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Preface

Most of engineering and industrial problems are modeled in terms of nonlinear partial/ordinary
differential equations, The exact/analytic solution of which is extremely difficult or nearly im-
possible. In these situations, the numerical methods are very helpful to find an approximate
solution. In this thesis, we presented the numerical studics of oblique stagnation point flow for
different Newtonian/non-Newtonian fluid models. Various physical aspects such as oscillating
surface, vertical oscillating stretching surface, oscillating free stream, stretching sheet, MHD
effect, radiation effect. oblique stagnation point flow through porous medium and heat transfer
through nanofluids near stagnation point, are also investigated. The governing non-linear dif-
ferential equation are solved by means of very efficient numerical techniques such as shooting
method, finite difference method and spectral collocation method.

Chapter one includes, some basic information about the fluid models winch are used in the
whole study and literature review on orthogonal/oblique stagnation point flow is provided.

In chapter two, the study of unsteady obligue stagnation point flow due to an oscillating flat
plate and oscillating free stream has been carried out. The governing partial differential equa-
tions are transformed to three coupled dimensionless, nonlinear partial differential equations.
The system of equations is solved numerically by using well-known implicit finite difference
scheme named as Keller-box method. The effects of pertinent parameters namely magnetic
parameter, Prandtl number and impinging angle on the flow and heat transfer characteristics
are illustrated through graphs. The contents of this chapter are published in Canadian Journal
of Physics 93(10) (2015) 1138-1143.

In chapter three, a numerical study is carried out for the steady two-dimensional boundary
layer flow of an incompressible Maxwell fiuid in ;the region of oblique stagnation point over a

stretching surface. The governing equations are transformed to dimensionless boundary layer
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equations. The reduced system of ordinary differential equations is simulated by mean of
parallel shooting method, The effects of emerging dimensioniess parameters are presented
through graphs. Moreover, streamlines are drawn to predict the flow behavior near the stagna-
tion point region. The contents of this chapter are published online in Journal of Mechanics
32(2) (2016) 175-184.

Chapter four addresses the non-linear radiation effect on the two-dimensional oblique stag-
nation point flow in a porous medium. Constitutive equations of viscoelastic second grade fluid
are employed in the mathematical development of the relevant problem. The resulting non-
linear system is solved using Chebyshev Spectral Newton lterative Scheme (CSNIS). Impact
of sundry vanables on the quantities of interest like skin friction and Nusselt number are dis-
cussed. Difference between linear and nonlinear radiation is discussed and streamlines for
various values of obliqueness and porosity parameters are shown and their analysis is made.
The analysis presented in this chapter is published online in Transport in Porous Media
113(1) (2016) 245-266.

Chapter § includes the study of enhancement of thermal conductivity of elastico-viscous
fluid filled with nanoparticles due to the implementation of radiation and convective boundary
condition. The flow is considered impinging obliquely over a stretching sheet near a stag-
nation point. The governing partial differential equations are transformed into a system of
ordinary differential equations by employing suitable similarity transformations. Solution of
the resulting equations 1s computed numerically using Chebyshev Spectral Newton lterative
Scheme (CSNIS). Effects of involving parameters on the flow and heat transfer characteristics
are observed and shown through graphs. The findings of this chapter are published in Thermal
Science DOI:10,2298/TSCI150411163G.

In chapter 6, the influence of radiation on the mixed convection flow of Walter's B flind
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in the neighborhood of nonaligned stagnation point over a vertical oscillating flat plate has
been investigated. The plate is assumed to be heated with sinusoidal surface temperature. It
is further assumed that the plate is stretched linearly along the x-axis. The governing partial
differential equations are transformed into dimensionless form. The obtained dimensionless
partial differential equations are solved numerically using Chebyshcy Spectral Newton Iter-
ative Scheme (CSNIS). The variation of Prandtl and radiation parameter is handled through
effective Prandtl number. The detailed discussion is made in this chapter with help of tables
and graphs. The results of this chapter are submitted in International Journal of Mechanical
Sciences

In chapter 7, heat transfer analysis of an unsteady oblique stagnation point flow of elastico-
viscous fluid over an oscillating-stretching surface, heated due to sinusoidal wall temperature
is presented. The governing partial differential equations are transformed into dimensionless
form. The solution of obtained partial differential equations is computed numerically using
Chebyshev Spectral Newton Iterative Scheme (CSNIS). The variation of skin friction coeffi-
cient and local Nusselt number are discusséd f:a}”‘;hc wide range of time and various pertinent
parameters. The contents of this chapter are published in Journal of Molecular Liquids 219

(2016) 748-755.



Contents

Nomenclature . . . . . . . . . . . e e e e
Introduction
1.1 Fluidmechanics . . . . . . . . v o o i o e e e e
1.2 Newtonian fluids . . . . . . . . . . . . e e
1.3 Non-Newtonian fluids . . . . . . . . . .. .o v i e e
1.4 Mathematical models for non-Newtonian fluid flow . . . . .. .. .. .. ..
141 Maxwellfluid . . . . . . . . .o
142 Secondgrade Auid . . . . .. .. ... e
143 Walter'sBfuid . .. ... . oo
1.5 LAterature TeVIBW . . . . v . v vt o e oo e e e e e e e

Heat transfer analysis of unsteady MHD oblique stagnation point flow

2.1 Mathematical formulation . . . . . ... ..o e
2.2 Kellerboxscheme ... .. .. . ... ... e
2.3 Results and DHSCUSSION . . . . . . . . Lo oo
23.1 Foroscillatingplate. . . . . . .« . oo
2.3.2 Foroscillating free stream . . . . . . . ... ..o
24 Conclusions . . . . . . . L e e e e e e e e e

10

11

11

11

12

12

20

38



3 Study of non-Newtonian Maxwell fluid flow in the region of oblique stagnation

point over a stretching sheet 39
3.1 Mathematical formulation . . . .. . . ... . ... oo 40
3.2 Parallel shootingscheme .. .. ... . ... ... . .. ... . . ... 44
3.3 Resultsanddiscussion . . . . . . . o .. 45
34 Conclusions . . . . . . . .. L e e e 55

4 Study of viscoelastic fluid flow in the region of oblique stagnation point through a

porous medium with radiation 56
4.1 Problem formulation . . .. ... ... ... ... oo 57
4.2 Chebyshev Spectral Newton Iterative Scheme . . . . . ... .. ... .. .. 63
43 Resultsand discussion . . . . . . . o i e e e e e 64
4.4 ConcluSions . . « . . v v vt e e e e e e e e e e 77

5 Study of nanofluid in the region of obligue stagnation point flow over a stretching

surface with radiation 78
5.1 Problem formulation . . . .. . .. .. ... e 79
5.2 Chebyshev Spectral Newton Iterative Scheme . . . . . ... .. .. ... .. 84
5.3 Resultsand discussion . . . . . . . . . . v e e e 86
54 Conclusions . . . . v e e e e e e e 99

6 Study of Mixed convection Walter’s B fluid flow towards stagnation point over a

vertical surface 100

6.1 Problem formulation . . . . . & . ot o e e e e e e e e e 101

6.2 Chebyshev Spectral Newton Iterative Scheme . . . . . . ... ... ... .. 106

6.3 Resultsand discussion . . . . . . i e e e e e e e e e 108
2



6.4 ConclUSIONS . . . . . o o e e e e e e e e e e e e e e s 113

Heat transfer analysis of unsteady oblique stagnation point flow of viscoelastic

fluid due to sinusoidal wall temperature over an oscillating-stretching surface 1135

7.1 Problem formulation . . . . . . . . . . e e e e e e e e e s 116
7.2 Chebyshev Spectral Newton [terative Scheme . . . .. .. .. .. oo o 120
73 Results and disCUSSION . . . . v v o e e e e e e e 123
T4 ConcluSions . . . . o o e e e e e e e 133
Bibliography 134



Nomenclature

K.k
k|

Kegf

ko

N

Positive dimensional constants

Velocities ratio parameter

Strength of uniform magnetic field

Biot number

Solutal concentration

Ambient solutal concentration

Skin friction coefficient

Specific heat constant

Solutal concentration at the wall
Brownian diffusion coefficient
Thermophoretic diffusion cldglfﬁcient
Dimensionless normal component of flow
Dimensionless oblique component of fow
Convective heat transfer coefficient
Porosity parameter

Thermal conductivity of the fluid

Darcy permeability parameter

Combined thermal conductivity of the fluid and porous medium
Thermal conductivity of solid

Elasticity of fluid

Dimensionless magnetic parameter
Brownian motion parameter

Thermophoresis parameter



Pr

‘}'m
qr

Gw

Rd
Re,
Sc

Shy

Nusselt number

Pressure

Prandt]l number

Mass flux at the wall

Radiative heat flux

Heat flux at the wall

Radiation conduction parameter or Planck number
Local Reynolds number

Schmidt number

Local Sherwood number

Temperature of the fluid .

Time

Ambient fluid temperature

Temperature of the hot Huid

Temperature of solid

Surface temperature

Dimensional velocity components in £ and § directions
Dimensionless velocity components in x and y directions
Free stream velocity

Velocity at the wall

Weissenberg number

Location of stagnation point

Coordinates along and normal to the surface in dimensional form

Coordinates along and normal to the surface in dimensionless form



Greek symbols
a
. O

o

™

R e

Q

Ose

Cy

€|

Obliqueness angle

Normal stress moduli

Rosseland mean absorption
Maxwell fluid parameter
Thermal expansion coefficient
Unsteady parameter

Obliqueness parameter
Dimensionless temperature
Surface Heating Parameter
Dimensionless concentration
Electrical conductivity

Stephan- Boltzmann constant
Scattering coefficient

Stress tensor

Effective heat capacity of nanoparticle materials to heat capacity of the fluid.
Wall shear stress

Stream function

Kinematic viscosity

Dynamic viscosity

Frequency of oscillation
Amplitude of the plate oscillation
Amplitude of imposed temperature oscillation

Fluid density
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(pe)y

(pe)p

Relaxation time of the material
Heat capacity of the fluid

Effective heat capacity of the nanoparticle material



Chapter 1

Introduction

In this chapter, fundamental knowledge related to research presented in this thesis in forth-

coming chapters is provided for better understanding of the readers.

1.1 Fluid mechanics

Fluid mechanics is the branch of science which deals with the behavior of liquids and gases at
rest or in motion. The term fluid in everyday life commonly refers (o liquids, but through the
definition, a substance that can easily gain the shape of its container is fluid or a substance is
said to be fluid if it deforms continuously under the action of shear stress, no matter how small
the shear stress may be, gases are also considered as fluid. Applications of fluid mechanics
involves variety of mechanisms, ranging from blood flow in capillaries to flow of oil in huge
pipelines and from flight of birds to supersonic airplanes, Even one can say that for all bodies
in motion there is an associated fluid flow. Science of fiuid mechanics is neither new nor
biblical; however, most of the progress we are seeing, was made in the 20th century. Fluid
mechanics and basic engineering were always integral parts of human evelution. Ancient

civilizations built ships, sails, irrigation systems and food-management structures, all requiring
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some basic understanding of fluid flow.

All the physical phenomena are in some way related to the laws of fluid mechanics. Ap-
plication of these laws to fluid flow problems in terms of mathematics, results in the partial
differential equations such as continuity equation, the equations of motion and the energy

equation. These equations, for incompressible fluid flow are as follows

V.v=0, (1.1D

av
P =V.1+pf, (1.2)
pe, L = V.(k9T) +7: 9V, (13)

If we include the idea of mass transfer in fluid flow then we have another equation which can
be written as

dc
pCpBT‘——V‘(G'VC), (14)

In above equations, term % : VV represents the viscous dissipation, p is the density, V is the
gradient operator, V is the velocity vector, T is the stress tensor, T represent the body forces,
¢, is the specific heat, T is the temperature. £ is the thermal conductivity of the fluid, C is the
species concentration for mass transfer, D is the diffusivity for mass and d/dt is the material

derivative,

1.2 Newtonian fluids

The Auids in which the applied shear stress at every point is linearly proportional to the strain
rate are considered as Newtonian fluids. In mathematical term for a unidirectional flow, it is
represented by

Ty = o (1.5)



or

B pj—:, (1.6)
where jt is the constant of proportionality commonly known as dynamic viscosity. The above
relation is known as Newton's law of viscosity. For a Newtonian fluid, the stress tensor is
given by T = —pl+8 where p is the pressure, I is the identity tensor and 8 is the extra stress
tensor defined as § =~ A |, where A represents the first Rivlin-Ericksen tensor and is defined

as

A =L+L", (L7

where L represents the velocity gradient and L” represents its transpose.

1.3 Non-Newtonian fluids

If the relationship between the applied shear stress and the rate of strain is non-linear the fluid
is termed as non-Newtonian fluid. These fluids are very important due to their applications
in industries including civil, metallurgical, mining and chemical engineering. Many fluids
in nature have very complex behavior and cannot be studied on the basis of Newtonian fluid
model only, It is therefore, different models are presented to predict the behavior of non-
Newtonian fluids namely Power law model, Siske model, Casson model, Maxwell model.
Second grade model and Walter’s B mode! etc. The rheological effects in the present thesis
are captured on the basis of constitutive relationship of Maxwell, second grade and Walter's B

fluids.



1.4 Mathematical models for non-Newtonian fluid flow

Different mathematical models have been proposed to study the behavior of fiuid Aow in dif-

ferent geometrics. The models which are studied in this thesis are explained as follows:

1.4.1 Maxwell fluid
The rheological equation of Maxwell fluid model is
DS
S —- = UA .
+ A Di HA) (1.8)

where A, is the relaxation time of the material, which is duration of the time over which

significant stress persist after termination of deformation , D/Dt is the contravariant convective
o "
derivative [80] defined as
For a contravariant vector
DS 4§

= 4 LS (1.9)
For a contravariant tensor of rank 2
%f—'r%—?——LS~SL* (1.10)
1.4.2 Second grade fluid
Extra stress tensor in second grade fluid obeys

S = pA; + oAz + oAl (.11
173

where A; is the second Rivilin-Erickson tensor defined by the following relation

dA
Ay = d—f[+AlL+L*A|. (1.12)

For thermodynamically compatible second grade fluids onc must have
p=>0, >0, oq+op=0 (1.13)

11



1.4.3 Walter’s B fluid

The stress deforrnation relation for a Walter’s B fluid is given by

, DA,

S = — ko ———, 1.14
HA | —2ko e (1.14)
where

DA, dA

T T (VA A L-L"A, 1.15

i % +{(V.V)A,; - A, | (1.15)

1.5 Literature review

In fluid mechanics. when fluid strikes to a rigid surface then velocity of fluid eventually be-
come zero at a point commonly known as stagnation point. The flow in the neighborhood of
stagnation point is called stagnation point flow. The two-dimensional stagnation point flow
was first encountered by Hiemenz [1], also known as the Hiemenz flow. He reduced the gov-
emning pantial differential equations to a nonlinear third order ordinary differential equation by
means of the similarity transformation and found an exact solution of the obtained ordinary dif-
ferential equation. Howarth [2] studied the steady two-dimensional boundary layer flow past
an obstacle by means of various methods and provided an improved form of the Hiemenz so-
Jution. Goldstein [3] observed that Hiemenz solution satisfies the full Navier Stokes equations
as well as the boundary layer equations. Various authors extended the stagnation flow in dif-
ferent ways. Homann [4] extented the work of Hiemenz [1] by considering the axisymmetric
stagnation point flow. In the middle of last century, Howarth [5] extended the two-dimensional
stagnation point flow on a general (three dimensional) surface. He modeled the boundary layer
ordinary differential equations containing a single parameter ¢. For ¢ = 0 corresponds to the

two-dimensional flow and ¢ = | corresponds to the axial flow. He computed the solution for the
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various values of ¢ between 0 and 1. Davey [6] numerically simulated the three dimensional
stagnation point flow, where the external flow is assumed to be irrotational with components
{ax.bv,—(a+ b)z} with a and & are constants where a > 0 > b. He reported that the flow has
boundary layer character and for b/a < -0.4294 the boundary layer flow is reversed. Eck-
ert | 7] has performed the heat transfer analysis in stagnation point flow and it was observed
that the maximum heat transfer occurs in stagnatin point region. Nachtsheim and Swigert [8)
numerically investigated the stagnation point flow in boundary layer region. They solve the
boundary value problem by first setting into initial value problem and then supplied a suit-
able initial guess which satisfies the condition defined at second point. The developed initial
value problem was encountered by Adams-Moulton integration scheme by using least-square
convergence criterion to get the unique solution. They concluded that the, applied method is
insensitive to the initia) guess and converges rapidly. The stagnation point flow over oscillatory
walls was examined by Rott [9], in which he considered the case where the plate performed
periodic oscillations in its flown plane. During the same era, Glauert [10] attempted the two-
dimensional time dependent potential flow over oscillating surfaces, In this study, he not only
considered the flow over oscillating plate but anlso‘:;ltcxtendcd his study for the oscillating cylin-
der. He reduced the Navier-Stokes equations in the form of boundary layer equations and then
used similarity transformation. He solved the obtained ordinary differential equation by series
method for large and small values of frequency parameter upto the enough number of terms to
ensure the accuracy. He also oberved that the obtained solution satisfies the full Navier-Stokes
equations. Watson [11] generalized Rotts and Glauerts work [9,10] by allowing the periodic
oscillations to be replaced by an arbitrary transverse motion. He approximated the solution by
means of different techniques according to the situation. For this purpose, by means of Laplace

transform method (for the case of moving wall from the rest). expansions of the velocity for
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large and small times are expressed in terms of the velocity of the wall. Further, he expressed
that how Pohlhausen type of method can be used. Stuart |12] studied the double boundary
layer oscillatory viscous flow and considered case of flow generated by a circular cylinder os-
cillating along a diameter where the free stream velocity was assumed as a function of time.
He found the asymptotic solution of the considered problem and made qualitative agreement
with experimental results obtained by Schlichting [83]). Pedley [13] studied the stagnation
point flow problem by considering the time dependent sinusoidal free stream velocity. Nusselt
number and skin friction coefficient are calculated by means of two expansion asymptotically,
a regular one for small values of £ {x) = wx/Uy{x) and, a singular one (requiring the use of
matched asymptotic expansions) for large values of €. The main difference of his work with
carlier authors is that the amplitude of the oscillating velocity can be considered as large. He
calculated the numerical values for different emerging parameter. The boundary layer time
dependent Hiemenz flow was also discussed by Grosch and Salwen [14]. They gave approxi-
mate solution for low and high frequency oscillation parameter . The approximaled results arc
validated through numerical scheme and they found good agreement with the previous results.
Merchant and Davis {15] summarized the work of Pedley [13] and Grosch and Salwen [14],
extending it 1o consider the case where the dimensionless frequency parameter is large and the
oscillatory component is much larger than the mean component. In this work, much attention
is focused on the steady streaming generated in this flow with strongly non-paralle] stream-
lines. Hazel and Pedley [16] considered an unsteady orthogonal oscillating two-dimensional
stagnation point flow approaching an oscillating wall,

During the last few decades, enormous research activities in the area of stagnation point
flow have been considered by many researchers in different directions having to its appli-

cations in engineering and industries, An analytical solution for steady, two dimensional

]
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stretching sheet was originated by Crane [17]. He assumed that velocity of stretching sheet
is proportional to distance from the silt. This phenomena is widely encountered in many
industrial applications such as materials manufacturing by polymer extrusion, wire drawing
such as springs, paper clips, spokes for wheels, and stringed musical instruments, continuous
stretching of plastic films, artificial fibers, hot rolling, glass fiber, metal extrusion and metal
spinning, cooling of metallic sheets or electronic chips, and many others. The idea of Crane
was extended by many researchers by incorporating different physical aspects such as Gupta
and Gupta [18] considered the heat and mass transfer over an impermeable stretching sheet.
Wang [19-21] considered three dimensional flow over a stretching sheet, flow due to a stretch-
ing cylinder and flow due to time dependent stretching sheet. Moreover, stagnation point flow
over stretching sheet has gained the attention of many scientists and engineers. Chiam [22] was
among the earlier scientists who considered stagnation point flow towards a stretching plate.
In his study. he considered different cases of the flow like two dimensional normal/oblique
stagnation point flow and axisymmetric normal/oblique stagnation point flow over stretchable
sheet. Mahapatra and Gupta [23] discussed the magnetic effect near the stagnation point over a
stretchable sheet. He observed the behavior of fluid flow within the boundary layer, with trans-
verse boundary and of no boundary layer cases. In an other study, Mahapatra and Gupta [24]
observed the rate of heat transfer near the slag'ntz?l"ion point region. Nazar et al. [25] studied
stagnation point flow of a micropelar fluid towards a stretching sheet. They reduced the partial
differential equation into ordinary differential equation and then solved numerically by using
finite difference scheme. They observed that the skin friction coefficient is lower for bound-
ary layer and higher for transverse boundary layer flow. Similarly. the velocity of the fluid
is decreasing function of K in case of boundary layer and increasing function of K in case

of transverse boundary layer flow. Furthermore, Layek et al. [26] considered mass transfer
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in stagnation point region by assuming permeable heated stretching sheet. Hayat et al. [27]
consider stagnation point flow over a nonlinear stretching. Zhu et al. [28], Shit et al. [29],
Bhattacharyya [30] and many others have discussed the stagnation point flow over a stretching
surfaces by incorporating different aspects.

