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Preface

Most of engineering and industrial problems are modeled in terms of nonlinear partial/ordinary

differential equations. The exact/analytic solution of which is extremely difficult or nearly im-

possible. In these situations, the numerical methods are very helpful to find an approximate

solution. In this thesis, we presented the numerical studies of oblique stagnation point flow for

different Newtonian/non-Newtonian fluid models. Various physical aspects such as oscillating

surface, vertical oscillating stretching surface, oscillating free stream, stretching sheet, MHD

effect, radiation effect, oblique stagnation point flow through porous medium and heat transfer

through nanofluids near stagnation point, are also investigated. The governing non-linear dif-

ferential equation are solved by means of very efficient numerical techniques such as shooting

method, finite difference method and spectral collocation method.

Chapter one includes, some basic information about the fluid models which are used in the

whole study and literature review on orthogonaUoblique stagnation point flow is provided.

In chapter two, the study of unsteady oblique stagnation point flow due to an oscillating flat

plate and oscillating free stream has been carried out. The governing partial differential equa-

tions are transformed to three coupled dimensionless, nonlinear partial differential equations.

The system of equations is solved numerically by using well-known implicit finite difference

scheme named as Keller-box method. The effects of pertinent parameters namely magnetic

parameter, Prandtt number and impinging angle on the flow and heat transfer characteristics

are illustrated through graphs. The contents of this chapter are published in Canadian Journal

of Physics 93(10) (2015) I 138-1 143.

In chapter three, a numerical study is carried out for the steady two-dimensional boundary

layer flow of an incompressible Maxwell fluid in i1",. ,.gion of oblique stagnation point over a

stretching surface. The governing equations are transformed to dimensionless boundary layer

vlll



equations. The reduced system of ordinary differential equations is simulated by mean of

parallel shooting method. The effects of emerging dimensionless parameters are presented

through graphs. Moreover, streamlines are drawn to predict the flow behavior near the stagna-

tion point region. The contents of this chapter are published online in Journal of Mechanics

32(2\ (20t6) 17s-184.

Chapter four a<ldresses the non-linear radiation effect on the two-dimensional oblique stag-

nation point flow in a porous medium. Constitutive equations of viscoelastic second grade fluid

are employed in the mathematical development of the relevant problem. The resulting non-

linear system is solved using Chebyshev Spectral Newton Iterative Scheme (CSNIS). Impact

of sundry variables on the quantities of interest like skin friction and Nusselt number are dis-

cusserl. Difference between linear and nonlinear radiation is discussed and streamlines for

various values of obliqueness and porosity parameters are shown and their analysis is made.

The analysis presented in this chapter is published online in Tiansport in Porous Media

ll3(l) (2016) 24s-266.

Chapter 5 includes the study of enhancement of thermal conductivity of elastico-viscous

fluid filled with nanoparticles due to the implementation of radiation and convective boundary

condition. The flow is considered impinging obliquely over a stretching sheet near a stag-

nation point. The governing partial differential equations are transformed into a system of

ordinary differential equations by employing suitable similarity transformations. Solution of

the resulting equations is computed numerically using Chebyshev Spectral Newton Iterative

Scheme (CSNIS). Effects of involving parameters on the flow and heat transfer characteristics

are observed and shown through graphs. The findings of this chapter are published in Thermal

Science DOlzlD.2298/TSCI I 504 1 I 163G.

In chapter 6, the influence of radiation on the mixed convection flow of Walter's B fluid

lx



in the neighborhood of nonaligned stagnation point over a vertical oscillating flat plate has

been investigated. The plate is assumed to be heated with sinusoidal surface temperature. It

is further assumed rhat the plate is stretched linearly along the x-axis. The governing partial

differential equations are transformed into dimensionless form. The obtained dimensionless

partial differential equations are solved numerically using Chebyshev Spectral Newton Iter-

ative Scheme (CSNIS). The variation of Prandtl and radiation parameter is handled through

effective Prandtl number. The detailed discussion is made in this chapter with help of tables

and graphs. The results of this chapter are submitted in International Journal of Mechanical

Sciences

In chapter 7, heat transfer analysis of an unsteady oblique stagnation point flow ofelastico-

viscous fluid over an oscillating-stretching surface, heated due to sinusoidal wall temperature

is presented. The governing partial diff'erentiat equations are transformed into dimensionless

form. The solution of obtained partial differential equations is computed numerically using

Chebyshev Spectral Newton Iterative Scheme (CSNIS). The variation of skin friction coeffi-

cient and local Nusselt number are discusseO ftl'in. wide range of time and various pertinent

paramerers, The contents of this chapter are published in Journal of Molecular Liquids 219

(2016) 748-7ss.
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Nomenclature

a,b,c Positive dimensional constants

alc Velocities ratio Parameter

Strength of uniform magnetic field

Bi Biot number

Bs

C

C*

C.1

cp

cn,

ht

K

Ds Brownian diffusion coefficient

D7 Thermophoretic diffusion io!in.i.n,

f Dimensionless normal component of flow

g Dimensionless oblique component of flow

Solutal concentration

Ambient solutal concentration

Skin friction coefficient

Specific heat constant

Solutal concentration at the wall

Convective heat transfer coeffi cient

Porosity parameter

k,k I Thermal conductivity of the fluid

k1 Darcy permeability Parameter

krf I combined thermal conductivity of the fluid and porous medium

k., Thermal conductivitY of solid

Elasticity of fluid

Dimensionless magnetic parameter

Brownian motion parameter

Thermophoresis parameter

ko

M

N6

N,



Nu Nusselt number

Pressure

Prandtl number

Mass flux at the wall

Radiative heat flux

Heat flux at the wall

Radiation conduction parameter or Planck number

Local Reynolds number

Schmidt number

Local Sherwood number

Temperature of the fluid

Time

Ambient fluid temperature

Temperature of the hot fluid

Temperature of solid

Surface temperature

Dimensional velocity components in i and y directions

Dimensionless velocity components in -r and 1'directions

Free stream velocity

Velocity at the wall

Weissenberg number

Location of stagnation point

Coordinates along and normal to the surface in dimensional form

Coordinates along and normal to the surface in dimensionless form

p

Pr

Q,n

Qr

Qw

Rd

Re*

.Sc

Shr

T

t

T*

Ty

Ts

T,

il, 11

lt. v

ue

u*

We

.tr.r

f, .t
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Fr

Greek symbols

q. Obliqueness angle

dt,az Normal stress moduli

ar Rosseland mean absorPtion

B Maxwell fluid parameter

Thermal expansion coeffi cient

B* Unsteady parameter

^l Obliqueness parameter

e Dimensionless temPerature

en, Surface Heating Parameter

or

T

T*

'r,v. Wall shear stress

E

€1

p

osr

Dimensionless concentration

Electrical conductivity

Stephan- Boltzmann constant

Scattering coefficient

Stress tensor

Effective heat capacity of nanoparticle materials to heat capacity of the fluid,

V Stream function

Kinematic viscosity

Dynamic viscosity

Frequency of oscillation

Amplitude of the plate oscillation

Amplitude of imposed temperature oscillation

Fluid density
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Relaxation time of the material

Heat capacity of the fluid

Effective heat capacity of the nanoparticle material



Chapter 1

Introduction

ln this chapter, fundamental knowledge related to research presented in this thesis in forth-

coming chapters is provided for better understanding of the readers.

1.1. Fluid mechanics

Fluid mechanics is the branch of science which deals with the behavior of liquids and gases at

rest or in motion. The term fluid in everyday life commonly refers to liquids, but through the

definition, a substance that can easily gain the shape of its container is fluid or a substance is

said to be fluid if it deforms continuousty under the action of shear stress, no matter how small

the shear stress may be, gases are also considered as fluid. Applications of fluid mechanics

involves variety of mechanisms, ranging from blood flow in capillaries to flow of oil in huge

pipelines and from flight of birds to supersonic airplanes. Even one can say that for all bodies

in motion there is an associated fluid flow. Science of fluid mechanics is neither new nor

biblical; however, most of the progress we are seeing, was made in the 20th century. Fluid

mechanics and basic engineering were always integral parts of human evolution. Ancient

civilizations built ships, sails, irrigation systems and food-management structures, all requiring



some basic understanding of fluid flow.

All the physical phenomena are in some way related to the laws of fluid mechanics. Ap-

plication ol'these laws to fluid flow problems in terms of mathematics, results in the partial

differential equations such as continuity equation, the equations of motion and the energy

equation. These equations, for incompressible fluid flow are as follows

V.V:0,

p# --Y.t + Pr,

prr#:v.(kvr)*?:vv,

prrf:Y.(dYc),

(l.t)

(1.2)

( 1.3)

If we include the idea of mass transfer in fluid flow then we have another equation which can

be written as

( 1.4)

In above equations, term r : VV represents the viscous dissipation, p is the density, V is the

gradient operator, V is the velocity vector, t is the stress tensor, f represent the body forces,

c,, is the specific heat, T is the temperature, k is the thermal conductivity of the fluid, C is the

species concentration for mass transfer, D is the diffusivity for mass and dldt is the material

derivative.

1,2 Newtonian fluids

The fluids in which the applied shear stress at every point is linearly proportional to the strain

rate are considered as Newtonian fluids. In mathematical term for a unidirectional flow, it is

represented by

du
Txv* , ,

d)'
( t,s)



where p is the constant of proportionality commonly known as dynamic viscosity. The above

relation is known as Newton's law of viscosity. For a Newtonian fluid, the stress tensor is

given by C - -.-pl*S wherep is the pressure, I is the identity tensor and S is the extra stress

tensor defined as S . pA 1 , where A 1 represents the first Rivlin-Ericksen tensor and is defined

AS

du
Txv: l-l , t'ay

Al : L+L*'

where L represents the velocity gradient and L* represents its transpose.

0.6)

( 1.7)

1.3 Non-Newtonian fluids

If the relationship between the applied shear stress and the rate of strain is non-linear the fluid

is termed as non-Newtonian fluid. These fluids are very important due to their applications

in industries including civil, metallurgical, mining and chemical engineering. Many fluids

in nature have very complex behavior and cannot be studied on the basis of Newtonian fluid

model only. It is therefore, different models are presented to predict the behavior of non-

Newtonian fluids namely Power law model, Sisko model, Casson model, Maxwell model,

Second grade model and Walter's B model etc, The rheological effects in the present thesis

are captured on the basis of constitutive relationship of Maxwell, second grade and Walter's B

fluids.

r0



1,4 Mathematical models for non-Newtonian fluid flow

Different mathematical models have been proposed to study the behavior of fluid flow in dif-

ferent geometries. The models which are studied in this thesis are explained as follows:

1.4.1 Maxwell fluid

The rheological equation of Maxwell fluid model is

where 1.1 is the relaxation time of the material, which is duration of the time over which

significant stress persist after termination of deformation . D I Dt is the contravariant convective

derivative [80] defined as 
ill

For a contravariant vector

(t.e)

For a contravariant tensor of rank 2

DS-4-6-SL* (l.lo)
Dt dt

1,4.2 Second grade fluid

Extra stress tensor in second grade fluid obeys

S : pAr -f d,1/.2l d2A21, (1.11)

lli

where 42 is the second Rivilin-Erickson tensor defined by the following relation

s + trr ?os; : uat

p > 0, G1 ) 0, d1* a2:Q.

DS:4-,S
Dr dt

(1.8)

h:9*A1L*L-A1. (1.t2)
dt

For thermodynamically compatible second grade fluids one must have

ll

(1, l3)



1.4.3 Walter's B fluid

The stress deformation relation

where

for a Walter's B fluid is given bY

-. DAtS: IAr -Zko U

'j' : * * (v.v)Ar -Ar.L - L*.Ar.Dt dt

( l.l4)

( r. ls)

1.5 Literature review

In fluid mechanics, when fluid strikes to a rigid surface then velocity of fluid eventually be-

come zero at a point commonly known as stagnation point. The flow in the neighborhood of

stagnation point is called stagnation point flow,. The two-dimensional stagnation point flow

was first encountered by Hiemenz [], also known as the Hiemenz flow. He reduced the gov-

erning partial differential equations to a nonlinear third order ordinary differential equation by

means of the similarity transformation and found an exact solution of the obtained ordinary dif-

ferential equation. Howarth [2] studied the steady two-dimensional boundary layer flow past

an obstacle by means of various methods and provided an improved form of the Hiemenz so-

lution. Goldstein [3] observed that Hiemenz solution satisfies the full Navier Stokes equations

as well as the boundary layer equations. Various authors extended the stagnation flow in dif-

ferent ways. Homann [4] extented the work of Hiemenz tll by considering the axisymmetric

stagnation point flow. In the middle of last century, Howarth [5] extended the two-dimensional

stagnation point flow on a general (three dimensional) surface. He modeled the boundary layer

ordinary differential equations containing a single parameter c. For r' : 0 corresponds to the

two-dimensional flow and c : I corresponds to the axial flow. He computed the solution for the

12



various values of c between 0 and l. Davey [6] numerically simulated the three dimensional

stagnation point flow where the external flow is assumed to be irrotational with components

{ax,hy,-(a+D)z} with a and b are constants where a> O > b. He reported that the flow has

boun<lary layer character and for bla < _0.4294 the boundary layer flow is reversed' Eck-

ert [7] has performed the heat transfer analysis in stagnation point flow and it was observed

that the maximum heat transfer occurs in stagnatikin point region. Nachtsheim and Swigert [8]

numerically investigated the stagnation point flow in boundary layer region' They solve the

boundary value problem by first setting into initial value problem and then supplied a suit-

able initial guess which satisfies the condition defined at second point. The developed initial

value problem was encountered by Adams-Moulton integration scheme by using least-square

convergence criterion to get the unique solution. 1'hey concluded that the, applied method is

insensitive to the initial guess and converges rapidly. The stagnation point flow over oscillatory

walls was examined by Rott [9], in which he considered the case where the plate performed

periodic oscillations in its flown plane. During the same era, Glauert [10] attempted the two-

dimensional time dependent potential flow over oscillating surfaces. In this study. he not only

. ,i\

considered the flow over oscillating plate but also extended his study for the oscillating cylin-

der. He reduced the Navier-Stokes equations in the form of boundary layer equations and then

used similarity transformation. He solved the obtained ordinary differential equation by series

method for large and small values of frequency parameter upto the enough number of terms to

ensure the accuracy. He also oberved that the obtained solution satisfies the full Navier-Stokes

equations. Watson [ 1 I I generalized Rotts and Glauerts work 19, l0] by allowing the periodic

oscillations to be replaced by an arbitrary transverse motion. He approximated the solution by

means of different techniques according to the situation, For this purpose, by means of Laplace

transtbrm method (for the case of moving wall from the rest), expansions of the velocity lbr

13



large and small times are expressed in terms of the velocity of the wall. Further, he expressed

that how Pohlhausen type of method can be used, Stuart ll2l studied the double boundary

layer oscillatory viscous flow and considered case of flow generated by a circular cylinder os-

cillating along a diameter where the free stream velocity was assumed as a function of time.

He found the asymptotic solution of the considered problem and made qualitative agreement

with experimental results obtained by Schlichting [83]. Pedley [3] studied the stagnation

point flow problem by considering the time dependent sinusoidal free stream velocity. Nusselt

number and skin friction coefficient are calculated by means of two expansion asymptotically,

a regular one for small values of el (x) : wxlUo(x) and, a singular one (requiring the use of

matched asymptotic expansions) for large values of e1. The main difference of his work with

earlier authors is that the amplitude of the oscillating velocity can be considered as large. He

calculated the numerical values for different emerging parameter. The boundary layer time

dependent Hiemenz flow was also discussed by Grosch and Salwen [41. They gave approxi-

mate solution for low and high frequency oscillation parameter , The approximated results are

validated through numerical scheme and they found good agreement with the previous results.

Merchant and Davis [5] summarized the work of Pedley [13] and Grosch and Salwen [14],

extending it to consider the case where the dimensionless frequency parameter is Iarge and the

oscillatory component is much larger than the mean component. In this work, much attention

is focused on the steady streaming generated in this flow with strongly non-parallel stream-

lines, Hazel and Pedley [6] considered an unsteady orthogonal oscillating two-dimensional

stagnation point flow approaching an oscillating wall.

During the last few decades, enormous research activities in the area of stagnation point

flow have been considered by many researchers in different directions having to its appli-

cations in engineering and industries. An analytical solution for steady, two dimensional

t4
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stretching sheet was originated by Crane [7]. He assumed that velocity of stretching sheet

is proportional to distance from the silt, This phenomena is widely encountered in many

industrial applications such as materials manufacturing by polymer extrusion, wire drawing

such as springs, paper clips, spokes for wheels, and stringed musical instruments, continuous

stretching of plastic films, artificial fibers, hot rolling, glass fiber, metal extrusion and metal

spinning, cooling of metallic sheets or electronic chips, and many others. The idea of Crane

was extended by many researchers by incorporating different physical aspects such as Gupta

and Gupta [8] considered the heat and mass transfer over an impermeable stretching sheet.

Wang llg-/llconsidered three dimensional flow over a stretching sheet, flow due to a stretch-

ing cylinder and flow due to time dependent stretching sheet. Moreover, stagnation point flow

over stretching sheet has gained the attention of many scientists and engineers' Chiam [22) was

among the earlier scientists who considered stagnation point flow towards a stretching plate.

In his study, he considered different cases of the flow like two dimensional normal/oblique

stagnation point flow and axisymmetric normal/oblique stagnation point flow over stretchable

sheet. Mahapatra and Gupta [23] discussed the magnetic effect near the stagnation point over a

stretchable sheet, He observed the behavior of fluid flow within the boundary layer, with trans-

verse boundary and of no boundary layer cases. In an other study, Mahapatra and Gupta [241

observed the rate of heat transfer near the ,rug#iion point region. Nazar et al. [25] studied

stagnation point flow of a micropolar fluid towards a stretching sheet. They reduced the partial

differential equation into ordinary differential equation and then solved numerically by using

finite difference scheme. They observed that the skin friction coefficient is lower for bound-

ary layer and higher for transverse boundary layer flow. Similarly, the velocity of the fluid

is decreasing function of K in case of boundary layer and increasing function of K in case

of transverse boundary layer flow. Furthermore, Layek et al. 1261considered mass transfer

l5



in stagnation point region by assuming permeable heated stretching sheet. Hayat et al. 127)

consider stagnation point flow over a nonlinear stretching. Zhu et al. [28], Shit et al. [29),

Bhattacharyya [30] and many others have discussed the stagnation point flow over a stretching

surfaces by incorporating different aspects.

Orthogonal stagnation point flow has been interesting study area for the researcher but the

less attention was devoted to oblique stagnation-point flows. Oblique stagnation-point flow

appears when fluid strikes on a rigid surface at an arbitrary angle. From a mathematical point

of view, such flow is obtained by combining orthogonal stagnation point flow with a shear flow

parallel to the wall. The study of steady two-dimensional oblique stagnation-point flow of a

Newtonian fluid was first elaborated by Stuart [31]. He first reduced the probtem into system

of ordinary differential equations by using ,imfll\ty transformation and then found rhe exacr

solution. Following the Stuart, Tamada [32] considered steady two-dimensional stagnation

point flow impinging obliquely to the plane wall. He found analytical solution of the prob-

lem and comparison is presented with existing solutions. He also sketched the stream lines

to predict the fluid flow behavior. The work of Tamada, was extended by Chiam [33] with

addition of moving plane wall. He found numerical solution of the problem by assuming the

constant velocity of the moving sheet and considered the same stream function as reported

by Tamada [32]. He obtained the result for both stationary and moving plate and for case of

stationary sheet the results are compared with previous studies. Dorrepaal [34] revisited the

work of Stuart [31] and Tamada [32] and found the similarity solution for two dimensional

oblique stagnation point flow. In his study, he assumed the stream function in terms of im-

pinging angle o and for d, : 0 the problem reduces to the orthogonal stagnation point flow.

Lyell and Cronin [35] presented finite element solution of premixed laminar flame extinction

in the region of orthogonal and oblique stagnation point flow. For case of orthogonal stagna-

l6



tion flow, they compared finite element solution with previously investigated by Runge- Kutta.

