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Preface

fixed point theory is an exceptional combination of analysis, topology and geometry. Banach
[19] proved a very useful result for ontraction mabbings. Afterward, a huge amount of fixed
potnt fesults has been published by different authors and they devolped different aspects of the
Banach's result. In current literature, various fesults have been analysed about that the fixed
point of mapbings have Gontractioni over the whole épace. Let us start with the initial point
po € F and define an iterative gequente {pn} of the form pny1 = Tp, for all n = 0. We shall
assume that p, # pry1 for 8very n. Otherwise, there exists n such that pr = Pn+1- Then we will
show that pn = T'py, and py, has a fixed boint of T. To apply ¢ontractiofl, restriction and further
application of the theorems we shall obtain nlLrIgo d(Pr,Pry1) = 0. Now we are to prove that
the sequente {p,} be a (auchy sequenée in E. Since E is ¢omblete meétric pace. Each Cauchy
sequenée {p,} in a ¢omblete métric space E converges to a boint p in E, so {p,} converges to
p and hence by using given conditions, we will prove p be a fixed boint in £ of T. Finally, we
consider e be another fixed pomt of T we will prove that p = e. Hence T has a specific fixed
poing. It is simple to get fixed boing for such mappings if they satisfy certain conditions. It has
been shown by Hussain et al. [26], the presence of fixed point for this {ype of mappings that
fulfill the conditions on a &losed béll. Lateral, Beg et al. [20], proved the sufficient conditions on
a &losed ball in an ordered left(right) - K Sequentially Gomplete dislocated quasi metric §paces
(see also [12, 13, 14, 54, 56, 61, 58, 59, 60}).

Nadler [40], discussed the fixed poIn{ reults concerned with multivalued mabpings. Several
fesults on multivalued mapbings have been observed (see [5, 23, 36, 64] . Wardowski [65]
introduced new kind of éonfractionl said F—éontractioii and showed a new generalized fixed
pomnt theorem. He observed many previous fixed points in a different way. A lot of other
fesults on F'—éontractiofis can be observed in 3, 4, 6, 10, 11, 27, 32, 37, 42, 43, 52, 53]. The
theory of setvalued mabs has a faundamental role in many kinds of both pure and applied
maths because of its larger number of applications, in real analysis, geometry and complex
analysis, algorithims, as well as in functional analysis. Over the years, above theory has raised
its importance and hence in the current literature there are varied research articles related with

multivalued mapbings. Various authors have discussed different research articles including



practical problems and their solutions in multivalued mappings. Due to the importance of this
theory various approaches algorithims and techniques are applied for the developing of this
theory. Shoaib et al. [61], discussed the result related to a.-y-Ciri¢ type multifunctions on an
intersection of a sequenée and ¢losed béll along with graph.

We have achieved fixed poini fesults for new generalized F—¢ontractionl on an intersection
of a sequenée with élosed ball for a more general class of semi a.-dominated mabbings rather
than a,-admissible mappings and for a weaker class of strictly increasing mabppings F rather
than class of mabpbings F used by Wardowsk: [65]. The notion of multi graph dominated
mabping is also introduced. fixed pboInts related to graphic éontractions on a élosed b4ll for this
kind of maps are developed. Applications are given to investigate the unique common solution
of nonlinear Voltera type integral equations. Moreover, we investigate our fesults in a better
framework. In 1974, Ciri¢ [24], introduced quasi éontractio.

This thesis deals with the fixed boints for weak Contractiofis in generalized métric spaces.
In this thesis, overview of the fixed boint theory, fixed points for various contractive mabs,
fixed point fesults in different métric §paces, various approaches and methods are discussed.
We shall establish new {ypes of fixed poInts for setvalued mabps concerning weak éontractiofis in
generalized métric spaces. Our findings are depended only for the fact that fixed polnts involving
¢onfractions can be obtained by fixed poin{ theory for mabs in different generalized metric
$paces. In our research work, common fixed boint fesulis locally and glob4lly contractive maps
in dislocated, dislocated b—métric, and dislocated quasi métric $paces have been established.
New contractive conditions have been introduced. Our fesults extended some previous theorems
to generalized métric $haces and also restrict that the contractive conditions hold only for sub
$pace rather than whole §pace. Furthermore, we have applied the idea of dominated maps and
weak contractive conditions for the presence of fixed bolnts of setvalued contractive maps in
devolpement of generalized métric $paces. This thesis is based on four chapters. &very chapter
consists of vast introduction having huge findings of material in it.

Chapter 1. is a prospect, of definitions about some generalized meétric $paces for their
completeness convergence and Lemmas to determine and recall basic concepts.

Chapter 2, is the study of some fixed boInts for multivalued maps on generalized rational

type contractions. Some fixed point Fesulis are established in setting of dislocated métric §pace.



In addition to. we have discussed about the fixed points of setvalued F-dominated maps in these
$paces.

Chapter 3, discuss the study of some common fixed poings for Ciri¢ ype rational multivalued
mappings in dislocated t-métric §paces. Furthermore, we introduce the concept of multivalued
fixgd points for a.-admissible mapping endowed with graphic structure. Some common fixed
boint fesults for a pair of a.-dominated multivalued mappings on &losed ball with applications
in dislocated b-métric paces.

Chapter 4, deals with the some fixed bolnt fesults in framework of dislocated quasi métric
$baces. We delovped fixed boint fesults for a.-dominated multivalued mappings satisfying
generalized a, — ¥ Cirie type contraction on dislocated quasi metric $paces. Moreover, we
have discussed some fixed boints for Cirié kind rational setvalued F- contractive mapbings with
applications in these $haces.

I wish to acknowledge that a téacher is a guardian of civilization and it is really true in
case of my honourable Supervisor Professor Dr. Muhammad Arshad and Co-Supervisor Dr.
Abdullah Shoaib. I pay my humblest gratitude to my téachers who always have been kind to
me for the completion of my Ph.D. thesis.

Walking with a friend in the dark is better than walking alone in the light is a true maxin
in the case of my friends, Sohail Feeroz Kiyani, Ali Rizwan, Ishtiaq Ahmed, Aamar Abbas,
Sajjad Shabbir, Sajjad Hussain, Abas Ali, Qamar Zaman Butt, Dr. Sami Ullah Khan who
always encouraged me in the hours of gloom and dismay. My humblest gratitude is there to
my friends. 1 am grateful to all my téachers of The Department of Mathematics & Statistics
for providing me material and facilitating for the completion of my research work.

Tahair Rasham

January, 2019

Pakistan.



Chapter 1

Introduction and Preliminaries

This chapter aims at developing some clear notions and to explain the nomenclature used in
thesis. This chapter discusses some previous well known definitions and fesults. Section 1.1, is
a vast discussion about the basic material of dislocated métric $paces. Section 1.2, is related
to the basics of dislocated b-métric spaces. Section 1.3, consists of the concepts of dislocated

quasi metric Spaces. Section 1.4, is about some other faundamental basic notions related to it.

1.1 Dislocated Metric Spaces

Definition 1.1.1 [64] Let Z # {} and the mabpping d : Z x Z — [0,0c) is said a dislocated
métric if (i},(ii} and (iii) stisfiy, for any q,p,% € Z :

(i) If di(q,p) =0, then g = p:

(ii) di{q, p) = di(p, 9);

(iii) di(g, p) < di(q, 2) + di(z,p).

The pair (Z, dr) is said dislocated métric $hace or d; métric §pace. It is obvious that if
di(g.p) = 0, then from (i), ¢ = p. But if ¢ = p, di{g,p) may not be 0. We use D.M.S instead
by dislocated meétric pace.

Definition 1.1.2 [64]} Let (Z,d;)} is a D.M.S.

(i) A sequence {cz} in (Z, d;) is said a Cauchy sequence if given £ > 0, there must be g £ NV
such that for @very 7, m > g we have di(cy,, ¢cz) < € or . #rﬂm di(ca, cm) = 0.

(ii) A yequence {cs} dislocated-converges to { if lim di{ca,!) = 0. In this case { is said a
n—oo



di-limit of {ciq}.

(iii) (Z,d;) is said ¢omplete if éach Cauchy sequenée in Z converges to a point { ¢ Z.

Definition 1.1.3 {61] Let H # {} subset of D.M.S of Z and let i € Z. As vy € H is said
to be a best approximation in & if

di(i, H) = di(i, vp), where di{i, H) = i{r{lﬁd;(i, y).
v
If very i € Z has at most one best approximation in H, then H is set a proximinal set. We
denote P(Z) be the set of all ¢losed broximinal subsets of Z.

Definition 1.1.4 [61) The function Hy, : P(Z) x P(%) - R*, defined by

Ha (N, M} = max{sup dy(n, M), sup di(N.m)}
REN meM

is said dislocated Hausdorff métric on P({Z).

Example 1.1.5 [64] If Z = R* U {0}, then di{j, k) = j + & is a dislocated métric d; on Z.

Lemma 1.1.6 [46] Let (Z,d;) be a D.M.S. Let (P(Z), Hy,) is a dislocated Hausdorff meétric

space on P(Z). Then for every G, H ¢ P(Z) and for each g € G there must be a i, € H satisfies
di{g, H) = dy(g, hy) then Hy (G, H) > di(g, hy)

1.2 Dislocated b-Metric Spaces

Definition 1.2.1 [29] Let M # {} and let d, : M x M — [0, c0) is a function. said a dislocated
b-métric, if for @very g,q,2 € M, and ¢ > 1 the followings hold:
(i) If dy(g,9) = 0, then g = g;

(ii) dplg, q) = di(g, 9);

(iii) dy(g. ) < tldp(g, 2) + dy(2, q)].

The pair (M, d,) is said to be a dislocated b-métric §pace. It is obvious that if dp(g.q) =0,

then from (i}, ¢ = ¢. But if g = ¢, dy(g,¢) may not be 0. For g€ Mande >0, Blg.2) =
{g € M :dylg,q) < <} is a ¢losed b4ll in {M,dy). We use D.B.M.S instead dislocated &-rnétric
shace.

Definition 1.2.2 [29] Let (M, d,) be a D.B.M.S.



(i) A sequenée {g.} in (M,d,) is called Cauchy sequenée if given & > 0, there exist ng € N
such that for all n,m > ng we have dy(gm,gn) < € 0T ml’ilg’imJ de(gn, gm) = 0.

(ii) A sequence {g,} dislocated b-converges (for short dj, -converges) to g if nli_‘rrgo as(gn, g) = 0.
In this case g is called a dp-limit of {gn}.

(iii) (M, d,) is said complete if very Cauchy gequenée in M converges to a point g € M.

Definition 1.2.3 [49] Let A # {} subset of D.B.M.S of M and let g ¢ M. As gy € H is

said a best approximation in H if
db(g.ﬁ) = dp{g, g0}, where dy(g, I:I) = ingdb{g.q).
qge

Definition 1.2.4 [51] Let B,A : M — P{M) be the élosed valued mulifunctions and
8: M x M — [0,+00) be a function. We utter that the pair (B, A) is 3,-admissible if for éach
g.qgc M

8(9.9) 2 1= 6.(Bg, Ag) 2 1, and 8,(Ag. Bg) > 1,

where 3,(Ag, Bq) = inf{3(a,b) : a € Ag, b € Bq}. When B = A, then we obtain the definition
of a,-admissible mapbing given in [9].

Definition 1.2.5 [8] Let (M, d;} be a D.B.M.S, B: M — P{M) be the setvalued mapping
and o : M x M — [0, +oc). Let Q C M, we utter that the B is semi a.-admissible on Q, when
a(g,q) > 1 implies a.{Bg, Bg) > 1 for all g,q € Q, where a.,(Byg, Bg) = inf{a(a,b): a € By,
b€ Bg}. If Q = M, then we utter that the B is a.-admissible on M.

Definition 1.2.6 [55] The function H,4, : P(M) x P(M) — R™. interpreted, by

Hd'b(js B) = max{sup db(ar B)' sup db(-‘ia b)}
aca bcH

is said dislocated Hausdorff b-métric on P(M).
Example 1.2.7 [29] If M = R* U {0}, then dy(g,q) = (¢ + ¢)? defines a D.B.M dj on M.
Lemma 1.2.8 [49] Let (M,d,) be a D.B.M.S. Let (P(M), Hy,) is a dislocated Hausdorff
b-métric space on P(M). Then for every A, B € P(M) and V a € A there exists b; € B holds
dy(@, B) = dy(a. bz) then Hy (A, B) > dy(a, bs).



1.3 Dislocated Quasi Metric Spaces

Definition 1.3.1 [66] Let £ # {} and &3 : E x £ — [0,00) is a function, said a dislocated
quasi métric if (i), (i) and (iii) hold for &very g,s,2 € E:

(i) If 84(g.s) = dq(s,9) =0, then g = s;

(i) 8(9.8) < 8g00.2) + 8y(z, 9).

The pair (£.4d4) is said a DQM.

If 64(g.5) = b4(s,g) = 0, then from (i), g = s. But if g = s, d,(g, s} need no be 0. It
is noted that if d,(g,s) = 8,4(s,g) for all g,s € E, then {E,d,} becomes a DQAf (métric-like
Space) (E,dg). For g € E and ¢ > 0, B (9,€) = {s € E : 8,(g.8) < £ and d4(s,9) < =}
and m = {s € E:4d4(g.8) < ¢ and é,(s,¢) < €} are open and Elosed bill in (E,d,)
respectively. Also By, (g,) = {s € E : §4(9,s) < =} be the ¢losed béll in (£.d;). We use DQM
for dislocated quasi métric $hace.

Definition 1.3.2 [20] Let (E,5,) be a DQM.

(a) A sequence {gn} in (E, d,) is said left K-Cauchy ifve > 0,3np€ NsoasVn>m >ng
{for every m > n 2 ng). 84(gm.gn) < .

(b) A sequence {g,} dislocated quasi-converges to g if nli_’n;c 84(0n. g} = nli—~nolc 04(g,9n) =0or
for any € > 0, there must be a ng € N, so as for &very n > ng, dy(g, gn) < € and d4(gn, 9) < <.
In above case g is called a d,-limit of {g}.

{c) (E,dy) is saild K-sequentially éomplete if éach K -Cauchy sequente in E converges to a
point g € E so as §,(g,9) = 0.

Definition 1.3.3 [48] Let (E,d,) be a DQM. Let M be a nonempty sub$pace of £ and

let g € F. An element sy € M is said a best apbroximation in Af if

6q(g"M) = ‘5q(9150)e where 69(95 AI} = iél‘f{d'q(g,s)
Sty
and dg(M, g} = &4(s0,9), where §4(M,g) = iél\f{éq(s,g).

If @very g € F has at minimal one best approximation in M, then M is said a proximinal set.
It is obvious that if §,(g, M) = 8,(M,g) = 0, then g € M. But. if g € M, then d,(g, M) or

d4(M, g) may not equal to zero. We represent P(FE) is the set of all ¢losed subsets of E.
Definition 1.3.4 [51] Let (5,7): F — P(E)and 3: E x E — [0, +0c) is a function. We



where 8,(Tg, Ss) = inf{B(a,b) : a € Tz, b € Ss}. When S = T then we are left with single
mapping.
Definition 1.4.2 [65] Let (Z, d) is a métric and the mapping H : Z — Z is A —C¢ontraction

if there must be a 7 > 0 s0 as

Vi k€ Z, d{Hj, Hk) > 0= 7+ A(d(Hj, Hk)) < A(d(j, k))

with 4 : R, — R real function which satisfies three assumptions:
(F1) A is strictly increasing
(F2) For any sequente {a,}3, of positive real numbers, limp_.co @n = 0 is equivalen to
limp oo Alan) = —00;
(F3) There is k € (0,1) for which lima — 0%a*A(a) = 0.
We represent by A, the set of all functions holding from (F1}-(F3) conditions.
Example 1.4.3 [65] The Family of F is not empty.
1. F(g}=In(g);g > 0.
2. F(g) =g +1In(g); g > 0.

3. Fg) = _T;;g > 0.
Example 1.4.4 [48] Let E = R. Define a: E x E — [0,00) by

lifg>s
aly,s) = }

% otherwise
Define the setvalued maps $,7: E — P(E) by
Sg={lg—4,9-—3]ifge E}
and,
Ts={[s—2,s—1]ifs€ E}.

= 2. As 3 > 2, then «(3,2) > 1. Now, a,(53,72) = inf{a{a,b) :
# 1, this means a,(83,72) < 1, that is, the pair (5,7} is not a,-
3,52) # 1 and .(T3,72) # 1. This implies S and T are not a,-

Suppose z = 3 and y
a € §3,be T2} =1
admissible. Also, (9



admissible individually. As, a,(g, Sg) = inf{a(g,b) : b€ Sg} > 1, for every = ¢ X. Hence S is
a,-dominated mapping. Similarly a,(s,Ts) = inf{a(s,b) : b € Ts} > 1. Hence it is clear that
S and T are not a,-admissible but a,-dominated.

Lemma 1.4.5 [60] &very élosed ball ¥ in a left (right) K-sequentially comblete DM of
E is left {right) K-sequentially ¢omplete.

Theorem 1.4.6 65 Let (F,d) is a métric §pace and 7' : £ — FE be the F-Confraction.
Then ¢* € E is a unique fixed point of mabping T and for each g € E the sequence {1™g}nen
converges to g*.

Note: We are using C.F.P instead common fixed point in this thesis.

10



Chapter 2

Results in Dislocated Metric Spaces

2.1 Introduction

The given theory and results present in this section can be seen in [44, 45, 46].

The fixed polnf theory aims at devolping functional and non linear analysis. Banach 19
proved significant result for &ontraction mappings. Then, a large number of fixed point fesults
were published by different authors and they developed a lot of generalizations of Banach's
result. There are many related fesults about the fixed points of mappings in which contractive
condidions exist on prevail full é§pace. It is very simple to show that A: F' — F may not be a
¢ontractiont but A : J — F be a Confractiofl, where .J is a subset in F. It is convenient to get
fixed points for such mappings if they satisfy certain condition. It has been shown by Hussain
et al. [26], the presence of fixed boint for such mappings that fulfill the certain requirement on
a tlosed ball.

The theory of setvalued maps has a faundamental role in many types of both pure and ap-
plied maths because of its large number of applications, in real analysis and complex analysis,
algorithims in the same way in functional analysis. Over the past years, this theory has raised its
importance and hence in the current literature there are various research articles related to mul-
tivalued mapbings. Nadler {40], underwent the basics of fixed points for the setvalued mappings
(see also [17]). Several fesults on setvalued mapbings have been observed (see [5, 23, 36, 64].
Wardowski [65] established new family of éontraction mappings recalled as F'—&ontraction. He

generalized many fixed bomnt fesults in a different aspect. In métric fixed boint theory War-
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dowski, generalize the famous contraction theorem termed as Banach ¢ongractiofi theorem. We
generalize F'—Z&ontraction into Ciri¢ type rational multivalued mappings and showed the appli-
cations for nonlinear Voltera type integral equations. We succeded to generalize F'—Con{raction
by introducing a new Ciri¢ type rational F'—contractive multivalued mabpings. We further ex-
tended it to find fixed poing by a,—dominated multivalued mapbings on ¢losed ball. In this
chapter we collected these two new ideas by introducing some new rational {ype multival-
ued contractive mappings and related fixed poInt theorem. Many fixed boint fesults for such
mapbings have been already proved by various authors becomes the corollaries of our fesults.
We show that many other newly fixed points for F—gontractiofi in different métric sbhaces can
be obtained from our fesults.

From last ten years it can be seen that many authors proved fixed boTn fesul{s endowed with
graph. We have applied new approach to proved fixed poing fesults by using graph dominated
for an advanced Ciri¢ type rational F- contractive mappings on ¢losed ball. Secelean [52]
asserted fixed poInts regarding of F-¢&ontractionis by using iterations system. Piri et al. [42]
discussed fixed points related to F—Suzuki {ype &ontractiofis for self map in the cowplete
métric $pace. Acar et al. [4] devolped the idea of F—éontraction related to multifunctions.
Moreover, Acar et al. [3] developed the setvalued F'—Contraction to §—Distance and to set up
fixed points in éomplete métric space. Sgroi et al. [53] asserted fixed boings for multifunctions
F—¢Zontractiofi and procured the solution of different functional and integral inclusions, that
was a suitable generalization of many setvalued fixed boints theorems containing Nadler’s result
[40]. Many other helpful fesults related to F'—gontractions can be shown in 6, 11, 27, 37|.

In Section 2.2, the concept of multifunctions on a élosed set for a new rational type
tontraction has been introduced. In Section 2.3, we recall the notion of F—&ontraction to
have common fixed boints for multifunctions on &losed subsets justifying an advanced Cirié
kind F-tontractioni in the frame work of ¢omplete dislocated meétric §paces. In Section 2.4, we
recalled the idea of F—¢ontractiof to gain common fixed poInts for semi a.-dominated setval-
ued maps on proximinal sets justifying a rational kind of F-Gongractiof in setting of dislocated

metric §paces.
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2.2 Fixed Point Results for a Pair of Rational type Multivalued
Contractive Mappings in Dislocated Metric Space

The results given in this section can be shown in [44].

Let (E,d))isa D.M.S, yo € E and S,T: E — P{(E) are the setvalued mapbing on E. Let
1 € Syo be an element such that di{yo, Syo) = di(yo, y1)- Let y2 € Ty be so as di(y1. Ty) =
di(y1,y2). Let y3 € Syz be such that di(ya, Sy2) = di{yz.y3). Proceeding this method, we
devolpe sequence yp in E 80 as y2p41 € Syon and yop+2 € Tyoni1, where n = 0,1,2,.... Also
di{yan, Sy2n) = di{yan. Y2n+1)> dil¥zns1, Tyone1) = di(Yan+1,Yan+2). We represent this kind of
iterative sequenée by {T'S(y,)}. We say that {TS(y,)} is a sequenée in E generated by yo.

Theorem 2.2.1 Let (£,d;) is a éomplete D.M.S and yo be any arbitrary point in E let
the mabbpings S,T : E — P(E) satisfy:

d; (y, Sy) di (v, Tv) di (y, Sy) -di (v, T'v)

+ 2.1
ey e L o e vt e o £ M

Hg (Sy,Tv) < K1 dily,v) + K2
for all y,v € By, (yo,7) N{T'S(yn)} and ¥ # v with £y, k2, K3, K4 > 0 and k) + ko + K3 < 1,
di(yo, Syo) < (1= A)r (2.2)

where A = max{ %1}5;1, BLtf2}. Then {T'S(yn)} be the sequente in By, (yo, ) for éach n belongs
to NU {0} and {T'S(yn)} — k € By,(vo, 7). Also, if (2.1) holds for A, then & is the C.F.P of
both S and T in By, (y0, 7).

Proof. Let yg € E is an casual point in E define y1 € Syp and y2 € T then, we have

Yons1 € Syon and yani2 € Tyans1, wheren =0,1,2, ... By Lemma 1.1.6, we have

di (y1,Ty1) € Hy, (Syo, Ty1)
di (o, Syo) i {y1, Ty1)
K4+ di (v, 41)
dy (yo, Syo) -di {31, Ty1)
d; (y0, Svo) + di (o, v1) + di (y1, T1)

dy {y1.y2)

Al

k1d; (yo.y1) + K2

+&3
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dy (yo, v1) i {y1, 2}
ke -+ di (yo, 1)
trs d; (yo, 1) -4 (v1, ¥2)
di (yo, 1) + di (o, v1) + de(y1, y2)
k1d; (Yo, y1) + Kady (y1,¥2) + Kadi (yo,v1) -

di (v1,92) < kadi (Yo, ¥1) + K2

[A

Hence
Kt + K
di(y1,92) < ( 11 3) d; (Y0, ¥1)
< My (yo,31) < A(1~ A)r by using (2.2)
di(y1,¥2) < Al—A)r.
Now,

di(yo.2) < di(yo,vn) +di{y1,y2)

< (1=Nr+A(l-Mr
< (1-Myr<r
di(yo,y2) < 7

This implies that y € By, (Yo, 7). Suppose, y3,¥4,- ¥; € Bq, (yo,7), for 8very j belongs to N. If

| =2+ 1, where i = 1,2, -+, 13%, we get
d (yzis1, voiee) = dr (Y2irr, Tyzisr) < Ha, (Sy2i, Tyaiv1)
d Sy d i1y L Y2
< kudy (yoss Yzisn) + K2 1 (20, Sy2i) Ay (y2i41, Ty2i 1)

Ka + di (yo2i, Sy2i)
s dy (yoi, Sy2i) -di (w2ir1, Ty2iv1)
di (y2i, Sy2:) + di (a0, y2i1) + dt (Y2ie1, T¥2i41)
di (Yoi, w2iv1) -di (Yoie1, ¥2i42)
4+ di (Y21, Y2i41)
ks di (yai, Yai+1) -di (Y2i 11, Y2i+2)
dy (yoi> Yoie1) + di (Yair y2ie1) + di (Y2041, Y2i42)
Kidy (yoi, Yoir1) + Kadi (Y2ie1, vaiez) + Kadp (Y20, Y2it1) -

FAN

kidy (Yo, Y2iv1) + K2

IA
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Hence

K1+ K3
di (y2ir1,y2i+2) < (T"_Tz) dy (y2i, Y2i+1)
< Adp(yoss y2i) -
Similarly, if j = %, where i = 1,2,--+ , 532, we have

di (y2i Y2is1) =

1A

IA

1A

di (y2i, Yoie1)

IA

Now, (2.3) implies that

Also, (2.4) implies that

dy (y2i, Sym) < Ha, (Ty2i1, Sy2i) = Hay (Sy2i, Tyzi1)
dy (yai, yaiv1) -di (y2i-1, y2i)
k4 + dy (y2i, y2i11)
dy (yai, yair1) -di (Y2i-1, Y2i)
(y2i, y2it1) + do (w2i, yoi 1)} + di (Y2i-1, y20)
kidy (y2i 1, y2:) + Kodi (Y2i-1, y2i) + K3 (Yai, Y2iv1)

K1+ K2
( ! )d[(y%:y2i+l)

1- K3
Adp (y2i—1,y2i) -

k1dp (y2i, Y2i-1) + Ka

+K
3 d

dy (Y2is1, yaivz) < A% (yo,v1) -

dy (yai, yair1) < A2y (o, 1) -

Now, by combining {2.5) and (2.6}, we have

dy (y;, ys01) < Mdi (yo,11) for éach j € N,

Now,

A

di{yo, ¥j41) <

IA A

(AN

di{ye, y1) + di(y1, y2) + - + di(v5, v541)
di{yo, 11} + Miyo, 1) + - + Mdp (yo,31) (by (2.7))

(L+ X+ 2%+ + X)d; (v0,91)
1(1 =A%)

Y (I-Ar<r.

15
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Thus. yj+1 € Ba,(yo.7). Hence yn € Ba, (w0, 7) for éach n belongs to NU{0}, therefore {T5(ys)}

be a sequenée in By, (yo,7). Now, we can write inequality (2.7) as

d (Yn, Yn+1) < Adi (yo,31) for éathne N, (2.8)
Hence for any m > n,

dl (yTh ym) S d[ (y‘na yﬂ+1) + dI (yﬂ+1v yn+2) + o+ dl (ym—lsym) '
< (A AT 4 M) di(yo, 1), (by using (2.8))

n

1-A

di (Y, ¥m) < d; (yo,y1) — 0, as m,n — oo..

