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ABSTRACT

The aim and intent of this dissertation titled “‘SPACES OF

CONTINUOUS FUNCTIONS WITH ANALYSIS
IN FIXED POINT THEORY”, embodies a brief account of

general function paces along with the investigation of some fixed point and
common fixed point results under the supervision of Professor and Dean of
sciences Dr. Muhammad Arshad Zia, International Islamic Umvers1ty
Islamabad.

The main aim of this work is to study, generalize, extend and obtain fixed
point theorems in the setting of complete, compact, pseudo-compact and b-
metric spaces.

The work presented in this thesis has been divided into five chapters.
Chapter first is introductory. In this chapter, we present basic definitions and
known results without proof. In chapters, 2, 3, 4 and 5, we présent
generalization of fixed point theorems proved by several authors in the
literature of fixed point theory. - :
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Chapter 1

Introduction

1.1 Historical Perspective

The purpose of the work presented in this thesis, includes a brief account of functional
analysis, function spaces and fixed point theory is necessary. In this section, a little bit
of the history of the above mentioned concepts 18 being presonted.

Functional analyvsis was born at the end of nineteenth and beginning of twentieth
century. The development of analysis, with its wide range of applications was one of the
major mathematical achicvements of the twentieth century. It is that branch of analysis
that link together and generalizes linear alsebra and topology. It is now a broad feld
encompassing all branches of modern mathematics. In fact, it would be difficult to give a
precise and concise definition of what it is today. The term "functional analysis" was for
the first time coined by J. Hadamard at the turn of nineteenth century, who is known to
have introduced the radius of couvergence of power series. At the beginning of twentieth
century the theory of this hranch of mathematies began to he developed among others
by V. Volterra, I Ivedtholm. Ascoli. C. Arzela, S. Pincherle, Hilbert, the Bourbaki group,
L AL Gelfand and other representatives of the French and Ttalian mathematical schools.
For a more extensive and penetratine details on the history and development of analysis

we refer to see [16]. It play an important role in mathematics and its applications in



various fields ranging from differential equations, nuerical analysis, fixed point theory
to biological, physical and social sciences.

The theory of function spaces has a long and rich historv of which we will present few
main results and definitions without proof. In analvsis we apply two standard methods
for investigating behaviors of various funetions namely classical and modern. In the
former we study individual functions for understanding their behavior in terms of graphs,
integrations or derivatives ete. In the later we consider sets or collections of functions
and regard each function as point in the set for investigating geometric and algebraic
properties of the set as a whole. A set X together with a particular norm that assigns
a nonnegative real number fjg  to every function in the collections of functions under
consideration is called a normed funetional space. In order to fully understand and study
functional space various abstract and svstematic techniques have heen developed as the
theory of functional analysis with a foeus on Banach spaces, Thus, the study of function
spaces has great importance in all branches of mathematical analysis. The development
of functional analysis and its applications in the last 20th century has made possible
the importance of rescarch in the theory ol functional space. The abstract topological,
geonetric, order structure and the interpolation of operators arc properties that are still
i demand of deeper and extensive research activities. Function spaces play a vital role
i all branches of both pure and applied mathematics. operator theory, ordinary and
partial differential equations. physics, engineering. It has in fact, important applications
i almost every area of mathematics. Function spaces confinues to be a very fruitful and

vich area of researeh for mathematicians ever since jts introduction by Maurice Fréchet

The origin of fixed point theory can be go hack to 1890, when Picard, used the method
of approximnation in the solutions of differential and other functional cquations. However,
in the beginning of the twentieth century fixed point theory hegan flourish an important
part of modern analysis. The credit, of all this goes to the pioncering work of the Pol-

ish mathematician Stefan Banach 110}, who publish his remarkable work in 1922, which



provide a contractive method for finding fixed points of mappings. Banach used the idea
of shrinking map for obtaining the outstanding contraction mapping theorem. The cele-
brated Banacl: contraction principles has heen generalized and studied by several authors
i various directions in all fields of natural seiences for single valued and multiple valued
mappings under different contractive conditions in terms of complete metric spaces.

Fixed point theory is an important branch of analysis having wide range of applica-
tions. Numerous problems in physics, cliemistry, biology and economics lead to various
nonlinear differential and integral equations. Tn order to find a solution to such equa-
tions there is a need to find fixed point by reducing them to functional equations. In
funetional analvsis there are branches of fixed point. theory depends on metric space and
the type of contraction. Kannan 18] nsed it with mappings nof necessarily continuous.
Thus varions generalizations concerning fixed point, common fixel point and coincidence
points have heen under taken for mappings satisfving different contraction conditions in
different scttings by several authors viz, Bailey {8], Ciric [26]. Edelstein [33], Kirk [49],
Pant [60], Rhoades [65] and Singh {76]. Thus, fixed point theory has heen extensively
generalized in terms of netric, topological, order and Banach spaces and enriched it in
different approaches see for example NMukheimer [5.1], Nashine 58], Rao [63], Sintunavarat
(70} and Shukla 173 This advancement in fixed point theory has greatly diversified the
applications of various fixed poing results in different areas such as the existence theory of
differential and integral equations, dynamic programming, chaos theory, discrete math-
ematics, system analysis, optimization and game theory, perturbation and other diverse
disciplines of mathematical sciences.

The thesis consists of following chaptors:
In Chapter 1 we give some basic definitions. preposttions. lemmas, examples and other
necessary: backgronnd materials from topological | metric, normed, Banach spaces and
used throuehout the thesis.

Chapter 2 is divided into two sections.  In the first section we have proved and

generalized the theorems of Bailey, Edelstein and Fisher in compact metric spaces. The
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second section deals with the generalizations of fixed point results in pscudo compact
tichnov spaces by Fisher and Pathak.
Chapter 3 deals briefly with the concept of common fixed point of weakly commuting
and compatible mappings introduced by Jungek in 1976, The most important result of
this chapter is the generalization of fixed point theorems of Sabu and Sharma for four
weakly compatible mappings.
The niain thinst of Cliapter | is to study generalizations of fixed point theorems in b-
metric spaces itroduced by Bakhtin in 1989. The main concern of this Chapter is the
gencralization of fixed point results by Fisher, Pachpatte, Sahu and Sharma.

In 5th and last Chapter, our work is devoted to the extension and generalizations of
common fixed point theorems in compact and hausdorff spaces for a single pair of weakly
comnuting maps. This chapter include the generalization of some fixed point theorems

of Fisher, Jungek, Mukherjeo, Pachpatte and Sahu and Sharma.

1.2 Basic Concepts

We begin this section, by providing some basic concepts and definitions necessary for
the upcoming chapters from norm. metric and topological spaces that are needed in the
forthcoming chapters. For further study of related materials see Kevszig 1511, Rudin [67],

Stnmon |74} and others.

Definition 1.2.1. A function g1 3 x 3 — B is called metric on a non-empty set §

oy all £ 6,0 &5 ¢ 3 it satisfving the following conditions:

(i) pUE &) = pl&. &)
(10) p(&1.&4) S pl61.6)) + pl&, &)

then 3 together with p is called metric space,

6



Examples 1.2.2. {7} Every nou-empty set 3 can be piven a metric and hence can be
converted into a metric space and is called diserete metric space, (r2) If 3 is any set and

FIS)={f:3—=R:[(3)is bounded} . then the set £ (3) together with the metric

Y

pa I P R defined as g (gy.g0) = SUPce v (o (g ($) — g2 (0))) and is

called uniform metric. {(ur) For 3 = £ with the metric g1 0o = lg) — Cal, 1s called

usual metric on 3.

Definition 1.2.3. If 3 together with p is a metric space. Then, the sequence {£,} in
Jis a function f: N — & which is denoted by &, = f(n)forallne \.

Definition 1.2.4. {£} in 3 is called convergent if there exists £ € 3§ such that

Huwy, 6, — Cfor = V.

Definition 1.2.5. A subset 2 in (p. Q) is called,
(7) Closed il the limit of any convergent sequence {£,}in Q€ K.
(21} Compact if {£,} in O has a subsequence {£.. } which converges to €.
() Relatively compact if the closwre ) ¢ X is a compact suhsot.

(1) Bounded if, for some ¢ Q and radins > 0, we have @ C B, ().

Definition 1.2.6. E.hin (3. p) is called Canchy if for everv €> 0, 3 N € N such that
P(EH,EJ) — (las n,j — oc.

Definition 1.2.7. The line in R" through two points ¢, and (o 1s the set of points £
satisfying £ = ¢, + 7({, — (). where 7 is any real parameter. In set notation we can

5
write ([ Gl = {E 6= (1 - 1), + 70, o< < )

Definition 1.2.8. A subset Q of B is called conver if given any two points {,,(, €
€. the dine seament (L0, joining these points is contained in Q where [(,,(,] =

{C1:G =A +20 A> 00~ >0, Ao ~ 1}.



Lemma 1.2.9, If a set A is convex then the closure A and interior A® are convex.

Example 1.2.10.  {{) The empty sot &7 and the simgleton set { [} are convex.

(11) Any subspace of a vector space is conver.

(111 The two sets 1) = g € Vel gt < Tand Uy = {f € V1 {f ()] < 1} are conver
subspaces of

Ve TG R < eo >0}

(0} The two unit balls {S € S [¢[ <t} and {C €3¢ < 1}

i a normed lincar space are convex.

(¢} The upper half-planc {200 ¢ B2 > 0} is conves.

Led) The open o closed || ||-balls around any point p that is {¢ € 31 |I¢ = ¢l < 7}

and {J € 3|0 - Gl < r)are comvex it a norm linear space <3,
5 S 0

Definition 1.2.11. A rorcr of a set A in a metric space (3. p) is a collection F of
sub-sets of such that A C U . If all the members of £ are open sets, then £ is an open
cover of A, A subcover of F is a subcollection of that is also a cover of A. In other
words, a collection of sets y is a subcover of A, if and only if VO F and f CUG. Ifa

subcover has a finite number of member, then it is called a finile stthcover.

Definition 1.2.12. A set Q € (3.0} is compact if every open cover of €2 has a finite

subcover. A set N T 3 is precompact i A is compact.
Proposition 1.2.13.  Compact sets in a metric (3, p) are closed,

Definition 1.2.14. A normed space is  lincar space L together with the norm function
(-l : L — 1t defined on L such that the following axioms are satisfied:

(/) Forall J ¢ L2 >0

{iyForall (2 LI =0t =0,

(o) For ¢ e Loand y € 17 we have [1y¢]| = [n11I¢)] (where F = R or C )



(o) Fov all &0y 0 Lowe have (|0 + OIF < 1G ) + NCa1l-

Example 1.2.15. (i) The set of real and compler numbers & and T are one dimensional
normed lincar spaces with the ahsolute value norm |l = | .

(/1) The set B? may be with the norms{l€, L, or I

(¢¢¢) For any compact set €2 ¢ £, the norm on the space O£} is given by | fll =

SUPec g Lf ()]

Proposition 1.2.16. [ {3.].1) is a normed vector space, then p: § x § — R* given

by 2001 o) = iey - o P s a metric space on 3.

Definition 1.2.17. {i} The sequence {£,} in a normed space 3 is called convergent if
for some £ € G, lim, _o 1€, — €] = o
(17) The sequence {€,} in a normed space 3 is said to boe Canchy

ifforeverv €20, 4 N ¢ Nand for j.n > N woe obtain ”5” - E.f” — 0as j,m— oo

Definition 1.2.18. 1If 3 together witl) £ 15 a metric space, then open. closed balls and

sphere with conter Ny and radins » =~ % ape eiven hy

0{Ag.r} = {AeT:p(A Ay <},
MAg. ) = {AeT:p(A.Ag) <1}
(’(Agi}

(AT pA Ay =1}

Definition 1.2.19. [If 3 together with a metric £ 18 a metric space, then
() Aset O < s ealled open. if for all C € Q and > 0. there exists open ball 4, {x)
such that 4, () ¢ Q.
{11) A set Q0 C 3 is a neighborhood of ¢ € 3, if the open ball 4, (¢) € 9 for some
r >0,

(47} The set QO C Jis closed §f (O {J o 3.0 ¢ 0} is open,

4



(1) Aset @ C 3 s hounded, f for ¢ 3 and 0 < R < ¢, with plg42) < R for all
¢y €€
(v) Let @ C I be non-empty, then the diameter of ) is defined by diam (8) =

SUPC, oy w0yl

Definition 1.2.20. If (3, p) is a metric space
and F C 3 is a subset of § then
(1} A point ¢ € F is an mterior point of F if the hall 4, () = F for some r > 0,
(11) A point (€ Fis an isolated pomt of if 6, (N F = {} far some + > 0.
(et} A point {3 s boundary pont of F if for evory o> 0,
the ball 4, () contains points in F and points not in F.
Lot N point C 7 3 s an acewmulation point of F if for overy r > 0,

the ball o, () contains a point £ & & snch that E#£

Definition 1.2.21. If (S1.01) and (D, py) are metric spaces and £ 9, — Qpisa
mapping, then £ s continuous at a point ta € Shif for every €3> 0, there is a y > 0 such

that p (. p0) < gy pid (p)). L (j12)) <€ .

Definition 1.2.22. "The map £ is said to be uniformly continuous if for every €> 0,

there is a4 = 0 such that p {1y pea) < A implies p (£ (je)) . £ (15)) <€ .

Definition 1.2.23. A subset F C (S, p) is called totally bounded if for every €> (),
there is a finite number of balls § {&).€).0(&,.€). ... (£,.€) of small radius € that covers

Fsuch that F CA(g, cyud (Ey.ClUNE ). UlE,  €).
Theorem 1.2.24. A subset of Q © 3.0 is compact fl it is closed and totally bounded.

Definition 1.2.25. A topological space T is called locally compact if for cach ¢ € T,

there is an open set o« and a closed sel \ such that (e v N with A compact.

10



Definition 1.2.26. Let & is a metric space together with a metric pand €> 0 is given,
then a subset d of 3 is called an € —net if 4 is finite and 3 = Ucesde (¢

In the next section, we discuss some spaces of continuous fnctions over compact
subsets of the real line & or complex plane T which forms a part of this dissertation with
some basic concepts, definitions and related theorems widely used in fixed point theory

and modern and classical analvsis.