They found that, except in the case of Levis number unity, the effect of shear was to shift the

reaction region closer to the wall. Labropulu et al. [36] extended the work of Dorrepaal [34]

by considering the flat plate as permeable. They found that, suction helps to penetrate the

fluid in wall, while blowing helps to shifi the stagnation point and this shifting of stagnation

point depends upon the magnitude of the blowing, Tilley and Weidman [37], investigated the

impingement of two fluid flows forming a flat interface. They solved the governing equations

numerically using shooting method with fourth order Runge- Kutta scheme and missing ini-

tial conditions are calculated through Newton-Raphson method. Amaouche and Boukari [38]

investigated oblique stagnation point flow over an inclined heated flat plate. They found that

buoyancy induced convection flow acts to either reinforced or oppose the fluid flow. Weid-

man and Putkaradze [39] studied the axisymmetric flow on a circular cylinder where the fluid

is impinging to the surface. In this study they ..inrid.. incorrect outer pressure filed for the

case of circular cylinder. Later, in ref. [40] they presented a correct solution of their problem

by considering a valid outer pressure field. Labropulu and Chinichian [4ll considered time

dependent oblique stagnation point flow of non-Newtonian fluid. In their article, they used

constitutive equations of Walters B fluid model and assumed that the plate is oscillating with

velocity U cost. In last decade, Reza and Gupta [42) generalized the problem of an oblique

stagnation point flow over a stretching sheet by Chiam [33] to include surface stretching rate

different from that of the stagnation-point flow. In that paper, they have ignored the displace-

ment thickness parameter and the pressure gradient parameter. This was partially rectified in a

paper by Lok et al. [43]. Later, Reza and Gupta 14,4) gave a correct solution of steady oblique

stagnation point flow over a stretching street. fhJ'y found that the flow has a boundary layer

behavior when free stream velocity is greater than stretching velocity and it has an inverted

l7



boundary layer structure when free stream velocity is less than stretching velocity. Recently,

Drazin and Riley [45], Mahapatra et al.146), Tooke and Blyth [47], Grosan et al. [48], Singh

et al. [49] and several others (see refs. t50-54]) have done notable work on oblique stagnation

point flows.

ln recent years, study of nanofluids gathered a lot of attentions due to their enormous appli-

cations. Many researchers contributed in this area due its significance in pharmaceutical and

food processes, hyperthermia, fuel cells, microelectronics, hybrid-powered engines, coolants

fbr advanced nuclear Power Plants [55] and many others. The basic idea of using nano-sized

particle to enhance the thermal conductivity of the fluid was given by Maxwell [561. Choi [57]

was the first who introduce the term nanofluid in 1995. He studied the characteristics of

nanofluids and deduced that the thermal conductivity of the base fluid (water, oil, bio-fluids, or-

ganic liquids, ethylene glycol etc,) can be enhanced by introducing metallic particles (average

size about l0 nanometers). Nano-particles are made of different metals (Al,Cu,Ag,Au,F'e),

metal carbides (SiC) non-metals (graphite carbon nanotubes), oxides (Al2O3,CuO,Ti02),ni-

trides (A/N,SiN) etc. In 2006, Buongiorno [58] has studied the convective transport in fluid

and he considered seven slip mechanisms (the;;phoresis, diffusiophoresis, Brownian diffu-

sion, inertia, Magnus effect, gravity and fluid drainage) to discuss the relative velocity of the

fluicl and nano-particles and he concluded that among these seven slip mechanisms only two

are important. Recently Kuznetsov and Nield [59] studied the gravity driven flow by consid-

ering the buongiorno model to capture the Brownian motion and thermophoresis effects of

the nanoparticles. After using the similarity transformation, they solved the reduced ordinary

differential equations analytically and observed the variation in Nusselt number due to vari-

ous emerging parameters like Lewis number Le, buoyancy-ratio number Nr, Brownian motion

number ND, thermophoresis number Nr and Prandtl number Pr. In an article, Kuznetsov and
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Nield [60] considered the natural convection flow of nanofluid by considering the double dif-

fusion effects (regular diffusion and cross-diffusion terms). Makinde and Aziz J6llstudied

the heat transf'er in nanofluid past a stretching sheet by assuming the convective boundary

conditions. The transport equations include the effects of Brownian motion and thermophore-

sis. They found numerical results by means of shooting method for various dimensionless

parameters like, Lewis number Le,Prandtl number Pr, thermophoresis parameter Nr, Brow-

nian motion parameter Nb and convection Biot number Bi. Hassani et al. [62] analytically

investigated the boundary layer flow of nanofluid by means of HAM. They found the results in

form of Nusselt and Sherwood numbers for different pertinent parameters. From the analysis,

they found that heat transfer rate is a decreasing function of each dimensionless parameter

while the mass transfer rate is found an increasing function for Pr and decreasing function for

small Pr. There is extensive literature available on the topic through different aspects. Few

representative recent studies on the topic may be seen in the refs. t63-75).
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Chapter 2

Heat transfer analysis of unsteady MHI)

oblique stagnation point flow

ln this chapter, heat transf'er analysis of unsteady oblique stagnation point flow due to an oscil-

lating flat plate and oscillating free stream has been carried out. The govern.ing boundary layer

equations are transformed to three coupled dimensionless nonlinear partial differential equa-

tions, here stream function is expressed as Hiemenz and tangential components. The equations

are solved numerically by using well-known implicit finite difference scheme named as Keller-

box method. To ensure the accuracy of obtained results, the comparison of numerical results

is macle with the results available in the literature. It is observed that the obtained solution

is highly accurate and analysis is valid. The effects of pertinent parameters namely magnetic

parameter, Prandtl number and impinging angle on the flow and heat transfer characteristics

are illustrated through graPhs.
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= a(i +yy)

IJ r= a(i +^{ yl- Uei{2i

Stagnatiort Point

(a)

(b)

Figure 2.1: Geometery of the flow (a) due to oscillating plate (b) due to oscillating free stream

2,1 Mathematical formulation

Consider the unsteady MHD laminar, incompressible flow of a viscous fluid impinging obliquely

on an infinite flat plate oscillating in its own plane. The Cartesian coordinates (t,r) fixed in



space are taken, where the x-axis is considered along the plate and the y-axis is normal to

it. The external magnetic field of uniform strength Bs is applied in the direction of y-axis with

the low magnetic Reynolds number assumption is imposed so that the induced magnetic fleld

can be neglected in comparison to the applied magnetic field. Commonly, the effect of Joule

heating becomes more important for sufficiently strong applied magnetic field, but for small

magnetic interaction parameter these heating effects can be neglected. The physical model

and coordinate system are shown in Fig. 2.1. Under these assumptions, the continuity, the

Navier-Stokes and the energy equations are given by

du dv

ar* at-o'
da d* da l0o /d2a J2r.r\ oB2^

N+il x*o N: -i**'(;p * ef )- i"'
dv dv dt I 0o / 02v J2v\
N+il x*'ay: -i at*'(ap * ep ),

(2.1)

(2.7)

(2.3)

(2.s\

aT aT aT k dzr
1-_+u-r_*u-- , (2.4)dt dI ' at pcp dy2'

where u and i are the x and y-' components of velocity respectively, I is time, y be the kinematic

viscosity, o be the electrical conductivity, Bs be the strength of uniform magnetic field, p be

the density of the fluid, 7'be the temperature of fluid, co is the specific heat and k is the thermal

conductivity of the fluid. The boundary conditions in case of oscillating plate and in case of

oscillating free stream with the time dependent velocity are given by

For oscillating plate:

u- IJeiQi, y:0, T -T* al )-0.

u:a(r+W),7:T* as yJ*,

For oscillating free stream:

u:0, y:0, T:Tn

u:Ue,T:T*

at Y: 0,

as .f *) o",
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where 7, is the wall temperature,L is the ambient temperatvre,(Jr: a(I+ 1ry)- Ue'oi is the

oscillating free stream velocity, a is the constant having dimension inverse of time, Q repre-

sents the frequency of oscillation, U is the amplitude of the oscillating velocity and y is the

non-dimensional constant characterizing the obliqueness of oncoming flow. After eliminating

pressure p from Eqs. (2.2) and (2.3), we get

dzn dzv da 0a d2a 0v 0a 02n da Ot Ozv

e-try etar]' ai atn 
o 

ayar* ay ay*o ,y, 0t dt- urt-
dv dv ._ d'i ,, ( d'a , d\a d3v d,, \ on2oda

- 
l,- 

- 
l, I _ _-!_ _ I _ _dtdy 'dy)x ' \dyd;z dy-r 0x3 dxdyz ) p dy'

at

T -+T*

):0,

)-)-,

) :0,

aS yJ*,

(2.7)

(2.8)

(2.e)

(2. r0)

(2.t1)

Following Takemitsu and Matunobu [76], the stream function is chosen of the following form

t[*:a(xi(tl+g(r,r))

The boundary conditions reduced to

For oscillating plate:

I : E:0, 6 :0, g.n : Yrt$,CI

i -y, g- 0lZ)Wz, T -+T*

For oscillating free stream:

at

f :E--0, ft:0,

f _y,s_(llUWz_

using Eq. (2.8) we get

8y:0

!yriar
a

where the suffix denotes partial differentiation with respect to r. After substituting Eqs. (2.8)

and (2.1 l) in Eq, (2.7), we obtain the following equation:

B.;:vr * o{(tfo, +s") Ir+iyr(xIo+sn) -/o (r,t-" +B,r) - f (t.forr+frrr)}

: v (-rfi'.'-; ts.v:sr) +(.i6, f s-r,o).
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Equating like powers of x, we have

, (zfyfw - I }trv - frfr) : v fvvv - # r,o

sr'.r, + n (Ey,-I + Eyity - f Ey, - IrEyr): V8r-w - * rro

(2,13)

(2,14)

(2.ts)

(2.t6)

(2.17)

(2.20)

(2.21)

(2.22)

(2.23)

Integrating Eqs. (2.13) and (2.14) with respect to y and applying the free stream conditions on

obtains

For oscillating plate:

,(tI,)'- f fr,- r) : vfy,y-ff ffr- rl ,

E;,r * a (fr!, - f gyt) :vgr,,, - ff e, - n*) .

For oscillating free stream:

,(tr)' - Ifrt- r) : vfooo -ff C, - ),

E;, t a(I,.s, - IEtr) :vsr,r- - ffr4 
* w +1d*) - sriar (:) idtei'. (z.tu)

lntroducing the non-dimensional variables as follows:

I

, : (;) i r,, :1, rrr-l : (:)L r(r),r(r,D : (;) s(y, t),r : r*+ (r, - r*)e, (z.ts)

the Eqs. (2.15) (2.I 8) and (2.4) with boundary conditions reduce to the following dimension-

less form

For oscillating plate:
r t'.

f"' ,r f f" (f')2 - Mu' - l) + I :0,

g"' +.f g" - f'g' - p" g' -M(s' - ?0,) : o,

For oscillating free stream:

f"' + ff" - (f')2 - M(f' - l) + I : 0,

g"'+ f g" - f'g' - B" r'-M(g' -w+eeit): (r + iB.)ee'l



Energy equation

1..
pro" , fe' '8. o :0,

and the boundary conditions in dimensionless variables are

For oscillating plate:

f : g:O,f' :O,g' :eeit ,0: I at y-0,t

f':l,B"--T,o:o as y 1oo,/)o,

For oscillating free stream:

f : g:0, f' :0,g':0, 0 : I at y-0,

f' : l, g' : W-eei,,g :0 as v-+ oo.

>0,

(2.24)

(2,25)

(2.26)

(2.2e)

(2.30)

(2.31)

where prime denotes differentiation with to y and o denotes differentiation with respect to r

and M : oBtlpa is the magnetic parameter, Pr': l.Lc,lk is the Prandtl number, F* : Qla

is the unsteady parameter and e: u lQa)l/2 is the amplitude of the oscillating velocity in

dimensionless form . The drag force at the surface in form of skin friction coefficient Cy is

given by

rv / da\ct: iu, ,rw: tt (rri r=r. (2.27)

(ecost)zcy : xf" (o).#(o,r), (2.28)

where x has been replaced by a non-dimensional variable I : (av)t /2*. The non-dimensional

stream function and velocity components are

w*
ty - n :xf(y) *sb',r),

,: h:xf'(v)+X,
,:l=-f(y)

\/ va
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In Fig. (2.1), the dividing stream line making angle a with the plate. The dividing stream line

is a straight line whose slope can be found by substituting V: 0 as discussed in [34]

For oscillating plate:

'xl

ope o

(2,32)V

above equation implies that sl

*lo' o, .) ,: (_?r) r

f the dividing streamline is

2
slone: --.,y (2.33)

(2.34)

Hence the relationship between shearing parameter 7 and impinging angle over an oscillating

plate is

d,: tan t (-'r)

For oscillating free stream:

(2.3s)

The slope ol' dividing streamline in case of oscillating free stream is (-2li where (zeei' ly)

represents the y-intercept. So the relation between c and 7 is same as given in Eq. (2.34).

2.2 Keller box scheme

The numerical solution of nonlinear partial differential Eqs. (2.20)-(2.24) with boundary

conditions (2.25) and (2.26) is found by implementing an implicit finite difference scheme

named as Keller box method having second order accuracy. This numerical method is highly

accurate and rapid convergent. The details of the method is well explained by Cebeci and

Bradshaw [77) and Keller and Cebeci [78]. For implementation of this numerical scheme, we

first convert the higher order differential equations into the system of first order differential

v: xy *lr' - eei' :0, + y: (- i) -r'rrr" ,



equations. For this purpose, new dependent variables U(y), V(y),P(>',t),Q0,1) and R(y,r)

are introduced. So the equation for oscillating plate i.e Eqs(2.20,2.21,2.24) with boundary

conditions (2.25) in the form of first order differential equations can be represented as

f' -- u,

(f" :)(Jt :v,

g':i,

(s" :) P' : R.

Thus Iiqs, (2.20) and (2.21) reduces to the following form

v' + fv - u2 -- M(u _ l) + I : o,

R'+ fR-up - pr# * Me- r..v) :0,

Energy equation:

O,:Q

)'a'tfQ-B.aj:'
and boundary conditions (2.25) become

f : g :0,(J : 0,P : €€'t, 0 : I at ): 0,, ) 0,

U - l,R- T,0 :0 as y-+oo,/ )0,
The infinite domain [0, -) is truncated to [0, L] where L is taken as sufficiently large. This

truncated region is discritized into small rectangular elements on the $.', r) plane and net points

are denoted as
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)o:0, y':yn- ' *Or, n:1,2,3,...,N.

Io:0. tj:tj 1*AI, j:1,2.3,...,M,

Here n and 7 are positive integers on the (y, t) plane Ay and Ar are the widths of meshing

variables. The approximate quantities of f (y), U (y),V (y), S0,r), P(y, r), Q(y,t) and R(y, r) ar

the net points (yn, t j) are called net functions. The derivatives in y and r-directions are replaced

by the central difference fbrmulae like:

lr ot:-"' : *(o; - 0;-') '*, ut-'r' -- *(o; - 0i ,)

and the values of the functions are replaced by its mean value as

For handling the non-linearity of resulting algebraic equations, Newton's linearization process

is performed. For (r+ l)th iterations the unknown functions are written as

f',t' : fi+A1. Ujrt:Uj+6utj,V',r' :Vj+6vj,

g'l': Eiil6gi,, P',*': Pj+6Pj, R'f'-Ri+6Ri,

0j*' : ej+ 60j, e'l' : ei1* 6e,,

After linearization, obtained system of linear algedraic equations is solved by using tri-diagonal

block elimination method. Similar procedure can be adopted for the equation of flow and heat

transfer due to oscillating free stream.

ol "' - :(01 * 1y' ') , o; ,,r: f,(o; * ol ,)
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2,3 Results and Discussion

2.3.1 For oscillating plate

For the case of oscillating plate, system of differential equations (2.20), (2.21) and (2.24)

subject to the boundary conditions (2.25) is solved numerically, first for the steady case i.e.

fbr I -' 0 by using Keller-box method and we proceed for t --ttl4, tclZ and zr by assuming the

solution at / :- 0 as an initial guess. The step size A f in y and the edge of the boundary layer,y-

is adjusted for different values of the parameters like M. Pr, and y to maintain accuracy of the

results. The step size Ay =0.01 and L,t : ttl36 are kept fixed for the present numerical study.

To ensure the accuracy of our obtained results, a comparison of the values of ///(0) against M

is made with that of Ariel [79] and Grosan et al. [48] in Table 2.1.lt shows that the obtained

results are accurate and are in good agreement with that of previous studies. The results

for velocity and temperature profiles have been discussed through graphs. Fig.2,2 shows the

behavior of stream function VQ,y) for two different values of the magnetic parameter M when

T=1,F=2,e =l and Pr=0.7 againstx. Fig. 2.2(a-d) illustrate the streamlines fbr t =0,x14,n12

and t respectively. The dash lines represent streamlines in the absence of magnetic field i.e.

M=0 U6l and the solid lines show the streamlines in the presence of magnetic field when M=2.

It is observed that the application of magnetic field helps to translate the stagnation point. It

is also noted that the streamlines come closer to the plate and the boundary Iayer thickness

reduces which indicates the increase in the velocity occur due to the presence of magnetic

field' The Fig. 2.3 (a-d) represent the velocity profiles for the values of r=0, tt/4, tclT and r

respectively. It is seen that the velocity increases^,*ith the increase in the value of M. It has

also been noticed that the velocity at the wall oscillates between -l to I for different values of

t. Fig. 2.4 shows the velocity profile u(x,y) for various values of the constant shear parameter
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Twhen x=l,M=O, F*=2 e =l and Pr=0.7. Fig. 2.4 (a-d) show the velocity profiles for/ =0,

nl4, wl and n respectively, An increase in the velocity a has been observed by increasing the

value of y. An oscillation in the velocity at the wall from -l to I has been observed. Fig.2.5

shows the temperature profile 0 (y,t) for various values of the magnetic parameter M=0,1,2,5

when r :0,T-2,8* :2,e: I and Pr=0.7. It is observed that an increase in the value of

magnetic parameter M decreases the thickness of the thermal boundary layer. Fig. 2.6 shows

the temperature profile 0(y,t) for different values of the Pr at t :0,T - 2,8* :2,€: l. The

dashed lines are for magnetic parameter M=0 and solid lines for magnetic parameter M=2.

The increase in the value of Prandtl number reduces the thermal boundary layer thickness. It

is also observed that there is no effect of unsteadiness on the temperature.

2.3.2 For oscillating free stream

For the case of oscillating free stream. system of differential equation s (2.22), (2.23) subject to

the boundary condition s (2.26) is solved numerically by using Keller-box method as described

rl
above. Fig. 2.7(a-d) shows the stream function V'Q,i for two different values of the magnetic

parameter M at y - 2, B* : 2, e: I and Pr : 0.7 where t =0, nl4, nlZ and Z respectively'

The dash lines represent streamlines in the absence of magnetic field i.e. M:0 and the solid

lines show the streamlines in the presence of magnetic field i.e. M : 2. It is observed that at

different time steps, the location of stagnation point can be made closer to the reference point

and the streamlines become closer to the wall by applying magnetic field. Also it reduces the

boundary layer thickness. Fig. 2.8(a-d) represents the steam lines for e : 0 (the dashed lines)

and e : 2 (the solid lines) where T - l, F* : 2, Pr : 0.7 and M - 2 at t =0, tvl4, nlT and

z are fixed respcctively. It is seen that the stagnation point oscillates between 1.5 and -2.5

with -0.5 as its mean value at different time steps. The Fig. 2.9(a-d) show the variation of
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non-dimensional velocity profiles u(x:1,y) for different values of M:0,0.5, 1,2 where

T : l, F* :2. t : I and Pr : 0.7. It is noted that there is a slight increase in the velocity with

the increase in values of magnetic field at the different time steps , =0, ttl4, ttlZ and z. In Fig.

