic function and eventually it is at least as bad as
some pure quadratic function. We can therefore conclude that its growth is similar
to that of a pure quadratic function. This is precisely the result we want for our

rigorous notion of order. We have the following definition.

25.13. Theta“@®”
For a given complexity function f(n)
O(f(n) = O(f(n)) N Q(f(n))
This means that ®(f(n)) is the set of complexity function g(n) for which there
exists some positive real constants ¢ and d and some nonnegative integer N such
that, foralln >N

cxf(n)<g(n)<dxf(n)
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If g (n) € B(f(n)), we say that g(n) is order of f(n). Assuming that n € Q(nz)

means we are assuming that there exits some positive constant ¢ and some
nonnegative integer N such that, forn >N
l/c = cn’
If we divide both sides of this inequality by on, we have forn>N
l/c>n
However, for any n > 1/c, this inequality cannot hold, which means that it cannot

hold for all n > N. this contradiction proves that n is not in Q (n?)

25.14. Small “o”

For a given complexity function f(n), small o written as o(f(n)) is the set of all
complexity functions g(n) satisfying the following: For every positive real
constant c there exists a nonnegative integer N such that, for alln> N,

g(n) <cx fin)

If g(n) € o(f(n)), we say that g (n) is small o of f (n). Recall that “big 0" means
there must be some real positive constant ¢ for which the bound holds. This
definition says that the bound must hold for every real positive constant c.

Because the bound holds for every positive c, it holds for arbitrarily small c. For
example, if g (n) € 0(n), there is an N such that, for n> N
g(n) < 0.00001 x f(n)

We see that g(n) becomes insignificant relative to f(n) as n becomes large. For the
purposes of analysis, if g(n) is in o(f(n)), then g(n) is eventually much better than

functions such as f(n).

2.6. Computational Complexity Theory
In computer science, computational complexity theory is the branch of the theory of
computation that studies the complexity, or efficiency, of solving computational
problems. Two major aspects are considered: time complexity and space complexity,
which are respectively how many steps does it take to perform a computation, and how

much memory is required to perform that computation. The complexity of different
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algorithms is usually compared on their performance on very large instances and

asymptotic notation is often used.

To analyze complexity various abstract machines are used to model computation in
thought experiments. Most importantly of these are the Turing machines, which are
hypothesized by the Church-Turing Thesis to be able to model any reasonable
computation. Problems that can be solved on a particular abstract machine under some

constraints are grouped into sets called complexity classes.

One of the most important problems, in both computational complexity theory and
computer science in general, is whether the P complexity class is equal to the NP

complexity class.

2.6.1. Overview
Complexity theory deals with the relative computational difficulty of computable
functions. This differs from computability theory, which deals with whether a problem

can be solved at all, regardless of the resources required.

A single "problem" is a complete set of related questions, where each question is a finite-
length string. For example, the problem FACTORIZE is: given an integer written in
binary, return all of the prime factors of that number. A particular question is called an

instance. For example, "give the factors of the number 15" is one instance of the
FACTORIZE problem.

The time complexity of a problem as discussed earlier is the number of steps that it takes
to solve an instance of the problem as a function of the size of the input (usually
measured in bits), using the most efficient algorithm. To understand this intuitively,
consider the example of an instance that is n bits long that can be solved in n? steps. In
this example we say the problem has a time complexity of n?. Of course, the exact
number of steps will depend on exactly what machine or language is being used. To
avoid that problem, the Big O notation is generally used. If a problem has time

complexity O(n?) on one typical computer, then it will also have complexity O(n?p(n)) on
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most other computers for some polynomial p(n), so this notation allows us to generalize

away from the details of a particular computer.

Example 2.6.1: Mowing grass has linear complexity because it takes double the time to
mow double the area. However, looking up something in a dictionary has only
logarithmic complexity because a double sized dictionary only has to be opened one time

more (e.g. exactly in the middle - then the problem is reduced to the half).

2.6.2. Decision problems

Much of complexity theory deals with decision problems. A decision problem is a
problem where the answer is always yes or no. Complexity theory distinguishes between
problems verifying yes and problems verifying no answers. A problem that reverse the

yes and no answers of another problem is called a complement of that problem.

For example, a well known decision problem IS-PRIME returns a yes answer when a
given input is a prime and a no otherwise. While the problem IS-COMPOSITE
determines whether a given integer is not a prime number (i.e. a composite number).
When IS-PRIME returns a yes, IS-COMPOSITE returns a no, and vice versa. So the IS-
COMPOSITE is a complement of IS-PRIME, and similarly IS-PRIME is a complement
of IS-COMPOSITE.

Decision problems are often considered because an arbitrary problem can always be
reduced to some decision problem. For instance, the problem HAS-FACTOR is: given
integers n and k written in binary, return whether n has any prime factors less than k. If
we can solve HAS-FACTOR with a certain amount of resources, then we can use that
solution to solve FACTORIZE without much more resources. This is accomplished by
doing a binary search on k until the smallest factor of n is found, then dividing out that

factor and repeating until all the factors are found.

An important result in complexity theory is the fact that no matter how hard a problem
can get (i.e. how much time and space resources it requires), there will always be even
harder problems. For time complexity, this is determined by the time hierarchy theorem.

A similar space hierarchy theorem can also be derived.
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2.6.3. Complexity classes
A complexity class is the set of all of the computational problems which can be solved

using a certain amount of a certain computational resource.

2.6.3.1. Complexity Class P
The complexity class P is the set of decision problems that can be solved by a
deterministic machine in polynomial time. This class corresponds to an intuitive idea

of the problems which can be effectively solved in the worst cases.

Polynomial-time algorithms are closed under composition. Intuitively, this says that if
[ write a function which is polynomial-time assuming that function calls are constant-
time, and if those called functions themselves require polynomial time, then the entire
algorithm takes polynomial time. One consequence of this is that P is low for itself.
This is also one of the main reasons that P is considered to be a machine-independent
class; any machine "feature", such as random access, which can be simulated in
polynomial time can simply be composed with the main polynomial-time algorithm

to reduce it to a polynomial-time algorithm on a more basic machine.

2.6.3.2. Complexity Class NP

The complexity class NP is the set of decision problems that can be solved by a non-
deterministic machine in polynomial time. This class contains many problems that
people would like to be able to solve effectively, including the Boolean satisfiability
problem, the Hamiltonian path problem and the Vertex cover problem. All the
problems in this class have the property that their solutions can be checked

effectively.

. Introduction and applications
The importance of this class of decision problems is that it contains many interesting
searching and optimization problems where we want to know if there exists a certain

solution for a certain problem.

Thus, the challenge of NP problems is to efficiently find the answer, given an

efficient (polynomial-time) way of verifying it once it is found. This challenge was
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solved for compositeness testing only in 2002; there is still no known polynomial-
time way to solve the more general factoring problem of determining whether a

number between 1 and m divides n.

e  Why Some NP Problems are Hard

Because of the many important problems in this class, there have been extensive
efforts to find algorithms that decide the problems in NP in time which is polynomial
in the input size, which is generally considered efficient. However, there are a large
number of problems in NP that defy such attempts, seeming to require super-
polynomial time. Whether these problems really aren't solvable in polynomial time is

one of the greatest open questions in computer science.

An important notion in this context is the set of NP-complete decision problems,
which is a subset of NP and might be informally described as the "hardest" problems
in NP. If there is a polynomial-time algorithm for even one of them, then there is a
polynomial-time algorithm for all the problems in NP. Because of this, and because
dedicated research has failed to find a polynomial algorithm for any NP-complete
problem, once a problem has been proven to be NP-complete this is widely regarded

as a sign that a polynomial algorithm for this problem is unlikely to exist.

Many complexity classes can be characterized in terms of the mathematical logic needed

to express them - this field is called descriptive complexity.

2.6.4. Open questions
e The P = NP question: The question of whether NP is the same set as P (that is
whether problems that can be solved in non-deterministic polynomial time can be
solved in deterministic polynomial time) is one of the most important open
questions in theoretical computer science. Questions like this motivate the
concepts of hard and complete. A set of problems X is hard for a set of problems
Y if every problem in Y can be transformed "easily” into some problem in X that
produces the same solution. The definition of "easily” is different in different

contexts. An important hard set in complexity theory is NP-hard - a set of
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problems, which are not necessarily in NP themselves, to which any NP problem
can be reduced in polynomial time. Set X is complete for Y if it is hard for Y, and
is also a subset of Y. An important complete set in complexity theory is the NP-
complete set. This set contains the most "difficult" problems in NP, in the sense
that they are the ones most likely not to be in P. Due to the fact that the problem
of P = NP remains unsolved, being able to reduce a problem to a known NP-
complete problem would indicate that there is no known polynomial-time solution
for it. Similarly, because all NP problems can be reduced to the set, finding an
NP-complete problem that can be solved in polynomial time would mean that P =
NP.

e Incomplete problems in NP: Another open question related to the P = NP
problem is whether there exist problems that are in NP, but not in P, that are not
NP-complete. In other words problems that has to be solved in non-deterministic
polynomial time, but cannot be reduced to in polynomial time from other non-
deterministic polynomial time problems. One such problem, that is known to be
NP but not known to be NP-complete, is the graph isomorphism problem - a
problem that tries to decide wether two graphs are isomorphic (i.e. share the same

properties). It has been shown that if P # NP then such problems exist.

2.6.5. Intractability

Problems that are solvable in theory, but cannot be solved in practice, are called
intractable. What can be solved "in practice” is open to debate, but in general only
problems that have polynomial-time solutions are solvable for more than the smallest
inputs. Problems that are known to be intractable include those that are EXPTIME-

complete. If NP is not the same as P, then the NP-complete problems are also intractable.

To see why exponential-time solutions are not usable in practice, consider a problem that
requires 2" operations to solve (n is the size of the input). For a relatively small input size
of n=100, and assuming a computer that can perform 10'® (10 giga) operations per
second, a solution would take about 4*10'? years, much longer than the current age of the

universe.
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3. Literature Survey

In this chapter we shall cover the literature survey and what benefits we got from
different research papers we studied during the process of find the solution for Hamilton
Circuit problem. We mainly gone through the digital libraries of ACM/SIAM, IEEE and
CiteSeer and found/collected the relevant research paper to get knowledge of existing
research on this topic. Some of these research papers were fairly supportive and useful in
our work. Here are a few research paper we would like to discuss as these show the

existing work and dimension of research on Hamilton Circuit Algorithm.