Orthogonal stagnation point flow has been interesting study area for the researcher but the
less attention was devoted to oblique stagnation-point flows. Oblique stagnation-point flow
appears when fluid strikes on a rigid surface at an arbitrary angle. From a mathematical point
of view, such flow is obtained by combining orthogonal stagnation point flow with a shear flow
parallel to the wall. The study of steady two-dimensional oblique stagnation-point flow of a
Newtonian fluid was first elaborated by Stuart [31]. He first reduced the problem into system
of ordinary differential equations by using similleilrlity transformation and then found the exact
solution. Following the Stuart, Tamada [32] considered steady two-dimensional stagnation
point flow impinging obliquely to the plane wall. He found analytical solution of the prob-
lem and comparison is presented with existing solutions. He also sketched the stream lines
to predict the fluid flow behavior. The work of Tamada, was extended by Chiam [33] with
addition of moving plane wall. He found numerical solution of the problem by assuming the
constant velocity of the moving sheet and considered the same stream fenction as reported
by Tamada [32]. He obtained the result for both stationary and moving plate and for case of
stationary sheet the results are compared with previous studies. Dorrepaal [34] revisited the
work of Stuart [31] and Tamada [32] and found the similarity solution for two dimensional
oblique stagnation point flow. In his study, he -as;sumed the stream function in terms of im-
pinging angle & and for & = 0 the problem reduces to the orthogonal stagnation point flow.
Lyell and Cronin [35] presented finite element solution of premixed laminar flame extinction

in the region of orthogonal and oblique stagnation point flow. For case of orthogonal stagna-
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ton flow, they compared finite element solution with previously investigated by Runge- Kutta.
They found that, except in the case of Levis number unity, the effect of shear was to shift the
reaction region closer to the wall. Labropulu et al. [36] extended the work of Dorrepaal [34]
by considering the flat plate as permeable. They found that. suction helps to penetrate the
fluid in wall, while blowing helps to shift the stagnation point and this shifting of stagnation
point depends upon the magnitude of the blowtng. Tilley and Weidman [37], investigated the
impingement of two fluid flows forming a flat interface. They solved the governing equations
numerically using shooting method with fourth order Runge- Kutta scheme and missing ini-
tial conditions are calculated through Newton-Raphson method. Amaouche and Boukari [38]
investigated oblique stagnation point flow over an inclined heated flat plate. They found that
buoyancy induced convection flow acts to either reinforced or oppose the fuid flow. Weid-
man and Putkaradze [39] studied the axisymmetric flow on a circular cylinder where the fluid
is impinging to the surface. In this study they consider incorrect outer pressure filed for the
case of circular cylinder. Later, in ref. [40] they presented a correct solution of their problem
by considering a valid outer pressure field. Labropulu and Chinichian [41] considered time
dependent oblique stagnation point flow of non-Newtonian fluid. In their article, they used
constitutive equations of Walters B fluid model and assumed that the plate is oscillating with
velocity Ucost. In last decade, Reza and Gupta [42] generalized the problem of an obligue
stagnation point flow over a stretching sheet by Chiam [33] to include surface stretching rate
different from that of the stagnation-point flow. In that paper, they have ignored the displace-
ment thickness paramcter and the pressure gradient parameter. This was partially rectified in a
paper by Lok et al. |43]. Later, Reza and Gupta [44] gave a correct solution of steady oblique
stagnation point flow over a stretching sheet. Th:e'y found that the flow has a boundary layer

behavior when free strecam velocity is greater than stretching velocity and it has an inverled

17



boundary layer structure when free stream velocity is less than stretching velocity. Recently.
Drazin and Riley [45], Mahapatra et al. [46], Tooke and Blyth [47], Grosan et al. [48], Singh
et al. |[49] and several others (see refs. [S0-54]) have done notable work on oblique stagnation
point flows.

In recent years, study of nanofluids gathered a lot of attentions due to their enormous appli-
cations, Many researchers contributed in this area due its significance in pharmaceutical and
food processes, hyperthermia, fuel cells, microelectronics, hybrid-powered engines, coolants
for advanced nuclear Power Plants [55] and many others. The basic idea of using nano-sized
particle to enhance the thermal conductivity of the fluid was given by Maxwell [56]. Chot [57]
was the first who introduce the term nanofluid in 1995. He studied the characteristics of
nanofluids and deduced that the thermal conductivity of the base fluid (water, oil, bio-fluids, or-
ganic liquids, ethylene glycol etc.) can be enhanced by introducing metallic particles (average
size about 10 nanometers). Nano-particles are made of different metals (A/,Cu,Ag,Au, Fe),
metal carbides (SiC) non-metals (graphite carbon nanotubes), oxides {A{203,Cu@, TiO,), ni-
trides (AIN.SiN) etc. In 2006, Buongiorno [58] has studied the convective transport in fluid
and he considered seven slip mechanisms (Eheﬁﬁgphoresis, diffusiophoresis, Brownian diffu-
sion, inertia, Magnus effect, gravity and fluid drainage) to discuss the relative velocity of the
fluid and nano-particles and he concluded that among these seven slip mechanisms only two
are important. Recently Kuznetsov and Nield [59] studied the gravity driven flow by consid-
ering the buongiorno model to capture the Brownian motion and thermophoresis effects of
the nanoparticles. After using the similarity transformation, they solved the reduced ordinary
differential cquations analytically and observed the variation in Nusselt number due to vari-
ous emerging parameters like Lewis number Le, buoyancy-ratio number Nr, Brownian motion

number Nb, thermophoresis number &t and Prandt! number Pr. In an article, Kuznetsov and
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Nield [60] considered the natural convection flow of nanofluid by considering the double dif-
fusion effects (regular diffusion and cross-diffusion terms). Makinde and Aziz [61] studied
the heat transfer in nanofluid past a stretching sheet by assuming the convective boundary
conditions. The transport equations include the effects of Brownian motion and thermophore-
sis. They found numerical results by means of shooling method for various dimensionless
parameters like, Lewis number Le, Prandtl number Pr, thermophoresis parameter N?, Brow-
nian motion parameter Nb and convection Biot number Bi. Hassani et al. [62] analytically
investigated the boundary layer flow of nanofluid by means of HAM. They found the results in
form of Nusselt and Sherwood numbers for different pertinent parameters. From the analysis,
they found that heat transfer rate is a decreasing function of each dimensionless parameter
while the mass transfer rate is found an increasing function for Pr and decreasing function for
small Pr. There is extensive literature available on the topic through different aspects. Few

representative recent studies on the topic may be seen in the refs. {63-75].
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Chapter 2

Heat transfer analysis of unsteady MHD

oblique stagnation point flow

In this chapter, heat transfer analysis of unsteady oblique stagnation point flow due to an oscil-
lating flat plate and oscillating free stream has been carried out. The governing boundary layer
equations are transformed to three coupled dimensionless nonlinear partial differential equa-
tions, here stream function is expressed as Hiemenz and tangential components. The equations
are solved numerically by using well-known implicit finite difference scheme named as Keller-
box method. To ensure the accuracy of obtained results, the comparison of numerical results
is made with the resulis available in the literature. It is observed that the obtained solution
is highly accurate and analysis is valid. The cffects of pertinent parameters namely magnetic
parameter, Prandt! number and impinging angle on the flow and heat transfer characteristics

are illustrated through graphs.
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Figure 2.1: Geometery of the flow (a) due to oscillating plate (b) due (o oscillating free stream

2.1 Mathematical formulation

Consider the unsteady MHD laminar, incompressible flow of a viscous fluid impinging obliquely

on an infinite flat plate oscillating in its own plane. The Cartesian coordinates (£,¥) fixed in
21



space arc taken, where the ¥—axis 15 considered along the plate and the y—axis is normal to
it. The external magnetic field of uniform strength By, is applied in the direction of $-axis with
the low magnetic Reynolds number assumption is imposed so that the induced magnetic field
can be neglected in comparison to the applied magnetic field. Commonly, the effect of Joule
heating becomes more important for sufficiently strong applied magnetic field, but for small
magnetic interaction parameter these heating effects can be neglected. The physical model
and coordinate system are shown in Fig. 2.1. Under these assumptions, the continuity, the

Navier-Stokes and the energy equations are given by

AL 2.1
ax_ (_?—'}__, — W ( . )
o di da  1dp % 9%\ oB}
a—‘; +M“a—f+va—y_ = _BE—'—V(EE = 3?) - ?H, (2.2)

ov  dv dv _ 1dp 8% &%

TGRS T 05 V(Eﬁ*é}ﬁ) @3
0T T T &k 9°T
7 Um TS T e, 3 @4

where & and v are the ¥ and y components of velocity respectively, 7 is time, v be the kinematic
viscosity, o be the electrical conductivity, By be the strength of uniform magnetic field, p be
the density of the fluid, T be the temperature of fluid, ¢p 15 the specific heat and & is the thermal
conductivity of the fluid. The boundary conditions in case of oscillating plate and in case of
oscillating free stream with the time dependent velocity are given by

For oscillating plate:

(2.5)

For oscillating free stream:

(2.6)



where T,, is the wall temperature, T;. is the ambient temperature, U, = a (£ + y9) — Ue™¥ is the
oscillating free stream velocity, a is the constant having dimension inverse of time, Q repre-
sents the frequency of oscillation, U is the ampliwde of the oscillating velocity and v is the
non-dimensional constant characterizing the obliqueness of oncoming flow. After eliminating

pressure p from Eqs. (2.2) and (2.3), we get
Fa 9% dada %  3vdq 0% adv_ %
didy oJfdx Iy ox “ayax oy 3y "ayz dx¥dxr IR
a_ﬁg_ﬁ_ﬁazﬁ__v( Pu_ da v o\ oBjoa
0xdy  0yd% B p Iy

(2.7)

ayadi? @y 9P  didy?

Following Takemitsu and Matunobu [76], the stream function is chosen of the following form
v =a(5f(3) +2(.1)) (2.8)

The boundary conditions reduced to

For oscillating plate:

= - U A
f:g':()‘f\;zo,g\;:;t—e‘g at =0,

(2.9)
J~7 8~/ T=Te as oo,
For oscillating free stream:
_ _ 4
fzg:ol ff":os gF_O at .}-‘_01
U 2.10)
f~5 g~ (12w - ;y‘e’w. T—Te as y—ros,
using Eq. (2.8} we get
Jyp* = Jy* .
W= =a(ihig) i= 5 =], @1

where the suffix denotes partial differentiation with respect to 7. After substituting Eqs. (2.8)

and (2.11) in Eq. (2.7}, we obtain the following equation:

o v a{(Efos + 8n) 5+ Fo (X5 +85) ~ f5 (Rfis + &o5) — F (2fissy + 8ows) )

5 2.12)
=V (&fssss +soss) = = (Wi +835)
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Equating like powers of x, we have

L . _ oB} .
a(2fifi5— Flus— Fifwr) = Vi — 5 I (2.13)
i L _ o8}
Esi +a (G fs + &efsr — FBise — fis 55) = VBrser — '—p—g_r'- (2.14)

Integrating Egs. (2.13) and (2.14) with respect to ¥ and applying the free stream conditions on
obtains

For oscillating plate:

a((7) = Ffs—1) =v =t (1), 2.15)
g +a(f5gs — fg55) = v — 9:1% (&5~ 7). (2.16)
For oscillating free stream:
a((B) - Fus - ) vfm—gff(f- - 1), (2.17)
g +a(figr v)—vgm——p‘?—z( ; w+9e fy Ue"“"—(%) QY. (2.18)

Introducing the non-dimensional variables as follows:

]

f=(f)7y,r'=é,f(f):( ) F0).80,1 = (2 )80 1), T = T+ (Ty = T}, (219)

a

the Egs. (2.15) -(2.18) and {2.4) with boundary conditions reduce to the following dimension-
less form

For oscillating plate:

S =M ) F =0, (2.20)
&+ o' — 18 ~ g ~M(g' — 1) =O. (2.21)
For oscillating free stream:
S (=M - D+ L =0, 2.22)
gt fe" — 1B g ~M(g' - yyt+ee”) = (1+if*) ee (2.23)
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Encrgy cquation

| .
- 9” 9’ gt = 0' (2. 24)
Pr ks po

and the boundary conditions in dimensionless variables are

For oscillating plate:

f=g:0.f":0!g.":€e!‘f'e__—] at }’:051'20,
(2.25)
ff:,-],grfz%ﬂzo as 'v—-—)ooafzo‘

For oscillating free stream;

f=g=0,f=0g¢=0,0=1at y=0,
(2.26)
ff=lLg=y-e"0=0 as v— o
where prime denotes differentiation with to y and e denotes differentiation with respect to ¢
and M = UB%/pa is the magnetic parameter, Pr = Hep/k is the Prandtl number, B* = /a

is the unsteady parameter and £ = U/ /(va)'/? is the amplitude of the oscillating velocity in

dimensionless form . The drag force at the surface in form of skin friction coefficient Cy is

given by
T _(da
oo = m(F) &7
2 # azg
(£cost)“Cr=xf {0y + =—(0.1), (2.28)
dy*

where ¥ has been replaced by a non-dimensional variable x = {av)'/2%. The non-dimensional

stream function and velocity components are

W= = xf()+e0u0) (229)
I SN
u= Ja =xf [})+ay, (2.30)
v
v=m:—f(y) (2.31)
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In Fig. (2.1), the dividing stream line making angle & with the plate. The dividing stream line
is a straight line whose slope can be found by substituting ¥ = 0 as discussed in [34]

For oscillating plate:

v oxy+ %ijz —0, > y= (—%) X, (2.32)

above equation implies that slope of the dividing streamline is
2
slope = —?. (2.33)

Hence the relationship between shearing parameter ¥ and impinging angle over an oscillating

plate is
2
o = tan”! (,) . (2.34)
Y
For oscillating free stream:
L 2 i ( 2) 2 i
=xy+-yy —€e" =0, = y={ —- | x+ —€e", (2.35)
14 2?‘3’ Y Y

The slope of dividing streamline in case of oscillating free stream is { -2/7) where (2e¢” /7)

represents the yv—intercept. So the relation between  and ¥ is same as given in Eq. (2.34).

2.2 Keller box scheme

The numerical solution of nonlinear partial differential Eqs. (2.20)—(2.24) with boundary
conditions (2.25) and (2.26) is found by implementing an implicit finite difference scheme
named as Keller box method having second order accuracy. This numerical method is highly
accurate and rapid convergent. The details of the method is well explained by Cebeci and
Bradshaw [77] and Keller and Cebeci [78]. For implementation of this numerical scheme, we
first convert the higher order differential equations into the system of first order differential
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equations. For this purpose, new dependent variables U(y), V(y}. P(>.r}. @(».¢) and R(y,1)
are introduced. So the equation for oscillating plate i.e Eqs(2.20, 2.21, 2.24) with boundary

conditions (2,25} in the form of first order differential equations can be represented as

Thus Eqs. (2.20) and (2.21) reduces to the following form
VAV U2-MU-1)+1=0,

R’+fR—UP—B*§—f—M(P—)cv)=U,
Energy equation:
8'=0
! 30
o +fQ*§ 3 =V

and boundary conditions (2.25) become

f=g=0U=0,P=¢e".0=1at y=0,1>0,

U=1,R=y.80=0 as y 3001 >0,
The infinite domain [0, =) is truncated 1o [0, L] where L is taken as sufficiently large. This

truncated region is discritized into small rectangular elements on the (3, ) plane and net points

are denoted as
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yW=0y'=y""4Ay, n=1,23 N

to=0.4;=1; | +A, j=123..M

Here n and j are positive integers on the (y, ) plane Ay and Ar are the widths of meshing
variables, The approximate quantities of £(y), U(v}, V(¥). g[nt), P(3.1). @(y,1) and R(y,1) at
the net points (y,. t;) are called net functions. The derivatives in y and ¢-directions are replaced

by the central difference formulae like:

- " n— J L n f
SO0 =L (0= 07) 5 08 = 4 (0505

and the values of the functions are replaced by its mean value as

07 = {00+ 0571, 031 = 5 (03400

For handling the non-linearity of resulting algebraic equations, Newton's linearization process

is performed. For (i 4 1}th iterations the unknown functions are written as
L =AUl = Ui sUL VI = V4 8V
g = gi+8g), Pl =PI+ 8B RITN - R 1 R,
;"' = 6]+ 80;, 0" = 0 + 80}

X " . I3 - . - +
After linearization, obtained system of linear algebraic equations is solved by using tri-diagonal

block elimination method. Similar procedure can be adopted for the equation of flow and heat

transfer due to oscillating free stream.
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2.3 Results and Discussion

2.3.1 For oscillating plate

For the case of oscillating plate, system of differential equations (2.20), (2.21) and (2.24)
subject to the boundary conditions (2.25) is solved numerically, first for the steady case i.e.
for ¢ = 0 by using Keller-box method and we proceed for r =n/4, x/2 and 7t by assuming the
solution at ¢ == 0 as an initial guess. The step size A y in y and the ¢dge of the boundary layer ye
is adjusted for different values of the parameters like M. Pr, and ¥ to maintain accuracy of the
results. The step size Ay =0.01 and Ar = /36 are kept fixed for the present numerical study.
To cnsure the accuracy of our obtained results, a comparison of the values of /7(0) against M
is made with that of Ariel |79] and Grosan et al. [48] in Table 2.1. It shows that the obtained
results are accurate and are in good agreement \:vith that of previous studies. The results
for velocity and temperature profiles have been discussed through graphs. Fig. 2.2 shows the
behavior of stream function y(x,y) for two different values of the magnetic parameter M when
y=1.8=2.¢ =1 and Pr=0.7 against x, Fig. 2.2(a-d) illustrate the streamlines for 7 =0, /4, /2
and 7 respectively. The dash lines represent streamlines in the absence of magnetic field i.e.
M=0 [76] and the solid lines show the streamlines in the presence of magnetic field when M=2.
It is observed that the application of magnetic field helps to translate the stagnation peint. It
is also noted that the streamlines come closer to the plate and the boundary layer thickness
reduces which indicates the increase in the velocity occur due (o the presence of magnetic
field. The Fig. 2.3 (a-d) represent the velocity profiles for the values of #=0, n/4, /2 and 7
respectively. It is seen that the velocity increase's‘-'with the increase in the value of M. It has
also been noticed that the velocity at the wall oscillates between -1 to 1 for different values of

1. Fig. 2.4 shows the velocity profile u(x,y) for various values of the constant shear parameter

29



y when x=1,M=0, $*=2 ¢ =1 and Pr=0.7. Fig. 2.4 (a-d) show the velocity profiles for 1 =0,
n/4, n/ and 7 respectively. An increase in the velocity u has been observed by increasing the
value of . An oscillation in the velocity at the wall from -1 to 1 has been observed. Fig.2.5
shows the temperature profile € (y, ¢) for various values of the magnetic parameter M=0, 1,2, 5
whent — 0,y =2,8" =2,6 = 1 and Pr=0.7. 1t is observed that an increase in the value of
magnetic parameter M decreases the thickness of the thermal boundary layer. Fig. 2.6 shows
the temperature profile 8(y,¢) for different values of the Prats =0,y=2,8* =2, = 1. The
dashed lines are for magnetic parameter M=0 and solid lines for magnetic parameter M=2.
The increase in the value of Prandtl number reduces the thermal boundary layer thickness. It

is also observed thal there is no effect of unsteadiness on the temperature.,

2.3.2 For oscillating free stream

For the case of oscillating free stream. system of differential equations (2.22), (2.23) subject to
the boundary conditions (2.26} is solved numericaily by using Keller-box method as described
above. Fig. 2.7(a-d) shows the stream function l,t;.(j"c, v} for two different values of the magnetic
parameter M at y =2, B* = 2, & = 1 and Pr = 0.7 where ¢ =0, n/4, /2 and 7 respectively.
The dash lines represent streamlines in the absence of magnetic field i.e. M = 0 and the sohd
lines show the streamlines in the presence of magnetic field i.e. M = 2. Tt is observed that at
different time steps, the location of stagnation point can be made closer to the reference point
and the streamlines become closer to the wall by applying magnetic field. Also it reduces the
boundary layer thickness. Fig. 2.8(a-d) represents the steam lines for £ = 0 (the dashed lines)
and € = 2 (the solid lines) where y = 1, 8* = 2, Pr=0.7 and M = 2 at 1 =0, #/4, n/2 and

m are fixed respectively. It is seen that the stagnation point oscillates between 1.5 and —2.5

with —0.5 as its mean value at different time stel?s, The Fig. 2.9(a-d) show the variation of
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non-dimensional velocity profiles #{x = 1, y} for different values of M = 0,0.5, 1, 2 where
y=1 B"=2.€=1andPr=0.7. Itis noted that there is a slight increase in the velocity with
the increase in values of magnetic field at the different time steps r =0, #/4, 7/2 and x. In Fig.
2.10{a-d), vanation of the non-dimensional velocity u#(x = 1, y) for different values of £ =0, 1,
2, 5where y— 1, 8 = 2, M — 2 and Pr = 0.7 has been illustrated at the different time steps
t =0, /4, n/2 and 7 respectively. For r = 0 and n/4, increase in € results in decrease of the
velocity u(x, y} while for¢ = n/2 and #, the velocity u(x = 1, y) increases with increase in the
value of €. Fig. 2.11 shows the value of skin friction coefficient against f for different values of
£ whileM =2,y=2,8" =2 and x = 1. It is noted that the amplitude of oscillation in values
of the skin friction coefficient increases with increase in €. Fig. 2.12 illustrate the behavior
of the skin friction coefficient for different values of y against t when M = 2 x=1,8* =2
and € =1. It is observed that with an increase in values of the ¥, the values of skin friction
coefficient increases bul oscillates with the same amplitude. Fig. 2.13 expresses the trend of
the skin friction coefficient for different values of magnetic parameter M against the values of
rwheny—2.x=1,8" =2 and £ =1. With increase in values of M, periodic increase in the
skin [riction coefficient has been observed. It is also noted that amplitude of oscillation of the

w't

skin friction cocfficient increases by increasing M.