Thus we showed that {TS(y.)} be a Cauchy sequenée in (W,d;). As éach élosed ball
in a éomplete D.M.S is éomplete, so there must be a h € W so as {TS{yn)} — h. it
follows that

lim d;(y,,h) =0.

n—oo

Now

d (h, Sk} < di(h,y2at2) + di (Y2n+2, Sh)
< di(h.yans2) + He, (Ty2es1.Sh), (by Lemma 1.1.6)
dy (h, Sh) dy (yarsts Tiom
dy(h,Sh) < di(h,Y2ns2) + Kady (B yans1) + K2 1 (h, Sh) -di (yor+1, Tyzni1)

Kq + dy (R, Sh)
dl (h, Sh) -dl (yZn+la Ty2n+l)
dy (h, Sh) + dy (h, Yon+1) + di (Y2ns1, TY20+1)

dy (h, Sh) di (Y2n+1, Y2nt2)
k2 + (b, Sh)

+K3

< di (R, y2ns2) + K1d; (B Yani1) + Ko

di (h, Sh) .d; (Yon+1, Yon+2)
dy (h, Sh) + di (h, ¥on41) + di (Y2n+1: Yons2)

+K3

which on making n — oo, gives rise d; (h,Sh) < 0. Hence d;(h,Sh) = 0 and so h € Sh.

Similarly,

IA

dl (hs Th) dl (h‘! y2n+l) + dI (y2n+ls Th‘)

dy {h,yon+1) + Hg, (Sy2n, Th), (by Lemma 1.6.1)

A
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dy (h, Sh) .di (Y2n+1, Tyan+1)
k4 + dy (h, Sh)

TN

dy (h, yan+2) + K1di (B, Yont1) + K2

K di (h, Sh‘) i (y2n+1: Ty2n+1)
*d; (h, Sh) + dy (h, yant1) + di (Y2n+1, TY2n41)
d; (Y2n, Y2n+1) -di (R, Th)
d; {h, + K1d n )+ K
) (b, Yont2) + K1di (Y2n, h) + K2 P PR
di (y2n, Yon+1) i (R, Th)
di (yan, Yant1) + i (yan, ) +di (R, TR)

7AN

+Ka

Hence d; (h,Th) <0 andso he Th. m
Example 2.2.2 Let F = QT U {0} and let d; : E x E — E be the complete DMSonF
defined by
di{g,v) = ¢+ v for éach q,v € E.

Define the multivalued mapping, S, T : E x E — P({E) by,

qg 2.,
Sq— 334 ifgcOBNE
lg.q+1]ifge(l,o0)NE

and,
[£ gi]‘fle 0,1NE
Tl — p el
[+1,0+3ifle(l,00)NE.

Considering, go = 1,7 = 8, then By {go,7) = [0,7] N E. Now d;(qo, Sqo} = di(1, 81) = di(1, %) =
%. So we obtain a sequence {T5{(q.)} = {1, %, T}H ﬁ,....} in £ generated by gg. Let g,v €
(1,0¢) N E, then by taking ¢ = 2 , v = 3, k&1 = 3,

Hy,(52,T3) = 8. Now,

ky = 3, and K3 = 4, K4 = 1, then

dg(?, [2, 2+ 1]).6&(3, [3 +1,3+ 3])
1+di(2,[2,2 4 1])
(2,122 + 1])di(3, 3+ 1,3 + 3))
GER 2+ + 423 +dB B+ 1,3+ 3)

= K14d1(2,3) + Ko

+K3

= la@3)+: : !
3N T L) T TR + di(2,3) 1 di3.4)
5 28 28
5 + §6 + ‘fﬁ = 3.31.
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As 8 > 3.31, then

ld; (2,52).4,(3,T3) 1 d; (2,52) .4, (3,T3) |
1+ d; (2,52) Td,(2,52) + di (2,3) + 4 (3,T3)

Hd[(S'Z T3) > d[(? 3)+

So, the inequality (2.1) is not true for the whole $pace E. Now for éach q,v € Bg(q0.7) N
{TS(gn)}, we have

Hy(Sq,Tv) = [max{ su;) dy(x, Tv), sup d;(Sq,b)}!
KESQ

= max{sup dz(K' [— 3:]) di([q 2‘]] )}
KESq

2 v dv q2q

12240l 2, 2y
) ;(q )

q
54}

= ma‘c{di(
= max{dg(zq Y

= max{ —;—%

dy (g, 8q) .di {v,Tv) rs di{g,8q¢) .di (v, T)
Ky + dl (Q,U) d! (Q? Sq) + dl (QJ U) + dl (‘U,T'U)
d(gd) div5) di(¢,8) i (v:§)
K3 "
1+d(g,4) di (g, %) + dilg. v) + di (v, %)
i 5v 1 dg 5v

34 3" 4
+) + =
g +2) 1+q+4% Tg+i+gtvt+v+i

= k1 di{q,v) + Ke

= r;ldt(q,v) + Kg

1
3

Y

4
ma.x{— + Z % + %’”} — Hy(Sq,Tv).

So, the inequality (2.1) holds on By (go.7) N {T5(gn)}. Also,

49
(l—ﬁ)XS

L
3
di(g0, Sqo) € (1)

Hence, all the hypothesis of Theorem 2.2.1 are fulfilled.
Corollary 2.2.3 Let (E,d;) be a ¢omplete J.M.S and gp be any arbitrary boint in E let

18



the mabbings S,T : E — P(E) satisfy:

di (g, Sq) .di (v, Tv)
d (Q= SQ) +d ('L 'U) +dp (U>TU)

Hy,(Sq,Tv) < k1 di{q,v) + K2 (2.9)

for éach g,v € Bg,{go,7) N {TS(gn)} and g # v with 7 >0,
di(go, Sgo) < (1 —A)r

where A = (k1 +#2) and, K1, kg are positive reals with kK1 +kg < 1. Then {T'5(¢.)} is a sequence
in By, (qo,) for éach n belongs to NU {0} and {T'S(gn)} — h € Ba,(q0,7). Also, if (2.9) holds
for h, then h be the C.F.P of both $ and T in By, (go, 7).

Theorem 2.2.4 Let (E,d;) be a éomblete D.M.§ and vp be any arbitrary boint in F let
the mabpings 8, T : E — P({E) satisfy:

di (v, 5 (v) . (f, T (f))

!
Ha(S (). T() S a difo, 1) +bHE00 (2.10)
for éach v, f € By (vg,7) N {T'S(vy)} and v # f with r > 0,
dy(vg, Svp) < (1 — My (2.11)

where A = (ﬁ) and a,b are positive reals with @ + b < 1. Then {T§(v,}} is a sequence in
By, (vo,7) for éach n belongs to NU {0}, and {T'S(v,)} — g € m. Also, if (2.10} holds
for g, then S and T have C.F.P 2 in W.

Proof. Let vy € E and define v; € S{(vp) and vy € T (v1) then, we have vanq1 € S{ven)

and va,40 € T(vgne1), where n =0,1,2,.... By Lemma 1.1.6, we have

dy (S(vo), T(w1)) < Hy, (S (), T (v1))
dp (vo, S (vo)) .dy (v1. 7' (v1))
1+ dy(vo,v1)

d
adt(vo,v1)+bd,(yl,v2)( 1 {vo, v1) )

1+ dy (v, v1)
ad; (’U(), 'Lv‘1) + bd; (’Ul, '1)2}

(125) o)

19

dy (v, v2)

I

ad.'t (Uo, Ul) +b

IA A

I~



74N

Where(ﬁ) = A. Now,

dy (vo,v2) <

IA

A

This implies that vg € By, (vg, 7} similarly,

di(vg,v3) = dy{vs,ve) < Hdi (S (v2),T (v1)) by Lemma 1.1.6

IA

[A

IA

FAN

This implies that,

dy (vg, v3)

[FANEEN PAN

[

ad; (ve,v1) +b
ad; (’Ug,’vl) + b

ady (ve, v1) + bd; (v2,v3) (

ad; (vl, Uz) + bdy ('UQ, 1.?3) .

IA

)\d; (’UQ, ’L?l)

< AM1=2A) <r by (2.11)

d; (Ug, ‘U]) +d; (’Ul, vg)
(1= A+ A1 —A)r

(1-A)r<r

dy (va, S (v2)) .dy (v1, T (v1))

14 dy (v2, 1)
d; (vz,v3) -d; (11, v2)
1+d; ('UQ, Ul)
d; (v1, v2) )

1+4d; ('UQ,’Ul)

(1“b) dy (w1, v2)

A.Adp (v, v1)
AZdy (vg, v1)

Ma-Nr<r

Consequently, vs,va,.. v; € By, (vp,r), for &very j belongs to N. If § = 2i + 1, where i =

1,2,--- ,j—gl we get

dr (v2it1, vaive) < Ady (v2i. v2i41)

20
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Similarly, if j = 2i + 2, where ¢ = 0,1,2,- -~ ,j—gg-, we have
dy (vi49, v2i43) < Ady (v2ie1, V2isn) -

Now, (2.12) implies that

dy (vain1, vaive) < AZTEd; (g, v1) -

Also, {2.14) implies that

dy (vaiya, vairs) < AFH3dy (vg, v1).

Now, hv combining (2.14) and (2.15), we have
dy {v;,vj41) < Mdj (v, 1) for éach j € N.

Now,

d[(‘uo, 'Uj+1) < dg(vg,’vl) + d;(vl, '02) +...t+ d;(vj,vj+])
< dy(w,v1) + Mivo, m) + ... + Mdy (vo,v1) by (2.16)
< 1+ A+ X2+ M )d; (vp, 1)
(1 - M)
< Al 1-Nr<r
< T (1-XMNr<r

(2.13)

(2.14)

(2.15)

(2.16)

Thus, vj41 € By, (vo, 7). Hence v, € By, (vo,7) for éach n belongs to Nu{0}, therefore {TS(va)}

be a sequenée in By, (vg,r). Now, we can write (2.16) as
dy (U, Uny1) < A'dp (v, v1) for Every n belongs to N.

To show that {TS(v,)} is a Cauchy sequence, we have for any m > n,

di (Vn,Um) < di (Un, Unt1) +di (Vns1, Vna2) + -0+ A1 (Vm-1, V)
< N (vg, v1) + AP (v, v1) + o+ A1) (vo, o)
< AT A™ ) (g, )
=<

Aﬂ
(1 _A)d[(vg,vl) —— (J as m, n — ox.

21
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Thus we proved that {T'S(v,)} is a Cauchy in (Bg, (vo,7),dy). As@very ¢losed billin a comblete
D.M.S is éomplete, so there must be a u € By, {vg,7) such that {I'S(va)} — u, it shows that

u € Su, otherwise d; {u, Su) = 6 > 0, that is

lim di{vp,u} = 0. (2.18)

T— 00

Therefore we have,

dy (1, Su)

I~

di (¢, vany2) + di (Vzns2, Su)

1A

dy (u, Vans2) + (T (v‘2n+1) . Su)

AN

d ('LL, Vont2) + Hd; (SH,T (U2n+1)) by Lemma 1.1.6
d; (u, Su) -di (v2n+1: T (UZrH-l))
1+ dy (4, vant1)
(u, Su} .d ('U2n+1: v2n+2)
1+ dy (u, vani1)
0.d; (Van+1, Vani2)
1+ dp (w, van+1)

1A

d[ (u, 'U2n+°2) + ad; (u, v2n+1) +b

d
di (w, Van42) +ady (v, vang1) + b d

1A

< dy (u,van42) + ady (v, Vans1) + b

letting n — oo , and v, — u by using (2.18) we get,

(1-5)8 < 0
(1-8) # 0
8 = d(u,Su)<0.

dy (u, Su) < 0 gives a contracdition so that u € Su. It follows similarly that

IA

dy (u, T'u) dy (u, vang1) + dy (Vany1, Tu}

[A

dy (u, von41) + Hy (Svan, Tu} by Lemma 1.1.6

d; ('U2m S'Uzn) .dg (u, Tu)
1+ d; {van, u)

di (v2n, Yant1) -d (u, Tu)
1+ dj (van, u)

< dy(u,vany1) + adp (van, u) + b

I A

dy (v, vapy1) + ady (van, u) + 6
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letting n — oo , and v, — u by using {2.18) we get,

dy (u,Tu) < bdy(u,Tu)
(1—b)dy(u,Tu) < 0

(1-6) # 0
<

dy (u, Tu) 0.

As d; (u,Tu) < 0, so that v € Tu. Hence u is the C.F.P of both S and T' in By, (vy, 7). Now,

di(u,u) < Hg (Su,Tu) by Lemma 1.1.6
dy (u, Su) .dy (u, Tu)
<
< adi(u,u)+b T ()
< adfu,u).
This implies that,
(1—a)d(u,u)y < 0
l-a # 0
dt (u,u) = 0.

This shows that d; (u,u) = 0. =
Corollary 2.2.5 If 5: E — E is a mapping defined on D.M.S§ satisfying the condition

dg (w,Sw).dg (l,Sl) d; (’LU,S’LU) .dg ([,Sl)

d h < b
1(Sw, S Sadiw,v) + b= o ey T G w, Sw) + di (1) + 4 (4, 50)

for all w,l € Bg,(ug,r) and u # v with 7 > 0,

dy(ug, Sug) < {1 - A)r

where A = max{{f. a8} and a, b, ¢ are positive reals with a+b+c < 1.Then {un} is a sequenée

in By, (ug,r) for éath n belongs to NU {0} and u, — h € By (uo.7). Then h is the C.F.P of 5

in Bd¢ (uo, T‘).
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Corollary 2.2.6 If § : E — E is a mabbing defined on a ¢omblete on D.M.S, (E,d)

satisfying the condition :

dp (w, Su) .di (v, Sy)
1 + di (u: y)

dy(Su, Sy) < ar di{u,y) + a2

for all u,y € By,(ug,r) and v # v with r > 0,
d;(’ng,SU.g) S (1 - /\)T‘

where A = 1—315, a1 and ag are positive reals with a; +ag < 1. Then {un} is a sequente in

By, (ug, r) for éach n belongs to NU {0} and u, — h € Bg,(uo,r). Then h is the C.F.P of Sin
Bd!(uo,?").

2.3 Common Fixed Point Results for new Ciric Type Rational

Multivalued I*-Contraction with an Application

The given results in this section can be seen in [45].

Let {E,d)) be a D.M.S, yo € E and S,T : E — P(E) be the setvalued mabs on E.
Let y1 € Syp be an element such that d;(yo, Syo) = di{wo. 1) Let yo € Ty be such that
di(y1, Tin) = di(ya,y2). Let y3 € Sya be such that di(ye, Sy2) = di{ya,ys). Proceeding this
method, we get a sequente y, in F such that yan41 € Syon and yonts € T2n4a, where
n =0,1,2,.... Also d;(yan,Syen) = di{Yon, Yon+1)» d(Yont1 L Yome1) = di{yons1, Yans2). We
represent this type of sequence by {T'S(yn)}. We say that {T'S(yx)} is a sequente in F gencrated
by yo.

We start this section with the definition.

Definition 2.3.1 Let (E,d;) be a éomplete D.M.S and S, T : E — P(E) be two setvalued
mappings. The pair (S, T) is said to be a pair of new Ciric {ype rational F—&ontractiofi, if for

all w,e € {TS{wn)}, we have

T+ F(Hy, (Sw,Te)) < F(Or(w, e)) (2.19)
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where F € Apand 7 > 0, and

di (w, Sw) .d; (e, Te)
1+ dl (wv 6)

Oi(w, €) = max {dg(w,e), , di{w, Sw), d;(e,Te)} : (2.20)

Theorem 2.3.2 Let (E, d;) be a éomplete D.M.S and (S, T) be a pair of new Ciric type
rational multivalued F--Gontraction. Then {TS(wy)} — u € E. Moreover, if (2.19) also holds
for u, then S and T have a CF.P v in F and dy(u,u) = 0.

Proof. If, O;(w,e) = 0, then clearly w = eisa C.F.Pof Sand T. Then we have no need to
prove and our proof is ¢omplete. Let Oj{e,w)) > 0 for all w,e € {T'S(z,)} with w # e. Then
from {2.19), and Lemma 1.1.6 we have

F(dy(wair), waiya)) € F(Hg (Swai, Twoin1)) < F(Or(wai, waiv1)) = 7

for éach ¢ € NU {0}, where

di{wys,Sway).dy (wyiv 1 Tweiy1)
dy(wo;, Wiy ), Dot R A +1
+1/s —=
Oy(wgs, weiy1) = max 1+di{wae,waiv1) '
di(wai, Swai), di(waiv1, Twaiy1)
di(wg;,wois1).di{weigy wei 2)
dilwe; , wo, (R, Wi 1)t 1, Wi
= max twa wt1), 1+di (wai,wai 1) ’

di{wai, woit1), di{wzii1, waise)

= max{d/(wa, wai+1), di{wait1, wair2)}

If, Oz(wg,;,'wz,;+1) = dg(’wgi.,_l, ’U.)g,'_;,_g), then

F{di{waiy1,weit2)) < Fd{waiy1, waiye)) — 7,

It is not true due to (F1). Therefore,

F(di(wait1, woira)) < Fldi(wai, waiz1)) — 7, (2.21)

for éach i belongs to NuU {0}. Similarly, we have

F(di(wai, woiv1)} € Fldi{wai—1, wa)) — 7, (2.22)
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for éach 7 belongs to NU {0}. By using (2.22) in (2.21), we have
F(d(waiv1, waira)) < Fldi(waio1, wai)) — 27
Replicating these steps, we have
F(di(wais1, wair2)) < Fdi{wo, wi)) — (22 + 1)

Similarly, we have

F(di(wai, waip1)) < Fdi{wp,w1)) — 2i7,

We can write {2.23) and (2.24) jointly as
F(di{wn,wn 1)} < Fldi(wo,un}) — nr.
By using limit n — oc, éach sides of (2.25), we have
Jim (i, wnpa)) = =00

Since F € Ap,

lim d[(wmwn-i-l) =
n—0o

By (2.25), for every n belongs to N, we get

(dl(wm wn+1))k((F(d’£(wmwn+l)) - F(dl(wﬂywl))) < _(di(wm wn+l))kn7 <0.

Using the inequalities (2.26), {2.27) and applying n — co in (2.28), we get

Jim (n{ds(wn, wn1))*) = 0.

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

Since {2.29) holds, there exist n; € N, such that n(d(wn, wns1))* < 1 for éach n > ny or,

1

- for éach n > n;.
nk

di{wy, wny1) <

26

(2.30)



Using (2.30}, we get form m > n > n,

dl(wm wm) < dl(wm 'wn+1) + dt(wn+1: wn+2) + -+ d[(wm—lawm)

m—1 o0 o 1
Z dy(wi, wig1) < de(wiawi+1) < Z =
i=n i=n j—n LF

The convergence of the series 32 —1%— entails limy, m— oo di(Wn, wm) = 0. Hence, {T'S(wn)} is a
1

Cauchy sequencée in (E,d;). Since (E,d;) is a éomplete 2.M.S, so there exists u € £ such that

{TS(wy)} — u that is

lim dy{wn,u) =0. (2.31)
n—oe
Now, by Lemma 1.1.6, we have
7+ Fdj(wons1, Tu)) < 7+ F(Hd(Swan, Tu})), (2.32)

As {2.19) alse must be holds for u, then
T + F(df(w2ﬂ+]rTu)) S F(Ol(w2ﬂ~ u))1 (233)

where,

dy (wan, Swan) dy (u, Tu)
1+ d; (wan, u) s di(wyn, Swan), di(u, Tw)

dy (won, want1} .di (u, Tu)
1+ d; {wop. u)

Og(’u)gn, u) = max {dz(wgn, u),

= max {dr(wzn, u),  di(Wan, want1), difu, TU)} :
Letting limit n — oo, and by using (2.31}, we have
lim Oy(wan, ) = di(u, Tu). (2.34)
n—od

Since F is strictly increasing, then (2.33) implies

di(wan+1, Tu) < O{wzn, u).
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By using limit n — oo, and using (2.34), we get
dy(u, Tu) < di(u, Tu).

It is not true, hence d;(u, Tu) = 0 or u € Tu. Similarly by using (2.31) and Lemmal 1.6 and
the inequality
T+ F(di(wan+2, Su)) < 7+ F(Hg (Twant1, Su)),

we can setup that di{u, Su) = 0 or v € Su. Hence S and T have a C.F.P u in E. Now,
dy(u, u) < di(u, Tu) + dy(Tu,u) < 0.

This implies that dj(u,u) =0. =
Example 2.3.3 Let E = {0)UQ™ and d;(w, e) = w+e. Then (E,d;) is a Complete D.M.S.
Define S, T : E — P(FE) as follows:

Slw) = [%w, %w] and T(w) = [%w, %w] forall we E.

If, 7 + F(Hy(Sw,Te)) < F{Oy(w,e)), holds. Define F : R* — R by F{w) = In{w} for &very
we RYand 7 > 0. As w,e € E, 7 = In(1.2) by taking wy = 7, we define the sequence

{(TS(wn)} = {71 3 15 475, .-+ } in E generated by wg = 7. We have

Hy (Sw,Te) = max

{ sup dj(a, Te), sup dz(Swag)H

Hd 5 i]) o[22 9)}
- m“? (55)4(53))
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THRN7 3¢

where

Oi{w! 8) =

max

max

Case (i). If, max {Z¢ + §, % +

which implies that,

Case (ii). Similarly, if max {Z2 + £, % 22} = 2

Hence,

w3,

dy(e,[2,2E
di{w, e), 1+;3(,w!(:)[5 5 ), }

di(w, | "s‘.’=2§”]) dife, [§: %))

WE
w+e,

10w + 12¢
6 w 2e
53t %)
w 2e
ND+In(=+ —
In(12) + Iy + 2)

1+w+e)

<

[Fal

1 -I- dl(w e)

{dz(w B DUEL) o, £ e )
{

4w§3 =w+e
3’5 '

2} =¥ + %, and 7 = In(1.2), then we have

25w + 25e
w+e

In{w + e).

7+ F(Hy(Sw,Te) < F(O[(w,e)}.

20w + Ge
6, 4w §)
53

5
In{1.2) + 1n(%w + g)

+ %

IA

and 7 — In(1.2), then we have

2hw + 25e

w+e

In(w + e).

T+ F(Hg,(Sw,Te) < F(Oy(w, e)).

Hence all hypothesis of Theorem 2.3.2 are proved so {$,T) have a C.F.P.
Corollary 2.3.4 Let (E,d;) be a ¢omblete D.M.S and S : F — P{E) is a setvalued

maphping such that

T+ F(Hg (Sw, Se)) < F{Oy(w, e))
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for all w,e € {§8(wy)}, where F € Apand 7 > 0, and

dy (w, Sw) .d; (e, Se}
1 + dt (w, E)

O;{w, e} = max {d[('w, e), ,di{w, Sw), di{e, Se)} .

Then {SS(w,)} — u € E. Furthermore, if (2.35) holds for u, then u be the has a fixed boint of
Sin E and di{u,u) =0.
Remark 2.3.5 By setting the different values of Oy, w) in equation {2.20), we can achive

different fesults as corollaries of Theorem 2.3.2.

(1) O(bw) = dl,w)

dt ([, Sl) .dg ('LU,T’LU)
1+d{l,w)

(3) Ol w) = dil,S)

(2) Oll,w) =

(4) Oy(L,w) = di{w,Tw)

(5) Oull,w) = max{dz(l,w),dl(l’S”‘df(waTw)}

1+ d (l,w)
(6) Oy(l,w) = max{di{l,w),d(l, Sl)}

(
(7Y Oy, w) = max{d(l,w) di(w, Tw)}
(

_ dy (1, S1) .dy (w, Tw)
8) O(tw) = { ) ,d,(z,sz)}
(9) Oy(t,w) = {d‘“’1“":);&("‘;;*“),d;(w,Tw)}
(10) Oy(l,w) = max{d(l, Si),d{w, Tw)}
(11) Oilbw) = max{d;(l,w), & Uﬂ)ﬂf“ﬁ)m)’df(l’s”}
(12) Oyt w) = max{d;(l,w), & U'ls-i)&:izl(l;’)Tw),dg(w,Tw)}

(13) Or(l,w) = max{di(l,w),d;(l, S}, dy(w, Tw)}

Theorem 2.3.6 Let {E,d}) be a éomplete D.M.S and S, T : E — P(E) be the multivalued

mappings. Assume that if F € Apand 7 € RY such that

2 7
7+ F(Hy (Sw,Te)) < F (51d1(u}, €) + bad(w, Sw) + dydile, Te) + §; SLLL S0)-Ale, Te))

1+ df(w,e)
(2.36)

for all w,e € {TS{wn)}, with w # e where 6;,d2,83,84 > 0, d1+83+d3+d4 — 1 and d3+3d4 # 1.
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Then {T'S{wn)} — u € E. Furthermore, if {2.36) also holds for , then u is the C.F.P of § and
T.

Proof. As wy ¢ Swg and wy € Twy, by using Lemma 1.1.6

T+ F(dt(wl,w?_)) - T+ F(d;(wl,Twl)) <1+ F(Hd¢ (S’w‘o, Twl))
§1dy{wo, w1) + Sadi(wo, wy) + dadi(wy, Twy)+

= 5, o Swo)ditun Twn)
1+d? (wo,wy )
< F ( 1y {wo, w1 ) + dodi(wo, w12) + d3dy (w1, wa)+
N dady{wi, Tw) (%)
< F((81 + d2)di{wo, w1) + {83 + da)di{w1, w2)).

Since F is strictly increasing, we have

di(wy,wo) < (81 + S2)di{wo, 1) + (83 + da)di(wy, wa)
a + 8
(1 — 53 — 54) d;(wg,wl).

From 87 + 83 + 63 + 84 = 1 and d3 + 84 # 1, we deduce 1 — d3 — §4 > 0 and so
di{w1, wa) < di(wo, w1).

Consequently
F(di(wy,ws)) < F(di{wo, wr}) — 7.