2.1O(a-d), variation of the non-dimensional velocity u(x: l,.y) for different values of t = 0, 1,

2, 5 where T:7,F* :2,M -2 and Pr:0.7 has been illustrated at the different time steps

t =0, 7T14, rl2 and z respectively. For / : 0 and ft14, increase in e results in decrease of the

velocity u(x, y) while for t -- tc l2 and fi, the velocity u(x : I , y) increases with increase in the

value of e. Fig. 2.1 I shows the value of skin friction coefficient againsu for different values of

e while M :2,7:2,9* :2 and x: L It is noted that the amplitude of oscillation in values

of the skin friction coefficient increases with increase in e. Fig. 2.12 illustrate the behavior

of the skin friction coefficient for different values of 7 against r when M : Z,.tr : l, F* :2

and e =1. It is observed that with an increase in values of the y, the values of skin friction

coefficient increases but oscillates with the same amplitude. Fig. 2.13 expresses the trend of

the skin friction coefficient for different values of magnetic parameter M against the values of

t when T:2..r: l, F* :2 and t =1. With increase in values of M, periodic increase in the

skin friction coefficient has been observed. It is also noted that amplitude of oscillation of the

skin friction coefficient increases Uy increasing ni.

Table 2.1: Comparison of the variation of /"(0) for the different values of M with the results

obtained by Ariel [79] and Grosan et al. [48], when 7- 0, B* :0, € :0.

M Ariel [79] Grosan et al. [48] Present study

0.0

0.16

o.64

1.00

t.232588

1.295368

1.467976

1.585331

1.232588

1.295368

t.467976

1.585331

t.232597

1.295377

t.467987

t.585342

31
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=0 6, 0.4. 0.2. 0, -0.2, -0 4

Figure 2.2: Streamlines for (a) r:0.0, (b) t :7c14, (c) r: nf| and (d) r: z with M :0

(dashed lines) and M :2 (solid lines) while 7: l. B* :2, e: I and Pr :0.7 .

Figure2.3: Velocityprofilerzfordifferentvaluesof Mwhilex: I,T:l,F*:2,t: land

Pr :0.7 at (a), : 0.0, (b) r : n14,(c) t : rclLand (d) t : r.

M=0.1.2.5
M= 0. L 2.5
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Figure 2.4: Velocity profile a for different values of Twhile r: l, M : l,Fr :2,t : I and

Pr :0.7 at (a) t : 0.0, (b) I : n14, (c) t : ltlland (d) t : 7t.

Figure 2.5: The temperature profile 0(y, t) for different values of M at I : 0.

3
@
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Pr = 0.7, l, 10, 100

@

Figure 2.6: The temperature profile 0(y,t) for different values of Pr at I : 0.

Figure 2.7: Streamlines for (a) t :0.0, (b) t:7t14, (c) t: rcl2 and (d) r: zr with M :0

(dashedlines)and M:2 (solidlines)whiley:2,8*:2,e - I and Pr:0.7.

\t = 04. -02.
0.0 2.01,0.6

\lt . 0 6. 0 4. ().2, 0.

0 2. --01
tt - 0.6. 0 4. 0.2. 0. -0 2. -0 4
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It

Figure 2.8: Streamlines for (a) t :0.0, (b) t :7t14, (c) r: nf2 and (d) t : z with t:0

(dashed lines) and e:2 (solid lines) while T: L, F" :2,M:2and Pr:0.7.

Figure 2.92 The velocity profile a fbrdifferent values of M while x:1,T: l,t: l, F* :2

and Pr:0.7 at(a) t :0.0, (b) t : nl4, (c) t : r/2 and (d) r :-zu.

M=0.0 5. 1. 2

M=0,(t5, I 2
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e = 0, 1.2.5

ll

Figure 2.10: The velocity profile r.r fbr different values of e while I = l, T: I'M :2,F* :2

andPr:0.7 at (a) t:0.0, (b) t:7114. (c) r: nl2and(d) t: tt,

Figure 2.11: Skin friction coefficient for different values of e at -r - I .
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Figure 2.12: Skin friction coefficient fbr different values o[ 7 at x: l.

t

Figure 2.13: Skin friction coefficient for different values of M at x: l.
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2.4 Conclusions

Unsteady MHD oblique stagnation point flow of laminar, incompressible flow of an electri-

cally conducting viscous fluid due to an oscillating flat plate and an oscillating free stream is

presented in this chapter. The governing boundary layer equations are transformed in dimen-

sionless form. The obtained partial differential equations are highly nonlinear and its difficult

to present their exact solution. To overcome this situation, a finite difference scheme namely

the Keller-box method is employed. The effects of magnetic field on the flow and heat transfer,

fbr both cases of oscillating plate and oscillating free stream are shown through several graphs

of stream functions, velocity and temperature. The present investigation helps to conclude that

o Application of magnetic field increases the velocity of the fluid but reduces the momen-

tum and thermal boundary layer thicknesses in the stagnation point region for both cases

of oscillating plate and oscillating free stream.

o Temperature of the fluid decreases by increase the magnetic parameter M.

o Magnetic field helps to increases the skin #ction coefficient.

o With increase of obliqueness parameter, the skin friction coefficient can be increased.
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Chapter 3

Study of non-Ne\rytonian Maxwell fluid

flow in the region of oblique stagnatioh

point over a stretching sheet

In this chapter, a numerical study is carried out for the steady two-dimensional flow of an in-

compressible Maxwell fluid in the region of oblique stagnation point over a stretching sheet.

The governing equations are transformed to dimensionless boundary layer equations, After

some manipulation, a system of ordinary differential equations is obtained and is solved by

using parallel shooting method. A comparison with the previous studies validates the accu-

racy of our results and analysis. The effects of involving parameters are discussed in detail

and the streamlines are drawn to predict the flow pattern of the fluid. It is observed that in-

creasing velocities ratio parameter (ratio of straining to stretching velocity) helps to decrease

the boundary layer thickness. Furthermore, the velocity of fluid increases by increasing the

obliqueness parameter.
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The appropriate boundary conditions for oblique stagnation point flow over a stretching sheet

are (see re. [81])

u(i'r) : ci, i =0'' at , :0,
(3,3)

ilG,r) : U,(x,y) : aI*by, i: - (ay+A) nry-)-,

where a, b and c are positive constants of dimension tl/Tl and A is the constant that accounts

the boundary layer displacement whose dimension is [L/T]. From the point of view of the

boundary layer, the outer edge of the boundary layer (of thickness 6) is far from the surface.

Therefore, the b<lundary condition for the velocity at the edge of the boundary layer is written

as limy + - rz(x,y) : ur(i,y), so for the larger value of y(y -+ -) i.e, at the edge of boundary

layer, we get (see ref. [80,82,83]) the following

tap \/_dzp -dzp dadp rrr.4):a2i bA e.4)i at - p \"rF "uexay- arei- at ay )

and

taF \(_02p _dzp lvdp dudp\ ;\-n;u-n(e7+ilaily- ar*-fr,,):a(av*A)' (3's)

Eqs. (3.1) and (3.2) thus give

_dn _dn .)_ .; /dza dzn\ ^ (_rd2n ^__dzn _..,d2a\
t1 *-t,- N: a"i- bA *, (# + ef, ) ^, (n# +Ziliei-r* o"ei 

) ' (3.6)

dv dv / dzv d2r\ / .d2v dzv .J2v\ilatt 
"ai:a(ar ) A) t v\a;r' 6y;r) ^, 

('- i.r'znvi-r- t 't'irz) Q'7)

Incorporting the usual boundary layer assumptions (also see [80,82,83]) where u, i and Lt are

of order l, -v and v are of order 6 and order of v is 62, where 6 represents the boundary layer

thickness which is very small as compared to the length of sheet, we get

_dn _dn )_ ,; 02a ^ /_rdzn ^__d2a _rdzn\
o X rr rr= a'I -bA* rep -^, (, eF+2ili ,'yAr*o'e? ). (3,8)

Now using the following transformation proposed by Labropulu [81]
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Eq. (3.8) with boundary conditions will take the following dimensionless form

,'-j *,'* : (:)' . - yA + yr u (r# +2,"#.,,#),

l,t: x1 v :0 at y :0,
(3.1 I )

u :1x+orr, , : * (i, 
" 
e) ds )' ) m,

where F : Lrc is the dimensionless number called Deborah number, which describes the

fluidity of materials, T: blc is the dimensionless constant characterizing the obliqueness of

oncoming flow, A : A I ,/ia is the dimensionless constant which accounts the boundary layer

displacement (shown in Fig. 3.8), and af c is the ratio of the straining to stretching velocity.

Now using the stream function y such that u: dVldy, v: -dyrla*, the above equation

can be expressed in the form of stream function as

av (a'y\ ?v (a'u\, o((a:y\'a'y ",Qv4v d3v - /avr\z a3v \
ay\dx)y) d.r\dyz)tP \\ar/ 0y3 'dya*|xdyz '\ay/ dxldv)

:*(!" )3w
ri) -AY+ N

(3,t2)

and the dimensionless boundary conditions in term of stream function can be written as

V:0. !:* aty:0,'dy
dvadvo
-1 :.xlw, -l:-j"+A aSl)a.dycdxc

In order to solve the Eq. (3.12) subject to the boundary conditions (3.13), we suppose the

solution of is of the form

Vr -- .r,f (.v) + .e(r'),

(3. r0)

(3.13)

(3.l4)

where functions /(.v) and g(y') are normal and oblique components of the flow. Incorporating

Eq. (4.14) into Eqs. (3.12) and (3.13) one gets the following equations with the boundary
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B(

conditions

- Ay + rf"' (y) + g"'(y),

(3. ls)

f (v) :0, f'(v) - l, s(v) : s'()) : o at 7- : Q,

(3.16)

,f(.v) : ly+A, f'(y) :!, g'(y) : W as ! ) x,
CC

where for the large values of 1,(at the edge of boundary layer i.e.) -+ -) f(y): (alc)y+A,

which means that solution of /(v) is the linear function of y, In Eq. (3.16) the boundary

condition f'(y) : a/c is the derivative of /(y) : (alc) y* A which are identically same so we

use only one of them to compute the solution. Comparing the like powers of x in Eq. (3. l5)

and selecting the boundary conditions, we get the following equations

f' (v) (*f' (v) + s'(v)) - f (v) (rf" (v)+ s"(v)) +

f (y)2 Gf"',(.v)+s"',(y)) _'2f (v)f"(v)(*f'(v)+s'(v)) ) 
: - (")'

f"' + ff" - (f')' * G)' + P (zff' f" - f' f"'1 : s,

g"' + fB" - f' g' + F (zff" s' - f'8"') : l,

and boundary conditions are (see ref. [8 I l)

,f(0) :0, .f'(0) -: 1, /'(*)

g(0) : g'(0) :0 g"(-; :

where the prime denotes the derivative w.r.t y. For simplicity introducing a new

g'(.v) : yh(y), Eq. (3.18) with boundary condition (3.20) can be written as

h" + y h' - f'h + F (zfI" n - f2h") : A,

/,(0):0 ft/("") : 1.

(3. r7)

(3, l8)

:o
C

y,

(3.le)

(3.20)

variable

(3.21)

(3.22)

For B :0, we get the Newtonian fluid case and equations (3.17) and (3.19) reduce to equations

(3.4) and (3.5) as reported by Mahapatra and Gupta [24]. Dimensionless components of the
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velocity are

,:X:xf'(y)+g'(y),

v L -'y : -f (y).
dx

In Fig. 3,1, the dividing stream line making angle a with the stretching sheet. The slope of

dividing stream line can be found by setting W: 0 as was reponed in reference [34]

a I ?:0.-+v:(-4\-.V: ;ry* rTt' \ yc /
which gives

slrtPe -- * '- -4yc

So the relationship of impinging angle a and shearing parameter Tcan be written as

a,:tan-t (_.4\
\ ycl

3,2 Parallel shooting scheme

In order to solve nonlinear equations (3.17) and (3.21), subject to the boundary conditions

(3.19) and (3.22) for different values of involving parameters, parallel shooting method [84] is

used. To find the solution of complex rheological models different techniques are proposed as

mentioned in the introduction, The main problem with these methods while discretizing the

differential equations into system of algebraic equations and take much time when one increase

range and number of steps to achieve the desired accuracy. Simple shooting method is also

very useful to achieve the accurate solution in less time but for certain non-linear problems,

the method is found much dependent upon initial guess. To cope the situation, the method

of parallel shooting is introduced and is very efficient, less time consuming, stable and rapid

convergent. The method is described in the following steps

(3.23)

(3.24)



Step-I: Equations(3.17)and(3.21),arereducedinthesystemoffirstorderdifferentialequations

by letting f : fi and h: ft

f't: fz, fi: ft, fl: ipfr(_ t,o+ fi -2Fftfzft- (:)') '

fl: fs, f!: ipfr?ftfs* fzfq-\Fftfzfq+A) '

Step-II: To apply the boundary conditions, the physical domain [0, *] is truncated to finite do-

main [0, Ll, where L is chosen sufficiently large

,fr(0) :0, .f2(0) : l, fz(L):l,.fotn) - 0 /s(L) : l,

Step-III: The domain [0, t] is divided into n subintervals,

[0, yr], br, Yz] ,lYz, Yt) lYn-t, ln: L)'

For convergence of solution, n can be increased sufficiently.

Step-IV: The problem is solved over each subinterval such that it satisfies the boundary condi-

tions.

Step-V: A suitable guess is supplied to integrate the problem. The solution obtained for the

previous interval is considered as an initial guess for the next interval.

Algorithm is developed in MATLAB R20l0a.

3.3 Results and discussion

Equations (3.17) and (3.21), subject to the boundary conditions (3.19) and (3.22) have been

solved numerically for different values of pertinent parameters F, nl, and 7 using the parallel

shooting method as described in previous scheme. To show the efficiency and accuracy of our
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results, the comparison of numerical values of /"(0), ft/(0) is presented for both Newtonian

and Maxwell fluids in Table 3.1. It is found that the results are in good agreement with the pre-

vious study given in ref. [801. From the table, it is found that the values of /"(0) are increasing

with increase in values of a./c, for both Newtonian and non-Newtonian fluids. However, the

values of fr'(0) increases up to a certain value then start decreasing. The results shown in Table

3.2 arc in good agreement with those reported by Labropulu et al. [811. In Table 3.3, the values

of y_rr(0) and A are presented for the different values of pertinent parameters. Fig. 3.2(a-d)

demonstrates the variation of the horizontal velocity rz for different values of velocities ratio

parameter a./c when x =1,9= 0.2 with p 0. 0.5, 1.0,5.0. It can be seen from the figures

that the velocity increases continuously with increase in values of 7. Fig. 3.2(a) illustrate the

orthogonal flow (y= 0) and Fig. 3.2(b-d) show the results for the non-orthogonal stagnation

point flow. From the figures, it can be observed that there are two boundary layer structures

appearing near the surface depending upon the ratio of straining and stretching velocities. The

figures depict that when a./c > I , the flow has normal boundary layer structure and when a/c<l

the flow has inverted boundary layer structure which is same as reported by Mahapatra and

Gupta t24). lt is also noted that the thickness of the boundary layer decreases with increase in

values of a/c. Physically, it represents that wheri?he stretching velocity cx is greater than the

straning velocity ax i.e a/c11, the inverted boundary layer exits near the surface, which sug-

gest that as the stretching velocity i.e cx decreases the boundary layer thickness increases. On

the other hand, when the straining velocity a-r is greater than stretching velocity cx. i.e. a/c) I ,

the acceleration of free stream velocity increases, which leads to thinning of the boundary

layer with increase in value of a/c. It can also be seen from the Fig. 3.2(a-d) that the veloc-

ity of the fluid increases with increase of constant shear parameter y. There is no boundary

layer formed when straining and stretching velocities are equal. The same behavior has been
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observed for both orthogonal (y: O) and oblique (y I O) stagnation point flows, Physically it

means that viscous effects vanish near the wall, when both velocities are equal, Figs. 3.3 and

3.4(a, b) depicts the behavior of the fluid flow for different values of B in orthogonal (y: O)

and oblique (y * O) stagnation point flow, respectively. Two different behaviors have been

observed from the figures in case of boundary layer and inverted boundary layer structures

(as described above). In Fig. 3,3 bunch of curves are drawn for the different values of B and

a/c. lf a/c1l (inverted boundary layer case), the velocity decreases and boundary layer be-

comes thinner with the increase of Deborah number F. On the other hand. when a/c> I , the

velocity increases with the increase of Deborah number B but the boundary layer thickness

decreases. Fig. 3.4 also shows that the velocity in the region of non-orthogonal stagnation

point is greater than the velocity in the case of orthogonal stagnation point. Figs, 3.5, 3.6

and 3.7 show the streamlines for the flow pattern bf tne oblique stagnation point flows (y * O)

for different values of B, alc and y. Both cases i.e. y > 0 and y <0 are considered for the

analysis. The increase in constant shear parameter lyl results in more obliqueness toward the

left of the orthogonal stagnation point. Figs. 3.5 and 3.6 show that as the value of l7l increases,

the shearing motion of the fluid increases in the region of stagnation point. Fig. 3.7 reveals

that with the increase in stretching velocity the streamlines are tilted more towards left but the

streamlines less tilted towards left due to an increase in straining velocity. For large values of

a/c, the streamlines behaves same as in case of the orthogonal stagnation point flow. In Fig.

3.8. values of f(y) are plotted as solid curves against y for different values of a/c and dashed

lines represent the position of the boundary layer which are the tangents to f(y)at point where

the curves become linear, Dots on 1'-axis ,"prar"nr', the value of A, which is the intersection of

dotted lines and the y-axis.
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Thble 3. I : The Numerical values of /" (0) , h' (0) and A for the different values of B and a/c.

Newtonian fluid 1B=g; Maxwell fluid (P=0.2)

f" (0) h'(0) A

Ref. [80] (12 : 0) present Ref. [80] (Lz:Q)

0.01

0.02

0.05

0.10

0.20

0.50

r.00

2.00

3.00

5.00

10.00

-0.9981

-0.9958

-0.9876

-0.9694

-0.9181

-0.6673

0.0000

2.0t75

4.7294

1.t537

36.2689

-0.99802

-0.99579

-0.98758

-0.96939

-0.9181 I

-0.66726

0.00000

2.01749

4.72924

I L75190

36.25704

-1.0499

-t.0476

- 1 .0393

-1.0207

-0.9681

-0.7078

0.0000

2.2225

s.3544

t4.ot44

48.4866

-L05009

-1.04778

- I .03939

-1.02082

-0.96823

-0.70779

0.00000

2.223t4

s.352t7

t4.00169

48.335404

-0,51368

-0.24667

0.07239

0.28t54

0,49218

0.79610

I

1.092t3

0.78434

-2.04649

-2,34185

0.89077

0.86890

0.80807

o.7t976

0.57730

0,28885

0.00000

-0.32603

-0.52063

-0.7s564

-r.03301

Table 3.2: Values of /"(0), /r'(0) and A for the different values of a./c, for Newtonian fluid

(B :0).

f"(0) h'(0) A

a/c Ref, [81] present Ref, [81] present Ref. [81] present

0. r -0.96938

0.3 -0.84942

0.8 -0.29938

10
2 2.01750

3 4.72928

4 8,00042

-0.96939 0.2.6278 0.26338

-0.84942 0.60573 0,60633

-o.2sg3g 0.93430 
' 
0.93473

0ll
2.01749 1.r 6489 L16521

4.72924 t,23438 1,23464

8.00036 1.27272 t.27300

0.79t70 0.79170

0.5t949 0.51950

0.tt45z 0.1 1453

00
-0.41040 -0.41041

-0.69305 -0.69305

-0.91650 -0.91650
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Table 3.3: Values of yr,r(O) and A for the different values of B, a/c and y fbr fixed x : l.