Table 2.1: Comparison of the variation of f”(0) for the different values of M with the results

obtained by Ariel [79] and Grosan et al. [48], when ¥y =0, B* =0, £ =0,

M Anel [79] Grosan et al. [48]  Present study

0.0 1.232588 1.232588 1.232597
0.16 1.295368 1.295368 1.295377
0.64 1467976 1.467976 1.467987

1.00  1.58533] 1.585331 1.585342
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Figure 2.2: Streamlines for (a)r = 0.0, (b)f =n/4, (c) 1 = x/2 and (d} 1 = T withM =0

(dashed lines) and M = 2 (solid lines) while y =1, B* =2, € = l and Pr = 0.7.

fa}

-+

[

win=4, v 1l

M0 125

=fwn

urx=/J, v, t}

Hx

Figure 2.3: Velocity profile « for different values of M whilex = 1, y=1,*=2,€=1and

Pr=07at(@ =00, byt =n/4.(c)t=n/2and (d)t = 7.
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Figure 2.5: The temperature profile 8(y, ¢} for different values of M at/ = 0.
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Figure 2.7: Streamlines for (a) ¢+ = 0.0, (b) ¢ — z/4. ()t =7/2 and (d) r = T with M = 0

(dashed lines) and M = 2 (solid lines) while y = 2,8 =2, e = 1l and Pr=0.7.
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Figure 2.8: Streamlines for (a) ¢ = 0.0, (b} t = n/4, (¢} 1 = /2 and (d) t = with £ =10

(dashed lines) and £ = 2 (solid lines) while y=1, §* =2, M =2 and Pr=0.7.
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Figure 2.9: The velocity profile u for different values of M while x = 1,y =1,e=1,§"=2

and Pr=0.7 at{a)r = 0.0, (b) 1 = n/4. ()t =x/2 and {(d) r = ~.
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Figure 2.11: Skin friction coefficient for different values of £ atx — 1.
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2.4 Conclusions

Unsteady MHD oblique stagnation point flow of laminar, incompressible flow of an electri-
cally conducting viscous fluid due to an oscillating flat plate and an oscillating free stream is
presented in this chapter. The governing boundary layer equations are transformed in dimen-
sionless form. The obtained partial differential equations are highly nonlinear and its difficult
to present their exact solution. To overcome this situation. a finite difference scheme namely
the Keller-box method is employed. The effects of magnetic field on the flow and heat transfer,
for both cases of oscillating plate and oscillating free stream are shown through several graphs

of stream functions, velocity and temperature, The present investigation helps to conclude that

Application of magnetic field increases the velocity ot the fluid but reduces the momen-
tum and thermal boundary layer thicknesses in the stagnation point region for both cases

of oscillating plate and oscillating free stream.

Temperature of the fluid decreases by increase the magnetic parameter M.

IR

Magnetic field helps to increases the skin friction coefficient.

With increase of obliqueness parameter, the skin friction coefficient can be increased.
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Chapter 3

Study of non-Newtonian Maxwell fluid
flow in the region of oblique stagnation

point over a stretching sheet

In this chapter, a numerical study is carried out for the steady two-dimensional flow of an in-
compressible Maxwell fluid in the region of oblique stagnation point over a siretching sheet.
The governing equations are transformed to dimensionless boundary layer equations. After
some manipulation, a system of ordinary differential equations is obtained and is solved by
using parallel shooting method. A comparison with the previous studies validates the accu-
racy of our results and analysis. The effects of involving parameters are discussed in detail
and the streamlines are drawn to predict the Row pattern of the fluid. It is observed that in-
creasing velocities ratio parameter (ratio of straining to stretching velocity) helps to decrease
the boundary layer thickness. Furthermore, the velocity of fluid increases by increasing the

obliqueness parameter.
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The appropriate boundary conditions for oblique stagnation point flow over a stretching sheet

are {see re. [81I])

(3.3
F(EF) = Ue(%,5) = ai+ b7, v=—(aF+A) asj— oo,

where a. b and ¢ are positive constants of dimension [1/T] and A is the constant that accounts
the boundary layer displacement whose dimension is [L/T). From the point of view of the
boundary layer, the cuter edge of the boundary layer {of thickness &) is far from the surface.
Therefore, the boundary condition for the velocity at the edge of the boundary layer is written
as limy - oo (%, ¥} = U.(%,¥), so for the larger value of y(7 — =) i.e. at the edge of boundary

layer, we get (see ref. [80, 82, 83)) the following

1dp ll H?p 82,6 ou ap Jadp Py

poE p (”axz v 359y dxoxr dJyay =a'f-bA (3.4)
and

10p A (3% z *p  dvdp dvap\ .

3% 5 U5 55 e ) @A 09

Egs. (3.1) and (3.2) thus give

i oa P o 0 3%
Hb—x"'v—a‘; ax bA*l"V(a 2'I'a ) )L| ( 8y2 + 247 axay a_z)s (36)

av _ov - % 9y »9%p 3% , 3%
a5 i 1a§—a(a} IA)+v(6f" F 35”) - A (v -8—; 1—2::18 aVJru % 2) 3.7

Incorporting the usual boundary layer assumptions (also see [80,82,83]) where i, ¥ and A, are
of order 1, ¥ and v are of order & and order of v is 82, where § represents the boundary layer

thickness which is very small as compared to the length of sheet, we get

da 9, . 3% L, 3% 2% _282
ua—j+va—’$+ax—bz4+ Vé)_j_;tl'(v a—-—-a 2. a(a\. a 2) (3-8)
Now using the following transformation proposed by Labropulu [81]
x=% <, y=5y/ 2 | L ; (3.9)
= 1 = ) U= —— 1 v = [ .
v TN Y ve! \/WV



Eq. (3.8) with boundary conditions will take the following dimensionless form

du  du yay? u 50%u % 3%
uy +v—$—(;) X YA+9y2 ﬁ(\ ) +2uva 5 +u 3 2) (3.10}
u=x,v=_0 aty=10,
. (3.11)
a a
u———Ex+Ey,v:—~(Ey+A) asy —+os,

where § = Ajc is the dimensionless number called Deborah number, which describes the
fluidity of materials, ¥ = b/c is the dimensionless constant characterizing the obliqueness of
oncoming flow, A = A/\/Ve is the dimensionless constant which accounts the boundary layer
displacement (shown in Fig. 3.8), and a/c is the ratio of the straining to stretching velocity.
Now using the stream function ¥ such that » = dy/dy, v = —dy/dx, the above equation
can be expressed in the form of stream function as

v [ty Ay [Py dy\‘ 'y 3y dy dy v\’ 3y

5 (535) 50 (5%) 0 (( ax) w25 aart (3) m)

=X (;)2 —ATE %'
(3.12)

and the dimensionless boundary conditions in term of stream function can be written as
Y

w:O.%—“{zx ary=0,
; ; (3.13)
y_4¢ v _a4, ' — oo
ay_cx+‘,lf}', ax—c}+A asy — oo,

In order to solve the Eq. (3.12) subject to the boundary conditions (3.13). we suppose the

solution of is of the form
v xf(v) Fa(y), (3.14)

where functions f(y) and g(y) are normal and oblique components of the flow. Incorporating

Eq. (3.14) into Egs. (3.12) and (3.13) one gets the following equations with the boundary
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conditions

‘W xS+ ) - FO) (f ) +2") +

2 H? i
(f(y) (x/" () + 8" () ~2F ()" (xf’(y}+g’(y)))=x(g) - Ar+50)+£"0),
(3.15)
f0)=0. f)=1 80 =g0»=0 ary=0,
(3.16)

fly )-—HA f)= o L gy =1 asyoe,

where for the large values of y (at the edge of boundary layer i.e.y — o) f(y} = (afc)y + A,
which means that solution of f(y) is the linear function of y. In Eq. (3.16) the boundary
condition f'(v) = af/c is the derivative of f(y) = (ﬁfc)y+A which are identically same so we
use only one of them to compute the solution. Comparing the like powers of x in Eq. (3.15)

and selecting the boundary conditions, we get the following equations
g1 =) () B s - ) =0, 617
g +re"—fg+BQfI"e - 2") = Ay (3.18)
and boundary conditions are (see ref. [81])
f(0) =0, £ =1, fl=) =" (3.19)

g(0) =g'(0)=0 g'(=) =7, (3.20)

where the prime denotes the derivative w.t.t y. For simplicity introducing a new variable

g'(v) = Yh{y), Eq. (3.18) with boundary condition (3.20) can be written as

W't - R B2f1"h - f2H7) = A, (3.21)

h(0) =0 K (e} =1. (3.22)

For 8 =0, we get the Newtonian fluid case and equations (3.17) and (3.19} reduce to equations
(3.4) and (3.5) as reported by Mahapatra and Gupta [24]. Dimensionless components of the
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velocity are

N oy s !
o= o xf (¥)+g), (3.23)
d
v = — % - —f0). (3.24)

In Fig. 3.1, the dividing stream line making angle @ with the stretching sheet. The slope of
dividing stream line can be found by setting ¥ = 0 as was reported in reference [34]

=2 +l -0, = —(—-@-)r
w_cxy 2 M y= ?C *r

which gives
2a

] o - ==
slope - m ”

So the relationship of impinging angle & and shearing parameter y can be written as
—i Za
o =tan -——
¥c

3.2 Parallel shooting scheme

In order to solve nonlinear equations (3.17) and (3.21), subject to the boundary conditions
(3.19) and (3.22) for different values of involving parameters, parallel shooting method [84] is
used. To find the solution of complex rheological models different techniques are proposed as
mentioned in the introduction. The main problem with these methods while discretizing the
differential equations into system of algebraic equations and take much time when one increase
range and number of steps to achieve the desired accuracy. Simple shooting method is also
very useful to achieve the accurate solution in less time but for certain non-linear problems,
the method is found much dependent upon initial guess. To cope the sitvation, the method
of parallel shooting is introduced and is very efficient, less time consuming, stable and rapid
convergent, The method is described in the following steps
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Step-I: Equations (3.17) and (3.21), are reduced in the system of first order differential equations
by letting f = fiand h = f4

a

fi=ph. Hh=Hfi= (—fifs+f22—25f|f2f3*(z)u)q

!
1-Bf}

fa=ff5= —1“5 (—fifs+2fa—2Bf1f3/4+A).
]_ﬁfl

Step-II: To apply the boundary conditions, the physical domain [0, o] is truncated to finite do-

main [0, L]. where L is chosen sufficiently large
a
f{0) =0, £(0) =1, f2{L)= Eaf4(0) =0 f5{L) =1,
Step-III: The domain [0, L] is divided into n subintervals,

[0|)’]], [)’ls )’2]1 vz, )’3] S | A yn=1].

For convergence of solution, n can be increased sufficiently.

Step-IV: The problem is solved over cach subinterval such that it satisfies the boundary condi-

tions.

Step-V: A suitable guess is supplied to integrate the problem. The solution obtained for the

previous interval is considered as an initial guess for the next interval.

Algorithm is developed in MATLAB R2010a.

3.3 Results and discussion

Equations (3.17) and (3.21), subject to the boundary conditions (3.19) and (3.22) have been
solved numerically for different values of pertinent parameters 8, a/c and ¥ using the parallel

shooting method as described in previous scheme. To show the efficiency and accuracy of our

45



results, the comparison of numerical values of f7(0). X'(0) is presented for both Newtonian
and Maxwell fluids in Table 3.1. It is found that the results are in good agreement with the pre-
vious study given in ref. [80]. From the table, it is found that the values of f”(0) are increasing
with increase in values of a/c, for both Newtonian and non-Newtonian fluids. However, the
values of #' (D) increases up to a certain value then start decreasing. The results shown in Table
3.2 are in good agreement with those reported by Labropulu et al. [81]. In Table 3.3, the values
of y,,(0) and A are presented for the different values of pertinent parameters. Fig. 3.2{a-d)
demonstrates the variation of the horizontal velocity 1 for different values of velocities ratio
parameter a/c when x =/, = 0.2 with y= 0. 0.5, 1.0, 5.0. It can be seen from the figures
that the velocity increases continuously with increase in values of y. Fig. 3.2(a) illustrate the
orthogonal flow (¥ — 0} and Fig. 3.2(b-d} show the results for the non-orthogonal stagnation
point flow. From the figures, it can be observed that there are two boundary layer structures
appearing near the surface depending upon the ratio of straining and stretching velocities. The
figures depict that when a/c >/, the flow has normal boundary layer structure and when a/c </
the flow has inveried boundary layer structure which is same as rcported by Mahapatra and
Gupta [24]. Tt is also noted that the thickness of the boundary layer decreases with increase in
values of a/c. Physically, it represents that when ‘rl;he stretching velocity cx is greater than the
straning velocity ax i.e a/c< I, the inveried boundary layer exits near the surface, which sug-
gest that as the stretching velocity i.e cx decreases the boundary layer thickness increases. On
the other hand, when the straining velocity ax is greater than stretching velocity cx, i.e. a/c>/,
the acceleration of free stream velocity increases, which leads to thinning of the boundary
layer with increase in value of a/. It can also be scen from the Fig, 3.2(a-d) that the veloc-
ity of the fluid increases with increase of constant shear parameter y. There is no boundary

layer formed when straining and stretching velocities are equal. The same behavior has been
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observed for both orthogonal (y = 0) and oblique (y # () stagnation point flows. Physically it
means that viscous effects vanish near the wall, when both velocities are equal. Figs. 3.3 and
3.4(a, b) depicts the behavior of the fluid flow for different values of § in orthogonal (y = 0)
and oblique (y # 0) stagnation point flow, respectively. Two different behaviors have been
observed from the figures in case of boundary layer and inverted boundary layer structures
(as described above). In Fig. 3.3 bunch of curves are drawn for the different values of § and
afc. I afe< ! (inverted boundary layer case), the velocity decreases and boundary layer be-
comes thinner with the increase of Deborah number 8. On the other hand, when a/c>/, the
velocity increases with the increase of Deborah number B but the boundary layer thickness
decreases. Fig. 3.4 also shows that the velocity in the region of non-erthogonal stagnation
point is greater than the velocity in the case of orthogonal stagnation point. Figs. 3.5, 3.6
and 3.7 show the streamlines for the flow pattern of the oblique stagnation point flows (y # 0)
for different values of 8, a/c and y. Both cases i.e. ¥ > 0 and y < 0 are considered for the
analysis. The increase in constant shear parameter |y} results in more obliqueness toward the
left of the orthogonal stagnation point. Figs. 3.5 and 3.6 show that as the value of [y| increases,
the shearing motion of the fluid increases in the region of stagnation point. Fig. 3.7 reveals
that with the increase in stretching velocity the streamlines are tilted more towards left but the
streamlines less tilted towards left due to an increase in straining velocity. For large values of
a/c, the streamlines behaves same as in case of the orthogonal stagnation point flow. In Fig.
3.8. values of fiy) are plotted as solid curves against y for different values of a/c and dashed
lines represent the position of the boundary layer which are the tangents to f{y) at point where
the curves become linear, Dots on y-axis repres;,m‘s the value of A, which is the intersection of

dotted lines and the y-axis.



Table 3.1: The Numerical values of £7{0) . #'(0) and A for the different values of § and a/c.

a’c

0.01
0.02
0.05
0.10
0.20
0.50
1.00
2.00
3.00
5.00
10.00

Maxwell fluid (8=0.2)

Newtonian fluid (8=0)

4.7294
11.7537

H{0)

70 A
Ref. [80) (A; =0) present  Ref. [80] (A, = 0} Present

-0.99802 -1.0499 -1.05009 -0.51368 0.89077
-0.99579 -1.0476 -1.04778  -0.24667 0.86890
-0.98758 -1.0393 -1.03939  0.07239  0.80807
-0.96939 -1.0207 -1.02082 0.28154 0.71976
-091811 -0.9681 -0.96823 049218 0.57730
.66726 -0.7078 -0.70779  0.79610  0.28885
0.00000 0.0000 0.00000 1 0.00000
201749 2.2225 2.22314 1.09213  -0.32603
4.72924 5.3544 5.35217 0.78434 -0.52063
11.75190 14.0144 14.00169 -2.0464% -0.75564
36.25704 48.4866 48335404 -2.34185

36.2639

-1.03301

Table 3.2: Values of (0}, #'(0) and A for the different values of a/c, for Newtonian fluid

(B =0)

£'(0) () A

a/c Ref [81] present Ref [81] present Ref [8]] present
01 096938 096939 026278 026338 0.79170 0.79170
03 -0.84942 -0.84942 0.60573 0.60633 0.51949 0.51950
08 -029938 -0.29939 0.93430 093473 0.11452 0.11453
I 0 0 i 1 0 0

2 201750 201749 1.16489 1.16521 -0.41040 -0.41041
3472928  4.72924  1.23438  1.23464 -0.69305 -0.69305
4 -0.91650

8.00042

8.00036 1.27

48
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Table 3.3: Values of y,,(0) and A for the different values of 8, a/c and 7 for fixed x = .

B ale vy W{v(o) = xf"(0) + yH' (0) A

0 0 0 -1.0000 1.0000
0 01 0 -0.9694 0.7917
0 05 0 -0.6673 0.3286
0 1 0 0.0000 0.0000
0 2 0 2.0175 0.4104
01 0 | -3.4390 0.9575
0.1 0.1 ! -0.7158 0.7536
0.1 05 I 0.1022 0.3070
01 I 1 1.0000 0.0000
01 2 3.2709 -0.3609
02 0 2 -5,8241 0.9196
02 0.1 2 04364 0.7199
02 05 2 0.8812 0.2889
02 1 2 2.0000 0.0000

02 2 2 22232 -0.3252
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Figure 3.2: Variation in velocity « along y, for different values of a/c and (a) ¥ = 0.5 (b)
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Figure 3.3: Variation in velocity u along y, for the different values of 8, when afc =

0.1,0.4,2.0 and y = 0 (orthogonal flow).
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Figure 3.4: Variation in velocity « along y, for the different values of . when (a) a/c = 0.2
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51



(@) w=105010-01 ~05 -]
!’
0.8
¥ =100
= 06} alc=03
8 =02
0.4}
02k
0 — - .
-15 -10 -5 0 5 0 is
X
{a)
y=105010-01-05-1 (b)
! L
08t
¥ =-100
E L alc =03
06 e
04t
0.2
| et .
~15 -10 -5 0 5 10 Is
X
(L))

Figure 3.5; Streamlines for oblique flow, when 8 = 0.2, a/c = 0.5 and (a) ¥ = 10(b) ¥ = —10.
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Figure 3.6: Streamlines for oblique flow. when § = 0.2, a/c = 0.5 and (a) ¥ = 30(b) = —30.
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Figure 3.7: Streamlines for oblique flow, when B =0.1 and y= 5 for a/c = 0.8,5.0.
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Figure 3.8: Graph of boundary layer displacement for different values of a/c
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3.4 Conclusions

Numerical solution of non-Newtonian Maxwell fluid in the region of oblique stagnation point
flow over a stretching sheet is presented in this article. After using the boundary layer approx-
imation the governing equation are transformed te dimensionless form by means of some use-
ful transformations. The obtained system of equations is solved numerically through parallel
shooting method. The effects of velocity ratio parameter a/c, Deborah number and obliqueness

parameter are shown through graphs. The present investigation helps to conclude that

¢ With the increase in value of velocities ratio parameter a/c (the ratio of straining and

stretching velocity}, thickness of the boundary layer decreases.

¢ The boundary layer vanishes when a/c = 1.

o In the case of obligue stagnation point flow for large values of a/c, the streamlines look

like those in the case of orthogonal stagnation point flow.

« The velocity of the fluid increases with increase in values of shearing parameter .

e Ifa/c < 1 (inverted boundary layer case), the velocity decreases and the boundary layer

thickness reduces the increase in Deborah number 8.

e If a/c > 1, the velocity increases with the increase in Deborah number 3. However. the

boundary layer thickness decreases.

55



Chapter 4

Study of viscoelastic fluid flow in the
region of oblique stagnation point through

a porous medium with radiation

This chapter addresses the non-linear radiation effect on the two-dimensional oblique stagna-
tion point flow through a porous medium. Constitutive equations of viscoelastic second grade
fluid are employed in the mathematical development of the relevant problem. The resulting
nonlinear system is solved using Chebyshev Spectral Newton Iterative Scheme (CSNIS). A
comparative study of the present results with that of previous studies have been presented in
the tables. Excellent agreement shows that the used numerical scheme is stable and the results
are highly accurate. Impact of sundry variables on the quantities of interest are discussed. It
is observed that shearing parameter ¥ helps to increase the fluid velocity. Thermal boundary
layer thickness can be controlled due to small value of radiation parameter and surface heating
parameter. It is also noted that with an increase in value of porosity parameter X, the velocity

increases but the momentum boundary layer thickness decreases in the region of stagnation
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point. Moreover, the streamlines are plotted to predict the flow pattern,
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Figure 4.1: Physical Model of the problem

4.1 Problem formulation

Consider the steady, two dimensional, incompressible Darcy flow of a second grade fluid near

the oblique stagnation point over an impermeable surface. The surface is placed at § = 0, and

the porous medium occupies in the region 7 > 0. It is assumed that the fluid is transparent

to the radiation so the radiation term will only appear in energy equation of solid phase [85].