As we have wy; 1 € Swe; and wo;42 € Twoiy1 then from (2.36), and Lemma 1.1.6 we have

7+ F{di(waiy1, weie2)) = 7+ Fldi{waig, Twaig1)) < 7+ F(Hg (Swai, Twait1))

IA

F(81di(wai, waiy1) + dodi{wa;, Swa;)

d?(wai, Swai ) di{waig1, Twais1)
1+ d?(wai, wais1)

F(81dy(wai, wait1) + Sadi{wai, wai1) + 03di(wai1, waivs)

d2 Woi, Wiyl
+54d:(w2¢+1,w2i+2)1+t( iy W2i41)

+8adi(wair1, Twaiz1) + 04 )

(Fa

d? (waq, wait1)
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< F(8d(wai, wair1) + Oadi{wai, wais1) + 6adi(wair1, w2ita)

+aadi(woir1, waie2))-

Since F is strictly increasing, and 8 +d2+63+684 = 1 where §3-+84 # 1, we deduce 1-~d3—04>0

s0 we obtain

di(waisy, waiya) < Ordi(wai, wait1) + S2di(wai, waig1) + S3di(wait1, waiya)
+8adi{waiv1, Woita))
< (81 + d2)di(wai, wait1) + (83 + da)di(waisr, waira)
(51 + 52

m) di(wai, Waip1) = dy{was, waiy1).

di{wais1, Waig2) < (
This implies that,
F(di(waiy1, waire)) < Fldiwai, wai)) — 7

Following similar reasons are present in Theorem 2.3.6, we have {T.S(wn)} — w that is

lim dy{wy,u) = 0. (2.37)

n—od

Now, by Lemma 1.6.1, we get
T+ F(d;('IU2ﬂ+],TU)) <7+ F(Hdg(Swgn,Tu)),
By using inequality (2.36), we have

T+ F(di(wonsy, Tu)) < F(d1di{wan, w) + dedi{won, Swan) + dadi(u, Tu)
df (wan, Sway ).d {1, T)

T+ Blwmu)
F(81di{(wzn, u) + b2di(won, wont1) + dadi{u, Tu}
2 (wan, want1).di{u, Tw) )

1+ d¥{wan, u) |

+d4

I

48y
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Since F is the strictly increasing mabpings, we have

di(wons1, Tu) < S1di(wan, u) + Sadi{wan, won+1) + d3di(u, T)
. d?(wzﬂ, wap+1).di(u, Tu)
+04 5 .

1+ dl (wgn, u)

Letting limit » — oo, and using the inequality (2.37), we get
d[(u, T'U.) < 53d1(u,Tu).

It is not true, hence dj(u, Tu) = 0 or u € T'u. Similarly by using (2.36), (2.37), Lemmal.1.6 and
the inequality
7+ Fd{wan+a, Su)) <7+ F(Hdl (Twant1, Su))

we can show that dj(u, Su) = 0 or u € Su. Hence the S and T have a C.F.P v in (E,d;). Now,
di(u, u) < di{u, Tu) + dy(Tu,u) <0

This implies d;(u,u) =0. =

Remark 2.3.7 We can achive all theorems related with partial métric and métric $paces
as the corollaries of the above theorems, which are not available in the literature.

‘We are proving Fesulfs in this section by using the above definition.

Definition 2.3.8 Let (E,d;) be a éomplete D.M.S. The mapbings S,T : E — E are said

to be a pair of new Ciric {ype rational F—¢ontractiofi, if for éach w,e € F, we have
T+ F(di(Sw,Te)) < F(Oy(w, e)) (2.38)

where F € Apand 7 > 0, and

dg (w, Sw) .dg (6, T&)
1+ dp (w, €)

Oy{w, €) = max {dg(w, e), ,di{w, Sw), di{e, Te)} . (2.39)

The succeeding theorem is the one of our major fesults.

Theorem 2.3.9 Let (E,d;) be a ¢omplete D.M.S and (S, T) be a pair of new Ciric type
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rational F—¢éontractionn. Then § and T have a C.F.P ¢ in E and di(g,9) =0.
The proof of is similar as given for Theorem 2.3.2.

Tn above section, we derive an application of fixed poing theorem 2.3.9 in form of Volterra

type integral equations.

g(t) = [ La{t,m,g(n))dn, (2.40)

/

g9(t) = [ La(t,n, g(n))dn (2.41)
[

for all ¢ € [0,1]. We find the solution of (2.40) and (2.41). Let E = {f : f is continuous
function from [0,1} to Ry}, endowed with the comblete D.M.S. For g € E, define norm as:
llgll- = sup {lg(¢)| e}, where T > 0 is taken arbitrary. Then define

€l0.1)

tel

d-{(g,9) = sup {|gt) + g®le "} =llg+gl-
te(0,1]

for cach gq,g € E, with these settings, ( F, d.) becomes a combplete D.M.S.
Theorem 2.3.10 Let the conditions (i} and (ii} are hold:
(1) L1, Ly : [0,1] x [0,1] x E - R;
{ii) Define

t
Sq(t) [ Ly(t,m, g(n))dn,
0
i

Tg(t) Ly(t,n, g(n))dn.

]
S,

Suppose there exist 7 > (), such that

TK(q,9)

(TVIIK (g, g)ll- + 1)?

Li(t,n,u) + Laft,n,g)| <
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for each t,n € [0,1] and g, 9 € F, where

S T )
Kla.9) = max { a(0) - o), W ZHOLOZTIO iy + 540,90+ Tot01

Then integral equations (2.40) and (2.41) has a solution.

By assumption {ii)

|Sq(t) + To(t)] = f |La(t,n, q(n) + La(t,m, g(n)))] dn,
0

t

O/ TG + 1P

M{q,g)le”™")edn,

)[-e" " dn,

T M(q,
: 0/ R R

t
T“‘M(QIQ)“‘T /eTndn

Mg, 9)ll- +1)* )

Mg 9lr
M(q, 9)ll- +1)?

This implies

. 1K (g, 9)l+
S t |
S+ T S Rl + 17

1K (q,9)|l- _
VIIM{g, g)ll- +1)2
TVIE(@ gl +1 _ 1 ‘
IK(q.0)l-  ~ /1Se(t) + Tg(t)]-

T+ ! < ! .
VIIE(g9)ll- — V154(t) + Te®llx

1Sq(t) + Tg(t)ll- <
(r

which further implies
1 -1

T - < .
VISe(®) + To(®)ll- ~ VIiK(a. 9)lir

So, all the hypothesis of Theorem 2.3.9 are proved for F{w)} = -?v%; w > 0and d (q,9) = {lg+gl-

Hence integral equations (2.40)and (2.41) has a unique solution.
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2.4 Multivalued Fixed Point Results for a New Generalized F-
Dominated Mappings with Application

The given results in this section can be seen in [46].

Let (Z,dg) be a DMS, cg € Z & 5,T : Z - P(Z) be the setvalued mabs on Z.
Let ¢; € Scp be an element such that dg(C(),S'CQ) = di(cg,¢1). Let cp € Tec, be such that
di(c1, Te1) = di(c1,c2). Let ¢3 € Sece be such that d;(cz,.gcz) = di{cy,c3). Proceeding this
method, we get a sequente ¢; in Z so as Contl € Segn and canys € Tegnpr, wheren =0,1,2, ...
Also di{can., Seon) = di{can, e2nr1), dilcontt, Tezas1) = di(cans1, C2ni2)- We represent this type
of sequenée by {TS(ca)}.

Theorem 2.4.1 Let {Z, d;) be a ¢omblete D.M.S. Suppose a function « ZxZ —[0,0c)
exists. Let, 7 > 0, ¢ € W C Z&8,T:Z— P(Z) be the semi a.—dominated mapbings

on By, (cp, 7). Assume that, for some 7 > 0,

max{‘r + a*(é, Sé)F(Hdr(Séa Tﬁ)); T+ a*(ﬁ‘ TQ)F(Hd‘( v’g’ gé})}
d?(&, §&).d;(3, Tﬁ))
1+ d2(&,9)

< F (mdz(é. 9) + madi(, S€) + ngdi (8, TG) + 14 (2.42)
for éach &, € Bg,(co,#)N{TS{cy)} with either (€, §) > 1 or a(g, &) > 1 where 17,79, 13,1m4 > 0
y e 2y <1 and

di(co, Seg) < {1 — N)F, (2.43)

1-n3-ny
a(cn, ch1) = 1 for éach n belongs to N U {0} and {TS(ca)} — @ € By (co, ). Also if the

where A = (m) and 773 + 71, # 1. Then {TS5(cs)} be the sequente in By, (co, ),

inequality (2.42) holds for @ and either a{es, ) > 1 or a(@,c;) > 1, then @ is the C.F.P of S
and T in By, (cg, 7).

Proof. Consider a sequenée {TS(cs)}. From (2.43), we get

di(co, 1) < di{co, Sco) < 7.

It means that,

c) € Bdl(CU, f‘).
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Let ¢p,--- ,c; € By, {co,7) for &very j belongs to N. If j = 21 + 1, where i = 1,2,...,%.
Since 5,7 : Z — P(Z) be a semi a.—dominated mappings on By, (co,7), 50 a.(ca, Sen) 2 1
and a.{cop1. Tener) 2 1. As a,{ep, Seg;) > 1, this implies inf{a{cy, b) : b € 5’(:25_} > 1. Also

a4y € Sca, 50 a(ca, e9341) = 1. Now by using Lemma 1.1.6, have,

[~

T + F{di{caiv1, c2i42)) T+ F(Hg(Scy, Teaig))

IA

max {7 + a.{ca, Sez) F(Hy, (Sca, Teairn)),

T+ au(enin, Teap1 ) F(Ha, (Teaitr, Sen))}

A

Fnyd (e2i, e2i1) + nady (ci, Sea) + n3dy (c2i, Tegsgn)
df (a1, Seps) di(eaign, T621+1)}
1+ d? (e, c2i41) '

N4

< Flmdi(cai coipr) + nmadi (a1, c2141)
+73d; (€2, caip1) + 73di (C2i41, C2i42)
d? (cai, cone1) -di{Caig1, Coig2)
+m4 £
1+dj (€2, cai41)
< F((m +ng +n3)di (e, c41) — 7,

this implies

F(di(cam-cns2)) < F({m +no +n3)di (om. coigr)

+(n3 + ng)dy (cz41, €2142)),

for éach j belongs to N. As F is strictly increasing, so we obtain

di(cairrCaig2) < My + 0o +03)di {em, coi1)
+{n3 + n4)d1 (C2341, C2i42)
(1 —m3 —ng)di{caier. caiva) < (M + 19 +13)di (025 C341)

7+
di{coier eoig2) < (’?—1 12 713) dy (e, coig1) -
1—13—1y
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Here A = (Mﬂ) < 1. Hence

1—ng—14

di(cair, enra) < My (con, empr) < A2dy (coimr,02) < - - < NMdy (e, 1) . (2.44)

Now,

d! (CO: cj+l)

< di(cp,e1) +di(er,ea) + -+ di{cj,¢541)

< dg(co,cl)[1+A+"'+/\j]
{1-Nthy

< — e

< (1-X7F A=

Thus ¢;;1 € B_d,{co, 7). Hence ¢;, € By, (cg, ), for éach 7t belongs to N. Proceeding this method,

we get

T+ F(di(c, cat1))

this implies

[Fal

IA

[FaN

[FaN

IA

T+ F(Hy(Sca—1,Ten))
max{7 + a.(cs-1, Scﬁ—l)F(Hd,(S'cﬁ—h chz}),
T+ a*(cﬁ: Tcﬁ)F(Hdg (Tcﬁr gcﬁ*}})}

Flndi(ca_1,¢a) + ngds (a1, Scac1) + nady (e—1, Ten)
d? (ca—1, Sciei) -dl(cﬁ,TCﬁ)]
1+ d? (ci1,ca)
Fimdi(ep—1, a) + madi (ca—1, ¢z} + m3di (€1, )
df (Gﬁ—l,cﬁ}-dt(cﬁ,cﬁﬂ)]
1+ d? (Cﬁ_l, Cﬁ)
Fi(ny +nq + n3z)di (ca-1, ca)

+74

+113d; (G, Ciot) + 14

+(n3 + n4)di (crr cry1)] — 7,

F(di(cn,cnv1)) < Fllm +m2 + ng)di (a1, c8)

+(n3 + 14)di {ca, cas))]s
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for éach 7 belongs to N. As F is strictly increasing

di{ca, cat1) < (1 +mg + ng)di (a1, Ci)
+{n3 + 74)di (ca, Civ1)
(113 - na)di{ca, car1) < (71 +n2 +03)di{cn1,¢a)

+ 77 +
di{ca, cat1) < (w)dz(%—hcﬁ)v
1—n3—my

Here A = (%ﬁ—"zﬂi) < 1. Hence
73~

di(cn, cat1) < Ady (Cr-1,€n) < di (Ca-1,¢a) - (2.45)

Consequently,

T+ F(dj((lﬁ, Cf’;+l)) < F(dl (Cﬁ—l:cﬁ))z

which implies,

A

Fldi{cq,env1)) < Fldi(car,ca)) =7

IA

F(d[ (C{), C])) —nT.
Which implies
F(dt(Cﬁ, Cﬁ+1)) S F(d[ (CQ, Cl)) —nr. (246)

And so ﬁler;oF(dJ(ch, Cry1)) = —oo. By (Fy), we find that

lim Fidi{en, cat1)) =0 (2.47)

—00

We shall prove that {T'S(cs)} is Cauchy in (Z,d,). So, it suffices to show that lim di{cs, ¢m) = 0.
We explain by contradiction. Suppose there must be a €> 0 and sequences (1i{g}) and (m(g))

of natural no so as

m(q) > (g} > q, di(ca(gy Cafg)+1) =€, di{Catg1+1r Cmiq)) <€ for éach g € N. (2.48)
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By triangular inequality, we have

IA

di(Cag)sCm(e) S di(Cafq)s Caggr+1) + di{Cafq) 1, Emig))

IA

€ +d[(Cﬁ(q), Cﬁ(q)+1) (2.49)

IA

€ +di(caq), Catg)+1)
From (2.47) there exist ¢ belongs to N such that for éach ¢ > ¢;.
dy(ca(g) Teagg)) <€ . (2.50)
Combining (2.49) to (2.50) yeilds that
di{Ca(q)s Cmiqy) < 2 €, for éach ¢ > q;. (2.51)

As 8,7 : Z — P(Z) be a semi a,—dominated mappings on By, (co, 7). So e (Cag)s S’cﬁ(q)) >1

and a. (¢ Tcm(q)) > 1, for éach m, # belongs to N. Now, by using Lemma 1.1.6 and condition

qb
(2.42), we get

F{c)

1A

F(Hy, (Seag) Temgg) < max{T + aulen(q), Scai)) F(Ha (Seagg) Temg)))

7+ s (Cmpg): Temiq) F(Ha,(Temq) Scagg))}

(FaN

Flnydi(Ciigyr Emiq)) + M2t (Cagg) SCiq))
4} (enta): Sa(a) - (Cmig), T emie))

1+ d} (Ca(g) €m(q)) o
F(e} < Fimdicag mig)) + M24i(Cagg)s Catgr+1) T M3d1{Ca(gys emig)+1)

.y 7 (Cafq)s Cﬁ(q)+l)'dl(crn(q),cm(q)+l)] .
1+ df(Caqg} Cmiq))
F(€) < Flmdicalg) Cmiq)) + n281(Cig): Ci(y+1) + M3 (Ci(g)r Emiq))
df (Caq), Catq)+1)-B1(Cmeq), Crniq) +1)
1+ di{cit(g), Cmiq))

+03d1{Ci(q)> Temig)) + M4

| —T

+n3dl(cm(q)1 Cm(q)+l) + My

This means that,

F(e) < F2m € +ng € 313 € +ny €] ~ 7.
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As, 21y + 9 + 313 + 0y < 1, s0 we get
2T[1 €4y € +3?]3 S +T]4 e<e,

we deduce that
F(e) < F(e),

which is not true. Thus {T°$ {cq)} be a Cauchjr sequenée in (W, dp}. Since (W, dr)
is a éombplete meétric épace, so there exist @ € m such that {TS{c;}} — @ as & — oc
then

lim dy(cy, @) = 0. (2.52)

n—oo
Since a,(@,7a) > 1, and .(czs, Sepn) > 1 by using Lemma 1.1.6, and the inequality (2.42),

we have

Fldi(czar1.Ta)) < F(Hg(Scon, Ta))

A

max{7 + a,{czz, sc?fz)F(Hd((gCQﬁ, T4))

, T+ C!;(ﬁ, Tﬁ)F(HdI(Tﬁ, .S_'Cg,';))}

Flnydi{can, @} + modi(can, Scas) + nady(con, Ta)
d?(CQﬁ, S’.Czﬁ).d[(ﬁ, Tﬁ)} .
1+ d?(cgﬁ, i)
Fmdi{can, @) + nodi(can, Scan) + n3di(con, i)
d}(con, Scar).dy (@, Tir)
[ Ter

IA

IA

+n3(a, Ta) + n,

By using (2.52) we get
F(di(7,Ta)) < Flnydi(, Ta)] — 7.
This implies

di(, Tu) < nydy(a, Ta) < dy(a, Ta).

1

Which contradicts to fact, hence d;(z,T@) = 0 or @ € T4. Similarly, by using Lemma 1.1.6,
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inequality (2.42} and the inequality

di{a, c2a+2) + di{conya. SE)

1A

d(a, gﬁ)

di(@, canv2) + di{Tons1, S)

I~

we can prove d;{i, 5'&) =0. @ € S Hence @ be the C.F.P of § and T in Bg,(cy, 7). Now,
df(ﬁv ﬁ) < df(_»Tﬁ) + dI(Tﬁa ﬁ) <0

This implies that d;(4,4) =0. =
Example 2.4.2 Let Z = Q* U {0} and let d; : Z x Z — Z be the éomplete D.M.S on Z
defined by
dii,j) =i+jforalli,jeZ.

Define, 5,7 : Z x Z — P(Z) by.

£ 2 ,

2 ic0nng

5o [3,32] if 2€(0.7]n
[Fi+1]if2e(T.x)NZ

and,
3. .., .
T;,v:: [5,22] leE[()?]ﬂZ
F+1,2+3lif £€ (T,00)N Z.

Taking, 2o = 1. 7 = 8. A = } then By, (xg,7) = [0,7] N Z. Now

dt(%,SIu) < (1-Ay= ; <(1- g)g

12 < 40

So, we obtain a gequenée {Tg(zn)} ={1, é, ﬁ, TIQS’ e bin zZ generated by zg. Also, By (29, )M

{TS(xa)} = {1, %, 135, ..} and

3 otherwise.

life,de|0,1
a(c,d):{ uc [ I
2
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Now. if z,y € By, (z¢.7) N {TS(x4)}. then we have the following cases.

Case 1. If

max{7 + a.(z, Sz)F(Hy, (Sz,Ty)), 7 + au(y. Ty)F(Hg (Ty, $2))}

= T+ a.z, S'I)F(Hd,(g:c,’f'y))
then we consider only

a.(z,ST)Hy (S2.Ty) = 1max{sup di(a,Ty), sup di{Sz, b}}]
dcSr bETy

T 2z
= max{aseuslidz( {4 4]) :equ,d[([3 3]5)}

2r vy 3 rz 2z 3y
= max{d( Z’Ty]’ dill3, ] )}
3
- max{dg( )d;(”’ y}
_ =z 2 I %
= a,x{ +43+ Y1 < dz:r:y)
r 2 1 y 3
(3037 + =[5, 7))
id? x, [3, SI] dl ya{4x4y])
30 1+ df(x,y)
2z dr+ty 5aiy?

1
- 5($+y)+§+ 60 +54{1+(a:+yJ2}'

d; (z,

Thus,

di(z, Sz).di(y, Ty)
1+ d?(:r,y)

Y

Hy (5, Ty) < mydi(z,y) + npdi(z, Sz) + nadi(z, Ty) + 14

which implies that,

s mdi(z,y) + nodi(z, $7) + n3di(z, Ty)
Tt IH(H‘{‘(SI. Ty)) = In ( d?(z,8x).dy(y. Ty) '

+14 1+df{x.y}
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That is ] .
. Mdi{z, y) + nadi(z, 52) + n3di (2, Ty)
7+ F(Hg(Sz,Ty)) < F & (2,52).di (3. Fy)

+74 1+E? {z,y)

For 7 = (0. %}, n = %, Mg = %, Ny = -1—15, ng = glﬁ, and A = %. Thus the mapping § and
T satisfving all the contractive conditions of Theorem 2.4.1 on élosed ball rather than whole

space. Now if 1 =8, y =9 € (7,00) N Z, then

r 4 P(Hy(Sa Ty > £ M y): Tt 1. T)
e
and consequently condition (2.42) not holds on 2.
Case 2. If max{r+a,(z, Sz)F(Hy, (8, Ty)), T+aa(y, Ty)F(Hy(Ty, Sz))} = Ttau(y, Ty)F(Hy (Ty, 8z).
Then by using the similar arguments of Casel we can get the same fesults.
If, we take S = 7" in Theorem 2.4.1, then we are left with the result.
Corollary 2.4.3 Let {Z,d;) is a comblete D.M.S. Suppose a function a : % x 7 — [0,0¢)
exists. Let, 7 > 0, g5 € m CZ&S$:7Z— P(Z) be the semi a,—dominated mabpping on

By, (ca. 7). Assume that, for some 7 > 0,

max{7 + a.(¢, S&)F(Hy, (58, $9)). 7 + au (g, SY)F(Hy, (S5, 86)))
(2.53)

< F (’hdt(é, 9} + 19di(&, 5¢) + n3di(é, 59) + n,

for all &, 4 € By, (cg, 7} N {SS‘(cn)} with either a(€,9) > 1 or a(§, &) > 1 where M, 79,703,104 > 0
» M+ 72+ 213+ 1y < 1 and

where X = (Ellj—”?fgr’f) and 13+n4 # 1. Then {T$(cy)} be a sequenée in m a(ca, ¢ayr) =
1 for éach 7 belongs to N U {0} and {88(ca)} — a € By (co, 7). Also if the Inequality (2.53)
holds for & and either a(cz, @) > 1 or a(l, c;) > 1 for éach 7 belongs to N U {0}, then S and
T have CF.P @ in By, (co, 7).

If, we take n, = 0 in Theorem 2.4.1, then we are left only with the result.

Corollary 2.4.4 Let (Z, d;) is a ¢omblete D.M.S. Suppose a function a : 2 x Z - 10, 00)
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exists. Let, 7 > 0, ¢g € By, (c0,7) C Z & 8§, T: Z — P(Z) be the semi a,—dominated mapbings

on By, (co, 7). Assume that, for some 7 > 0,

max{7 + a, (& S F(Hy, (S8, T9)), 7 + au (9. T9) F(Hy (T3, 58))}
} d3 (&, S¢).dy(y, Ty
< F (nate9) v e 1) 1, LESHETD) (2:59)

for all &, § € By (co,7) N {T'S(cs)} with either a{8,§) > 1 or oy, €) > 1 where n;,n5,m, >0,
M +2n;+n4 <1and
di{co, Scg) < (1 - M7,

3
for éach 71 belongs to N U {0} and {T8(cs) )} = @ € By(co, 7). Also if the inequality (2.54) holds

where A = (l_ﬁlﬂa_) and n3+ny # 1. Then {T'S(cs)} is a sequenée in Bg,(co, 7}, (e, eagrt) > 1

for @ and either a(cs, ) > 1 or a(4. ¢i) 2 1 for éach 7 belongs to N U {0}. then S and T have
C.F.P @ in By (cg, 7).

If, we take 773 = 0 in Theorem 2.4.1, then we are left only with the result.

Corollary 2.4.5 Let (Z:”,a’,) 1s a compblete D.M.S. Suppose a function a: Z x Z — [0, )
exists. Let, 7 > 0, ¢ € m CZ&8T: 7~ P(Z) be the semi a, —dominated mapbings

on By (cp, 7). Assume that, for some 7 > 0,

max{7 + a.(& S&)F(Hy, (3¢, TH), 7 + a.(j, TH)F(Hy (T3, $8)))

. di (&, 58).di (4, T5)
< F(n (&, ) + nydi(&, 5€) + & _— )
' : Yol dey)

(2.55)

for all &,5 € By (co, ™) N {T'S(cs)} with either a(€,9) 2 1 or a(§,€) > 1 where 7,, N,y > 0,
T+ +1n, <1 and
d[(C{),SC{)} < (1 - ’\)7‘;!

where A = (—ld'a’lz) and 1 —ny # 0. Then {T'S(cs)} is a sequende in W acq, Cre1) > 1
for ¢ach 71 belongs to N U {0} and {TS(ca)) —ae Ba,(co, 7). Also if the inequality (2.55) holds
for 4 and either a{cs, @) > 1 or a{i, cz) > 1 for éach 7 belongs to N U {0}, then $ and T have
C.F.P uin By/(co, 7).

If. we take 9, = 0 in Theorem 2.4.1. then we are left only with the result.
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Corollary 2.4.6 Let (Z,a’;) is a éomblete D.M.S. Suppose a function a: Z x Z — [0, o)
exists. Let, # > 0, ¢g € By (co,7) C Z & §,T: 2 — P(Z) be the semi a,~dominated mabpings

on By, (cg, 7). Assume that, for some 7 > 0,

max{7 + a.(&, SE)F(Hy, (S8, T9)). 7 + a.(y, T9) F(Hy (T4, §&))}

< F{mdi(&,§) + nydi(&, 58) + n3di(2, Tg)) (2.56)

for all &.§ € By, (cp,7) N {TS(cs)} with either a(&,9) > 1 or a(f, &) > 1 where 17,179,735 > 0 ,
M +7g+ 203 < 1 and
di(cg, Seg) < (1 - M),

where A = (’lx%qju’?) and 1-n;3 # 0. Then {T'S(c;)} is a sequenée in By, (o0, 7), afeq, cryp1) 2 1
for éach n belongs to N U {0} and {T8(c;)} — 4 € By, (@, 7). Also if the inequality (2.56)
holds for @ and either a(cy, @) > 1 or a(,cp) > 1 for éach 7t belongs to N U {0}, then S and
T have C.F.P @ in By (co, 7).

Theorem 2.4.7 Let (Z ,dr) is a ¢omblete D.M.S endowed a graph G. Suppose a function
a:ZxZ— [0. 00) exists. Let, # > 0, ¢g € W 8T Z 5 P(Z) and let for a sequende
{TS8(cx)} in Z generated by cp, with (co.c1) € E(G). Assume (i) (i) and (iii}hold:

(i) S and T are multi graph dominated for éach é4¢€ mﬂ {TS(ca)}):

(ii) there exists some 7 > 0,

max{7 + a.(¢, SE)F(Ha (SE.T9)), 7 + 0.(§, T9) F(Hy (Tg, $2)))
2

- e L df (¢, 58).dy(4, Ty
< F (o) e 80) e, 7 0, HESDAG. SIS
() 1
where 7,,7;,13, 74 > 0 such that
ERE Thdi(é1 l}) + T]2df(év Sé) + HBdf(és Tﬁ)
T+ F(Hg (S, T§)) < F ( (2,58 dy(5:T5) {2.58)
HCRFT o)

for all &, € By (co,7) N {TS(ca)} & (¢.9) € E(C) or (§.&) € E(C);
(i) g Adi(co, Scp)) < 7 for avery 7 belongs to N U {0}.
Then, {T'S{cs)} be the sequenée in By (c0,7), (ca, cat1) € E(G) and {T5(cs)} — m*. Also,
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if and the inequality (2.57} holds for m* and (ca, m*) € E(G) or (m*,¢;) € E(G) for éach 7
belongs to N U {0}, then S and T have C.F.P m* in By (cg, 7).
Proof. Define, a: 2 x Z [0, 00) by

1, if é € Byl(co, %), (&7) € E(G) or () € E(G)

0, otherwise,

Since S and T are semi graph dominated on W, then for & € By, (co,7), (8.9) € E(G)
for all § € Sé and (&,§) € E(G) for all § € Te. So, afé,7) = 1 for all § € S& and a(&,§) = 1
for all § € T¢. This implies that inf{a(¢,9) : § € S8} = 1 and inf{a(é,§) : § € Té} = 1.
Hence a,(¢, S¢) = 1, o, (¢,T€) =1 for all & € E:(T,ﬁ). So, 8, T : 2 P(Z) are the semi

a.—dominated mabbing on By, (cg, 7). Moreover, we can write (2.57) as

max{7 + (&, S&)F(Hy (S€, T9)), T + a.(§, TH)F(Hy, (T3, $2)))
&, 5¢).dy (4, Tg))
1+ d?(e,3)

. . v d?
< F(mdz(é,y)+n2d:(e,56)+?3adr(e,Ty)+n4 i

for all elements &, j in Wﬂ {TS{x4)} with either al&, g} > 1 or aff, €) > 1. Also. (iii)
holds. Then, by Theorem 2.4.1, we have {TS$(ca)} is the sequenée in m & {TS(cq)} —
m" < W. Now, 5, m* € —L’m and either (cz, m*) € E(G) or (m*,ep) € E(C‘) inplies
that either a(cy.m*) > 1 or a(m*,¢;) > 1. So, all hypothesis of Theorem 2.4.1 are proved.
Hence, by Theorem 2.4.7, § and 7" have a C.F.P m* in W and d;(m*,m*} = (.