P a/c y V,'r(0) : xf" (0) + yht (0)

00

0 0.1

0 0.s

0l

02

0.1 0

0.1 0.r

0.1 0.5

0.r I

0.1 2

0.2 0

0.2 0.I

0.2 0.s

0.2 r

0,2 2

- 1.0000

-o.e6s4

-0.6673

0.0000

2.0175

-3.4390

-0.7158

0.1022

r.0000

3.2709

-5.824t

, ll)
-0.4364

0.8812

2.0000

2.2232

1,0000

0.7917

0.3286

0.0000

-0.4104

0.9575

0.7536

0.3070

0.0000

-0.3609

0.9196

0.7199

0.2889

0.0000

-0.3252

0

0

0

0

0

I

I

I

I

I

2

2

2

2

Z
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- 

dt -01
---- ct/c=0-l
--- u/c=10

o/c = 2.0
- 

ut/( = 0.1

---- u/t =0.-l
- - - u/c = 1.0

u/c = 2.0

Figure 3.2: Variation in velocity 4 along y, for different values of a/c and (a) 7: 0.5 (b)

I: 0.5 (c) y: 0.5 (d) T:0.5 at x= I , F : 0.2

I

- 

dc = 0.1

---- a/c=0J
- - - tlL= 1.0

dt = 2.0

alc = 0.4

a/c = 0.1

)

Figure 3.3: Variation in velocity ,, along y, for the

0. I ,0.4,2.0 and /: 0 (orthogonal flow).

9=0.0
9= 0.2

9= 0.4

^l = 0.0

- 

dc = 0.1

---- u/c=0J
--- dc=10

u/t = 20

50

different values of p, when a./c =



9 = 0,0.2,0.4

l
{
il

5

)'

(a)

t4

I

l0

8

6

4

2

0

9 = 0,0.2,0.q

0

)'
(b)

Figure 3.4: Variation in velocity r.r along y, for the different values of p, when (a) a/c = 0.2

(b) clc = 2.0 and T:2.0 (non-orthogonal flow).

h
-.i
ll

3
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Y = 1,0.5, 0.1,0, -0.1, -0.5, -l
I

0,8

a 0.6

\ = 10.0

u/c = 0.5

9 =0.2

0.

0.

0
x

(a)

Figure3.5: Streamlinesforobliqueflow,when F:0'2'af c:0'5and(a)y: lO(b)7:-19'

tV = 1,0.5,0.1, 0, -0.1, -0,5, -l

^ 0.6

0.4

0.2
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-15

0,

I

0.8

0.6

0.4

0,

Y = l, 0.5, 0.1, 0, -0.1, -t

\y = l, 0.5, 0.1 , 0, -0.1 
'

0

x

(b)

^l = 30.0

tt/c = 0.5

p -- 0.20,4

0.2

0
x

(a)

^l = -30.0
o/c = 0.5

9 =0.2

Figure 3.6: Streamlines for oblique flow, when F :0 '2, a f c :0'5 and (a\ y :30(b) y: -30'
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Figure 3.7: Streamlines for oblique flow, when F : 0.1 and y: 5 tbr a f c :0.8, 5.0.

Figure 3.8: Graph of boundary layer displacement for different values of af c

alc A

0 0 1.0000

0.2 0.6407

0.5 0,3286

r.0 0.0000
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3.4 Conclusions

Numerical solution of non-Newtonian Maxwell fluid in the region of oblique stagnation point

flow over a stretching sheet is presented in this article. After using the boundary layer approx-

imation the governing equation are transformed to dimensionless form by means of some use-

ful transformations. The obtained system of equations is solved numerically through parallel

shooting method. The effects of velocity ratio parameter a./c, Deborah number and obliqueness

parameter are shown tfuough graphs. The present investigation helps to conclude that

o With the increase in value of velocities ratio parameter a/c (the ratio of straining and

stretching velocity), thickness of the boundary layer decreases.

o The boundary layer vanishes when af c:1.

o In the case of oblique stagnation point flow for large values of af c, the streamlines look I

like those in the case of orthogonal stagnation point flow.

o The velocity of the fluid increases with increase in values of shearing parameter .

olfafccl(invertedboundarylayercase),thevelocitydecreasesandtheboundarylayer

thickness reduces the increase in Deborah number B.

o If af c > l,thevelocityincreaseswiththeincreaseinDeborahnumberB. However,the

boundary layer thickness decreases.
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Chapter 4

Study of viscoelastic fluid flow in the

region of oblique stagnation point through

a porous medium with radiation

This chapter addresses the non-linear radiation effect on the two-dimensional oblique stagna-

tion point flow through a porous medium. Constitutive equations of viscoelastic second grade

fluid are employed in the mathematical development of the relevant problem. The resulting

nonlinear system is solved using Chebyshev Spectral Newton Iterative Scheme (CSNIS). A

comparative study of the present results with that of previous studies have been presented in

the tables. Excellent agreement shows that the used numerical scheme is stable and the results

are highly accurate. Impact of sundry variables on the quantities of interest are discussed. It

is observed that shearing parameter y helps to increase the fluid velocity. Thermal boundary

layer thickness can be controlled due to small value of radiation parameter and surface heating

parameter. It is also noted that with an increase in value of porosity parameter K, the velocity

increases but the momentum boundary layer thickness decreases in the region of stagnation
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point. Moreover, the streamlines are plotted to predict the flow pattern.

ue=ai+bt

Figure 4.1: Physical Model of the problem

4.1 Problemformulation

Consider the steady, two dimensional, incompressible Darcy flow of a second grade fluid near

the oblique stagnation point over an impermeable surface. The surface is placed at, - 0, and

the porous medium occupies in the region .v > 0. It is assumed that the fluid is transparent

to the radiation so the radiation term will only appear in energy equation of solid phase [85].

Thus the governing equations are

V.V:0,

p#:v r- fiv,

(4.1)

(4.2)

Energy equation for solid phase:

(1 - 0)V. (k,vii.) -Y.e,:0,
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Energy equation for fluid phase:

0Y. (ktvf t) - pc,,V.VT, :0, (4,4)

where 71 is temperature of fluid, il. is temperature of solid, kr is Darcy permeability parameter,

d ldt is material derivative, k, is the thermal conductivity of solid, ft1 is the thermal conductiv-

ity of fluid, c, is specific heat at constant pressure, (l - 0) is the ratio of area covered by solid

to the total covered area of the medium and q,. is radiative heat flux. We assumed that the no

net heat transfer fiom solid to fluid or fluid to solid so the heat transf'er in parallel from both

phases. For the simplification of Eqs. (4.3) and (4.4),we assumed that there is local thermal

equilibrium i.e. \: 4 : 7, so by adding Eqs. (4.3) and (4.4), we get

pCpV.VT -t k,y1YzT -Y .Q, : O.

where k, [[ : (QU + (1 - 0)kr) is the effective thermal conductivity for both fluid and porous

medium. Upon using the Rosseland approximation for radiation, one can obtain [87]

4osaQ,'.-iffior''

(4.s)

(4.8)

(4.e)

where dr, osB and o. are the Rosseland mean absorption coefficient, Stefan-Boltzmann con-

stant and the scattering coefficient respectively. The rheological equation of second grade fluid

can be expressed as

r : - Pl* Ir Ar I a1A2I a2 (A)2

(4.6)

(4.t1

where p is the pressure, p is the dynamic viscosity of the fluid, a1 and a2 are normal stress

moduli and the tensors A1 and A,2 are the first and second Rivlin-Eriksen tensors which can be

calculated as

Ar : (VY)+ (VV)"",

or: *i + Ar (vv) + (vv)"u'A1 .
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where d ldt is defined as

The thermodynamic constraints for the fluid model (Eq. (a.7)) are compatible with Clausius-

Duhem inequality and it is assumed that the free energy density of the fluid be locally at rest

are

p >0, o1 )0, d1le2:Q. (4.1 1)

If a,1 : d2: 0, then Eq. (4.7) reduces to Cauchy stress tensor fbr a Newtonian fluid.

governing equations in component form are

(4.t2)

du du
U-*i-dI dv

+:+.v.[v(.)]

*"1 !,[- rt;l' r (3;,H)') '{0,

o* *,fi : Lo.( 
[-. -.#*] o.),

1-du dv

-*-:0.dx dt

d'o\ . ql ll ,r# +2,-#*+
di2 )' n 

la; l.(*), *r*(#.#)

] ) 
. r *l^ G| . (u* . #)'l - ;

I aD /d2a
- -n* *, (.ap *

a [ (,* * o*) (*r, *),
'' lr***r*P,

(4.l0)

(4.13)

(4.14)

u,

drr Jr= I aD / 02v J2r\,'**,fi: ;'*.,(# ,'#),_?{ *l'ffr,'frti 
_3*) ].

,,* (** 3t) *- (#)' I I
zvft +zil{i, )l

a

d)'

(4.1s)

where u and v are the velocity components in x and y directions respectively, p(;,y) is the

pressure function of the fluid and v is the kinematic viscosity. Here the fluid flow is considered

as potenLial flow, in which the flow is impinging obliquely to the flat plate and far away from

the plate the fluid is moving with velocity U,(i,I) : ai * by. The boundary conditions for the



present fluid flow are given by

(4.16)

(4.18)

(4.1e)

(4.20)

(4.21)

tt:0jv:0,7:T*,,

u: ax+br,f:T*,

):0 :

y-+- :

y:0

V_Joo

where a, b are the constant having positive values with dimension inverse of time. L is the

ambient temperature of the fluid away from the surface and I,, is the surface temperature.

Introducing following non-dimensional variables

_ E _ n l _ l _ I _ T-T*r:'l v'.,:-oVr' u: A;ii'': ,/iai' p: pvo7,': *-*, (4'17)

into equations (4.1 2)-(4.16), we obtained the following dimensionless form

dv

at

,{

a-.-
dx

"{

a

6,

6o.,

+

Wr

),

w

L,

l(

du

a,

).

).

).

).

[,.

-0,

a | ,4',i t 2v !'z,,, I

'r lo(rr)' +z*(* * #) ] 
.

[. r*l' . (*,.*)'f-*",

a I ,**+2frfr+ 
1*I(,r*,*) (**#) ] 
-

[- f*l' . (L*.x)']- r',,

#] ",")

du 0u 0o /02u d2u
u ar*' a, = -* r (;p *;F

a [ (,**,t) (#**) . j

' lrf'* *z**, l

dv 0v do /d2v d2,
u ar+'a, - a' + (.ap * aF

, | ,X(# * *) *. (#)' l
J, I 1r ,dr" Il,rr# +2u a,a:. J

arart/tt-Il,--:-V. Id.r dy Pr \
The boundary conditions become

r,t:0, y:0, T :7,

hu: x* -y, T :0,
4
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where We =- dta I 1t is Weissenberg number. K2 - v lakt is the porosity parameter, 0p, : Tn f T*

is surface heating parameter, )": uzall-t and Pr: Ltcplk is the Prandtl number. Introducing

the stream function ty which satisfies the continuity condition such that

By eliminating pressure terms from Eqs. (4.19,4.20)by using p..,, : p.,,,

dry dty
U: 

-. 
V: --.dv' dx

(4.23), Eqs. (4.19-4.22) take the following form

d\tdiv dvdtyr,aVd3V drttdlv 0'V dov
ayE, Eef ' ara;iv - are"N- e7 - w -r#.*,(#-#)

(4.26)

(4,23)

and then using Eq.

**,(U?tv -dv dstl, ,rdv )try 
-rdrl, 

dtv -dry dsv 
-dvdtv\ -n- \ dx )vs dy )xdya ''dx dxzdy3 'dy dx3)yz ' 0x dfdy ,, ,*trlrO,

,## -*#:,1o. ( [,. 
{",+*tr!4] ",) @zs)

The dimensionless boundary conditions in terms of stream function ry take the following form

dw
V/:0, ---0. I:1.

dy)':0 :

) -+ oo : tlt : *y +llr, 7" : 0,

where T: bla is non-dimensional constant characterizing the obliqueness of incoming flow.

Suppose the solution of Eqs. (4.24,4.25) subject to the boundary conditions (4.26) is of the

form

V: xf (y) +s(y), T :0(y), (4,27)

where /(y) and g(1') are the functions representing normal and oblique flow components. Us-

ing the f::.q. @.27) in Eqs. (4.24-4.26) and comparing the coefficient of x0 and xl, we ger

(4.28)

(4.29)

(4.30)

f'' + f f"' - .f'f" *w" (f f, - f' f,,) - K2 f" : o,

g'u + f g"' - g'f" -w, (f s' g'fh') - K2g" : o,

,4 [{ 
, *!*a(r + (g, - r) o)3 

} 
r'] * Pr ro'| : 0,
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subject to boundary conditions

):0 :

y-+- :

f (y) : o, f'(v): o, g(v) : g'(v): o, o : l,

f'(y) : t, s'(v) -- w, g : o,

where Rd:4ossTJlk(qr*e,), prime denotes the derivative with respect to y, Integrating

Eqs. (4.28) and (4.29), and by employing boundary conditions (4.31) at infinity, we have

(4.31)

(4.32)

(4.33)

(4.34)

(4.3s)

(4.36)

(4.37)

f"' + f f" - (f')' -w, (f f"' -2f'f"' + (f")')

g"' + f g" - g'f' -w, (f s' - f'g"' + g" f" - f"'g')

-K'(f'-l)+1:0,

- r' (t' - rr^) - Ay :0,

where the constant A accounts the boundary layer displacement. It arises when y -+ "", /(.v)

behavesas,f(l') .- y'*A. Forsimplicityintroducinganewvariable g'(y)-yh(:'),Eq. (4.33)

with boundary conditions can be written as

h" + f h' - f' h - we (f h"' - f' h" + h' f" - f"' h) - Kz h : A - K2 y,

The values of /"(0), /r'(0)and 0'(0) can be found from equations (4.30), (4.32) and (4.34) with

boundary conditions (4.31) and (4.35) for difl'erent values ol the parameter We, K, Rd and y.

We mention here that for Rtl=O and orthogonal.stagnatit-rn point flow (y:0) equations (4.30)

and (4.32) reduce to equations (ll) and (12) as reported by Attia [86]. The dimensionless

components of velocity can be obtain by using the relation of y given in Eq. (4.27)

ft(0) :0 ft'(.") : 1.

':X:xf'(Y)+Yh(Y)'

r,: -'+ : I(il.dx
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The physical quantities of interest are wall shear srtess and local Nusselt number can be defined

AS

ru, - .\ ( I + 3we) f" (o) + (l +Twe) yh'(o). (4'38)

Re*tt2N,,: - (, +!naej,) e'tol. g.3s)

ThestagnationpointoccurswhenthestreamlineV:0meetsthewallatx:x''Thevalues

of x, can be calculated at zero skin friction (7, :0), which is

r,:-l'*?Yi).v!,:,,9) (4.40)
(t +3we) f" (0)

4,2 Chebyshev Spectral Newton Iterative Scheme

In order to solve nonlinear equations (4.30), (4.32) and (4.34) with boundary conditions (4.3 I )

and (4.35) for different values of involving parameters, Chebyshev spectral Newton iterative

scheme (CSNfS) is used. For (i+/)th iterates, we write

fi*t: f,*6f,, (4.41)

and similarly for all other dependent variables. Using Eq. (4.a1) in (4.32), we obtained

co,,6fi'' + cr,i6ii' * c2.i6f';' * ca,,6f; * ca,i6f;: Ri, i :1,2,3""N (4'42)

subject to boundary conditions

6r(0) : -r(0), 6/, (0) : -,/,to), dI (-) I - I (-). (4.43)

The coefficients cj,, (/ : 0, 7 ,2,3,4) and R; are

co., : -Wefi. cl,, : I *ZWefi. c2,,: | -\Wef i '

ct.i : -2f! +zweii' - x2 , ,0., : i, - wrflu , (4'44)

Ri -.we (t,tr --2.f ,i," * (r, )') - ri' - f,fi'. (i )' + K' (/ - r) - I
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Eq. @AD is now linear and is solved using the Chebyshev spectral collocation method [88-

901. For this purpose, the physical domain [0, *] is truncated to [0, L], where L is chosen

sufficiently large. The reduced domain is trangformed to [-1. l] by using transformation

E=zqlL -1. Nodes from -l to I are defined as (p-cos(EUN), k=0, 1,2,... N, and are

known Gauss-Lobatto collocation points. Chebyshev spectral collocation method is based

on differentiation matrix D, which can be computed in different ways. Here we used D as

suggested by Trefethen [91 ]. For i=O Eqs. (4.41) and (4.42) become

/s is used as an initial guess and we found 6/s for first iteration. Similarly for i=/, (4.41) and

(4.42) become

fi : fo+ d,fo'

.0,06ff'' * c1,s6fi' * c2.s6f0 * ca,sdfs* c4,sd/0 : Rs,

,o r6,ri, * c116ri,, :,:t:;::,, ,ur, * cqt6rr: Rr,

(4.4s)

(4.46)

In which fi (=fo+ 6/o) is known function and we found 6/1 for second iteration. We continue

this procedure until fi+t - fi x 0. As the equation (4,32) subjected to the boundary, condition

(4.3 I ) has been solved and solution of/ is obtained. Once the/is known, then equatio n (4.34)

becomes linear and it is solved by using the Chebyshev spectral collocation method. However,

the energy equation defined in Eq. (4.30) is still non-linear and it is solved in the same way as

proposed for Eq. (4.32). MATLAB R20l0a is used to develop the algorithm.

4.3 Results and discussion
t. i(

Non-linear ordinary differential equations (4.30), (4.32) and (4.34) with boundary conditions

(4.31) and (4.35) have been solved numerically against all physically important values of the



parameters We (Weissenberg number), K (Porosity parameter) Rd (Radiation parameter) and 7

(shearing flow parameter) by using the Chebyshev spectral Newton iterative scheme (CSNIS)

as described above. In Table 4, l, the comparison of numerical values of /'/ (0) has been made

with the results obtained by CSNIS and finite difference method for the different values of

We and K. It is seen from the Table 4.1 that the..results obtained by CSNIS are in excellent

agreement with the results obtained by finite difference method. CPU time is also calculated

for both techniques and it is observed that CSNIS takes less time to achieve its desired results.

In table 4.2, the values of the skin friction coefficient (Rertl2C.1) are presented to show the

validity and convergence of the results obtained by CSNIS, In this table it is observed that val-

ues of the skin friction coefficient (Re,rrlzg,, converge rapidly after only 3 iterations. Table

4.2 also clearly indicates that after performing small number of iterations, the present CSNIS

results made an excellent agreement with the results of Attia [86] and Li et al. [92]. Compar-

isonof thecomputedvaluesof -0l(0) andftt (0) withAttia[86] isgiveninTables 4,3-.4.5

for various values of We, Pr and K when Rd=O and T=0. It is found that the results are in

good agreement and hence accurate. However, srlnall difference occurs quantitatively due to

variation in numerical technique. In Table 4.6, the values of/"(0), h'(0), A and Re*t12Nu,

are given for the various values of We and K when Prcl , Rd=Z and 0* __- L5. From the table

it is found that the values of //'(0) are increasing with the increase in porosity parameter K

but with increasing the effects of Weissenberg number (We), the values of /"(0) decrease.

It is also observed that the Weissenberg number (!{ze) helps to reduce the heat transfer rate

where the porosity parameter (K) enhances the heat transfer rate. Fig. 4.2(a-d) indicates rhe

influence of Weissenberg parameter We and obliqueness parameter y on the velocity profile.

Fig.4.2(a) represents the orthogonal stagnation point flow (y = 0) and Fig. 4.2(b-c) are drawn

for non-orthogonal stagnation point flow (T * 0), It can be seen from the Fig. 4.2(a-d) that

_ '.ti
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with the increase in values of We, the velocity of the fluid decreases and the boundary layer

thickness increases. Further, it is observed that with increase in value of 7 the velocity of the

fluid increases as shown in Fig. 4,Z(b-d). tn Fig. 4.3(a-d) the variation of the velocity profile

is shown against -v for different value of K and 7. It is observed that the velocity increases but

the boundary layer becomes thinner with the increase in value of K for orthogonal stagnation

point flow as shown in Fig. 4.3a. On the other hand, the velocity increases rapidly against y

for different values of K in oblique stagnation point flow (Fig. a.3G-d)). In Fig. 4.4, varia-

tion of the temperature is plotted against y for the different values of radiation parameter Rd.