3.1. Paper 1: A Search Procedure for Hamilton Paths and
Circuits [11]

ABSTRACT: A search procedure is given which will determine whether Hamilton paths
or circuits exist in a given graph, and will find one or all of them. A combined procedure
is given for both directed and undirected graphs. The search consiéts of creating partial
paths and making deductions which determine whether each partial path is a section of

any Hamilton path whatever, and which direct the extension of the partial paths.

REVIEW: Techniques for finding Hamilton circuits and paths are fairly numerous. Most
involve exhaustive searches, carried out sequentially or in parallel, which eliminate

partial paths only when they double back upon themselves.

Hakimi improves upon these methods by the addition of deduction rules which allow
earlier termination of partial paths, and elimination of certain edges from consideration.
The present paper extends this method by adding some additional deduction rules and

extending the method to directed as well as undirected graphs.

This is perhaps the best research towards finding Hamilton Path or Hamilton Circuit from
a graph. In this paper the author gone through both the directed and undirected graphs.
The author gave a simple search procedure which selects any single node as the initial

path. Then path is started from that node to adjacent or successor node and test for
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admissibility. If test is passed, next success is selected. Also graphs are deduced to simple
smaller graphs and solved individually and check for connectivity on each step.
Algorithm also applies the concept of deletion of unused edges from the path to simplify

the search.

3.2. Paper 2: Hamilton Cycles in Random Subgraphs of Pseudo-
Random Graphs [13]

Abstract: Given an r-regular graph G on n vertices with a Hamilton cycle, order its edges
randomly and insert them one by one according to the chosen order, starting from the
empty graph. We prove that if the eigenvalue of the adjacency matrix of G with the
second largest absolute value satisfies A = o(r>*/(n*?(log n)**)),then for almost all
orderings of the edges of G at the very moment t* when all degrees of the obtained
random subgraph Ht* of G become at least two, Ht* has a Hamilton cycle. As a
consequence we derive the value of the threshold for the appearance of a Hamilton cycle

in a random subgraph of a pseudo-random graph G, satisfying the above stated condition.

Review: This paper can be viewed as the first step in studying random sub-graphs of
pseudo-random graphs. Questions of a similar kind can be asked with respect to other
properties of pseudo-random graphs, like independence and chromatic numbers,
existence of perfect matching, factors and many others. Their study should combine
existing techniques for the binomial random graphs G (n, p) with known results on the

edge distribution of pseudo-random graphs.

This paper mainly focuses on studying random subgraphs and tries to find the number of
Hamilton Circuits approximétion in these sub-graphs. This paper doesn’t discuss any
algorithm but tried to find different properties and to mathematically prove these
theorems and corollaries. But we can get an idea of sub-graphs study and to solve the
sub-graphs as part of our study. We worked on this idea initially and tried to solve the
Hamilton Circuit Problem by this approach which is similar to divide and conquer rule.

But due to certain failures both in divide and conquer and finding of all Hamilton Circuits

Hamilton Circuit Algorithm : 69



Chapter 3 Literature Survey

in each sub-graph and then regeneration of bigger/complete Hamilton Circuit for whole

graph we had to switch our approach to hybrid solution.

3.3. Paper 3: Some Hamilton Paths and a Minimal Change Algorithm
[14]

ABSTRACT: A class of graphs whose vertices represent certain combinatorial
configurations and whose edges represent minimal changes is defined. A Hamilton path
through such a graph indicates the existence of a minimal change algorithm for
generating the configurations. Necessary and sufficient conditions for the existence of

Hamilton paths are given for this class of graphs.

REVIEW: In this paper authors are concerned with generating all k-subsets of an n-set,
that is, all subsets of size k of a set of size n. An algorithm to generate such
configurations is presented; which is a minimal change algorithm. Such algorithm exists
if n and k are both even, or if k =2 and n > 7, and that such an algorithm does exist in all

other cases where k < 5.

In this paper, authors tried to give necessary and sufficient conditions for the existence of
a Hamilton path in Gy, that is, a path through G,y which visits every vertex exactly
once. Such a path defines a minimal change algorithm, for it is essentially an ordering of
the elements of V, x so that successive elements are adjacent in Gpy, that is, they differ by

a minimal change which satisfies.

In second section authors proved that if G, x has a Hamilton path and 1 <k<n-1, thenn
is even and £ is odd. They do so by considering G, x as bipartite and then we calculate the
difference in size of the two parts. Denote by 1k and ®,x the numbers of vectors in Vyx

whose components add to an even and odd number.

In third section authors provided proof of sufficiency in the previous section by
induction. On the given algorithm in this section, a recursive minimal change algorithm
could be encoded. However, the complex nature of the induction makes the algorithm

conceptually difficult to implement. Also there are no deterministic conditions to find its
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solution in polynomial time. Here the problem of finding a simple minimal change
algorithm remains open. The authors admit that a general algorithm on their proposed
proof in third section would be inefficient and it would be desirable to have a minimal
change algorithm where the average time taken to produce a subset is constant,

independent of n.

For small fixed values of k, however, simple efficient algorithms exist. For instance, in
the procedure SUBSETS of given algorithm, prints out all 3-subsets of an n-set, in
minimal change order. The subsets are held in the array a [1...3]. Two procedures INC
and DEC are used.

3.4. Paper 4: Approximately counting Hamilton cycles in dense graphs
[15]

ABSTRACT: We describe a fully polynomial randomized approximation scheme for the
problem of determining the number of Hamiltonian cycles in an n-vertex graph with
minimum degree (Y2+e)n, for any fixed € > 0. We show that the exact counting problem is
NP-complete. We also describe a fully polynomial randomized approximation scheme for

counting cycles of all sizes in such graphs.

REVIEW: Due to hardness of most counting problems, authors led to an interest in
approximate counting. The most fruitful approach in this respect has been randomized
approximation. This is based on the idea of a Fully Polynomial Randomized

Approximation Scheme (FPRAS).

In this paper, authors added another entry to the randomly approximable hard counting
problems: that of counting the number of Hamiltonian cycles in “dense” graphs. Let G =
(V, E) be a graph, where V = {v|,v3,. . .,vu}. Denote the degree of vertex v; by d;, for i=
1,2,...n. G is called dense if min; d; > (1/2 + €)n, where 0 < € < 1/2 is a fixed constant.
Under these circumstances it is known that G must contain a Hamilton cycle. Moreover,
the proof of this fact is easily modified to give a simple polynomial-time algorithm for

constructing such a Hamilton cycle. This algorithm, which uses edges whose existence is
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guaranteed by the pigeonhole principle to “patch together” disjoint cycles, provides the

required easy decision procedure.
Authors proved following theorems in this regard to qualify their solution.

Theorem 1: If G is dense then there is an FPRAS for approximating its number of

Hamilton cycles.

Theorem 2: There exist both a fully polynomial randomized approximation scheme and a

fully polynomial almost uniform sampler for the set of 2-factors in a dense graph.

Theorem 3: HC is NP-complete, even when restricted to graphs G of minimum degree at

least (1 - €)n, where n is the number of vertices in G, and € > 0.

Their approach to constructing an FPRAS for Hamilton cycles in a dense graph G is via a

randomized reduction to sampling and estimating 2-factors in G.

It is not difficult to adapt the above methods to the corresponding directed case. We can
have both minimum in-degree and out-degree at each vertex guaranteed to be at least (1/2
+ €)n. Also we may similarly count the number of connected k-factors in G for any k =

o(»n). (Hamilton cycles are, of course, connected P-factors.)

Authors left open the following questions. First, is it possible to count approximately as €
— 0 in any fashion? Secondly, is there a random walk on Hamilton cycles and (in some
sense) “near-Hamilton-cycles” which is rapidly mixing? In other words, can we avoid the

Tutte construction and the need for 2-factors with many cycles?

3.5. Paper 5: A method for finding Hamilton paths and Knight's tours
[16]

ABSTRACT: The use of Warnsdorff's rule for finding a knight's tour is generalized and
applied to the problem of finding a Hamilton path in a graph. A graph-theoretic

justification for the method is given.
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REVIEW: A path in a graph is a Hamilton path if and only if it goes through each node
of the graph once and only once. These paths were named for Sir William Hamilton who
invented and analyzed a game to find these paths through the vertices of a regular
dodecahedron. A problem of this type is the classic knight's tour problem on a
chessboard. The knight is placed on a square and must cover the whole board, moving to

each square once and only once.
Author discussed the solution proposed by H. Warndroff for knight’s tour:

“Select the move which connects with the fewest number of further moves, providing this

number is not 0. If a tie occurs it may be broken arbitrarily.”

This rule proved unusually successful and generally applicable a until a few carefully
constructed counterexamples showed that in case of ties some of the options failed to find
knight's tours. However, not much was done in analyzing the rule and its failures because
of the large computational effort involved in using the rule. This rule was justified on

common sense basis.

Author compares combinatoric methods proposed for Hamilton Circuits/Paths and the
Warndroff method and concludes that combinatoric methods are suitable for small graph
but can’t be feasible for large richly connected graphs. Also Warnsdorff's rule is a simple
computational rule for finding knight's tours. It presents an attractive method for finding

Hamilton paths in richly connected graphs.

Experiments show that Warnsdorff's rule maximizes the number of connections
remaining at the current point in the path. A knight's tour is a path on the chessboard -
which maximizes the number of connections at the 63rd move; i.e., there is one
remaining move and there can be at most one at this point. The move tree of the various
paths of the knight is exponential in nature, and maximization at the 63rd level is not
computationally possible. Maximizing the current level propagates down the move tree,
and therefore is likely to maximize the later levels. Warnsdorff's rule is just an
approximation to the algorithm of searching the complete tree for a connection at the
63rd level.
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In implementing Warnsdorff's rule on a B5500 in extended ALGOL, the rule was tried
starting from each square of an 8 x 8 board and found to fail at least once for each of five
fixed orderings 6 of moves. In fact, the rule failed twelve times with a median of three

failures for a given move ordering.