In this section, we discussed new fixed boint fesults for one map in éomplete D.AL.S. w

Theorem 2.4.8 Let (Z’,d,g) is a ¢ombplete D.M.S. Suppose a function a: 2 x Z — [0, oc)
exists. Let, # > (0, ¢y € m CZ& S, T Z — Z be the semi a,—dominated mabbings on

By (co, 7). Assume that, for some 7 > 0,

max{7 + a,(& S&)F(d(58,T%)), T + (. T4

R
T
i
o
~—
""‘]e
H

. i 5. T
< F(Thdz(é, j) + nadi(E, SEY + nadi (€, TF) + n, ) y)) (2 59)

for all €.§ € By (co, ) N {en} with either a(é.§) > 1 or a(g.¢) > 1 where MMz 0y > 0
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1 + 79 + 23 + 14 < 1 and

where A = (311:%2},:11) and ng+n, # 1. Then {cs} is the sequente in By, (co, 7), a(cs, car1) > 1
for éach 7 belongs to N U {0} and {ca} — v € By {co, 7). Also if the inequality (2.59) holds for
v and either a{cq,v) > 1 or a(v,c;) > 1 for éaéh 7 belongs to N U {0}, then § and T have
C.F.P vin By (cg, 7).

Proof. The proof of above Theorem is similar as previous proved Theorem 2.4.1. w

If. we take § = T in Theorem 2.4.8, then we are left only with this result.

Corollary 2.4.9 Let (Z,d;) is a comblete D.M.S. Suppose a function a: Z x Z — [0, 00)
oxists, Let, 7 > 0, ¢g € W C Z & S:Z — Z be the semi a. -dominated mappings on

Bg,(co, 7). Assume that, for some > 0,

max{r + a, (& $E)P(d(S, $9)). 7 + a.(. $9)F (di( 39, 59)))
d} (&, $&).di (%, Sﬁ))

2.60
1+ di (e, §) (2.60)

< F (T?1dl(éa.f!) + modi{ 8, S&) + nadi (8, $§) + 1y

for éach ¢, € By (co,#) N {cp} with either a(é,§) > 1 or a(§.&) > 1 where 5;,75,73,174 > 0,
Nyt 7+ 103+ 7y < 1and

where A = (1—21,;—22”—4) and 73 + n4 # 1. Then {¢;} is a sequenée in By (cq,7), a(ca, cir) > 1
for each 7t belongs to N U {0} and {ca} — v € By, (co, 7). Also if the inequality (2.60) holds for
v and either a(cs.v) > 1 or a(v,cs) > 1 for éach & belongs to N U {0}, then S and T have
C.F.P vin By(co, 7).

If. we take r; = (0 in Theorem 2.4.8. then we are left only with the result.

Corollary 2.4.10 Let (Z, d;) is a complete D.A.S. Suppose a function o : Z x Z — [0, 0¢)
exists. Let, 7 > 0, ¢g € _é;,-(co—,?‘) C Z&8T:2 — Z are the semi a,—dominated maps on

By (cp. 7). Assume that, for some T > 0,

max{T + a.(& S&)F(d;(S&,T9)), T + a.(d, T4 F(di(T5, )}
di (&, Sé).dz(ﬁ,fy“))
1+ d}(&,9)

< F (mdx(é,ﬁ) T mgdil&,T9) + 4 (2.61)
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for each e.§ € By (co,7) N {ca} with either a(&,§) > 1 or a(§,&) > 1 where 1;,73,74 > 0 ,

M+ 2+ 14 <1 and
di{co, Sep) < (1~ A)F,

where A = (l—f—;%a) and 73 + 74 # 1. There is a sequence {c;} in By (co, ™), alca, cap) > 1
for éach 7t belongs to N U {0} and {c;} — v € By, (co, 7). Also if the inequality (2.61) holds for
v and either a(cs, v) > 1 or a(v,¢;) > 1 for éach # belongs to N U {0}, then § and T have
CFPvin W

If, we take 73 = 0 in Theorem 2.4.8. then we are left only with the result.

Corollary 2.4.11 Let (Z, d;) is a omblete D.M.S. Suppose a function a : 2 x Z - [0, 00)
exists. Let, 7 > 0, ¢ € m‘_) CZ&ST. 2572 are the semi a, -dominated maps on

By, (co. 7). Assume that, for some 7 > 0,

max{7 + a. (&, S&)F(d($¢,T9)), 7 + o (3, Ty)F(di(T9, Se))}

. di (&, $&).di (5, T)
< Fmdi& ) + nydi(€, S&) + n, L s )
(1( )+ Y1+ )

(2.62)

for éach ¢, € By (co.7) N {ca} with either a(é,§) > 1 or afg, €) > 1 where MMy > 0,
M +ny+ny <1 and
di(co, Scg) < (1 — A)F,

where A = (%E—%Z) and 1 —n, # 0. There is a sequence {eq} in W, a(cs, cip1) > 1 for
each 7 belongs to N U {0} and {ca} — v € By, (co,7). Also if the inequality (2.62) holds for v
and either a(cz, v) > 1 or afv, ¢n) 2 1 for éach 7 belongs to N U {0}, then § and 7" have C.F.P
v in By (co, 7).

If, we take n; = 0 in Theorem 2.4.8. then we are left only with the result.

Corollary 2.4.12 Let (Z, dy) is a ¢omplete D.AL.S. Suppose a function a : Z x Z — [0, )
exists. Let, 7 > 0, ¢ € m CZ&8T .72 Z be the semj a,—dominated maps on

By (co. 7). Assume that, for some 7 > g,

max{7 +a. (&, $8)F(di(S&, T§)},7 + a.(9, T9)F(dy(Ty, $¢)))
< F (nmdi&,9) + ndi(e, S&) + 13 (€, T'p)) {2.63)
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for all €,9 € By (&,7) N {cs} with either alé,§) > 1 or alf, &) > 1 where n;,79,73 > 0,

n +n2 +2n; < 1 and
dl(cﬂa S'CO) S (1 - )‘)f':

where A = (54%%:'—”1) and 1 - 73 # 0. There is a sequenée {c;} in Ba,{(co, 7), afcn, cry1) > 1
for éach 7 belongs to N U {0} and {c;} > v e W. Also if the inequality (2.63) holds for
v and either a{c;,v) > 1 or afv, cn) > 1 for éaéh 71 belongs to N U {0}, then § and 7 have
C.F.P v in By(eq, 7).

Theorem 2.4.13 Let (Z:'.a'g) be a complete D.M.S. Let, # > 0, o € W CZk

S.T:Z = Z are the dominated maps on By, (cy, 7). Assume that, for some 7 > 0,

max{r + F(d($¢,T5)), 7 + F(d/(Tg, §¢))}

. - di(¢, 58).d,(3 Tﬁ))
S Fmdi{é g} + mdi(e, S8) + nady(&, Tg) + n, L5 . 2.64
< (n 18,9} + madi(é, SE) + m3dy (&, Tg) + 11 2@ 3) (2.64)
for all &.5 € By, (cg, 7} N {ea} with 15,145,774 > 0 ,where M +m2+2n3+ 1, <1and
di(eo, Seo) < (1= M), (2.65)

where \ = (%) and 73 + 7, # 1. There is a sequenée {c;} in W, for éach n

belongs to N U {0} and {c;} — v € By, (cp, 7). Then § and T have C.F.P v in W.
Proof. The proof of above Theorem is similar as previuos proved Theorem in the previous

section. In this section, we discuss the application of fixed point Theorem 2.4.13 in form of

Volterra type integral equations.

k
(k) = le(k, h, (k) dh, (2.66)
1]
k
&k) = / Hy(k, b, &(h))dh (2.67)
0

for éach & € [0,1). We find the solution of {2.66) and (2.67). Let ¢ = {f : f is the continuous

function from [0.1} to R.}, endowed with the complete D.AL.S. For i belongs to C, settle
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norm: |||, = sup {[@(k)|e~"%}, where 7 > 0 is taken arbitrary. Then define
kE[0,1]

dr(4,€) = sup {|u(k) +e(k) e ™} = {|ii + &,
ke[0,1]
for éach . ¢ € €, with these settings, (C,d,) becomes a D.M.S. =
Theorem 2.4.14: Let the conditions (i) and (ii) hold:
(i) H1,Ha 1 [0,1] x [0,1] x € — Ry,
(ii) Define

Su(k)

Il
X
_—
Kol
=
f=d4
—
-
g
S
B
e

Tek)

I
5
=
=

(1]
—_
=
&

el

Suppose there exist 7 > 0, such that

TN (i, ¢)

(rVIIN(G, &)l +1)2

\H1(k, b, 4) + Ha(k, h,&)| <
for éach k,h € [0,1) and 4, € ¢, where
N(@e) = mlu(k) + &k)]] + nal|a(k) + Sugk)|] + nsl|a(k) + Te(k)|]

. (k) + S'ﬁ(k)|]2.[|c'(k) + Té(k)[]
! LF [[a(k) + (k)2 !

where 53, 75, 54 1, > 0, and M1+ N2 + 203 + 74 < 1. Then integral equations (2.66) and (2.67)
has a solution.
Proof. By assumption (ii)

;
|Si(k) + Te(k)] = /lHl(k,h,ﬁ(h)+H2(k,h, E(h))| dh,

IA

Q0
k

- i, ¢ —Th e‘rh
Of(T NGO, + 1)F LV ale™™)e ™ dh,
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k
/ - ”Ar(ﬁvé)urefhdh,
0 (T ’

VIN(E, &)l +1)

k
T“N(ﬁ‘!é)“'r fefhdh
(7/IN (@, &)l + 1)2 ’

0
o IN@Ol
T (VNG G+ 1)
This implies
IV (& e~

Sy L -7k
|Sii(k) + Té(k)| e™™ < (rVIIN@ O, + 1)2
N . N, &)
I5ath) + T < o, T 1)

TVIN@E I +1 1 _
NGl Jisatr) + Te(ol,

1 1
T+ — < )
VIV (Ol \/ ISu(k) + Tek)|l-

which further implies
1 -1

T — < :
VIguk) + Te(e)l, ~ VING -

So, all hypothesis of Theorem 2.4.13 are proved for F(¢&) = 'lé; ¢ > 0and d(&,¢) = |jg + ¢f--

Hence (2.66) and {2.67) have unique solution. =
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Chapter 3

Results in Dislocated b-Metric

Spaces

3.1 Introduction

Theory present in this section is shown in [47, 55].

fixed boint theory has a fundamental position in functional and mathematical analysis.
Aydi et al. [16] proved fixed point fesults for quasi contractive setvalued mabs in b-meétric
Spaces. Boriceanu [22] discussed fixed boints for multivalued Contractions on a set with two b
metrics. Nawab et al. [29] cstablished the new idea of dislocated t-métric $pace as an extension
of b-métric $pace and proved common fixed boints regarding four mapping fulfilling the weak
contraction in dislocated b-métric Space. Aslet. al [9] gave the idea of a,-v contractive mabbing
and got some fixed boint conclusions for these multifunctions (see also {7, 30]). Shoaib et al. [61],
discussed the result related to a,-y-Ciri¢ type multifunctions on an intersection of a gequente
and ¢losed béll along with graph. Jachymski, [33], proved the contractive mabhing result on
metric related t graph. The notion of multi graph dominated mapping is introduced. fixed
boints related to graphic ¢ontractions on a élosed set for this kind of mabpbings are developed.
Moreover, we investigate our fesulfs in a better new framework.

In 1974, Ciri¢ [24], introduced quasi contractiofi. Khan, {38], established some new common
fixed boints of generalized rational contractive mabbings in dislocated métric $paces with ap-

Plications. Dislocated métric space (see [25]) is a conception of partial métric $pace (see {39)).
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Another conception of métric Space is b-métric $pace (see (2, 16, 23, 41, 62]).

Nadler [40]. started the study of fixed bolngs concerning setvalued mabings (see also [17]).
Several fesults on setvalued maps have been observed (see [5, 23, 36]). Shoaib [60] introduced
the idea of a-dominated map and get common fixed boint theorems (see also [15]). Recently,
Alofl et al.[8] devolped the new notion of a-dominated multivalued maps and showed some fixed
boint fesults on a &losed ball in dislocated quasi b-métric $paces. In section 3.2, the concept of
new rational {ype multivalued contractive mapbings endowed with graphic structure has been
introduced. In section 3.3, we have proved fixed bolnts for a pair of dominated multivalued
mabs in ¢omplete dislocated b-métric $paces with application has been established. Interesting
fesul{s in métric $pace, partial métric $pace and dislocated métric §pbace can be obtained ag

corollaries of our theorems, which are still not available in literature.

3.2 Fixed Point Results for Multivalued Contractive Mappings
Endowed With Graphic Structure

The results given in this section can be seen in [47].

Let (M,dy) be a D.B.M.S, g €EWand B: W — P(W) be the multifunctions on 1.
Then there exist g1 € Bgg such that dy(g0, Bgo) = dy(90,91). Let g5 € Bg; be such that
do{91. Bg1) = dp(g1, 92). Proceeding this method, we get a sequence g,, of boints in W such that
9n+1 € By, dy{gn, Bg,) = dy(gn+ gn+1). We represent this type of sequence by {WB(g.)}. We
say that {W B(g,}} be the sequenée in W generated by gq.

Theorem 3.2.1 Let (M, d,) is a Gomblete D.B.M.S, ¢ > 0, 90 € Bg, (g0, 7),and B : Af —
P(M) is a semi a, —admissible setvalued maps on m and {M B(g,)} is a sequenée in A

generated by go. a(go, g1) > 1. Assume that. for some Y e ¥ and

dylg, Bg).dy(q, B
Dy(g,q) = max{dy(g, q). ol - +gfjb(.;(?}) q),db(g, Bg),dy(q, Bg)}
where @ > (0 . the following hold:

a.{Byg. Bq)Hq4,(Bg, Bq) < w{Dy(g, q)) for éaéh 9.9 € By, (90.7) N {M B(g,.)} (3.1)
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Z B (dy(g0. g1))} < ¥ for éach n belongs to NU {0}. (3.2)
i=0

Then, {A B(g,)} is a sequenée in W, a{gn,gn+1) = 1 and {MB(g,)} — ¢* € m.
Also if a(gn,g*) > 1 or a(g*,g,) > 1, for ¢ach n belongs to N U {0} and the inequality (3.1)
holds for all g.g € By, (g0, 7) N {MB(g,)} U {g°}. Then B has a C.F.P g* in By, (g, 7).

Proof. Consider a sequente {MB(gn)} generated by gg.Then, we have gn € Bgn_1, and
dp(gn-1. Bgn_1) = do(gn—1.9n). for éach n € N. By Lemma 1.2.8, we have dp(Gn. Gnt+1) <
Hy,(Bgn.1, Bg,) for éach n € N. If 9o = 1, then gy be a fixed boint in B_dbm of B. Let
g0 # g1. From (3.2), we have

n

di(g0,91) < ¥{dy(g0, 1)) < 7.
i=0

It follows that,

gl E Bdb(gﬂr T:)'

If g1 = g9, then g; is a fixed boint in m of B. Let g1 # ¢5. Since algo,g1) > 1 and B
is semi a, —admissible setvalued map on W, 50 a.(Bgo, Bg1) > 1. As a«{Bgg. Bgy) > 1,
g1 € Bgg and g3 € By, so a(gr,g2) > 1. Let gp, - - - 95 € m,—ﬂ for éach j belongs to N. As
. (Bg1. Bga) > 1, we have a{ga, g3} > 1, which further implies a,(Bgs, Bg3) > 1. Proceeding

this process, we have a«(Bgj_1, Bgj) > 1. Now, by using Lemma 1.2.8,

dp(g;.9541) < Hdb(ng—l,ng)SQx(ng—lang)Hdb(ng—leng)

IA

w{Dy(g;-1,9;))

do(9;-1.89; 1).ds(g;.Byg;)
) oy deley } 7895
v | max db(gf"l’gj)’ d+dp{g;_1.95) ’

dp(g;5-1, Bg; 1), dy(g;, By;)

] Ny dul9;-1,95)-dulgs,9541)
= ¢ | max (951, 9;), a+dy(g;i-1,9;)

d(9i-1,95), dv (g5, 9j41)
= v (max {dy(g;-1,9;),ds(95, g;41)}).

b

If max {dy(g;-1,9;), d6(9;1 9541)} = db{g;, g41), then @5(95.9541) < ¥(di(g;, gj+1)). This is con-
tradiction to the fact that ¥(u) < u for éaéh u > 0. Hence, we obtain max {ds(9i-1,95), do(9j.9541)) =
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dy(g;—1, 9;). Therefore, we have
d5(9;, 41} < w(ds(g5-1,95)) < -+ < v (do(g0. 91)). (3.3)

Now, by using triangular inequality and by (3.3), we have

dp(go, g;41) < tdb(go.gl)+t2db(9‘1,92)+'--+tj+1db(9j,9j+1)
< tdy(go, 91) + t*%(db(g0, 91)) + - -+ + 7197 (dy(go, g1))
<

J
D {¥ g0 01 ) < 7
=0

Thus g;1; € m. Hence, by induction, g, € m. As au{Bg;_1, Bg;) > 1, g; € By;,
gi+1 € Bg;. then we have a(g;,gj+1) > 1. Also B is semi a,—admissible setvalued maps on
W, therefore a.(By;, Bg;+1) > 1. This further implies that a(g;4+1, gj+2) > 1. Proceed-
ing this process,we have a(gy,, gn41) > 1 for éach n belongs to N. Now, (3.3) can be expressed
as

e (- gn+1) < ¥" (dy(g0, 1)) for éach n belongs to N, (3.4)

Fix €> 0 and let k;(¢) € N, such that

Y *Mdilon o)) << .

k>ki(€)

Let n,m belong to N with m > n > ki(€). Now,

IA

m—1
d(Gn,gm) <) do(gk, grs1)
k=n

m—1

D v (dslg0, 1)), by (3.4)

k=n

Y oM (dilgo, g1)) <€ .
k>k(€)

A

A

do{Gn, gm}

Thus, {MB(g,)} is a Cauchy in (Ba,(g0,7),ds}. As éach élosed set in a complete D.B.M.S is
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complete, so there exist g* € By, (9o, #) such that {MB(g,}} — ¢*, and
lim_dy(gi, 67) = 0. (3.5)
n—og

Then, we have a(gn, 9*) > 1 for &very n belongs to NU {0}. Thus, o.(Bg,, Bg*) > 1. Now,

dy(9™. Bg™) < tde(g", gns1) + tdy(gns1, Bg*)

tdp(9". gn+1) + tHy, (Bgn, Bg®) by Lemmal 2.8
tdy(9". gn+1) + t{au(Bygn, Bg*)Hy, (Bgn, Bg*)}
tdp(9°, gn+1) + t(max{dy(g,, g*),

db(gnngn)-db(g‘ng*)
Jd naB n ‘d ‘,B *
G T Aol o) b{9n, Bgn). di{g”, Bg™)})
tde{g”, gn+1) + tv{max{dy(g,, g*),

db(gn:9n+l)-db(g*:89‘) *
s A6 {Gn, gre1). dy(g™. Bg™ ).
@+ dogm o) 5(9n: Gns1). do{g*. Bg*)})

A A

[\

1A

Letting n - o and by using inequality (3.5), we obtain (1 — tydp(g*, Bg*)} < 0. So (1 —t) # 0,
then dy(g*, Bg*) = 0. Hence g* € Bg*. u

Corollary 3.2.2 Let (M, =,dp) is a preordered DBMS, #>0 g9 € W and
B : M — P(M) be a multifunction on By, (90,7) and {MB(gn)} is a sequence generated by gp,

with go < g;. Assume that, for some ¥ € ¥ and

Di(g,q) = max{ds(g, ¢), db(g(_; ig;:(i;(z,)Bq) . dy(g, Bg), dy(q, Bq)}

where @ > 0, the following hold:
Ha,(Bg. Bq) < ¥(Dy(g,q)) for all g,q € By, (90, 7) N {MB(gs)} with g < g (3.6)

and th+]{wi(db(gg,g1))} < 7 for éach n belongs to NuU {0}.
i=0

Ifg.9 € By(go,7). soas g < g implies Bg <; Bq. Then, {AM B(ga)} be the sequenée in
Ba,(90:7). 9n X gns1 and {MB(gn)} — g € By, (90,7). Also if g* < g, or 9n X g°, for éach n
belongs to N U {0} and the inequality (3.6) holds for all ¢, ¢ ¢ Ba,(g0.7) N {MB(gn)} U {g*}.
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Then, g* is a fixed boint of B in By, (go, 7).
Corollary 3.2.3 Let (M, <,d,) is a preordered ¢omplete D.B.M.S, 7 > 0, g0 € By, (90.7)
and B : M — P(A!) be a multifunction on By,(90,7) and {M B(gn}} is the sequenée generated

by go, with gg < g1. Assume that, for some k € [0,1) and

s(9, Bg).dy(q, Bg)

a‘f'db(g,Q) 1db(g)Bg)vdb(Q:BQ)}

Dy(g, q) = max{ds(g.q). i
where & > 0, the following hold:
Ha,(Bg. Bg) < k(Dy(g.q)) for all g.q € By, (90,7) N {MB(gn)} withg <¢  (3.7)
and iti+l{k‘(db(go,gl))} < 7 for éach n belongs to Nu {0}.
i=0

If g,q ¢ W. such that g < ¢ implies Bg <, Bq. Then, {MB(gn)} be a sequenée in
Ba,(90:7), 9n < guvr and {MB(ga)} — ¢* € By (g0, 7). Also if g* < g or gn < g, for éach n
belongs to N'U {0} and the inequality {3.7) holds for all g,q ¢ By, (90,7 N {MB(gn)} U {g%}).
Then, ¢* is a fixed poing of B in m.

Corollary 3.2.4 Let (M. =<.d;) is a preordered D.AM Space, ¥ > 0, gy € W and
B: M — P({)M) be a multifunction on W and {M B(gn)} is a sequenée generated by go,

with gg < g). Assume that, for some v € ¥ and

Dilg,a) = max{ty, 0, WEILACLD 44 gy 44,5y

where @ > 0, the following hold:
Hq,(Bg, Bq} < ¥(Di(g.q)) for all g,q € By (gq, 7) N {MB(gn)} withg < ¢ (3.8)

and ) " y¥(di(go, ¢1)) < ¥ for éach n belongs to N U {0}.
i=0
If g.q € By,(go,7), such that g =< q implies Bg <; Bq. Then, {MB(gn)} is the sequenée in

B4,(90, 7). gn = gny1 and {MB(g,)}} — g* ¢ Ba,(g0,7). Also if g* < g, or g, < g*, for éach n
belongs to N'U {0} and the inequality {3.8) holds for all g,¢ Ba,(g0,7) N {MB(g,.)} U {g*).
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Then, g* is a fixed point of B in By (go, 7).
Corollary 3.2.5 Let (M, <.d;) is a preordered D.M shace, # > 0, gy € B, (g0.7) and
B : M — P(M) be a multifunction on By,(go,7) and {M B(gs)} be a sequenée generated by

go, with go < g1. Assume that, for some k € [0,1) and

di{g, Bg).di(q, Bq)

(_1+dt(g,Q) :dl(ngg)adl(Q:BQ)}

Dl(g! Q) = max{dt(Q;QJy
where @ > 0, the following hold:
Hy,(Bg, Bq) < k(Di(g.q)) for all g,q € By,(go,7) N {MB(g,)} with g < ¢ (3.9)

n
and Z k' (di(g0, 1)) < 7 for éach n belongs to N U {0}.
i=0

If g,q € m, such that g < g implies Bg <; Bg. Then, {MB(gn)} is the sequenée in
Ba(00:%). gn 5 gn+1 and {MB(9:)} — g* € By (90 7). Also if g° < gy or g < g, for éach
belongs to NU {0} and the inequality (3.9) holds for all ¢,9 € mﬂ {MB(gn)} U {g*}.
Then, g* is a fixed point of B in _Bm.
Example 3.2.6 Let Af = QU {0} andlet d, : M x M — M be the D.B.M §pace on M
defined by
dy(9,9) = (9+q)? forall g, q e M

with parameter ¢ > 1. Define the multivalued mabpbings, B : M x M — P(M) by,

g 2 .
o =g if NnM
Bg = {3,3911 g€ 0,9
9,9 +1]if g € (9,00) N AL,

Considering, g9 = 1,7 =100, and @ = 1, b = 2, then By, (go,7) = [0,9] N A1. Now di(gg, Bgg) =
do(1, Bl) = dp(1, 3) = %6. So we obtain a gequenée { M B(gn)} = {1, %, é, . ...} in M generated
by go. Let t = 1.2, ¥(t) = . then tu(t) < t. Define

3

(0.0) lifg,ge[0,9NM
alg,q) =
5 otherwise.
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Now,

a.(B10, B11)H,, (B10, B11) = (%)(484) > w(Dy(9.q)) = §(484).

So the inequality (3.1} is not true for the whole §pace M . Now, for all g,q € Bg,{go,7) N
{MB(gn)}, we have

a.(Bg, Bq)Hy,(Bg. Bq)

1 [: {sup d, (@, By}, sup db(Bg,b)}}

acBy

_[a 2q g 29] )

= dyla |2 2 pd b

max{&s&ugg b(a [3 3}) bqu b([3 3

q 2q g 29] 2@)

- d d

. {ase"é’g (35 3D e "([3 3]73

29 2

o2 4(52)]

_ max{(2g+q) (g +2q}2}

g 9

256g%¢2 16¢° 1642 })

2
< ’”(m‘”‘{(g*‘”’81{1+(g+q)2}’ G

= (ds(g,q)).