The solid lines show the variation in case of non-linear radiation and the dashed lines show

the variation in case of linear radiation, It is observed that the temperature of the fluid en-

hances due to enhancement of the radiation. It is because of the reason that due to application

of radiation the surface become hot. From the figure, a rapid increase in the temperature is

also observed in the case of non-linear radiat.ion as compared to the case of linear radiation.

This increase is due to an extra surface heating term, which enhance the temperature rapidly.

Where in linear radiation we ignored the surface heating effect. Temperature variation against

y for different value of surface heating parameter 9,,. is plotted in Fig. 4.5. The dotted line

is plotted for 0n': I (linear radiation case) and solid lines are plotted for gn.: 1.3, 1.5,1.7

(non-linear radiation case). With increase of surface heating parameter gn the enhancement in

the temperature is observed. Figure 4.6 highlights the effects of viscoelastic parameter on tem-

perature profile. From this figure, it is observed that the temperature is an increasing function

of We.lt is due to the reason that with increase of viscoelasticity of the fluid, the heat transfer

rate decreases within the boundary layer, which enhances the temperature in stagnation point

region. This behavior also validates the results demonstrated in Fig. 4.9. Figure 4.7 depicts

the temperature variation for porosity parameter K. It is observed that temperature profile is
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decreasing function of K. It is because of the reason that higher heat transfer rate results in

cooling of the surface which is shown in Fig. 4.9. Variation of wall shear stress and heat

transfer rate is shown through Figs. 4.8 and 4.9 respectively. Wall shear stress is observed an

increasing function of viscoelastic parameter We and decreasing function of porosity parame-

ter K. Moreover, the heat transfer rate is observed an increasing function of K and decreasing

function of We. The variation of the local Nusselt number against K for the different values of

Rd is plotted in Fig. 4.10. The solid lines are drawn in case of non-linear radiation and dashed

lines are drawn in case of linear radiation. It is observed that heat transfer rate increases with

the enhancement of radiation effects. Moreover, by increasing the porosity parameter K the

enhancement in heat transfer rate is also observed. In Fig. 4.I l, values of the local Nusselt

number are plotted against K for different values Lt pr.lt is observed that with increase of Pr

the heat transfer rate increases, which results in reduction of the temperature. In Fig 4. I 0 and

4.I I it is also observed that heat transfer rate increases in case of non-linear radiation as com-

pared to linear radiation. Figs. 4.12and4.13 are plotted for streamlines, where dots indicate

the position of stagnation point, In Fig. 4. I 2, streamlines are plotted for the various values of

obliqueness parameter 7. The effect of K on streamlines is shown in Fig. 4,13. Increase in

constant obliqueness parameter l7l and porosity parameter K helps to translate the stagnation

point. It is also noted that the streamlines come closer to the plate and the boundary layer

thickness gets reduces, which indicates an increase in the velocity.
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Table 4.1: Variation of /" (0) for different values of We and K.

We K Finite difference CPU time (sec) CSNIS CPU time (sec)

0

0.1

0.5

I

0

0.1

0.5

I

0

0.r

0.5

I

t.2325976

1.2366126

1.3294t70

1.5853423

0.7527695

0.1556376

0.82 r 5089

l.0000000

0.41 28861

0.4146696

0.4553938

05640846

4.146076

6.5s9541

6.494227

4.829643

5.9 r 3931

5.394916

5.833578

5.950510

13.02250

13.47708

n,623624

t0.t54764

t.232s877

1.2366026

1.3294067

1.5853307

0.7527678

0,755635e

0,8215072

1.0000001

0.4128854

0.4146689

0.4553939

0.5640877

0.4612t4

0.450157

0.369675

0.343862

0.425973

0.586347

0.547974

0.467803

0.466235

0.504567

0.398360

0.s59593

Table 4.2: Values of skin friction coefficient (Re.rt/zgr, at different iterations

lterations J We:0 We: I

K:0 K:l K:0 K:l

nr!/zc 1 --+

2.5765664

1.2783484

1.2329404

1,2325877

t.2325877

1.2325877

1.2325877

1.2325877

2.t620723

1.6079020

1.5853840

L5853307

L5853307

1.5853307

r.5853307

1.5853307

0.88s79430

0.75774750

0.75277610

0,75276780

0.75276780

0.75276780

0,75276780

0.75276780

2.9997276

1.60138t2

1.0174925

l.0009531

1.0000002

1.0000001

1.0000001

1.0000001

I

2

3

4

5

6

7

8

Li et al, [92] -+

Attia [86] -+

1.23259

1.2326 1.5840

0.752763

0.7528

68

r.0000



Table 4.3: Comparison of //'(0) for the various values of We and K. The results in small

brackets are reported by Attia [86].

We=0 We=O.5 We=l We=5 We=10

0 1.2326(t.2326)

o.s 1.3294(1.3283)

r 1.s853( I .5840)

l .5 l .9390( 1 .9374)

2 2.3467(2.3449)

0.902s(0,902s)

0.98 l 0(0.98 10)

l. I 860( l. I 860)

1 .4658( l .4666)

1.7855( L78s4)

0.7s28(0.1528)

0,8215(0.821s)

l .0000( r .0000)

1.2420(1.2420)

r.5175( I .s 175)

0.41 30(0.4 l 30)

0.4ss4(0.4s5s)

0.5641(0.5641)

0.7092(0.7092)

0.8728(0.8127)

0.303 r(0.3031)

0.33s3(0.33ss)

0.41 80(0.4180)

0.5277(0.5277)

0.6510(0.6s09)

Table 4.4: Comparison of -0'(0) for the different values of We and Pr when K : 0' 1, Rd: 0'

The results in small brackets are reported by Attia [86].

Pr = 0.05 Pr = 0.1 Pr = 0.5 Pr=l Pr=2We

0

0.5

I

5

l0

0.16r0(0.1667)

0. ls46(0. 1607)

0.r50s(0.1s69)

0.1 354(0. r 440)

0.t269(0.t377)

0.2196(0.2206)

0.2086(0.2098)

0.20 r9(0.2032)

0. r 785(0.1 806)

0.r661(0.169s)

0.4336(0,4354)

0.4025(0.4041)

0.384e(0.3864)

0.3291(0.3304)

0.3021(0.3039)

0.s708(0.5739)

0.s2s8(0.s28s)

0.s007(0.s033)

0.4238(0.4238)

0.387s(0.3899)

0.7442(0.7496)

0.6814(0.6861)

0.6470(0.6s 13)

0.s432(0.5464)

0.49s2(0.4968)

Table 4.5: Comparison values of -g'(0) for the different values of K and Pr when We:7,

Rd:0. The results in small brackets are reported by Attia [86]'

Pr = 0.05 Pr = 0.1 Pr = 0.5 Pr=l Pr =2

0 0,1504(0,1-569)

0.s 0. l s l6(0. 1580)

I 0. rs43(0. r60s)

l.s 0.ts7z(0.1632)

2 O.rs98(0,16s7)

0.20r9(0.203I)

0.2038(0.2050)

0.2084(0.209s)

0.2134(0.2134)

0.2179(0.2t79)

0.3846(0.3861)

0.3903(0.391 8)

0.403s(0.40s 1)

0.4184(0.4202)

0.4323(0,4342)

0.5004(0.s029)

0.s088(0.s I l4)

0.s28s(0.s313)

0.ss09(0.s539)

0.5720(0.s753)

0.6465(0.6s07)

0.6s87(0.6631)

0.6871(0.691 8)

0.7197(0.7249)

0.7s06(0.7s63)
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Table 4.6: The Numerical values of /" (0), ft'(0), A and Rert12 Nu, for the different values of

K and We when Pr : l, Rd - 2 and 0,, : I '5'

t;frl,l nlq)
:-l::

Rr, 
t12 

N u*WeK
a

A

0)
v)
(g
()
tr
(g

tr

Bq)

z

0

0.1

0.2

0 0.5

I

-0.6479

-0.6465

-0.6423

-0.615 r

-0.5410

-0.4618

-0.3936

r.8309

r.8315

1.8332

1.8443

L8751

t.9092

l.9398

t.2326 1.4065

1.2366 t.4043

t.2486 t.3977

1.3294 r.3569

L5853 l.2617

l,9390 l. I 816

2.3461 t.1273

1.5

2

0 0.7528 t.2128

0.1 0.7556 t.2094

0.2 0.7642 1.1992

0.5 0.8215 I .1378

I 1.0000 L0000

1.5 t.2420 0.8891

2 1.5175 0.8159

-t.2028 L6661

- 1.200 r 1.6669

- 1.1920 I .6693

- I .1399 1.6846

- I .0000 t.7269

-0.8522 1.7740

-0.7258 1.8167

o
rn
(g
o
cg

tr

oz
I

z

0 0.4129

0.1 0.4t47

0.2 0.4200

s 0.5 0.4554

I 0.s641

1,5 0.7092

2 0.8728

1.08s2 -2.3348 L4560

l:080h -2.3294 t.4s1o

L066 t -2.3135 1.4599

0.9810 -2.2112 1 .4787

0.7962 -1.9378 1.5305

0.6525 -1.6506 1.5884

0.5596 -1.4054 I .641 8

70
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Figure 4.2: Variation of velocitY

7: I (d)Y - 5andWewhenK:

profile for the different

l.

values of (a) I: 0 (b) lr: 0.5 (c)

i
ll ,

Figure 4.3: Variation of velocity profile for the different values of (a) T : 0 (b) lr: 0'2 (c)

T : 0.5 (d) 7: 0'8 and K when We :2
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I

0.8
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0.4

Pr--0.7, We=2, K=0,5

0 
n= 

l'0 (linear raiiation)

0n = /' J (non-linear radiation)

Rd = 1,2,5

Pr=0.7, rile=2, K= l , Rd = 2

linear radiatio
non-linear radiation

0 = /, 1.3, 1,5, 1.7

0.

v

Figure 4.4: Variation of temperature profile for the different values of Rd.

I

0.8

0.4

0.2

Figure 4.5: Variation of temperature profile for the different values of 0*,.
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0.8

0,

Pr=0.7, K=1, Rd=2,0

We = 0,2, 5, 10

o
0,4

0.2

Figure 4.6: Variation of temperature profile for the different values of We '

Pr=0.7, We=Z, Rd=29

0

0.

0.4

0.2

K = 0, 1,2,3

Figure 4.7: Variation of temperature profile for the different values of K.
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Rd = 2, Pr = 0.7,7 = 1.3,T = 2

K=0, 0.5, l, 2

t.5
We

Figure 4.E: Variation of wall shear stress against We for the diff'erent values of K.

/.5

t.45

t.4

1.35

Rd = 2, Pr = 0.7,Tr= 1,3,y = 2

t.

1.25

t.2

l.l5

t.l

K = 0,0.5, 1,2

t.5
We

Figure 4.9: Variation of local Nusselt number against We for the different values of K.

S
z\

I

Uq

74



1

zq
la

q)(

Figure 4.10: Variation ol' local Nusselt number against K for the different values of Rd when

0^,:L0and 0n,:1.3
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Nusselt number against K for the different values of Pr whenFigure 4.llz Yariation of local

0n, : 1.0 and 0w : 1.3.
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We= l,K7
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Figure 4.12: Streamlines for the different values of obliqueness parameter /.

We=0,y=5

x

Figure 4.13: Streamlines for the different values of porosity parameter K.
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4.4 Conclusions

The Chebyshev Spectral Newton Iterative Scheme (CSNIS) has been successfully applied to

perform a comparative study of steady two-dimensional oblique stagnation point flow of a

second grade fluid in a porous medium with non-linear radiation effects. It is observed that

the CSNIS is efficient, less time consuming, stable and rapid convergent and have excellent

agreement with available data in the limiting case. This study is based on a new idea of

non-linear radiation effects in oblique stagnation point region through porous medium. The

findings of this study may be summarized as follows

o Velocity of the fluid increases with increase in the values of shearing parameter '

o It is seen that increase of radiation and surface heating parameter, the temperature and

the thermal boundary thickness increases. , ri

o Heat transfer rate is observed an increasing function of porosity parameter K and de-

creasing function of viscoelastic parameter We.

Enhancement in the temperature is observed with increase of We, where the reduction

in the temperature is due to enhancement of porosity parameter K'
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Chapter 5

Study of nanofluid in the region of oblique

stagnation point flow over a stretching

surface with radiation

In this chapter, we discussed the enhancement of thermal conductivity of elastico-viscous fluid

filled with nanoparticles, due to the implementation of radiation and convective boundary con-

dition. The flow is considered impinging obliquely over a stretching sheet near a stagnation

point. The governing partial differential equations are transformed into a system of ordinary

differential equations by employing suitable similarity transformations. Solution of the result-

ing equations is computed numerically using Chebyshev Spectral Newton Iterative Scheme

(CSNIS). An excellent agreement with the results available in the literature is achieved and is

evident from tables. Effects of involving parameters on the flow and heat transfer characteris-

tics are observed and shown through graphs. It is noted that the larger values of Biot number

imply the enhancement in heat transfer, thermal and concentration boundary layer thickness.
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Un= ci

Figure 5.1: Schematic diagram of the flow geometry

5.1 Problem formulation

Consider the steady, two-dimensional, laminar flow of Walter's B nanofluid impinging obliquely

on a stretching surface, a[ 1: - 0. The fluid occupies the upper half space ! > 0 as shown in Fig.

5.1. The surface is heated convectively, by convective heating process, which is characterized

by a temperature T1 and a heat transfer coefficiqnt h1. We neglect the viscous dissipation to

estimate accurately the effect of convective boundary condition because viscous dissipation

would disturb the thermal boundary conditions. The velocity of the outer flow far away from

the surface is U"(.r,y-) : aI*b;... The flow. energy and concentration equations are (see Beard

and Walters [93])

du dv
_L_

^tdx dt
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dv dv
il- *i- :dr dn

/0v
l

\a;

o,fu n,fi : _ ;x., (# . #) . ? {u*1,,# 
*,, ffi . o (*)' .

;X." (#.'#). ? { *1,'*#.,HX. (,**'*) .

o4* *, 
*4 - hffi .#) ** .,r 

{ou (#*. ##) .

'1:(*.X)l .r4[('*.'*) (#. ?r1).'***'*#] ] 
(sz)

.'r;)J . i, l'X G. X). 
- (rI)' *'',fi . " #o)\' 

(s 3)

';lG)'.(#)'] )
(s.s)

where C(;,_v) is the concentration, ks is elasticity of fluid, D7 and Ds are the Brownian motion

coefficient and thermophoretic diffusion coefficient respectively. r*(: (pr)pl@t)1) is the

ratio of effective heat capacity of nanoparticles materials to heat capacity of the fluid. The

boundary conditions of the problem are given by

of,*,'fi: r,(tg* -#).';('# r'#)

AT
):0 : u-- ci, i:0, -k? : hr (Tt _ T) , C : Cn',

d,

.v-+- : u:aI*hy,T:T-.C:C*,

(s,4)

(s.6)

(s.z;

in which a, b and c are positive constants having the dimensions of inverse time and /r7 is

the heat transfer coefficient. The radiative heat flux can be modeled by using Rosseland's

approximation as follows

4osa af4
Qr: - 3(qr+ o)-ei'

where cl56 is the Stefan-Boltzmann constant, a,. is the Rosseland mean absorption coefficient

and o, is the scattering coefficient. Assuming that the temperature difference within the flow

is sufficiently small so that Ta may be expressed as linear function Tsuch that

T4:+rll -37:

80

(s.8)



thus Eq, (5.7) takes the following form

dy 0r
-.::-. ::--
dt' d.r

n,:-###
Upon using non-dimensional variables and stream function y of the form

r: r\f ;,r-r{f,, u: h,,,: fi;r, ,: fil,
T -T* e - c* )ry dtyI - rt'1*'v- gn-c*'': ay' '- - a*

and eliminating pressure from Eqs. (5.2), (5,3), Eqs. (5.2), (5.6) take the following

terms of ty

d (y,'v'v) n*rd (:Y'vov) 
+ V4vr:0,

d (x,y) d (x.y)

dydr t (A2r , dzr rcosaTJ a'r\ ^, (acaT acar\
e;6: P, \rP * eV'tr1o,r "ref ) 

trva 
\Jx a* - 46 )

.,,((#)'.(#)')

, :l*, *Ir',L : o, c: o,

(s.e)

(s.10)

form in

(s.l 1)

(s.12)

*^ ( ydc dvrdc\ ( a2c a2c\ N, / d2r J2r\
" I at ai- ai e;) : (;,; ' ;; )- ;; ("a;t ' a;, )' (s 13)

):o LrY--x,v:,,ff:-Bi(t-r) ,c:t 
(5.r4)

Y-+oo:

where We: koclpv be the Weissenberg number Pr: ltcplk be the Prandtl number, Sc:

vlDo be the Schmidt number, Nr: DrT*(71 -T*)lT*v be the thermophoresis parameter,

No : Dor*(C,,,-C*)f v be the Brownian motion parameter, Bi: (nf lf) {vrc Ae the Biot

number and y : b lc represents shear in the free stream. Suppose the solution of Eqs. (5.1 l)

and (5.14) is of the form

V - xf(y)+s0), r : 0(y), C = Q(y).

8l

(s. rs)



where the functions 
"f 

(.v) and g(y) are normal and oblique components of the flow' Using Eq'

(5.15) in Eqs. (5.1I -5.14), and comparing the coefficient of like powers of x, we get

)':0: f(>'):0, f'(y): l, g(y) :g'0):0,0'(.v) :-Bi(t-0(y)),0(y) : l,
(s.20)

) -) - : f'(y) : a/c, g'(y) : W, 0(y): 0, 0 (Y) : 0,

where Rd : osaTllf@r+ or) is the radiation parameter and prime denotes the differentia-

tion with respecr to y. Integrating Eqs. (5. l6) and (5.17) employing the boundary conditions

at infinity, we get

fi' + f f"' - f' f" +we (77' - f' f''1 : g,

g''' -+ f g"' - g'f" +we (f s'' - g'f'u) : o,

( ++na ll) o" + vrlfe' + N6Q' o'+lr, (e')21 : o,

Q" + scYE' + (tt, lrtu)o" :0,

f"' + f f" - (f')' +w, (f f''' -2f'f"' + (f')') *5:0,

g"' + fg" - g' f' +we (fgi' - f' g"' + g" f" - f"' g') - Ay : o,

h" + yh'- f'h+we (7h"' - f'h" +h'f" - f"'h): A,

ft(0):0 ft'(-; : 1.

(s.l6)

(s.l7)

(s. r8)

(5.19)

(s.2t)

(s,22)

(s.23)

(s.24)

where A=A(a/c, We) is a constant which measures the boundary layer displacement' Con-

stant A at free stream behave as (o I c) y which also corresponds to the behavior of /(1') at the

free stream. For simplicity, introducing a new variable, 8'(y) --yh(y), then Eq' (5.22) with

boundary conditions is written as
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Thus the system of boundary value problem becomes

f"' + f f" - (f')' +w, (f f'' -zf'f"' * (/)) * A -0, (s.2s)

(s.26)

(s.27)

(s,28)

(s.30)

(s.31)

h" + f h' - f'h +we (yh"' - f'h" + h' f" - f"'h)

(t + +na I z) o" +vrlf e' + N6Q' o' + lr, (e';'z]

Q" + sc 7q' + (w,lNo) o" - o,

-4,

-0,

rq^
Da(C*, - C-)'

with boundary conditions

y:0: f(y):0, f'(y):1, h(v):0,9'(.v) :-Bi(t-0(y)),0(y) : l,
(s.29)

y -+ oo : f' (y) : alc, h' (y) : 1, g(y) : 0, 0(y) : O.