Thus the governing equations are

Energy equation for solid phase:

vv=0, 4.1

av _ H
par=Vr i —V, (4.2)
(1-¢)V.(5VT}-V.q,=0, (4.3)
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Energy equation for fluid phase:
oV.(k;VT;) -pcpV.VT; =0, “4.4)

where T is temperature of fluid, T, is temperature of solid. k| is Darcy permeability parameter,
d /dt is material derivative, &; is the thermal conductivity of solid, & 7 is the thermal conductiv-
ity of fluid, ¢, is specific heat at constant pressure, (1 — ¢) is the ratio of area covered by solid
to the total covered area of the medium and g, is radiative heat flux. We assumed that the no
net heat transfer from solid to fluid or fluid to solid so the heat transfer in parallel from both
phases. For the simplification of Egs. (4.3) and (4.4), we assumed that there is local thermal

equilibrium i.e. 7r =7; =T, so by adding Eqs. (4.3) and (4.4), we get
PCV.VT L ko VET -V .q, =0, 4.5)

where kgsr = (¢ks + (1 — 9) k) is the effective thermal conductivity for both fluid and porous

medium. Upon using the Rosseland approximation for radiation, one can obtain [87)

y F— N v o (4.6)

where @, 05 and o, arc the Rosseland mean absorption coefficient, Stefan-Boltzmann con-
stant and the scattering coefficient respectively. The rheological equation of second grade fluid
can be expressed as

t=-l+pA+ Az +az (A2, 4.7

where p is the pressure, i is the dynamic viscosity of the fluid, &; and & are normal stress
moduli and the tensors A and A are the first and second Rivlin-Eriksen tensors which can be

calculated as

A = (VV)+ (V)™ (4.8)
A; = .‘%' 1AL (TV) + (DY) A, (4.9)

w
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where d/d¢ is defined as

d(e) _ 3 .
=Sl Vv (). (4.10)

The thermodynamic constraints for the fluid model (Eq. (4.7)) are compatible with Clausius-
Duhem inequality and it is assumed that the free energy density of the fluid be locally at rest

are

HW>20,02>20 040 =0 (4.11}

If &y = ap =0, then Eq. (4.7) reduces to Cauchy stress tensor for a Newtonian fluid. The

governing equations in component form are

did  av

ﬁ*j}*o' 4.12)

- d ~ 3 v, di
d (“avﬁ"a) (Jx* a;) * o 3 (8&)2 ( v 85)2 v
- +‘—'——_ 4 -z + —+'-: — T H,
Y| L 2a2a . ~ovov p o3 ox ox oy ki
55t 2uns
4.13)
a oF 13p (92-.7 82\7) o | o | 285 +259
U F Voo = ——— + =t |t — 4 = +
X ¥ p a}' ar? ay2 P o (L? a b 8) (&L L 8u)
a7tV o T oy
2 : ' ’ (4.14)
g fav | i 3V 2
d 23?(5}+9¥)+4(}Tf) +C_¥2§ 4( \?)“+(31'+3‘)2J v,
Iy ] . ay % 3y Tk
¥ 2‘7%% Y i,‘ p oy ¥ X ¥ 1
oT oT 1 160557 -
I 4 Ve = — Vo | [kt 29T}, 4,
“ox +v9)‘: pcp ([ +3(a,+crs)} ) .15

where & and 7 are the velocity components in ¥ and j directions respectively, p(%,7) is the
pressure function of the fluid and v is the kinematic viscosity. Here the fluid flow is considered
as potential flow, in which the flow is impinging obliquely to the Hat plate and far away from

the plate the fluid is moving with velocity U, (%,¥) = ax+ &7, The boundary conditions for the
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present fluid flow are given by

§=0 : a=0,v=0T=T,,
(4.16)

where a, b are the constant having positive values with dimension inverse of time. T is the

ambient temperature of the fluid away from the surface and 7, is the surface temperature.

Introducing following non-dimensional variables

_ a - ia o 1 - o l - _ l _ _T'_To-o
,\—x\/;,y—y\/:‘u—\/v_au,v—ﬁavapﬁme,T—Tw_Tms (4.17)

into equations (4.12)—(4.16), we obtained the following dimensionless form

du Jdv
e 0, (4.18)
2 2 y] L N N
u%+va—“:—££+ 81.:+81: + We —8— ac 9xds +
3.1‘ ay aX a'.l’" ay" ax u 2 v { dv Au
4(3) +28:(%+ %)
(4.19)
Pl d dv |, @
J (“a;*";w) (a+af'$)+ o |, (N [ov | .,
3y ) ety | TR
Y 25u6u+26‘\'3v x x x y
Irdy T4y
2 2 zau atf+23\'all'+
u@+v@-:—-—@+(a—£+-a—~: + We 9| FaovT oy +
ox  dy dy axt  dy? dx ) a\{ov  du
3 ) (4.20)
dufav, @8 .
d 29,% (9&"‘9_:) +4(§';?) J v\ 2 Iy du\?’ 2
5= b A (4 =) ot ) | K
dy 2, 3t dy dy dx dy
aT T 1 [ 1605573 (1 4 (8, — 1) TY
— tv - =V 1 = 2| VT .
r h dy Pr ( + 3k(at, +0y) r 4:21)
The boundary conditions become
y=0 u=0, v=0T=1,
4.22)

b
¥y —0a u=x+-y, T =0,
a
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where We == ¢ ja/ it is Weissenberg number. K2 = v /ak) is the porosity parameter, 8, = T, /T
is surface heating parameter, A = 0za/p and Pr = gc,/k is the Prandtl number. Introducing

the stream function y which satisfies the continuity condition such that

ay _dy
4,
3y Fr (4.23)

By eliminating pressure terms from Eqgs. (4.19, 4.20) by using p,, = p.. and then using Eq.

{4.23). Eqgs. (4.19—4.22) take the following form

a_l;fy_u{_?_wﬂ"_é_l}{a“ly _ﬂ Iy 'y 84w ) Iy + K2 Iy y_w)
dy dx3  dx 3y} dydxdh? odx dxldy It Y Il

dwdly dy Iy _dy Fy dy Py Ay Py dydy\
+We (EGW ‘?;“axayfl i Ix23y3 T dy dx3ay? +§afay ‘a_yﬁ) =0
4.24)
dydT JyaT | 1605sT2 (1 + (6, = DT | __.
dy dx  Ix Iy PrV. ( I+ Ik{a, + o) Vi) (4.25)

The dimensionless boundary conditions in terms of stream function y take the following form

J
y=0 .  y=0, a—"’:o. T=1.
y (4.26)
y—>o00: ty=xy+;2, T =0,

where ¥ = b/a is non-dimensional constant characterizing the obliqueness of incoming flow.
Suppose the solution of Egs. (4.24, 4.25) subject (0 the boundary conditions (4.26) is of the
form

v=xf(y)+g(y), T=8(y), (4.27)

where f{y) and g(y)} are the functions representing normal and obligue flow components. Us-

ing the Eq. (4.27) in Eqs. (4.24—4.26) and comparing the coefficient of x” and x!, we get

fiv +ffm_ f.'fﬂ - We (ff-,»__fffr'v) _ Kzfu =0, (4.28)
gr+ e - f - we(fg - g f™) -K%" =0, (4.29)
(% Hl +§Rd(l + (9w—'1)9)3}e’] +Pr o' =0, (4.30)
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subject to boundary conditions

I

y=0 = fO)=0,f(n=0 g0 =¢g0)=0,0=1,

4.3
y—roo f=12d=r 0=0
where Rd = 4053 T2 /k{ @, + 6;), prime denotes the derivative with respect to y. Integrating

Egs. (4.28) and (4.29), and by employing boundary conditions (4.31) at infinity, we have

PP () - we (ff"'— 2f [ + (f”)z) ~K2(f —1)+1=0, (4.32)

g+ 18 —gf ~We(fe" — fg" +8"f"~ 1"8) K (¢ - 1) —AY=0, (433

where the constant A accounts the boundary layer displacement. [t arises when y — oo, f(v)
behaves as f{y) :- y + A. For simplicity introducing a new variable g'(y) — va({v), Eq. (4.33}

with boundary conditions can be writien as

W fH — fh—We(fh" — K+ B " — fh) — K*h=A - K%y, (4.34)

R(0)=0 h'(e) = 1. (4.35)

The values of f7{0), #'(0) and 8'(0) can be found from equations (4.30}, (4.32) and (4.34) with
boundary conditions (4.31) and (4.35) for different vatues of the parameter We, K, Rd and y.
We mentivn here that for Réd=0 and orthogonal stagnation point flow {y = 0} cquations (4.30)
and (4.32) reduce to equations (11) and (12) as reported by Attia [86]. The dimensionless

components of velocity can be obtain by using the relation of y given in Eq. (4.27)

d /
= a—‘f — ') + TR0, (4.36)
P
v= e = 100 @37
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The physical quantities of interest are wall shear srtess and local Nusselt number can be defined

as

7. = x{1+ 3We) [7{0) + (1 +2We) v (0). (4.38)

Re: ' *hu, = - (1 + ‘—;Rdes.) 0’ (0). (4.39)

The stagnation point occurs when the streamline = O meets the wall at x = x;. The values
of x; can be calculated at zero skin friction (7, = 0), which is

(1 +2We) p' (0)
(1+ 3We) £7(0)

(4.40}

I,;-Z—

4.2 Chebyshev Spectral Newton Iterative Scheme

In order to solve nonlinear equations (4.30), (4.32) and (4.34) with boundary conditions (4.31)
and (4.35) for different values of involving parameters, Chebyshev spectral Newton iterative

scheme (CSNIS) is used. For {i+ 1 )th iterates, we write
fin=fi+6f, (4.41)
and similarly for all other dependent variables. Using Eq. (4.41) in (4.32). we obtained
Co 81 +e1,8f +eaibfl +c1,8f +caibfi=Ri, i=123..N (4.42)
subject to boundary conditions
8£i(0) = —£(0), 8£0) = =f0). 8fi() =t - fi(e). (4.43)
The coefficients ¢;; (j =0,1,2,3,4) and R; are
con=—-Wefi. cj,=1 +2We}“;. ez, =1— ZWef,-".
cri= —2fl IWef — K2, cuy=f; —Wef, (4.44)
Ro=we (st 21087+ (1)) = = () 201 -1,
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Eq. (4.42) is now linear and is solved using the Chebyshev spectral collocation method [88-
90]. For this purpose, the physical domain {0, o] is truncated to [0, L], where L is chosen
sufficiently large. The reduced domain is trangformed to [—1. 1] by using transformation
E=2n/L —1. Nodes from —I 1o | are defined as &y=cos(mk/N), k=0, 1, 2, ... N, and are
known Gauss-Lobatto collocation points. Chebyshev spectral collocation method is based
on differentiation matrix D, which can be computed in different ways. Here we used D as

suggested by Trefethen [91]. For i=0, Egs. (4.41) and {4.42) become

Si = fo+61.
(4.45)
C{}.gaféu + C|,05f(;” ~+ Cz_oaf;; -+ Cg‘oaf;, + 4,00 fo = Ro,

Jo is used as an initial guess and we found 8 f; for first iteration. Similarly for i=/, (4.41) and

{4.42) become

fa=hH+8h.
' (4.46)
o181 +e118f) +e218f) +eaabfy +eardfi =R,
In which f) (=fo+ 8 fo) is known function and we found & f; for second iteration. We continue
this procedure until £, — f; = 0. As the equation (4.32} subjected to the boundary, condition
(4.31) has been solved and solution of f is obtained. Once the fis known, then equation (4.34)
becomes linear and it is solved by using the Chebyshev spectral collocation method, However,

the energy equation defined in Eq. (4.30) is still non-linear and it is solved in the same way as

proposed for Eq. (4.32). MATLAB R2010a is used to develop the algorithm.

4.3 Results and discussion
: S

Non-lincar ordinary differential equations (4.30), (4.32} and (4.34) with boundary conditions

(4.31) and (4.35) have been solved numerically against all physically important values of the
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parameters We (Weissenberg number), K (Porosity parameter) Rd (Radiation parameter) and y
(shearing flow parameter) by using the Chebyshev spectral Newton iterative scheme (CSNIS)
as described above, In Table 4.1, the comparison of numerical values of f” (0) has been made
with the results obtained by CSNIS and finite difference method for the different values of
We and K. It is seen from the Table 4.1 that the results obtained by CSNIS are in excellent
agreement with the results obtained by finite difference method. CPU time is also calculated
for both techniques and it is observed that CSNIS takes less time to achieve its desired results.
In table 4.2, the values of the skin friction coefficient (Re.'/’Cy) are presented to show the
validity and convergence of the results obtained by CSNIS. In this table it is observed that val-
wes of the skin friction coefficient (Re,'/2Cy) converge rapidly after only 3 iterations. Table
4.2 also clearly indicates that after performing small number of iterations, the present CSNIS
results made an excellent agreement with the results of Attia [86] and Li et al. [92]. Compar-
ison of the computed values of —6’(0) and f” (0) with Attia [86) is given in Tables 4.3—4.5
for various values of We, Pr and K when Rd=0 and y=0. It is found that the resulis are in
good agreement and hence accurate. However, small difference occurs quantitatively due to
variation in numerical technique. In Table 4.6, the values of /" (0), #'(0), A and Re, '/ 2Nu,-
are given for the various values of We and K when Pr=1, Rd=2 and 6,, = 1.5. From the table
it is found that the values of f”{0) are increasing with the increase in porosity parameter X
but with increasing the effects of Weissenberg number (We), the values of f” (Q) decrease.
It is also observed that the Weissenberg number (We) helps to reduce the heat transfer rate
where the porosity parameter (K) cnhances the heat transfer rate. Fig. 4.2(a-d) indicates the
influence of Weissenberg parameter We and obliqueness parameter ¥ on the velocity profile,
Fig. 4.2(a) represents the orthogonal stagnation point flow (¥ = 0} and Fig. 4.2(b-c) are drawn

for non-orthogonal stagnation point flow (y # 0). It can be seen from the Fig. 4.2(a-d) that

NS
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with the increase in values of We, the velocity of the fluid decreases and the boundary layer
thickness increases. Further, il is observed that with increase in value of ¥ the velocity of the
fluid increases as shown in Fig. 4.2(b-d). In Fig. 4.3(a-d) the variation of the velocity profile
1s shown against y for different value of X and y. Tt is observed that the velocity increases but
the boundary layer becomes thinner with the increase in value of K for orthogonal stagnation
point flow as shown in Fig. 4.3a. On the other hand, the velocity increases rapidly against y
for different values of K in oblique stagnation point flow (Fig. 4.3(b-d)). In Fig. 4.4, varia-
tion of the temperature is plotted against y for the different values of radiation parameter Rd.
The solid lines show the variation in case of non-linear radiation and the dashed lines show
the variation in case of linear radiation. It is observed that the temperature of the fluid en-
hances due to enhancement of the radiation. It is because of the reason that due to application
of radiation the surface become hot. From the figure, a rapid increase in the temperature is
also observed in the case of non-linear radiation as compared to the case of linear radiation.
This increase is due to an extra surface heating term, which enhance the remperature rapidly.
Where in linear radiation we ignored the surface heating effect. Temperature variation against
y for different value of surface heating parameter 6, is plotted in Fig. 4.5. The dotted line
is plotted for €, = 1 (linear radiation case) and solid lines are plotted for 8, = 1.3,1.5,1.7
{non-lin¢ar radiation case). With increase of surface heating parameter 6, the enhancement in
the temperature is observed. Figure 4.6 highlights the effects of viscoclastic parameter on tem-
perature profile. From this figure, it is observed that the temperature is an increasing function
of We. Itis due to the reason that with increase of viscoelasticity of the fluid, the heat transfer
rate decreases within the boundary layer, which enhances the temperature in stagnation point
region, This behavior also validates the results demonstrated in Fig. 4.9. Figure 4.7 depicts

the temperature variation for porosity parameter X. It is observed that temperature profile is
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decreasing function of K. It is because of the reason that higher heat transfer rate results in
cooling of the surface which is shown in Fig. 4.9. Variation of wail shear stress and heat
transfer rate is shown through Figs. 4.8 and 4.9 respectively. Wall shear stress is observed an
increasing function of viscoelastic parameter We and decreasing function of porosity parame-
ter K. Moreover, the heat transfer rate is observed an increasing function of K and decreasing
function of We. The variation of the local Nusselt number against X for the different values of
Rd is plotted in Fig. 4.10. The solid lines are drawn in case of non-linear radiation and dashed
lines are drawn 1n case of linear radiation. It is observed that hcat transfer rate increascs with
the enhancement of radiation effects. Moreover, by increasing the porosity parameter X the
enhancement in heat transfer rate is also observed. In Fig. 4.11, values of the local Nusselt
number are plotted against K for different values of Pr. 1t is observed that with increase of Pr
the heat transfer rate increases, which results in reduction of the temperature. In Fig 4.10 and
4.11 itis also observed that heat transfer rate increases in case of non-linear radiation as com-
pared to linear radiation. Figs. 4.12 and 4.13 are plotted for streamlines, where dots indicate
the position of stagnation peint. In Fig. 4.12, streamlines are plotted for the various values of
obliqueness parameter y. The effect of K on streamlines is shown in Fig. 4.13. Increase in
constant obliqueness parameter |y| and porosity parameter X helps (o translate the stagnation
point. It is also noted that the streamlines come closer io the plate and the boundary layer

thickness gets reduces, which indicates an increase in the velocity.
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Table 4.1: Variation of " (0) for different values of We and K.

We K Finite difference CPU time (sec)  CSNIS CPU time (sec)

0 o0
0.1
0.5

1

10
0.1
0.5

1

5 0
0.1
0.5

1

1.2325976
1.2366126
1.3294170
1.5853423
0.7527695
0.7556376
0.8215089
1.0000000
0.4128861
0.4146696
0.4553938

4.146076
6.599541
6.494227
4.829643
5.91393]
5.394916
5.833578
5.950510
13.02250
13.47708
11.623624

1.2325877
1.2366026
1.3294067
1.5853307
0.7527678
0.7556359
0.8215072
1.0000001
0.4128854
0.4146689
0.4553939
0.5640877

0461214
0.450157
0.369675
0.343862
0.425973
0.586347
0.547974
0.467803
0.466235
0.504567
0.398360
0.559593

0.5640846

10.154764

Table 4.2: Values of skin friction coefficient (Re,'/2C;) at different iterations

Attia [B6] —

1.2326

0.7528

Iterations § We =0 We =1

K=0 K=1 K=0 K=1
_ 1 25765664 2.7620723 0.88579430 2.9997276
2 12783484 1.6079020 0.75774750 1.6013812
3 1.2320404  1.5853840 0.75277610 1.0774925
Rel?C; — 4 12325877 1.5853307 0.75276780 1.000953]
5 12325877 1.5853307 0.75276780 1.0000002
6 12325877 1.5853307 0.75276780  1.0000001
7 12325877 1.5853307 0.75276780 1.0000001
8 12325877 1.5853307 0.75276780 1.0000001

Liet al_._[;2] — 1.23259 0.752763
1.5840 1.0000
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Table 4.3: Comparison of f”(0) for the various values of We and K. The results in small

brackets are reported by Attia [86].

0.5

1.5

We=0.5 We=10
0 1.232¢(1 2;5;6)_ 0.9025(0.9025) 0.7528(0.7528) 0.413;6-(0.4130) 0.3031(0.3031)
1.3294¢1.3283) 0.9810(0.9810) 0.8215(0.8213) 0.4554(0.4555) 0.3353(0.3355)
1 1.5853(1.5840) 1.1860(1.1860) 1.0000(1.0000) 0.5641(0.5641) 0.4180(0.4180)
1.9390(1.9374) 1.4658(1.4666) 1.2420(1.2420) 0.7092(0.7092) 0.5277(0.5277)
2 2.3467(2.3449) 1.5175(1.5175) 0.8728(0.8727) 0.6510(0.6509)

1.7855(1.7854)

Table 4.4: Comparison of —8'(0) for the different values of We and Pr when K =0.1,Rd =0.

The results in small brackets are reported by Attia [86].

| We Pr=0.05
0 0.161000.1667)
0.5 0.1546(0.1607)
1 0.1505(0.1569)
5  0.1354(0.1440)

10 0.12690.1377)

Pr=101

0.21 ‘;6(0. 2206)
(.2086(0.2098)
0.2019(0.2032)
0.1785(0.1806)

0.1661(0.1693)

Pr=0.5

Pr=1

Pr=2

_0.4336(0.4354)
0.4025(0.4041)
(.3849(0.3864)
0.3291(0.3304)
0.3021{0.3039)

0.5708(0.5739)
0.5258(0.5285)
0.5007(0.5033)
0.4238(0.4238)
0.3875(0.3899)

0.7442(0.7496)
0.6814(0.6861)
(.6470(0.6513)
0.5432(0.5464)
0.4952(0.4968)

Table 4.5; Comparison values of —8'(0) for the different values of K and Pr when We = 1.,

Rd = 0. The results in small brackets are reported by Attia [86).

K Pr=005

0 0.1504(0.1569)

0.5 0.1516(0.1580)
1 0.1543(0.1605)
1.5 0.1572(0.1632)
2 0.1598(0.1657)

Fr=0.1

Pr=05

;]T2O l 9(0;203 1)
0.2038(0.2050)
0.2084(0.2095)
0.2134(0.2134)
0.2179(0.2179)

0.3846(0.3861)

0.3903(0.3918)
0.4035(0.4051)
0.4184(0.4202)
0.4323(0.4342)

Pr=1

.5004(0.5029)

0.5088(0.5114)
0.5285(0.5313)
0.5509(0.5539)
0.5720(0.5753)

(.6465(0.6507)
0.6587(0.6631)

0.6871(0.6918)
0.7197(0.7249)
0.7506(0.7563)
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Table 4.6; The Numerica! values of /7 {0), ' (0), A and Re, '"2N4, for the different values of

Kand Wewhen Pr=1,Rd -2and 6,, == 1.5,

We K fM0) K(O) A ReNu

0 12326 1.4065 -0.6479 1.8309

0.1 12366 14043 -0.6465 1.8315

"
§ 02 1248 13977 -0.6423 18332
g 0o 0.5 13294 13569 -0.6151  1.8443
§ 1 15853 12617 -0.5410 18751
15 19390 1.1816 -04618  1.9092
2 23467 11273 -03936  1.9398

0 07528 12128 -12028 16661
0.1 07556 12094 -12001 16669
02 07642 1.1992 -1.1920 16693
] 0S5 08215 1.1378 -1.1399  1.6846
o I 10000 1.0000 -1.0000  1.7269
S 15 12420 0.8891 -0.8522  1.7740
g 2 15175 08159 -0.7258 18167
% 0 04129 1.0852 -23348  1.4560
Z 0.1 04147 1:080% -2.3294 14570

0.2 04200 1.0661 -2.3135 1.4599

5 05 04554 09810 -2.2112 1.4787
I 05641 0.7962 -1.9378 1.5305

1.5 07092 0.6525 -1.6506 1.5884

2 08728 0.5596 -1.4054 [.6418
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Pr=0.7, We=2, k=0,

e 9“,:1 .0 (linear radiation)
9 =13 {non—linear radiation)

o (v}

Figure 4.4: Variation of temperature profile for the different values of Rd.
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Figure 4.5: Variation of temperature profile for the different values of ...
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Figure 4.6: Variation of temperature profile for the different values of We.
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Figure 4.7: Variation of temperature profile for the different values of K.
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Figure 4.8: Variation of wall shear stress against We for the different values of X.
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Figure 4.9: Vanation of local Nusselt number against We for the different values of K.
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Figure 4.12: Streamlines for the different values of obliqueness parameter ¥.