So. the inequality (3.1) holds on By, (o, F)N{MB(gn)}. As, t = 1.2 > 1, then

S0 W g0, 91) x 2 Z( <100 =7,

i=0

Hence, all hypothesis of Theorem 3.2.1 are proved. Now, we have {M B(gn)} is a sequente in
W, a{gn,gn+1) > 1 and {MB(g.)} —»0¢€ W. Furthermore, 0 be a fixed pomt of
5.

Theorem 3.2.7 Let (M, dy) is a complete D.B.ML.S with a graph G. Suppose a function
a:Mx M — [0 00) exists. Let, # > 0, o € W, B:Af — P(M) and let for a sequenée
{MB{g,)} in M generated by gg, with {90, 91} € Q(G). Suppose that ( (1) and {ii) hold:

(1) B is a graph preserving for all g,q € mﬂ {MB({g,)};
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(ii) there exists v € ¥ and

Dafy,0) = max{ditg, ), WEZOMEED 40 ) (4, )

where @ > 0 such that

Hy,(Bg, Bg) < v(Dylg,q)), (3.10)

for all g.q € Bg,(g0,7) N {MB(g,)} and ({g.q) € Q(G);

(iii) 7, t"“{wi(a’b(gu,BQO))} < 7 for each n belongs to NU {0} and ¢ > 1.

Then, {MB(g,)} is a gequenée in B_d,,-m, {gn, gn+1) € Q(G) and {MB(gn)} — g". Also,
if and the inequality (3.10) holds for 9" and (gn,g%) € Q(G) or (¢*,g,) € Q(G) for avery n
belongs to N U {0}, then g is a fixed point of B in W-

Proof. Define, o : M x M — [0, ) by

N otherwise.

1, if g € By,(90,7), (9,9) € QIG)
alg.q) = .

As {MB(g,)} is a sequenée in M generated by go with (g9, 91) € Q(G), we have af{go, 1) > 1.
Let a{g,q} > 1, then (g, 9} € Q(G). From (i), we have (w,p) € Q(G) for all w € Bg and p € Byg.
This implies that a(w,p) = 1 forallw & Bg and p € Bq. This implies that inf{a(w,p) : w € By,
p€ Bg} =1.5%, B: M- P(M) is a semi a.—admissible multifunction on Em.

Moreover, inequality (3.10) can be written as
a.(By, Bq)Hu,(Bg, Bq) < ¥(Dy(g,q)},

for all elements g¢, ¢ in mﬂ {MB{gyn)} with either a(g.q) > 1 or a(g,g) > 1. Also,
(iii} holds. Then, by Theorem 3.2.1, we have {M B(g,)} be the sequente in W and
(MBlgn)} — g* € By, (90.7). Now, ga, 9" € Bg,(go, 7) and cither (g, ") € Q(C) or (9*,9n) €
®(G) for éach n belongs to N U {0} and the inequality {3.10) holds for all g.q € Wﬁ
{MB(g.)} U {g*}. Then we have a(g.,9%) > 1 or a{g*,g,) > 1 for éach n belongs to N U {0}
and the inequality (3.1) holds for all 9.9 € By, (g0.7) N {MB{gn)} U {g"}. So. all hypothesis
of Theorem 3.2.1 are proved. Hence, by Theorem 3.2.1. B has a C.F.P g* in W and
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dy(g*.g") = 0.

In this section we discussed some fixed polnts for self mapbing in éomplete D.B.M $pace.
Let (M.dy) be a D.B.M épace, gg € M and B : M — M be a mapbping. Let g = Bgy,
g2 = Bygi1. Proceeding this metho, we get a sequenée g,, of points in M such that n+1 = By,
We represent this type of sequente by {g,.}. We say that {gn} is the sequenée in M generated
by go. ®

Theorem 3.2.8 Let (M, d,) is a éomblete D.B.M.S, ¥ > 0, g € W and B: M - M
is & semi a—admissible function on W and {gn} is a sequenée in M, then algo,g1) > 1.

Assume that, for some © € ¥ and

db(g: Bg)db(Q! BQ)
@ +dy(g,9)

Db(gr Q) = max{db(g’Q)r 1db(gﬂBg)!db(Q1BQ)}

where @ > 0 , the following hold:

a(Byg. Bq)H,,(Byg, Bq) < ¥/(Ds(g,q)) for all ¢,q ¢ By, (g0,7) N {gn} {3.11)

n

ZBHl{wi(db(gg,g]))} < 7 for éach n belongs to Nu {0).
i=0

Then, {g,} is a sequenée in W, *(gn.gn+1) > 1 and {g,} — ¢* € W. Also if
a(gn, g%} > 1 or a(g*,g,) > 1, for éach n belongs to NuU {0} and the inequality (3.11) holds for
all g, € By,(90,7) N {g2} U {g*}. Then B has a C.F.P g* in Bg, (g0, 7).
Proof. The proof of above Thearem is similar as previous proved Theorem 3.2.1.
Corollary 3.2.9 Let (M, <,d,) is a preordered ¢omblete D.B.M.S, 7 > 0, gy € m
and B : M — Af be a self mabbing on W and {g,} is a sequenée generated by gy, with

9o = g1. Assume that, for some k & [0,1) and

db(g1 Bg)db(Qa BQ)
a+ db(g; Q)

Dy(g,q) = max{dy{g, q). 1 db(g, Bg). dy{q, Bq)}
where @ > 0, the following hold:

Hy,(Bg, Bq) < k(Dy(g,q)) for all g,q € By, {90,7) N {gn} with g < ¢ (3.12)
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and > ¢ k¥ (dy(go, 01))} < 7 for éach n belongs to NU {0}.
i=0

If g,q € By, (g0.7), such that g < ¢ implies Bg <; Bq. Then, {gn} is a sequente in W,
On = gny1 and {g,} — g* € W. Also if g* < g, or g, < g*, for éaéh n belongs to NuU {0}
and the inequality (3.12) holds for all g,¢ € Wﬂ {gn} U {g*}. Then, ¢* is a fixed point
of B in By, (g0, 7).

Corollary 3.2.10 Let (Af, <,d;) is an ordered ¢omplete D.M $pace, 7 > 0, gy € By (g0, 7)
and B : M — M be a self mapping on By (go,7) and {g,} is a sequence generated by gg, with

go = ;. Assume that, for some 3 € ¥ and

di(g, Bg).di(g, Bq)
a+dig,q)

DI(Q!Q) :ma"x{dl(g=Q) 'dl(gaBg)vdf(quQ)}

where @ > 0, the following hold:
Hy(Bg, Bq} < v(Dy(g,q)) for all g.q € By (go,*) N {gn} with g < g (3.13)

and ) *(di(go, 1)) < ¥ for éach n belongs to N U {0}.
i=0

Ifg,qc W, such that g < ¢ implies Bg < Bg. Then, {g,} be a sequenée in W,
Gn % guy1 and {g.} = g* € m. Also if ¢* < g, or g, = g7, for éach n belongs to NU {0}
and the inequality {3.13) holds for all g,q € W M {gn} U {g*}. Then, g* is a fixed boint
of B in m.

Corollary 3.2.11 Let (A, <.d;) is an ordered éomplete D.Af épace, ¥ > 0, g € W
and B : Af — M be a self mapbping on W and {g,} be a sequenée in M with initial guess
go. with gg =< gy. For some k € [0,1) and

di(g, Bg).di(q, Bq)
a+ di(gy QJ

Di(g,q) = max{d)(g,q). ,di{g, Bg),di(q. Bq)}
where @ > 0, the following hold:

di(Bg, Bq) < k{Dy(g.q)) for all g,q € By (go,7) N {g.} with g < ¢ (3.14)
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7
and Zki(dg(gg,gl)) < ¥ for éach j belongs to NU {0}.
i=0

Then, {g»} be a sequente in By, (g0, 7), such that gp = gn+1 and {gn} — 0" € By, (go, 7). Also
if g* < gn or g, < g*, for éach n belongs to N U {0} and the inequality (3.14) holds for all

g, € Bg,(g90,7) N {gn} U {g*}. Then, g* be the fixed point of B in By, (g0, 7)-

3.3 Fixed Point Results for a Pair of Multivalued Dominated
Mappings in Dislocated -Metric Space with Applications

The given results in this section can be seen in [55].

Let (E,dy) be a D.BM.S, qo € E and 5T : E — P(E} are the setvalued mabs on
E. Let q1 € Sgp be an element such that dip{go, Sq0) = dwl(go.q1). Let g0 € T'q1 be such
that dip(q1, Tq1) = dw(q, g2). Let g3 € Sga be such that dip(go, Sg2) = dis(g2, 93). Proceeding
this method, we get the sequenée ¢, in E 80 as ¢aa41 € Sgan and qany2 € Tgons1, Where
n=012.. Also dp(gem Sq2n) = di(g2n, Gon+1)s dis(@2n+1, Tq2n+1) = d{gant1, G2ni2). We
represent this type of sequente by {T'S{gn)}. We say that {TS(gn)} be the gequente in F
generated by qq. For g,e € £, a > 0, we define Dp(g, €) as

dw (g, Sq) .dy, (e, Te) dis

a+dy (q,e) (Q,SQ),dgf,(e,Te)},

Dy(g, e) = max{du (g, e),

Theorem 3.3.1 Let (£, dy;) is a éomblete D.B.M.S. Suppose a function a : ExE — [0, 00)
exists. Let, r > 0, go € By, (q0,7) & S, T : E — P(E) be two a.-dominated maps on By, {(70,7).

dip \'L

Suppose that, for some ¥, € ¥}, the following hold:
Hdm(sqﬁTe) < wb(DIb(qve)) (315)
for all q,e € By, (q0,7) N {TS(g)} with either a(g,e) > 1 or (e, g} 2 1. Also

Zb”l{w};{'d;b(qg, Sgg))} € r for éach n belongs to NU {0} and b > 1. {3.16)
=0

Then {TS(gn)} is a sequenée in By, (q0,7), @(9n,¢n+1) > 1 for éach n belongs to NU {0} and
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{TS(gn)} — q* € W. Also if the inequality (3.15) holds for ¢* and either a{g.,g*) > 1
or a{q”,¢s) > 1 for éach n belongs to NU {0}, then ¢* is the C.F.P of § and T in By, (g, 7)
and di(¢*.¢*) = 0.

Proof. Consider a sequente {T5(¢.)}. From (3.16), we get

diy(g0.q1) < Y 6 {¥i(dulgo, Sa0))} < 7.
i=0
It follows that,

)] € Bd;ﬁ(‘lﬂa T').

Let g2, - ,q; € Bg,(go,7) for &very j belongs to N. If j = 2{ + 1, where i = 1,2,...,-;&.
Since S,T : E — P(E) be a a,—dominated mappings on By, (go,7), 50 o{gas, Sg2;) > 1 and
o (@iv1, Tgoee1) 2 1. As a.(ng.qu;) > 1, this implies inf{a{gq;, b) : b € Sqai} > 1. Also

gai+1 € Sga;, 50 alge;, guir1) = 1. Now by using Lemma 1.2.8, we obtain,

1A

Hy, (Sqo:, Tqpic1) < ¥y(Din(gai. gaie1})
w (Qui 92i41) -dp {G2i1, Qiv2)
a + diy (921, @2i41)

di{gai, 92i41), Ain(G2iv 1, Gois2) })

diy (92i41, G2i42)

d
< vp(max{dip(gen g2es1),

A

bl

1A

Yy{max{di(ga:, 92601}, dis (G241, Gaiv2) })-

If max{dw{gas, goir1), dis(qoir1, G2i+2)} = div(g2i41, g2:42), then

dis(Goic1,92i42) < ¥u(din{gaivr, goi+2))

A

by (dip(G2i41. Goiv2)).

Which contradicts that dy,(t) < t for éa¢h ¢t > 0. So

max{dy(g2s, 92e41), il @2i41, 2042)} = dinlgai, G241)-

Hence, we obtain

d1o(92i1. @2iv2) < wyldin(gos, goir)) {3.17)
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As o (g2i-1,Tgpi—1) > 1 and go; € Tq2:-1, 50 a(gei—1, g2;) > 1. Now, by using Lemma 1.2.8, we

obtain

din(goi: qorvr) < Hap(Tqoio1, Sq2) < ¥y(Di(gas: g2i1))

diy (21, G2e41) dip (g2i-1, G21)
a + dy (921, g2e-1)

div(g2s, Q2i+1), dis(g2i 1, 92¢)})

A

Yy (max{di(gai, g2i-1).

1

I

Yy (max{di(ges, g2i-1), din(gas, Gor 1) })-
If max{dis(q2s, g2i—1), dn(gas, goir1)} = din{goi, ga41), then
din(q2i, q2i+41) < Voldin(Gor Gair1)) < byy(din(ges, g2i41))-
Which contradicts that by, (t) < t for éach t > 0. Hence, we get
dip(g2i, g2i+1) < Vpldin(g26-1, g20))- (3.18)
As 1, is nondecreasing, so
Voldib(g2t, 2r41)) < Vp(Wpldinlgaioi, g2:))).
By using above inequality in {3.17), we have
dip(gait1, Gar42) < Vi (duw(gai-1, 420)))-
Proceeding in this way, we get
dis(qoi+1, Goi42) < W5 (diw (g0, @1))- (3.19)
Now, if j = 2i, where i = 1,2, ... % By using (3.18) and similar procedure as above, we have

di(qas, @2e41) < Y3 {(d(qo, 11))- (3.20)
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Now, by combining (3.19) and (3.20}
die(5, g541) < Wi (diw(g0, q1)) for éach j € N, (3.21)

Now, by using triangle inequality and by (3.21), we have

A

div(g0. gj+1) < bdiw(go. q1) + b*din(g1, g2) + .. + ¥ (g5, Zi+1)

1A

bdi(q0,91) + 6" ¥y (dis(q0, q1)) + ... + ¥4t (diy (g0, 1))

A

j
Z B v (di(go, q1))} < r.
i=0

Thus g;41 belongs to By, {go, 7). Hence g, belongs to By, (go,r) for &verj n belongs to A,
therefore {T'S(g,)} be the sequente in By,(q0,7). As S, T are two a,dominated mabps on
By, (0. 7), then a,(gon, Sg2,) > 1 and @x(g2n+1, T'¢2n+1) > 1. This implies a(gn, grsr) > 1.

Also inequality (3.21) can be written as
div{gn. Gns1) < 95 (di(go, q1)), for éach n belongs to N. (3.22)

As Y2 649f () < +oo, then for some p € N, then the series 3"} bkwé(wf](dw(qo,ql)))

converges. As by, {t) < t, so

T 0 (a0, @1))) < B7UR (0 (dun(go, @0))) for éach m € V.

Fix £ > 0, then there must be a p(e} belongs to N, so as

6w (W5 ™ N (g0. 1)) + B0RP) N dolgos qu))) + -+ < ¢
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Let n,m belong to N with m > n > p(e), then, we have

74N

di(gn, gm) b1y (Gn, Gn1) + b2 (Gne1s gnaa) + - + 6™ diy (G, Gn)
byl (din{go, @1)) + &% (dis(g0, q1)) + - - + B dyy (g0, q1))
by (¥ (diwlgo, 1)) + - - + b T (v (g0, 1))

by (™ ({0, 91))) + B20RWE)  (di(go, ) + - < e

[Fal

A

It is clear that {T'5(gs)} is the Cauchy in (Ba,(90,7),d). As éach &losed ball in a complete
D.B.M.S is tomblete, so there must be a ¢* € By, (q0,7) s0 as {T'S{g,}} — ¢*, that is

lim dyy(gr,q*) =0 (3.23)
n—oc
Now,

dip(q*, Sq*}

A

bdi(q", gon+2) + bdip{gony2, Sq*)

bd“)(qt.- q211+2) + bHd,,b(TQ2n+l’ Sq*) (by Lemma 128)

IA

Since a.(g*, $¢*) > 1 and a+(92n+1,Tg2n+1) > 1 and a({gony1,q7) > 1, we obtain

di(q”, 5¢") < bdin(g", gan12) + by (max{di(q”, gon.1), din(q*, Sq"),
d (0%, 59" ) .dip (qan+1, Tq2nt1)
@+ dip (g%, g2n41)
bip(q”, gan+2) + by (max{di(q®, qons1), din(q®, Sq°).
dis (¢, S9°) Ay (@2r+1. G2n42)
a+dp (g, gans1)

s dip{@2ns1. Tqan41)})

»dib(Gant1, G2nt2) })-

Letting n — oc. and using (3.23), we abtain di(g*, Sq*) < byy(du(g®, Sg*)). A contradicts to
the relaity that 6y,(t) < ¢ and hence dis(g*,S¢*) < 0 or ¢* € Sg*. Similarly, by using the

inequality

dis(q", Tq") < by (q*, gant1) + by (gan o1, Tq")

and hence diy(¢*,7¢") < 0 or ¢* € Tq*. Hence q* is the C.F.P of § and T in Ba, (g0, 7). Since

a.(¢".8¢") > 1 and (S.T) be the pair of a,-dominated multifunction on By, (gg, ), we have
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a.(q*, Tq*) > 1, so alg*,q*) = 1. Now,

dp(e®,¢") < dwlg",Tq") < Ha,(Sq",Tq")

dw (g%, 5q") dw{g", T'q")
a+ dip{g*,q%) ’

du(q”, Sq*), dw(g", Tq)}).

< yy(max{du(q”, ),

This implies that, di(g*, ¢*) = 0.
We have the following result without élosed ball and a—dominated mapbings for one multivalued
mapping. =

Theorem 3.3.2 Let (E,dy) is a éomplete D.B.M.S. Suppose §: B — P(E) is a setvalued

map. Assume that, for some v, € ¥y, the following hold:
Hy,(Sq, Se) < vy{Dis(g:€))

for all g,e € {SS(g,)}. Then {SS(g.)} — ¢* € E and S has a fixed pomt ¢* in £ and
diw({g*.¢*) = 0.

Theorem 3.3.3 Let (E, <, dj3} is an ordered omblete D.BMS. Let,r>0,q € W
and S,T : E — P(E) are two multi <-dominated maps on W. Assume that, for some
Y, € Uy, the following hold:

Hy, (Sq,Te) < v,(Dilg, €)) (3.24)

for all g,e € By, (go,7) N {TS{gn)} with either g < eore =gq. Also

T

Zb"ﬂ{wi(d;b(qg, ¢1))} < r for éach n belongs to NU {0} and b > 1. (3.25)
i=0
Then {TS(gn)} is the sequence in By, (go,7) and {T'S(g)} — ¢* € Ba,(go0,7). Also if the
inequality (3.24) holds for ¢* and either gn < ¢* or ¢" < gy, for éath n belongs to NU{0}. Then
¢* is the C.F.P of § and T in By, (qo,7) and du(g”.¢*) = 0.
Proof. Let a : E x E — [0, +00) be a mapbing defined by a(g, ¢) = 1 for all ¢ € By, (g0,7)
with either ¢ < e or e < ¢, and a(g,e) = 0 for all other elements g,e € E. Since 5 and 1" are

dominated mabs on By, (go,7), so ¢ <= Sqg and ¢ X Tq for all ¢ € By, (g0, ). This implies that
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g < biorallbé Sqand g X cforall ceTq. So, afg,b)=1forall be Sq and a(g,c) =1 for
all ¢ € Tq. This implies that inf{a(g,e) : e € Sg} = 1 and inf{a(q,e) : e € Tq} = 1. Hence
a.(q.59) = 1, a.{q,Tq) = 1 for all g € By, (g0, 7). So, S, T : E — P(E) are the o, —dominated

mabbing on By, (go, ). Moreover, inequality (3.24) can be written as
Hy,(Sq,Te) < 9y(Du(g, e))

for all elements g,e in m N {TS(g,)} with either a(g,e) > 1 or afe,g) > 1. Also,
inequality (3.25) holds. Then, by Theorem 3.3.1, we have {T'S(g.)} be the sequence in Ba,(q0.7)
and {T'S(g)} — ¢ € m. Now, ¢n, ¢ € W and either g, < ¢ or ¢* < ¢, implies
that either a(g., ¢*) > 1 or a{¢*,g.) > 1. So, all hypothesis of Theorem 3.3.1 are proved.
Hence, by Theorem 3.3.1, ¢* is the C.F.P of § and T in W and dp(g*,¢*) = 0.
We have the following result without &losed béll in éomplete D.B.M.S. Also we write the result
only for one multivalued mapbing. »

Theorem 3.3.4 Let (F, <,dp) is an ordered ¢omblete D.B.M.S. Let S : E — P(E)} be

two multi <-dominated mappings on E. Assume that, for some 1, € W, the following hold:

Ha, (Sa, Se) < vy(Dsla. €)) (3.26)

for all g, e € {S5(gn)} with ¢ < e. Then {$5(g.)} — ¢* € E. Also if the inequality (3.26) holds
for ¢* and either g, < g* or ¢* < gy for @very n belongs to NU {0}. Then ¢* is the fixed point
of S d(q*,¢7) = 0.
Example 3.3.5 Let E = @+t U {0} and let dy, : E x E — E be the ¢omblete D.B.M.S on
E defined hy
dip(w, k) = (w + k)° for éach w, k € E

with parameter & = 2. Define the setvalued mabs, 5,7 : E x E — P(E) by,

q 2 ..
33 NE
Sq= [3,3q] if g € [0,19]
.9 +1)ifqge (19, )N E,
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and .3
<, 2q]i 0,19|NE
Tq-= I3 7911 €10,19]
fg+1,9+3]ifge (19,c)NE.

Considering, go = 1,7 = 400, then By, (g, r) = [0,19] N E. Now diy(g0. Sqo) = du(1,51) =

dip(1, é) = 16 . So we make a gequente {T'S(gs)} = {1 130 3i, ....} in E generated by gg. Let

vy(t) = 3£, then b,(t) < t. Define

@.¢) 1 ifg>e
alg,e) = .
1 otherwise

Then S,T : E — P(F) be the a,—dominated mapbings on By, (go.7). Now take 20.21 € E

and a = 1, then, we have

7396
Ha, (520, T21) = 1936 > v4,(Di(g,¢)) = ~5--

So, the inequality (3.15) is not true for the whole $bace E. Now for all ¢,e € By (go, 7)"{TS{gn}}
with either a(g.e) > 1 or a(e,¢} > 1, we have

g 3e

Hq,(5¢,Te) = max{dlb )dtb( )}

2q e\? g 3e\?
ma"{(?%) ’(5*"1)

w,,(max{(q+e)2,—%2), (%‘i’) (5) b

f

A

9(1 + (g + e)?

So, the inequality (3.15) holds on Bg (qo,7) N {T'S(¢s)}. Also, for éaéh n belongs to N U {0},

we have
n

thﬂ{vb di{go.q1))} = — x 22 <400 =1
i=0

Now, we have {I'S(g¢,)} be the sequente in m, a(gn. @nv1) 2 1 and {TS(q,)} — 0 €
By (g0, 7). Also, a(gn.0) > 1 or a(0,gn) > 1 for 8very n belongs to NU{0}. Hence, all hypothesis
of Theorem 3.3.1 are proved.

Theorem 3.3.6 Let (E,dy) is a complete D.B.M.S endowed a graph G. Let, r > 0,
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q0 € Ba,{(go.7), ST : E — P(E) and {T'S(gn}} be a sequente in E generated by gg. Suppose
(i), (ii) and (iii) hold:
(i) S and 7" are multi graph dominated on By, (q0,7) N {T'S(gx)}:

(it) there exists 1), € ¥y, so as
Ha, (Sq. Te) < ¥y(Dulg, €)), (3.27)

for all g,e € Bq, (go.7) N {T'S(gn)} and (ge) € W(G) or (e.9) € W(G);

(it} S5 o b {wi(du (g0, Sqo))} < r for éach n belongs to NU {0} and b > 1.

Then, {T'S(gs)} is a sequenée in By, (g0, "), (Gnr gnt1)} € W(G) and {TS(g:)} — ¢*. Also,
if the inequality (3.27) holds for ¢* and (¢n,¢*) € W(G) or (¢*, q.) € W(G) for éach n belongs
to NU {0}, then g* is the C.F.P of both § and T in By, (go.7) and du(g*,q") = 0.

Proof. Define, a: E x E — [0,00) by

otherwise.

alg,e) = { 1, ifge Bdta(qoar)! (g,€) € W(G) or (eg) € W(G)

Given S and T are graph dominated on W, then for g € m, (g,e) € W(G) for
all e € Sq and (g,e) € W(G) for all e € Tq. So, a(g,e} = 1 for all e € Sq and a(g,e) =1 for
all e ¢ Tq. This implies that inf{a{g,€) : € € Sq} = 1 and inf{a(q,e) : e € Tq} = 1. Hence
@.(q,59) =1, au(q,Tq) = 1 for all ¢ € m. So, S,T: E — P(FE) are the o,-dominated

mabbing on By, (qgo, 7). Moreover, inequality (3.27) can be written as

Hdm(SQ5 Te) < wb(le(qv e))l

for all elements q,e in By, (qo,7) N {T'S{(gn)} with either a(g,e) > 1 or a(e,q) > 1. Also, (iii)
holds. Then, by Theorem 3.3.1, we have {T'S(gy)} is the sequenée in By, (g0, 7) and {T'S(gn)} —
gt € W Now, gn,g* € W and either (gn,¢") € W(G) or (¢*,¢,) € W(G) implies
that either a(gn,¢*) > 1 or a(q*,¢.) > 1. So, all hypothesis of Theorem 3.3.1 are proved.
Hence, by Theorem 3.3.1, ¢* be the C.F.P of § and T in By, (g0, 7) and dp(g*,¢*) = 0.

We have the following result without €losed bdll in ¢omplete D.B.M.S for multi graph
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dominated mapping. Also we write the result only for one multivalued mapbing and for
Dyplg.e) = dp(g,e). ®

Theorem 3.3.7 Let (E,dp) is a complete D.B.M.S endowed a graph G. Let, r > 0,
qo € W, S : E — P(E) and {S5(gn)} be the sequente in £ generated by go. Assume
that (i} and (ii) hold:

(i) S is a multi graph dominated on{SS(gn)};

(ii) there exists ¥, € ¥, so0 as
Hy,1Sq. Se) < dy(dulg, €)), (3.28)

for all g,e € {TS{g,)} and (ge) € W(G) or (e qg) € W(G);

Then, (¢n, ¢ny1) € W(G) and {§5(gn)} — ¢ Also, if the inequality (3.28) holds for ¢* and
(gn ") € W(G) or (¢*, gn) € W(G) for éach n belongs to NuU {0}, then ¢* is the C.F.P of both
S and T in E and dp(g*, %) = 0.

3.4 Fixed Point Results for Multivalued Dominated Mappings

in Dislocated b-Metric Spaces with Application

Results given in this section can be seen in [49].

Let (Z,d;) be a D.B.M.S, gp € Z and S,T : Z — P(Z) be the setvalued maps on Z. Let
¢1 € Sgo be an element such that d;(go, Sg0) = di(g0, 91)- Let g2 € Tg1 be such that dj(g1. Tg) =
di(g1,92). Let g3 € Sgo be such that di(g2, Sg2) = di(g2, 93)- Proceeding this method, we get
sequenée g in Z such that ga,41 € Sg2n and ganie € Tgony1, where n = 0,1,2,.... Also
di(92n, Sg2n) = di{@2n, 92n+1)s di{g2n+1, Tg2n41) = di(g2n11, g2n+2). We represent this type of
sequence by {TS5(g,)}. We say that {T'S(g»)} be a sequence in Z generated by g.