1.3 Spaces of Continuous Functions

The formal study of function spaces began with the work of Arzela [1] and Ascoli [5].
Their papers mark not only the heginning of the theory of funetion spaces but of general
topology. The first space of functions to he investigated extensively was that of the
space of continnous functions €40, 0 on compaet domain <1-w2i. in the real line.
The space of continuous funetions is a known example of function spaces with each
function continuous on the closed interval ‘1. <o It is natural to understand that the
most commouly used norm associated with this space is the supremum norm ||gj|,, =
sup {9 (<) : ¢ € [¢,.(o]}. The associated sup norm in the space of continuous functions
is also a nonn of uniform convergence for functional sequences in compact metric and
topological spaces. The imiportant aspect of uniform convergence is that it preserves the
notion of uniform continuity. Tt is 2 well-known fact that the concept of compacthess
is central to both pure and applied mathematics. The idea of compactness for finite
cdimensional spaces are attributed to Heine-Boral, who succeeded in providing essential
tools for the characterizations of compact subsets in n-dimensional Fuclidean spaces
on compact domains. Continuous functions and compact sets go well together. The
Arzela- Ascoli theorem gives us necessary and sulficient eriterion for the characterization
of compact subsets of function spaces nsing the concept of equicontinuity.  One can
also use the Arzela-Ascoli theorem in proving Picard-Lindelol theorem for the existence

of ordinary differential equations and alse in the prool of Riemann mapping theorem

1



in complex analysis. The Stone Weierstrass theorem is another important theorem for
polynomial approximations of funetions and has the advantage over Tavlor expansion in
that it does not require differentiability with the condition that the domain is a compact
one. The space of continuous functions is also a good example of Banach algebra which
is closed under multiplication.

It is impossible to list all fanction spaces with complete ¢haracterization in this sec-
tion. Here we give examples of a limited number of function spaces and conclude the
section with some related definitions and theorems for spaces of continuous functions on
compact domains. The proofs of most of the results are being omitted which can be seen

=

i the standand toxt hooks, for example see (15,145, 53],

Examples 1.3.1. (/) On a topological space the space C (7) the set of all

continuous veal-valued or compler valued functions.

(/) The space €, {9} s a space of continuous functions with connpart support,

(121) Cp (3) continuous functions which ranish af mfinify.

(¢) Ona metrie space we have the notion of Holder space CP7 with the Holder norm
defined as snp, . | "%ﬂt—’ Te{0.1).

Ced Space of Lipseris functions COMor < 0 < 1.

(vt) On a differential we have the space C™ () of continuous functions that vanishes
at infiuity.

(vit) CX () space of smooth functions with compact support.

(e11) Space of continuous functions C4 (35 of ;—time differentuihle Senetions,

tix) Selwearts function spaces S13) of real or complex funetions is a subspace of
C> {3,
Definition 1.3.2. Suppose Q¢ 2 and for caeh 0 © N there is a fanetion . 1 —> R,

The collection of functions {g, : n € N} is a scquence of functions defined on €.

12



Definition 1.3.3. Let {g, ({}} be a sequence of functions defined on a domain Q =
1Ol © R, then

(0} We sav that {g, (O3} convernes poinfiise 1o g ((yonQifforeach { € G, g, (¢) —
gighas n- s ~xothat s 'y, (0) - g (O] — 0 as n - oc for all ¢ €0

VoW say (g, (G0 coverges andformly to g () on Q if sup o (K3 = g ()] — 0 as
n — 00.

(¢e12) A sequence of functions g, ({): Q — R is uniformly Cauchy on Q if for

every €> (), 3 Ve Nand j.n > A implies 19, (<) — g ()] <€ for all C e Q.

Remark 1.3.4.  Every wniformily roncergent sequence is pounlwise convergent and the

uniform limit funetion is same as the pointwise limit. But the converse is not true.

Theorem 1.3.5 (Dini’s Theoram).  If {n.} is a sequence of real-valued continuous
functions converging pointwise to a continuous limit function g on a compact set A and

if g, (¢} > gue1 () for cach ¢ € A and every n = 1.2.3,..., then g, — ¢ uniformly on A,

Definition 1.3.6. A series of functions 3> 0 (Y convorges uniformly to a function
PRI j 7 . /
n

gl on 8 =10, Gl the sequence of its partial sium 1SS0} piven by S, () = 2111 g; (¢}

converges uniformly on (.G,

Definition 1.3.7. A ~cries of Binctions N 00 (9) converges uniformly to g on Q) =
(€1, ¢y if for €> 0 and all ¢ € §2, there is an integer N independent of ¢ and dependent

on € such that g, () + g2 (O + ..+ gu () — g ()] <e for n > .

Theorem 1.3.8 (Cauchy’s Criterion and Uniform Convergence).  The sequence
of functions {g, ()} conecrges untformby to g () on (. Co. ifand only if for every € 0
and for every 2 00, there exists an \ so {hal un (&) — 90 (Q}] <€ and n > N,

p=1.

13



Weierstrass M-Test 1.3.9. Suppose {g, (¢)} is a sequence of functions ¢, : 9§ — R
with g : @ — R and that lim, < 9, () = ¢({) for some (€ Q.
Suppose that IV, = sup, o lg, (0} — g (0! exists for all n. then {g, ({)} converges

untformlyv to g on Q if and onlyv if &, = 0.

Theorem 1.3.10  For a real-valued, continuous function g defined on a closed interval
r

W1owa . there exists asequence of real polviomials {P. ()} such that lim, .. P, () =

gly) uniformly on (.,

Definition 1.3.11. A family £ of functions is said to be compact if the limits of all
the converging sequences of functions of £ are functions belonging to f . The family £
is called conditionally compact on a subset © C R f every sequenee {¢.} & contains

a subsequence {g,, } which is uniform!v convergent on every compact subset of .

Definition 1.3.12.  If A C # is compact domain such that £ ¢ N:

() The family 7 is nosnal fomsdy in A i and only if each sequence of members of £
has a subsequence which converges uniformly on cach compact subset of A.

(17) The family of functions F € A is said to be uniforinly bounded if there exist an
F e Vsuch that {g,} is bounded v F for cach n = 0.1.2...

(717} The family of functions £ is pomtwise bounded i for oach wo = 4, the set
{g (<o) g€ N} is bounded.

(i) The family of functions [ C C(A) is called equicontinuous. If for every €> 0

there s a g - fowith el i1 <7 and -G € Xosatisfyving |[( — (l<d, ge F.

Theorem 1.3.13 (Arzela-Ascoli Theorem) [74].  Let {g,}77, be a uniformly equicon-
tinuous family of iniformly bounded functions on 1§, {,]. Then every subsequence {gn,}

of {gn} converges uniformiy to gon L.

Theorem 1.3.14 (Peano) [74]. Let 41085 he continuous in a domain © of the plane

in *and let (. £47 belong to the interior of . Then there is a small £ > 0 and a

[
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function g0 continuonsly differentiable ou J¢ = {| < & such that (¢ g () remains in

Qv 70— 20 b and {0 s one solution of the problem with given inetial comdition

2 =98 gl) =&

Definition 1.3.15. Let F > 0 be a constant and g be a function define in a domain
of the f2—plane. A Lipchitz condition is the inequality 1g (. &) gl N <FIE — &y,

assumed to hold for all {J.€,) and{. &) in €,

Theorem 1.3.16 (Picard Theorem). Let the initial value problem be given by
the equations & = g {08 £({,) = &. Suppose g((.£}) and %g (¢, &) are continuous in
sonie open rectangular region w = {{{.&) 1 ¢; < < (y. & < £ < £,} containing (Cor o)
Then, the initial value problem possesses unique solution in some closed interval J =
[Go + k. & + &I, where & > 0. Morcover, the Piterations defined by E (O = & +
’:u g (t.&, (1)) dl. produces a sequence of functions {€, (<1} that converge to this solution
uniformly on J.

A lot of literature is available on the extension, generalization and improvement, of
Banach contraction mapping. In the next section, we give some preliminary concepts

and generalizations of Banach fixed point theoven: by some anthors,

1.4 Fixed Point Theorems with Some Basic Con-
cepts

Definition 1.4.1. Lot 3 he non-ainpiv and ¢ 0 3 -+ 3 is a mapping of such that

i) = then s called fived point of g in .

Theorem 1.4.2. I a mapping g(¢) is defined and continuous on a closed interval
[$1-Ca) and g (<) € [¢,.¢) for all ¢ € [¢,.¢,]. Then the point ¢ € I{,.¢,) is such that

J(e) =



Definition 1.4.3. The mapping g : & — S is called a contraction if p (g(C).g(8) <
op(¢.€) forsome 0 <o <landall (£ €S

Lemma 1.4.4. A continuous mapping g : X — < is always contraction mapping.

Theorem 1.4.5 [10). If (S, p) is complete and g : 3 — T is mapping of & then g has

unique fized point in 5.

Proposition 1.4.6. If J = [(,{;] € R is a closed and bounded interval in R with
7181, Gl = [€1.€4], a continuously differentiable function with g ()| < 1,forall ¢ € J,

then g is a contraction.

Definition 1.4.7. The map ¢: S — 9 is called
(1) Lipschitz if 3 ¢ > 0 such that for ¢, £ € § implies p(g(¢).g(&)) <op((,8),

(1) Banach contruction, if there exists ¢ € (0,1) such that for all {,£ ¢ ¥, we have

Pg(¢).g(8)) Sop((.€),
(iti) Non-expensive, if for all € € 3, p(g(C),g(€)) < p(C.6),
(tv) Contractive, if for all {,€ € S with ¢ £ €, p{g () g(8)) < p(C,6).

Definition 1.4.8 [23]. If (3, p) is a complete. Then the map F : 3 — G is called

a Chatterjea mapping or Chatterjea contraction if for all (b € Yando € [0,1) =

pFE(C) F () o(p((, F() + 2 (¢, F($y))).

Definition 1.4.9 [26]. If F: 3 — O is a mappig. Then F is called a Ciric-contraction

if for £1,6, € S and 0 < ¢ < 1 satisfies

p(F (&) F{£,)) € omax {r (€1, 62) :P(§1aF(§1)JwP(fzaF(EQ))aP(fl,F(fiz)) ‘9(51:1‘_‘(52))}-

Definition 1.4.10 [46]. If¢;. g, : & — S are mappings. Then, ¢; and g, are said to
he

16



() Commuting if g1 (g2 (C)) = g2 (91 ()) for ¢ € X,

(i1) Weakly commuting, if p (9192, 9201$) < p(91(¢) 1 92 (€))

(123) Compatible, if lim, o p (9192€,,, g2g1(,,) = O for {C.} in S such that lim,_ g;(,, =
im, oo ¢2¢, = v, and v € G,

(1v) If they commute at coincidence point such that 91V = gou, then they are called

weakly compatible.

Definition 1.4.11 [9]. If ¥ is non-empty and o > 1. A function P8 xT = [0,00)is
called b-metric space iff for 7, 9. M3 € G the following conditions are holds:

(@) pnmy) =0 & ny =1y,

(#) p(m.m3) = p(my.m1),

() p(nmy) < o (p (i, me) + p (1, 73)) , then the pair (3, p) is called b-metric space.

Definition 1.4.12 [46]. Two mappings ¥y, Fy : § — 9 satisfying the conditions
p{F1(&).F1(&) < op (Fa (&), F2 (&2)) for £,,&, € S and o € [0,1) is called Jungek

contraction.

Theorem 1.4.13 [33]. Themap F: 3 — S is called contractive if p (F (¢,),F ({,)) <
P(1:Ca), €1, G €9, ¢, # (2, then F has a unique fixed point in < if the iterative

sequence {¥" ({)} converges to the unique fixed point of <.

Theorem 1.4.14 [8]. If F: & — S is contractjve and for every o, a0y € 9, a; # ay

and ¢ = d (ay, az) satisfy p (gd("’"’z),g‘i(“l"’?)) < p (a1, ay) then F has fixed point in Q.
Theorem 1.4.15 [34] XfF: S — & is continuous and satisfes
. 1 . - - .
p ¥ Fhy) < 5 (P(01,Fd1)} + p (32, F0,))

for some 41,5, € Q, 5, # da,then F has a fixed point in .

17



Theorem 1.4.16 [59]. IfF: 3 — $ satisfies the inequality

(p(F81,F8,))* <y (p (81, F8)) p (6, Fin) + p(01,Fd2) p(d2,F01)) +
az (p(01,¥61) p(02,Fd1) + p (61, Fd2) p (82, F32))

for d1. 6y in & where ay, a; > 0 and a; + 2a; < 1, then g possesses a fixed point.

18



Chapter 2

Generalization of Fixed Pojnt
Results in Compact and

Pseudo-Compact-Tichnov Spaces

2.1 Generalized Fixed Point Results in Compact Met-
ric Spaces

In the second chapter, we have generalized some fixed point theorems in the settings
of compact and pseudo-compact tichnovo spaces. The present chapter is divided into
two scctions namely, fixed point results for contractive mappings in (i) compact and (11}
pseudo-compact tichnov spaces.

In section first of the 2nd chapter, we have proved several fixed point results on
compact metric spaces using the conditions of contractive mapping. The obtained results
are generalizations of some theorems by Bailey (8], Edelstein [33] and Fisher [34].

Before starting the main results first, we are giving some fundamental results.

19



Theorem 2.1.1 [33). If £: 3 — $ satisfies
p(£pr, Lug) < p(py, o), (2.1)
for ut,. j5 € S, y1) # 4o, then £ has a unique fixed point in 3.

Theorem 2.1.2 [8]. If (S, p) compact with the metic p and £ is a continuous self-map

of & such that for £, £, € &, €, # £, satisfy the condition
p(£508 p368D) < pie, g,) (2.2)
where 6 = 4 (£,,&,) is a positive integer, then £ has a unique fixed point in .
Theorem 2.1.3 [34]. If £: 3 — O satisfy the condition
p(Lar, £3) < 3 (p ity L) + iy £1z)), (2.3)
for some iy, py € S, pt) # ity then £ has a unique fixed point in $.

Theorem 2.1.4 [34]. If £ : S — I is a map with & compact and satisfying the

condition given by

p(Lpy Luy) < %(p(#l,ff#z) + 0 (1g, £141)), (2.4)

for some ;. py € I, p; # pyothen £ has fixed point in $.

20



2.2 Main Results

Theorem 2.2.1. If £ : 9 — 3 is continuous with the metric o such that {3, p} is

compact metric space and £ satisfving the condition:

UL (o). L) < oy (LD O LONY o £ (o)) 4 p(an, £ (e -

s (plar, £(aa)) + plag, £(@2) +nup (a1, £ (a2) + p(as, £(ay))

+U5Jo (ala 0'2) 1

for some oy, ay € Q, a1 # as, where M1 T2, T3: My, 15 are nonnegative real numbers such

that n, + 9, +2(n, +1,) + 75 < 1, then £ has unique fixed point in G.