To overcome this high rate of failure, the Warnsdorff’s rule was revised for arbitrary
selection in case of ties and following tie-breaking solution was proposed and tested. For
each tie move, sum the number of moves available to it at the next level and pick the one
yielding a minimum. In theory this can be carried through as many levels as necessary for

tie-breaking.

The revised solution is powerful to find the knight’s tour on chess board and Hamilton
Path (not cycle) in a large richly connected graph. The program was also used to find
several Hamilton paths in an especially tricky regular graph s of degree 3 with 46 nodes,
proposed by W. Tutte.

Author didn’t discuss the complexity of the algorithm but just gave a general statement
about the complexity that time needed is directly proportional to the number of edges in
the graph. Also Reader shouldn’t get confused with Hamilton Path finding algorithms
with Hamilton Circuit algorithms. It is possible to find a Hamilton Path which passes
though all the nodes but to find Hamilton Cycle in a graph is NP-complete.

3.6. Paper 6: Sorting, Minimal Feedback Sets and Hamilton Paths in

Tournaments [17]

ABSTRACT: We present a general method for translating sorting by comparisons
algorithms to algorithms that compute a Hamilton path in a tournament. The translation is
based on the relation between minimal feedback sets and Hamilton paths in tournaments.
We prove that there is a one to one correspondence between the set of minimal feedback
sets and the set of Hamilton paths. In the comparison model, all the tradeoffs for sorting
between the number of processors and the number of rounds hold when a Hamilton path

is computed. For the CRCW model, with O(n) processors, we show the following: (i)
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Two paths in a tournament can be merged in O(log log n) time (Valiant"s algorithm): (ii)
a Hamilton path can be computed in O(log n) time (Cole"s algorithm). This improves a
previous algorithm for computing a Hamilton path whose running time was O(log’n)

using O(n®) processors.

REVIEW: A tournament T=(V,D) (|V| = n) is a directed graph in which every pair of
vertices is joined by a directed edge. It can be viewed as a complete graph whose edges

are given an orientation.

This paper investigates the complexity of computing a Hamilton path in a tournament and
other problems related to it. The methodology relies on the intimate relationship that
exists between Hamilton paths and minimal feedback sets in tournaments and their
connection to sorting algorithms. Sorting by comparisons may be viewed as computing a
Hamilton path in a transitive (acyclic) tournament. This paper follows the reverse order
i.e. how sorting algorithms can be generalized to compute a Hamilton path in an arbitrary

tournament.

Parallel algorithms to compute a Hamilton Apath in a tournament have appeared in
different papers. The key idea in computing the Hamilton path in these papers is the
following: in every tournament there exists a vertex (separator) whose indegree and
outdegree are bounded from below by |V|/4; this gives a recursive formulation of the
problem with only a logarithmic number of steps. The difficulty with this approach is that
the best bound known for finding a separator requires O(n”) processors. The lower bound

on the number of edges whose orientation must be known in order to find a separator is
Qnd).

A minimal edge feedback set F in a directed graph G = (V, D) is a set of edges such that
G’ = (V, D - F) is acyclic, and F is minimal with respect to containment. Paper proves
that there is a one to one correspondence between the set of minimal feedback sets and
the set of Hamilton paths in an arbitrary tournament and shows how a minimal feed back

set can generate Hamilton Path and vice versa.
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This paper in general gives idea of in-degree and out-degree based approach on directed
tournament which finds, sorts and merges paths. Some of these techniques are used in our

algorithm with necessary alterations and amendments.
3.7. Paper 7: Hamilton Circuits in Directed Butterfly Networks.

Abstract: In this paper we prove that the wrapped Butterfly digraph WBF(d, n) of degree
d and dimension » contains at least d — 1 arc-disjoint Hamilton Circuits, answering a
conjecture of D. Barth. We also conjecture that WBF(d, n) can be decomposed into d
Hamilton Circuits, except ford=2n=2,d=2n=3 and d =3 n = 2. We show that it
suffices to prove the conjecture for d prime and » = 2. Then we give by a clever computer
search such a Hamilton decomposition for all primes less than 12000, and so as corollary
we have a Hamilton decomposition of WBF(d, n) for any d divisible by a number q, 4 <q
<12000.

REVIEW: The Butterfly digraph of degree d and dimension », denoted BF(d, n) has as
vertices the couples (x, /), where x is an element of Z4 that is a word x,,.;x,,.;...x;xo where
the letters belong to Z4 and 0 <7 < n (/ is called the level). For / < n, a vertex (x,.;xn-
2...x1xg,]) is joined by an arc to the d vertices (x,.;xn.2...x;xp, I+1) where a is any element
of Zs.

The wrapped Butterfly Digraph WBF(d, n) is obtained from BF(d, n) by identifying the
vertices of the last and first level namely (x, #) with (x, 0). In other words the vertices are
the couples (x, /) where x is an element of Z"4 that is a word x,,.;x,.;...x;xg Where the letters
belong to Zgand 1 Z, (1 is called the level). For /| a vertex (xp.;xp....x1xg,0) is joined by an
arc to the d vertices (x,.;x,.2...x;xp, I+1) where a is any element of Z4 (and where / + 1 has

to be taken modulo »).

Authors show that in a lot of cases Butterfly digraphs have a Hamilton decomposition
and give strong evidence that the only exceptions should be WBF(2, 2), WBF(2, 3) and
WBF(3, 2). The paper furthermore reduces the problem to check if L(Kp, p) has a

Hamilton decomposition for p prime (or equivalently that Kp, p has an eulerian
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compatible decomposition). The interest came from a conjecture of Barth and Raspaud
concerning the decomposition of Butterfly networks into unidirected Hamilton cycles.

This conjecture is solved by generalizing the technique in section 3.2 of paper.

3.8. Conclusion:

Hamilton Circuit Algorithm is one of the oldest classical algorithm problems. Studies
have been made to find the complete and generalized solution of this problem, but there
is no such algorithm exist which can find the Hamilton Circuit in polynomial time steps.
Many theorems are known to find the sufficient conditions for the existence of Hamilton
Circuit but still these theorems don’t cover the major range of problem variations.
Researchers mostly tried to find solution in a certain set of conditions desired by their
problem. Very rare literature is found for generalized solution. Also this problem is
common between mathematicians and computer scientists. Mathematicians mostly try to
find and prove the mathematical theorems that lead to sufficient conditions while
computer scientist mostly try to apply programming logic. We can combine both

approaches to find out the solution.
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4. Research Findings

In this chapter we shall briefly cover our research work and our findings regarding our
research project. We first give an overview of the research, then we shall cover the
formal definitions then we divide the problem into different special cases and finally we

shall combining the properties and rules found in each division.

4.1. Overview
The purpose of this research is to develop an algorithm for the determination of

Hamilton Circuit in the given graph. First, we divide our problem into different cases
and try to solve each case independently. Reader shouldn’t confuse it with Divide and
Conquer approach. In “Divide and Conquer” approach, the algorithm divides the
problem into different sub parts and tries to target each sub part one-by-one.
Algorithm will cover it in the same sequence not recursive calls for each sub part of
the problem. We shall divide our problem into a few special cases and in each case
we shall try to find the conditions and rules to solve it and in the end we shall
combine these findings to develop the above mentioned algorithm. We will not
emphasize mainly on mathematical proves of these rules/properties found in each
special case. These are more or less simple and obvious and need not to prove

mathematically.

4.2. Introduction

A path Xo, X1, ..., Xn-1, Xn in the graph G = ( V, E ) is called a Hamiltonian Path if
V = {Xo, X1, ..., Xn-1, Xn } and Xi is not equal to Xj for 0 <i <j <n. A circuit Xo,
X1, ..., Xn-1, Xn (with n > 1) in a graph G = ( 'V, E ) is called a Hamiltonian Circuit if
Xo, X1, ..., Xn-1, Xn is a Hamiltonian Path.

Is there a simple way to determine whether a graph has a Hamiltonian Circuit? At
first, it might seem that there should be an easy way to determine this. Surprisingly,
there is no known simple necessary and sufficient criterion for the existence of

Hamiltonian Circuit. However, many theorems are known that give sufficient
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conditions for the existence of Hamilton Circuit. Also certain properties can be used

to show that graph has no Hamiltonian Circuit [1].

4.3. Basic Properties of Hamilton Circuit
1. If a graph has any vertex of degree less than two then the graph doesn’t have

Hamilton Circuit

2. If the vertex in the graph has degree two, then both edges that are incident

with this vertex must be part of any Hamilton Circuit.

3. If there is an edge in the graph which is when removed, divide the graph into

two disjoint sub-graphs then the original graph can’t have Hamilton Circuit.

4. If there is a vertex in the graph which is when removed (along with the
connected edges) divides the graph into two disjoint sub-graphs, then the

graph doesn’t have any Hamilton Circuit.
5. A Hamilton Circuit can’t have a smaller circuit within it.

6. When a Hamilton Circuit is being constructed and this circuit has passed
through a vertex, then all remaining edges incident with this vertex other than

the two used in the circuit can be removed from consideration.

4.4. Special Cases
Now we consider some special cases and try to solve each case independently and

finally combine their results

4.4.1. When Each Vertex Has Degree Two

As mentioned earlier in property-2, if a vertex in the graph has degree two, then
both edges that are incident with this vertex must be part of any Hamilton Circuit.
Since in our case, all vertices have degree two therefore all edges must be in the
path. In this case, nothing is to be done; Hamilton Circuit is present and sorted

already. This can be considered the best case for this problem.
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Example 4.1
Following are the examples of degree two graphs. No need of finding Hamilton

Circuit.

Figure 4.1: Degree Two Graphs

4.4.2. When Each Vertex Has Degree Three
Following are the instructions to find Hamilton Circuit in a graph having each

vertex of degree three.

1. Select a starting vertex at random since each vertex has equal probability.

2. Select any two adjacent edges to the vertex. In other words, start path on
both directions. ,

3. Remove the third edge.

4. Since each vertex has degree three, therefore the vertex on the other end of
the removed edge is left with only two edges. According to property-2,
both edges must be in the graph. So mark both edges as Virtual Single
Unit (VSU) on the other end of the removed path.

5. The selected vertex has also left with two edges and both are selected as
well, therefore mark them as another Virtual Single Unit (VSU).