To solve the fourth order ordinary differential equations (5.25) and (5.26), augmented bound-

ary conditions [94, 951 f" (y) -- 0 and ht'(y) - 0 as y -+ @ are utilized,

The quantities of physical interest are the skin fiiction coefficients C7. the local Nusselt num-

ber Nu* and the local Sherwood number Shr are

, : ?rY. : xf'(y)+ s'(y). , : -'#: -.f (.r)

c, : J!-: Nu, : r,l? * g-')r, 
sh, *' pu'* k\11 - l*)

where ?,, is shear stress at the wall, q, is the radiative heat flux, q* and {rr represents local heat

flux, and local mass diffusion flux at the wall are

ui(ui+nr)* \ I

rv-lt(u,-lUi) -Ztol ll
\ lr(al + rr) + \n(a-, * vrr) ) l,* 6.32)

In terms of dimensionless variables the skin friction coefficients C1,the local Nusselt number

Nur and the local Sherwood number Slz, takes the following form

Re*c1: -r(I -3we)f"(0) +(1 - Zwe)yh'(0),

Rrrt/2Nrr: - (, *!roo)0'(0), Rr;tt2shr: -0'(0),
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where Re*:uwxf v.

5.2 Chebyshev Spectral Newton Iterative Scheme

Exact solutions of the nonlinear differential equations (5.25- 5.28) subject to the bound-

ary conditions (5,29) are difficult to obtaine, Some authors have used analytical and semi-

analytical techniques to solve these equations [70,961, In the present study, we implemented a

numerical technique namely Chebyshev Spectral Newton Iterative Scheme (CSNIS). The de-

tailed information regarding to this scheme is provided in chapter 4, however discretization of

the equations (5.25- 5.29) is given in this section, In this scheme, we first convert the system

of nonlinear differential equation into a linear form by using Newton iterative scheme. For

(i+1)th iterates, we write

fi*t : fi* 6fi, li+t : 0; * 60,, Qi+t : Qi -t 6Q,,

foralldependentvariables,where 6fi,59iand6@i, representsaverysmallchangeinfi,0;andQi

respectively. The equations (5.25- 5.28) in linearized form are

(s.34)

(s.3s)

oo,i6"fi'' + a1.;6f!" + o2,i6flt + a3,16f! I aa,i6f;: Rr.i,

bo,i6 f!" + b 1,, 6 flt + b2,i6 fi * fu ,; 6 f * ba,;6 h'1" * b5,;6 ht,t * b6,i6 h'; * bt.i6 h i : Rz.t,

to,i6 f * c1,;601' + cz.i60l * ca,;6Q! : R3,i,

do ,6f * d1 ;60/ + d2,,6Qlt + fu,,6Q! : R4,i,

together with the boundary conditions

6l;(0) : -r(0), 6fi(C) : atc -/(0), 6l (-) - I - fi@), 6fi' @) : -f!' (*),

d/,,(0) : -hi(O),6h',1*1- 1- h'i(*),6h','1*1 : - h'l(*),

60i (0)- 8,60,(0) : -0i (0) - Bi(t - 0i(0)), 60i(-) : -gi(-),

(s,36)



The coefficients a;.r, bi,i, ci.r, di.tand R;,i(,t :9, 1,2,3...)are

eo.i:We fi, at,i: | -ZWe f!, a2,r: f,-ZWe f!',

aj,i- *Tfi -ZWef!", a;,i: f!'+wrfi,bo,i: -Wehi, bt,i-weh',,

b2.i : -h; -we h'|, b3., : h',+We h'i", bq.i : we fi, bs,i : | -we f!,

b6.i : fi *We flt,b7,i : -fi -Wt f!",cs,; : Pr 0l, rr,,: (l + 4Rd 13),

ca,; - Pr (ruoei) ,cz.t : nr (I + t'to4i +}Ntei) , do., - sc Q!,

dt i - (N, I Nu), dz,i - l. dt.i - Sr.f,

Rr,i: -wr(f,fi'' -zfifi'* (il') - fi' - f,fi'+ (t)'-o'/r',

Rz.i: -we(fih'l' - fih'i + f!'h'i- fi"h,) -h'l - fih'i* flh,+e,

R3.i: - (l + 4Rd13)0!' -yr(r'e;*x&ie!+n, (ei)'z) ,

R4,i : -Oi' - sc fiqi * @,1r,t1,) ei'

The system of linear Eqs. (5.35) subject to boundary conditions (5,36) is solved using the

Chebyshev spectral collocation method t88-901. After applying collocation method to Eqs.

(5.35, 5.36), the following matrix is obtained

Arr An An Arq I I 6f, Rl.,

Rz.,

R3.,

Ra.,

(s.37)

(s.38)
Azr Azz Azt Azq I I 6hi

Atr An An Atq I I 60i

Aq Aqz Aqt A+q I I 60,

where

Ail : ao,iDa * a1,iD3 + a2.;D2 * a3,;D * a4.11, Atz :0, Ar3 : 0, A14 : 0,

A2t : bo.iD3 * b1.;D2 * b2.iD I fu,;1, Azz : bq.iD3 * b5.,D2 * b6,1D I b7.il,
(s.3e)

AZt -- O, AZq == 0,43 1 : cg.1l ,A32 : 0, A33 : ct.iDz * c2.iD,A34: c3,iD,

A4t : dg.;l ,Aa2 :0, A$ : dt,,D2 'A,tq -- dz.,D2 * rfi,,D,

/ is identity matrix, ai.i, bi.i, c,.i, di.iand R;,i(l : 0, l, 2,3...) are given in (5.37).
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5.3 Results and discussion

The non-linear differential equations (5.25) - (5.28) subject to the boundary conditions (5.29)

are solved numerically for different values of dimensionless parameters namely Weissenberg

number (We), velocities ratio parameter a/c , radiation (Rd), thermophoresis (Nr), Brownian

motion (N6), Prandtl number (Pr), Schmidt number (Sc) and Biot number (Bi). The values

of 1/'(0), -0'(0) and -@'(0) are shown in the limiting case through Tables 5.1 and 5.2. It is

found that the present results are in excellent agreement with previous investigations available

in the literature, Moreover, Numerical values of A, Rert12Shrand Re. 
tlzSl,*for various val-

ues of different parameters are shown in Tables 5.3 and 5.4. The results in terms of velocity

profile, temperature profile, concentration profile, f"(0), -0'(0) and -@/(0) for sundry pa-

rameters are shown through graphs. In most cases, the values of the parameters are taken as

Pr:6.8,,Sc: l.5,Bi:0.5,We:0.1, Nt:Nb:0.3, af c:0.3,1.2 andRd: I orotherwise

mentioned. The variation of f"(0), -0'(0) and -@'(0) against We for af c:0.8,1.0,1.1,

and 1.2 is shown in Figs. 5.2 - 5.4 respectively. From these Figs., it is observed that the

similarity equations (5.25) - (5.28) subject to the boundary conditions (5.29) have dual solu-

tions for some range of the parameter We. There exist unique solution for a particular range

of the parameter We and there exist a region where the solution does not exist. The solid

lines show the stable solutions and dashed lines show the unstable solutions. For af c > l,

the range of solution enhances due to increase in af c and for alc < 1 the range of unstable

solution become larger than the stable solution. There exist a unique solution at critical value

We - We,, dual solution exist between the range Q I We 1We, and no solution exists for

We {0 andWe )We,,. The critical values areWe,.1:0.3149, We,,2:0.3642,We,l:0.528

andWe14 -. 0.33 for different values of af c as shown in figures. It is observed that unstable

solutions have higher values of 1"(0), -0'(0) and -@'(0) than that of the stable solutions for



given values of We. It is further noted that in stable solutions (first solution) heat and mass

transfer rate increase with increase in the values of af c, where as a reverse behavior has been

observed for unstable solution (second solution). The stability analysis of multiple solutions

has been discussed by many researcher see [97-99]. They found that first solution is applicable

physically while the second solution is not. In Figure 5.5 the velocity profile is plotted against

y for the different values of We, a/c and y. Here I:0 and T:0.2 correspond to the cases for

orthogonal and non-orthogonal stagnation point flow respectively. It is noted that the velocity

of the fluid increases with increase in the values of We when af c > l. An opposite behavior

is observed for the case when alc < l. It is also seen that with increase in the values of 7

the velocity of the fluid increases. In Figs. 5.6 and5.7,local Nusselt (Re. r12Nur) 
and local

Sherwood (ne;t/2Shr) numbers are plotted against thermophoresis parameter Ny for different

values of Ra and af c.lt is clear from Fig. 5.6 that with an increase in the values of N1, a very

slightdecreaseinlocalNusseltnumberisobservedforboththecases of alc(alc> l,af c <l).

Consequently, the temperature and thermal boundary layer thickness increase with an increase

in thermophoresis parameter Ny near the wall. Fig, 5.7 elucidates that the local Sherwood num-

ber decreases with increase of N,, as a consequence the concentration and the concentration

boundary layer increases with increase of N,. Frotn Figs. 5.6 and 5.7, an increase in the local

Nusselt and local Sherwood numbers is observed due to enhancement of radiation, In Figs.

5.8 and 5.9, thevaluesof the local Nusselt (Re. t12Nu.*) 
and the local Sherwood (Re, t12Shr)

numbers are plotted against Brownian motion parameter (Nl,) for different values of R7 and

a/c. It is seen that with increase in Brownian motion the local Nusselt numberdecreases but

the local Sherwood number increases. This increase in the local Sherwood number is very

rapid in the range 0 < Na < 0.2. This phenomenon increases the temperature and the thermal

boundarylayerthicknessbutdecreasestheconcentration. InFigs.5.l0and5.ll,thevariation

ar)
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of the local Nusselt (Reit/2Nur) and local Sherwood 1Re;l/2shr) numbers is plotted against

Biot number Bi (depending on the heat transfer coefficient) for different values of Ra and af c.

It is seen that the local Nusselt number increases and the local Sherwood number decreases

for initial values of Bi and for the larger values of Bi both quantities become constant. Due

to the larger values of Biot number Bi (Bi -) E), the surface become heated and heat transfer

rate increases. In fact, the larger values of Biot number imply the strong surface convection

result in high surface temperature; therefore, inclease in Biot number enhances the tempera-

ture and the thermal boundary layer thickness. This behavior can be predicted from Fig. 5.12.

In Fig. 5.13, concentration is plotted against.y for different values of Bi when Ra:2 and

af c':0.3. Concentration increases with increase in the values of Bl because concentration

distribution depends upon the temperature field hence the lager Biot number helps to increase

theconcentrationof nanoparticlesinthefluid. InFigs.5.l4and5.l5thetemperatureandthe

concentration profiles are plotted for the different values of We and a/c when Ra : 1, Bi : 0.1 .

For a f c < I , it is observed that the temperature and the concentration are increasing functions

of We but for alc >l an opposite behavior is noted. In Figs. 5.16 and 5.17, the temperature

and the concentration profiles are plotted for the different values of R7 when Bi : 0.1 and

af c:0.3. With an increase in the values of radiation parameter, temperature of the fluicl

increases where as the concentration decreases near the wall but away from the surface, it

increases with increase in the values of radiation parameter.

88



Table 5.1: Comparison of -gl(0) for the various values of af c and Pr in the absence Ther-

'-11_::*::'_1ir1_l'y1T_y'::::::*
Pr: I Pr =- l0 Pr-20

alc ll'_'*T_:'k
0. r 0.60215

0.3 0.64128

0.8 0.75710

l.0 0.79788

2.0 0.91813

3.0 I . 13209

4.0 1.26733

t81l

0.60281

0.64732

0.75709

0.79788

0.97872

t.13209

1.26733

Present work

2.3t693

2.34841

2.46778

2.52313

2.81389

3.09751

3.36440

t8l l

2.3t684

2.3484t

2.46778

2.52313

2,81389

3.09751

3.36441

Present work

3.36196

3.39149

3.5 1054

3.56825

3.88689

4.21307

4.52808

t8l I

3.36172

3.39 r48

3.51054

3.56825

3.88689

4.21307

452810

Table 5.2: Comparison of -0'(0) and

we = o,af c -. 0,Rd : 0,Pr : 10, sc :

reeorred 

_uv 

va*r noe.*^::1,_ 
.:

Na :0'l

-0'(0) for the various values of N, and N6 when

10, and Bi:0.1. The results in small brackets are

Na :0'3
rl

Nr :0'5

-o'(o) -0'(o) -o'(o) -0'(0)N, - 0'(0) -0'(0)

0.1

0.3

0.5

(0.0e29)

0.09291

(0.092s)

0.09255

(0.092r )

0.09212

(2.2774)

2.27741

(2.2228)

2.22281

(2.1783)

2.17834

(0.0383)

0.03833

(0.0269)

0.02690

(0.0180)

0.01800

(2,3560)

2.35603

(2.4576)

2.45762

(2.s43s)

2,54352

(0.0769) (2.3299)

0.07688 2.32994

(0.0729) (2.3e00)

0.07292. 2.38996

(0.0700) (2,4792)

0.06697 2.47923
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Table 5.3: Numerical values of A for various values of we and a/c.

0.05 0.1

Wea/c

0.2

0.0 r.0000

0.1 0.7917

0.2 0.6407

0.3 0.5195

0.4 0.4173

0.s 0.3286

0.6 0.2499

0.7 0.1791

0.8 0.I 14s

0.9 0.0s51

1.0 0.0000

0.9147 0.9481

0.7663 0.1402

0.6 r61 0.5906

0.4962 0.4120

0.3959 0.3735

0.3096 0.2896

0.2338 0.2167

0.1664 0.1527

0.1056 0.0960

0.0505 0.0454

0.0000 0,0000

0.8944

0,6854

0.s369

0.4205

0.3254

0.2459

0.1789

0.1220

0,0738

0.0334

0.0000

Table 5.4: Numerical values of Re. 
t12 

Nu, and Re' 
t 12 Sh'' for wider range of Pr'

a/c Rd N;U-T;
0.10 0.10 I 0.1 0. I 0.1 I 0.7 0.1681

I 0.1786

l0 0.2t64

s0 0.2250

100 0.2268

0.3 0,3 I 5 0.7 0.7404

I 0.8434

l0 1.3282

50 0.4836

100 0.0776

0.20 0.50 2

0.3 1.0 5 0,5 0.5 oo 10 0.7 l '7315

| 2.0139

10 3.0888

50 0,s032

100 -0.0194

0.5s39

0.5489

0.s225

0.5107

0.5075

1.5984

1.s899

1.5803

1.9263

2.0450

2.5104

2.s078

2.6083

2.9136

2.928t
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Figure 5.6: Variation of Nusselt number against N1 for the different values of Rd and a/c.
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5.4 Conclusions

The combined effects of radiation and convective boundary condition in the region of oblique

stagnation point flow of elastico-viscous fluid saturated with nanoparticles are considered. The

governing partial differential equations are reduced into dimensionless ordinary differential

equations and then solved numerically by using Chebyshev Spectral Newton Iterative Scheme

(CSNIS). The present numericat results are in excellent agreement with the previously avail-

able results. It is observed that the equations (5.25)-(5.28) subject to the boundary conditions

(5.2g) have unique solution, dual solution and no solution in different regions of the parameter

We, For alc> l, the range of existence of solution increases due to increase inaf c and for

alc < 1, the range of unstable solution become larger than that of the stable solution' It is also

concluded that

o Thevelocityof thefluidintensifiesduetoincrease inWewhenaf t' > I butanopposite

behavior is observed for afc < l.

o The velocity of the fluid is found an increasing function of 7.

Temperature and the thermal boundary layer thickness enhance due to increase in the

values thermophoresis parameter (Nr) and radiation parameter (Rd).

Concentration and the concentration boundary layer thickness increases with increase of

Nr and Biot number Bi.

o Brownian motion enhanced the thermal boundary layer thickness'

o Brownian motion decreases the concentration boundary layer thickness'

o The larger values of Biot number imply the enhancement in heat transfer and the thermal

boundary layer thickness.
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Chapter 6

Study of Mixed convection Walter's B

fluid flow towards stagnation point over a

vertical surface

In this chapter, the influence of radiation in a mixed convection flow of Walter's B fluid in

the neighborhood of nonaligned stagnation point over a vertical oscillating flat plate has been

investigated. The plate is assumed heated with sinusoidal surface lemperature. It is further

assumed that the plate is stretched linearly along the verticalx-axis. The governing partial dif-

ferential equations are transformed into dimensionless form. These dimensionless partial dif-

ferential equations are solved numerically using Chebyshev Spectral Newton Iterative Scheme

(CSNIS). The obtained results are in excellent agreement with the previous studies' The effects

of involving parameters on the fluid flow and heat transfer phenomenon are shown through ta-

bles and graphs. It is observed that, in assisting flow region, high value of eft'ective Prandtl

number reduces the velocity whereas in opposed flow region, it invigorate the velocity' It is

also noted that with increase of effective Prandtl number, the skin triction coefficient decreases

100



and heat transfer rate augmented.

.y

Assisting flow
regiou

Stagnatbn Poinl

Figure 6.1: Geometry of the problem

't

6.1 Problem forrirulation

Lets us consider the flow of Walter's B fluid towards a vertical flat plate obliquely as shown

in Fig. 6.1. The plate is oscillating about its means position at v:0 with velocity UecosQI

and subjected to a linear stretching with velocity cx in vertical direction, It is also assumed

that plate is heated with sinusoidal surface temperature, which oscillates about the mean value

I^ , which is higher than the ambient temperature L of the surroundings. The flow and energy

equations are (see ref's, [93, l00l)

.-_J
Av

l)
+
l!r
ll
i

iJ

I

du dv---F-:0.dr dn
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* . r'* " oX : - ;* *, v2 u - ? lr!, 
(v' a) . (, **,r1) vz u - *r' o-

#o" -' {*'#.';# . (H. *{) #}) + st'r(. - ,-)'
(6.2)

#. r#*,X : -;fi *,v2, - 3lr!,(v2,) 
+ (,**'*) v2,- #r' o-,u,

'io,, -, {*#.';# " (x- #) #}),
aT ar ar k / a2T a2r\ t oq,

ar*ox*oN: w(;e*af )- wN

aT -aT -aT t azT t a l(,.,16o5673\ar\-67 +t1a; I r ay = wa* t pr,, dtt \*-' -3a,.- ) fr l

In above equations g is the gravitational acceleration, p7 is the coefficient of thermal expan-

sion and Qr : - \eossT3 f 3av) dT l0y is the radiative heat flux. The term c, is the Rosse-

land mean absorption coefficient and o56 is the Stefan-Boltzmann constant. In Eq. (6.2) the

1_ and - signs represent the buoyancy assisting and buoyancy opposing flow case respectively'

The relevant boundary conditions can be defined as

v-.0 : u (Jw:ci*UocosQl,i--0,f
(6.s)

yJ- : u:[J":aI*bt, T:T*,

where LT : T*- L is the difference of mean surface temperature to the ambient temperature,

Uw : ci* Us cos Or is the velocity of the plare, U, : ax * by is the free stream velociry, e1 is

the amplitude of the imposed temperature osciltation and Q is the frequency of the oscillation.

Using Qr: - (toossT3 f 3a,) 0T f d! in Eq. (6.4), we get

: r* * trlr[!r* €1 sinQr),

(6.4)

(6.6)

To get the simplilied form of Eq, (6.6) thermal conductivity k is consider as constant and it

assumed that the temperature gradient with in flow is very small. Linearizing the radiative heat

flux q, about the ambient temperature L, the Eq. (6.6) reduces to the following form

af aT af k a2T k / . l6osaTi\ a'r
a, " x 'o ay: we? *.,w \'- :ro4 )ef
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Introducing the non-dimensional variables

111
,I:ef, u: 

Uu,v*_ fii,p: *rF,T:
T -r*
T* - T*'

(6.8)

in Eqs. (6.1)-(6.3), (6.5) and (6.7), we get the following form

***:0,dx dy

:* .,'r:.,X : -*. vyz u Xl|; ! t',) . (,L*n,r4) yz u- *o',-
*v,,, -r{ou 

d2u dv ozu (*.n #}), e*#r,
ay'' -'\ ar** rre?* [ar*a)e;ilJ)'--.,/* " 

(6 ro)

? * .,! *,y, : - * . v y2 v - X l*( v 2,) + (, *., *) r', -'tuo', -

!,,,,, {*'r+ .';# r (*- # ) **,\),

oaT aT aT t azr k / . 16o56f,\ a2r

;i+ui*'ar- pv%e?+ p,r.r\r+ t* )al'
):0 '. u: x* tcosr, Y:0, T : x 1't1 sin,,

(6.1 r )

(6.r2)

(6.e)

(6.t4)

(6. l3)
aby-)- : u:;**;l', f :0.