Proof First we define a function A on 3, such that A (o) = p (a1, £a) for all a; € 9.
Since p and £ are continuous on 3, therefore, A is also continuous on S Since, ¥ is
compact there a point ¢ € & such that A(¢) = inf {Mar) a1 €S} I A(g) # 0, it

follows that £o # ¢ and

ML) = pL(e) £i£ (o)) <y (HELLULLE L LS 2O

02 (0 (£(0), £(0)) + 0(£(9), £(£(8)),
(e (e, £(0) +p (L), £{£(6))
T4 (P (£(0). £{L£(8)) +p(£(2), £(6))) + nsp (6, £ ()
= L) L(£(0) <(m+my+ms+1)p(L£(0), £(£(8)))
(13 + 1y +15) p (0, £ (9},
= p(L@)L(£ () « —FTMIN)

(I=(m +m+m+n1)"
= p(L(8), £(£(9)) <plo, £(d)),

because 1, + 1, + 2 (g +1,) + 7, < 1. Hence, A (£ {¢)) < A(p) and this contradicts the
definition of ¢ and condition (2.1), therefore, ¢ = £ (¢) and ¢ is fixed point of £.
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Next, to prove uniqueness, suppose ¢, # ¢, is another fixed point of £, then we have

: . o L (¢
pPlon o) = p(L£(01). £(8)) <my (,0((;91, £ (;DE;)I?;S (%))) )

02 {p (b9, £(61)) + p (g, £ (03))) + 15 {p (01, £ (¢3)) + p (¢, £ (01)))
+14 (0 (61, £ (01)) + p (92, £ (92))) + M50 (@1, ¢a)
(@), £ (él))P(ﬁﬁm £ (@2))) *

p ((.Dlv Qz)
P(P1,02) < Nop (@1, 02) + 150 (9, ®2)

‘ g
= plo.02) <y (

Y

= (1=(ny+n5)) plog,¢3) <0,

which is a contradiction, because 1, + 1, + 2 (m3 +74) + 15 < 1. So that ¢ is fixed point

of £ in S,

Remark 2.2.2. Put 7, =n, =17, =7, =0, 5, = 1, in Theorem 2.2.1, we get result of
Edclstein [33].

Corollary 2.2.3. If S is compact and £ : 3 — S satisfies

UL ) Loa)) < gy (HOELNROR L) £ ) (e, £ aal)

+ 05 (plar. £ () + plaz. £())) + 150 (1. a2).

for a;, as € §. a; # az, where T 72, My, 7 are nonnegative real numbers such that

M+ N2+ 2, + 15 < 1, then £ has a unique fixed point.

Corollary 2.2.4. If S is compact and £ : S —  satisfies

UL (a). 2 o) <y (AL LBNOCOL@DY Lo o, £ )+ pon, £ (a0

13 (0 (a1, £ (1)) + p (e, £ {a2))) + n5p (a1, 03)
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for all a;, a2 € 3. a;, # ag, where n,, 1,. 7;. 75 are nonnegative real numbers such that

0 + 7 + 2113 + 5 < I, then £ has a unique fixed point.

Corollary 2.2.5. If § is compact and £ self-map of & satisfying

pllla), £(e)) < (p(al"E(;‘f(ll)lpcijf’f(“?))

+N5P (0{1, aQ) ’

) 13 (plan, £ () + plan, £ (02))

for aq. a3 € B, a; # ag, where . T2, N5 are nonnegative real numbers such that

T + 75+ 75 < 1, then £ admit a fixed point.

Corollary 2.2.6. If ¥ is compact and £ is self-map of & satisfying

plaa, £{a1)) pla, £ (ay))
pla, ag}

p£{a), £(az)) < ( ) + nsp (a1, ag)

for a1, a3 € ¥, a1 # g, where 5,, 7y are nonnegative real numbers such that m+n; <1,

then £ has a unique fixed point.

Example 2.2.7.  If$ = {0, 1. 3}is non-empty and with the usual metric p : xS — R+
and £ on Jis given by £0 = £3=1,£1 =1. Then it is easy to see that Example 2.2.8

satisfy Theorems 2.2.1 with 1 as the unique fixed point of £ in .
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Theorem 2.2.8. If £ is a continuous mapping as in Theorem 2.2.1 with 0 < 7+ +

2(n3 + 14} + 15 < 1, and satisfy the inequality given below

UL L)) <y (Lrtlllolien L))

. ( Pty £{)) + p(py, £ (1)) )

PN+ o (g £ (1) p (o £ (1))

; (P{#lfﬂz)'*‘:o(ﬂlaf(#l))+P(£(#1)*-€(#2)))
TN+ p g ) p (g £ (1)) 2 (£ (1), £ (113))
n (P(#L#z)+P(#1a-€(#1))9(#2s-€(#1))+P(-€(#1)a£(ﬂz))) +
PN+ p g a0) p (e £ (y)) p (s £ (1)) £ (£ (11) 2 £ (123))

’?5P(#1:#2)v

then for every v € &, {£"¢} possesses a fixed point of £.

Proof By Theorem 2.2.1, £ has a unique fixed point (say) ¢ in §. Now for each
n=0,1,2...., define p, = p(£70, ¢y) for every ¢ € S, ¢ # @,. We consider the following
two cases:

Case 1. If p, =0 for some n, then £i¢ = @ for some j > n and hence the sequence
{£™0} converges to ¢,.

Case 2. If p, # 0 for each n, then p,, ) = p (£719, ¢,) = p (L7106, £7%1 44} and we
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use

pr1+l

pn-H
(1= {ny +n4)) Py
JOTH-I

pn+]

where

AN

(ﬂ(f" (@), £ (@o))ﬂ(f"(cﬁ),f"“(@))) +

T
Hy
PLL™ (@), £741(Bg)) + p (L7 (0), £7H1 (@o))) +
2 1+ p,
pLL" (@), £7(0)) + p (£™ (9g) , £7 (¢g)) +
pLY (@), £ (9))
3 1+ 1
[ p(£™ (8), £7(9)) +
pL™ (@), £7 (@) p (£7 (@), £71 (@) +
p (LM (@g) . £771 ()
Yz 1+ 1,
50 (L™ (dg) . £7 (9)),
M (0) + 020 + 13 (P + Pusr) + 14 (00 + Pryt) + 0505,

(M3 + M) Prgr + (M2 + N3+ 1y + 75) Py

(M2 + 13+ 1y + 115) P,
(Mo + 73 + 714 +75)

(1= (55 t 7)) ™
Pus

U+ pp+ 2(ug + g} + g < 1,

25
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and f4;. pty, p15. j14 are given as under

mo= p(L£" (). £7(0)).

Ha = L+p(£7(00), £ (0g)) p (£7(0), £7 (0y))

s = T+ p(£%(00), £7(8)) p (£7 (09), £77 () o (£ (g4) . £771(9))
L+ p (L7 (00), £7(0)) p (£7(00) . L7 (¢0)) £ (£7(8) , £77 (¢))
p (LM (dy), £771(0)) .

Hq

Hence, {p,} is a non- increasing and hence converges to a real ¢ > (), which is the greatest
lower bound of the sequence {p_} . By the compactness of 3, the sequence {£" ()} has a
convergent subsequence { £™ (¢)} which converges to ¢ € & (say). Since £ is continuous,
LM (o) = L(£%(0)) — Ly as k — oo. By the continuity of the metric p, letting
k — 00, then p, = p(£™ (&) :0p) = p{£¢, ¢y} = [, where the sequence {pnk} is a

subsequence of {p, }. Since the sequence { pnhl} 1s a subsequence of {p, }, so

=2 (. ¢0) = p (£, ¢y). (2.7)

Now, we claim [ = (. Suppose { # 0. Then v # @p. By (2.6), we get (L, dy) =
p{fu, £ey) < p{¥, &), which contradicts {2.7). Hence, v = ¢, which means | =
plr.og) = 0. This shows {p,} — 0 as n — oo and this complete the proof of the

theorem.
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Theorem 2.2.9. If £ is maps of a compact metric space I into itself such that for

some n > 1, £™ is continuous and satisfy the condition:

p (L7 (), £ (7)) < iy (p (. £7 (:zzf)fqg:f’ z (72)))

+tg (p (72 £7 (1)) + p (120 £7 (7))
s (p (71, £7 (7)) + o (v, £7 (72)))
g (P (71, £7 (v2)) + o (v, £7 (1))

+e50 (71, 7a) s

for vy, 79 € &, 3 # 75 and pq, po, Hg, By, p5 are nonnegative real numbers such that

ft1 + fy + 2 (g + py) + p5 < 1. Then £ has a fixed point in 3.

Proof Define 7 : & — R¥ by A(v,) = p(v, £7(11)) for every v, € 3. Suppose
117 £y, then g (L7 (1)) = p(£7 (1), £ (£7 (7)) and

(L7 (e Py £7 (v)) e {£7 (1), £7 (£7 (7))
ASHUUR #1( p (1, £7(1y)) )
+#2(P(£n(71)=£n(71))+P(£n('}’1)a£n(-€n(71))))+

#3 (P (v £7 (7a)) + p (L7 (1), £7 (£7 (7)) +

fa (p Oy £7 (L7 (1)) + p (£7 (1) £7 (7)) + pasp (71, £7 (41))
= (£ (1)) < (i + o+ g+ ) p (L7 (1) £7 (£7 (11))

+ (g + g+ p5) p (71, £7 (1))

L (JU’S+JU +1u’5) n
= (£ (7)) < (1—(#1"‘#24"'#3"‘“4))‘0(71,;? (1))

= (L% (7)) <ol £ (),

which is contradiction, because u; + py + 2 (3 4 11,) + p25 < 1 and hence

L v <n(n), m# £ (). (2.8)
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Since L™ and n are continuous on the compact metric space 3, hence it attains its
minimum on & at the point (say) vg. Suppose, £ (vo) = p{vp, £" (vg)) > 0. Then by
(2.8) we obtain 7 (L™ (vg)) < 17 (1), which contradicts minimality of the value of 7 at vg.
Hence, our supposition 1 () > 0 is false. Therefore, 7 (vo) = p(vo, £™ (1)) = 0 so that
vp is a fixed point of £,

Suppose, if possible v # v is another fixed point of £ then p (vg,v) = p (£7{vg), £" (v))

amd

plaw < (HL )

Fia {p (v, £7 (o)) + p (v, £7 (0))) + 43 (p (w0, £7 (v0)) + 0 (v, £7 (v0)))
Fhtg (p (vo, £7 (V) + p (v, £7 (w))) + sp (v0. v)

pltov) < pgp(te,v) + gp (b0, v) + 2ugp (0. v) + pgp (v. V).

which is a contradiction, because u) + py + 2 (13 + ) + 115 < L.

Now, let vy is a fixed point of £™ and since £7 (£ (vg)) = £ (£™{vg)} . then £ (£ (vp)) =
L£(£" (v)) = £ (vo) = vp which shows that any fixed point of £ is also a fixed point of
L

Remark 2.2.10. Putting n = 1 in Theorem 2.2.10, we obtain Theorem 2.2.1.

Example 2.2.11. Let & = {1,3,5,7} and define p : § x $ — R* by p(vy,,7,) =

|7y — 7ol for all 4,.9, € S If £ : 3 — § is a mapping given by
L1=L5=L7=3,L3=3.

Then, £ satisfy both Theorem 2.2.9 and Theorem 2.2.10 and 3 a unique fixed point of
£in Q.

28



THIASLYG

Theorem 2.2.12. If & is compact together with p and £ is a continuous self-map of

T into itself satisfying

p(vva) p (v £ () o (v £ (72))
Lp(v, £(m)) +p(ves £ (7)), ;

p{£yy, £7,) < max £
Lo, £ () +p (v £ (1))

for all v;, v, €3, 7; # 72- Then £ possesses a unique fixed point in &

Proof Define a real-valued function i on & by 77 (v,) = p{vy, £ {7,)) for v € . Since

¢ and £ are continuous on 3, it follows that 7 is also continuous on §. As §

is compact,
for ¢; € G, we have

n{¢) = inf {n(v,) : v, € S}, (2.9)

Assume that £ (¢;) # ¢y, then p (£{(é)) = p (£ (&), £ (£ (¢1))) and we have

pwhfr)) D (£ (62) £ (£ (o], o (60, £ (L
< mu{ ©1 £ 101)). 5 (p (91, £ (0 »+puw%y£um@»n}

- nmx{u(¢g,%(u(wn-+u(£(¢an}.

o) < me{ P61 £(6)) (61, £(60) 0 (£(61). £ (£(61))),
3 )

either 11 (£ (6,)) < u(¢y) or (£ (1)) < 3 (1(¢1) + (£ (¢1))), which gives us a contra-
diction in both the cases. Hence our assumption was false and we must have, £ {¢,} = ¢,

Thus, ¢, is a fixed point of £. For uniqueness, suppose £ has a second fixed point ¢,
distinct from ¢,. Then, we have p(@,, ¢} = p(£ (¢y), £ (¢;)) and

p(¢1’¢2)ap(¢1:£(¢1)) (¢2: ( .2))
p(b1.02) <max<  L(p(gy, £(¢) +p (0 £(6)), ¢ =r(1 ),

%(p (01, £ (¢9)) + p o, £ (67)))
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which gives us a contradiction. Hence, the fixed point is unique.

Example 2.2.13. If & = {5,6,7} with p: S x & — R* is defined by p{7,,7,) = 0,

P (v, 72) = p (e, 71) for 11, 75 € §. Clearly, p is a compact metric space on < such that
p(5,6)=p(6,7)=1,p(5,7) =2

If £:3 — $is mapping given by £5 = £7 = 6, £6 = 6. Thus, the map £ satisfy
Theorem 2.2.13 and 6 is the fixed point of .

2.3 Fixed Point Theorems in Pseudo-Compact Tich-
nov Spaces

In the present section, we give yet another generalization of contractive mapping theorems
for fixed points in pseudo-compact tichnov spaces. In the present section, we prove fixed
point results for a pair of weakly commutative and continuous self-mappings in terms
tichonov spaces satisfying contractive conditions.

The following fixed-point theorems were proved in [34] and [61].
Theorem 2.3.1 [34]. If £:3 — S satisfy
(p{L81, £63))" < ar (p (€1, £61) p (€2 £62)) + a2 (p (€1, £62) p (€2, £61)),
for £, & in § where 0 < ) <1 and 0 < ay then £ has a fixed point.
Theorem 2.3.2 [61]. If ¥ is Pseudo-Compact Tichonov space and p : & x § —

R7*satisfy the conditions:
(i) p((.¢y)=0forall {, €S and
]

p((l’(;S) S P(C1>C2) +P(C3, g?) for all Cl: 42‘43 € RE
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If £1and £ are two continuous mappings of & satisfying (i) £1£, = £2£1, and (iii)

P(£1£2§1:£1C2) < (11,0(-52C1,C2)+Q2P(~£1~£2C15~£2C1)+Q3P((£1£2C1:C2})+
(

aqp (L£26;, £1G2) + asp (£1€y, (o) +
o (LB )
p (L2}, (o)

o (P('EQCM flCz)P(flszpCz))
p("E?Cth) ,

for distinct {;, {, € & with £5{; # (5, where @3 > 0, azs + oz + ag < 1, a3 + a9 +
203 + a5 + ag < 1. Then £, and £, have common fixed point in § which is unique if

OL‘1+6¥3+0."4+Q731.