We=0,y=35

Figure 4.13; Streamlines for the different values of porosity parameter K.
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4.4 Conclusions

The Chebyshev Spectral Newton Iterative Scheme (CSNIS) has been successfully applied to
perform a comparative study of steady two-dimensional oblique stagnation point flow of a
second grade fluid in a porous medium with non-linear radiation effects. It is observed that
the CSNIS is efficient, less time consuming, stable and rapid convergent and have excellent
agreement with available data in the limiting case. This study is based on a new idea of
non-linear radiation effects in oblique stagnation point region through porous medium. The

findings of this study may be summarized as follows

Velocity of the fluid increases with increase in the values of shearing parameter .

o It is seen that increasc of radiation and surface heating parameter, the temperature and

the thermal boundary thickness increases. .«

Heat transfer rate is observed an increasing function of porosity parameter K and de-

creasing function of viscoelastic parameter We.

¢ Enhancement in the temperature is observed with increase of We, where the reduction

in the temperature is due to enhancement of porosity parameter .
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Chapter 5

Study of nanofluid in the region of oblique
stagnation point flow over a stretching

surface with radiation

In this chapter, we discussed the enhancement of thermal conductivity of elastico-viscous fluid
filled with nanoparticles, due to the implementation of radiation and convective boundary con-
dition. The flow is considered impinging obliquely over a stretching sheet near a stagnation
point. The governing partial differential equations are transformed into a system of ordinary
differential equations by employing suitable similarity transformations. Solution of the result-
ing equations is computed numerically using Chebyshev Spectral Newton Iterative Scheme
(CSNIS). An excellent agreement with the results available in the literature is achieved and is
evident from tables. Effects of involving parameters on the flow and heat transfer characteris-
tics are observed and shown through graphs. 1t is noted that the larger values of Biot number

imply the enhancement in heat transfer, thermal and concentration boundary layer thickness.

I
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Figure 5.1: Schematic diagram of the flow geometry

5.1 Problem formulation

Consider the steady, two-dimensional, laminar flow of Walter's B nanofluid impinging obliquely
on a stretching surface, at 5 = 0. The fluid occupies the upper half space ¥ > 0 as shown in Fig.
5.1. The surface is heated convectively, by convective heating process, which is characterized
by a temperature Ty and a heat transfer coefficignt #,. We neglect the viscous dissipation (o
estimate accurately the effect of convective boundary condition because viscous dissipation
would disturb the thermal boundary conditions. The velocity of the outer flow far away from
the surface is U, (%, 7) = a¥+ b¥. The flow, energy and concentration equations are (see Beard
and Walters [93])
i OV _

£+—é§—0, (5.1)
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T Y9y pox a2 932 p | 9x| oF axay

285 oV di d _§_+#a _n@) 23u3u auav”

FRCAR IR AN TAC AR %9y “9xoy, )" )

(5.
GOV, 0y 1dp 3_23+§_%)+k_, 9 [,9a9a 9797 (a+ )
‘5T T R Iyt) " p \ox| 9xdy “diady
2

a"+‘zﬂ) + 2 2%(3—‘-’+95)+4(a—ﬁ) +27 2‘+2u i
ot 195/ T 9% "9 \ex " dy 5 § %0y

(5.3)
T Tk (T azf)_L%+ *{D (acar t_?E__T)
u8f+vaj‘_pcp ax2+a}‘2 pcp 3y 4 i 0x oy
. 2 (5.4)
(L
ax ov
‘a_é+§‘?_c:_-D (i@.{.ﬁ)_{_ (82?' aZ ) (5.5}
TR TR CA TN T R T AT A '

where C(x, ¥) is the concentration, kg is elasticity of fluid, Dr and Dg are the Brownian motion
coefficien and thermophoretic diffusion coefficient respectively. t*(= (pc)p/(pc)y) is the
ratio of effective heat capacity of nanoparticles materials to heat capacity of the fluid. The

boundary conditions of the problem are given by

oT .
¥y=0 i=ck, v=0, —ka—'{-—hf(?f* ),C:C.,.-,
J (5.6)
¥ =3 00 d=ai+by, T=Tw, C=Co

in which a. b and ¢ are positive constants having the dimensions of inverse time and h; is
the heat transfer coefficient. The radiative heat flux can be modeled by using Rosseland’s
approximation as follows

405p 3?‘4

T Kooy 9 >

where Ggp is the Stefan-Boltzmann constant, ¢, is the Rosseland mean absorption coefficient
and @, is the scattering coefficient. Assuming that the temperature difference within the flow

is sufficiently small so that T# may be expressed as linear function 7such that

T4 = 4737 - 3T (5.8)
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thus Eq. (5.7) takes the following form

1605572 T

= e 59
" T ton 95 &)
Upon using non-dimensional variables and stream function y of the form
1% v Ve Ve pve (5.10)

T-T. —Cu y ay

c
TI-TM‘ C“‘_Cm,“_a_y‘ v_-_g

!
Il

T:

and climinating pressure from Eqs. (5.2), (5.3), Egs. (5.2), (5.6) take the following form in

terms of y

P Vz 4
(V. 7°¥) | 4,0 (v V)
d(xy) d{x,y)
dydT JdydT 1 82T+32T+ 1605573 az'r) (a_ca_r+a_(:a_7*)
oy dx drdy Pri\adx? 9  3k(a +0,) 0y’ b\ ox ox dy dy

w (5 +(3)):

+Viy =0, (5.11)

(5.12)
JydC awac\ _[d*C 9\ N [T 627*)
S“(':;;'a;‘ a;'a'):) = (a?'*'za‘y"i) * N (a bo ) OB
y=0 %“—':x,wzo,%z=—sf(1—?‘),czl,
Y Y (5.14)
y oo ]y:gxy-i-zy?' T.=0,C=0
C 2 b b ¥

where We = k,c/pv be the Weissenberg number Pr = pic,/k be the Prandil number, S¢ =
v/Dg be the Schmidt number, N, = Drt*({T; - 7..)/T..v be the thermophoresis parameter,
Np = Dgt*{C,, — Cw)/v be the Brownian motion parameter, Bi = - {/i¢/k} /Vic be the Biot
number and ¥ = b/c represents shear in the free stream. Suppose the solution of Eqs. (5.11)

and (5.14) is of the form

v=xf(y)+gly), T=0{), C=¢(), (5.15)
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where the functions f(v) and g{y) are normal and oblique components of the flow. Using Eq.

(5.15) in Egs. (5.11 —5.14), and comparing the coefficient of like powers of x, we get

Frrfr — F "+ We(ff —~f1*) =0, (5.16)
g+ fg" —g'f"+We(fg' g’ f") =0, (5.17)
(144Rd/3) 0"+ Pr |10 +Np'0' + N, (ey] -0, (5.18)
¢" + Scfo’ + (N, /Np)8" =0, (5.19}

y=0:1(3)=0, ) =1 g =£0)=0. 00} =-Bi(1-0(y).¢(») =1,
(5.20)

y=e: f(y)=aic, &)=, 80y =0 ¢(»=0,

where Rd = 405572 /k{et, + o) is the radiation parameter and prime denotes the differentia-
tion with respect to y. Integrating Egs. (5.16) and (5.17) employing the boundary conditions

at infinity, we get

(]

a

TP = (1Y +We (ff*'" 211" + (f")z) += =0, (5.21)
e
gm +fgﬂ _ g!fr T+ We (fgip o ftgm +g”f" _ fﬂ."g!) —‘A)’ _ 0’ (522)
where A=A(a/c. We) is a constant which measures the boundary layer displacement. Con-
stant A at free stream behave as (a/c) v which also corresponds to the behavior of f(y) at the

free stream. For simplicity, introducing a new variable, g'(y) = yh(y), then Eq. (5.22) with

boundary conditions is written as

W+ B~ PhtWe (fH" — fH +H P~ f7B) = A, (5.23)

h(0)=0 H(w)=1. (5.24)
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Thus the system of boundary value problem becomes

P Ff = () +We (ff"‘ =2/ 7"+ (f"')z) + s—; =0, (5.25)
W v fi— fhyWe (fH" — FH+HF"— f"h) = A, (5.26)
(1-+4Rd[3) 6" +Pr [ 16"+ Nyg'8' + N, (8)7] = 0, (5.27)

0" +Scf¢" + (N, /Ny) 8" = 0, (5.28)

with boundary conditions

y=0:f(y)=0, f'y)=1, h(y) = ()=-Bf(1—9(y)),¢(y):l,
(5.29)

y-+oa: fi{y)=alc,h(y)=1,8(y)=0,8(y)=0.

To solve the fourth order ordinary differential equations (5.25) and (5.26), augmented bound-

ary conditions [94,95] f*{y) = 0 and /”(y) = 0 as ¥y — = are utilized.

dy _

W e 0) 4800~ -9 =y, (530
¥

Ix

U=

The gquantities of physical interest are the skin friction coefficients C;. the local Nusselt num-

ber MNu, and the local Sherwood number Shy are

Tw _-f(qw+4r),

Xqm
—; y = Shm ——— 5.31
pu T Ty Te) > G-31

Cy= Dp(Co—Cal’

where T, is shear stress at the wall, g, is the radiative heat flux, g, and g,, represents local heat
flux, and local mass diffusion flux at the wall are

Ty = W (i + V) = 2ko
;{v(a)-.,: + Vi) +§'ﬁ(ﬂf}—-+ Pxe) (5.32)

y=0i
ac )
 gm=—Dg | 5
)7=0 ‘?m i ( ay

405 OT?
1= —
In terms of dimensionless variables the skin friction coefficients Cy, the local Nusselt number

50

30y 4 o) _a?

Nu, and the local Sherwood number Sk, takes the following form
Re,Cp= x(1 —3We) f"(0)+ (1 — 2We)yh'(0),

. (5.33)
Rey "2 Nuy = (1 + §Rd) (0, Rey'*Shy = —¢'(0).
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where Rey == u,x/v.

5.2 Chebyshev Spectral Newton Iterative Scheme

Exact solutions of the nonlinear differential equations (5.25— 5.28) subject to the bound-
ary conditions {5.29) are difficult to obtaine. Some authors have used analytical and semi-
analytical techniques to solve these equations [70,96]. In the present study, we implemented a
numcrical technique namely Chebyshev Spectral Newton Iterative Scheme (CSNIS). The de-
tailed information regarding to this scheme is provided in chapter 4, however discretization of
the equations (5.25— 5.29) is given in this section. In this scheme, we first convert the systemn
of nonlinear differential equation into a linear form by using Newton iterative scheme. For

{i+ 1 )th iterates, we write
firi=fi+8f, 0.1 =6;+86, ¢;s1=10;+60, (5.34)

for all dependent variables, where 8 f;, 66;and 6 ¢;, represents a very small change in f;, 6;and ¢;
respectively. The equations (5.25- 5.28) in linearized form are
a8 +a i 8f" +ay8f +ay;8f +asi8f =Ry,

bo S by Sf 4 by S f] + b3 iBf + by SR + bs ;8R! + b 8k} + b7 8k = Ry,

(5.35)
cp 8 f +¢1 ;80" +¢2,00] +¢3;6¢) = Ra,
do,8f +dy ;08 +dy, 86" +ds,66] = Ras,
together with the boundary conditions
8£i(0) = - fi(0). 8 f}(0) = ate — f(0), £ (o) = 1 = f(e0), 81 (o) = —fi' (0},
Sh(0) = - hy(0Q), Shi{se) =1 - H(oe), 8h (o) = - K] (oe), (5.36)

86;(0) — Bi66;(0) = —6;(0) — Bi(1 — 6;(0}), 88;(=) = —0i(=),
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The coefficients a;,, &, cj . d;and R; i = Q, 1.2,3...)are
ag; =We fi, a1; =1 —2We f], a2, = fi —2We f{,
ar;=-2fl =2We £, as; = fI' + We Y bos=—Weh;, b= Wek!,
by; = —hi—Weh! by, =h,+Weh!" by;=Wef; bs;=1-Wef;,
boi = fi+Wef! byi=—fl—Wefl" co; —Pr8,c;;={(1+4Rd/3),
c3;—=Pr [Nbﬂ,-') 24 =Pr (f, + Npg! + ZN;G,-'] . dy, = Scd/,
(5.37)
dii (N /Np).dri=1.ds;— Scf,
Rii=—We (f,f,-"‘* A (f;)z) ~ =L+ (ﬂ)z - az/fz-
Ra; = —We (fill’ — fib! + [0 — f" W) — B — filj+ fih + A,
Ry;= —(1+4Rd[3)6! — Pr(£,6/+ Nyg/8] + N, (8])").

R4‘f = —¢;r - Scﬁ¢: = (N;/Nb) 9;,<
The system of linear Eqs. (5.35) subject to boundary conditions (5.36) is solved using the

Chebyshev spectral collocation method [88-90]. After applying collocation method to Egs.

(5.35, 5.36), the following matrix is obtained

r 1T 1 T 1
Ay A A Ap ofi Ry,
Ay Ap Axp Apn Oh; R,
= . (5.38)
Ay A Az Aun 00 R,
Agl Az Agr Agg 3¢ Ry,

where

Ay =ap;D*+a; ;D +ay D’ + a3, D+ asd. Az =0,A13=0,A12 — 0,

Ar = bn‘,'Da + b _,'D2 + by D+ bg‘,‘f, Ay = bzyd;f)3 + bs.,Dz + bﬁ‘,'D + by,
(5.39)

Az =0, Az = 0,43 = o,/ A = 0. A3z = ¢ uD? + ¢2.:D.Asg = 3D,

Agyy = do i, Az =0, Agy = d ‘,Dz.A.M = dz‘,Dz + d3.D,

1 is identity matrix, a;;, b, ¢,;, d;;and Rj‘,-(j =0,1,2,3...))are given in (5.37).
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5.3 Results and discussion

The non-linear differential equations (5.25) — (5.28) subject to the boundary conditions (5.29)
are solved numerically for different values of dimensionless parameters namely Weissenberg
number {We), velocities ratio parameter a/c , radiation {Rd), thermophoresis (¥;), Brownian
motion (N,), Prandtl number (Pr), Schmidt number (S¢) and Biot number (Bi). The values
of f7(0), —8'(0) and —¢’'(0) are shown in the limiting case through Tables 5.1 and 5.2. It is
found that the present results are in excellent agreement with previous investigations available
in the literature, Moreover, Numerical values of A, Rey I/ 25:‘11- and Re, I/ 2Shr for various vai-
ues of different parameters are shown in Tables 5.3 and 5.4. The results in terms of velocity
profile, temperature profile, concentration profile, f(0), —8’(0) and —¢’(0) for sundry pa-
rameters are shown through graphs. In most cases, the values of the parameters are taken as
Pr=688c=15Bi=05We=01,N=N,=03,a/c=03,1.2and Rd = ] or otherwise
mentioned. The variation of f”(0), ~8'(0) and —¢'(0) against We for a/c = 0.8,1.0,1.1.
and 1.2 is shown in Figs. 5.2 — 5.4 respectively. From these Figs., it is observed that the
similarity equations (5.25) — (5.28) subject to the boundary conditions (5.29) have dual solu-
tions for some range of the parameter We. There exist unique solution for a particular range
of the parameter We and there exist a region where the solution does not exist. The solid
lines show the stable solutions and dashed lines show the unstable solutions. For a/c > 1,
the range of solution enhances due to increase in /¢ and for a/c < | the range of unstable
solution become larger than the stable solution. There exist a unique solution at critical value
We = We,, dual solution exist between the range 0 < We < We, and no solution exists for
We < 0 and We > We.. The critical values are We,, = 0.3149, We; = 0.3642, We, 4 = 0.528
and We.4 -~ 0.33 for different values of @/c as shown in figures. It is observed that unstable

solutions have higher values of f7(0), —8'{0) and —¢'(0) than that of the stable solutions for
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given values of We, It is further noted that in stable solutions (first solution) heat and mass
transfer rate increase with increase in the values of a/c, where as a reverse behavior has been
observed for unstable solution (second solution), The stability analysis of multiple solutions
has been discussed by many researcher see [97-99]. They found that first solution is applicable
physically while the second solution is not. In Figure 5.5 the velocity profile is plotted against
y for the different values of We, a/c and . Here ¥ =0 and y =0.2 correspond to the cases for
orthogonal and non-crthogonal stagnation point flow respectively. IUis noted that the velocity
of the fluid increases with increase in the values of We when a/c > 1. An opposite behavior
is observed for the case when a/c < 1. It is also seen that with increase in the values of ¥
the velocity of the fiuid increases. In Figs. 5.6 and 5.7, local Nussett (Re; '/*Nu,) and local
Sherwood (Rey 1 2th) numbers are plotted against thermophoresis parameter N, for different
values of R; and a/c. It is clear from Fig. 5.6 that with an increase in the values of N;, a very
slight decrease in local Nusselt number is observed for both the casesof a/c(a/c > 1,a/c < 1).
Consequently, the temperature and thermal boundary layer thickness increase with an increase
in thermophoresis parameter &, near the wall. Fig. 5.7 elucidates that the local Sherwood num-
ber decreases with increase of A, as a consequence the concentration and the concentration
boundary layer increases with increase of N,. From Figs. 5.6 and 5.7, an increase in the local
Nusselt and local Sherwood numbers is observed due 10 enhancement of radiation. In Figs.

5.8 and 5.9, the values of the local Nysselt (Re}l’szu‘r) and the local Sherwood (a’i’e}u2

th)
numbers are plotted against Brownian motion parameter (V) for different values of R, and
a/c. It is seen that with increase in Brownian motion the local Nusselt number decreases but
the local Sherwood number increases. This increase in the local Sherwood number is very

rapid in the range 0 < Ny, < 0.2. This phenomenon increases the temperature and the thermal

boundary laycr thickness but decreases the concentration. In Figs. 5.10 and 5.1 1, the variation

87

P



of the local Nusselt (Re; 2Nux) and local Sherwood (Re; ' / 2Shy) numbers is plotted against

Biot number Bi (depending on the heat transfer coefficient) for different values of R, and a/c.
It is seen that the local Nusselt number increases and the local Sherwood number decreases
for initial values of Bi and for the larger values of Bi both quantities become constant. Due
to the larger values of Biot number Bf (Bi — =), the surface become heated and heat transfer
rate increases. In fact, the larger values of Biot number imply the strong surface convection
result in high surface temperature; therefore, iné;;easc in Biot number enhances the tempera-
ture and the thermal boundary layer thickness. This behavior can be predicted from Fig. 5.12.
In Fig. 5.13, concentration is plotted against y for different valucs of Bf when Ry = 2 and
af/c = 0.3. Concentration increases with increase in the values of Bf because concentration
distribution depends upon the temperature field hence the lager Biot number helps to increase
the concentration of nanoparticles in the fluid. In Figs. 5.14 and 5.15 the temperature and the
concentration profiles are platted for the different values of We and a/c when Ry =1, Bi =0.1.
Fora/c < 1, itis observed that the temperature and the concentration are increasing functions
of We but for a/c >1 an opposite behavior is noted. In Figs. 5.16 and 5.17, the lemperature
and the concentration profiles are plotted for the different values of Ry when Bi = 0.1 and
a/c = 0.3. With an increase in the values of radiation parameter, temperature of the fluid

increases where as the concentration decreases near the wall but away from the surface, it

increases with increase in the values of radiation parameter.
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Table 5.1: Comparison of —8'(0) for the various values of a/c and Pr in the absence Ther-

mophoresis effects and Brownian motion of nanoparticles when We = 0,Rd =0 and Bi —

Pr=-10

Pr—1 Pr=20

afc Present work  [81] Present work  [81] Present work  [81]
0.1 0.60215 0.6028! 2.31693 2.31684 3.36196 3.36172
0.3 0.64728 0.64732 2.34841 2.34841 3.39149 3.39148
0.3 0.75710 0.75709 246778 2.46778 3.51054 3.51054
1.0 0.79788 0.79788 2.52313 2.52313 3.56825 3.56825
20 0.97873 097872 2.81389 2.81389 3.88689 3.88689
3.0 1.13209 1.13209 3.09751 3.09751 4.21307 4.21307
4.52810

4.0 1.26733 1.26733 3.36440 3.36441 4.52808

Table §.2: Comparison of —8’(0) and —¢’(0) for the various values of N, and Np, when

We = 0,a/c = 0,Rd = 0,Pr = 10,5c — 10, and Bi = 0.1. The results in small brackets are

reported by Makinde and Aziz (61].