In which e -= Uo I t/vc is the dimensionless constant, which describe the amplitude of the plate

oscillation. Introducing the stream function t1/, as proposed by Takemitsu and Matunobu [76]'

we write the velocity components as

ory
U: -=-. V:

d1,

ory
dx

ln rerms of stream function, Eqs. (6.9) - (6.13) after eliminating the pressure take the follow-

ing form

p.a (Y:-.r) +weB*'+P +.t{,,-) -J'{rlu{' yo,v+^#:o, (6 rs)

^-aT aT aT t d2r , (l r- N,)azT
lt v *' a* *'ar, : Pre? * pr p'r'z '

roJt'

(6. r6)



):0 :

dV
dy

: x* tcosl, V/: 0, T - x * t1 sin/,

A TtV:;**rr', T-0.

where F* :Qlcis climensionless unsteady parameter, )":sF'Qr:-T*) is the mixed con-
c 1/cv

vection parameter and N, - I 6osad f ltca, is the radiation parameter. Let us suppose that the

solution of Eqs. (6.15) and (6.l6) subject to boundary conditions (6.17) is of the form

v : xf (y) * h(y,t), T : xot0)+ &(v,r), (6. r 8)

where the functions /(.y) and h(y, r) are normal and oblique components of the flow and gr 0),

0z(-,-,r)represents the dimensionless temperature profiles. Using the Eq. (6.18) in Eqs. (6.15

- 6.17), and then after comparing the like powers of x, we get

y )* :

(6.17)

?zU,t): tt sinI,

n

f'' + f f"' - f'f" +we (f f'' - f'f"') *)"0t, : g, (6.19)

#. t# - r'?e:,**, (rfi t.?:t) - p. # -w,F. l,!r*^'*: 0, (6 20)

=1- ei' + 1ei - f'or : o, 6'21)prefl,

*ei + rei- s'or - yaff : o, rc.22)

):0 : f (y):0, .f'(y) : 1, h(y,I) - 0, 4Y: €cosr, gr(-v) : l.

y -+ oo : f' (y) : atc, '+P : f , 0t (l') : o, 020,t)

(6,23)

Where Prr.f f : Pr I Q + Nr) is effective Prandtl number, which is the combination of Prandtl

number and radiation parameter as proposed by Magyari and Pantokratoras t1011. The effect

of radiationcanbeincorporatedforthesmallervalueof Pr"ll.InEqs. (6.19-6'23)prime

signs denote the differentiation with respect to y. Integrating Eqs. (6.19) and (6.20) with

respect to -y and the resulting constants of integration are evaluated by employing the boundary
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conditions at infinity. Thus the Eqs. (6.19 - 6.23) reduce to

-8. :* w,F.:,# Avr )'0, :o'

*rt + rel_ r'ot:0,

*rr+foi- s'0,*y'*:0.

):0 : f(y) :0, .f'(y) : 1, h(t-,t):0, 4P : tcosr, gr0) : l, 02(y,t) : etsinr,
dy

y-+ -, f'(y) : alc, ry : T, ot (y) : o, o2(y,t) :g.

f"' + f f" - (f')' +w, (f f'' - zf' f"' * (f')') . (:)'t 101 : g,

y, . r# - t'#, **, (t# - r' # *," # - /"*)

Lrr*r*v.,)- lu,(ur,+vr) 
t) 

L 6'2)
Lu(u,r* vx,) + \u(u,,-* v,,) / l,:,

Qr[I : -keII(T* -T*)

(6.24)

(6.2s)

(6.26)

(6.27)

(6.29)

(6.30)

and the local Nusselt

(6,28)

In which A is a constant, which measures the boundary layer displacement. It arises when

),-) *, /(v) behaves as /(y) : (alc)y*A. The dimensionless components of velocities are

0ty rt r..t , dh(y,t)u- dl-x,f (Jr* A, ,

,: -* : -f (y).
dx

The quantities of physical interest are the skin friction coefficients C7

number Nar, can be expressed as

xQel I (6.3 r )c,:2, NLt,:' pu;. k,ff(T,-L)'

where ryy is shear stress at the wall and qrJlis the effective conduction-radiation flux at the

wall. These are defined in dimensionless form as .,

rn. : ltc (u, * v,) - 2czkol 
-'*' - Ltxvx -

\ *j (u,,*vv)*
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Upon using Eqs. (6.14) and (6.18), the skin friction coefficients and the local Nusselt number

take the following form

Regy: x(l *3we - ewe).r"(') + (t --zwe)ry - B-*ffi 
(6,34)

Rrrt/2Nu: - (rr,(o). e$p)

where Rer: cXz f v : x2. The dividing stream line yr: 0 and u: 0Vl0y:0 intersect the

plate at the stagnation point. The location of stagnation point,rs can be find atzero skin friction

or shear stress from Eq. (6.34) as follows

-(r-zwr)ryap.wrffi
^r - (l 3we - eWe) f" (O)

6.2 Chebyshev Spectral Newton Iterative Scheme

The nonlinear time dependent partial differential equations (6.24)-(6.27) subject to the bound-

ary conditions (6.28) are solved numerically using Chebyshev Spectral Newton Iterative Scheme

(CSNIS). Initially for the case of steady solution at t=0, the governing Eqs. (6,24-6.21) re-

duce to the following ordinary differential equations

f"' + f f" - (f')' +w, (f f'' -zf'f"' + (f")')

h"' + f h" -- f'h' +we (1hi' - f'h"' + f" h" - f"'

=1 ol' + f ei - f'ot :0.
prrt t ,

=1- ei + yet, - s,0t :0,
prefl

and boundary conditions are

: /("v) :0, ,f'(.y) : l, h(y,0) :0, h'(y,0) : E, 0t0) : I , 0z(y,0) :0,

),-+ oo : f'(:'): alc, h"(y,O) -- T, lr(y) : O 02(y,0) : Q.

(6.40)

. (:)

h')-A

2
th?t

yt)"02

-0,

(6.3s)

(6.36)

(6,37)

(6.38)

(6.3e)

-0,

):0
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To find the solution of Eqs. (6.36-6.40), first we convert the Eq. (6.36) into a linear fonn by

using Newton's linearization process. For (i+ I )th iterates, we write

ft rt: fi* 6.fi, (6.41)

and similarly for all other dependent variables, where 6l represents a very small change in

l. Using Eq. (6.a1) in (6.36) and dropping the quadratic and higher order terms in 6/,' , one

obtains

co.i6.fi'' 'f c1.;6f!t' + c2.i6flt + cti6fi * c4,i6f, : R1,

subject to boundary conditions

6r(0) : -r(0), d,{ (0) : atc - /i(0), 6/i(-) : I /(-).

(6.42)

(6.43)

The coefficients c7,i (i=0, 1,2,3,4) and R; are

co.,:W€J',, ct.i:1-ZWef!,c2.,:fiI2Wef!', ct.i:-2f! -ZWef!", c4,i:flt+Wef!",

Ri : -we Q,ri -zfifi'+ (fl') - fi' - fif!' + (f)' - (arc)2 T Lil'
(6,44)

The obtaine d Eq. (6.42) with boundary conditions (6.43) is now linear and is solved using

the Chebyshev spectral collocation method as described in chapter 4. Once the solution of

Eqs, (6,36-6.40) has been obtained for steady case (, :0), we proceeded further to next time

steps by taking srep size Lt : h: nl90. The time derivative in Eqs. (6.24-6.28) is replaced

by backward finite difference scheme (. t ir 0, : + (0, - 0, , )) rn. Eqs' (6'24-6'28)

take the following form

(f"'),+(f)^(f"),- (f'') 
^+we 

((fl^(f'') 
^-2(f'),(f"') ^+ 

(f"'),,) +(atc)z +)'

(*l*; ,+ u)^(#), -(r'),(#), +w,({fl^(#) ,-(r')^(#), +(r")n

-(f,,,),(#).) -fr ((#).- (#). ,) -+(rr*1. - (#) 
^ ,) -or*

(or ), :0,

(6.4s)

(r#),,

)'(02)n:0,
(6.46)
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(#) n* "',,(r,, (X),- (s'),(0r ). - ff tr*t,- @),,)) : o'

) : o : (f),: o, (f') 
^

) _+ - , (f,) ,: atc,

Now the equations Eq. (6.45-6.49) can be solved.for each time step up to required range of r.

For the computation purpose, a numerical code is developed in MATI.AB 2010a and used.

6,3 Results and discussion

The solution of non-linear partial differential equations (6.24) (6.27) subject to the boundary

conditions (6.28) is obtained numerically fbr all dimensionless parameter namely Wiessenberg

number We, velocities ratio parameter a/c, obliqueness parameter y, unsteady parameter p*,

Mixed convection parameter i,, Prandtl number Pr, amplitude of oscillating plate e and am-

plitude of imposed temperature oscillation tl, against required range of r, The present results

in the limiting case are verified through numerical values with the previous studies, which are

given in the Table 6, L It is shown that our results are convergent and highly accurate. The

interesting results are also plotted in terms of the velocity profile, temperature profile, the skin

friction coefficient and the Nusselt number in Figs. 6.2-6.7. In Figs 6,2-6.7, the values of

theparametersarekeptfixed at€: l,€l : l,T:2,F.:0.2,We:O.l,Prr17:7. Thevalues

of the parameters, which are used for solution of the problem other than mentioned above,

are given in the figures. In Fig. 6.2, variation of the velocity is shown for various values of

velocitiesratioparametera/c=0.1,0.5, t, /.5. Inthefigure,thecurvesaredrawn att:7c14

for both assisting and opposing flow cases. It is noted from the figure that the velocity of the

j;On 
^+ 

(f),(or), - (f') ^@,), 
- o, (6.47)

(6.48)

: l, (h)n

( a'h\
\av') ,

-0,

:T, (

G),
or) n:

: t coS (nk) , (01)n : I , @) r: er sin (nft) ,

0, (e)r:0, tn: nft where n:1,2,3... .

(6.49)
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fluid increases with increase of a/c. Further, the velocity in opposed flow region reduces as

compare to the assisted flow region, Which is due to the fact that in opposed flow region,

the buoyant force retard the flow having opposite direction, where as in assisted flow region

it helps to enhance the fluid velocity having the same direction as of the flow field. It is also

observed that for a/c) I , the velocity of the fluid along y oscillate due to viscoelastic behavior

of the fluid. In Fig. 6.3, the temperature is plotted against y att : xl4for various values of

velocities ratio param eter a./c = 0.1 , 0.5, L0, /.5.for both assisting and opposing flow case. It

is found that the temperature is a decreasing function of velocities ratio parameter a/c which is

due to the reason that stagnation point encounters the highest heat transfer rate and therefore

the temperature reduces with increase of free stream velocity within the boundary layer. It is

also noted that temperature is higher in opposing region as compare to assisting region. In Fig.

6.4, the velocity profile is plotted att: nl4for the various values of We= 0,0'1,0'2' In this

figure, both cases of boundary layer structure (a/c>t) and inverted boundary layer structure

(a/c<t) are discussed. It is observed that in case of boundary layer structure, the velocity of

the fluid increases with increase of viscoelastic param eter We. On the other hand, for inverted

boundary layer case, the velocity of the fluid decreases with increase of viscoelastic parameter

lVe. Similarly in Fig. 6.5, the temperature is plotted att: rf 4 tor various values of We-- 0,

0.1,0.2 forboth cases of a/c<l anda/c>l.In case of boundary layer structve(a/c>l)the

temperature of the fluid falls due to increase of viscoelastic parameter We, on the other hand for

a/c<1, temperature enhances with the increase in the value of viscoelastic parameter. In Fig'

6.6 and 6.7, variation in the skin friction coefficient and the Nusselt number is shown against I

for various values of mixed convection parameter l, for assisted and opposed flow regions' lt

is seen that for assisting flow case skin friction is increasing function of l. in upward direction

while it is decreasing function of l, in downward direction. In opposing flow case an opposite
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behavior is seen. Similarly, in assisting flow case, Nusselt number is increasing in downward

direction while it is decreasing in upward direction and an opposite behavior is observed in

opposing flow case.

Table 6.1: Comparison of 1"(O) and g'(0) with Mahapatra and Gupta [24] and Nazar et

al.[25),while other parameters areWe: E: €t: T: F* -- h:0 and Pr = 1'5'

f" (0) 0'(0)

Ref. [24] Ref. [25] Present Ref. [24]

0.1 -0.96939

0.2 -0.91810
0.5 -0.66726
2.0 2.01750

3.0 4.72928

-0.9694

-0.9181

-0.6673
2.0175

4.7293

-0.9694

-0.9 r 81

--0.6673

2.0176

4.1296

-0.77680 -0.777

-0.79712 -0.797

-0.86479 -0.863

-1.17810 -1,171

- 1 .35 194 -t .341

Figure 6.2: Velocity profile u(y,t) against y at r : r 14 and alc = 0.1' 0'5, 1 .0, l'5 for both

assisting and opposing flow case'

ll0

t-r/4,7," = l

a/c = 0.1, 0.5,

Assisting Jlow case

Opposing flow case



t-Til4,L - I

a/c = 0.1, 0.5, 1.0, 1.5

Assisting flow case

)pposing tlow cwe

Figure6.3: Temperatureprofile f (y,t) against y att --nf 4anda/c=0.1,0.5. l'0' l'5 forboth

assisting and opposing flow case.

Figure 6.4: Velocity profile u(y,t) against y att -=nl4 andWe:O,0.7,O.2forboth af c <

andaf c> l.

0.6

0.55

0.5

a/c'-- 0.2

a/c = 1.3
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a/c = 0.2

a/c = 1.3

0.22

02t

0.2

0.

0.

0
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Figure 6.5: Temperature

alc<landafc>1.

0.2 0.4 o;! 0.8 t t.2

profile T(y,t) against )' at t : rf 4 and We:0,0.1,0'2 for both

Figure 6.6: Variation in skin friction coefficient"RerCl against r for different values of i. for

both assisting and Opposing flow cases

<
\J

L =2, 1,0.5
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Figure 6.7: Variation in Nusselt number Rr,t12 Nu, against r for different values of 1. for both

assisting and Opposing flow cases

6.4 Conclusions

In this chapter, the influence of thermal radiation and conduction in the region of oblique stag-

nation point flow is investigated subjected to the sinusoidal surface temperature of the vertical

flat plate. 'l'he obtained dimensionless partial differential equations are solved numerically by

using Chebyshev Spectral Newton Iterative Scheme (CSNIS), To check the validity of our re-

sults, the numerical values are verified with the existing studied as a special case. Furthermore'

the results for sundry parameters are given graphically and in tabular form. It is observed that

the skin friction coefficient, the local Nusselt number, stagnation point and streamlines oscil-

late periodically due to sinusoidal nature of the plate oscillations and surface temperature in

both assisted and opposed flow regions. It is also concluded that

o The velocity is fbund as an increasing function of af c, where an opposite behavior is
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observed for the temperature.

o Forlargestrainingvelocity (alc> 1),thevelocityof thefluidincreaseswhilethetem-

perature falls due to increase of viscoelastic parametet We.

o For large stretching velocity (a I , < I ), the velocity of fluid decreases while the temper-

ature enhances due to increment of viscoelastic parameter We '

o Velocity increases in assisting flow case as compare to opposing flow case while the

temperature has opposite behavior.
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Chapter 7

Heat transfer analysis of unsteady oblique

stagnation point flow of viscoelastic fluid

due to sinusoidal wall temperature oYer

an oscillating-stretching surface

In this chapter, heat transfer analysis of an unsteady oblique stagnation point flow of elastico-

viscous fluid over an oscillating-stretching surface which is also heated due to sinusoidal tem-

perature is presented. The governing partial differential equations are transformed into dimen-

sionless form. The solution of obtained partial differential equations is computed numerically

using Chebyshev SpectralNewton Iterative Scheme (CSNfS). The computed results are highly

accurate and compared with previous studies in limiting sense. The effects of involving param-

eters on the fluid flow and heat transfer are shown through tables and graphs. lt is importantly

noted that the amplitude of the local Nusselt number and skin friction coefficient enhances due

to increase in the values of unsteady parameter. The heat transfer rate increases with increase

ll5



in the values of Prandtl number. In non-Newtonian fluid, the heat transfer rate is maximum

decreases as compare to that of Newtonian fluid case. The variation of skin friction coeffi-

cient and local Nusselt number are discussed lbr the wide range of time and various pertinent

parameters.

H O

U n= c 7a7r ocos {l t

Figure 7.1: Physical Model of the problem

7.1 Problemformulation

We have considered the unsteady two-dimensional flow of elastico-viscous fluid impinging

obliquely over an oscillating-stretching surface at , - 0 as shown in Fig. 7' l. The elasticity

of the fluid is assumed constant throughout the flow regime. The temperature of surface is

taken as sinusoidal, oscillating about the *"uni{hlu. 7r,, which is higher than the ambient

temperature L of the surroundings. The flow and energy equations are (see ref' [93' 100])

ll6
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* .,'* *,* -- - ;ff *, vz n - ? l* (v',) . (, **, * ) vz u -'#o', - #r',
-'{u*#.*'#.(*-4;)#,})'

(7.2)

'; .,X n,X : - ;fi * " vz o - 3 lr!,ly;,) 
. (,**,*) v2 v- *o' o _'i,,',

( dn 02v dv dzv / du at\ d2, 'l I

-'\a;e?+ adf* \a * x)eisl|1 
0.3)

aT _aT , -aT k /azT aL\ (7.4)i+o**"dr --p., (*, rae 
)

In the above equations, il(x,r) and f(x,y) are the velocity components in x and y-directions,

f (;,1-) is the temperature, p(i,t) is the pressure, v is the kinematic viscosity, p is the density,

ks is elasticity, Cp is the specific heat and k is thermal conductivity of the fluid' The boundary

conditions of the problem can be defined as

/:0: il-cx*UocosC}, f :0, T:T*+AI(l+elsinQr),
(7.s)

,-+*: u:ai-lbr,T- T*,

where a, b andc are positive constant of dimend"ion l/T, L is the ambient temperature and

LT : Tn, - T* is some temperature scale, t1 is the amplitude of the imposed temperature

oscillation, O is the frequency of the oscillation, Upon using the following non-dimensional

variable

lll-.r-(I, u- jOa,v- -;Urv,n-V*F,T= T -T*
T^ T*

(7.6)

(7 .7)

in Eqs.(7.1 -7.5), we get the following form

du dv

a** ar:u'

?*',!*,X : -?r:. vY2u fri:* (v',) . (,*.,*)v2,'- *"'-
'*o,, -, {*# .';#' . (X - #) # }]
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?'; .,!*,* : -*. v Y2 v - Xl*
*"'-'{*'#};#

(v2v) + (, * -, *,) r', _ 'io',-
.(x-*) #)l

a aT aT aT k / azT a2r\
; at*'ar*'a,: pvrr\Az*ef )'

y:0: tt:X*€COSr, y:0, T:l*t1 SinI,
(7.1 r)

u:!r+by,T-0.
CC

In which e : (1ol Jvc is the dimensionless constant which describe the amplitude of the plate

oscillation. Introducing the stream function y, which satisfies the continuity equation identi-

cally, we write the velocity components as

Y-+oo:

(7.e)

(7.10)

(7.14)

d yr )tYu: -fi, ,: -"*. (7.t2)

After eliminating pressure from Eqs. (7.8) and (7'9) and then upon using Eq' (7'12)' Eqs'

(7 .7 -1 .l I ) take the following form

u.u(yp tweB.rJr#, ,+# -JY{;{) -yo,y:o (713)

^-ar dv dr dy Or t ( a2r d'r\
lt n *a, ar- aray- Pr\7i'- dv')'

y:0: ry :,r+tcosr, V:0, I: l-l elsinr,' d1' (7. ls)

y -+ oo i t+I : l*, nlr', T : O,

where T =b/c represents shear in the stream, 9* - Qlcis dimensionless unsteady parameter,

We: koclpv be the Wiessenberg number and Pr: pcof k be the Prandtl number. Suppose

the solution of Eqs. (7.13.7.14) subject to boundary conditions (7.15) is of the form

V -- xf (y) *g(l',t), T : O(y,t),

' ir \

ll8
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where the functions /(,v) and g(v) are normal and oblique component of the flows. Using the

Eq.(2.16)inEqs. (7.13 - 7.15),andthenaftercomparingthethelikepowersof x,weget

fi' + f f"' - f'f" +we (f f'' - f'f'''1 : g, (7 .t7)

'#- ra# - r"Xr*, Qai$ 
- t''X) - B.##-w,F* # :0, (7,8)

#."Q u\-r#):0,
):0: f (y):0, f'(y): l, 8(y,t) : o, 49! : €coSt , o(y,t): I *trsin/,' d1' e.zo)

) -+ -: /'(.v) : alc, ry: y, g(y'r) : o'

Theprimesignclenotesthedifferentiationwithrespecttol', IntegratingEqs. (7.17) and(7.18)

with respect to .y and the resulting constants of integration are evaluated by employing the

boundary conditions at infinity and we get

f"' + f f" - (f')' +w, (f f'' -2f'f"' * (r')')* (l)' : o,

#. r# - ffr .*, (t# - # * t'# - r"X),

-8.#,-w,F*##-Ar:0,

#.r,(tfr-,r#) --o' Q 23)

)':0: f (v):0, /'(v) : l' 8(v,I) :0' 49': tcosr' o(v'r) : I *€lsinr'd1' e.z4)

y -+ - , f'(y): atc, ry -- y, o(y,r) :0.