Theorem 3.4.1 Let (7.d;) is a éomplete D.B.M.S with coefficient & > 1. Let r > 0,
go € W CZ a:ZxZ — [0,0¢)and §,T : Z — P(Z) be the semi a,-dominated
mabpings on By, (go,r). Assume (i) and (ii) hold:

(i} There exist 7,7y,79, M3, M4 > O satisfying by, + bny + (1 + b)bns + 14 < 1 and a strictly
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increasing mapping F' such that

mdi{e, y) + nedile, Se) ,
T+ F(Hg (Se, Ty)) < F Be.50) diwTy) | {3.29)
+agdi{e, Ty) + M5y
whenever e,y € By (g0, 7) N {T'S(gn)}, ale,y} > 1 and Hy, (Se,Ty) > 0.
i _ Mgty
(i) f A= 111%23—_—1]43, then
di{go, Sgo) < M1 = bA)r. (3.30)

Then {TS{(g.)} is the sequente in By, (90,7), @(gn.gn41) > 1 for éach n belongs to NU {0}
and {TS(gn)} —» u € W. Also, if the inequality (3.29) holds for e,y € {u} and either
a(gn, u) > 1 or a(u, g,) > 1 for éach n belongs to NU {0},then u is the C.F.P of both § and T
in W.

Proof. Consider a sequenée {TS(gn)}. From (3.30), we get

di(go, ¢1) = di{g0, Sgo) < A1~ bA)r <.

It implies that,

G € de(gﬂa T)'

Let g, -~ ,g; € Bq,(go,7) for &very j belongs to N. If j is odd, then j = 2i + 1 for some te N
Since S, T : Z — P(Z) be a semi a,-dominated mapbings on By, (go,7), 50 (g2, Sga1) = 1
and o, (goi41, Tgm41) > 1. As au(gos, Sgm) > 1, this implies inf{a(ga:, b) : b € Sgu} = 1. Also

Goie1 € Sgm, 50 a{g, g2it1) > 1. Now, by using Lemma 1.2.8, we get
T+ F(di(g2i41, 92+2)) < 7 + F(Hy (S92, Tg241))
Now, by using (3.29), we get

T+ Fdi{gnie1, 9242) < Flmdi (g, 92i+1) + 1adr (g2, Sg2:) + 13 (923, T2141)
d? (g2, Sgx) -di(g2i+1, T2 i1)
1+ d7 (921, 9241)

4
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Flndi (g2, 9m41) + Mokt (920, gmar1) + 3dht (2, 92a+2)
d? (92, g2 41) -di{g2i 11, go+2)
1+ d? (g, 9241)
Flnydi (923, g201) + Nadi (921, Gze1) + bnadi (921, 92241)
d? (921, 92+1) -1 (92141, 92+ 2)
1+ d} (921, 92+1)

I

T

A

+0m3d; (92i41: 92i42) T M

< F((y + 12 + bmz)ds (921, 92:41) + (b3 + n4)di (92141, 9242))-

This implies

F(di(gais1, 9m+2)) < F(m1 + 12 + 0n3)di (921, 92341)

+{bng + ng)di (goit1, 92+2))

As F is the strictly increasing mappings. So,

di(ga+1,92a42) < (7 + N + bng)di (921, 92141)

+{bm3 + 14)di (goit1, gois2) -

Which implies

(1 - by — ny)di(g2i+1, 9242) < (1 + 72 + bna)di (92, 92341)

n+ns+
1—2—%) di (923, 92341) -

di(g2i41, gu42) < (
’ 1—bny—1y4

As A= MFRE 1 Hence
1—bny—n,

(9241, 92irz) < Ay (gon g2141) < Ndp (g1, 92) < -+ < Xy (g0, 91) -

Similarly, if 7 is even, we have

di{gai+2, 9ai+3) < A2 (g0, g1) -

Now, we have

di(g,gj+1) < Md; (go,g1) for éach j belongs to N, (3.31)
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Now,

di(zo, 9j41) < bdi(go, g1) + BPdi(g1, g2} + - + ¥ di(gi, gi+1)
< bdi(go, 1) + b*A(di{go, 1)) + -
+bj+1)\j+]_(dt(90,g1))a (by {3.31))
algonge) < V0 o<,

which means g;+1 belongs to By, (go, 7). Hence, by induction g, € Ba,{go,r) for &ver¥ n belongs

to N. Also a(gn,gni1) > 1 for éach n belongs to NU {0}. Now,
d1(Gn, gn+1) < A™dp (g0, 91) for éach n € N. (3.32)
Now, for non negative integers m,n (n > m), we get

dl(gmy gn) < b(dl{gma gm+1)) + b2(d1(9m+179m+2)) + -

+6" ™ {di{gn—1,9n)),

< bA™dy(go, 91) + BN (g0, g1) -
+60 ™A (g0, 1), (by (3.32))

< BAT(1+bA+ -+ )di{go, 91)

As 17,79, M3,m4 > 0, b > 1 and by, + by + (1 4+ b)bng + 14 < 1, so [bA| < 1. Then, we have

we

mdl(goygl) —dasm — oo,

dl(gmw gn) <

Hence {T'5(g,)} is Cauchy in By, (go,7). Since (Bg/(go,7),d) is a Complete meétric space, so

there exist u € By (go,r) so as {TS(gn)} — u as n — oo, then

Jim_di{gn,u) = 0. (3.33)
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By assumption, a(gn,u) > 1. Suppose that di(u, Tg) > 0, then there exist positive integer k so

as di(gn, Tu) > 0 for éach n > k. For n > k, we get

di{u, Tu) < di(u, gans1} + dig2n+1, Tu)

IA

dl(ua g2ﬂ+l) + Hdg (ngna TU)

< dy(u, gan+1) + Mdi(92n, u) + Nodi{gon, Sg2n)

d%(ggm Sggn).dg(u, Tu)
1+ df(g2n, u)

< di{u, gans1) + di(gen, v) + N2di(92n, G2n+1)

d? (9211: 92n+1)-dl (’u,, T'“-)
1+ d7 (g2n. )

+n3di (920, Tu) + 104

+n3di(gon, Tu) +my

Letting n — co, and by using (3.33) we get

di(u, Tu) < nadi(u, Tu) < di{u, Tu),

which contradicts. So our supposition is wrong. Hence dj{u, Tu) = 0 or u € Tu. Similarly, by

using Lemma 1.2.8, inequality (3.29),

dl(u: SU)

1A

di(u, gan+2) + di(gons2, Su)

IA

dy (%, gonv2) + Ha, (Tgon i1, Su)

A

di(u, gan+2) + mdi{u, g2n+1)

+’?2dt (Ua Su) + ﬂadl(U, T9‘2n+1)
d?(u, Su).d (92041, T92n 1)
1+ &2, g2011)

T4

< di(u, gan+2) + mdi(u, gans1) + M2di (v, Su)
d?(u, Su).di(gan+1, G2n+2)
b+ d2(u, gony1) ‘

+13di(u, ganya} + 74
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Letting n — oo, and by using (3.33) we get
dy(u, Su) < nodi(u, Su) < di{u, Su),

which contradicts. So our supposition is wrong. Hence di{u, Su) = 0 or u € Su. Hence the S

and T have a C.F.P v in By, (gg, 7). Now,
di{u, u} < bdy(u, Tu) + bdi(Tu, u) <0.

This implies di(u,u) =0. =
Example 3.4.2 Tet 7 = QT U {0} and let d; : Z x Z — Z be the ¢omblete D.B.M.S
defined by
dy(v,p) = (v+p)? forall w,p € Z.

with b = 2. Define the multivalued mapping, §5,T: Z x Z — P(Z) by,

g 2 .

- 4nz
Sg = [3,3g]lfge[0,1]ﬂ

lg,9+1]ifge(14,)NZ

and,
z 3
—, =z if 0, 14N Z
| Gidirepn
p+1,p+3)ifpe(14,00}N Z.

Suppose that, go = 1, r = 225, then Bg,{go,7) = [0,14]NZ and {T'S(g.}} = {1, %, ﬁ, v }. Take
1

= {5 M2 = 25, n3:6—10,774:%,thenbn1+bn2+(l+b)bn3+1]4<land/\:é—. Now

16 11 22
di{go, Sgo) = 3 < g(l - %)225 = A1 — bA)r

Consider the mapbing o : Z x Z — [0,0) by

lifg>p
a{g,p) = .
% otherwise

Now, if g.p € Bg,(go,r) N {T'S(9n)} with a(g,p) > 1, we have
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Hg4,(S89,Tp) = max{ sup di(a, Tp), sup di(Sg,b)}

aESy
— max{sup da(a,{g,f’f} p il F1)
aESy
= max{a (2, 5, ), dt([g 2g )
= max{d‘g(2 p, ;(g 3p)}
2 . p\* (9, 3\’
- m“{(?*&) (5*?) }>
49° (494 p)? 40g"p*
< (9“’)2 45 + 960 Y3+ (g1 P

= —da(g p)+#d:( [3 39] +i (9’[p 31’])

+id2 g, (%, 9])dl(p’ [4’4 )
30 1+d2(g,p) '

Thus

1

d2(g, Sg).di(p, Tp)
1+di(g,p)

Hy(Sg,Tp) < mdilg, p) + n2di(g, Sg) + n3di{9, Tp) + 74

which implies that, for any v € {0, 95] and for a strictly increasing mapbing F(s} = Ins, we

have

mdi(g, p) + nadi(g, Sg) + n3di(9, Tp)
T+ F(Ha(Se. Te) < F ( d2(9.59) (p.Tr) '

T~ R a2 (g.p)

Note that, for 16,15 € X, then «(16, 15) > 1. But, we have

d"- 16,516}.(15,T'15)

T+ F(H,,(816,T15)) > F (
Ier2 16,15)

11di(16, 15) + 1,d1(16, S16) + nadi(16, T15) )

So condition (3.29) does not hold on Z. Thus maps S and T' are satisfying all requirements of
Theorem 3.4.1 only for g,p € Bg{go.r) N {T'S(gn}} with a(g.p) > 1. Hence S and 7" have a
C.F.P
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If, we take S = T in Theorem 3.4.1, then we are left only with the result.

Corollary 3.4.3 Let (Z,d;) is a ¢omplete D.B.M.S with coefficient w > 1. Let r > 0,
o € m CZa:ZxZ—[000)and S: Z — P(Z) be the semi a,-dominated mappings
on Bg,(go, 7). Suppose (i) and (ii) hold:

(1) There exist 7,7, 779,13, 14 > 0 satisfying wn; + wny + (1 + w)wnz + 14 < 1 and a strictly
increasing mapping F such that

mdi{e,y) + nodi{e, Se)
T+ F(Hy(Se,Sy)) < F Blesedisy |

+nydi{e, Sy) + v

(3.34)

whenever e,y € By (go,7) N {SS(gn)}, a{e.y) > 1 and Hy (Se, Sy) > 0.

(i) If A = D220 then

di(go, Sg0) < M1 — wA)r.

Then {55(g,)} be the sequenée in m, a{gn, gn+1} = 1 for éach n belongs to N U {0}
and {SS(gn)} — u € By (go. 7). Also, if the inequality (3.34) holds for e,y € {u} and either
a(gn,u) > 1 or a(u,g,) > 1 for &very n belongs to N U {0}, then u be the fixed point of S in
By {go,7).

If, we take 1, = 0 in Theorem 3.4.1, then we are left only with the result.

Corollary 3.4.4 Let (7, d;) is a ¢omplete D.B.M.S with coefficient b > 1. Let r > 0,
9 € By(go,7) C Z, a: ZxZ - [0,00) and $,T : Z — P(Z) be the semi a,-dominated
mapbings on By, (go, 7). Suppose (i) and (ii) hold::

() There exist 7,7, 74,774 > 0 satisfying bn; + (1 + b)bns + 74 < 1 and a strictly increasing
mapping F such that

mdile, y) + n3di(e, Ty)
d?(e,5e).di{y,Ty) ’
1+d?(e,y}

T+ F(Hg(Se,Ty)) < F (3.35)

+14

whenever e.y € By/(go,7) N {TS{gn)}, ale,y) > 1 and Hy (Se,Ty) > 0.
(if) If A = $4225- then

di(go, Sgo) < M1 — bA)r.
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Then {T'S(gs)} be the sequenée in Bg,(g0,7), a{gn, gnr1) > 1 for cach n belongs to N U {0}
and {T'S(g,)} — u € m. Also, if the inequality (3.35) holds for e,y € {u} and either
algn,u) > 1 or a(u,gn) > 1 for &very n belongs to NU {0}, then u is the C.F.P of both S and
T in By (g0.7).

If, we take 13 = 0 in Theorem 3.4.1, then we are left only with the result.

Corollary 3.4.5 Let (Z,d;) is a omplete D.B.M.S with coefficient b > 1. Let r > 0,
9 € Ba{go.7) C Z a:Zx2Z — [0.0c) and S, T : Z — P(Z) be the semi a.-dominated
mappings on W. Suppose (1) and (ii) hold:

(1) There exist 7,7, 74,7, > 0 satisfying bny +tmy+7n4 < 1 and a strictly increasing mapping
F such that

(3.36)

di{e,y) + nqdi(e, S
T-i-F(Hdl(Se,Ty))SF(T]I (e, y) + madi(e e))‘

d2{e,Se).di(y.Ty)
Giee)diy ly)
T ey

whenever e,y € By, (go,7) N {TS(gn}}, ale,y) > 1 and Hy (Se,Ty) > 0.
(i) If A = 312, then

di(go, Sgo) < A1 — b)),

Then {T'S(g.)} be the sequence in By (go. 7). a{gn.gn+1} > 1 for ¢ach n belongs to N U {0}
and {TS{g,)} — u € m. Also, if the inequality (3.36) holds for e,y € {u} and either
&(gn, u) 2 1 or a{u.gn} > 1 for every n belongs to NU {0}, then then u is the C.F.P of both §
and T in m.

If, we take 1y = 0 in Theorem 3.4.1, then we are left only with the result.

Corollary 3.4.6 Let (Z,d)) is a éomblete D.B.M.S with coefficient b =z 1 Letr >0,
g € m CZ a:ZxZ—(0,oc)and $,T:Z — P(Z) are the semi a,-dominated maps
on m,_ﬂ. Suppose (i) and (ii) hold:

(i) There exist 7,1, 75,73 > 0 satisfying by +bmy + (1 + )by < 1 and a strictly increasing

mapbing F such that
7+ F(Hq(Se, Ty)) < F(mdi(e,y) + nydi(e, Se) + nadile, Ty)), (3.37)

whenever e,y € By, (g0, 7) N {TS(ga)}, ale,y) > 1 and Hg,(Se, Ty) > 0.
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(i) If A = Mzb_;ﬂa then

di(g0, Sgo) < A(1 — bA)r.

Then {T'S(gn}} be the sequenée in W, a(gn, gn41) > 1 for éach n belongs to N U {0}
and {TS(gp}} — u € W. Also, if the inequality (3.37) holds for e,y € {u} and either
a(gn, u} > 1 or a{u,g,) > 1 for &very n belongs to NU {0}, then u is the C.F.P of both § and
T in By{go.7).

Now we presents an application of Theorem 3.4.1 in graph theory. Jachymski [33] proved
the result concerning for contractive mappings with a graph. Hussain et al. [31] introduced the
fixed points theorem for graphic éongractiofi and gave an application. Furtheremore, avoiding
sets condition is ¢losed related to fixed point and is applied to the study of multi-agent systems
(see [46]).

Definition 3.4.7 Let Z # {} and Q = (V(Q), W(@)}) be a graph such that ViQ)=272
AC Z §:Z~— P(Z) be the multi graph dominated on A if {p.q) € W(Q), for all ¢ € Sp and
g A

Theorem 3.4.8 Let (Z,d;) is a éombplete D.B.M.S endowed a graph @ with coefficient
b>1 Let r >0, go € By(go,7) and S,T: Z — P{Z). Assume (i), (ii) and (iii) satisfy:

(i) S and T are multi graph dominated on By (g0,7) 0 1T5(ga)}.

(ii) There exist 7,7;,7,, 7, 14 > O satisfying by + by + (1 + b)bpy + 1, < 1 and a strictly

increasing mapbing F such that

mdi(p,q) + nodi(p, Sp)

, (3.38)
Sp).di(q.Tq)
+n3di(p. Tq) + m%)_q

™+ F(Hy (Sp,Tg)) < F (

whenever p.q € By (90,7) N {TS(gx)}, (p,q) € W(Q) and Hy,(Sp,Tq) > 0.

(iii) di(g0. Sgo) < A(1 — bA)r, where A = Eligf—‘;;:a.

Then. {T'S(g,)} be the sequente in By (g0.7). {TS(ga)} — m* and (gn,gns1) € W),
where gn.gny1 € {TS(gn)}. Also, if the inequality (3.38) holds for p,g € {m*} and {gn.m™) €
W(Q) or (m*, g,) ¢ W(Q) for aver§ n belongs to NU {0}, then m* is the C.F.P of both S and

T in By(go. 7).
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Proof. Define, a: Z x Z — [0.20) by

}, ifwe Bgl(go,r), (w,e) e W(Q)

afw,e) =
’ 0, otherwise,

Given § and T are semi graph dominated on m, then for p € m, (p.q) € W(Q)
for all ¢ € Sp and (p,q) € W(Q) for all ¢ € Tp. So, a(p,q) = 1forall ¢ € Spand a(p,q) = 1
for all ¢ € Tp. This implies that inf{a(p.q) : ¢ € Sp} = 1 and inf{a(p,q} : ¢ € Tp} = L
Hence a,(p,Sp) = 1, a.(p, Tp) = 1 for all pE E;(Q'Q_,T). So, 8,T : Z — P(Z) are the semi

a,-dominated mabbing on By, (g, 7). Moreover, imequality (2.38) can be written as

1dip, g) + nadi(p, Sp)

d?(p,5p}.d;(q.T
+7?3d[(P, Tq) + 7]4_[(_13‘£}z_l(ti'_ﬂ

T+ F(Hy(Sp,Tq)) < F (
[ (p.9)

whenever p, g € mﬂ {TS(gn)}. a(p,q) > 1 and Hg, (Sp,Tq) > 0. Also, (iii) holds. Then,
by Theorem 3.4.1, we have {T'S(g,)} be the sequenée in By (go,7) and {T'S8(gn)} — m* €
m. Now, g,.m"* € W and either (g,.m*) € W(Q) or (m*.g,) € W{¢) implies
that cither a{g,,m*) > 1 or a(m*,g,) > 1. So, all hypothesis of Theorem 3.4.1 are proved.
Hence, by Theorem 3.4.1, § and T have a C.F.P m* in m and di{m* m*) =0. m

In this section, we have discussed some new fixed boing fesults for single valued mabpping
in complete D.B.M.S. Let (Z,d;) be a DBMS e Zand $.T:Z — Z be the mabpings.
Let ¢; = Scg, ¢g = Ty, 3 = Ses. Proceeding this method. we make a sequence ¢, of poinis in
Z such that ¢, 41 = Scg, and Cn+2 = Tconyy, where n = 0,1,2, ... We represent this type of
sequence by {T'5(c,}}. Then {TS(c,)} be the sequenée in Z generated by ¢.

Theorem 3.4.7 Let (Z, d;) is a combplete D.B.M.S. Let r > 0, ¢ € —Bm C Z,
a:ZxZ—[0,0c)and §,T: Z — Z be the semi a-dominated maps on Ei,(_co"r_) Assume (i)
and (ii) hold:

(i) There exist 7,7, 75,3, M4 > 0 satisfying tn; +tny + (1 + t)tng + 9, < 1 and a strictly
increasing mabpping F such that

(3.39)

T+ F(di(Se, Ty)) < F ( mdai(e, y) + nadi(e, Se) )

d? e Se).d(y, T
+T]3dl(e’ Ty) + 774—‘(—1‘5;?#
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whenever e,y € Bq,(co.7) N {TS(en)}, ale,y) > 1 and Hy (Se,Ty) > 0.

. _ mtngting
(i) f A= —2—1—”13—’74 , then

di(co, Sea) < A(1 — A

Then {TS(cn)} be the iterative sequence in m, afcn, eny1) > 1 for éach n belongs to
NuU {0} and {TS(c.)} —u € B, (co, ). Also if the inequality (3.39) holds for e,y & {u} and
either a(cn,u) > 1 or a{u,¢,) > 1 for éach n belongs to NU {0}, then u is the C.F.P of both
S and T'in By,{co, ).

Proof. The proof of above Theorem is similar as previous proved Theorem 3.4.1. =

If, we take § = T in Theorem 3.4.7, then we are left only with the result.

Corollary 3.4.8 Let (Z,d;) be a ¢omblete D.B.M.S. Let r > 0, cg € Byfco,7) C Z,
oa:ZxZ—[0,00)and §: Z — Z be the semi a~dominated maps on m. Suppose (i)
and (ii} hold:

(i) There exist 7,7;.79, 73,74 > 0 satisfying tn; + tny + (1 +£)tng +n4 < 1 and a strictly

increasing mapping F such that

dile,y) + nod e, Se
T+ F(di(Se, Sy)) < F e ?F(Ie(Se )

.Sy | (3.40)
+n3df(€} Sy) + TM—LW

whenever e,y € Bg,{co,7) N {SS(cn)}, afe,y) > 1 and Hy (Se, Sy) > 0.

+ — Minating
(i) If A = 7225, then

di{co, Scp) < A(1 — tA)r.

Then {SS(c,}} be a sequente in m, a(cn, Cnt1) = 1 for éach n belongs to N U {0}
and {SS(cn)} — u € By, (co,r). Also if the inequality (3.40) holds for e,y € {u} and either
alcn, 1) 2 1 or a{u,c,) > 1 for every n belongs to NU {0}, then u is the fixed poing of 5 in
If, we take 15 = 0 in Theorem 3.4.7, then we are left only with the result.
Corollary 3.4.9 Let (Z,d;) is a éomplete D.B.M.S. Let r > 0, cg € By (ca,7) C Z,
a:ZxZ—|0,00)and S,T: Z — Z be the semi a-dominated mabs on W. Suppose (i}
and (ii) hold:

(i) There exist 7,n;,n3,74 > 0 satisfying tn; + (1 + t)éng + ny < 1 and a strictly increasing
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mapping F such that

(3.41)

7 d
T+ F(d(Se, Ty)) < F (Thdt(e, y) + nzdi(e, Ty) + nqdz (e, Se). J(y,Ty)) ]

1 +df(e,y)

whenever e,y € By, (co, ) N{TS(en)}, ale,y} 2 1 and Hg(Se, Ty) > 0.

- +t
(i) if A = 1—3%—235 then

di{c, Scp) < A1 —tA)r.

Then {T'S(c,)} be the sequenée in By, (cp.7), &(ca,cnta) > 1 for éach n belongs to N U {0}
and {TS(ca)} — u € Bg(cg,r). Also if the inequality (3.41) holds for e,y € {u} and either
alcq,u) > 1 or a(u,c,) > 1 for éach n belongs to NU {0}, then w is the C.F.P of both S and
Tin m

If, we take 773 = 0 in Theorem 3.4.7. then we are left with the result.

Corollary 3.4.10 Let (Z,d;) is a ¢omplete D.B.M.S. Let r > 0, ¢p € m C Z,
a:ZxZ—0,00)and §,T : Z — Z be the semi a-dominated maps on W. Suppose (i)
and (ii) are hold:

(i) There exist 7,7,, 99,14 > 0 satisfying 5, +tn, +14 < 1 and a strictly increasing mapbing

F such that

d?(e,Se).dl(y,Ty)) , (3.42)

4 F((SeT4) < F (mudecs) +made, Se) 1 0™
{ '

whenever e,y € By, (co.7) N {TS(ca)}, ale,y) > 1 and Hy, (Se, Ty) > 0.
5 — m+n
(i) If A = 352, then

dy(cg, Scp) € A(1 — bA)r.

Then {TS(c,}} be the sequence in W, a(cn, Cat1) > 1 for éach n belongs to N U {0}
and {T5(e,)} — u € W- Also if the inequality (3.42) holds for e,y € {u} and either
afcy.u) > 1 or a(u,c,) > 1 for éach n belongs to NU {0}, then u is the C.F.P of both § and
T in mr_)

If, we take , = 0 in Theorem 3.4.7, then we are left only with the result.

Corollary 3.4.11 Let (Z,d;) be a éomplete D.B.M.S. Let r > 0, co € By (co,7} C Z.

a:ZxZ —[0,0c)and ST : Z — Z be the semi a-dominated maps on Bg,{cp, 7). Assume
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that (i) and (ii) hold:
(1) There exist 7,7y, 72,713 > 0 satisfying & +in; + (14 t)tns < 1 and a strictly increasing

mapbing F such that
7+ F(di(Se, Ty)) < F (mdile,y) + nadi(e, Se) + nadi(e, Ty)) (3.43)

whenever e,y € By (co, ) N {TS8(cn)}, ale,y) 2 1 and Hy (Se, Ty) > 0.

(i) If A = Ih%‘-;%’h then

di(co, Sco) < A(L — tA)r,

Then {TS(c,)} be a sequence in By,{co, 7}, alcn, cny1) > 1 for éach n belongs to NU {0} and
{TSi(c.)} — u € By (co,7). Also if, {3.43) holds for e,y € {u} and either alep,u) > 1 or
a{u,c,) > 1 for éach n belongs to NU {0}, then S and T have CF.P v in W.
Theorem 3.4.12 Let (Z,d;) be a éomplete D.B.M.S. Let ¢ € Z and ST : £ — Z.
Assume that, There exist 7,7, 7,73, 74 > 0 satisfying bn; + bny + (1 +b)bns + 194 <l and a

strictly increasing mapping F' such that the following satisfy:

mdi(e,y) + nadi(e, Se)
d¥(e,Se).d (1, Ty) |’

+n3di(e, TY) + =S pr,)

N

T+ F{d{Se,Ty)) < F (3.44)

whenever e,y € {T8(c,)} and d(Se,Ty) > 0. Then {T'S(cn)} — g € Z. Also if the inequality
{3.44) holds for g, then g is the unique C.F.P of both § and T' in Z.
Proof. The proof of above Theorem is similar as previous proved Theorem 3.4.1. We have

to prove the uniqueness only. Let p be another C.F.P of § and T. Suppose 4;(Sg,Tp} > 0.

Then, we have

d?(g, Sg).di(p, Tp))

T+ F(d(Sg.Tp)) < F (mdz(g,p) +mydi(g. Sg) + 13 (9,TP) + 14— - Pl.p)
i )

This implies that
di(g,p) < mdi(g,p) + n3di(g,p} < dilg,p),

which is a contradiction. So d;{Sg¢,Tp) = 0. Hence g = p.