Definition 2.3.3 [56]. A topological space L is called pseudo-compact if every real
valued continuous function on £ is bounded. It may be noted that every compact space is
pseudo-compact, but converse is not necessarily true. However, in case of the notion of a
metric compact and pseudo-compact coincide. By Tichonov space, we mean a completely

regular Hausdorff space.

Definition 2.3.4 [56]. The pair of maps £, and £, on (S, p) are said to be weakly
commutative if p (£1L5¢, £2£1¢) < p (£, £,¢) for some ¢ in S.

Theorem 2.3.5. If § is a psendo-compact tichnov space and p on & x 3 satisfies the

conditions

(1) p(C1,¢y) =0 forall (; €,
(i) p ({1, Qo) < p (€1, C3) +p(Co,¢q) forall (|, ¢y, ¢3 € §. If £, and £, are continuous

self-maps of & satisfy the following condition:

£1£9 = Lof) (2.10)
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and

(p(£L1£2Cy, £162)) < au(p fzcl,cg p(£20,, £1£2(1))

p(£381, £1£961))° p (€, £15)
P (£2€1,C,) )
+og (p (£1£2C1, Go) p (L1420, £105))
( £2C1:C2 (£2§1, 1(2))
1+ p(¢a £105)
( 1+ p(£200.G)) (o (£2C1»£1£2C1))P(£2C1vC2))

1+ p(Cy £14,)
£ (Ca, £1(0) p(£1 £2C1:£2Q1))
p(£2€1,¢s)
p (G, £1£2C1) p(£205, £1C2))2
o ( P(£2C1:C2)

(2.11)

for distinct {,, {; € S with £2¢; # (, and a; + as + 203 + a5 + a5 < 1, then £, and £,

have a common fixed point in & which is unique whenever a3 + ay +a; < 1.

Proof Define p: 3 — Rton § by n({,) = p(£1£2(,, £2¢;) for ¢; € §. Thus, there
exists a point v, € & such that n (v,)} = inf {5 (v,) : v, € §}. We now affirm that v, is a
fixed point for .£,. If not, let us suppose that £;+v; # 7,, then using {2.11), we can write
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(1(£171))" = (p (£1£2£171, £2£17,))° and, therefore,

(n(£1m)? < enlp fzfl’h Loyy) p(£2L17. £1L2£47y))

(
£2£171, £ fzfl"ﬁ)) (-Eﬂp £1L971)
p(£2£17, £27,)

(L1Lalyyy, Lavy) p(£r£2Lryy, £1£97)))
plLaL 1’71,52’71)) (32-51‘;'1 51-52‘:‘1)) 4
(1+p -52'71»413 f?’h))

taz (P

( L+ p(LoLyyy, £am)) (p (.52.8171,.£’1£2£171))p(£2£171,.Eﬂ,))
1+ p(Lavy, £1L97,))
(p £971, £1£971) p (£ f?zfm,fzfm))z

fzfl"fl,fz’h)
pl{Layy, £1 fzfﬂ]) (fzfl’h,flfﬂl))z
p{LaLfyvy, £97)) ’

which implies that

(P(flfzfﬂla L£1damy)) < m (P(fzfl’h, '52'}'1) + 02P(£2-€1’Y1, flfzfl’h)) +
agp (£1L2L17y, £7,) +asp(£2£17, £o7)) +
asﬁ(flfz-fl’ha £2~£1’)’1),

or

(1-(o2+az+ag))n{£1m1) < (1+as+as)n(n),
. (CE1+O(3+O!5) ‘
n{£im) < (1_(a2+03+06))ﬂ(71)1

n(£1v1) < n{n),

which is contradiction, because p (£, £9£17;, £1£27,) = 0. Hence, v, € $ is a fixed
point for £, that is £, (v,) = 4,. Using (2.10) ,we have

L£1£y (1) = £2£1 (1) = £2(7y) . (2.12)
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Now, we shall prove that £;(7,) = v,. If possible, let £, {7,) # 7,, then, we use the
equality, (p(£27,,1,))° = (p(£1£27,, £171))° utilizing (2.11} and (2.12), we can write

(P(fﬂ'l»'}'l))? < o (p £2'71='Yl) (£971, £1£271))

p{Lav1s £ -‘92’?1)) p (v £17)

-Ez'hv 1) )
+ay (p{L1Lavy, 1) p (£ Loy, £11))
( P(£271,7) )9(527115171))
1+ p (v £1m)
(1+p(L271,72)) (0 (£27,. £1L271))

1+ p{71, £17))

g (P (71, £1711) p(£1L97,, £9 ’1))
-{:271»71)
el £ 5271 (-82’)1=-£1'f1))2
( p (L2717}
< (03+a4+07)(9(£271,’71)) ;

< (P(£271a71))2 .

Which is a contradiction because az+ a4+ < 1. Hence, v, € $ is a fixed point of £, i.e.

£2%, = 7,. For uniqueness of v,, let 7, is another fixed point such that Y1 = L7, = L7
. 2

and v, = £17, = £97; (v2 # 1) Then, using (p(7:.72))° = (0 (£1£27, £17,))% and

condition (2.11), we have

(P("}’x"f'z))z < ap{p(£ 2"1 £271 £ 1£271))
-fz’)luf £2')1)) d(%,fl"!z)
p(£271,72)

((p La71:72)) o fz*h,fm))
1+ p (v, £17y)
(( + p(Lav1,72)) (p (-5271:-51-82'71)}.0(-’5271772)) "
L+ 0 (79, %2)
(P("m:51527’1)9(‘5271,“5172))2
0'7 1
P (L2771, 72)
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giving us

(0 (712 72))? < (a3 + g+ az) (p (71, 72))°

and this leads us to a contradiction, because a3 + aq + o7 < 1, which proves that v, € &

is unique.

Corollary 2.3.6. If & is tichnov space and p on & x & satisfies: (¢} p((,,¢y) = 0 for

¢y € 5. (i1) p(C1,C3) < p(C1,(3) +0(¢3, () for some (4,(y, (3 €T, and £5:F— Tisa

continuous map satisfying the inequality

P (‘EICD CQ)

+ag (p (£161C2) p (£1C1, £165)) + ((p (C111 %L)(Ziﬁfé;f@))
o (LG O G 000G |
1+P(Cz:£1§2)
o (P(Cm£1§2)P(£%C1a£1§1)>2 Ta (P(gza f?gz)f)(fl(l:fl@))?.
P(£1C11<2) I p(’{jlgl:gE)

9 2
(b (£, £16))° < (p(£10Ga) o (£161, £16)) + e ((’” (i, £161)) £ Gy, “2))

for some distinct (;, ¢, € & with £1(; # (, and a3 + as + 2a3 + as + as < 1, then £,
has fixed point in $.

Proof On taking £5 = £ Theorem 2.5.3 guaranttees that £, has a fixed point in 3.

Theorem 2.3.7. If & is pseudo-compact and p on § x § satisfying (i) p(£1,£1) =0
for £; € &, and (#) p (L1, Lq) < p(Ly, L3) +p (Lo, L£3) for some Ly, L9, L3 € S If £1and

£ are continuous self maps of § satisfying

L1Ly = L3101, (2.13)
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and

(p(£1L£2L,4, £1£2))2 < o (p(£2L4, Lo) p(£2L4, £1£L1)) (2.14)
oy ( (0 (£3L1, £1£5£1)) p(Lo, .€1£2))

p(L2Ly, Lo)

1 (P(-€2£1152))P(£2£1, £1L,)
taz (p(£1£2L1, Ly) p(£1£2L4. £1L2)) + ay ( Lt p(La L) )

as ((1 +p(£2L1, L2)) (p(£aLn, £1£9L4)) p(£4L4, 52))

1 + p(£2} £1£2)

e (P(CQs£1£2)p(£1-€2£17££1))2+a7 (p(£2r£1£2£1)P('€‘2£11£1£2))2
° p(£2L1,L3) p(£:L1. Ly)

p(La, £1L5) p(£1Ls, £1£9L1), p (Lo, £1£9L1) p(£2L. £1£5L4),
+0g Mmax 5 ,
p(£1Ls, £2L1} p (Lo, £2L1), (p(£1L2, £,£5L,))

for £y, Ly € G, £9£;) # Lo and oy, a9, a3, a4, a5, ag, a7, ag are nonnegative real numbers
such that a; + ap 4+ 2a3 + a5 + ag + 2a5 < 1, then £, and £, possess a fixed point in §

which is unique if az + a4 + ar + a5 < 1.

Proof Define np: 3 — R*on § by 5(L,) = p{£1.£2L,, £2L,) for some £, € . Thus,
there exists a point ¢, € ¥ such that 5 (6;) = inf { (£1) : £, € $}. We now affirm that
£y is a fixed point for £. If not, let us suppose that £,€; # £, then using (2.14) we can
write 7 ((£161))° = (p (£1£2£16,, £ 1£26,))% and

N((£16))7 < a1 (p(£2£16, £26) p(£2£16), £1£2616)) +
( p(£a£rby, L1£2£16)% p (£2€1,£]£2€1))

p(£2£1€1, £a61}
+az (p(L1L2L181, £26)) p(£1£2L181, £1£4561))
p{LaLiby, £ob1) p(L£2L£181, £1.£56))
( L+ p(£ab1, £1£26)) )
+a5( 14 p(£2£161, £261)) (p (.£’2.£’1£1,£1£2£181))p(.€2£1€1,.Egﬂl))
1+ p(£26y, £1£28)
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+a (P(fzfl, £1L38)) p(£1L3.L18,, -5245'131))2
° p(LaLy8y, £14)

a (p(ﬁgel,£1£2£1ff1)p(£2£1el,.flfzel))z
7 P(£2£1€1,£2€1)

p(L£oby, £1£30,) p(£1£96,, £1£24161),
+ag max p(£aby, £1£2£160) p (L2 L1y, L1£9L161}, -
p(£rLaly, £2£48)) p(£aky, £2£141), (p(£1£44, £1£2£1E1))2

p(£201, £1£:8) p(£1£24), £1£9£:141),
Case (i)- If max p(£aty, £1L9£181) p(£o£181, £1.£2£141), ’
p(£1£201, £2£10)) p(£2€1, £2.£18), (p(£1£261, £1£2£16))°

= (P(£2£1£1> 51525121))2-
Then, we have

n({£160)° < oy (p(£a£181, £20)) p(L£2£181, £1£2£161))
p{£3£18y, £1£5810)) p( £k, £1£94)
-£2£ £1=£2£1)
tag (p (L1 Ly £101, £20)) p(£1£2£101, £1£96,))

plLa£1by, £26) p(L£2£:141, £1£51, ))

1+ p(£98y, £1£41)
((1+p (£2£181, £20)) (p(£2£161, £1£0£, El))p(fgflfl,fgfl))
1+ p(£98y, £1£561)

(p (L1, £1£200) p (£1 ,52,51@1,,52,5131))2
p{£2£141, £28y)
(p £90), £4 £2£ 6) p(£2£.81, £, fgel))
p (£2.£1801, £261)
+ag (o (£241 el,,e £26400),
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or

T]((flfl)) < le(fgflﬁl,fggl) +a2p(.£’2,£’1£1,£1.€2£1€1)+a3p(.€1£2£1€1,£2€1)+

asP(£2£1£1> £2€1) + aﬁp(£1£2£l£l: «525151) + QSP(£2~£1£L 51525151) )

{on + az + as)
&),
(1- (a2+a3+aﬁ+ag))nl( v

n(£16} < (4}

n(£18) <

- _ (1taztas) e o
where 7, = (17(a21+a31a:+ag))’ which is a contradiction because o + oy + 203 + ag + ag +

ag < 1.
P(£2e1:£1£2£1)p(£1£2£1;£1£2£1£1):
Case (ii)- If max p(Laly, L3 L9 £181) p(Lo Lyl £1£9£:0))

p(L1Laly, £2£161) p (L1, £2£101) (0 (£1£201, £1£2£18))

= p(£Lob1, £1.L9£18)) p (Lo L8y, £1£9£187).
Then, we can write

D((£16))° < a1 {p(£a£1by, £26)) p(L£oLrly, £1£7£:01))
p(£a£18y, £1£9£100)F p (L2901, £1£281)
( p(£9L14y, £28,) )
s (p(£1£9£181, £20)) p(E£1£2£101, £1£561))
p (L2618, £260) p(L£2£181, £, -5231))
1+ p( L8y, £1£481)

1+p f £ £1,£9€1))( (fgfltfjl,£1£2£1€1))p(£2£1€1,£2£1)>
1+p{£2£],£ ,Eggl)

(P 251,5 £2€1)p(£ £aLy 31,f2-€151))
+O’5

p(fgf gl,fggl)
p&&f&f@(&£&&&my
(£2£16y, £6)
tag(p(£abr, £1L9L181) p(L2£161, £1£9£:161)),
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This gives

(n{£161)) < ap(La£iby, Lolh) + app (Lodry, £1£2£16,)
+azp (L1£2£18y, £20,) + asp (L£2£16:, £94))
+a5p(£1.€2.€1€1,.€2£1€1)+agp(.£’2£’1..£’1f2.€151),

or
(1—{az+az+as+as) (n(£16) < (o +az+as+as)n (),
(m{£160)) < m(6)),
where 7, = (artostastas) o5 contradiction because a; + g + 2a3 + a5 +ag + 205 < 1.