6. Since we are proceeding on both sides from starting vertex, we name one
endpoint as Active Endpoint and the other end (vertex) of VSU as Passive
Endpoint. The Active Endpoint will take decision for further move at each
step and Passive Endpoint will only move further when it gets some
Virtual Single Unit incident to it or found an edge which can create a
small cycle (Property-5).

7. At each extension on Active Endpoint or on either endpoints of Virtual

Single Unit, the unused edges are removed and opposite ends of removed
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edges are reconsidered for Virtual Single Unit creation, extension or
merging with other Virtual Single Unit, Active Endpoint or Passive
Endpoint.

8. Both endpoints, Active and Passive, can only be joined when all vertices
are traversed. Otherwise, whenever both endpoints share the same edge
remove that edge (property-5) by taking it as unused edge and extend both
endpoints according to property-2.

9. On each extension, check the concerning Virtual Single Units (VSU) for
the edge which can create smaller cycle, remove it and extend VSU.

10. If on joining two Virtual Single Units, we found two unused edges coming
out of same vertex, don’t join Virtual Single Units rather adopt the
alternate path on Active or Passive Endpoint. If no alternate path to adopt

on Active Endpoint then Graph doesn’t have any Hamilton Circuit.

Example 4.2:
Consider the Icosian Puzzle, invented in 1857 by William Rowan Hamilton. The
graph shown is isomorphic to the graph consisting of the vertices and edges of the

original dodecahedron as shown in Figure-4.2.

11 ’

5 3

4

Figure 4.2: Icosian Dodecahedron
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Now according to step-1, select any vertex at random, say vertex labeled 3.
According to step-2, select any two edges incident, say edges (5, 4) and (5, 10)
selected. According to step-3, remove the third edge (5, 1). According to step-5,
edge (1, 6) and (1, 2) are marked as Virtual Single Unit on the other endpoint of

Figure 4.3: First Move
removed edge. According to Step-6, mark vertex 10 as Passive Endpoint and

vertex 4 as Active Endpoint (Figure-4.3). Thus vertex 4 or Active Endpoint will

proceed.

Next, select any one edge at ACTIVE endpoint to proceed, say (4, 9). Thus the
new Active Endpoint will be vertex 9 now. Also edge (3, 4) is unused because
both edges at vertex 4 are selected, therefore (3, 4) is to remove now. On
removing edge (3, 4) the other vertex of the edge i.e. vertex 3 is left with only two
edge and therefore both edges will be mark as Virtual Single Unit (edge (3, 8) and
edge (3, 2) ). Since vertex-2 is also part of another V.S.U therefore both V.S.U’s
are combined and marked as single unit i.e. edge (6, 1), edge (1, 2), edge (2, 3),
edge (3, 8). Also unused edge (2, 7) at vertex 2 is removed. Again vertex at
opposite side of edge (2, 7) i.e. vertex 7 is left with two edges only. Thus both
edges will again mark as Virtual Single Unit i.e. edge (11, 7) and edge (7, 12) as

shown in Figure-4.4.
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Figure 4.4: Second Move

Now again, select any one edge at Active Endpoint (vertex-9) to proceed, say
edge (9, 13). Thus our Active Endpoint will move to vertex-13. Also unused edge
(9, 14) at vertex-9 is removed. On removing edge (9, 14), other vertex of edge is
left with two edges thus creating Virtual Single Unit “10, 14, 19” but since vertex-
10 is Passive Endpoint which is now will move to vertex 19 on combining VSU
with Passive Endpoint. Also unused edge at vertex 10 i.e. edge (10, 15) is

removed and which leads to the creation of another Virtual Single Unit at

4
Figure 4.5: Third Move
opposite vertex-15 of removed edge i.e. “6, 15, 20”. But vertex-6 is already part

of another VSU therefore on combining both VSU’s we get the bigger VSU i.e.

“20, 15, 6, 1, 2, 3, 8”. The unused edge at vertex-6 is removed and opposite vertex
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(which is already endpoint of another VSU) is extended as VSU “16, 11, 7, 12” as

shown in Figure-4.5.

Now again, select any one edge at Active Endpoint (vertex-13) to proceed, say
edge (13, 8). Remove the unused edge at vertex-13 i.e. (13, 8). The opposite
vertex of removed edge is left with only two edges thus forming VSU “19, 18,
17”. Since Passive Endpoint is at vertex-19 therefore on joining of VSU and
Passive Endpoint, unused edge (19, 20) is removed and Passive Endpoint is
moved to vertex-17. At the same time on the removal of edge (19, 20), vertex-20

is left with only two edges. One of them is already in a VSU therefore the VSU

Figure 4.6: Hamilton Circuit

will be just extended one edge without the removal of any edge. Now the
extended edge again connects two VSU’s therefore unused edge (16, 17) is
removed. The other end of removed edge (vertex-17) is left with only two edges
but vertex-17 is the Passive Endpoint. Therefore Passive Endpoint is extended by
(17, 12). Now vertex-12 is also endpoint of a VSU therefore Passive Endpoint is
connected to a VSU whose other end vertex (vertex-8) is already connected with
Active Endpoint. Now just remove unused edge (8, 12) to get the Hamilton

Circuit as shown in Figure-4.6.

4.4.3. When Each Vertex has Degree Four

Hamilton Circuit Algorithm : 84



Chapter 4

Research Findings

Algorithm is almost same as previously discussed for degree three graphs. The

only difference is, on selecting two incident edges at a vertex we can remove the

remaining two but the opposite ends (vertices) of removed edges are not left with

only two incident edges in most cases therefore don’t form a VSU.

Following are the instructions to find Hamilton Circuit from the given graph of

degree four:

1.

4.
5.

There should not be any edge which is when removed, divide the graph
into two disjoint sub-graphs (property-3). Remove every edge one by one
and check if it is it divides the graph into two disjoint sub-graphs. If so,
there is no need to find the Hamilton Circuit, graph doesn’t have any
Hamilton Circuit.

Select a starting vertex at random since each vertex has equal probability.

Check for next move as:

3.1.  If no Active endpoint is marked, select any two adjacent edges to
the vertex selected in Step-1. In other words, start path on both
directions. Mark the selected edges as main Virtual Single Unit
(VSU). Since we are proceeding on both sides from starting vertex,
we name one endpoint as Active Endpoint and the other end
(vertex) of VSU as Passive Endpoint. On each move/step, decision
of move (selection of edge for extension) will be taken at Active
Endpoint and Passive Endpoint will only move further when it gets
some Virtual Single Unit incident to it or found an edge which can
create a small cycle (Property-5).

3.2. If Active endpoint is marked, mark any one edge on Active
endpoint as selected edge. Move the Active endpoint to the other
end of selected edge.

Remove the remaining edges.

Check the other end of removed edges. If any edge is left with only two

edges, both edges must be in Hamilton Circuit (property-2). So mark both

edges as Virtual Single Unit (VSU) on the other end of the removed edge.
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10.

5.1.  If any endpoint of the new VSU is joined with any existing VSU,
existing VSU is extended by copying ID from old VSU to new
VSU.

5.2.  If no endpoint of new VSU is joined with any existing VSU, new
VSU is given new ID.

Check all VSU’s one by one for merging. If endpoint of any VSU is

adjacent to any other VSU i.e. if two VSU’s have some common endpoint,

merge these VSU’s by copying VSU ID one to the other.

Whenever both endpoints share some edge

7.1.  If main VSU path has all vertices, join Active and Passive
endpoint. The Hamilton Circuit is found.

7.2.  If main VSU path doesn’t have all vertices, remove that edge
(property-5) by taking it as unused edge and extend both endpoints
according to property-2.

On each extension, check the concerning Virtual Single Units (VSU) for

the edge which can create smaller cycle, remove it and extend VSU.

If on joining two Virtual Single Units, we found two unused edges coming

out of same vertex, don’t join Virtual Single Units rather adopt the

alternate path on Active or Passive Endpoint. If no alternate path to adopt
on Active Endpoint then Graph doesn’t have any Hamilton Circuit.

Repeat from step-3 to step-9 until we find Hamilton Circuit in step 7.1 or

we failed to find Hamilton Circuit in step-9.

Example 4.3:

Consider the following graph of degree four
shown in figure 4.7. Since every vertex has
equal degree and every edge on these vertices
has equal probability to be selected for the start
of HC, we therefore select vertex 1 as our

starting vertex. Now select any two edges on

vertex 1 say (1,4) and (1,2). Mark one end point 4 4,7: Degree Four Graph 3
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of this (main) VSU as Active Endpoint say

vertex-4 and other endpoint as Passive Endpoint
i.e. vertex-2. This is the first move as shown in

Figure 4.8.

Now the next step is to remove/delete the unused

edges on vertex-1 i.e. (1, 8) and (1, 5). Now

check the other ends of removed edge for VSU, 4

since both vertex-5 and vertex-8 are left with

three edges, no new VSU can be created on these
vertices. After completing all steps 5 to step 9,
there isn’t any difference in the graph as shown

in Figure 4.9.

Now for move two, select any edge on Active

Endpoint (vertex-4) say edge (4, 3). Remove 4
unused edge on vertex-4 those are edges (4, 7)
and (4, 8). Now vertex-8 is left with only two

edges which must be part of HC. Therefore a new
VSU is created at vertex-8 and VSU path is {12,
8, 9}. Now the Active Endpoint is moved to the
new endpoint of main VSU path {2, 1, 4, 3} i.e.

vertex-3 as shown in Figure 4.10. According to
step 7, remove edge (2, 3) as it is shared by the *  4.10: Second Move 3
endpoints of the main VSU path and edge (9, 12) is removed as it is shared by the
endpoint of second VSU path (Figure 4.10).

Now for third move, select edge (3, 6) on Active Endpoint. Unused edge (3, 7) is
to remove as both edges on vertex-3 are selected. Check the other end vertex of
removed edge i.e. vertex-7 which is left with only two edges so create new VSU
path {11, 7, 12}. Since VSU path {12, 8, 9} and {11, 7, 12} have common vertex-
12 so both are merged and resultant VSU path {11, 7, 12, 8, 9} as shown in
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Figure 4.11. While this merging, unused edge

(11, 12) is to remove since both edges are
selected at vertex-12. Now according to step 7,
remove edge (6, 2) which is common in both
endpoints of main VSU path. In result, vertex-2

is left with only two edges, so extend VSU on

passive endpoint by edge (2, 5). Now the passive

4
endpoint of main VSU path is vertex-5 as shown

in Figure 4.11.