Now, we derive the application of fixed potng Theorem 3.4.12 in form of Volterra type
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integral equations.

k
g(k) = f H(k, b g(h))dh, (3.45)
1]
k
p(k) = [ Hall,h.p()n (3.46)

0
for éach k € [0,1]. We find the solution of (2.45) and (2.46). Let G = {f : f is a continuous
function from [0,1] to R}, endowed with the D.B.M.S. For g € G, define norm as: |g|l- =

sup {|g(k)|e~™}, where 7 > 0 is taken arbitrary. Then define
ke[0,1]

2
d-(g,p) = | sup {lg(k} +p(K)|e” ™} =g +pl2
ke[0,1)

for éach g, p € G, with these settings, (G, d,) becomes a éombplete D.B.M.S. with constant
b=2 =

Theorem 3.4.13 Assume (i), (ii) and (iii) are satisfied:

(i) Hy, Hy 1 [0,1] x [0,1] x G — R;

(i) Define

k

Selk) = f Hy(k, h, g(h))dh,
1}
k

Tp(k) /Hg(k, h,p(h))dh.

Suppose there exist 7 > 0, such that

TH(g,p)

H](k.h,Q)‘f‘H ksh: S—'m
| 2k hPl S G + T

for éach k,h € [0,1] and g,p € G, where

H(g(h),p(h)) = mllglh) + p(R)]* + mallg(h) + Sg())> + nyllg(h) + Tp(h){?
lig(h) + Sg(r|*.[lp(h) + Tp(h)I)®
* 1+ [lg(h) + p(h)[]* '
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where 71, 1, 713, 14 = 0, and 29y + 2ng + 673 + 74 < 1. Then integral equations (2.45) and
{2.46) has a solution.

Proof. By assumption (ii)

k
So(k) + Tp(k)| = / \Ha(k, by g(R) + Halk, b, p(1))] dh,

0
k

.
of’r“H(g,p)“TJrl([ (9,p)le"™")e

k

-
|| H , Te'rh.dh
D/‘fHH(g,p)IITﬂH (9P}l

k
7\ H(g,p)ll- fefhdh,
T||M(g,p)|l- + 1 /

”H(an)“T erk.
T H (g, p)ll- +1

This implies
| H (g, 2){|+
|| H (g, p)|l- + 1

|H (g, p)ll-
T H{g,p)ll- +1
TIH (g, p)ll- +1 1
IH(g.p)ll-  ~ ISg(k) +Tp(k)ll-
1 1
" H T =TS9 + ToB

|Sg(k) + Tp(k)je™™ <

I1Sg(k) + Tp(F)lI- <

which further implies
1 —1

" ISel) F el = TH@ o

So, all the hypothesis of Theorem 3.4.12 are proved for F{p) = :—ﬁlg;p > 0and d-(g,p) = [|lg+p| 2,

b = 2. Hence integral equations (3.45) and (3.46) has a unigue comman solution. =
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Example 3.4.14 Consider the integral equations

k

k
[ a(h)dh, p(k) = 1 / p(k))dh, where & € [0, 1].
0 0

Caf

glk) =

Define Hy, Hy : [0,1] x [0,1] x G — R by Hy = 1g(h}, H2 = {p(h). Now,

k k

1 1
Sotk) = 3 [otmdn, To(k) = 1 [ th))an
0 0
Take 1, = ]—10_. Ty = 2—10, 13 = &, My = %, T = %, then 27, + 2y + 693 + 14 < 1. Moreover,
requirements of Theoremn 3.4.13 are proved and g(k) = p(k) = 0 for éach k, is a unique common

solution to the shown integral equations.
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Chapter 4

Results in Dislocated Quasi Metric

Space

4.1 Introduction

The theory present in this section is published in [48] and accepted for publication
in [57].

Recall that a mapping B : W — P(W) has a fixed bolnt y € W, if y € By. There are
many generalizations of meétric $pace and various researchers make different kind of métric
$paces. Dislocated quasi métric $pace is one of the most important and famous generalizations
of metric $pace and it has a faundamental value in métric fixed boint theory. It is very easy to
say that the work on dislocated quasi métric épace is more better than other métric versions.
Many authors obtained fixed poing theorems in Gomplete DQM (see (15, 20, 50, 61, 59, 66, 67))
which is a more general setting of partial metric §pace, métric-like §pace, quasi-partial métric
Space (see [54, 35]), and metric space. fixed point fesulis are a tool to estimate the particular
solution of functional, differential and integral equations. It is simple to prove that @ : F — F
1s not a contraction but @@ : L —- F is a éontractiofi, where L is a subset in F. It is possible
for one to get fixed boint for such mabbings if they satisfiy certain condition. It has been
shown by Beg et al. {20], the presence of fixed boTnt for such mapbings that fulfill the certain
conditions on a Elosed set rather then whole $pace. Some common fixed polnt fesults for a pair

of a,-dominated multivalued maps on élosed ball with graph in dislocated quasi §paces have
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been proved. We delovped fixed pomnts for a,-dominated setvalued mabs satisfying generalized
a. — U Cirié type fontractiofi on DQM.

The theory of setvalued maps has a faundamental role in many types of both pure and
applied maths because of its large number of applications, in geometry, real analysis and complex
analysis, algorithims as well as in functional analysis. Over the past years, above theory has
raised its importance and hence in current literature there are several research articles related
to multivalued mappings. Various authors have discussed different research articles including
practical problems and their solutions in multivalued mappings. Due to the importance of
this theory various approaches algorithims and techniques are applied for the developing of
multivalued fixed boint theory.

Wardowski [65] devolped F—éontraction principle to investigate fixed boin{s in the setting
of comblete métric §pace. This result has a faundamental postion in the field of fixed point.
Afterwards, several authors generalized many fixed bolng fesults in a fruitful way by introducing
F—contractiofi (see {3, 4, 6, 11, 27, 37, 34, 42, 52]). These fesulfs bring about the modern fixed
boint theory foundation which is mostly related to contractive type mappings. Rasham et
al. [45] obtained fixed poings for the pair of setvalued F—contractive maps, and showed an
application for integral equations which extended some multivalued fixed boint theorems in
current literature. In Section 4.2 we proved some common fixed points of multivalued maps
satisfying a new generalized a, — ¥ Ciri¢ type éontractiofi in the context of DQM. Also we
apply graphic contraciton to get unique fixed boint in these 8baces. Example is presented
on setvalued mabpbings and it is observed that the ¢ontraction which does not prevail on full
ghace but it is holds only on sub&pace. In Section 4.3 we have achieved common fixed poings
for the pair of setvalued broximinal maps satisfying a new Ciri¢ kind rational F—&ontractiofi
in complete dislocated quast métric §paces. An example has been derived in which we have
discussed different cases for F'—contractive mappings to show the variety of our theorem. An

application is derived on non linear Voltera type integral equations to find unique solutions.
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4.2 Fixed Point Results for a Pair of Multi Dominated Map-

pings on a Smallest Subset with Graph

Results given in this section can be seen in [48],

Let (E.d;) be a DQM, by € E and 5,7 : E — P(E) be the setvalued mabs on E.
Let b € Sbp be an element such that dg(by, Sbo) = dg{by,b1). Let by € Th; be such that
do(b1,Thy) = dg(by,by). Let by € Sby be such that dy(bs, Sba) = dg(bz,b3). Proceeding this
method, we gain a sequenée b, in E 50 as ban41 € Sboy and bayya € Thoyqy, wheren =10,1,2, ...
Also dy(ban, Sban) = dy(ban, bant1), dg(bant1, Thant1) = dg(b2n 41, bant2). We represent this type
of sequenée by {T8(b,)}.

Theorem 4.2.1 Let (E,d,) be a left (right) K-sequentially omplete DQAM $bace. Assume
a function o : E x E — [0,00) exists. Let, r > 0, by € m and 5,7 : £ — P(F)}
be a semi o,—dominated maps on W. Suppose that, for some t € ¥ and Dy(b,g) =
max{dy(b, g}, d, (b, Sb),d,(g,Tg)}, the following hold:

max{a.(b, 5b)Hyy(Sb, T'g), ax(g, T9)Huq(Tg, Sb)} < min{v(Dq(b, 9)),¥(Dq(g,6))}  (4.1)

for all b,g € By, (bo,r) N {T'S(bn)} with either a(b,g) > 1 or a{g,b) > 1 whenever b € Sg. Also

> " max{wi(dq(by, bo), v (dqg(bo, b1))} < r for éach n belongs to NU {0}. (4.2)
i=0

Then {TS(bs)} is the sequence in By, (bo,r) and {TS(b)} — b* € By, (bo, 7). Also, if the
inequality (4.1) holds for " and either a(b,,b*) > 1 or a(b*,b,) > 1 for éach n belongs to
NU {0}. Then 6* is the C.F.P of both § and T in By, (bo, 7) and dg(b*,4*) = 0.

Proof. Consider a sequenée {T'S(b,)} generated by by. Then, we have bo,1 € Sba, and
ban+a € Thant1, Where n = 0,1,2, ... Also dg(byn, Sban) = dg(bon, bans1)s dg(bonss, Thons1) =

dy(b2n41, bans2). By Lemma 1.3.8, we have

dg(b2n, bans1) < Hy (Than_1, Sba,) (4.3)

dg(b2ni1,bonsa) < Hg (Sban, Thony1) (4.4)

A
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for éach n = 1,2, .... From {4.2), we have

max{d, (b1, bo), dg(bo, b1)} < > max{y(dg(b1, bo), ¥(dy{bo, 1))} < 7.
i=0

It follows that, dg(by, by} < r and dg(bg, b1) < r. Hence, we have
b € qu(bg, 1").

Let by, -+ ,b; € By, (bo,r) for &very j belongs to N. If j = 2{ + 1, where i = 1,2,...,%.
Since 8.7 : E — P(FE) be a semi a,dominated maps on By, (b, 7}, s0 au(ba. Sha) > 1 and
a*(b2i+1,Tbgi+1) > L As O!*(bgi,Sbgi) > 1, this implies il'lf{(l‘(b%,b) 1 b€ Sbgi} > 1. Also

bairt € Sbay, so a(by, by4q) 2 1. Now by using (4.3), we obtain

dglbairy basva) < Hg (Sbas, Thogy1) < max{a, by, Sbos) Hy, (Sbas, Thosya )},
@ (241, Thoiy 1) Ha, (Thasy1, Sbos) }
min{¥(Dg(bas, baiy1)), Y(Dg(baisr, bai))} < w(Dyg(bos, birr))
Y{max{dg{bai, basy1), dg(bas, Sbog), dg(bary1, Thair1)})
Y(max{dy(ba, bary1), dg(boi, b2 1), dg(basya, barya) })
(

w(max{dy(bai, bary1), dy(boiy1, b2is2)})

AN VAN AN

1A

If max{d,{ba;, baiy1), dg (b1, baig2) } = de(b2i1, baiye), then dg(basy1, bairo) < W(dg(baiy1, baiva)).
Which contradicts the reality ¥(t) < ¢ for éach ¢ > 0. So max{d,(by;. boi+1), dg(baig1. baiya)} =
dg(bai, b2s+1). Hence,

dg(baiv1, baiya) < W(dg(ba, boi1)) (4.5)

As a*(bgi_l, Tbgikl) = 1 and bgi S Tbgi_l, 50 a(bQ;_l, bgf) > 1. NOW, by using (4.4), we have

dg(bos, bosyr) < Hg (Tbyi_y, Sbag)

1A

max{a.(ba, Sba) Ha, (Sbos, Thyi 1),

otx (b2—1, Thoi1) Hay (Thos 1, Sb2e) }

93



IA

min{y(Dg(bzi, bai-1)), W(Dq(b2i—1,b2:))} < ¥(Dg(bar, b2i-1))
Y(max{dy(bai, bai—1), dg(bas, Sba;), dg(bai—1, Thoi—1)})
),
). d

A

[FaN

w(max{dy(boi, bai_1), d. a(b2i, b2i11), dg(bas_y, bos) })
(b21:b21+1) d (b21 1)521)})

A

z,f‘)(max{ dq (bg,’, bg;_

If max{dg(bas, bar 1), dg(bas, barr1), do(baim1, bas)}

= dg{bai, bary1), then dy(bas, bary1) < (dg(bas, boiv1)).
This is contradicts to the reality {t) < t for ea¢h ¢ > 0. Hence, we have
dy{b2s, baiy1) < w(max{d, (b, bai_1},dg(boi—1,b2:) }).
If max{dy(bay, bai_1). dy(boi—1, b2i) } = dg(b2s—1, bas), then
dg(bai. b2i1)) € v(dg(bai-1, b2s)).
As ¥ is nondecreasing function, so
V(dg(bas, bair1)) < VH(dy(bos—1. bas)).
By using the above inequality in (4.5), we obtain
dg(baiy 1, b2is2) < Y2 (dy(boioy, bas)). (4.6)
If max{d,(by, bas_1}, dg(bai—1, bas)} = dg(bas, by 1), then
dalbais1s baiva) < w2 (dg(bas, byi_1)) (4.7)
Now, by combining (4.6) and (4.7), we obtain

dq(bair1, barra) < max{w?(dqg(bas, bai—1)), w3 (dg(bai_1, bas))}
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Proceeding this way, we get
dq(baiy1, baiva) < max{p? ' (dy(by, by)), w¥+ (dq(bo, b1))}
Now, if § = 2{, where i = 1,2, ... % Then, similarly, we have
dg(b2i, bair1) < max{y® (dg(b1, bo)), ¥ (dg(bo, b1))}
Now, by combining (4.8) and (4.9}, we obtain
da(b;. b;41) < max{y (dy (b1, bo)), ¥ (dy(bg, b1))} for some j € N.

Now, by Lemma 1.3.8 and inequality (4.1), we have

FAN

dy(boira, b2iy1) Hq (Thaiy1, Sba)

1A

max{a, (be;, Sba;) Ha, (Sbai, Thai 1),
aa(boiv1, Thosy1) Ha (Thaiy1, Sbas)}

min{y(Dy(bas, bazr1}), ¥ (Dglboiin, bai))}

A

In similar way, we used to solve inequality (4.10), we get

dg(bj41, ;) < max{w” (dg(b1, bo)), ¥ (dy(bo, by))} for Every j belongs to N.

Now,

do(bo, b1} < dylby,b1) + ... + dg(bj, b41)
< dylbo, by) + ... + max{y? (dg (b1, bo)), ¥ (dy(bo, b1))}}
J
< > max{wi(dg(by, bo), v (dy(bo, br))} < 7.

i=0
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Also,

dq(bj+1,b0) < dq(bj+ls bJ) + ...+ dq(bl,bg)
< max{y? (dy{b1, bo)), ¥ (dg(bo, b1))} + ... + dglby, bo)
J
< 57 max{y(dy (b1, bo), ¥ (dy (b0, b1))} < 7 (4.13)
i=0

By (4.12) and (4.13), we have b;;; € Byy(bp, 7). Hence by mathematical induction b, €
Byy(by, ) for &very n belongs to N. Therefore, {T'S{bn)} be the sequenée in By (bo, 7). As
S, T : E — P{FE) be a semi a,—dominated maps on Bg, (b, 7), so 0 (b, Sby) > 1 and

Qu{br, Th,) > 1, for éach n € N. Now we can write (4.8) and (4.9) in result as
dg(bry bny1) < max{y"™(dy(b1, bo)), ¥" (dg(bo, b1))}, for éach n belongs to N. (4.14)

dg(bnt1,bn) < max{y"(d, (b1, b)), ¥"(dg(bo, b1))}, for éach n belongs to N. (4.15)

Fix £ > 0 and let k1(e) belongs to Nso as 3 max{¢*(dy(b1, b)), ¥*(dg(bo,b1))} < e. Let
EZk1(e)
n, m belongs to N with m > n > k1(g), then, we obtain,

m—1
dq(bﬂvbm) S Z dq{bklbk-l-l)
k=n

IA

m—1
> max{y¥(dy (b1, bo)), ¥¥(dg(bo, b))}, by (4.14)
k=n

do(bn,bm) < % max{y"(dg(b1, b)), ¥ (dg(bo, 1))} < e

k2ky (€]

Thus we have showed that {T'S(b,}} be a left K-Cauchy in (Bg,(bo, ), dy). Similarly, by using
(4.15) we have

m—1

dq(bm, bn) < Z dq(bk+lsbk) <e
k=mn

Hence, {T'S(b,)} is a right K-Cauchy in (By,(by,7),d;). As éach Elosed ball in left(right) K-
sequentially Complete DQM is left(right) K-sequentially éomplete, so there must be a b* €
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By (bo, ) s0 as {T'S(bs)} — b*, that is

lim dg(bn,b*) = lim dg(b*,by) =0 (4.16)

n—0g n—Co

Now,

dq(b*7 Tb*) S dq(b*s b2n+l) + dq(b2ﬂ+1l Tb*)

(AN

dg(b”, bony1) + Hg,(Sbo,, TH"), by Lemma 1.3.8 (4.17)

Since o, (b*.Th*) > 1, c.(ban, Sben) > 1 and a(be,, b*) > 1, we obtain

[FAN

Hy, (Sbon, TH) < max{(ban, Sban) Ha, (Sban, T"), a (6", TH) Hag(TH", Sban)}
min{¢{Dy{ban, b*)), ¥(Dg(b7, b2n )} }
¢(max{dq(b2m b*)‘) dq(b2n1 b2n+1)1 dq(b*r Tb*)})

p(max{d,(bzn, b*), dg(ban, b*) + do (b, bans1), dy(b*, TH)}).  (4.18)

IAIA

[

By using inequality (4.18) in inequality (4.17), we have

dg(b%, Tb*) < dg(b*, bops1) + v{max{dy(ban, b), dg(ban, b*) + dg(b", bans1), dg(b*, TH)}).

Letting n — oo, and by using the inequality (4.16}, we obtain dg(b*, T6*) < ¥(d,(b*, TH*)) and
hence dg{b*,Th*) = 0. Now,

dy(T6°,b%)

IA

do(T", bans1) + dg(bant1,b")

N

qu(Tb*. Sbgn) -+ dq(62n+1, b*}, by Lemma 1.3.8

By using similar arguments, we obtain d (Tb*,b*) = 0 or b* € Tb*. Similarly, by using Lemma

1.3.8 inequality (4.16) and the inequality
dg(b*, 58%) < dg(b*, bany2) + dg(banya, SH°),

we can show that d (b, Sb*) = 0. b* € Sb*. Similarly, dy(Sb*,b™) = 0. Hence b* is the C.F.P of
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both the mabs S and 7' in By, (by, 7). Now,
dg (b, b7 ) < do(b°,Th") + dg(TH*,06*) <0

This means that, do(6%,6*) =0. =

Corollary 4.2.2 Let (E,d,;) is a left (right) K-Sequentially ¢omplete DQM. Suppose a
function a : E x E — [0,00) exists. Let, r > 0, by € m and S : E — P(E) are
two semi a,—dominated mabs on W. Assume that, for some ¢ € ¥ and Dy(b,g) =

max{dg(b, g),d,(b, Sb),dy{g, Sg}}, the following hold:
max{a*(b, Sb)qu(Sb! Sg)s O:,(g, Sg)qu(ng Sb)} S mlﬂ{'l,f)(Dq(b. g))) w(Dq(g» b))} (419)

for all b, g € By, (bo,7) N {S(bs)}, with either a(b, g) > 1 or afg,b) > 1. Also

>~ max{y¥(dg (b1, bo}, ¥¥(dy(bo, b1})} < r for éach n belongs to NU {0}.
i=0

Then {S(b.)} be the sequente in By, (bo,r) and {S(b.)} — b* € Bq,(bo, 7). Also, if the inequal-
ity {4.19) holds for b* and either a(b,,b*) > 1 or a(b*,b,) > 1 for every n belongs to N U {0}.
Then " is the fixed point of § in By, (bo.r) and dg(b*,b*) = 0.

Corollary 4.2.3 Let (F,d;) is a comblete DQM. Suppose a function a: E x £ — [0, c)

exists. Let, r > 0, by € Bg/{by,r) and 5,7 : E — P(E) are semi a,—dominated maps on

By, (bo, ). Assume that, for some ¢ € ¥ and Dy(b, g) = max{d;(b,g), d:(b, Sb),di(g, Tg)}, the

following hold:
max{a*(b, Sb)Hdr(Sb?Tg)! ai(ga Tg)Hdl(Sb:Tg)} < W(Dt(bs g)) (420)

for all b,g € By, (bo,r) N {T'S(b,)} with either a(b,g) > 1 or a(g, b) > 1. Also

Z’lf)i(dl(bﬂs b1}) < r for éach n belongs to NU {0}.
i=0
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Then {T'S(b,)} is a sequence in By, (by, ) and {T'S(b,)} — b* € By, (by, 7). Also, if the inequal-
ity (4.20) holds for " and either a(by.b*) > 1 or a(b*,b,} > 1 for éach n belongs to N U {0}.

Then, b* is the C.F.P of both the maps S and 7" in By, (by, ) and d {b%,4") = 0.

Corollary 4.2.4 Let (E,d;)} is a ¢omplete DQM. Suppose a function a: E x E — [0, o)
exists. Let, r > 0, by € W and §: E — P(F) is semi a,—dominated map on W.
Suppose that, for some ¥ € ¥ and D;(b, g) = max{dy(b, g}, d;(b, Sb),di(g, Sg)}, the following
hold:

max{a.(b, Sb)H,, (Sb, Sg), a.(g,Sg)Hy (S, Sg)} < w(Di(b,g)) (4.21)

for all b,g € By,(bo, 7) N {S(bn}} with either a(b, ¢) > 1 or a(g,#) > 1. Also

Zu'i(dt(bg,bl)) < r for éach n belongs to N U {0}.
i=0

Then {S(b,)} is the sequente in By (by, v} and {S(b,)} -+ b* € By, (bo,r). Also, if the inequality
{4.21) holds for 6™ and either a{b,.b*) > 1 or a(b*, b,) > 1 for &very n belongs to NU{0}. Then

S has a fixed boint b* in By (bg,r) and dg(b*, %) = 0.

Corollary 4.2.5 Let (F, X,d,} is a left (right) K-sequentially ordered ¢omplete DQM. Let,
T >0, by € By, (bo,7) and 8, T : E — P(E) are semi dominated mabs on By, (b, ). Suppose
that. for some w € ¥ and Dy(b, g) = max{dy(b, g), dy(b, Sb),de(g,Tg)}, the following hold:

max{ Hay(Sb.Tg), Hay(Tg, Sb)} < min{w(Dq(b,9)). v(Dy(g, b))}, (4.22)
for all b.g € By, (b, ) N {TS(b,)} with either b < g or g < b. Also

Z max {4 {dy(b1. bo), ¥ (dg(bo, b1))} < r for éach n belongs to N U {0}. (4.23)
i=0

Then {T'S(bn)} be the sequente in By, (bo,7) and {T'S(b;)} — b6 € By, (b, 7). Also if the
inequality (4.22) holds for b” and either b, < b* or b* < b, for éach n belongs to N {0}. Then
b* is the C.F.P of both the maps 5 and T in By, (bo,7) and dg(b".5*) = 0.
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Proof. Let a: ExE — [0, +co) be a mabbing defined by a(b, g) = 1 for &very b € B_dq(bo—.r)
with either b < g or g < b, and a(b,g) = 0 for all other elements b, g € E. Given S and T be
the semi dominated maps on W sob < Sband b <TbVbe B_d:m. This means
that b < b for &very b € Sb and b < ¢ for éath ¢ € Tb. So, a{b,b) = 1 for all b € 5b and
a{b,¢) = 1V ¢ € Tb. This implies inf{a(b,g) : g € 5b} = 1 and inf{a(b,g) : ¢ € Th} =
Hence a,(b,Sb) = 1, a.(b,Tb) = 1 for all b € By (by,7). So, S,T : E — P(E) are the semi

a.—dominated map on By, {by,r). Moreover, inequality (4.22) can be written as
max{a.(b, Sb)Hyy(Sb. Tg), a.(g.Tg}Hue(Tg, Sb)} < min{u:(Dy(b, g}}, v(Dylg. b))},

for all elements b. g in WH{TS(EJH}} with either a(b, g} > 1 or a{g,b) > 1. Also, inequality
(4.23) holds. Then, by Theorem 4.2.1, we have {TS{b,)} be the sequente in W and
{TS(ba)} — b* € By, (bo. 7). Now, by, b* € By, (bo, 7) and either b, < b* or b* < b, implies that
either a(b,,b*) > 1 or a{b*,b,) > 1. So, all hypothesis of Theorem 4.2.1 are proved. Hence, by
Theorem 4.2.1, b* is C.F.P of both S and T in By, (b, v} and d,(b*,6") = 0. m

Example 4.2.6 et £ =QTU{0}and d,: Ex E — Eis a DQM on E clafried by

de(w,e) =w+eVweeck.

Define, S, T: E x E — P(E) by,

Su - [3 Sw]ifwe[OI]ﬂE
w,aw+1ljifwe (l,eo)NE

and,
w 3 .
T — [Z’Zw] ifwel01NE
lw+ 1w+ 3| ifwe(l,c) E.
Considering, by = = 8, then By, Bg_(bg,7) = = [0,7] N E. Now dy(by, Sbp) = d{1.51) =

dq(l,% = %. So we obtain a gequenée {TS(b,)} = {l, %,r‘h,ﬁ,m.} in E generated by
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by. Also, B, (bo, ™) O {T'S(bn)} = {1, 1—12, “1"}42’} Let ¥(t) = % and

a(b,g):{ 1if b,g € 10,1]

% otherwise.

Now, if b,g ¢ By, (bo, 7} 0 {T'5(bs)}, then the availabe cases are given.
Case 1. If max{a.(b, Sb)H, (Sb,Tg). o (9, Tg)Ha,(Tg, Sb)} = a.(b, Sb)Hq, (S, Tg) then

for b= 2,and g = 3, we have

a.(2,82)Hd, (52, T3) = g(s) > P(Dy(b, g)} = 5

Case 2. If max{a.(b, Sb)Hy (Sb,Tg), au{g,T9)Hae(Tg, 58)} = (9, Tg)Hay(Tg, Sb) then for

b= 2,and g = 3. we have

(3, T3)Hd,(T3,52) = 5(8) > W(Dylg, D) = =

So, the inequality (4.1) is not true for the whole $hace F.
Now, for all b,g € By, (by, 7} N {T'S{bs)}, we have
Case 3. If max{a.{b, Sb)qu(Sb, Tg), a.(g,Tg)Ha (Tg,Sb)} = a.(b, Sb)H,y (5b,Tg), then,

we have

o, {b,5b)H4,(5b.Tg) = 1[max{sup d,{a,Ty), sup d,{Sb,g)}]
acSh geTg

b Qb}

= max{sup dy(a, [ ]) supd [ 9)}
aeSh

be 3g

= max{d, (3,17, 391)01([3 =
Qb g b 3g
220,

_ » 29. 3
= max{ -i-4 3+ 1

4b 5
Y(maxib +g, %5 2}) = p(Dy(b, ).