(1-(ez+az+ag+oas))

p{Laby, L1L961) p (L1 L2y, £1L3£:8,),
Case-(iii) If max p(Laly, £1£2£161) p(La£18y, £:£:L£161),
p (L1980, La£161) p(Laby, L2£4081) , (0 (L£1£981, £1£2.£16)))

= p(fjggl, £1,€2€1)p(.€1£2€1, f]fgflfl) .
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We can write, again

{(£16))° < a1 (p(Ladily, £201) p(£2.£161, £1£5£161))
o, (p(fgflfl, £1L2000)2 p(£20, flfgfl))
(£2£ el:‘E'Zel)
by (p(£1£2L100, £26) p(£1E5L161, £1£50)))
( p(£2£181, £261) p (fgflel,flf:ze;))
1+ p(£26), £1£28;)
( 1+ p(£2£10y, £26))) (p(fgflé’l,flfgflﬁl))p(fgflﬁl,£2€1))
1+ p(£ady, £1£:4,)
‘o (p (£aby, £1£56) p(£1£2£7 el,fzflel))'z
p(£Lalily, Lay)
p( Loy, £1 £2£ £1) p (Lo L6y, £1.620)\°
p(£2£161, £261) )
tag (p(£261, £1 .Ezfl) (£1L961, £1.82000))

or

n{£16) < op(L£oLyly, £260) + agp(La2£16, £1£9£14)
tazp(£1£2£18y, £20) + asp (£2£18y, L26,) +
agp (L1£2L180, LaL187) + agp (L6, £1£26,),
(a1+a3+a5+ag)n3(81)’

(1 - (az + a3+ ag))
n(£161) < ng(bi),

n{£16) <

where, 7, = %’%’ﬁ% and is contradiction because ¢ + qg + 203 + a5 +og + oy < 1

(a1+a3+as) {a1+az+as+ag)  {a1taztastas) | __
[I1-{az+as+ag+as)]* [I-(az+astastas)]’ (1-(aztastas)] [ max{?h’ 2> 773}'

Then, ¢, € § is a fixed point of £, and so £ (£;) = £,. Using (2.13), we have

Now, if » = max {

L1890y = L2861 (6) = L2(6) . (2.15)
Now we shall prove that £, (¢;) = £,. If possible, let £2{¢;) # £, then by using (2.13)
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and (2.14) we have (p(£961,6,))® = (p(£1£26:, £ 141))* and

(p(£262.0))° < ar(p(£261,61) p(£aby, £1£:261))
p{Lafy, £ £2€1)) p (6, £16)
( p{£241,6)) )
+az (p(£1£201, ) p(£1£281, £14))
p(L281,81)) p (Lo, £147)
( 1+ p( fl,f £1) )
( L+ p(£261,87)) (p (fzel,-£1f2€1)),0(-52€1,€1))

plby, £16) p(£1£26,, £26)\?
p (L2l 6)
ot £ fgel (5261.3151))2
ZEI!E‘I)

‘a { p(flsflgl)p(flgh‘Elf?gl)up(gly£1£2EI)P(£2£11-€1£2€1): }
£ :

pE1LL Lab1) p (£, £981)  (p (£1£y, £1£56,))°

< (ag+ay + o7+ ag) (06, £261))°,

which is contradiction, because a3 + a4 + a7 + ag < 1. Hence 4; € S is a fixed point of
£y, that is £5 () = ¢;.

Let, if possible ¢, # ¢, are two fixed pioints of £, and £, that is ¢, = £, (61) = £2(€1)
and €, = £, (€2) = £ (f2). Using (2.14) and (p (£1,£5))* = (o (£, £21, £1£5))%, we obtain

(p(L£261, £1£50))" p €y, £16)
p(£261, 63)

£40,¢ £261, £,¢
+ag{p(£1L201, 6) p(L1£281, £163)) + 0y ((p( 211+,2a)()€z,(£12£;) 1 2))

. ((1 + p(£21,£2)) (9 (£261, £1£96)) p (5251,52)>
1+ p(gg, £1€2)
ag (P(fz,-5152)10(515251»5251))2+a7 (P(fz,fl£3£1)P(£2€1,-€151))2
p(£261.4,) p (Lol 6;)

{ P (€, £16) p (L1, £1£201), p (€, £1.L581) p(L£6s, £1£01) }
+ag max )

(p(€1,6))* < al(P(f231,fz)P(fzfl,fxfzfl))+02(

p(L1by £oy) plba. £260) {p( L1y, £1£56,))

41



T ———

(0 (61, 62))" < (o3 + g + 07 + as) (p (£1, £2))°

This is a contradiction, because as + @4 + a7 + ag < 1. Hence ¢, € & is unique fixed

point of £ and £,.
Remark 2.3.8. Putting 33 = 0 Theorem 2.5.5 yields Theorem 2.5.3.

Example 2.3.9. If & = {1,3,5,7} and let T is the discrete topology on & and define
£,£0: 3 >8by £y11 =1, £13=05, £15 =7, £17 = 1,£51 = 1, £33 =7, £35 = 3,
£37 = 5 and p on & x I is given by p((1,$,) = ({1 —¢l, forall {; # ¢ € 3. Ttis
evident that 3 is a pseudo-compact tichnov space with g;and g, are continuous on &
satisfying Theorem 2.5.3 and Theorem 2.5.5 with 1 is the unique common fixed point on

1

. 1 — =1
putting (; =3, (; =8foray =0, =3, 3 =15, e =3, s =0, a5 = a7 = a5 = 3.

[
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Chapter 3

Common Fixed Point Theorems for
Four Weakly Compatible Maps in
Complete Metric Spaces

3.1 Introduction

In the third chapter, we prove several fixed-point results using the idea of weakly com-

patible maps. We generalize the corresponding results proved in [35].

Theorem 3.1.1 [35]. If £: 3 - Qisa mapping on § with metric p satisfies

20140(51,52) ,az (p (&1, £&,) + p (&, ffz)) )
ag (p (&, £&) + p(&,, ££,))

p(£€,, £€,) < max {

for some £,,£, € Y and 0 < (e, g, Cry < % then the map £ admit a fixed point in $.
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Theorem 3.1.2 [35]. If £: 3 — $ satisfies

2&1,0 (51: 62) (P (’Sls ‘g‘fl) + 2 (521 ££2)) ’
(p(£€1, £65))° < max 2000 (£1,€5) (p (€1, £62) + (62, £64)). :
oy (p (&1 £&) + p (€2, £€3)) (p (€1, £&3) + p (&5, £€)))

for some £,,&, € T and 0 < oy, 9. a3 < 3.the map £ has fixed point in &

Definition 3.1.3. A point £ € 3 is called point of coincidence of the mappings £ and
£y if £1€ = £,

Definition 3.1.4 [46]. Two selfmaps £;, £5: S — S on S are said to be commuting

maps if £ (L2 (L)) = £9(£1(L)) for some £ € &
Definition 3.1.5 [71]. The maps £, and £, on & are weakly commuting if
P(L1LL, £38\L) S p(£1L, £3L) forL € S
Definition 3.1.6 [46]. Maps £, and £, on O are called compatible if
F}Lﬂ:}oﬂ(fl‘f?ﬁm £9£4L,) =0,
where £, € $ such that lim,_ . £,£, = lim, .o £2£,=2€ 9.

Lemma 3.1.7 [46]. If £, and £, are compatible mappings on &. Suppose that
my, o0 £1L;, = limy, o0 £9L, = z, for some z € & then lim, o £2£9L, = £12,if £1 s

continuous.

Example 3.1.8. The mapping p: $x 3 — R* on & 3 given by p(¢y,¢,) = [¢; — (5] for
some (;, ¢ € §. If £, and £3 on § are given by £, (¢) = i £2(¢) = 10c+1 . Then, £,
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and £3 commute with each other such that £, (£5(¢C)) = £, (£, (Q)) = 55, with 15 as

the unique common fixed point of £, and £, and so are weakly compatible on .

3.2 Main results

We begin with a simple but useful lemma that will be used in the sequel.

Lemma 3.2.1.  If £1, £9, £3, £, : 9 — $ are mappings of & with metric p and satisfy
the conditions

(1) £1(3) € £6(9) and £5(3) C £5(9),

(i2)

p(£1(L1), £4 (£2))
2M0p (L3 (L), £4(L2)), A
p{£, (Lap, £2 (Cg))Smax Pl ) ( 2)) ’ +P(-£2 (£2),£3(£1))

A3 (£1(La), £3(L1)) + p(L£2(L2), £4 (L))

for £, £, € Sand AL Ay, A3 > 0. are nonnegative real numbers such that 0 < A;, Ay, A3 <

3: then every sequence {£, }converges in 3.

Proof For £y € G, choose £; € & such that L4Ly = £1Ly.and for £, there exists
Ly € 3 such that £3£, = £,£,. In this way, we construct sequences {£,} and {£,} in
3 given by

§on = £1Lon = L4Lapny,

£2r1+1 = ‘€2£2n+1 = £3£2n+‘2-
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Suppose, there exists 7 € 0 < £ < 1 such that p (£,.£,,,)} < np (€,_,,£,) for n > 1. For

the convergence of {€,} is in ¥, we use (i) and (ii) and obtain

P (&2n Eanir) = P (£4Lonsr, £3L242) =

2Mp (£3(Lan), £4 (Lang1)),

P(£1Lon, £2Lon11) Smax $ Ay (p{L1(Lon), £ (Lan+1)) + p (L2 (Lans1) £3(L2a))). 7
Az (p (€1 (Lan), £3(Lon)) + p(£2(Lont1) , £4(Lonnr)))
2219 (€2n-1:62n)
Smax{ Ay (P (€an:€2,) + (§2n+1:§2n—1)) '
A3 (P (€2n €an1) + £ (E2nrr-E20))
< max {27?.0 (62n—]’€2n) 7 (p (€on-1. €on) + 0 (€ §2n+1))} ,

where A = max {A1, My, A3} < % Hence, either

n (§2n' £2n+}_J S 2/\.0 (é?n—l! EQn) !

or

A
P (£2n1£2n+1) < H__Mp (§2n-11§2n) .

In either case, we have

£ (6271! 6271-1-1) S ne (£2n—1:§2n) :

Similarly,

P (5271—1'62:1) -<— 7]210 (£2nﬁ2’§2n—1) .

where 7 = max {2/\, (T%,\_)} < 1, and since 0 < A < % we have 0 < n < 1. Therefore, for

some n € N, we can write

P (£n+1!£n+2) S 77:0 (ErUErHJ) S S nn+1p (50’ fl) .
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Now, if j,n € N then for j > n, we have

P (gn! 5]) S P (’fmsn—l) +p (6n—l!£n—2) +...+ P (gj—ligj) y
< 7o (€e &) + M (60, 61+ T p (6 8L
(ln-n)d(fmfl) 0 asn, j - oo

Thus,

p(fn:éj) - 0 as 1 — 00,

‘The following result extends and generalizes Theorem 3.1.2 of Fisher in (35] for four

compatible mappings.

Theorem 3.2.2. If £, £y, £, £4 self-maps of & and satisfy
(i) £1(3) C £4(9), £2(3) C £5(S), and
(4) £4(D) or £3(S) is a complete subspace of 3.
(i7i) the pairs {£, £3} and {£,, £,} are weakly compatible,
(1v) L1and £, satisfy the inequality

p{L1 (1), £4(p))
2f\l ﬂE >£4 :)\ s
oL () £ (g)) < max P VEs L) £alia)) s o (£2 () £ (1))

As(p(£1 () £3(111)) + p (£2 (13), £4{p12)))

(3.1)
for 1), 4y € F and A\j, Ao, A3 > 0, are nonnegative real numbers such that
1
0< /\1,/\2,A3 < 5, (32)

then £, £, £3 and £; have common fixed point in .

Proof In view of condition (i), we define {1n} In S as yy, = £1p1,, = Lajty, 1 and

Bons1 = Lopio o = Laptgn 0, n = 0,1,2.3, . First, we use condition (iv) to show that
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{1} is a Cauchy sequence in &. On substituting u, = fon, and gy = g, In inequality

(3.1) gives us

p (#2n~ﬂ2:x+1) = /p (-'Elﬂzm -52#2n+1) :
20p (£3(uz0)  £4 (fany1))
P (o Hongn) S max Ay (o (£1 (a0) s £1 (panin)) + 0 (£2 (H2n41) > £3(1124)))
A3 (P (L1 (1an) s €3 (12)) + £ (£2 (H2041) + L4 (anar)))

which is equivalent to

}L)_n_.l, #21@) !/\2 (P (#2m J‘J'Qn} + P (#21;4—1' #Qn—l)) 1
A3 (P (#2n« #2n—1) +p (#2n+1‘#2n))
< max {270 (fgn1s ) A (P (201 Han) + 0 (Hons Honi)) }

2hp
P(Ngmﬂznﬂ) < max{ : (

where A = max {A), A9, M3} < 3. Hence, cither

P (#2::? ru2n+1) S 2’\)0 (P‘Qn—l: #Qn) )

or

A
P(#znaﬂznﬂ) < (1—_)\‘)‘/-’ (l‘zn—1e#2n) .

In either case, we get

Y (#2m #2n+1) <np (#2;1-1: #2n) : (3-3)

Similarly, we can write

P (ﬂ2n—1=#2n) < 772P (#271-2» Ju?n—l) ) (3-4)
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M |

and the above inequalities is possible only if o (y, £311) = 0 = v = £3v; = £,1,. In other
words, v; is a coincidence point of £ and £,. Since, £, and £4 are weakly compatible,
they commute at coincident point. Therefore, £5.£, (1) = £4£5{v;) and so £3v = L.

If ¥ # £y, then by using (3.1) we get

200 (£3ptgn, £47) s Mo (£1f19,, £4v) + p (L7, £3p1s,))

P(£I#2n: 52‘;) <
A (Laign, £3p19,) + p(£27, £47))

as n — o0, we have

2200 (7, L£a7) Ao (v £a) + p (v, £97)).
(v, £27) < max ,
Ap(vy) +p{£av, £47))

= {2M0(y. £27).2Xp (7, £27) 0},
= 2xp(v, L),

and this implies that (1 — 2A) p(~. £27) < 0, which is possible only if p(v,£7) =0 =
7 = £, Since, £, () C £3(S) there exists u; € I such that Lyug =~ If £u; # ~,

by (3.1}, we have

20p{Lyur, £7), A (p (£1uy, £47) + p (L7, £3u1)),

pLiuy, £27) < max
Alp(£awy, L3ur} + p (£27, £47))

and this gives us

p{£1u17 ’}) S

max 2Xp (L3un, v}, A p (1w, y) + p (7, £3wy)),
Mp{(Liuy, £3u) + p(v. 7))

= /\p(°€]u1)7)v
= (1 -A)p(Lru;,y) <0,

and the inequality is possible only if p(£1u1,v) = 0 = Liu; = v and hence, £iu; =

£3uy = 7. Since, £, and £; are weakly compatible, £, £3u; = £3£,u; so, £19 = La.
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Hence, p(£17,7) = p(£17, £27) and

220 (£57,9), A (p(£17v,7) + p (7, £37)),
p(£17,7) € max )
Alp (v, £37) +p(7.7))

If £1 # -, again by (3.1) we have

max {2Ap (£17,7), 0},

= 22p(£17,7),

This implies that, {1 —2A}A(£yuy,v} < 0, which is possible only if p(Liu;,y) = 0.
L3y = £49 = v and so 4 is a common fixed

il

Hence, + = Lju;. Thus, £,y = £44
point of £, £y, £3 and £,.