For move four, select edge (6, 10) on Active

Endpoint. Unused edge (6, 11) is removed which
results only two edges left on vertex-11. So VSU
path {11, 7, 12, 8, 9} is extend to vertex-10.
Since main VSU path has common vertex-10

with this VSU path, both are merged at vertex-

10. While merging the unused edge on vertex-10
: 4 4.12: Fourth Move 3
are also deleted. In result, main VSU path is

extended by edge (5, 9) which results in Hamilton Circuit in the given graph as

shown in Figure 4.12.

4.5. The Algorithm

Now that we have considered different special cases and try to solve each case
independently; we can combine these cases and merge these algorithms created for
each case with necessary alteration to get the final/generalized algorithm to find the
HC in any undirected graph. Here are the steps of the final proposed algorithm for

Hamilton Circuit:

1. Check for degree of each vertex. If any vertex has degree less than two, there is
no Hamilton Circuit in the graph.

2. There should not be any edge which is when removed, divide the graph into two
disjoint sub-graphs (property-3). Remove every edge one by one and check if it is
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it divides the graph into two disjoint sub-graphs. If so, there is no need to find the
Hamilton Circuit; graph doesn’t have any Hamilton Circuit.

3. Check for all vertices of degree two. If any such vertex is found, both of its
incident edges must be in HC. Create a VSU containing both of these edges.

4. If any VSU is created in step-3, start from it as main VSU. If there are multiple
VSU created in step-3, select the first VSU as main VSU and move to the next
step to find the HC. If no VSU is created in step-3, search for degree 3 vertex. If
degree 3 vertex is found, select it as starting vertex else just select any vertex as
starting vertex at random since each vertex has equal probability.

5. Check for next move as:

5.1. If no Active endpoint is marked, select any two adjacent edges to the vertex
selected in Step-4. In other words, start path on both directions. Mark the
selected edges as main Virtual Single Unit (VSU). Since we are proceeding on
both sides from starting vertex, we name one endpoint as Active Endpoint and
the other end (vertex) of VSU as Passive Endpoint. On each move, decision of
move (selection of edge for extension) will be taken at Active Endpoint and
Passive Endpoint will only move further when it gets some Virtual Single
Unit incident to it or found an edge which can create a small cycle (Property-
5).

5.2. If Active endpoint is marked, mark any one edge on Active endpoint as
selected edge. Move the Active endpoint to the other end of selected edge.

6. Remove the remaining edges.

7. Check the other end of removed edges. If any vertex is left with only two edges,
both edges must be in Hamilton Circuit (property-2). So mark both edges as
Virtual Single Unit (VSU) on the other end of the removed edge.

7.1. If any endpoint of the new VSU is joined with any existing VSU, existing
"VSU is extended by copying ID from old VSU to new VSU.

7.2. If no endpoint of new VSU is joined with any existing VSU, new VSU is

given new ID.
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8. Check all VSU’s one by one for merging. If endpoint of any VSU is adjacent to
any other VSU i.e. if two VSU’s have some common endpoint, merge these
VSU’s by copying VSU ID from one to the other.

9. Whenever both endpoints of a VSU share some edge

9.1. If VSU is main VSU path and it has all vertices, join Active and Passive
endpoint. The Hamilton Circuit is found.

9.2. Else remove that edge (property-5) by taking it as unused edge and extend
both endpoints according to property-2.

10. If on joining two Virtual Single Units, we found two unused edges coming out of
the same vertex and the vertex has left with only one, don’t join Virtual Single
Units rather discard the whole move (started in step-5) and adopt the alternate
path on Active or Passive Endpoint. If no alternate path to adopt on Active
Endpoint then Graph doesn’t have any Hamilton Circuit.

11. Repeat from step-5 to step-10 until we find Hamilton Circuit in step 7.1 or we

failed to find Hamilton Circuit in step-10.

Now we write the above algorithm in a little bit formal way. We shall write it in

pseudo code which is similar to Pascal like form.

Procedure FindHC ()
Begin
If any node has degree < 2, FAILED
If FindCycle () fails for any edge of graph
FAILED (No Hamiltonian Circuit)
End
ReturnValue: =0
While ReturnValue is zero
ReturnValue: = MoveNext ()
End
If ReturnValue = -1
FAILED
Else
SUCCESS
End
End
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Function FindCycle (e: edge)

There should not be any edge which is when removed, divide the graph into two
disjoint sub-graphs. Any such edge cannot be part of any cycle. So this function tries
to find closest/smallest cycle containing the given edge. Function returns TRUE if
found some cycle else returns FALSE.

Begin

Mark one endpoint (node) as RED node & Add to RED list
Mark other endpoint (node) as BLUE node & Add to BLUE list
Remove the given edge

LOOP

End
End

Get each node one by one from RED list & Get all connected nodes.
Add all connected node to temporary list

Remove all edges incident to nodes in RED list

Empty the RED list

Copy all nodes from temporary list to RED list

Remove all edges connecting one node in RED list to any other RED node

If RED list is empty
Return FALSE (loop is broken here)
End

If any node in RED list is connected to BLUE list by some edge in graph
Return TRUE (loop is broken here)
End

Get each node one by one from BLUE list & Get all connected nodes to
them. Add all connected nodes to temporary list.

Remove all edges incident to nodes in BLUE list.

Empty the BLUE list.

Copy all nodes from temporary list to BLUE list

Remove all edges connecting one node in BLUE list to any other BLUE
node

If RED list is empty
Return FAILURE (loop broken here)
End

If any node in RED list is connected to BLUE list by some edge in graph
Return SUCCESS (loop broken here)
End
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Function MoveNext ()
Begin
If any node has degree < 2 Return -1
If any node has degree = 2 CALL MarkVSU () for that node
If Main Path/VSU exist, Get First node of path as Active Endpoint
Else Get first node of Node List as Active Endpoint
If no incident edge selected
Mark any two edges as selected
CALL PruneNode (ActiveEP)
CALL PrunePath ()
If FindCycle() fails for any unselected edge
Return -1
End
Else if one edge is selected
Select any of unselected edge as selected edge
If selected edge is connecting two VSUs
Get unselected edges on either node of connecting edge
If both unselected edges have same other end node
Mark selected edge as unselected & select the alternate edge on
ActiveEP
End
CALL PruneNode (ActiveEP)
CALL PrunePath ()
If FindCycle() fails for any unselected edge
Mark selected edge as unselected & select the alternate edge on
ActiveEP
CALL PruneNode (ActiveEP)
CALL PrunePath ()
If FindCycle() fails for any unselected edge
Return -1
Else
Return 0
End
Else
Return 0
End ‘
Else IF both incident edges are assigned different VSU ID
CALL PruneNode (ActiveEP)
If Main VSU covers all nodes
Return 1
End
End
End
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Function PruneNode ( n: node )
Begin
Remove the unselected edge at ‘n’ & CALL MarkVSUs () on other end node of
removed edge
If both incident edges are assigned different VSU ID CALL MarkVSU (n)
Else If both incident edges are not assigned VSU ID CALL MarkVSU(n)
Else If one edge is assigned and other is unassigned.
Copy VSU ID from assigned to unassigned edge
Call MarkVSU() on other end node of previously unassigned edge
End
End

Function PrunePath ()
Begin
If endpoints of any VSU are sharing some edge
Remove edge
CALL MarkVSU on either node of removed edge
End
End

Function MarkVSU (n: node)
Begin
If Degree of node =2
If any edge is not marked as selected, mark it as selected
If Different VSU ID is set on both edges, Merge VSUs
Else If VSU ID is set on one edge
Copy VSU ID from assigned to unassigned edge
CALL MarkVSU () on otherend node of previously unassigned
edge
Else if both edges are unassigned
If other end of first selected edge (Say m) is endpoint of some
VSU
Copy VSU ID from assigned to unassigned edge on ‘m’
Call PruneNode(m).
End

If other end of second selected edge (Say k) is endpoint of some
VSuU
Copy VSU ID from assigned to unassigned edge on ‘k’
Call PruneNode(k)
End
If both selected edges on given node are assigned different ID,
Merge VSUs.
Else if one incident edge is assigned
Copy VSU ID from assigned to unassigned
Else
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Set new ID on either edge and add Path to VSUList

End
Else If Degree of node > 2 and any two edges are marked selected
CALL PruneNode(NodeNum)
End
End
Results:

We have tried graphs up to 30 nodes, having degree 3 and higher degree graphs and
successfully solved all these graphs using the above mentioned algorithm. Graphs that
do not have Hamiltonian Circuit are mostly rejected in six basic properties given in
section 2. There is no back tracking involved in this algorithm therefore we can find
Hamiltonian Circuit in a graph of degree three in polynomial steps.
Complexity:
Find HC :-
n + n (FindCycle) + n(MoveNext)
=n+ nn (2(n(n-])/2)2) +n(n+2(2Mmn-3)(20+n) + 2(n-3)(20+n) + n (2(n(n-1)/2)2)))
BigO= n
Find Cycle :-
n (2e2)
n 2(nn-1)/2)°) (For Complete Graphs)
Move Next :-

n+ PruneNode + PruneNode + FindCycle + PruneNode + PruneNode +
FindCycle

=n+ 2(2(n-3)(20+n) + 2(n-3)(20+n) + n (2(n(n-])/2)2 ))
Prune Node :-
MarkVSU + MarkVSU

= 2(n-3)(20+n)
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MarkVSU :-

(n-3)(20+n)

Quantitative Analysis of Complexity:

Nodes Brute Force Back Tracking Proposed
(n-1)! (n-1)" Algorithm

3 2 8 729
4 6 81 4096
5 24 1024 15625
6 125 15625 46656
7 750 279936 117649
8 5250 5764801 262144
9 42000 134217728 531441
10 378000 3486784401 1000000
11 3780000 100000000000 1771561
12 41580000 3138428376721 2985984
13 498960000 106993205379072 4826809
14 6,486,480,000 3,937,376,385,699,289 7,529,536
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5. Simulator Design

For the sake of proof of concept, we have created a simulator which works on proposed
algorithm to find out the Hamilton Circuit from the given graph.k In this chapter, we shall
discuss the design of the simulator. Since it’s a simulator of an algorithm so we can’t give
the use cases or sequence diagrams of it as these doesn’t cover the main purpose or flow
of algorithm rather we shall cover the Flow Diagrams of the simulator to show the flow

of algorithm in the simulator and how it comes out with the right solution.
5.1. Level 0 DFD

At abstract level, we can define the function of the system as, “we present a graph to the
simulator and it gives the result. Result may be a Hamilton circuit if found, or shows a

message describing that no Hamilton circuit exists in the given graph”.