N 60 60 00 9O

{0.0929) (2.2774) (0.0769) (2.3299)

0.1
0.09291 227741 0.07688 2.32994
(0.0925) (2.2228) (0.0729) (2.3900)
03
(009255 2.22281] 0.07292 2.38996
(0.0921) (2.1783) (0.0700) (2.4792)
0.5

0.09212 2.17834 0.06697 2.47923

Ny =0.5
—8'(0}) A
(0.0383)  (2.3560)
0.03833 2.35603
(0.0269)  (2.4576)
0.02690 2.45762
(0.0180)  (2.5435)
0.01800

2.54352
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Table 5.3; Numerical values of A for various values of We and a/c.

a/c We

0 005 01 02
0.0 10000 09747 09487 0.8944
0.1 07917 07663 0.7402 0.6854
02 0.6407 06161 05906 0.5369
03 05195 04962 04720 0.4205
04 04173 03959 03735 0.3254
0.5 03286 03096 02896 0.2459
0.6 02499 02338 02167 0.1789
07 01791 0.1664 0.1527 0.1220
08 01145 0.1056 00960 0.0738
09 00551 00505 0.0454 0.0334
10 00000 0.0000 0.0000 00000

Table 5.4: Numerical values of Re_;” ENux and Rey 1/ ZSh,, for wider range of Pr.

o Ri N M B S Pr Re'Nu. Re'she
010 010 1 01 01 01 1 07 01681 05539
I 01786  0.5489

10 02164 05225

50 02250 05107

100 02268 05075

020 050 2 03 03 1 5 07 07404 15984
BN 0.8434 1.5899

(0 13282 15803

S0 04836 1.9263

100 0.0776 2.0450

03 10 5 05 05 w 10 07 17315 25104
| 20139 25078
10 30888  2.6083
50 05032 29136
100 -0.0194 2928
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5.4 Conclusions

The combined effects of radiation and convective boundary condition in the region of oblique
stagnation point flow of elastico-viscous fluid saturated with nanoparticles are considered. The
governing partial differential equations are reduced into dimensionless ordinary differential
equations and then solved numerically by using Chebyshev Spectral Newton Iterative Scheme
(CSNIS). The present numerical results are in excellent agreement with the previously avajl-
able results, It is observed that the equations (5.25)-(5.28) subject to the boundary conditions
(5.29) have unique solution, dual solution and no solution in different regions of the parameter
We. For a/c > |, the range of existence of solution increases due to increase in a/c and for
a/c < 1, the range of unstable solution become lafger than that of the stable solution. It is also

concluded that

e The velocity of the fluid intensifies due to increase in We when a/c¢ > | but an opposite

behavior is observed for a/c < 1.
« The velocity of the fluid is found an increasing function of 7.

o Temperature and the thermal boundary layer thickness enhance due to increase in the

values thermophoresis parameter (N7) and radiation parameter (Rd).

» Concentration and the concentration boundary layer thickness increases with increase of

Nr and Biot number Bi.
» Brownian motion enhanced the thermal boundary layer thickness.
e Brownian motion decreases the concentration boundary layer thickness.

e The larger values of Biot number imply the enhancement in heat transfer and the thermal

boundary layer thickness.
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Chapter 6

Study of Mixed convection Walter’s B
fluid flow towards stagnation point over a

vertical surface

In this chapter, the influence of radiation in a mixed convection flow of Walter's B flmid in
the neighborhood of nonaligned stagnation point over a vertical oscillating flat plate has been
investigated. The plate is assumed heated with sinusoidal surface temperature. It is further
assumed that the plate is stretched linearly along the vertical x-axis. The governing partial dif-
ferential equations are transformed into dimensionless form. These dimensionless partial dif-
ferential equations are solved numerically using Chebyshev Spectral Newton Tterative Scheme
(CSNIS). The obtained results are in excelient agreement with the previous studies. The effects
of involving parameters on the fluid flow and heal transfer phenomenon are shown through ta-
bles and graphs. It is observed that, in assisting flow region, high value of effective Prandtl
number reduces the velocity whereas in opposed fiow region, it invigorate the velocity. It is

also noted that with increase of effective Prandtl number, the skin friction coefficient decreases
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and heat transfer rate augmented.
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Figure 6.1: Geometry of the problem

6.1 Problem formulation

Lets us consider the flow of Walter’s B fluid towards a vertical flat plate obliquely as shown
in Fig. 6.1. The plate is oscillating about its means position at ¥ = 0 with velocity Upcos QF
and subjected to a linear stretching with velocity ¢X in vertical direction. It is also assumed
that plate is heated with sinusoidal surface temperature, which oscillates about the mean value
Ty which is higher than the ambient temperature T, of the surroundings. The flow and energy

equations are (see refs. [93,100])
dii oV

3t a5 0 ©.1)

"
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_ = 2= 532 v 25
c?_tfvzﬁ_z{fﬁ_‘iJrﬂiL(a“ﬁ_‘) AL ]j:gﬂT(T—TwL

5y o¥ dx¢ Iy oy* 0y  0%) dxdy
(6.2)
aV _8v Bv laj} 3. k{) 8 2 _(? _a v aF .
a!_+ 6‘) —E§-§+vVv—;{-a—r_(V u)+(u§+va—'ﬁ Vv-—a—fVu— .
¥ 2, @f_ﬁﬁjaz 2 97\ 9% '
a2y dx ¥t~ dydyr  \dy 0%/ dxoy)]’
of  oT  aT & AT 2T\ 1 9g,
W“%*“a—f-p—;(?ﬁ*ﬁ)‘p—cﬂa—;- €4

In above equations g is the gravitational acceleration, B is the coefficient of thermal expan-
sion and g, = — (1605577 /3ag) 9T /37 is the radiative heat flux. The term ¢ is the Rosse-
land mean absorption coefficient and Gsp is the Stefan-Boltzmann constant. In Eq. (6.2} the
+ and — signs represent the buoyancy assisting and buoyancy opposing flow case respectively.

The relevant boundary conditions can be defined as

v-- 0 : i =U,=ck ¥+ UpcosQFf, v =0, T =T, + AT( £X+£lsin£2f‘),
v (6.5)

y oo : i=U,=ai+b5, T = Te,
where AT = T, — T, is the difference of mean surface temperature to the ambient temperature,
U, = cf + Upcos QF is the velocity of the plate, U, = aX + by is the free stream velocity, £y is
the amplitude of the imposed temperature oscillation and € is the frequency of the oscillation.

Using ¢, = — (1605sT? /301,) 9T /9y in Eq. (6.4). we get

_ - F3
T o 9T kT 13 {(H 160spf )ar} (6.6)

T 5 TS5 T s ar T pey oy 30, ) 3

To get the simplified form of Eq. (6.6} thermal conductivity & is consider as constant and it

assumed that the temperature gradient with in flow is very small. Linearizing the radiative heat

flux g, about the ambient temperature T, the Eq. (6.6) reduces to the following form

©.n

a__[Jr oT o7 kaz_f+ k 1 160572\ 0°T
3ket, ) Oy



Introducing the non-dimensional variables

=f\ﬁ y=y'\ﬁ RPN I IR ISR ek R
V’ V, ' -—\/;C_’ _\/V_C 'p-_pvcp‘ _TW_TO:I‘ ’

in Egs. (6.1}~(6.3), (6.5) and (6.7). we get the following form

i&:av

" 0, (6.9)

.Qau au du ap v V2 — koc [Q d du

d d
- _..r 2 Ly iyl _
P 3: + 8)' 9x+ pvicot (Viu) + (u8x+v3 )V " axv !

au Judtu Ivdlu [(du v\ Br (T~ Tw)
Nl v cuow ovom (o, 8fr (1w 7o)
dy - 2{ axoe b dy dy? * (ay t ax) axc?yH * I

Qdv dv dv  dp o I d d\ s Voo
cﬁ‘FHa +Va—y— av VV'IJ E-\—,[E(V v)+(u$+va—y—)‘7v--— —Vu-—

avv 2{@,3_%_{_@82 ¥ _a__lf_}_@ .3__21!
dy ox dx2  dyady? dy Jx/) dxdyf]’

{6.113

Qdr aT 9T k T &k 1ﬁcsﬁr3 a°T
e a4y = - —, 12
car "ax Vay pve, dx? * pvcp( ko, ) dy?’ (612

y=0 : u=x+ecost, v=0, T =x+ € sins,
) (6.13)
y — o0 : u=8x+—)xT=0.
(& [

In which £ = Up/+/ve is the dimensionless constant, which describe the amplitude of the plate
oscillation. Introducing the stream function , as proposed by Takemitsu and Matunobu [76],

we write the velocity components as

Ad A4 (6.14)

ay’ VE T o

H =

In terms of stream function, Eqs. (6.9) — (6.13) after eliminating the pressure take the follow-

ing form
.8 (Vy) BV (v V) (v V) oy 29T
R P T Ty i T B G TR
T 2 ,) 9%
a'r a7 10°T (1+N,)o°T 6.16)

ﬁaf x+v"8_y:i’—r8x2+ Pr  dy?’
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d
y=0 : a—“{:x+£cost. y =0, T=x+¢gsint,
) (6.17)
P N Y )
c 2
gBr (T — To)

where 8 = {}/c is dimensionless unsteady parameter, 4 = is the mixed con-

cy eV

vection parameter and N, — 160gp7T.2 /3ka, is the radiation parameter. Let us suppose that the

solution of Egs. (6.15) and (6.16) subjcct to boundary conditions {6.17) is of the form

w—xf(yy+hiyt), T=x8{y}+6(y1), (6.18)

where the functions f(y) and a{y,r) are normal and oblique components of the flow and 6, (),
8(y,1} represents the dimensionless temperature profiles, Using the Eq. (6.18) in Eqs. (6.15

~ 6.17), and then after comparing the like powers of x, we get

Y= We (ff - L) £A0 =0, (6.19)
Pn  Ph 0k #¥h 0k . °h ., Ph . dB
a_y?*”a_y?'fé;*w"(f‘aﬁ -/ ‘ay)“’ iy WP g th gy =0 020
Pr'ﬂ_ﬁ.”+f6i - f0;=0, (6.21)
£
] M ! ' *aez _
Pres; 6, +/8,-g6 - " 0, (6.22)
y=0:f(y)=0, Ff(y)=1 h(n1) =0, 8&(%:] =gcost, O1(v) = 1. B:{y,1) = € sins,
' a%n(y,
yoe: SOy =ate, TR <y i) =0, Bil) =0
| (6.23)

Where Pro;s = Pr /(1 +N,} is effective Prandtl number, which is the combination of Prandtl
number and radiation parameter as proposed by Magyari and Pantokratoras [101]. The effect
of radiation can be incorporated for the smaller value of Pr.r;. In Eqs. (6.19 — 6.23) pnme
signs denote the differentiation with respect to y. Integrating Eqs. (6.19) and (6.20) with

respect to y and the resulting constants of integration are evaluated by employing the boundary
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conditions at infinity. Thus the Egs. {6.19 -- 6.23) reduce to

Jny Y (f’)z—l—WE (ffi"—szm‘l' (f”)z) + (;)2:&191 =0, (6.24)

33h *h *n 3%, 0k
fay fr? e (fay" fa s+ 9% - 9_3') 6.25)
. 9% *h '
By WeB 5ig m AT AR =0,
—--—9” +/8{— 16 =0, (6.26)
Proy;
" 1892 _
Pre 8, +f6,—g61—p"-5- =0 (6.27)
y=0: fly)= =1, h{y.1) ahé);,r) = gcost, O)(y) =1, B{y,t) = £ sint,
, %nly
y—eo:  fi(y)=al, ai )—}', 61(y) =0, &(y.1)=0.
' (6.28)

In which A is a constant, which measures the boundary layer displacement, It arises when

y = oo, f(v) behaves as f(y) = (a/c)y+A. The dimensioniess components of velocities are

_ dy gt dhiy.t)
u= 3; =xf(y)+ 3y (6.29)
oy

The quantities of physical interest are the skin friction coefficients C and the local Nusselt

number Nu,., can be expressed as

_ B _ ey 6.31
Cf ph‘%., Nu.t‘ keff(Tw _ Ton) ' ( ' )

where Ty is shear stress at the wall and g,/ is the effective conduction-radiation flux at the

wall. These are defined in dimensionless form as ,

1 1
—UHyVy — WyVy — 3Vy (u_v + vy} — FHy (uv\- + vx}
Ty = ey +vi) — 2k , (6.32)
+% (“_w + VA‘I) + %v (”_v_v + '*’Jc.v) + %” ("x_\‘ + "’xr)

Gegs = —kess (T3 T)\/—( )
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Upon using Eqgs. (6.14) and (6.18), the skin friction coefficients and the local Nusselt number

take the following form

27 h(0,1) _pr *h(0,1)
3y a9yt

Rey ' *Nu=— (xﬁf((}) + 892(0'”) :
dy

Re,Cr= x(1—3We~eWe) f'(0) + (1 - 2We) ———

(6.34)

where Re, = cfz/v = x2, The dividing stream line y = 0 and u = dy/Jdy = 0 intersect the
plate at the stagnation point. The location of stagnation point x; can be find at zero skin friction

or shear stress from Eq. (6.34) as follows

32p{01) Pa(nr
—(1 —2We) 551 2{ L+ Brwe afa; 635
(1—3We+8We ) fH(0) ' '

Xy

6.2 Chebyshev Spectral Newton Iterative Scheme

The nonlinear time dependent partial differential equations (6.24)—(6.27) subject to the bound-
ary conditions (6.28) are solved numerically using Chebyshev Spectral Newton Iterative Scheme
(CSNIS). Initially for the case of steady solution at r=0, the governing Eqs. (6.24—6.27) re-

duce (o the following ordinary differential equations

Pl (P we (s (1)) 4 (8) sam =0, 630

K"+ fi" - B + We (fhf” — PR S — ) - Ay £ A8, =0, (6.37)

o+ 161~ f& =0, (6.38)

Prefy
Loy 1 s6-g0i=0, 639

Preff

and boundary conditions are
y=0 :  fO)=0, f(»)=1h(3»0)=0#(¥0)=¢, 61(y) =1, 6000 =0,
yore [l K(n0) =y, 60) = 068:(.0) =

(6.40)
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To find the solution of Egs. (6.36—6.40), first we convert the Eq. (6.36) into a linear form by

using Newton’s linearization process, For (i+1 }th iterates, we write

fioi = fi+df, (6.41)

and similarly for all other dependent variables, where &; represents a very small change in
f.. Using Eq. (6.41) in (6.36) and dropping the quadratic and higher order terms in S fi , onc
obtains

Cﬂ.,'a_f}ﬂ' + ¢ _,'5f}m + Cz,;é_f;’ + 033,‘3_}? + C4.,'(5_f:. =Ry, (6.42)

subject to boundary conditions

81:(0) = ~£(0), 8£(0) =alc- f/(0), 8f/(e) =1 fi(eo}. (6.43)
The coefficients ¢;; (=0, 1, 2, 3, 4) and R; are
co,=Wef, ci=1~ ZWE'f;, 2= fi +2Wef}”, C3j= —Zﬂ - 2We ,-”, Cqi= f,—”—l— We_ﬁv,

R; = —We (ﬁ ,-’-"—Zf,'f,m-k(f.-')z) B fg;r_ﬁf}u_’_ (ﬁ)l _ (afc)Z:FAel.
(6.44)

The obtained Eq. (6.42) with boundary conditions (6.43) is now linear and is solved using
the Chebyshev spectral collocation method as described in chapter 4. Once the solution of
Eqgs. (6.36—6.40) has been obtained for steady case (f = 0), we proceeded further to next time
steps by taking step size At = k; = £/90. The time derivative in Eqs. (6.24-6.28) is replaced
by backward finite difference scheme (e.g. & 0, = & ((y = Os 1)) The Eas. (6.24-6.28)

take the following form
(F7),+ (0 (1), = ), AW (U0, (1), = 2087, (F"), + ("2),) + (ale)* £4. (81), =0,
(6.45)
(35) 5 0n(52) -, (%), +we (100 (32), - (58),+ U (52),
(@) -E((3),-(3),.) (), - (39),.) areaen—o
' (6.46)
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pr.p; (€0 (1)1 (00— (), (81), — 0. (6.47)

(5] o (00 (52) - €, 00,~ (@, (@, ) =0, 649

y=0:(f),=0, (f’)n= 1, (h),=0, (‘;—:) =gcos(nk), (&1}, =1, (62), = & sin{nk),
i *h
y—yoo: (f1), =afe, (3_y2) =7, (8)),=0, (8),=0, 1,=nkwheren=1,2,3....

(6.49)
Now the equations Eq. (6.45-6.49) can be solved for each time step up to required range of {.

For the cornputation purpose, a numerical code is developed in MATLAB 2010a and used.

6.3 Results and discussion

The solution of non-linear partial differential equations (6.24) - (6.27) subject to the boundary
conditions (6.28) is obtained numerically for all dimensionless parameler namely Wiessenberg
number We, velocities ratio parameter a/c, obliqueness parameter ¥. unsteady parameter .
Mixed convection parameter A, Prandt] number Pr, amplitude of oscillating plate £ and am-
plitude of imposed temperature oscillation £, against required range of 7. The present results
in the limiting case are verified through numerical values with the previous studies, which are
given in the Table 6.1. It is shown that our results are convergent and highly accurate. The
interesting results are also plotted in terms of the velacity profile, temperature profile, the skin
friction coefficient and the Nusselt number in Figs. 6.2—6.7. In Figs 6.2—6.7, the values of
the parameters are kept fixed at € = |,£) = 1,y=2.8' = 0.2,We =0.1,Prory = 7. The values
of the parameters, which are used for solution of the problem other than mentioned above,
are given in the figures. In Fig. 6.2, variation of the velocity is shown for various values of
velocities ratio parameter a/c = 0.1, 0.5, 1. 1.5. In the figure, the curves are drawn at ¢ = 7/4

for both assisting and opposing flow cases, It is noted from the figure that the velocity of the
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fluid increases with increase of a/c. Further, the velocity in opposed flow region reduces as
compare to the assisted flow region. Which is due to the fact that in opposed flow region.
the buoyant force retard the flow having opposite direction, where as in assisted flow region
it helps to enhance the fluid velocity having the same direction as of the flow field. It is also
observed that for a/c> 1, the velocity of the fluid along y oscillate due to viscoelastic behavior
of the fluid. In Fig. 6.3, the temperature is plotted against y at 7 = m/4 for various values of
velocities ratio parameter a/c = 0.1, 0.5, 1.0, 1.5 for both assisting and opposing flow case. It
is found that the temperature is a decreasing function of velocities ratio parameter a/c which is
due to the reason that stagnation point encounters the highest heat transfer rate and therefore
the temperature reduces with increase of free stream velocity within the boundary layer. It is
also noted that temperature is higher in opposing region as compare to assisting region. In Fig.
6.4, the velocity profile is plotted at ¢ = 7/4 for the various values of We= 0, 0.7, 0.2. In this
figure, both cases of boundary layer structure (a/c>1) and inverted boundary layer structure
(afc< 1) are discussed. It is observed that in case of boundary layer structure, the velocity of
the fluid increases with increase of viscoelastic parameter We. On the other hand, for inverted
boundary layer case, the velocity of the fluid decreases with increase of viscoelastic parameter
We. Similarly in Fig. 6.5, the temperature is plot'ted at 1 = /4 for various values of We= 0,
0.1. 0.2 for both cases of a/c<! and a/c>1. In case of boundary layer structure {a/c>1) the
temperature of the fluid falls due to increase of viscoelastic parameter We, on the other hand for
a/c< 1, temperature enhances with the increase in the value of viscoelastic parameter. In Fig.
6.6 and 6.7, variation in the skin (riction coefficient and the Nussclt number is shown against ¢
for various values of mixed convection parameter A for assisted and opposed flow regions. 1t
is seen that for assisting flow case skin friction is increasing function of A in upward direction

while it is decreasing function of A in downward direction. In opposing flow case an opposite
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behavior is seen. Similarly, in assisting flow case, Nusselt number is increasing in downward
dircction while it is decreasing in upward direction and an opposite behavior is observed in

opposing flow case.

Table 6.1: Comparison of f”(0) and 8'(0) with Mahapaira and Gupta (24] and Nazar et

al. [251], while other parameters are We =€ =&, = y=f* = A =0and Pr=15

f"0) 6'(0)
a’/c  Present Ref.[24] Ref [25] Present Ref—[24]_
0.1 --0.96939 -0.9694 -0.9694 077680 -0.777
02 -091810 -0.9181 -09181 -0.79712 -0.797
05 —066726 —0.6673 -—0.6673 -—0.86479 -—-0.863
20 201750 2.0175 20176 -1.17810 - 1.171
30 472928 4,729 47296 135194 —1.34]

=4, k=1

st
4 5
3
F
di afc=01,05 10,15
2t Assisting flow case
: Opposing flow case
I L L A '} L 'l -
0 0.5 i LS 2 2.5 3 3.3

)I
Figure 6.2: Velocity profile u(y,7) against y at ¢ = 7/4 and a/c = 0.1, 0.5, 1.0, 1.5 for both

assisting and opposing flow case.

110



2 -
06\ \
=4, k=1
1.5 e
2
b
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Opposing flow case
O I
0 1.5

Figure 6.3: Temperature profile 7(y.r) againsty at = x/4 and a/c = 0.1, 0.5, 1.0, 1.5 for both

assisting and opposing fiow case.

5 .
—_ =02
ac=13
4 L
33
b
T NWe=00102
2 -\_'.'
I L I i —
0 05 1 1.5 2
;

Figure 6.4: Velocity profile u(y,t) against y at # = /4 and We = 0, 0.1,0.2 for both a/c < 1

andafc > 1.
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Figure 6.5; Temperature profile 7(y,s) against y at 1 = ®/4 and We = 0,0.1,0.2 for both

afc<landa/c> 1.