For uniqueness, suppose 7" € S is another fixed point of £,, £3, £3and £ 4 such that
L£1()=Ly(v ) =L (7)) = L£4(v*) =4~ Using (3.1) , we have

200 (L£3(7), £4(77)).
P1,77) < max < ANp(Ly (), £4(2) +p(£2(v") . £3(7))),
AMp(£r() L) +o(£2057) . £4 (7))
2 (1) A () F e (),

Ap(vv) +p(v.7)
= 2Xp(7,77),

max

which is possible only if p(v,7*) = 0 and since A < %, it follows that v = +*, which

giving uniqueness of the common fixed point v of £, £, £3 and £, in S.

Example 3.2.3.  If & = [0, 1) with p (1, 11y) = lu; — o] and £1, £9, £3 and £, on S
are given by

L1(p) = £2(p) = {1} and
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Lo<u<l 30 0Su<y
93(#): 3 ‘g‘l(lu’): ’ 1 ?
1, =1 I, 3<p<l

Then £,(3) = £5(3) = {3} and £3(9) = £,(8) = {3.1}. We see that £,(3) =
£2(8) € £3(8) = £4(9) with £4(3) and £, () is complete subspace of S.

Also, we have £, (£3 (1)) = £5 (£, (1)), Similarly, £, (£, (1)} = L4 (£2()) . So, the
pairs {£;. £3}and {£,, £,} commute at coincidence point and are compatible. Hence,

these mappings satisfy Theorem 3.2.2 with % is the common fixed point of £,, £,, £ sand

£4 which is unique.

Corollary 3.2.4. If (9,p) is complete and £1, £2. L4 03 — O are mappings

satisfving the following conditions:
() £1(3) € £4(3), £1(8) C £4(3) and
(i1) £3(3) or £4(9) is subspace of & which is complete
(iii) the pairs { £}, £ 3} and {£,, £4} are weakly compatible and satisfy the inequality

2Mp (L3 (1), £4 (1)),
PUEL () £1(pe)) Smax § Ay (0 (£ (1), £4 (1)) + p (£ (M2}, £3 (1)),

As (p (L1 (uy) s L3 (i) + p (£1 (1) £4 (12)))

for py, 1ty € Sand Aj, Ay, A3 > 0, are nonnegative real numbers such that 0 < Ay, Ay, Ay <

%, then £, £yand £, posses a common fixed point in .
Proof  For the proof see Theorem 3.2.2 by putting £5 = £,.

Corollary 3.2.5. If (S, p) be a complete metric space and let £, £, : $ — < are
commuting maps such that |

(1) £1(S) C £4(9),

(14} £4(3) is a complete subspace of Q.

(¢12) the pair{ £}, £4} is weakly compatible,
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(tv) £1and £4 satisfy the inequality

2’\1p(£4 (n‘ul) y ‘€4 (Jul)) )
P (), £ (pa)) Smax$ Mg (p (£ (1), £4 (1)) + p (£1 (13) , £4 (111))), ¢
Az(p (€1 (), La (1)) + p (1), £4 (12)))

for p), 4o € S and Ay, Ag, A3 > 0, are nonnegative reals such that 0 < );, Az, dg < %, then

£yand £4 possesses a common fixed point in $3.
Proof  For the proof see Theorem 3.2.2 by putting £, = £iand £; = £,.
Corollary 3.2.6. If £, : S — O satisfies

2A , , A L + £ :
p (L, £4415) < max 10 (s ) Az (p (1 atr) + p g, Lapy)) |

A3 (p(py, Lapsy) + p {1g, Laf11))

for some ), gy € § and 0 < Ay, Ao, Az < %, then £, has a unique fixed point.

Proof  For the proof see Theorem 3.2.2 on putting £1 = £, = £y and £3 = I,
(Identity mapping).

Our next theorem is an extension of Theorem 3.1.3 in [35].

Theorem 3.2.7. If £, £, £3and £4:F— T are mappings and S is complete such
that
(1) £2(8) € £4(9), £2(S) C £5(9),

(22) £3and £, are continuous and



(12¢) the pairs {£1, £3} and {£5. £,} are compatible on $ and satisfy the inequality

r N\
fl =£ 1
2asp (L3 ) L4 () | 2151 (1) Lo )
o (L2 (g}, £4{13))

p(L (), £y (#9))
+o (L2 (1y), £3(1y))
aa(p(£1(k), £3 (1)) + p (L2 (1a) , £4 (113))) X

(p(£1(m). Lalum)) +p(L2 () £5 (1)) |
(3.6)

for gy, 4, € S and 0 < Q1, ap, 03 < & 4, then £, £5, £3 and £, possesses fixed point in .

(p{£1 (1), £2(1))" < max { 200 (pL3 (1), £4 (1))

\

Proof If 4, € §is any point and £; (S ) € £4(3) choose y; € S such that £, (o) =

£q(py). Since, yu; € £4(3), we can choose #o € 3 such that Lop; = L34, and Hoi1s
Mony2 SO that we can define the Picard sequence {yx,} in , given by Hon = Lipy, =
Lapgnirand py, .y = Lopig, .y = Lapiy, o for some n > 0 and use (p (yzn+1,p2n+2))2 =

(P (£3 (k20) , £2 (p9,11)))” in (3.6),we have

( \

2010 (£3(pt9,) . £4 (Ju2n+1))
(P(fl (Hon) s £3 (19,)) (’52 (#2n+1) L4 (#2n+1))) !
2029 (L3 (pt20) . £4 (Homyr }) X
(P (£1(t2n) s £8 (ans1)) + 0 (£2 (Hgnn) + £3 (120))),
a3 (p (£ (19,), £3 (Han)) + 0 (£2 (Hane1) . £a (Hans1))}) X
(P (£1(120), £ (Hani1)) + 2 (£2 (H2nr1) s £3 (42.))) j

(
( 201 (f120-1: #3n) (P (Hams Hae) + 0 (Hany1: fan)) \
2020 (Han-1: Han) (P (Hans o) + £ (Bamyts bian_s))
@3 (P (H205 Hono1) + p (Kamers Hon)) X
L (P (Hon: ton) + p (#2n+1: #271—1)) J

< max{ 2ad (#2”"1””2”) (v (‘u?n"“?nfl) +p (#2n+;=#2n))‘ .
a (p (Hans1) on) + P (Hans tan_1))

(P (#2n+1» #2n+2))2 < max J

\

= max {
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where a = max {a;, as, a3} .

Now, T is complete, there exist 7 € ¥ with lim,. .o Yy, = im0 Lapty, 1 =
limy oo Loty = limp oo L3ty 5 = 7.

For a common fixed point v of £1, £;, £3and £ a- By the continuity of £3, we have,
lim, _oc £3p19,,0 = £37 and lim, _, £y, = . Since, the pair {£;, £} is compatible
on 3, 80 lim,, oo (L1L349,, £3£1129,) = 0. By Lemma 3.1.10, we have lim,,_, , £1L3p, =
£a7- 1wy = Lspton and pty = iy, yand using (o (£37, 7)) = (o (£1(L32.) £ (znsn)))

in (3.6}, we obtain

( 2000 (£5 (£aizn) , La (an11)) %
(0 (£1(Lapizn) , £3(L30,)) + p (£ (Hane1) s £a (tans1)))
2000 (£3(L3p2,) , £4 (Hans1)) x
(0 (£1(£3p3,), £4 (Hane1)) + (£2 (Hona1) - £3 (£312,)))
» (3 (9(31 (£312,), £3 (£3p12,)) + (£2 (#2n+1) Ly (ﬂ2n+1))) X
{ (0 (£1(£L3100,) , £4 (Hanir)) + 0 (L2 (Hans1) s £3 (12n))) ]

(.0(53%7))2 < max {

taking limit as n — oo, yields

r 200 (£37,7) (0 (L37, £37) + p(1,7)), |
) 2ap (£37,7) (p(£37,7) + p (7, £37))
a(p(£37, £37) + p(v,7)) x

{ (L%, 7) +p (v, £37)) )
max {0,4a (p (7, £37))?,0},

(6(£37.4))* < da(p(v.7)?.

(0{£37.7))" < max

IA

where o = max{a;, a,, a3} < 1 and the above inequality is possible only if (o (£L37v,7))* =
0= p(L37,7) =0= £3y = ¥since) < a < i. Next, we will show that £3v = Lyy =17,
Using continuity of £4, we have lim,_ ., L3 (£4;12n+1) = £47v and lin,_,, Ly Lapg, 1 =

£4~. Since, £4 and £, are compatible, limn_.ocp(.€2£4y2n,f4.£’gy2n) = 0. By Lemma
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3-1.8, we have lim, .o £oL4py, = £47. Putting p) = g, and p, = £atq,., and using
: 2. .
(o (v, £47)° = (p (£1(1g,) , £2 (£4t3041)))" in (3.6), we obtain

¢ \

20,0 (£3( ﬂzn) Lo (Laptyny) ) %
(P (L3 (an) - £3(2)) + P (£2 (£1tt3001) « £4 (Labizn11))) -
2020 (£3(1g,) , £4 (£4H2n+1)) X
(0 (£4lh) Lo (Eatnn)) + (s (Eutnr)  £300) . [
a3 (0 (L1 (130) 5 £3 (fan)) + p (£3 (Lattznin)» £a (Lagizn1))) x
(P (£1(1gn), L4 (f4ﬂ2n+1)) +p(£2 (f4ﬂ2n+1) » £3 (42,))) J

(0 (7. £47))* < max 4

\

taking limit as n — oo , we obtain

200 (1, £47) (0 (v, %) + p (£47, £47)) .
(p(v-£47)) < max 2ap (v, £47) (0 (7, £47) + p (£47,7)) ,
a(p(v,7) +p(Lav £47)) x {p (v, Lav) + p (£47, 7))
max {0,4a (p (1, £47))%,0},

(P(%fe:”f))z < 49(P(‘r’;£47‘))2>

A

which is contradiction, because 0 < o < 41 = {p(£47,7%))? < 0 and the inequality is
possible only if £,y = ~. Hence, £, = .£ 37 = 7. Again, utilizing condition (3.6) and
using p (£17v.7) = p (L1, £ (#2n+1)) . we obtain

4 Y

2ap (£37, £4 (H2011)) x
(p(L£17, Lay) +p (€2 (Mang1) » £4 (Hans1)))
2000 (£37, £4 (#2n+1)) X
(0 (£17, £4 (2n41)) + 2 (£2 (Hane1)  £a7)) |
a3 (p(L£17y, £37) + p (L2 (any1), L4 (Hani1))) %
(P (fl ('Y) Ly (ﬂ2n+1)) +p (‘5'2 (#2n+1) ’ "537)) J

(p(£17,7))% < maxJ

=
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taking limit as n — oo, and use £37 = £4v = ~, we have

5

[ 2ap(£47,7) (o (£17, £37) + p(7,7)),
J 200 (£37,7) (p (£17,7) + p (v, £37))
alp(£17, £37) + p(7,7)) x
\ (p(£17,7) +p (v, £37)) J
= max{0,0,a(p(£17,7))*},
= a(p(n£17)°,
(p(Lv. 1)) < alply, £17))°,

(P(£17%7)° < max

which implies that p(£1v,7) =0 = £ 1Y =7, since) <a< 41 Finally, using condition
(3.6) and the fact that £37 = £,4 = £17v = v, we have (p (v, £27))* = (p(£17, .z‘.’g'y))2

( 20p (£37, £47) (0 (£17, £37%) + p(£27, £47)), ]
) 20p (L7, £av) (p (L1, £47) + p (L7, £47)),
a(p(L1v, Lay) + p(£97, £41)) x
\ (0 (£17, £a7v) + p (£27, £37)) )
(0 (v £29)) = (p(£1y, £29))7,

= max{0,0,a (p (v, £27))°},

= alp(v, L)),

= (o L)) < alp(r, £7))°,

max

Y
_—
-
b
b
D
T
IA

and the above inequality is possible only, if p(v, £3v) = 0 implies £, = %. Hence,
L1y =Ly =Lyy = L4y = .
For uniqueness, let v # 7 is another common fixed point of £ 1, £2, £3and £,. We

prove that 4 = 5.
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Putting ) =~ and p, = v, in (3.6), we obtain

[ 200 (£47, £01) (0 (L7, £37) + p (£2), £47,))
(p(%’h))g < ma:(J 205P(£3’7’»-£471)(P(fl"/:frﬁl)+P(£2')1»£37))> 9
a(p (£, £37) + p (£L27,, £411)) X
| (P (L17, La71) + p (L1794, £37)) J
= maxd 22O (M) 200 (1) (0 () + 2 (11,7))

a(p(v, ") +p (v, 7)) X (0 (1. m) + p (9. 7))
= max{0,4a p{n, 71) }
= da(p(v.m))?,

= (0(n 1)) <de(p(y, )2,

or
(1—4a)(p(7,m))" <0,
and is possible only if (p(v,7,))* =0 = p{v,m) = 0 or v = 4, giving us uniqueness of

the common fixed point v of £y, £, £iand £y.

Example 3.2.8. If & = [0,1] with the metric p (1, 119) = ity — ] and define self-
maps £, £, £3and £, on I by

L]
o
"
-~
-~
(A
Lol X1

Mol
A
=
(A

£y(1) = pand £, (u) = g

Clearly, £ (S) C £,(9) and £9(3) C £3(3) for some K1, #y € 8. Furthermore, the
pairs { £, £3} and {£,, £ 4} are weakly compatible. Therefore, £, £, £3and £, satisfy

all conditions of Theorem 3.2.7 with # = 0 is the unique common fixed point in &
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Corollary 3.2.9. If £, £3and £, : S — S are mappings of & which is complete such

that
(1) £2(8) C £4(9), £1(9) C £4(9),
(ii) £3and £, are continuous and

(117) the pairs { £, £3} and {£;. £,4} are compatible on & and satisfy the inequality

3

f £10m) s £y
2 (£3 (), £a (y)) | 7 1F200)0 L3 )
+p (L, (ﬂ2) 4 {p2))
, £1(), £a (1t
(0 (£1 (1) £1 ()" < max {200 (£a (), £a (uy)) | 715 ) £al)) ) L
+p (L1 (), £3(11))
as (0 (L1 (1), £3 (1)) + p (£ (112)  £4 (12))) X
() L)+ (L1 () La () |

for ), 11, € S and 0 < a, 0, 03 < %, then £, £3 and £, possesses a fixed point in <.
Proof  For the proof put £5 = £,in Theorem 3.2.7.