Graph Result

Figure 4.1: Level 0 DFD

5.2. Level1 DFD

At this level, we divide the DFD into three sub processes as shown in figure 1.2. Process
check degree traverses the whole graph and check degree of each node. If degree of any
vertex is less than two, HC is not found. Process Find Cycle checks the graph

Failed Failed HC Not Found

Success Success HC Found

Undecided

Figure 4.2: Level 1 DFD
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connectivity, if failed then graph doesn’t have Hamilton Circuit. Process “Move Next” is
the main starting point for step by step search for HC. This process will be expanded in
the following DFD levels.

5.3. Level 2 DFD

At this level, we expand our data flow diagram to cover more details of processes “Find

Cycle” and “Move Next” as shown in the following sections.

5.3.1. Move Next

Mark or Get . Select two .
Graph AtiveEP Nod Active EP
P ActiveEP VeEr Node Incident Edge e
ActiveEP
alternate
edge is left

Remove
unused edges |

Figure 4.3
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5.3.2. Find Cycle

Edge Mark Vertices as\
RED & BLUE J

Remove
E
|

RED List

Extend RED
nodes to
adjacent

nodes

RED & BLUE List

Connectivity
between

Found

;Retum TRUE SUCCESS

Found

BLUE & RED
nodes

Not Found

RED list
Check

Not Empty

Extend BLUE
nodes to
adjacent

nodes

Empty RED & BLUE List

Connectivity
Py between

BLUE & RED
nodes

Not Found

BLUE list

$Return FALSE FAILURE Empty

Check

Figure 4.4

Not Empty
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5.4. Level 3 DFD

At this level, we shall try to give complete details/flow of process “Move Next” and the

processes internally used in process “Move Next”. First we shali give the structure of an

important process Mark VSU and then we shall complete flow of process “Move Next”

541. Mark VSU

Node Get

Degree

Degree Two

Selected

vSuUID

‘ COp'yDVSU l<—0ne assigned Co\r/nSpUa re

Both Different

Node Mark VSU

Greater than two

Prune
Node

i}

Figure 4.5
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5.4.2. Move Next

>2

\
Check Check ) Check

Not Exist N‘l““

<2
Get First
FAILURE G{D—Nwe—»

Get
Incident
Edges

Both Selected None Selected

Prune Prune Prune
Node Node Node

Main VSU VSUs VSUs

Check if Prune Prune
complete Path Path

FAILED

SUCCESS [«-Passed

. Unselected Edges Unselected Edges
Undecided
SUCCESS
Undecided Find Cycle Undegded Find Cycle

FAILED FAILED
Prune
VSuUs

FAILED

Figure 4.6 ¢

FAILED Prune

Unselected Edges

Find Cycle

!

Undecided
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5.43. Prune Node

Copy VSU ID Node—>| MarkVSU ; o

one assigned

Node MarkvVSU Both assignedb' MarkVSU } >

Different VSU 1D

MarkvSU [———»

Figure 4.7

544. Prune Path

Check Edge
Sharing

Not Found

v

Remove
Found Node MarkVSuU

Figure 4.8

This is the last DFD showing the flow of function Prune Path.
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6. Implementation

System development starts when system design of proposed system exists. In our case,
we have to follow the structured System design techniques since main focus is on
algorithm which is not the parallel. Although we used latest programming tools available
which are bases on OOP concepts, therefore we shall follow a hybrid approach to show
the algorithm and the simulator. System development is the renovation of system design

into a genuine functioning computer system. This task is accomplished by coding.

6.1. Programming Tools Used
® Visual C# Net
= Net Framework

Because Microsoft Visual C#NET is considered one of the “hard-rock” programming
tools and is ranked one of the best Object Oriented Programming tool. So for good
combination we selected Microsoft environment. .Net framework also provides the

rich class library which gives a jump start to our simulators.

6.2. Interface Designing

This stage of implementation provides the mean of interaction to the user with the
system. The output of this stage will let the user be able to interact with system. The
main purpose of this phase is to develop a user-friendly interface for the ease of
customer. The quality of good interface is that it must be simple, user-frjendly, and

attractive. The interface should not be complex.

These points should be considered while designing interface:

e User-Friendly Interface

The interface should be simple. Proper messages should be displayed on the
screen to let the user know about the transactions. Transactions should be

completed in stepwise manner.
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e Simple Language

The language used on the screen should be simple and precise. Language should

not be complex or the steps should not be confusing to the user.

6.3.

Coding

Coding is the subsequent phase after system design. During this phase detail design

representation of the proposed system is translated into a programming language

realization. The objective of coding phase is to convert the design into code using

programming language.

The assortment of a programming language or tool is critical step as it affects the

complexity of testing and maintenance. Furthermore the distinctiveness of selected

language has an impact on the quality and efficiency of coding. Each programming

language has its own merits and demerits but the choice of language depends on the

precise rations of the proposed system.

e Public Class BaseForm
public class BaseForm

{

// HamCircuit Object for Base Form
HamCircuit hc = new HamCircuit ();

public BaseForm{()

{
/7
// Reguired for Windows Form Designer support
//

InitializeComponent () ;

/!
// TODO: Add any constructor code after
// InitializeComponent call

//

/77 The main entry point for the application.
FiE s Ly

[STAThread]

static void Main()
{

Application.Run(new BaseForm());

}

Hamilton Circuit Algorithm
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¢ Public Class HamCircuit
public class HamCircuit
{
public ArrayList node_list;
public ArrayList edge_list;
public ArrayList vsu_list;
public HamCircuit()
{
p
/1 TODO: Add constructor logic here
y
node_list = new ArraylList ();
edge_list = new ArrayList ();
vsu_list = new ArrayList ();

}
public bool FindHC ()
{
if (node_list.Count == 0 )
{
MessageBox.Show ( "No Graph to Find Hamilton Circuit” );
return faise;
}
/if any node has degree < 2, FAILED
int i;
Jor (i=0; i<node_list.Count; i++ )
{

if( ((Node)noae_list[ il).GetDegree () < 2 )
{

MessageBox.Show ( "Graph Has No Hamilton Circuit. \nNode
"+ + "\' Has Degree Less Than Two" ),

return false;
/
/
H if FindCycle() fuils for any edge of graph
#  FAILED
i end if
Sfor (i=0; i<edge_list.Count; i++ )
{
if (!FindCycle (i) )
{ .
Edge edge = (Edge)edge_list[i];
MessageBox.Show ( "Graph Has No Hamilton Circuit. \nEdge
Linking Nodes \"" + edge.nodel +
"\"and \"" + edge.node2 + "\' is the Only Link
Between Two Sides" );
return false;
/

// ReturnValue := 0
/#/ while ReturnValue is zero
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/

/ ReturnValue := MoveNext ()
/ end

int ReturnValue = 0;

while ( ReturnValue == 0 )

{
}

/' if ReturnValue = -1

/ FAILED

/ else

// SUCCESS

#endif

if ( ReturnValue == -1 )
{

ReturnValue = MoveNext (),

MessageBox.Show ( "Graph Has No Hamilton Circuit." );
return false;
}

MessageBox.Show ( "Hamilton Circuit Found. \n Path is " + (stringjvsu_list[0]

return true;
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7. System Testing

Software is never cent percent correct, no matter which developing technique is used.
Every software must be verified. Software analysis and testing are important to control
the quality of the product. Software testing is a critical element of software quality

assurance and represents the ultimate review of specification, design and coding.

Testing is the process of executing a program with the intent of finding errors. There are

two different types of testing from execution point of view. They are as follows.

7.1. Black Box Testing

In Black Box Testing, we only check whether the interface is available and check
whether it is working properly or not. Incorrect or missing functions, interface errors,
errors in data structures or external database access, performance errors, initialization

and termination errors can be discovered using black box testing.

7.2. White Box Testing

In White Box Testing, requires the tester to go through each line of code. Flowcharts
are used for this type of testing. Logical errors can be discovered and repaired using
this type of testing. Using White Box Testing methods, the software engineer can
derive test cases that

1)  Guarantees that all independent paths within a module have been exercised

at least once
2) Exercise all logical decisions on their true and false sides
3) Execute all loops at their boundaries and within their operational bounds

4) Exercise internal data structures to assure their validity

White Box Testing is very time consuming strategy, so, Black Box Testing is used for
this project with White Box Testing to cover maximum flow paths. For White box
testing, first we tried as many dry runs as possible along with the Flow Charts. Then
after implementation of every function, multiple input classes were tried and

compared with the outputs obtained in dry runs. This technique gave quite impressive
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results. Secondly the container functions were tested in bottom-up manner and finally
we tried to test as much permutations of graphs as possible but still we can’t eliminate

the human factor during these test.

7.3. Test Cases

A good test case is one that has a high probability of finding an as-yet undiscovered

error. The test cases developed using Black Box Testing is as follows.

7.3.1. Degree Two Permutations

Test Case Check whether different permutations of
degree two graphs give desired results

Functional Area Simulator Dialog Box

Test Name Degree two permutations verification

Description (Purpose) To check that all permutations of degree two

graphs are valid and after only giving valid
data user can get the same graph as if all
nodes have degree two graph, it’s the best

case.

Prerequisite Application is in runner mode

Input Different Permutations of degree two graph
Actions to be performed 1. Draw nodes by “Draw Nodes” button

2. Draw edges by “Draw Edges” button such
that every node has two edges

3. Click "Next” button

Expected Result(s) Status
Hamilton Circuit is to be shown. Pass
Comments
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7.3.2. Degree Three Permutations

Test Case Check whether different permutations of
degree three graphs give desired results

Functional Area Simulator Dialog Box

Test Name Degree two permutations verification

Description (Purpose) To check that all permutations of degree

three graphs are valid and after only giving
graphs having HC, user can get the HC out of
the given graph.