W 7 4 6 s 10 1

Figure 6.6: Variation in skin friction coefficient.Re,(y against ¢ for different values of A for

both assisting and Opposing flow cases
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Assisting flow case
.- Opposing flow cas

Figure 6.7: Variation in Nusselt number Re, i ZNM..r against ¢ for different values of A for both

assisting and Opposing flow cases

6.4 Conclusions

In this chapter, the influence of thermal radiation and conduction in the region of oblique stag-
nation point flow is investigated subjected tc; th;: s‘i\nusoidal surface temperature of the vertical
flal plate. The obtained dimensionless partial differential equations are solved numerically by
using Chebyshev Spectral Newton lierative Scheme (CSNIS). To check the validity of our re-
sults, the numerical values are verified with the existing studied as a special case. Furthermore,
the results for sundry parameters are given graphically and in tabular form. It is observed that
the skin friction coefficient. the local Nusselt number, stagnation point and streamlines oscil-
late periodically due to sinusoidal nature of the plate oscillations and surface temperature in

both assisted and opposed flow regions. It is also concluded that

e The velocity is found as an increasing function of a/c, where an opposite behavior is
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observed for the temperature.

e For large straining velocity (a/c > 1), the velocity of the fluid increases while the tem-

perature falls due to increase of viscoelastic parameter We.

o For large stretching velocity (a/c < 1), the velocity of fluid decreases while the temper-

ature enhances due to increment of viscoelastic parameter We.

e Velocity increases in assisting flow case as compare to opposing flow case while the

temperature has opposite behavior.
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Chapter 7

Heat transfer analysis of unsteady oblique
stagnation point flow of viscoelastic fluid
due to sinusoidal wall temperature over

an oscillating-stretching surface

In this chapter, heat transfer analysis of an unsteady oblique stagnation point flow of elastico-
viscous fiuid over an oscillating-stretching surface which is also heated due to sinusoidal tem-
perature is presented. The governing partial differential equations are transformed into dimen-
sionless form. The solution of obtained partial differential equations is computed numerically
using Chebyshev Spectral Newton Iterative Scheme (CSNIS). The computed results are highly
accurate and compared with previous studies in limiting sense. The effects of involving param-
eters on the fAuid Aow and heat transfer are shown through tables and graphs. It is importantly
noted that the amplitude of the local Nusselt number and skin friction coefficient enhances due

to increase in the values of unsteady parameter. The heat transfer rate increases with increase
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in the values of Prandtl number. In non-Newtonian fluid, the heat transfer rate is maximum
decreases as compare to that of Newtonian fluid case. The variation of skin friction coeffi-
cient and local Nusselt number are discussed for the wide range of time and various pertinent

parameters.

Stagnation Point

=I

O

— r—— —

Uy=c¢ x+U,cos Ot

Figure 7.1: Physical Model of the problem

7.1 Problem formulation

We have considered the unsteady two-dimensional flow of elastico-viscous fluid impinging
obliquely over an oscillating-stretching surface at ¥ = 0 as shown in Fig. 7.1. The elasticity
of the fluid is assumed constant throughout the flow regime. The temperature of surface is
taken as sinusoidal, oscillating about the mean¥tue 7. which is higher than the ambient

temperature Ts. of the surroundings. The flow and energy equations are (see ref. [93,100])

did oV

S50 (7.1)
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dia da da _ 1dp 5. ko[ ;o2 d 3 \y- Oy O,
a?+uﬁ+va—i——55}+v7u-p [8 (Voa) + (u—x—kv——)V - —Via— V9

_,[ad% ovdla (oa oV Il
3532 Toyop "\ay T ax) axas S |

av av al’ laﬁ 7. kﬂ 3 2 _a _a - 3ﬁ 1= a‘; 2 _
af‘l_uax ay -b—a—§+vV V"—p [a l(Vﬂ)+(ué—f+v—)V V__'TV #— ==Vv

_2 %a_zf_i_aji_f_ 8" @ iz.?_
oo T ayar \ay a1/ dxdy )]’
(7.3)

o a2
T  oT T _ & (aT a:r)‘ 4

E"'Mﬁ}"FVa—-‘_I-—E;; a—fz‘i'a—ﬁ“f

In the above equations, &(%.7) and ¥(%,¥) are the velocity components in ¥ and y-directions,
T{#,7) is the temperature, p(%,7) is the pressure, v is the kinematic viscosity, p is the density,

ko is elasticity, C, is the specific heat and & is thermal conductivity of the fluid. The boundary

conditions of the problem can be defined as

y=0: i—ci+UpcosQFf, P=0, T = To + AT(1 + £ 5inF),
(7.3)
300" i=af+hy, T =T,
where @, & and ¢ are positive constant of diménsion 1/T, Tw is the ambient lemperature and
AT = T, — T is some temperature scale, € is the amplitude of the imposed temperature

oscillation, € is the frequency of the oscillation. Upon using the following non-dimensional

variable

c ¢ | l ] T-T.
- ¥ _ Vo= y —_ = I I s——— _. } = e -’1 _ -, . —_— ?6
x x\/v' y y\ﬂ‘f . v e Jve P pch T= T - Too (7.6)

in Egs.(7.1 —7.5), we get the following form

o, o
ax

Qou  du A 3p  —a ke [R0 ,on ( E a) . du_,
_—- _ —_— T — — PR IR P __V -_—
-3, H:ax+vay ax+VVu pv{ (V )+ u&x+v8y Viu EPAAL

Sugn,_y [0y v (e 30y Pul
dy Y dx ax2  dyody? gy dx/ dxdy]|’
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Q&v av av ap 9 k()c a 2 a a 2 a\’ 2
?8: +“§;+va_y = ~E;+VV U—EG {E(V V)+(H§;+V§;)v v— —Veu-—

5 2 2 s 2
ool a2 (3 5]

v dxadx?  dydyt dx J dxdy
(7.9)
Qor  IT oT  _k (FT T (7.10)

cdrt ax dy pvey, \9xt 3y '

y=10;: wu=x-+€cost, v=0, T =1+ £ sin¢,

\ (7.11)
oo u=Ex+—y,T:0,
¢ ¢

In which & = Up/+/Ve is the dimensionless constant which describe the amplitude of the plate
oscillation, Tntroducing the stream function y, which satisfies the continuity equation identi-

cally, we write the velocity components as

t,{r:(;’—w,v:—a—Y (7.12)

dy dx’

After eliminating pressure from Egs. (7.8) and (7.9) and then upon using Eg. (7.12), Eqgs.

(7.7—7.11) take the following form

9 (V'v) I(Vy) AWV . (v V)
— 5 ) - ~ - Viy =0, 7.1
+Wep i aix,y) g (x,¥) v =0 (7.13)

OT , dydT _ayar _ 2T alr)

————— 2o +35 7.14
P artavox axay (8.\‘2 5 (7.1%)

y=0: iE=J\f-|'-‘3<305--'. w=0, T=14¢gsin/,
2 (7.15)

y—oe: Y= xy+7y2, T=0,

where ¥ =b/c represents shear in the stream, §* = Q/cis dimensionless unsteady parameter,
We = kgc/pVv be the Wiessenberg number and Pr = picp/k be the Prandtl number. Suppose

the solution of Egs. (7.13. 7.14) subject to boundary conditions (7.15) is of the form

=xf(y)+glnn), T=0(y1), (7.16)

'J".
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where the functions f(y) and g(v) are normal and oblique component of the flows. Using the

Eq. (7.16) in Egs. (7.13 — 7.15), and then after comparing the the like powers of x, we get

fA g1 - S We (fF - £117) =0, (7.17)

343 ra 35 nra * 83 * 85
f_‘f;a_gf ( i *a_g) B Gy e gy =0 (1)

e a0
3 (——,6 a:) 0, (1.19)

y=0:  fy) =0, f(y)=1, gnt) =0, (?g(g);!) = gcost, B(n1) = 1 +& sint,

(7.20)

2
yoree:  f(y) =, a—g%ﬂ. 8(1) = 0

The prime sign denotes the differentiation with respect toy. Integrating Egs. (7.17) and (7.18)
with respect to y and the resulting constants of integration are evaluated by employing the

boundary conditions at infimity and we get

2
fur_l_ffu_ (f")2+W€ (ffw—zf’fm-l'(f”)z) n (g) =0, (7.21)
al 4 na g 0
128 B we(sTE -5 %),
ay? ayz 2 3y3 dy (7.22)
* a - _ o
—ﬁ m —Wt‘.’ﬁ a’a .3 AY—O.
d%6 d9 .98
s 7
dg(x1)

L
ii
o)

f»y=0, f(y)=1, gt =0, e gcosi, B{y.1) = 1+¢&sint,
Y (7.29)

gy,
y=e:  fi(y)=af 3;); )=Y, 8{y,1) =

Where A is a constant which measure the boundary layer displacement. It arises when y — o,

f(y) behaves as f(¥) = (a/c}y +A. The dimensionless components of velocities are

u = %_'4{ =xf() g (). (7.25)
dy
v=-—737 = —f{y). (7.26)
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The quantities of physical interest are the skin friction coefficients Cy and the local Nusselt

number Nuy, can be cxpressed as

C, =2 Nu M (7.27)

pu T KT Tw)

where T, is shear stress at the wall and ¢, is the local heat flux at the wall which are defined

in dimensionless form as as

l 1 |
Tw = Moy +ve) — 2c%ky (uuyvy — Ve 5y (ay +ve) — JUx {by +ve) + 3 (tyr +vu) +
2

o=t =T (ay)

Using Egs. (7.12) and (7.16), the skin friction coefficients and the local Nusselt number take

2 (u\;. +Vn)+ 1”(”n+vu))

(7.28)

the following form

923(070_3 ,278(0.1)
ay? 8ray2 ’

Re,Cr = x(1—3We—geWe) f"(0) + (1 —2We)
(729

Re. "’ZNu_t = —6'(0.0).

where Re, = c#2/v = x°.

7.2 Chebyshev Spectral Newton Iterative Scheme

The nonlinear time dependent partial differential équations (7.21}—(7.23) subject lo the bound-
ary conditions (7.24) are solved numerically by using Chebyshev Spectral Newton Iterative
Scheme [90]. This method has advantages over other numerical techniques such as shooting
method, parallel shooting method, and finite difference method. In this method, we transform
our domain - 1 to | and for very small number of points we get accurate solution while in

other method we discretize our domain in thousands of points to get accuracy. This numerical
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scheme is also repaid convergent. On the other hand, present method have make a comparison
with other studies as Tables 7.1 and 7.2, and obtained good agreement with their study results.
For the initial steady solution at 1 = 0, the goverting Eqgs. (7.21)—(7.24) reduce (o the follow-

ing ordinary differential equations

\ 2
fm-l'ff”—(f)z-l-We(ffw—szfm-F(f”)z)+(g) =0, (7.30)
g Fe'- fig +We (fg.-'r _ g -l—f"g” _fmg;) ~AY=0, 31)

9”4 Prfe’ =0, (7.32)

y=0:  fO) =0, f(y) =1, g»n0) =0 g{n0)—¢, 0(x0) =1,
(7.33)

y—oe: [y =arc, g'(»0)=7. 8(»0)=0.
To find the solution of Egs. (7.30)—(7.33), first we convert the Eq. (7.30) into 2 linear form by

using Newlon’s linearization process. For {i+1)th iterates, we write
C

and similarly for all other dependent variables, where 8 f; represents a very small change in
fi. Using Eq. (7.34) in (7.30) and dropping the quadratic and higher order terms in 8 f; . we

obtained

0 87 41 Bf" +c2ibf] +c3;8fi +caibfi = Ri, (7.35)
subject to boundary condilions
5£(0) = —£i(0), 8/(0) =atc - f;(0), 8f/{ee} =1 - fil=). (7.36)
The coefficients ¢, ;(j =0.1,2,3,4) and R; are
cos=Wefi, cli=1-2Wbf cri= fi+2We f!'
cry = —2f —2We fl", cay=f+Wef". (7.37)

Ry = =We (S = 201"+ ()7) A" = fiff o+ (1) = (e}
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Now the solution of obtained linear equations can calculated by employing the same steps
as claborated in chapter 4. Once the solution of Eqs. (7.30)- (7.33) is calculated for steady
case (t = 0), we proceeded further to next time steps by taking step size Ar = k = n/90.
The time derivative in Eqs. (7.21)—(7.24) is replaced by backward finite difference scheme

(c.8- 20} (00— 0-1) ). the Bas. (7.21)—(7.24) take the following form

() + D (7, = (£, 4 We ((Na (), = 200, "), +(77%),) + (et =

() e (29), 0. (20) (),
(-, ) () (39), )-wr-e
)

(7.39)
= gcos(nk) , (8), =1+ £ sin(nk),
. 4 (741)

¥ oo (f1), == ale, (—8) —y, (8), =0, tn=nk where n = 1.2.3....
v "

As the Eq. (7.38) is independent of time, so solyton of {f},, is known for all n > 0, then Egs.
(7.39), (7.40) became lincar and are solved by employing differentiation matrix D directly

[88-90). For n=1, Eqgs. (7.39), (7.40) take the following form
(), 400 (59), -0 (3, (o (58), -0 58), - 5,
e (3)) -5 ((3),- ()" (), (G ))“‘”’20‘

(7.42)
%6 20\ B -
(7)1+Pf((f)1 (a—),) . ~ (@ —Bu)) =0, (7.43)
y=0:(f} =0, (ff)] =1.(g), =0, (%g) cos (k) , (8), = | +&sinfk
7/ (7.44)
, 9%g
y et (f), = aic. (5?)1 =y, (8), =0.



In Egs. (7.42—7.44), the values of fo, goand 6; are known from the previous step (r =0)and
the values of unknown fj, g; and 8, are found by employing Chebyshev Spectral Collocation
Method, as it has been done in steady case (f = 0). Similarly for n=2, the values of unknown
/>, g2and 8, are found. We continued this process up to required range of ¢, For the computa-

tion purpose, a numerical code in MATLAB 2010a is developed and used.

7.3 Results and discussion

The non-linear partial diffcrential equations (?.21 —7.23) subject to the boundary conditions
(7.24) are solved numerically for the different values of dimensionless parameters namely
Wiessenberg number We, velocities ratio parameter a/c, obliqueness parameter Y, unstcady
parameler 3*, Prandtl number Pr, amplitude of oscillating plate € and amplitude of imposed
temperature oscillation €, for required range of r. The Comparison of f”(0), and — 8'(0)
for some values of the parameters with those of previous studies are given in Tables 7.1 and
7.2, tis found that the computed results are convergent and highly accurate, In Table 7.3, the
values of skin friction coefficient and local Nusselt number are presented for different values
of pertinent parameters. Computed solution in term of velocity. temperature profiles, skin
friction coefficient and Nusselt number are plotted for sundry parameters in Figs. 7.2-7.9.
In Fig. 7.2, the dimensionless velocity component u(y,¢) is plotted against v at different time
steps,7 =0, /4, n/2and wfore =1,y=2, B* =0.2, We=0.1. The solid lines are drawn for
a/e¢ — 0.1 and the dashed lines are for a/c = 1.2. It is seem that due to no-slip condition fluid
oscillates with the velocity of plate. Since for fixed € = 1, the oscillation velocity of the plate is
#(y,1) = | Fcost, its least value is O and maximum value is 2. Itis further observed that with
increase of time. the velocity of the fluid decreases against y and at 1 = 7 it comes to zero, and

again starts increasing for 1 = & to 2a. It is also noted that the velocity of the fluid increases
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with increase in the values of a/c. In Fig. 7.3, the temperature profile is plotted against y at
t=0,7/4,n/2andwfor e =1,y = 1,y=2, = 0.2, We = 0.1, Pr = 1. The solid lines
are drawn for a/c = 0.1 and the dashed lines are for a/c = 1.2. For € = 1, the temperature
of the fuid oscillates from 0 to 2. It is observed that the temperaturc decreases with increase
in the values of a/c in the boundary layer region. In Fig. 7.4, the values of skin friction
coefficient (Re,Cy) are plotted against 7, fore =0,1,2,3atWe =0.1.y = 2,8 =026 =1.
The solid lines are drawn for a/c = 0.1 and the dashed lines are for a/c = 1.2. The values
of skin friction coefficient oscillate about its mean value —0.384 for ¢/c = 0.1 and 1.98]
for a/c == 1.2 respectively. The value Re,C; = —0.384isat £ =0,4/c =01, We=0.1,7=
2.8*=02,¢& =landRe,C; = 1.981isate =0,a/c=12. We=0.1,y=23"=02, 61 = |
for all time 7. 1t is importantly noted that will-:iincrcasc in the values of £, the amplitude
of skin friction coefficicnt increases. In the region 0 < r < 7/2 the skin friction coefficient
decreases with increase of £, where in the region 7/2 < 1 < 37/2 an opposite behavior is
observed. Again in the region 37/2 < ¢ < 2x the skin friction coefficient decreases with
increase of €. The behavior of skin friction coefficient continues for all values of 7. The
amplitude of skin friction coefficient against 7 increases due to increase in the values of a/c. In
Fig. 7.5, the values of skin friction coefficient (Re.Cy) are plotted against ¢ for y=0,0.5,1,2
at We = 0.1,8* = 0.2,€ =0 and & = 1. The values of skin friction coefficient increases with
increase of obliquencss parameter 7. In this figure, the solid lines are drawn for Newtonian
case (We = 0) and dotted hines are for non-NewL.onian case (We = 0.2). It is also noted that
amplitude of skin friction coefficient decreases with increase in the values of Non-Newtonian
parameter We, In Fig. 7.6, the values of local Nusselt number (Re,.-' 1/ 2Nu:x) are plotted against
tforg =0,1,2,3ate=1, We=0.1, *=0.2, y=2, Pr = 1. The solid lines are drawn for

a/c = 0.1 and the dashed lines are for a/c = 1.2. The heat transfer rate is observed periodic

124



function of time ¢ and amplitude of oscillation can further be increased by increasing the values
of & as shown in Fig. 7.6. It is further noted that the increase in the amplitude of oscillation
can further be increased by increasing the values of velocities ratio parameter a/c. In general,
both parameters help to increase the heat transfer rate in the boundary layer region near the
oblique stagnation point flow over an oscillating stretching surface. The effect of Prandtl (Pr)
on heat transfer rate is shown from Fig. 7.7. It is plotted for £ = 1,a/¢ = 0.1, f* = 0.2,y =
2, ¢ = | and for different important values of Pr=0.1,0.7,1,7. The solid lines are drawn
for We =0 (Newtonian case) and the dashed lines are for We = 0.2 (non-Newtonian case).
The heat transfer rate enhances due to increase in Pr and the amplitude of the osciltlation
become larger for large Prandt) number. It is also seen that in non-Newtonian fluid, the heat
transfer decreases as compare to Newtonian fluid case. In Fig. 7.8, the values of skin friction
coefficient (Re,C;) are plotted against f over one period of oscillation, for §* = 0,0.2,0.4, al
g =1,e=1,afc=01,7=2 We=0.1and Pr= 1. With increase of unsteady parameter
B*, the amplitude of the skin friction increases. It is also observed that with increase of 7,
the skin friction coefficient coefficient increases in the region 0 <1 < 195¢ and decreases
in the region 195° < ¢ < 378°. Fig. 7.9 shows the time variation of local Nusselt number
(Re; 'szu,,) over one period of oscillation for Br=00204a¢g =1,¢€= l,a/c=0.1,
y =2, We = 0.1 and Pr = 1. It is observed that the amplitude of the local Nusselt number is
proportional to unsteady parameter B* ie increase in the values of B results in increase the
amplitude of Re; 2p1,. In Fig.7.10, the streamlines are plotted for y = 0.0.5.1,2atg =1,
e=18"=02 We=01,a/c=02 Iis noted that with increase in the values of ¥, the
amplitude of oscillation decreases. From the trend of streamlines, it is predicted that for larger
values of 7, amplitude of oscillating streams tends to zero. In Fig.7.11, isotherms are plotied

forg =005 1,2ate=17=1p" =02 We = 0.1, a/c = 0.2 and Pr=0.7. It is seen
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from the figures (a-d) the oscillation in temperature increases with increase in the values of €;.

Table 7.1: Comparison of f/(0) and 6’(0) against different values of a/c with Nazar et al. [25]

and Mahapatra and Gupta [24] whenWe = 0, e =0, & =0,7y=0,5* =0and Pr=1.5.

10 6'(0)

af¢  Present  Mahapatra and Gupta [24] Nazaretal. [25]  Present Mahapatra and Gupta [24]

0.1 -0.96939 -0.9694 —0.96%4 —0.77680 —-0.777
2 -091810 -0.918] -(,918] -0.79712 -0.797
05 -0.66726 -0.6673 ~-0.6673 --0.86479 —(.863
20 2001730 20175 2.0176 -1.17810 -L17

30 472928 47293 4.7296 -1.35194 -1.34}

Table 7.2: Comparison of f{0) against different values of a/c and We with Husain et al. [52].

The others parameters are fixed at£ =0,y =0, 8" = 0.

Present Husainetal. {32] Present Husainetal [52] Present Husain et al. [52]

aje We =01 We = 0.2 We =03

0.1 10273 -1.0271 - 1.0956 --1.0935 -1.1778 11777
05 - 0.7300 .7299 08102 - 0.8101 -0.9142 —0.9141
.1 01918 0.19177 0.2393 0.2392 0.3520 0.35198
12 03993 0.3992 0.5140

0.5139 0.9103 0.8499
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Table 7.3: Values of Re,C; and (Rex)_]ﬂNux for the various parameler a/c, ¥, €1, €, B, Pr

and We,

1=nrf4 1=x/2 =K

-1.000 (04544} -1.000 (0.4344)

o -1.000 (0.4544)

0.5 05

ol

0.

0.8

02

0.15

7.0

2.0

15 L3

-2.0344 (0.4544)
-2.5130¢0.4544)
-1.0818 {0.5250)
-0.8216 (0.5170)
-0.8216 (0.5170)
-0.8216 (0.6380)
-0.587( {0.6380)
-1.0040 (0.6380)
-0.4983 (0.7536)
-0.3760 (0.7487)
-0.3760 (0.7487)
-0.3760 (2.0422)
0.1641 (2.0422)

-0.2154 (2.0422)

-.1081 (2.1487)
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-;'2.0344 (0.4544)
-2.3728 (06151
-0.9250 (0.7106)
-0.7273 (0.6998)
-0.7T137(0.7254)

-0.7137 (0.8930)

-0.4891 (0.8930)

0, 7881 ¢1.1479)
-0.2593 (1.3314)
-0.3023 (1.3234)
-(.2936 (13467
-0.2936 (3.6613)
0.2465 (3.6613)
0.0918 (4.4709)

-0.0253 (4.6711)

-2.0344 (0.4544}
-2.0344 (0.6817)
-,5463 {0.7875}
-0.4256 (0.7755)
-0.4018 (0.7788)
-0.4018 (0.9607)
-0.1772(0.9607)
-0.1643 (1.2833)
0.4461 (1.3115)
0.2216(1.5017}
0.241] (1.5052)
0.2411 {4.1037)
0.7812 (4.1037)
0.7103 (5.1345)

0.9064 {5.3969)

2.68

-2.0344 (0.4544)
-1.5559 (0.4544)
-0.0106 (0.5250)
-Q.0811 (0.5170)
-0,0836 (0.4839)

-0.0856 (.6000)

0.3101 {0.6000)
0.8104 (0.5620)
1.5685 (0.6942)
1.3019 {0.688%)
1.3092 (0.6593)
i.3092 (1.3138}
1.8494 {1.8138)
2.3125 (1.6995)

08 (1.8295)
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Figure 7.3: Temperature profile 8(y.r) against y at different time steps.
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0° Q0° 180° 270° 360°
Figure 7.4;: Variation of skin friction coefficient Re,Cyagainst t for different values of £ and

afc.