Corollary 3.2.10. If (S, p) is complete and £, £4:3 — S are mappings of § such
that

(1) £1(3) € £4(9), £1(3) C £4(9),

(it) £i0r £, is continuous and

(#41) the pair {£,, £,} is compatible on & and satisfy the inequality

y
p(£1(m), £4(1))

+o (£ (1y), £4 (#2)
p£( #2‘)
+0 (L1 (1) £4 (111))
ag (p{£1 (1), £4(p D)+ 0(£1 (1), 54{/12)
() £alu)) +p (L1 ) L4 (1)) |

[ 200p(La{p), £4 (1)} (

w

(0 (L1 (). £, (#2)))2 < max 4 2000 (L4 (1}, £4 (12)) (

bon)
/
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for p, 1y € Jand 0 < 0}, a9, 05 < i—, then £yand £4 have a unique common fixed point

in &
Proof For the proof put £, = £,, £54 = £, in Theorem 3.2.7 and then follow the result.

Corollary 3.2.11. If £,: S — Jisa mapping of & and satisfy the inequality

p(La (1), (1))
Fo{La(1y) . Lag (1))
(P (£a{pm). £ (115)))" < max 2a9p{({11) s £4{114)) plealin) £alis) C o

+p{L (1), (1))
ay (0(La{pr) s (1) + p(£4 (1a), £4 (1))} X

(0 (Lalpn) s £5 (1)) + p(£a (1), (1)) )

(
201 (1), £ (1))

.

for 1y, 4y € S and 0 < o, (g, Qg < %, then £4 possesses a fixed point.

Proof The proof follows from Theorem 3.2.7. by taking £; = £5= £, and £ 3= 1Ig.
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Chapter 4

b-Metric Generalization of Some

Fixed Point Theorems

4.1 Introduction

In this chapter, we continue with the idea of compatible maps and try to prove and
generalize several fixed-point results in the setting of b-metric spaces for three mappings.
We have proved common fixed-point theorems in complete b-metric spaces for three
weakly compatible self mapping. The obtained resuits are generalizations of b-metric
variant of fixed point theorems of Fisher, Pachpatte and Sahu and Sharma.

Following are some of the fixed-point theorems proved in [34], [59], [68].

IA

Theorem 4.1.1 [34]. f£:3 > Gisa mapping of ¥ and satisfy (p (£Lu,, £p,))?

A

ar (p (s £141) p (g, £113)) + (o (111, Lasz) p (i3, guy)), for some Hi iy € S and 0 <
ay < 1, 0 € ay, then £ admits of a fixed point.

Theorem 4.1.2 [59]. If £:9 - Jisa mapping of § and satisfy

(0 (Laz. £142))" < a1 (0 (g, £181) p (b1 L1sz) + p (st £12) p (11g. L))+
oz (p{r. £1) p o, £1a1) + p (11, L11a) p (o, £11y))

61



for puy, sy in S where a1, a;, a3 > 0, and oy + 20, < 1, then the map £ possesses a

fixed point.

Theorem 4.1.3 [68]. If the map £: 3 — Q satisfy the inequality

(p (L1 £113))" < 01 (p . £1y) p g, £119) + p ity £155) p ey, £py))
g (p (kg £101) p (Ba, £114) 4 p (11 L1ty) p (g, L1ty)) +
Qg ((P(#m £uy)) + (p (1q, fﬂz))g) ,

for y1y, py in § where a1, as, a3 > 0, and a; +2a3+ a3 < 1, then £ gives us a fixed point.

Definition 4.1.4 [29]. (i) p((;,¢,) = 0 if and only if {; = (,,
(i) p(C.Co) = p (s, ¢;) for all (1, (2 €3,
(”3) p(gerQ) S k(p (Cl: C3) + p(<3:<2)) fOI‘ all Cl! C?s 43 € L‘\S

Then p is metric on § and & together with p is called b-metric space.

The following example illustrates the above remarks.

Example 4.1.5 [19]. If S is a finite set & = {0, 1,2}. Define p: S x & — R* by
P0.0)=p(L1) = p(2,2) = 0,p(1.2) = p(2,1) = p(1,0) = p(0,1) = 1,5(0,2) =
pi2.0)=c>2fork= 5- Example 4.1.5 is a b-metric space but is not a metric space

for c > 2.

Proposition 4.1.6. If the mappings £, £, £3: 3 — < defined on S and the pairs
{£1, £3} and {£,, £3} are weakly compatible and admits of a point of coincidence then,

£, £9, £5 possesses a common fixed point.,

Definition 4.1.7. If {1,} converges in a b-metric space (3, p), it is called complete.
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4.2 Common fixed point results

Lemma 4.2.1. If (3, p) is a b-metric space which is complete for the coefficient £ > 1,
and £y, £3, £3: 3 — O satisfying the following conditions:

(D) £1(J)U £45(8) € £5(S),

(i)

(0 (L1y, £2010)) < oy (p(£3ﬂ2’£1P1)p(£3ﬂ2"€2ﬂ'2)+p(£3:u1=‘{’)2#2)10(‘83#2!'51!“1))+
a (P (L3ptg, £307) p (L3419, £1411) + p (L3415, Lapig) p(Lapry, £op1y)) +
ay ((p(Lapg. £107))% + (p (L3, £a115))%) (4.1)

for pu;. py € B ay, as, as > 0, such that
kar+ (K2 + k) ay + a3 < 1, (4.2)

then every sequence {7, } that converges in § is called Cauchy in .

Proof For 1y, € S consider Hy € S such that £3u, = £, #o and for 1) choose i, € &
such that £34, = £3p,, continuing in this way get the sequences {y,} and {5 } in &
given by n,, = L3y, .1 = £yp,, and Mns1 = L3figuyy = Loy, for n > 0. Suppose
that for x € [0, 1) we have p (nn,nnH) < Ko My, n,) for n > 1. We show that {n,}is
a Cauchy sequence in 3. Using (4.1) with

(P (77211: W2n+1))2 = (P (-53#2n+1r “€3#2n+2))2 = (P (-EI#Qm £2lu’2n+l))21
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we have

A

P (L3tan, Loptgni1) P (£3tonr, L14an)

. ( ('£3#2n+1: f?ﬂ?n) p (f3ﬂ2n+11 “51”271) + ) +
(

2 P(-f:z#zm Lrpin,) p (£3#2n+1? £2#2n+1) +
(P(U2n~"?2n+1)) ! +

P (-53#2:11 £2#2n+1) 2 (£3#2n+1, f2.“2n+1)

IA

Q3 ((P (53#2n+1: Lafion s )2 + (,0 (53#2%1: £3#2n+2)))2’
( P(Latton Latrs) p (£3ttani1- Lt ys) + )
(€320, £3p10042) (o (£3t1an i1, £3p9,11))
(p(£3#2n‘-€3ﬂ2n+!)p(£3“2n+1’ Laptonr) + ) N
0 (L3ton £attnnsa) p (L3t ) £3p’2n+2)
a3 (£ (M2n: M2,

p ¥+
P (W‘znqv "?zn) 7?2m 7?2n+1 )

23]
(?7271 1 1r1'2n+1 (M2ns Tan)

P (Man—1,Man) £ (Mo 1) + )

77271 y Mong1 ) ’

IA

ko

4 (772n 1v7?2n+1) P 772m712n+1)
(3 ((P(%m%n)) ( (n2mn2n+l )2
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equivalently

IA

£ (7?2na 7?2n+1) a0 (7?2:1—19 "72n) T Qgp (7?271—1‘ 7?2n+1) + Qgp (7?2n.~ 772n+1)

IN

tp (7?211—117]271) + kQQ (p (T]?n—]! UZn) + Iy (n?n! 772n+1)) +

30 (77211! q2n+]) ’

IA

(ay + kag) p (77271—1‘ Ugn) + (kay + as) p (17, 7?2n+1)

1A

(a1 + kag) p (Uzn—laﬂzn) ,
(a1 + kQQJ
(1 — ksag + Q‘a)

®p (Uzm 7?2:1-1) )

(l - (kQQ + 0'3)) 2 (?]2n! n2n+1)

IA

P (N2> Mons1) P (M2a—1s Man) »

IA

4 (n;’.nﬂ ?IQTL'FI) < op (7]2”-’77271—1) ’

(a1 +kay)

where ¢ = (fsayiag]- Therefore, for all k € N, we can write

P (M1 Mar2) < 69 My g1} < oo < 0™ g (u ) -

Now, for any j. n € N, j > n, we have

A

P (7,7, k0 (s Masr) + ko (grs ;)

I/

R0 (s 1) + K20 (Mt Msa) + 520 (ayanm,)

IA

kp (Tfnv T]n-i-]) =+ k2p (nn-f»l‘ 7:’n+2) + ksp (T)n+2' nn-Hi) ot
kj‘n-lp (Uj_za Tfj—l) + H’—nulp (T]j-l: 7?3') .
(ko™ + K26™! + K36™2 1 4 k") oy o)

k¢11
< mﬂ(’hﬂ?a) —0asn — oo.

IA

Thus, p (n,, ;) = 0 as n — o0, Hence {n.} is a converges in b-metric space (S, p).

Our first theorem is b-metric variant of Theorem 4.1.3 in [68].
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Theorem 4.2.2. If (3, p) is a b-metric space which is complete with the coefficient

k > 1. Suppose, that the mappings £, £9, £3: 3 —  satisfy the condition:

(0 (L1001, £2112))° < @1 (p(Lapy, £1000) p(L3ptg, £215) + p (L3111, Loty p(L3pg, £111)) +
az (p(Lapty, Lopy) p (Lapig, £1401) + p(Lapg. Laity) p(L£apy, Lapts)) +

ay (0 (Lapgs £1110))° + (p (L3ptg, £2115))7) :
{4.3)

where a;, a;, a3 > 0. are nonnegative reals with
kay + (k2 + k) ag +ay < 1. (4.4)

If £y (F)U £y (T) C £3(9) and £3(SF) is a complete subspace of . Then the maps £,
£5 and £3 have point of coincidence ¢ in §. Moreover, if {£1. £3} and {£,, £3} are
weakly compatible pairs. Then £, £5 and £3 possesses a unique common fixed point in
3.

Proof If for some u; € & we have the sequence {1.} in 3 such that Naw = Lapyy ) =

L1y, and o,y = Lapy, 0 = Lopy . for n =0,1,2,... Then, we show that {n.}isa
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Cauchy sequence and by (4.1) T}gm ’-’?2n+1))2 = (P (f gy, £ 2#2n+1))2 and

(P ("?2@’72%1))2

L (77211 ’ n2n+1 )

P (77272‘ 772n+1)

1A

N

1A

IA A A

(A

IN

IN

"£3)U“’7n: ‘Ellu'?n) (£3#2n+11 £2#2n+1) + T
£3.U2n £2#2n+1) (£3H2n+1:-€1#2n)

£3#2m £2#2n+1) (£3nu’2n+]: £2#2n+1)

Qg -€3ﬂ2n+lv “Ellu?n)) + ( (’€3#2n+1? £2#2n+1))2) ;

772n—1 Wzn (W2m7?2n+1) + "
£ (Man—1:T2n) £ (o> T1an)

( f3#2n+1a-£2#2n) (-53#2n+1a-€1#2n)+) 4

0 (Mo, Non) P 2 (Man, Non) + )

Wzn 1:7?2n+1 P(W'zm’hnﬂ)

Qg ((P Tans Man) ) (P (Tizm U2n+1))2) '

a1 {0 (Man—1:M2n) £ (M2ns Nans1)) +

@2 (P (T2n-1:M2n11) £ (M2 T2ns1)) + @3 (0 (Mgms Mamas)) 2
1P (121 12n) + 020 (a1, Tan 1) + 630 (e hgn st )
1P (an-1: Man} + ka2 (0 (Nano1,03) + 2 (T o))
tagp (Thm Mant1)

(a1 + kagz) p (14, 772n+1) + (kag + a3) p (7?2n-1= Mon) -
(ay -+ kag)
(1~ (kaz + a3))

dp (7?2n;1=7?2n) )

p (nQn—l’ 772;;) :

ap (77271—1! Uzn) .
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Similarly, we can show that

P (772n+1= ’?2n+2) < 529 (7?2m ’?2n+1) )

(o) +kaz)

where 0 = m

< 1. Therefore, for all j, n € N with j > n, we get

(M1 Tns2) £ 80 (s Tnya) s S0 o mgam).
o (o) < kp (M) ke (asyum;)
< kp (M hus) K2 (Mt Taz) + K20 (M012.m;)
< kp (s ner) + K2 (Daer thaga) + o+
k20 (Mszs Mnss) + K0 (Tagso ;)
< kp (Mo} + K% (Mas1s Mnsg) + -+

kgp (T}n+2! nn+3) +o+ kj—n—Qp (171—3‘ 7?]*2) +
B0 (- mima) + K70 (0, n;)s

k4™
P(”?m??j) < mﬂ(no,m)-

Thus, as n — o0, p (nn,nj) — 0. From Lemma 4.2.1 it follows that {n,} converges to

some 1 € . Therefore,

lim L4, = lim Lopy, = hm Lypy, = lim L350y, = 7.
n—oc n—0oo n—o00 n—oQ

Since, £1(F)U £3(3) € £3(9) implies either £, (I) C £3(T) or £5(F) € £3(3).
Case (i} Let £, (3) C £3(9). Since £3(3T) is a complete subspace of £ (3)U £y (J)
and £, (S) C £3(3) implies £3(9) is closed. Hence, there exist v,.4 € & such that
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£37vy =~. If £y, # v, then by using (4.3) we get

(P (L1 £271))° < a1 (p(Lattgn, L1tinn) 0 (L3771, £271) + p( Lapion, Lav1} p (L3, L1ptan))
Q3 (P(fﬂh £2#2n) P (ES”I'xr £1#2n) +p (53#%, fz"rl) P(fa"nsg'z”rl)) +
as ((p(£371, L190)) + (0 (£371, £2m)))

taking limit as n — oo, yields us

(o (L1ptn, Lamy))* < o1 (P (Lapizn: L1010} 0 {L371, £o1) + 0 (£3ttgn, £27) p (L3771, £1112,))
a2 {p (L3711 £apian) p(£371, L1pign) + 0 Lsttan, £371) p (L3, L£a71)) +
as (o (Lo £1002))* + (p (Lo, £2m))F) .
(P (v £2))° < (o) p (v, £2m) + p (7, £a71) p (7. )
az(p(1.7) e () +p (v, £ami) p (v, £271)) +
((( D+ (p (1, £21))7)
< (ea+a3) (p (v, £27))%,

= (1= (a2 +as)) ({7, £21))* <0,

and the above inequality is possible only if (o (7, .5271))2 = 0 mmplies v = £y7v,. It follows

that £3v, = v = £37,. Since £, and £; are weakly compatible, hence L3Layy) = LaL37,

and 5o £3v = £37 (4.5)
If v # £, then by (1.3} we have

p(Lspipn, £115,) p (£37, L£27)
(P {L1ftzm, £27))° < al( et s

P (£3#2m Loy} p -53’} fl#zn

o p(‘€37! “E'-?ru?n) (‘83’} fl#zn
2
p(Latign, £277) p(£a7, £27)
as ((p (L3, £102,))% + (0 (£37, £27) %),
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As n — oo, we have, p (v, £37) = 0 => v = £9y and using (4.5), we get
Lyy = Loy = 1. (4.6)

Case (ii) If £5(3) C £3(9), again there exists points Y1, ¥ € S such that v = £3~,
if v# £, using (4.3} we get

({17, £20))° < ar (o (L3, £17) p (£37, Lav) + p(Lavy, £27) p (£37, £177)) +
ag (p(£37, £om1) p(£37, £17)) + p (L1, £27) p (£37, £27)) +
as ({0 (£37, £171))* + (p (£37, £2m)%),

It follows that

(0 (L1717 < arlp(v £1m) 0 (17) + 0 (1, 7) 2 (1 £17)) +
a2 (p(nV) e (v £371) + o (v, y) p (7. 7)) +
a3 ((p (v, £1))* + (p (7, 7)))
= (I-a){p(v, £1m))* <0,

which is possible only, if p(y, £17) =0= = £17) = L1y, = L3, = .
Since £, and £3 are compatible hence, £1£yy, = £3£1, and £,y = £Lyy. By {4.6),
we have v = £1v = £49 = £39.