Where A is a constant which measure the boundary layer displacement. It arises when y -+ -,

/(y) behaves as /(y) : (alc)y*A. The dimensionless components of velocities are

, = ?; -.r/'(r')+ s'b'),

oyr
-- - f (v).

(7.19)

(7.21)

(7.22)

(7.2s)

(7.26)
dx

v:

ll9
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The quantities of physical interest are the skin friction coefficients C1 and the local Nusselt

number Nt,rr, can be expressed as

where r* is shear stress at the wall and q*, is the local heat flux at the wall which are defined

in dimensionless form as as

rw:Fc(,.r,+rr) -2c2ks(*urrr-Ltxvx- :rr(n.,'*vr) -;,r(r'r',*vr) *)t"+vr,)*
\

),@,,,* 
r'.) +)u@** r-)) 

l,:0,

Qy : -k(r- - r;,/ ;(f) l,_,

(7.27)

(7,28)

Using Eqs. (7.12) and (7.16), the skin friction coefficients and the local Nusselt number take

the following form

Rercl: .x(t -3we - ewe) f" (o)+ (l - zwrf# - p'*rffi,
(7.29)

Rr*l12Nur: -o'(0./).

where Rer--c*fv:xz

7.2 Chebyshev Spectral Newton Iterative scheme

The nonlinear time dependent partial differential dquations (7 '21)-o '23) subject to the bound-

ary conditio ns (7 .24) are solved numerically by using Chebyshev Spectral Newton Iterative

Scheme t901. This method has advantages over other numerical techniques such as shooting

method, parallel shooting method, and finite difference method. In this method, we transform

our domain 1 to I and for very small number of points we get accurate solution while in

other method we discretize our domain in thousands of points to get accuracy. This numerical
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scheme is also repaid convergent. On the other hand, present method have make a comparison

with other studies as Tables 7.1 and 7 .2, and obtained good agreement with their study results'

For the initial steady solution at I :0, the govertl{ng Eqs. (7.21)-(7,24) reduce to the follow-

ing ordinary differential equations

f"' + f f" - (r')' +w, (f f'" -2f'f"' + (f')'). (:)' - o,

g"' + fg" - f' g' +we (fgi'' - f' g"' + f" g" - f"' g') - Ay : 0,

0" +Prfe':0,

):0: l'b') :0, ,f'b') :1,8(),0) :0,8'(.v,0) :e , 0(),0) : l,
(7.33)

y -+ oo : f'(y) : alc, g"(y,O) : T, 0(Y,0) : 0'

To find the solution of Eqs. (7.30)-(7.33), first we convert the Eq. (7.30) into a linear form by

using Newton's linearization process. For (i+/)th iterates, we write

(7.30)

(7.31)

(7.32)

(7.34)

(7.3s)

(7.36)

and similarly for all other dependent variables, where 6fr represents a very small change in

l. Using Eq. (7.34) in (7.30) and dropping the quadratic and higher order terms in 6J ' we

obtained

. tr!
firt : fi* 6f,,

,o,i6fl' + c1,;6 fltt + cz,i6flt * q,i6 fl * ca,;6f; : Ri,

subject to boundary conditions

6r(0) - -,[(0), 6fiQl : s1.' /i(0), 6/i(-) -- I /i(-)'

The coefficients cr,,(J : 0, 1,2,3,4) and R, are

co,i :We fi, ct.i : 1 -zffib fi, cz,i : fi +ZWe flt

ct.i: -2f! -Zwe f!" , c4,i: f!' +we fi',

Ri: -we (t,ti" -zfifi' " 
(il') - fi' - fifi' + (r)' - (arc)2
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Now the solution of obtained linear equations can calculated by employing the same steps

as elaborated in chapter 4. Once the solution of Eqs. (7,30) (7.33) is calculated for steady

case (r:0), we proceeded further to next time steps by taking step size N: k-- ttl90.

The time derivative in Eqs. (7.21)-(7 .24) is replaced by backward finite difference scheme

(. , * 0, : i (0, - 0, ,)), the Eqs. (7.21)-(7.24) take the following form

(f"'),+(f)^(.f"),- (f''),+we((f),(f''),-2(f'),(f"'),+ (f"'),) *(atc)z :s,

(#) .+ 
u).(#) .- (r') ̂(#) n**,(tn. (#) n- 

(r'),,(#),* u";' ̂ '(h) .

- (f,,).(#) ) -r((#).- (#)._,) - 
y!:((#). - (#) ._,),f,1,,:n,

(#)n*"(rn,(#) ,-f (0.-on-,)) :o' (7.40)

):0: (f),:0, (/'), : l, (8), : o, (*) : tcos (nk) , (0)^: I t. elsin(nft)'
\dv / n Q.4t)

.v -+ oo , (f'),: alc, (#) ,: ,, (0),:0, tn:nk where n: l'2'3"' '

As the Eq. (7.38) is independent of time, so sohl,tion of ("f ), is known for all n ) 0, then Eqs'

(7 .3g), (7 .40) became linear and are solved by employing differentiation matrix D directly

t88-901. For r=/, Eqs. (7.39) , (7 .40) take the following form

(#),+(/) (#), - (/') (#),**,(ur, (ff), - llr, (

-(f"') (#) ) f ((3;) (#) ,)-ryf. ((3#)

(#), n,.(rn,(ff) -f1,,-,uv) :0,

J:0: (hr:0, (/')r= l.(g)r-t (3i)r:tcos(/') ' (e)t = I +el sin(k)'
(7.44)

y -+ - , (/,) , = utc. (3i) 
,.= 

T, (o)r : o.

l"i
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In Eqs. (7 .42-7 .44), the values of /s, gs and 06 arc known from the previous step (r : 0) and

the values of unknown fi , g1 and 01 are found by employing Chebyshev Spectral Collocation

Method, as it has been done in steady case (r - 0). Similarly for n=2, the values of unknown

[2, g2and02 are found, We continued this process up to required range of r, For the computa-

tion purpose, a numerical code in MATLAB 2010a is developed and used.

7,3 Results and discussion

l

The non-linear partial differential equations (7.21-7.23) subject to the boundary conditions

(7.24) are solved numerically for the different values of dimensionless parameters namely

Wiessenberg number [Ve, velocities ratio parameter af c, obliqueness parameter T, unsteady

parameter p., Prandtl number Pr, amplitude of oscillating plate e and amplitude of imposed

temperature oscillation t1, for required range of t. The Comparison of /"(0), and - 0/(0)

for some values of the parameters with those of previous studies are given in Tables 7.1 and

7.2.ltis found that the computed results are convergent and highly accurate' In Table 7.3' the

values of skin friction coefficient and local Nusselt number are presented for different values

of pertinent parameters, Computed solution in term of velocity, temperature profiles' skin

friction coefficient and Nusselt numbcr are plotted for sundry parameters in Figs. 7.2-7 '9'

In Fig. i.Z, the dimensionless velocity component u(.v,t) is plotted against v at difTerent time

steps,r :0,nl4,rf2andnfore-l,y=2,F* =O.Z,We =0.1 . Thesolidlinesaredrawnfor

af c-0.landthedashedlinesare foraf c:l.2.Itisseemthatduetono-slipconditionfluid

oscillates with the velocity of plate. Since for fixed e = I, the oscillation velocity of the plate is

u(y,t): I f cosr, its least value is 0 and maximum value is 2. It is further observed that with

increase of time. the velocity of the fluid clecreases against y' and at t : ft it comes to zero, and

again starts increasing for r: rctoZn.It is also noted that the velocity of the fluid increases

r23



with increase in the values of af c.ln Fig. 7.3, the temperature profile is plotted againsty at

I:0, n14,nl}andtc for €: l,tl : l,T:2,F* :0.2,we:0'1, Pr: I' The solid lines

are drawn for af c -- 0.1 and the dashed lines are for af c:1.2. For e1 : 1, the temperature

of the fluid oscillates from 0 to 2. It is observed that the temperature decreases with increase

in the values of af c in the boundary layer region. In Fig. 7.4, Lhe values of skin friction

coefficient (nerc.) areplottedagainsy,fort:0,l,2,3atWe:0.1.y:2,F*:0'2,t1 : l'

The solid lines are drawn for af c:0.1 and the dashed lines are for af c:1.2. The values

of skin friction coefficient oscillate about its mean value -0.384 for af c:0.1 and 1.981

foraf c-=l.Zrespectively. Thevalue Re*Cy: -0.384isate:0,alc:0'1,We:0.1,T:

2,F* -0.2,e1:'land Re.1C.1: l.g8lisate:O,a/c--1'2,We:0'l,y-2,8*:0'2,e1:l
ri

for all time L It is importantly noted that with'increase in the values of e, the amplitude

of skin friction coefficient increases. In the region 0 < t < nf2the skin friction coefficient

decreases with increase of e, where in the region 7T12 < t <3112 an opposite behavior is

observed. Again in the region 3nl2 < t < ztt the skin friction coefficient decreases with

increase of r. The behavior of skin friction coefficient continues for all values of r' The

amplitude of skin friction coefficient against , increases due to increase in the values of af c.ln

Fig. T.5,thevaluesof skinfrictioncoefficient (AerC.1) areplottedagainst tfory:0,0.5,1,2

atWe:0.1,p* :0.2,€ - 0 and tr : l. The values of skin friction coefficient increases with

increase of obliqueness parameter y. In this figure, the solid lines are drawn for Newtonian

case (We : 0) and dotted lines are for non-Newtonian case (!Ye :0.2). It is also noted that

amplitude of skin friction coefficient decreases with increase in the values of Non-Newtonian

parameter We.lnFig. T.6,thevaluesof localNusseltnumber (nr,'l'Nur) urtplottedagainst

t for e1:0,1 ,2,3 at €=l,We:0.1, F* :0.2, T:2, Pr: l. The solid lines are drawn for

af c:0.1 and the dashed lines are for af c:1.2. The heat transfer rate is observed periodic
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function of time r and amplitude of oscillation can further be increased by increasing the values

of e1 as shown in Fig. 7.6, lt is further noted that the increase in the amplitude of oscillation

canfurtherbeincreasedbyincreasingthevaluesof velocitiesratioparameter af c.Ingeneral,

both parameters help to increase the heat transfer rate in the boundary layer region near the

oblique stagnation point flow over an oscillating stretching surface. The effect of Prandtl (Pr)

onheattransferrateisshownfromFig. T.T.ltisplottedfor€: l,af c:0'l,p* :0'2,T:

2,€t:1 and for different important values of Pr:0.1,0'7'1'7' The solid lines are drawn

tor We =0 (Newtonian case) and the dashed lines are fot We:0.2 (non-Newtonian case)'

The heat rransfer rate enhances due to increase in Pr and the amplitude of the oscillation

become larger for large Prandtl number. It is also seen that in non-Newtonian fluid' the heat

transfer decreases as compare to Newtonian fluid case. In Fig. 7.8, the values of skin friction

coefficient (nerC) are plotted against, over one period of oscillation' for B* : 0'0'2'0'4' at

rr : l, € =. I , af c:0.1, I :Z,We:0.1 and Pr: L With increase of unsteady parameter

B-, the amplitude of the skin friction increases. It is also observed that with increase of p*'

the skin friction coefficient coefficient increases in the region 0" < t < l95o and decreases

in the region lg5o <r < 3780. Fig. 7.9 shows the time variation of local Nusselt number

/ tt', \
(nr;'l'Nr.) ou., one period of oscillation for B* :0,0'2,0'4 at Q -- l, E: l' af c:0'l'

T=2,We-o) andPr: l. Itisobservedthattheamplitudeof thelocalNusseltnumberis

proportional to unsteady parameter B. i.e increase in the values of B. results in increase the

amplitude of Re.. 
t12Nrr.ln Fig.7.l0, the streamlines are plotted for y:0,0'5' l,2at tt : l'

r: l, B. -- O.Z,We -_ O.l,af c:0.2. It is noied that with increase in the values of 7' the

amplitude of oscillation decreases. From the trend of streamlines, it is predicted that lbr larger

values of 7, amplitude of oscillating streams tends to zero' In Fig'7'lf isotherms are plotted

fortl:0.0.5,1,2att:l,T:l,B*--O'2,We:O'l'afc:O'2andPr:0'7'Itisseen
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from the figures (a-d) the oscillation in temperature increases with increase in the values of e1.

TableT.l: Comparisonof //'(0)and g'(0)againstdifferentvalues of of c withNazaretal' [25]

yylTl',',r * ^ 5:',1_: 
o',:':'_ -"l i:

f" (o) 0'(0)

alc Mahapatra and Gupta [24] Nazar et al. [25] Present Mahapatra and Gupta [24]

0.t

0.2

0.5

2.0

3.0

-0.96939

-0.918 l0

-0.66726

2.0t750

4.72928

-0.9694

0.9181

-0.6673

2.0115

4,7293

-0.9694

0.9181

-0.6613

2.0t76

4.7296

-0.77680

--0.197 t2

0.86479

l.l78l0

- 1.35194

-0.177

-0.791

-0.863

-LlTl

- | .341

Table 7,Zz Comparison of /"(0) against different values of af c andWe with Husain et al. [52]'

The others parameters are fixed at t : 0, 7:0, F* - 0'

Present Husain et al. [52] Present Husain et al. [52] Present Husain et al' [52]

alc We = 0.1 We = 0'2 We = 0'3

0.1 1.0273

0.5 0.7300

l.l 0.1918

r.2 0.3993

- t.0271

0.7299

0.19117

0.3992

1.0956

--0.8102

0.2393

0,5140

r.0955

- 0.8101

0.2392

0.5139

- 1.1778

0.9142

0.3.520

0.9103

- t.t777

-0.9141

0.35198

0.8499
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Table7.3: Values of RerCland (Rer)-t12Nurforthevariousparameter af c,f,e1,E,B*,Pr

andWe.

Pr

0.7

Re,C 1 (n";' '',v,.)

0000

0.5

0.5 0.5

-1.000 (0.4544)

-2.0344 (0.45M)

-2.3728 (0.615 I )

-0.9250 (0.7106)

-0.7273 (0.6998)

-0.7t37 (0.7254)

-0.7 t37 (0.8930)

-0.489 r (0.8930)

-0.7881(1.1479)

-0.2593 (1.3314)

-0.3023 (t.3234)

-0.2936 (1.3461)

-0.2936 (3.6613)

0.2465 (3.66t3)

-0.0918 (4.4709)

-0.0253 (4.6711)

t1 e alc we B"

r.5 1.5

l.l

t =0_

0 0 -1.000(0.4s44)

-2.0344 (0.45M)

-2.sr30 0.4sM)

-1.0819 (0.52-50)

0. I -0.82 l6 (0.5 I 70)

0.r -0.8216 (0.5170)

-0.8216 (0.6380)

-0.5971 (0.6380)

- l.oo40 (0.6380)

-0.4e83 (0.7s36)

0.2 -0.3760 (0.7487)

0.15 -0.3760 Q.l487)

-0.3760 (2.0422)

o.l64t (2.0422)

-0.21s4 (2.0422)

-0.1081 Q.t487)

- 1.000 (0.4544)

-2.03M (0.4544)

-2.0344 (0.6817)

-0.5463 (0.7875)

-0.4256 (0.7755)

-0.40 r8 (0.7788)

-0.401 8 (0.9607)

,0.1172 (0.9607)

-0.r643 (1.2833)

0.4461 ( l.5l I5)

0.22r6 (1.5017)

0.24r r (r.5052)

0,241I (4.1037)

0.78r2 (4.1037)

0.7 r03 (5.1345)

9 
e064 (5:3e6el

- r .000 (0.4544)

-2.03M (0.4544)

- l .5559 rc.4544)

-0.0106 (0.5250)

-0.08 r I (0.5170)

-0.08s6 (0.4839)

_0.0856 (0.6000)

0.310 r (0.6000)

0.8r04 (0.s620)

r.5685 (0,6e42)

I .3019 (0.6889)

r.3092 (0.6593)

1.3092 (1.8138)

r.8494 (1.8138)

2.3125 (t.6995)

2.6808 ( 1.829s)

t= ttl4 t= nl2 l=n

1.0

0.8

'7.0

2.0
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a/c = 0.1

a/c = 1.2

\

0 0.5 I t.) t t')
,}

Figure 7.2: Velocity profile u(y,t) against y at different time steps.

Figure 7.3: Temperature profile o(y,r) againsty at different time steps.
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a/c = 1,2 e= 3,2,1,0
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Figure 7.5: Variation of skin friction coefficient Re.rCl against r for different values of 7 and
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a/c = 0.1 alc = 1,2

e,=0, l, 2, 3
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t

Figure 7.6: Variation of Nusselt Number Re,

a/c.
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against t for diff'erent values of e1 and
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Figure 7.7: pyariation of Nusselt Number Rrrt12Nur against t for different values of Pr and

We.
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Figure 7.E: Variation of skin f riction coefficient Re rC I against I

360',

for different values of B*
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Figure 7.9: Variation of Nusselt Number R".*t12Nur against r for different values of B*
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7,4 Conclusions

In this chapter, unsteady oblique stagnation point flow of elastico-viscous fluid over an oscillating-

stretching surface with sinusoidal wall temperature is considered. The governing partial dif-

ferential equations are transformed into dimensionless form. The obtained system of partial

differential equations is solved numerically by using Chebyshev Spectral Newton Iterative

Scheme (CSNIS). The numerical results are compared with the previous studies in limiting

sense, which are highly accurate and have excellent agreement with published results. The

results are shown graphically for sundry parameters. Velocity, temperature, skin friction co-

efficient and local Nusselt number oscillate periodically due to sinusoidal nature of the plate

oscillation and surface temperature. This study concludes that

o The velocity of the flui{ increases with increase in the values of af c in the boundary

layer region, while the temperature is observed a decreasing function of af c'

o The values of skin friction coefficient increases with the increase of obliqueness param-

eter Y.

o Amplitude of skin friction coefficient decreases with increase in the values of We'

o The heat transfer rate enhances due to increase of Prandtl number (Pr) in the boundary

layer region near the stagnation point'

o Heat transt'er rate decreases in non-Newtonian fluids as compare to Newtonian fluids'

o The amplitude of the local Nusselt number (nr;tl't'tur) and skin friction coefficient

(Re.rC1) is proportional to unsteady parameter B*'
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