Wg:O—'—— We=02 -

g ¥=0,05 1.2

o° 90° 180° 270° J66°
f

Figure 7.5: Variation of skin friction coefficient Re,Cy against ¢ for different values of ¥ and

We.
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4} alc =01 — wc=12

0° 90° 180° 270° 360°
!

Figure 7.6: Variation of Nusselt Number Re, lﬁ!\«'u_lr against ¢ for different values of € and

w/c.

We=0 — We=02

0° 90°  18F 360° 540° 720°

Figure 7.7: PVariation of Nusselt Number Re, 1/ zNux against ¢ for different values of Pr and

We.
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B =0,02 04

0° 90° 180° 270° 360°
!

Figure 7.8: Variation of skin friction cocfficient Re C against / for different values of B*.

B =002 04

o° 90° 180° 270° 360°
)

Figure 7.9: Variation of Nusselt Number Re, I‘f *Nuy against 7 for different values of §°.
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Figure 7.11: Isotherms for different values of €.
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7.4 Conclusions

In this chapter, unsteady oblique stagnation point flow of elastico-viscous fluid over an oscillating-
stretching surface with sinusoidal wall temperature is considered. The governing partial dif-
ferential equations are transformed into dimensionless form. The obtained system of partial
differential equations is solved numerically by using Chebyshev Spectral Newton lterative
Scheme (CSNIS). The numerical results are compared with the previous studies in limiting
sense, which are highly accurate and have excellent agreement with published results. The
results are shown graphically for sundry parameters. Velocity, tempcrature, skin friction co-
efficient and local Nusselt number oscillate periodically due to sinusoidal nature of the plate

oscillation and surface temperature. This study concludes that

The velocity of the fluid increases with increase in the values of a/c in the boundary

layer region, while the temperature is observed a decreasing function of a/c.

The values of skin friction coefficient increases with the increase of obliqueness param-

eter 7.

Amplitude of skin friction coefficient decreases with increase in the values of We.

The heat transfer rate enhances due to increase of Prandtl number (Pr} in the boundary

layer region near the stagnation point.

Heat transfer rate decreases in non-Newtonian fluids as compare (o Newtonian fluids.

The amplitude of the local Nusselt number (Re;” ZNux) and skin friction coefficient

(Re,C ¢} is proportional 10 unsteady parameter 3.

133



I

Bibliography

[1] K. Hiemenz, Die grenzschitcht an einem in den gleichformigen flussigkeitsstrom einge-

tauchien geraden kreiszylinder, Dingler polytech, J., 326 (1911) 321 - 324,

{2] L. Howarth. On the calculation of the steady flow in the boundary layer near the surface

of a cylinder in a stream, ARC-RM, 164 (1935) 16-32.
[3] S. Goldstein, Modern Developments in Fluid Dynamics, Oxford University Press (1938).

[4] F. Homann, Der einuss grosser zahigkeit bei der stromung um den zylinder und um die

kugel, 7. Angew Math. Mech. (ZAMM), 16 (1936) 153—164.

[5} L. Howarth, The boundary layer in three-dimensional flow. Part-11: the flow near a stagna-

tion point, Philos Mag., 42 (1951} 1433-1440,

[6] A.Davey, Boundary layer flow at a saddle point of attachment. J. Fluid Mech., 10 (1961)

593-610.

{71 E.R.G, Eckert, Die berechnung des warmeuberganges in der laminaren grenzschicht um-

stromter korper, VDI forschungsheft, Berlin, (1942).

[8] PR. Nachtsheim and P. Swigert, Satisfaction of asymptotic boundary conditions in numer-
ical solution of systems of non-linear equations of the boundary layer type, NASA TN D

3004, October (1965).

134



[91 N. Rott, Unsteady viscous flow in the vicinity of a stagnation peint, Quarterly J. Appl.

Math,, 13 (1956) 444 -451.

[10] M.B. Glavert, The laminar boundary layer on oscillating plates and cylinders, J. Flud

Mech., 1 (1956} 97~ 110.

[11] J. Watson, The two-dimensional laminar ﬂjow near the stagnation point of a cylinder
which has an arbitrary transverse motion, Quarterly J. Mech. Appl. Math., 12(2) (1959)

175-190.

[12] J.T. Swart, Double boundary layers in oscillatory viscous flow, J. Fluid Mech., 24 (1966)

673-687.

[13] TJ. Pedley, Two-dimensional boundary layers in a free stream which oscillates without

reversing, J. Fluid Mech., 55 (1972) 359383,

(14] C.E. Grosch and H. Salwen, Oscillating stagnation point flow, Proceedings of the Royal

Society of London, Series A, Math. Physical Sci., 384 (1982) 175-190.
N

[15] G.J. Merchant and S.H. Davis, Modulated stagnation point flow and steady streaming, J.

Fluid Mech., 198 (1989) 543-3555.

[16] A.L.Hazel and T.J. Pedley, Alteration of mean wall shear stress near an oscillating stag-

nation point, J. Biomech. Eng.. 120 (1998) 227.
[17] L.J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970) 645-647.

[18] PS. Gupta and A.S. Gupta, Heat and mass transfer on a stretching sheet with suction or

blowing, Can. J. Chem. Eng., 55 (1977) 744-746.

135



[19] C.Y. Wang. The three dimensional flow due to a stretching at surface, Phys. Fluids, 27

(1984) 1915 1917.
(20] C.Y. Wang. Fluid flow due to a stretching cylinder. Phys. Fluids, 31 (1988) 466—468.

|21]) C.Y. Wang, Liquid film on an unsteady stretching sheet, Quarl. Appl. Math., 48 (1990)

601-610.

[22] T. C Chiam, Stagnation peint flow towards a stretching plate, J. Phys. Soc. Jpn.., 63 (1994)

2443--2444 .

[23] T. R. Mahapatra and A. S. Gupta, Magnetohydrodynamic stagnation point flow wowards

a stretching sheet, Acta Mech., 152 (2001) 191 —~196,

[24] T.R. Mahapatra and A.S. Gupta, Heat transfer in stagnation point flow towards a stretch-

ing sheet, Heat Mass Transfer, 38 (2002) 517-=521.

[25] R. Nazar, N. Amin, D. Filip and 1. Pop, Stagnation point flow of a micropolar fluid

towards a stretching sheet, Int. J. Nonlin. Mech.. 39 {2004) 12271235,

[26] G. C. Layek, S. Mukhopadhyay and S. K. A. Samad, Heat and mass transfer analysis
for boundary layer stagnation point flow towards a heated porous stretching sheet with heat

absorption/generation and suction/blowing, Int. Commun. Heat Mass, 34 (2007) 347-356.

[27] T. Hayat, T. Javed, and Z. Abbas, MHD flow of 2 micropolar fluid near a stagnation point

towards a non-linear stretching surface, Nonlinear Anal-Real, 10 (2009) 1514 1526.

[28] J. Zhu, L. Zheng and Z. G. Zhang, Effects of slip condition on MHD stagnation point

flow over a Power-law stretching sheet, Appl. Math. Mech., 31 (2010) 439-448.

136



[29] G. C. Shit, R, Haldar and Sinha, Unsteady flow and heat transfer of a MHD micropolar
fluid over a porous stretching sheet in the presence of thermal radiation, J. Mech., 29 (2013)

559-568.

[30] K. Bhattacharyya, Heat transfer analysis in unsteady boundary layer stagnation point

flow towards a shrinkingfstreiching sheet, Ain Sharns Eng. J., 4 (2013} 255264

(31] J.T. Stwart, The viscous flow near a stagnation point when the external fiow has uniform

vorticity, J. Aerospace Sci., 26 (1959)124-125.

[32] K.J. Tamada, Two-dimensional stagnation point flow impinging obliquely on a plane

wall, J. Phys. Soc. Ipn., 46 (1979) 310-311.

(33] T. C Chiam, Two-Dimensional Flow Impinging Obliquely on a Moving Plane Wall. Z.

angew. Math. Mech.. 62 (1982) 708—709.

[34) J.M. Dorrepaal, An exact solution of the Navier-Stokes equation which describes non-

orthogonal stagnation point flow in two dimensions, J. Fluid Mech., 163 (1986) 141—147.

[35] M.J. Lyell and K.D. Cronin, Extinction properties of a premixed laminar flame in oblique
stagnation flow in the region of the stagnation point, Comput. Method. Appl. M., 95(1)

(1992) 71-386.

[36] F.Labropulu,J. M. Dorrepaal and O. P. Chandna. Oblique flow impinging on a wall with

suction or blowing, Acta Mech., 115 (1) (1996} 15-25.

[37] B.S. Tilley and P. D. Weidman, Oblique two-fluid stagnation point flow, Eur. J. Mech. —

B/Fluids, 17 (2) (1998) 205-217.

[38] M. Amaouche and D. Boukari, Influence of thermal convection on non-orthogonal stag-
nation point flow, Int. J. Therm. Sci. 42 (3) (2003} 303-310.

137



vr‘

[39] P.D. Weidman and Putkaradze, Axisymmetric Stagnation Flow Obliquely Impinging on

a Circular Cylinder, Eur. J. Mech. - B/Fluids, 22 (2003) 123--131.

[40] P. D. Weidman and Putkaradze, Erratum to axisymmetric stagnation flow obliquely im-

pinging on a circular cylinder, Eur. J. Mech.— B/Fluids, 24 (2004) 788—790.

[41] F. Labropulu and M. Chinichian, Unsteady oscillatory stagnation point flow of a vis-

coelastic fluid, Int. J. Eng. Sci. 42 (2004) 625-633.

[42] M. Reza, A.S. Gupta, Steady two-dimensional oblique stagnation point fliow towards a

stretching surface, Fluid Dyn. Res., 37 (2005) 334-340.

[43] Y. Y. Lok, N. Amin and I. Pop, Non-orthogonal stagnation point flow towards a stretching

sheet. Int. J. Non-Linear Mech., 41 (2006) 622-627.

[44] M. Reza and A S. Gupta, Some aspects of non-orthogonal stagnation peint flow towards

a stretching surface, Engineering, 2 (2010) 705-709 .

[45] P. Drazin and N. Riley, The Navier-Stokes equations, a classification of flows and exact
solutions, London Mathematical Socicty, Lecture notes series, Cambridge University Press,

(2007).

[46] T.R. Mahapatra, S. Dholey and A.S. Gupta, Oblique stagnation point flow of incom-
pressible visco-elastic fluid towards a stretching sheet, Int. J. Non-Linear Mech. 42 {2007)

484- 499.

{47] R. M. Tooke and M. G. Blyth, A note on oblique stagnation point flow, Phys, Fluids, 20

(2008) 1-3.

[48] T. Grosan, 1. Pop, C. Revnic and D.B. Ingham, magnetohydrodynamic oblique stagnation
point flow, Acta Mech., 44 (2009) 565—572.

138



[49] P, Singh, N. S. Tomer, S. Kumar and D. Sinha, MHD oblique stagnation point flow
towards a stretching sheet with heat transfer, Int. J. Appl. Math. Mech. 1. 6(13) (2010)

94-111.

[50] Y. Y. Lok, L. Pop and D. B. Ingham, Oblique stagnation slip flow of a micropolar fluid.

Meccanica, 45 (2010) 187 198.

(51] P.D. Weidman and M.A. Sprague, Flows induced by a plate moving normal to stagnation

point flow, Acta Mech., 219 (2011) 219-229.

(52] 1. Husain, F. Labropulu and 1. Pop, Two-dimensional Oblique stagnation point flow to-

wards a stretching surface in a viscoelastic fluid, Cent. Eur. J. Phys., 9 (2011) 176182

(53] T.R. Mahapatra, S.K. Nandy and A.S. Gupta, Oblique stagnation point flow and
heat transfer towards a shrinking sheet with thermal radiation, Meccanica, 47 (2012)

1325-1335.

[54] L.V. Yajun and Z. Liancun, MHD Oblique stagnation point flow and heat transfer of a
micro polar fluid towards to a moving plate with radiation, Int. ). Eng. Sci. Innovative Tech.,

2 (2013) 200-209.

[55] J. Buongiorno and L.W. Hu, Nanofluid coolants for advanced nuclear power plants, Pro-

ceedings of ICAPP, Seoul. Paper No. 5705 (2005) 15—19.

[56] J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd Edition, Oxford Univ. Press,

Cambridge. (1904).

[57] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: Develop-
ments and Application of Non-Newtonian Flows, ASME ,FED-Vol. 231/MD-vol. 66 (1995}
99— 105,

139



[58] J. Buongiomo, Convective Transport in Nanofluids, ASME J. Heat Trans{., 128 {2006)

240-250.

[59] A.V. Kuznetsov and D.A. Nield, Natural convective boundary layer flow of a nanofluid

past a vertical plate, Int. J. Therm, Sci., 49 (2010) 243 -247.

(601 A.V.Kuznetsov and D.A. Nield. Double-diffusive natural convective boundary layer flow

of a nanofluid past a vertical plate, Int. J. Therm. Sci., 50 (2011) 712--717.

[61] O.D. Makinde and A, Aziz, Boundary layer flow of a nanofluid past a stretching sheet

with a convective boundary condition, Int. J. Therm. Sci., 50 (2011) 13261332,

[62] M. Hassani. M. Mohammad Tabar, H. Nemati, G. Domairry and F. Noori. An analytical
solution for boundary layer flow of a nanofluid past a stretching sheet, Int. ). Therm. Sci.,

50 (2011) 22562263

[63] P.Ranaand R, Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretch-

ing sheet: a numerical study, Commun. Nonlinear Sci.. 17 (1) (2012) 212--226.

[64] M.A.A. Hamad and M. Ferdows, Similarity solution of boundary layer stagnation point
N
flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorp-

tion/generation and suction/blowing: a Lie group analysis, Commun, Nonlinear S¢i., 17(1)

(2012) 132-140.

[65] M. Sheikholeslami, M. Hatami and G. Domairry, Numerical simulation of two phase
unsteady nanofiuid flow and heat transfer between parallel plates in presence of time de-

pendent magnetic field, J. Taiwan Inst. Chem. E.. 46 (2015) 43--50.

[66] M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk, CompuL.
fluids. 94 (2014) 139~ 146.

140



[67] M.M. Rahman, A.V. Roscab and I. Pop, Boundary layer flow of a nanofluid past a perme-
able exponentially shrinking/stretching surface with second order slip using Buongiornos

model, Int. J. Heat Mass Tran., 77 (2014), 11331143,

[68] M.M. Rashidi, N. Vishnu Ganesh, A.K. Abdul Hakeem and B. Ganga, Buoyancy effect
on MHD flow of nanofluid over a streiching sheet in the presence of thermal radiation, J.

Mol. Liq., 198 (2014) 234—-2338.

[69] PX. Kameswaran, S. Shaw, P. Sibanda and PVS3.N. Murthy,
Homogeneous—heterogeneous reactions in a nanofluid flow due to a porous stretch-

ing sheet, Int. J. Heat Mass Tran., 57 (2013) 465472,

[70} FM. Abbasi, T. Hayat and A. Alsaedi, Peristaltic transport of magneto-nanoparticles

submerged in water: Model for drug delivery system, Phasica E, 68 (2015) 123-132.

[71] N. Bachok, A. Ishak and 1. Pop, boundary layer flow of nanofluids over a moving surface

in a fiowing fluid, Int. J. Therm. Sci., 4%(9) (2010) 1663 — 1668.

[72] S.M. Sebdani, M. Mahmoodi and S. Mohammad Hashemib. Effect of nanofluid vanable

properties on mixed convection in a square cavity, Int. J. Therm. Sci., §2 (2012) 112-126.

173} M.M. Rashidi, E. Momoniat, M. Ferdows and A. Basiriparsa, Lie group solution for [ree
convective flow of a nanofluid past a chemically reacting horizontal plate in a porous media,

Math. Probl. Eng., (2014), Article ID 239082.

{74) Mohammad H. Abolbashari, N. Freidoonimehr, F. Nazari and Mohammad M. Rashidi,
Entropy analysis for an unstcady MHD flow past a stretching permeable surface in

nanofluid, Powder Technol., 267 (2014) 256 267.

141



{751 O.D.Makinde, Analysis of Sakiadis flow of nanofluids with viscous dissipation and New-

tonian heating, Appl. Math. Mech., (Engl Ed} 33(12) (2012) 1545 1554.

[76) N. Takemitsu and Y. Matunobu, Unsteady stagnation point flow impinging obliquely on

an oscillating flat plate, J. Phys. Soc. Jpn. 47 (1979) 1347,

[77] T. Cebeci. and P. Bradshaw, Physical and computational aspects of convective heat trans-

fer, Springer New York (1984).

[78) H.B. Keller and T. Cebeci. Numerical methods in boundary layer theory, Annu. Rev.

Fluid Mech. 10 (1978) 417-433.
[79] P.D. Ariel, Hiemenz flow in hydromagnetics, Acta Mech. 103 (1994) 31— 43.

[80] M. Sajid, Z. Abbas,T. Javed and N. Ali, Boundary layer flow of an Oldroyd—B fluid in

the region of stagnation point over a stretching sheet, Can. J. Phys., 88 (2010) 635-640.

[81] F. Labropulu, D. Li and 1. Pop, Non-orthogonal stagnation point flow toward a stretch-
ing surface in a non-Newtonian fluid with heat transfer, Int. J. Therm, Sci,, 49 (2010)

1042—-1050.
[82] J.A. Shetz, Boundary Layer Analysis, Prentice Hall, New Jersey, (1993).
[83] H. Schichting, Boundary Layer Theory, sixth ed., McGraw-Hill, New York, (1964).

[84] T. Cebeci and H. B. Keller, shooting and parallel shooting methods for solving the

Falkner-Skan boundary layer equation, J. Comput. Phys., 7 (1971) 289—-300.
(85] K. Vafai, Handbook of Porous Media. second ed. Taylor & Francis, New York, (2005).

[86] H. A. Attia, Hiemenz Flow through a Porous Medium of a Non-Newtonian Rivlin-
Ericksen Fluid with Heat Transfer, Tamkang J. Sci. Eng., 12 (2009} 359-364.

142



[87] M.A. Hossain, H.S. Takhar, Radiation effect on mixed convection along a vertical plate

with uniform surface temperature, Int. J. Heat Mass Tran., 31 (1996) 243 -248.

[88] S. S. Motsa, P. G. Dlamini, and M, Khumalo, Spectral Relaxation Method and Spectral
Quasi-linearization Method for sotving unsteady boundary layer flow problems, Adv. Math.

Phys., (2014), Article ID 341964,

|89 T. Javed and 1, Mustafa, Effects of unsteady expansion / contraction of Wang’s cylin-
der problem with suction near a stagnation point, Asia-Pac. J. Chem. Eng.. Asia Pacific J.

Chem. Eng., 10 (2015) 184192

[90] A. Majeed, T. Javed, A. Ghaffari and M.M. Rashidi, Analysis of heat transfer due to
stretching cylinder with partial slip and prescribed heat flux: A Chebyshev Spectral Newton

Iteralive Scheme, Alexandria Eng. J., 54 {2015) 1029--1036.

[91] L.N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Math-

ematics, STAM ,Philadelphia, Pa, USA, (2000).

(92] D. Li, F. Labropulu and I. Pop, Oblique stagnation point flow of a viscoelastic fluid with

heat transfer, Int. J. Non-Linear Mech., 44 (2009) 1024—1030.

[93] D. W. Beard and K. Walters, Elastico-viscous boundary layer flows, 1. Two-dimensional

flow near a stagnation point, Math. Proc. Cambridge, 60 (1964) 667—674.

|94} V.K. Garg and K.R. Rajagopal. Flow of a non-Newtonian fluid past a wedge, Acta Mech.,

88 (1991) 113,

[95]) K. Vajravelu and T. Roper, Flow and heat transfer in a second grade fluid over a stretching

sheet, Int. J. Non-linear Mech., 34 (1999) 1031-1036.
P

143



[96] T. Hayat, S. Asad, M. Mustafa and Hamed H. Alsulami, Heat transfer analysis in the
flow of Walter's B fluid with a convective boundary condition, Chinese, Phys. B, 23 (2014)

084701.

[97] PD. Wecidman, D.G. Kubitschekb and A.M.J. Davis, The effect of transpiration on self-

similar boundary layer flow over moving surfaces, Int. J. Eng. Sci.. 44 (2006) 730-737.

[98] J. Paullet and P. Weidman, Analysis of stagnation point flow toward a stretching sheet,

Int. J. Nonlinear Mech., 42 (2007) 10841091,

[99] A.V. Rosca, and 1. Pop, Flow and heat transfer over a vertical permeable stretching/

shrinking sheet with a second order slip, Int. J. Heat Mass Tran., 60 (2013) 355364,

[100] J.H. Merkina and 1. Pop, Free convection near a stagnation point in a porous medium

resulting from an oscillatory wall temperature, Int. J. Heat Mass Tran., 43 (2000) 611-621.

[101] E. Magyari, A. Pantokratoras, Note on the effect of thermal radiation in the linearized
Rosseland approximation on the heat transfer characteristics of various boundary layer

flows, Int. Commun. Heat Mass, 38 (2011) 554 558.

[102] Y.Y. Lok, N. Amin and 1. Pop, Mixed convection flow near a non-orthogonal stagnation

point towards a stretching vertical plate, Int. J. Heat Mass Tran. 50 (2007) 48554863,