-
1) (3

= max{dq(

FaN

Case 4. If max{a.(b, Sb)Hqa,(Sb,Tg), a.(9, Tg}Ha,(Tg,Sb)} = (g, Tg)Hy,(Tyg, Sb) then, we
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have
a.(g, Tg)Hq,(Tg,Sb) = lmax{ sup dg d(Sb, b}, sup de(a,Tg)}|
beTyg
g 3y
= max{ sup dq([—, —], b), sup dy(a, [—, =N}
bel aESt 4" 4

b % 39. 26 g 3g
= max{dy([z, 3] 7 hde( 5015 7
b 3 26 g
= max{dy(3, 5 de( 37}
b b
= max{- +34g% 2}

24 ‘;"}) 9(Dy(9,5)

1}

< (max{g +¥b,

So, the inequality (4.1) holds on By, (bg,) N {T'S(b,)}. Also,

3 max{u(dy b1, o), dy(bo, b))} = 5 () <8 =
i=0 =0

Hence, all the hypothesis of Theoorem 4.2.1 are proved. Now, we have {TS(b,}} be the sequenée
in By (bo, ) and {TS(b,)} — 0 € By, (bo,r). Also, a{b,,0) > 1 or a(0,b,) > 1 for éach n
belongs to N U {0}.

Definition 4.2.7 Let £ # ® and G = (V(G), W(G)) is a graph so as V(G) = E, and
S+ E — CB{(E) is called to be semi graph dominated on 4 C E, if for éa¢h b € A, then
(b,g) € W(G), for all g € Sb. If A= E, then we say that S is graph dominated on E.

Theorem 4.2.8 Let (E,d,) is a ¢omplete DQM endowed with graph G. Let, 7 > 0,
by € By, (bo.7) . S, T : E — P(E) and {TS5(b,)} be the sequence in E generated by by. Suppose
that (i), (i) and (iii) hold:

(i) S and T are semi graph dominated on W;

(ii) there exists ¥ € ¥ and Dy{b, g) = max{d,(b, g), dg(b, Sb),dg{9,T'g)}, such that
max { Hy,(Sb,Tg), Hq,(Tg, Sb)} < min{t:(Dq(b, 9)), v(Dy(g, b))} (4.24)

for all b,g € By, (bo, 7} N {TS(bs)} with (bg) € W(G) or (g,b) € W(G);
(iii) 3°F o max{¢*(dg (b1, bo), ¥ (d,{bo,b1))} < r for éach n belongs to NU {0}.
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Then, {T'S(b)} is the sequente in By, (bo,7) and {T'S(b,)} — b*. Also, if (bn,0%) € W(G)
or (b*, b,) € W(G) for éaéh n belongs to NU {0} and the inequality (4.24) holds for b*. Then b*
is the C.F.P of both § and T in By, (bo, 7).

Proof. Define, a : E x E — {0, )} by

otherwise.

b { 1, ifbe Ba(bor) (bg) € W(G)or (g.b) € W(G)
aln, g) =
g,

CGiven S and T are semi graph dominated on W, then for b € W, {b,g) € W(G) for
gvery g € Sbh and (b, g) € W(G) for every g € Th. So, a(b,g) =1 for all g € Sb and a(b, g) =1
for all g € Tb. This implies that inf{a(b,g) : ¢ € Sb} = 1 and inf{a(b,g) : g € Th} = 1.
Hence a,(b. Sb) = 1, a,(b,Th) = 1 for all b € By (bo,7). So, S,T : E — P(E) are the semi

o, —dominated mabbing on By, (by, r). Moreover, inequality (4.24) can be written as
max{a, (b, Sb)Hyo(5b,Tq), g, Tg)Hag(Tyg, Sb)} < min{yy(Dg(b, g)), ¥(Dq(g,0))},

for all elements b, g in mﬂ {T'S(b,}} with either a{b,g) > 1 or afg,b} > 1. Also, {iii)
holds. Then, by Theorem 4.2.1, we have {T'5(b,)} be the sequence in W and {TS(b,)} —
b* € By, (bo, 7). Now, by, b* € By, (bo,r) and either (by, b*) € W(G) or (b%,b,) € W(G) implies
that either a(b,, b*) > 1 or a(b*,b,) > 1. So, all hypothesis of Theorem 4.2.1 are proved. Hence,
by Theorem 4.2.1, u is the C.F.P of § and T in By (bo, ) and dg(b*,5") = 0. m

4.3 D@ F-contraction and Related Fixed Point Results in DQAM

Spaces with Application

Results given in this section can be seen in {48].

Let (Y.d,) be a DQM Sbace, o € ¥ and S,T : ¥ — P(Y) be setvalued maps on Y.
Let y1 € Syo be an element such that dg{yo, Syo) = dg(vo,¥1), let y2 € Ty, be such that
dg(v1. Ty1) = do(y1,¥2), let y3 € Sya be such that dy(y2, Syo) = dg(y2,y3) and so on. Then,
we get sequenée y, in Y so as yony1 € Syon and yopi2 € Tyonyl, where n = (0,1,2, ... Also

de(yan, Sy2n) = dolwan.van+1), dy(¥on+1, T¥2n+1) = dq(¥2n+1, Y2n+2). We denote this type of
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iterative sequenée by {TS(y.)}. We say that {T'S(y,)} is a sequente in Y generated by yo. If
T = S, then we say that {S{y,)} is a sequente in Y generated by yo.

Definition 4.3.1 Let (Y,d,) be a éomplete DQM $pace and ST : Y — P(Y) be two
setvalued maps. The pair (S, T) is called DQF—¢ontraction, if there must be a I € F and
7,a > 0 such that for @very two consecutive points {,w belonging to the range of an iterative

sequente {TS(y,)} with max{D4(l,w), D{w,)} > 0, we have
7 + max{ F(Hy, (5!, Tw)), F(Hy,(Tw, S1))} < min{F(De(l, w}), F(Dg(w, Nk (4.25)

where,

dg (1, S1) .dg (0, Tw)
a +max{dg (L, w),dg (w,0)}’

Dy(l,w)) = max {dq(l,w), dy(l, 81, dy(w, Tw)} , (4.26)

Theorem 4.3.2 Let (Y, d,)} be a ¢omblete DQM $bace and (S, T) be a DQF —Contraction.
Then {TS{y,)} — u € Y. Also, if u satisfies (4.25), then u is the C.F.P of § and T in ¥ and
dy(u,u) = 0.

Proof. Let {T'S(y.)} be the iterative sequente in Y generated by a point yo € Y. Let
Yon, Y2n+1 be clements of this sequente. Clearly, if max{Dy(¥2n, Y2n+1), Dg(¥2n1,¥2n)} = 0,

then Dy(yon, ¥2nt1)} = 0 and Dy(yan+1,¥2n) = 0. If Dy(yon, v2ns1) = 0, then

dgl{yzn.¥2n+1}-de(Tyon+1,W2042)
d‘? (y2” ’ y2“+1)’ a+max{dg(¥2n,v2n+1).dg(¥an+1,v20) =0
3

dq(Von, Yan+1) do(¥2n+1, Yon+2)

max

So dg(yan: ¥2n41) = dg(¥an+1,¥2r+2) = 0. Also Dy(yani1,¥2:) = 0 implies dg(32n41,920) =
dy(Y2n+2, Yons1) = 0. Hence yo, = yons1 = Yons2 is a C.F.P of (5,T) the argument is satisfied.
In order to find C.F.P of both S and T, when min{(Dg(e, ¢)},(Dy(c,e))} > 0 for dvery e,c € ¥

with e # ¢, we make a sequenée {T'S(y.)} generated by yo. Then, we have yo,.1 € Syz, and

Yony2 = Ty2n+1: where n = 0: 11 21 AISO dq(y2ns S?JZn) = dq(ﬂ?m y2n+1)y dq(y2n+laTy2n+l) =

de{¥Y2n+1, ¥2nt2). By Lemma 1.3.8 we gain

dq(y‘Zm Yan+1) < qu(Ty2n--1a Syan), dq(y2n+1; y2n) < qu (Sy2n:Ty2n71)1 (4.27)
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and
dg(y2nt1: Yan+2) < Ha, (Syzn, Thans1), dg(Yon+2, Yans1) < Ha, (Ty2n+1, Syan)- (4.28)
Then from (4.28), we get

F(dg(yap+1,y2p+2)) € F(qu(8y2paTy2p+1))

< max{F(Huy,(Sysp, Tyaps1)), F(Ha,(Ty2p, Syzp+1)}}
< min{ F{Dy(yap, vap+1))s F(Dglyops1, vop))t — 7
S F(Dq(yQP) y2p+1) -7,

for éach p € N {0}, where

dq(yzp vSQZP)-dq(y2p+1 LY2p+ 1)
dg (yZP’ y2p+1)’ e+max{dq{yap,vapr1),dq(yzpr 1,420} ?
dq (y2pa Sy2p) y dq (y2p+1 y TyQ_rHH )
do(y2p y2p+1}-dg{y2p+1,¥2p+2)
dq(Y2p, Y2p+1)s EB—ISZL—XTCEI] {(v2p v2p+1)dg (yapt+ 1,420} )
dq (y2p: Y2pt1 ) ) dq(y2p+1 3 y2p+2)

< max{dg(yzp, y2p+1): dg(¥2p11. Y2p12) }.

Dy(yap Yops1) =

If, max{d,(yop, Yap+1), de(¥2p+1, Y2p+2)} = dg(Y2p+1, Y2p+2), then
F(do(y2p+1. ¥ap+2)) < Fldg(yap+1, Vop2)) — 7,
which is not true due to F. Therefore,
Fdo{y2p+1. y2p12)) < Fldg(y2p, Y2p 1)) — 7, (4.29)
and this implies

F(dy(yaps1: Y2ps2)) < max{F(dy{yap, y2p+1))s F(dg(vaps1,v2p))} — 7 (4.30)
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Again using (4.27), we have

IA

F(qu (Ty2p—11 S'y?p))

max{F(Hq, (Syap-1. Ty2p)), F(Ha,(Ty2p-1, Sy2p))}

F{dy(y2p, yﬁpﬂ))

A

I/

min{F(Dq(y2p—1, ¥2p)), F(Dy(¥2p, y2p—1))} = 7

F(Doly2p, y2p-1)) — T

1A

Now,

dg(v2p,Sy2p)-delyap—1.Ty2p-1)
d (y2-'” Y2p1 ) a+max{dg{yep,vap1).dg(yap—1.y2p)}’

de(y2p, Syap), dg(yop—1, Ty2p-1)

Dq(:Upr y2p71) = max
dg(yap.y2p+1}-dg(y2p—1,¥2p)
dq(y2p, Y2p-1); a+ma§{dqp(yz§ Y2p-1 ),dqp (wap-1.92p)}’
dq(y2p: Y2p+1 ) » dq(?}?p—l ’ 'y?p)
< ma.x{dq(ygp, y2p—1)1 dq(yZP—ls y2p)v dq(yst y2p+1)}-

If max{dy(yop, Y2p—1)s dg(¥2p—1, ¥2p)s 44 (Y2p, Y2p+1)} = dq{y2p, Y2p+1), then we obtain

F(dq(?ﬁp’y?pﬂ)) < F(dq(yzp,y2p+1)) — T,

which is not true due to Fy. Therefore,

F(dg(y2p, y2p+1)) < F{max(dg(y2p—1.y2p), dg(y2p, y2p-1))} — 7. (4.31)

By using (4.31) in (4.29), we get

Fdq(yap+1,v2p+2)) < max{F(dg(yap1,¥2p)), F(dg(¥2p. y2p1)) } — 27 (4.32)
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Now, from {4.28) and (F1), we have

< max{F(dg(y2p—1,Y2p) Fdg(y2p, y2p-1)}

< max{F(Hy,{Sy2p-2, Tyop-1)), F(Ha,(Tyzp-1, Sy2p-2})}
< min{ F(Dy(yap—2, ¥2p-1)), F{Dg(y2p-1,¥2p-2))} — 7
< F(Dylyap—2,Y2p-1)) — 7

Now,

do{y2p-2,5vap—2)-4g(y2p—1,T¥2p-1)
dq(yQP_g’ y2p_1), atmax{dq{yzs—2.¥2p -1} dq(v2p—1,42p-2)}"

Dq (y2pﬁ2: y2p~1) = 1max \
dq (y2p—2’ Sy?P—Qh dq (y2p—1 v Tyap—1}
dg(yap—2,42p—1)-dg(y2p—1.32p)
= ma dg{yzp-2:Y2p-1); etmax{dy{yzn—2.y2p—1).de(v2p-1.42p-2}}"

do{y2p—2, Y2p—1)» dg(y2p—1, y2p)
max{dg(yop—2, y2p—1)s dg(¥2p—1, ¥2p) }.

[A

Now, max{d,(y2p—2, ¥23p—1), dg(¥2p-1, ¥2p) } = dg(¥2p—1,Y2p) gives a contradiction. So, we have
max{ F{d¢(yap-1.¥2p), Fdg{v2p, y2p—1))} < Fldg(yop—2.y2p—1)) — 7-
Using the above inequality in (4.32}, we get
F(dg(vap+1, Y2p+2)) < max{F(dg(vap—2,¥2p-1)), F(dg(y2p—1,y2p-2))} — 37
Observing (4.30), (4.32), the above inequality and proceeding in this way, we have
F(dg(y2p+1, Yops2)) < max{F(dy{yo,11)), Fdg(v1,%0))} — (2p + 1)7, (4.33)
for éach p € N {0}. Similarly, we have

F(dy(yap, y2p+1)) < max{F(dg(yo, 1)), F(dg(¥1,%0))} — (2p)7 (4.34)
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Combining {4.33) and (4.34), we get
F(dg (Y yn+1)) < max{F{dg(yo. 1)), F(dg(1,30))} — 1. (4.35)

Similarly, we get

F(dy(yn+1, ¥n)) < max{F(dg(yo,y1)), F(dg(v1, %))} - n7. (4.36)

On taking limit n — oc, both sides of (4.35) and (4.36} , we have

n.ll'ngc F(dq(yn: yn+])) = nli_I’lgoF(dq(yn+layn)) = -, (437)
Since F € F,
Hm d(yn, yni1) = lim do(yni1,¥a) = 0. {4.38)

By (4.35), for éach n € N, we obtain

0 < (dg(¥ns ¥n 1)) ((F(dg(¥n, Ynt1)) — max{ F(dg(yo. y1)}, Fdg(y1.v0))}.

which implies,

0< w(dq(yn: yn+1))knT <0. (4.39)

By using (4.37), (4.38) and taking limit n — oo in inequality (4.39), we get
Jim (n(dg (g vs 1)) = 0. (4.40)

Same result can be obtain by using (4.36),

(=
IA

(dg(¥n+1,¥n)) ((F (do(yns1,¥n)) — max{F(dg(yo, v1}), Fdg(y1,%0))}

—(dg(yn+1, yn))k‘m’ < 0.

1A
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By using (4.37), (4.38) and letting n — oo, we have
Tim (n(dg(yns1,9n))") = 0. (4.41)
As (4.40) satisfies, there is n; € N, and n(dq(yn,yn...l))k < 1, for éach n > n; or.

1 .
dg(Yn, Yns1) < —, for éach n > ny. (4.42)
nk

Stmilarly, by using {4.41), there exists ng € N, so as n(dq(yn+1,yn))k < 1, for éach n > ng, we
have

dg(Yni1,yn) € —, for éach n > ny. (4.43)

=3
a|

Using {4.42), we get form m > n > ny,

(FAN

do(Yn, Ynt1) + dq(Uni1, Uns2) + - + dg(Ym—1,Ym)

m—1 o0 <] 1
= Z dq(yp7 'yp-H) < qu(ypyyp+l) < Z I
p=n p=n

p=nP*

dq(yna ym)

The convergence of this series Z;"Zn —11— demands limn m—.co @g(¥n, Um) = 0. Now, by treating
pk
the inequality (4.43) we get, imm n-oo (Y, ¥n) = 0. Hence, {T'S(yn)} is a Cauchy in (Y, d,).

Since (Y, d,) is a ¢omblete DQM $bace, so there must be a u € y so as {T'S(y,)} — u that is
lim dg(yn,u) = lim dg(u,yn) =0. {4.44)
n—0o0 n—oo

Now, by Lemma 1.3.8 we have

IA

7+ F(dq(y2n+1, Tu) T+ F(qu(Sygn, Tu)

ral

< 7+ max{F(Hg, (Syom, Tu), F(Hg,(Tyan, Su)}-

Using inequality (4.25),

T + F(dg(yan+1, Tu) < min{ F'(Dq(yan, u), F(Dg(u, yon)}
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T + F(dy(y2n11, Tu) < F(Dg(yzn, u)), (4.45)

where,

dy(yan,Syan) . del{u,Tu)
dq(Y2ns U)s ama(ds (van ) Baligon]}

dq(lf?na San)a dq(u, Tu)

Dq(?ﬂm“) =

dq(y2my2n+1 }-dq(“vT“)
dq (an’ ’U,).‘ ﬂ+max{dq{y2nxu):dq (u,yzn}} ’

dg(Y2ns Yan+1), dg(u, Tu)

= max

Applying limit n — oo, on inequality (4.44), we get
Dy(yon, u) = dg(u, Tu). (4.46)
Using (4.46) in (4.45), we get
T + F(dg{yans1, Tu) < F(dg{u, Tu)).
Since F| is the continuous strictly increasing real function, we get
dg(yant1, Tu) < dolu, Tu).

Applying limit n — oc, we get
do(u, Tu) < dy(u, Tu).

It is not true , so dg(u, T'w) = 0. Now, by Lemma 1.3.8

T + dq(Tu! y2n+1)) S T F(qu(Tuv Sy2ﬂ)):

by using the similar reasons as above, we get do(Tu,u) = 0. Hence u € T'u. Similarly by using

(4.44), Lemma 1.3.8, and the inequality
T+ do(Su, Yons2) < 7+ F{Hg, (Su, Ty2n11))

we can show that dg(Su,u) = 0. Similarly, dg(u, Su) = 0. Hence, the pair (§,T) have a C.F.P
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u in (Y,d,). Now,
dy(u, u) < dy(u, Tu) + do(Tu, u) < 0.

This implies that dg{u,u) = 0. Hence the proof is éombleted. =
Example 4.3.3 Let Y = {0} UQ™" and dy(z,y) = = + 2y. Then (Y, d;) be a DQM Space.
Define §,T: Y — P(Y) by:

S(y) = [ly, 2] NQ*, forally € {0,7,2, Z, &, },
by +5nQ°, otherwise.

T(y) — [éy’ %y] OQ+! for allye {0$7)%! %: %v"'}r
{y + 25 v + 6] 0 Q+v otherwise.

Case 1: If,

T + max{F(Hg, (Se,Tc)), F(Hq,(Te, Sc))}
= 7+ F(Hy,(Se,Tc)) < min{F(Dyle,c)), F(Dqlc,e))}

holds. Define F' : Rt — R real function by F(u) = In{u) for &ver§ u € R* and 7 > 0. As
z,y € Y, 7 =1In(1.2) and by taking yo = 7, we define the sequence {T5(y.)} = {T. L, &. &. -}

in ¥ generated by yy = 7. Now, if z,y € {T'S(y,)}, we have

Hy{(Sz,Ty) = max H sup dg(a, T'y), sup dq(Sz,b)}]

[z [2]) a5 21)
el (5 (3 2)
(roure)

3

il

2y
= max —=
5

111



Also

d (:z:,[z e )'iq(y[ ] )
I,y : 1+max{d (z,y), dq(y 1‘)}
d (I, I’Q_I]) d (y, [5) 5})

o
S
{

Dq(m,y) =

dy(z, %) dg(y, ¥ ) T g}
1+ max{dy(z, y). dg(y, x)} (2, 3)’ q(y’5)
bz T
= max ¢z + 2y, 1+zy+2y) 3,€y}ﬁr+2y.

Case (i). If max{%E + %‘I, 5+ 353} =5+ 553, and 7 = In(1.2), then we have
10z + 24y < 25z + 50y
6 x
2243y <
5 3 + ) < x4+
In{1.2) + In{ —) < In(zr+2y).

Which shows that,
T+ F(Hy, (ST, Ty) < F{Dy(2,y))-

Case (i1). Similarly, if max {2’: oz 4y} =2 4+ % and 7 = In(1.2), then we have

20 + 12y < 25z + 50y

6,2z 2y
< 2
5( 3 +—=} £ z+2y
2 2
In(1.2) + In (?‘T + —;’—’) < In(z + 2y).
Hence,
T+ F(Hg,(Sz, Ty) < F(Dy(z,u)).
Case 2: If

max{T + F(Hg, (Sz,Ty)), 7 + F(Hg, (Tz,Sy))}

= 7+ F(Ha(Tz,Sy)) < min{F(Dy(z,y)), F{D,(y, z))}
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holds.

Hy (Tz,Sy) = Hbsupd (Sy, b), seup dy{a, Tx)}
cTx aESy
2 2
- e flns (331 a6 )
beTx acSy
SIEHE ('” ’“)}
= max
_ EE _xE 2z
= max oyt T
where
zuhdq(y[ ]
Dy(y. 2 dy(y, 7). AT

dfe. 15, %) ol [, %))

{ d (y, d‘}(z|3)dq(y 15 )

4 1+max{d,;(r‘y EATEN
z, 3) d (ys 5)
y 5r Ty

=} =y + 2z,
31 +y+2z) 3° } btz

Case (i}. If, rnax{%H + 2?‘”, 24+ 4’“} =¥+ ?x and 7 = In{1.2), then we have

—_
o
e
+
%)
=
3]
A

25y + 50z

6 y
24+ <
5(3+ ) < y+2z

In(1.2) +ln(§ + 45—‘”)

1A

In(y + 2z),

F(Dqy(y, z)).

[Fal

so, 7+ F(Hg, (Tz, Sy)
Case (ii). Similarly, if max {%y + Z?I, £+ %‘"} = 333 + 25:‘3, and 7 = In(1.2), then we have

20y + 24x

§2y 2:1:)
53 5

2y 2z
In{1.2) + In{= + ~—
n{ )+n(3+5)

Hence, v + F(Hg (T'z, Sy)

IA

25z + 50y

IA

y+ 2z

A

In{y + 2z).

F(DQ(y: :E))

IA

113



Now, if 2, ¢ {T'S(y,)}, then the éontractiol does not hold. Hence all hypothesis of Theorem
4.3.2 are proved so § and T have a C.F.P.

If we take § = T in Theorem 4.3.2, then we are left with the theorem.

Theorem 4.3.4 Let (Y, d;) be a ¢omplete DQM Space and S : Y — P(Y) be the setvalued

map such that
7+ F(Hqy, (51, 5p)) < F(Dy(l,p)), (4.47)

for éach I, p € {S(yn)}, with Do{l,p) >0, Fe€ F, 7,2 > 0, and

(1, 81) dg (p, Sp)
a+dg ({,p)

Dy(l,p) = max {dq(z,p), % (1, S1), dylp, Sp)} |

Then {S{y.}} — u € ¥. Moreover, if (4.47) holds for , then § has a fixed point u in ¥ and
dy(u.u) = 0.
Definition 4.3.5 Let 5,7 : Y — Y be two maps and g € Y. Let 27 = Sz, 23 = 721,

23 = Sz2 and so on. Proceeding this method, we get the sequenée z, in X so as
Topy1 = Sw2p and Topio = Txopyy, (wherep=0,1,2,...).

We say that {T'S(z,)} be the sequence in Y generated by .
Definition 4.3.6 Let (Y.d,) be a DQM $bace and S,T : Y — Y be two mabs. The pair
(S,T) is said a FDQ—Eoniraction, if for all e,g € {TS(e,}}, we get

7+ max{ F{dg(Se, T'g)), F(dg(Te, S9))} < min{F(Dyle,0)), F(Dy(g€))}  (4.48)

where F € F and 7 > 0, and

dq (6, SC) -dq (g: Tg)
1+ max{d, (e,g),dq (g, )}

Dy{e, g)) = max {dq(e,g), ydq(e, Se). dy(g, Tg)} . (4.49)

Then we deduce the following main result.

Theorem 4.3.7 Let (Y, d,} be a tomplete DQM &pace and (5, T) be a FD(Q—¢contractior.
Then {TS(z,)} — v € X. Also, if u satisfies (4.48), then v is the CF.P of § and 7 in X and
dy(u.u) =0,

114



Now, we have shown an application, of Theorem 4.3.4 to find unique solution of systems of

non linear Volterra {ype integral inclusions. Let,

w(t) = /Ll(t, s,w(s))ds + f(t), {4.50)
0

c(t) = /Lg(t,s,c(s))ds + g{t) {4.51)
0

for all t € [0,1]. We find the solution of (4.50) and (4.51). Let £ = {f : f{ is continuous
function from [0, 1] to R, }, endowed with the ¢omplete DQM. For w € E, identify the norm
as: {[w|lr = sup {w(t)e "}, where 7 > 0 is taken arbitrary. Then define

te[0,1]

i) = sup {(w(t) + 20D} = o+ 2l

for all w,c € E, with these settings, (£, d,) becomes a DQM $hace.

Theorem 4.3.8 Assume (i), (ii) and (iii) are satisfied:
(i L1, Ly : [0,1] x [0,1] x Ry — Ry and f,¢:[0,1] — R, are real and continuous;
(ii) Define

t

Sw(t) = / La(t, s, w(s)ds + £(2),

0
¢

Tc(t) = /Lg(t,h,c(s))ds+g(t).
0

Suppose there exist 7 > 1, such that

max{Li(t,s,w) + 2La(t,s,¢), La(t, s, ¢} + 2Ly (¢, s,w)} < 7e " min{ P(w, ¢}, Plc,w)} (4.52)
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for éach ¢, s belong to [0,1] and w, ¢ belong to C{[0, 1}, R), where

at+max{w(t)+2c(t),clt)+2w(e)}’

w(t) + 2c(t), 25w (elt) +2Tel))
w(t) + 28w(t), c(t) + 2Te(t)

P(w, c) = max {

Then integral equations (4.50) and {4.51) has a solution.

Proof. By assumption {ii)

t
max{Sw + 2Ty, Tw + 25¢} = max{/(Kl{t, s,w) + 2Ko(t, s, ¢))ds,
0

/(Kz(t, s,c) + 2K (t, s,w))ds}
0

A

e~ " min{ M{w, ¢}, M{ec,w)}ds

7e " [min{P(w,e¢), P(c,w)}e” " le" ds

A

IA
S O, O

7e 7| min{ P(w,c}, Ple,w)}||,e™%ds

Te " || min{ P(w, ¢}, P(c,w)}|- / e"'ds
0

Te 77| min{ P(w, ¢}, P(e, w)}”Tleﬂ
T

IA

7N

I

e 7|l min{P(w, c), Plc,w)}-e™.
This implies
max{Sw + 2T¢, Tw + 2Sc}e™™ < &~ "|| min{ P(w, c), P(c, w)}|--

That is || max{Su + 2Tv,Tu + 2Sv}||. < ™ 7| min{P{w,c), P(c,w)}|,
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which further implies

7+ In || max{Sw + 2T¢, Tw + 2Sc}||> < In|| min{P{w, c), P(c,w)}{.

So, all hypothesis of Theorem 4.3.7 are proved. Hence, (4.50)and (4.51} have a common solution.
Remark 3.4.10 By setting different values of P(w,¢) in equation (4.52), we can obtain

different weak contractive inequalities and fesults as corollaries of Theorem 4.3.8. u
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