Prerequisite Application is in runner mode
Input Different Permutations of degree two graph
Actions to be performed 1. Draw nodes by "Draw Nodes” button

2. Draw edges by “Draw Edges” button such
that every node has two edges

3. Click “Next” button

Expected Result(s) Status
Hamilton Circuit should be shown if exist. Pass
Comments

7.3.3. Degree Four Permutations

Test Case Check whether different permutations of
degree four graphs give desired results

Functional Area ~ Simulator Dialog Box

Test Name Degree four permutations verification

Description (Purpose) To check that all permutations of degree four

graphs are valid and after only giving graphs
having HC, user can get the HC out of the

given graph.
Prerequisite Application is in runner mode
Input Different Permutations of degree four graph
Actions to be performed 1. Draw nodes by "Draw Nodes” button

2. Draw edges by “Draw Edges” button such
that every node has four edges

3. Click “Next” button

Expected Result(s) Status
Hamilton Circuit should be shown if exist. Pass
Comments
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7.3.4. Degree Five Permutations

Test Case Check whether different permutations of
degree five graphs give desired results

Functional Area Simulator Dialog Box

Test Name Degree five permutations verification

Description (Purpose) To check that all permutations of degree five

graphs are valid and after only giving graphs
having HC, user can get the HC out of the

given graph.
Prerequisite Application is in runner mode
Input Different Permutations of degree five graph
Actions to be performed 1. Draw nodes by “Draw Nodes" button

2. Draw edges by “Draw Edges” button such
that every node has five edges

3. Click “Next” button

Expected Result(s) Status
Hamilton Circuit should be shown if exist. Pass
Comments

7.3.5. Degree Six Permutations

Test Case Check whether different permutations of
degree six graphs give desired results

Functional Area Simulator Dialog Box

Test Name Degree six permutations verification

Description (Purpose) To check that all permutations of degree six

graphs are valid and after only giving graphs
having HC, user can get the HC out of the

given graph.
Prerequisite Application is in runner mode
Input Different Permutations of degree six graph
Actions to be performed 1. Draw nodes by “Draw Nodes” button

2. Draw edges by “Draw Edges” button such
that every node has six edges

3. Click “"Next” button

Expected Result(s) Status
Hamilton Circuit should be shown if exist. Pass
Comments
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7.3.6. Combination of Degree Two to Six in A Graph

Test Case Check whether combination of degree two to
degree six in a graphs give desired results

Functional Area Simulator Dialog Box

Test Name Combination of degree two to six in a
graph verification

Description (Purpose) To check that different combinations of

degree two to six in a graphs are valid and
after only giving graphs having HC, user can
get the HC out of the given graph.

Prerequisite Application is in runner mode

Input Different Permutations of combination of
degree two to degree six in one graph

Actions to be petformed 1. Draw nodes by "Draw Nodes” button

2. Draw edges by “Draw Edges” button

3. Click “Next” button

Expected Result(s) Status
Hamilton Circuit should be shown if exist. Pass
Comments

7.4. System Evaluation

The objective of system evaluation is to determine whether the desired objectives
have been accomplished or not. This is necessary because it checks the compatibility
of developed system with the existing system. Determining the merits and demerits of
the proposed system over the existing system is also covered in the system evaluation.

This is concerned with the detailed study of the developed system.

A system is successful if the information produced by it has the properties of
accuracy, in due course and fullness. The developed Simulator to find Hamilton
Circuit from a given graph has all three properties. Special care has been taken to
optimize the information processiﬁg speed of the system that results in expécted

output (HC) in polynomial time.
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8. Conclusion

The algorithm developed in this research project is not a hypothetical idea. The simulator
is available for the sake of proof of concepts. We have tried graphs up to 30 nodes,
having degree 3 and above and successfully solved all these graphs using the above
mentioned algorithm and the software simulator. Graphs that do not have Hamiltonian
Circuit are mostly rejected in six basic properties given in section 2. There is no back
tracking involved in this algorithm therefore we can find Hamiltonian Circuit in a graph

of degree three in polynomial steps.

Due to the time constraints to the submission of this project the system could not be fully
evaluated but generally it produces information that posses the properties of accuracy,
completeness, timeliness and conciseness. Some of the measurable human factors that are

central in evaluation are ease of use, speed of performance and rate of errors.

All the factors mentioned above do not guarantee a unique interface, no matter how
carefully designed and implemented has got its respective pros and cons. The ones

associated with my simulator are mentioned below:

8.1. The Simulator at its Best
The Pros of my software are as below:
» The simulator is reliable because it produces accurate results in polynomial time.

» The software is user friendly; because its design is made as user friendly as
possible, keeping in mind the diversity of its users.

» The software has all of the helping aspects that are covered while developing this
software.

= The software also generates proper error messages for the convenience of the
user. This enables the users to interact more easily with this software.

» The rate of errors is considerably reduced as maximum possible permutation are
tested and data validation checks have been provided at each step of each function
to ensure correct flow according the theoretical bounds.
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8.2. Software Requirements
The software requirements for this software are:
*  Windows XP/2000.

*  Microsoft .Net framework

8.3. Hardware Requirements
The hardware requirements of the software developed are:

" Intel Pentium III/IV series computer.

= 128 MB of RAM.
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Finding Hamilton Circuit in 2 Graph

Ghulam Mustafax Babar Dr. Sikandar Hayat Khiyal Abdui Saeed
EnterpriseDB Corporation, Dept; of Computer Seience Dept.-of Computer Science
Software Technology Park-1, Intl. Islamic Uniyersity, Intl Islamic University,
Isiamabad, Pakistan Is]amabad Pakistan- Islamabad, Pakistan

Abstract - The purpose of this paper is (o develop an algontiun to determine the Herviton Circuit in a
given graph of degree three. This algorithin will find Harnilton Circuit in pofynomial steps, We got sorng
properies; these properties are combined to develop the abave mentioned aigonithm. These principles

and their use will be expfafned by mﬂerentexampfes More or fess these principles are .wmp.re and
obvious,

Keywords: Hamilton Circuits, Degree of a node, Virtual Single Unit, Active End Point, Passive End
Point.

1. Introduction:

A path X0, X1, ..., Xn-1, Xn in the graph G = (V, E } i6 calied a Hamilton Pathiif V = {X@, X1, ..., Xn-1,

Xn}and Xi ¢xjfor0<-'|<15n A circuif X0, %1, ..., Xn-1, Xn (with n> 1) inagraph G = (V, E) is calted
a Hamifton Circuit if XG, X1, ..., Xo~1, Xn.is.a Hamslion Path.

Isthare a simple way to determing whethera graph has a Hamilton Circult? At first, it might seem that
there should be an easy way to detemmine this, Surpiisingly, there are no known simple necessary and
sufiicient criteria for the existerice of Hamilton Circuit. However, many theorems are known that give

sutficient conditions for ihe existence. of Hamiltor Circuit, Also ¢edain properties can be used to show thal
graph has no Hamilton Circuit f1).

2. Terminology:

Here are the spacial terms used 'in the following discussion:

1. Active and Passive End Points:.
While ﬁnding the Hamilton Circuit, we extend the path on both directions from starting node. One
end point is referred as Active Endpoint and other is referred as Passive Endpoint. On each
move, we extend Active Endpoint. Passive Endpolnt is only extended when some Virtual Single
Unit (VSU} is connected with it or it fulfitls some special condition described in some rule.

2. Virtual Single Unit (VSU):
During the process of finding Hamilton Cireuit; multiple independent paths are created. Each
independent path is referred as Virlua! Single. Unit. In other words, VSU-is simply a path which
has been decided for Hamilton Circult, These VSUs are connecled and finally form the Hamilton
Circuil,

3. Assigned Edge:
Any edge which is assigned some VSU ID is referred as Assigned Edge.

4. Selected Edge:

Any edge which is selecled fortdaln Path of sorme VSU but not assigned ID until now is referred
as Selacted Edge.

5. Unselected Edge: _ .
Any edge which is undecided for any VSU/Main Path is referred as Unseletied Edge,
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3. Basic Properties for Hamilton Circuit:

Foliowing are some of (he basic properties for Hamition Cirguit

13 I8 agraph has any vertek of degrae ong then thegraph cannot have:Hamiiton Clrouit.

2) i averexin the graph has degme two, then both edges thal are incident with this verdex must be
pact of any Hamilton Ciscuit,

3) Ifthere i an edge in the graph wmch Is-when removed,; divide the graphi into two disjoind sub-
graphs then the original graph cannot have: Mamitton Circuit.

4) lfthere is a verlex in the graph which is when removed {connecied/incident edges will also he
femoved) divide the graph into two. dusjoini sub-graphs, then the original graph cannot have
Hamilion Circull, {This proporty is:not necesaary for degree-3: graphs but useful for higher degree
graphs therefore we are-not including chiecks for this property in the following algorithm),

§) ifedpes of degroe two. venices croale a cycle-and that.cycledees nat contain all verices of
graph. the graph cannot have any Hamiltos Gircufl,

8] When a Hamillon Circuit is being: constructed this.cirouil passas through & vertex, then al

remaining edges incident with this veriex, otherthan the fwo used in the circuil, ¢an be removed
{31

4. Useful Theorems:
Thiere gre fwo famous /Il1e0rems:fr¢gafdin{;'ﬂi§e éfﬁs@éﬂtﬁefﬁf Hamitton Circuit.
1y Dirac’s Theorem: (G is asimpfe graph,mn n vesticas with n > 3 such that the degres of

every veriex in G is af least:nf2. then. G has & Hamillon Clrcuit (2]

2) Ore's Theorm: #Gis asumpiegmph with n vertices with n 2 3 such that deg (u) » deg (V) 2 n
for very pair of non-ad;acent vertlees i and vin G, then G hag Hamilten Circuit. [3)

But still these don't give enough m:‘onnat[on to ﬂnd ‘out Hamifton Circull or we can’t produce an algosithm
just on the basis of these algordhms..

5. Spemal Cases:

Now we consider some speclal cases-and iy 10's Wemch casg indep&ndenuy and finally combine their
results to produce the algorithm. Right now we shall stick-10'the graphs Up'to-degroe three, The graphs
having degree higher than thiee have more: pmbability o omtam Mamillon Clrcuit.

5.1, When each vertex ina: graph bas degree two:

As mentioned earlier in properly-2;ifa; vertex in thegmph(has deg:\ee {wo. then bollvedges that are
mcident with this vertex must be part o(anyﬁam%on it. Sincein this case; alt verices have degree

two thevefare alf edges must be-n thie path. h‘is’casa. aling ts'ip be done, Hamiiton Circul is already
present and (his can be conskiered the best case.

5.2. When each vertex in a graph has degree three:

Foliowing are the rules {o find Hamiton Clreuit iiva graph having degmee three:
i Select 3 starting node at random {since every verlex has same probability).

ify Selet any two Incident edges fo the verfex. in other words, sian extending peth on both
girections fror staring node.,

[iii) Remove the third edgo.

) Since each vedex has degree three therefare the verexon the opposie sikle of removed edge is
left with iwo edges and acconding tothe property-2, both. sdges musl be Iy the path, therefare
mark boW edges as Viral Single Uit that must be in the path/eircuil,
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In this algorithm, we will proceed on both sides from starting vertex, we name one endpoint
{vertex) as ACTIVE ENDROINT, and the other endpoint (vertex) as PASSIVE ENDPOINT. The
ACTIVE ENDPOINT wilf take decision for further move at each step &nd PASSIVE ENDPOINT
will only movefexiended futher whenit gats some VIRTUAL SINGLE UNIT (V.S.U} incident o it
or found an edge which can create a smaller cycle (property-5). In this case the other end of
VIRTUAL SINGLE UNIT is marked as PASSIVE ENDPOINT after joining of original path with
V.38.U,

On every move on ACTIVE ENDPOINT, the last vertex in the extended path is marked as
ACTIVE ENDPOINT and same with PASSIVE ENDPOINT..

At each extension on either endpaint.of main path-or seme V.S.U, the unused edges are removed
and opposite ends (vertlces) of removed edges are reconsidered for V.S.U creation, exlension or
joining with another V.Sl or ACTIVEJ’PASSWE ENDPOINT'S [ThlS step has highes! priority
after every movefextension]

On each exiension, check the concerming V.5.U'S for the edge which can create smaller cycie,
removed it & extend V.S.U; Cyele can only be created if endpoints of.a V.S.U or
ACTIVE/PASSIVE ENPOINTS share the same edge and we adapt that particular edge. Thus
simply check whether endpoints-of V..U or ACTIVE/ PASSIVE ENDPOINTS are sharing the
same gdge, if 50, remove that edge to avoid smaller cycle. [This step is second highest paority
item after step-{vii} on every movesextension)

On joining two V.8.U'S, aiways check the unused edges, if pair of unused edges, on either node
of connecting edge, is leading to sams vertex; adopt the altlemate path other than jolning VSUs,
-as we cannot remove two adges from any vertex. (it leads to propeny-1 of section-3)

On each extension, chieck if the ACTIVE ENDPOINT reach at certain verlax where remaining two
edges are connecting it with two (or endpoints of & single) VSLI(s) then the move is wrong. Adopt
the alternate path right. If we dont have any choice or the other path isn't possible or result in
virong move 1hen the graph doesnt have Harnilton Circuit.

Search an edge (uaselected .o, not part of any VSU) in the graph which is when remcwed divide
the graph into two disjoint sub-graphs. If found such edge then the original graph does not have
Hamilton Cirouit.

For extension on. ACTIVE ENDPOINT select either of iwo edgcs incident to ACTIVE ENDPO!NT
forriext move,
Whenever wo VSUS are combined, both result ane larger VSU, containing all the vertices of both

the smaller VSUs. Jfone of. the W8Us |s main path, mowve the ACTIVE!PASSIVE ENDPOINTS o
the new. endpoint of main pa{h

{xiv)  Both endpoints, ACTNE & PASSIVE, can only be joined when all vertices are iraversed

ctherwise, whenever both endpoints share the same edge {that will be removed (property-5)
considening it unused and exiend both: endpomts according 10 property-2.

8. TheAlgorithm:
Here is the actugl algorithm to find out the Hamilton Circuit in a degree three graph.
Procedure FindHC ()
Begin

If any node has degree < 2; FAILED

it FindCyclg { fails for any etge of graph
FAILED (No Hamilton Cireutt)
End

RelumValue: = ¢
While RetumValue iszero
ReturnValue: = MoveNext ()

End

f RetumValue = -1
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FAILED
Else
SUCCESS
end
End

Function FindCycle (e: edge)

There shauld not be any edge which Is when removed; divide the graph into twa disjoint sub-graphis. Any
such edge cannot be part of any:cycle:So this funclion tries to/find. closest’smaltest cycle containing the

given edge. Function returns TRUE if found:some Cycle'else returns FALSE.

Begin :

Mark one endpaint {node) as RED'node & Addla:REDJist.

Mark other endpoint (node) asBLUE node & Add to BLUE list

Remove the given edge.

LoOP
Get gach node one’by one from RED Jist & Get zll.connacted nodes.
Add all connected nodeto temporary list

Remave all sdges incident (0 nodes'in RED list-& Empty the RED list
Copy all nodes fram gmporary list to RED list

Remove all edges connecting one node in RED list 1o any other RED nade
If RED list is empty Return FALSE  (loop Is broken here)

if any node in RED list is connected to BLUE list by some edge in graph
Retum TRUE (oop is broken here)
End

Get each nade one by one from BLUE fist & Get all connected nodes to them. Add all
connecied nodes to temporary list, _
Remave all edges incident to nodes in BLUE list.
Empty the BLUE list.

Copy all nodes from temporary list to BLUE list

Remaove ali edges connecting one node in BLUE list o any other BLUE node.

If RED list is ermpty Return FAILURE (Igop is. broken hete)

If any node in RED list is connecledto BLLIE list by some edge in graph
Retum SUCCESS {loop is broken here) -
End .
End
End

Function MoveNext ()
Begin
if any node has degree < 2 Return -1 _
If any nade has degree = 2 Call MarkVSU () for.that node
{f Main Path/VSU exist, Active Endpoint:= First node of (firs) path
Else Active Endpoint := First node of Node List ‘
If no incident edge selected
Mark any {wo edges as selecled
Call PruneNode (ActiveEP)
Call PrunePath ¢
if FindCycled) fails for any unselected-edge
" Return -1 ‘ '
End
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Else if one edge is selectod
Select any of unselected edpe as selected edge
i selecled edge is connecting two VSUs :
Get unselecled edges.on either node of connecting edge
If both unselected edges have same ather end node
Mark selected adge as unselected & sefect the ‘alternate edge on ActiveEP
End
Call PruneMode (ActiveEP) and then PrunePath’()
i vSULinking () falls for any VSU -
Mark selected etige as unselected & select Ihe altemnate edge on ActiveEP
Call PruneNode (ActiveEP)-and then PrunePath 0
If VSULinking(} fails for any V&U

Retum -1
Else
' Returmn 0
End
Else
Retum O
End

Else H both incident edges are assigned dlﬁerenl vsuinp,
Call PruneNode (ActiveER).
If Main VS covers all nodes
Retum 1 { SUCCESS )
End v w4
End
End

Function VSULInKing ( id: VSUID')

Since in each slep we prune the unused edges. this’ may crea‘te wo subgraphs connected by less than
two edges, which is failure case for Hamilion circuit,
Beyin

Add Endpoints of main VSU o RED list-& Endpoints of prowded {argument) VSU to BLUE list.
Remave gl edges of both VSU's to simplify calculationg
Counter:=0

Loop

Extend RED side {0 adjacent nodes & remcwe old edges from RED list

if any commeon edge-found batween two- sides, Jricrement ‘Counter’
If Counter=2

Retuny SUCCESS

Else If any side is left with only one node:
Retum FAILED

End

Extend BLUE side to adjacent nodes & remove old edges from BLUE {ist

If any common edge found between two sides, increment ‘Counter'
If Counter = 2

 Retum SUCCESS
Else if any side is left with-only ane node.
Retom FAILED '
End
End
Eng

Function PruneNode ( h: node )

Begin : .
Remove the unselected edge at ‘n’ & Call MarkVSUs ():on other end node of removed edge
If both incident edges are assigned different VSU 1D Call MarkVSU (n)
Else If both incident edges are not assigned VSU 1D Call MarkVSL(n)
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Eise If one edge is assigned and otheris unassigned.
Copy VSU 1D from assigned to: Lmassngned edge

Call MarkVSUQ on other end. node of previously unassigned edge
End

end

Function PrunePath ()
Begin
If endpoints of any VSU are sharing some adge

Remave edga & Call MarkVSUQ on sither nodes of removed edge
End ' -
End

Function MarkVSU (n: node)
Begin
If Degree of node = 2
If any edge is not-marked as selecied, mark il as selected
If Different VSU ID is seif on both edges, Merge VSUS
Eise ¥ VSU ID is sef on one edge
Copy VSU 1D from assigned to unassigned edge

Call MarkVSU () on-otherent node of previously unassigned edge
Else if both edges are unassigned

If other end of fitst selected edge (Say m} is-ondpoint of some VSU
Copy VSU ID from ‘assigned to unassigned edge on 'm'. Call PruneNode{m).
End

if ather end of second selected edge (Say K) is endpoint of some VU
Copy VSU ID from assigned to ynassigned edge on 'k', Call PruneNade(k)
End '

If both selected edges on given node are assigned different 1D,
Merge VSUs.
Else o one incident edge is assigned

Copy VSU D from assigned 1o unassigned.
Else

Set newiDon -ellhervedge‘fand add Path to VSUList
End
if Degree of node > 2 and any two edges are marked selected
Cafl PruneNode{NodeNum}

End
End
7. Experiments;
S 3
2 1 )
6 {Figure-1) 4

Move -1
(Figure-2)
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[ (Figure-3). 10 11 Move—-1 10
{Figure-4)

1 Move -2 10
(Figure-5)

8. Conclusion:

Ve have tried graphs up o 30 nodes, having degroe 3 and successiully solved all these graphs using the
above mentioned algerithm. Graphs that de not have Hamilton Gircuit dre mostly rejected. in six basic
ropedies given in section 2. There' is-no back trackmg mvoived in ﬂus algorithm therefore Hamilton
cuit in 2 graph of degree threa can be:found in polynomial steps.
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