Thus, v is the common fixed point of self mappings £L1. £ and £3.This completes

the proof of the theorem.

For uniqueness, let ~, # 7, common fixed points. Then, using (4.3), we have

(e(n.v2))? < a1 (p(gsvy, 1vy) P(g3¥a- 922} + £ (9571 9272) 0 (9379 171,)) +

a2 (P (9572, 9271) £ (9372, 111) + £ (9571, 92¥2) £ (9379, G2v2)) +
s ({P (9372 9171))° + (p (9372, 9272 1)%) .
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and is,

o (0 (Y171 (Y2 v2) o (1 va) p (1 va)) +

IA

az (P (V2. 71) 2 (Y2 11) + 2 (415 72) £ (72s 72)) +
Qg ((P('h: 72))2 + ({79, 7‘2})2) ;

(@) + ay + aj) (p (7, 7’2))2 '

[

= (I=(a1+az2+a3))(p(7,7,))? <0,
which is possible only if p (1 M) =0=y, = Y2, gives us uniqueness of .

Remark.4.2.3. If we put a3 = 0, then we get Theorem 4.1.2 in [59).

Now, we present the modified form of Theorem 4.2.9 in terms of b-metric spaces.

Theorem 4.2.4. If £}, £, £3: 3 = S are mappings of a complete b-metric space

with the cocfficient £ > | and satisfy

(P (£, £2113))* < 01 (p(L£3pg, £141,) p (L3pag, Lapy)) +
az (p(Laptrs Loy) p (Lapg, L) (1 + p (L1411, £3p1))) +
as (p (£3p,, Lapig) p (Lapg, Lopq) (1+ Ly, L319))) + (4.7)
aa{p (L3, £200) p (L£3p1y, Lopty)) +
as (¢ (L3, £141)) + (p (L3013, £2115))%) |

where oy, as, a3, aq, ag > 0, are nonnegative reals with
kay + (k* + k) ay +kag + (B +k) oy +as < 1. (4.8)

IFL(S) UL () C £3(9) and £4 (3} is a complete subspace of 3. Then the maps
£1, £9 and £3possesses point of coincidence point § in . Moreover, if {£, £3} and

{£2, £3} are weakly compatible. Then £,, £, and £; admits of a common fixed point.
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Proof If iy € 3§ is arbitrary. Then, we define a sequence {n,.} in § as follows 7,,
2

Laptanir = Laptgy and gy = Lapiguis = Lopignyy for n > 00 (0 (090 M2n1)) =

(o (L1120, .Egpznﬂ))?, then by (4.7) we can write

(p (772111n2n+1))2 < 0y {p(Lapton, £1tt9,) P (Lationsrs Lopianir)) +
o) ( P (£309n, Labizns1) P (£3tigns1. Lot 1) ) .
(14 o (L1stgns £34030,1))
as ( £ (£3#2m '{‘13#2n+1) P (f3#2n+1~ £2#2n+1) ) +
(1+p (flﬂzm L3fto,41))
s (P (L3ttan, Lopt2n41) P (£382n11, Latiznsy)) +
x5 ((P ((£3ﬂ2n+1s fl#zn)))z + (P (£3l‘2n+1: £2#2n+1))2) »

23]

A

(7?2n_1, 7]2,1) £ (7?211: 1?2n+1)) +

(o
2 (P (Ti.zn 1) 7?2n+1) (Uzm 7?2n+1) (14 p(ny,. Uzn))) +

o

'3 (,0 (77‘2n-—1v 77271) p (7?2:1! T]2n+1) (1 + g (T]‘Zn: 77211))) +

o3

Qg Lp\Mopy, 772n+1) P (772n+1* Wzn)) +

(o (
(g ( p 7?2:117?271))2 + (P (n2n5q271+1))2) ’

Hence, we can write

P (7?2m T?znﬂ) < app (Uzn—l: 712n) + agp (%n—h T?2n+1) + azp (Uzn—n"?zn) +

Qa0 (n:,ln—]s 7?2114—1) + a0 (T)Qm Tn"2n+]) ’

A

o p (772:171: 7?271) + ka? (P (n2n—11n2n) + L (”211'??2!‘14-1)) +
Qzp (‘Ihﬂ—l‘n?ﬂ) + ka‘l (p (Tii’nfl: 77211) TP (7?271.7 "?2n+1)) +

Qg p (Uznr 7]2n+1) ;
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and the above inequality implies

(1 - (k[.lg + k‘Ot4 + Ct5)) P (n?m 7]2?1-!-1) S (al + ka? + Qg+ ka‘l) £ (n2m 772n—1) 1
() + kag + a3 + kay)
< y ﬁ__1\ -
Yy (T]2n+l’ ]7211) s (1 _ (kag + k04 + a5))p (n2n Mo 1
2 (TIZ?H-I! 7]27:) S (I),O (??211) 7}'211—1) ?

where ¢ = &%ﬂfﬁ'—m < i, and for n € N, we get

P (nn+lr?7n+2) -<— (I:'p (7?,11 nn+1) y oo S (I)n+]p(7}017?1)'

Now, for any j > n, we have
y y J )

P (”?me’) S I (nnznn+l) +p (nn+11nn+2) Tt p(n“'_l‘q])
(@™ + 0™ 4+ &) (),
<

‘bﬂ

a—wy2 (M, )

Therefore, from Lemma 4.2.1, we have o (Maumy) < %P(Wl:%) —~0asj n — oo
where k¢ < 1. It follows that {n.} converges to some v € ¥ due to completeness of &
and therefore,

lim 7, = lim £y, = lim Lopigny = lim Lapy, | = lim Lafion g =1

H— 2 n—oc n—oc T1I—2C n—0oC

Since £3(J) is a complete subspace of ¥, there exists §, v € & such that £ 3¢ =y, If

£36 # 7 then using (4.7), we get

P (£3ls,, £28) p(L36, £40)
(1 + p(Lrptgn, £38))

(p (L1, £20)) < a1 (P (Laftgn, £11t3,) p (L35, £48)) + ay

P (Lapigq, £38) p(£38, £46) i Coa e
ag [ PR SIPREO L) N o £35)p(£30, £26)
(1 + p("fl!u?n! “636))

tas (0 (£38, £1412,))? + (p (£36, 929))?) |
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on taking limit as n — 0o, we have

(p (v £26))* < anlp(v,v) p (v, £20)) + vz (p (v, £28) p (v, £26) (1 + p (7, 7)) +
az(p (7,7 p (v, £20) (1 4+ p (7,7))) + aalp (7, £26) p (7, £20)) +
as (o (7, 1)) + (o (7, £20))%)

(a2 + a4+ as) (p (v, £20))?,

Fa

= (1= (a2 + g+ a3)) (p(y, £20))* <0,

which is possible only, if (p (v, £g§))2 = 0= v = L. It follows that £36 = v = £4.
Since the pair of mappings {g, g3} is weakly compatible, we have £,£36 = £35.£24, hence
Loy = Lyy. v # Lyv, by (4.7), we get

(P (£1ttgn, £27))° < a1 (p(Laptan, £1110) p(L37, £27)) +
g (p (L3490, £27) p (L3, L£27) (1 + p (£apia,, £37))) +
ag{p(Lapgn, £37) p (L£37, L27) (L + p (7, 7)) +
(P (£apin, L27) p(£37, £27)) +
s ((0(£37, £1112,))" + (p (£37, £27))%) -

Cry

2

Hence,

(PO £M))® < o (p () p (Lo, £07)) + aa (p (1, £27) p (7, £27v) (1 + p (7, 7)) +
az ({7, 7) e (v, £27) (L + p(v. 7)) +
s (p (v, £27) p (v, £27)) +
as (P () + (o (1, £27)))

(a2 + aq +as) (p (7, fﬂ))? ,

IA

= (1= (ag+as+as)) (o (7, £27))* < 0.
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And the above inequality is possible only if (p (7,,527))2 =0 = v = £yv. Using
Lyy = Ly, we get
v = Loy = £37. {4.9)

Again, if v # £16, by (4.7) we have

(p(£16, £215,,1))° = (p(7. £18))* < o (0 (£30, £18) p (Eaptanar, Latiznrr)) +
a (p (£30, £apiz41) P (£3k2n1, L2tiznrr) (1+ 0 (£16, £3pt9,11))) +
as (p (£36, L3pgn11) £ (£3fta011: L2b2011) (142 (£18, L3ptgnir))) +
ay (p (£30, Lotign) 0 (Latonsy, L2bonyr) ) +
s ((p (£apiznsns £18))° + (o (L32ms1, £zu2n+1))2) »

taking limit as n — oo, we get

(o(v, £18)° < o (p(v, £28) p (1Y) + (o (v, 7)o (v, 7) (1 + £ (£16,7))) +
as (p (1, V) p (v, ) A+ p(L16, 7)) + aa (p (v, v o (7, 7)) +
as ((p (v, £18)° + (p (. 1))

and this implies

= (p{7, £10))? < as(p(v. £18))°,

= (1—oas)(p{r, £19))* <0,

which is possible only if (p(£,8,7))* = 0 == 4 = £,8. Since £, and £3 are weakly
compatible, £;£3d = £3£,0
= L1y = Lov. (4.10)

By (4.9) and (4.10), we have

Liy=Loy=Lyy=1.
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Thus, ~ is the unique common fixed point of £,, £, and £3.
To see uniqueness, let v, and <, be two distinct common fixed points of £, £, and

L3 such that +, # ~,. Then by using (4.7) we get

1)) < ar(p(Lavy £111) p (£33, £ava)) +
az (p (L3771, £272) P (L3779, L2729} (14 p (£1771, £37,))) +
az (p(£371, £372) p(L372, £272) (1 + p (L1711, £372))) +
ag (P (L3707, £272) p(£372, £272)) +
05( (£372, £17; )) (P(fs"fzxfz’)'z))?),

IA
=

1(p (v e (veva)) + 2 (0 (v 1) (Y2 v2) (L + 2 (71, 72))) +

(]

(
3(P (¥ (212 (T 4+ 2 (0 72))) + s (0 (1, 72) P (g va)) +
as ((0 (72, 71)) ‘4 (e (2 ’?2))2) ,

as (p (’?’1»’!’2))2,

= (1—as){p(1,72))* <0.

IA

and the incquality is possible only if (P(%»'Yz))g = 0, which implies that v, = v, and
the common fixed point is unique.

Theorem 4.2.4 yields the following Corollaries.

Corollary 4.2.5. If £y, £5, £5: 3 — & are any three mappings of b-metric & which

1s complete and satisfy

p(Lapy, £1py) p(£apg, L2pn) + )+
p(£3#1:£2#2)p(£3#21£2#2)(1+p(£1ﬂ'1:£3ﬂ2}} /
g (o (Lapy, Laptg) p{Lspg, Lapg) (14 p (L1py, L3pg)) + p(Lapay, Lopg) p (L3tty, £2049))

(p(£1py, Lapy))? < oy

for 1), uy € 3. and oy, a3 > 0, such that a, + (k* + ) a3 < 1 then £y, £, and £

possesses a fixed point in <.
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Proof Putting as =0 and oy = o, a4 = a3 in Theorem 4.2.4 gives us the result.

Corollary 4.2.6. If £;, £3, £3: 3 — < are three mappings satisfying the inequality

(p( L1y, £211))° < a1 {p(Lapy, £101)) p (£3p9, Lapy))

+ag (o (Lapty, Lopy) p(Lapig, Lopty) (1 + p(L1p1y, £315)))

for py, 1y € S such that o) + (k* + k) as < 1. Then £;, £2. £3admit a common fixed

point in <.

Proof Putting a3 = ay = a5 = 0 in Theorem 4.2.4 and the result follows.
Remark 4.2.7.  Corollary 4.2.4, is the result of Pachpatte [59)].

Remark 4.2.8. Corollary 4.2.5, is the result of Fisher [34].

Example 4.2.9. Let $ = {3, 4, 5}, and p: ¥ x § — R* is defined as follows

p(3,4) = p(4,3) =1, p(5-4)=p(4,5)=§_g, 9(3,5)=p(5,3)=—2}5,

P(3.3) = p(4,4)=p(55) =0

So, we see that (3, p) is a b-metric space with parameter k = g Define the mappings

£1,£2,£32%—>%by

1

Fora,=ay=a3 =04 = ag = 3, the maps £,, £, and £ satisfy all the conditions of

Theorem 4.2.2 and Theorem 4.2.4 with 5 as the only common fixed point in .
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Chapter 5

Generalization of Common Fixed

Point Theorems for Two Mappings

5.1 Introduction

We want to establish fixed point results in complete, compact and Hausdorff spaces for
a pair of commuting maps.

The obtained results are generalizations of some fixed-point theorems of Fisher [34],
Jungek [46), Mukherjee [55], Pachpatte [59] and Sahu and Sharma [68].

The following fixed point theorems were proved in [34], [46], [55], [59] and [68].

Theorem 5.1.1[34].  If £ is map of the complete metric space 3 into itself satisfying

the inequality
(p (L. L11y))* <y (p(y, £111) p (s £112)) + 75 (p (s L1t3) p (i, £11y))
for py. 113 € 3,0 <1, <1 and 0 < 1, then £ possesses a fixed point in §.

Theorem 5.1.2 [46]. If £ is continuous mapping of a metric space {9, p) into itself,

Then £ admit a fixed point in S if and only if there exists n € (0,1} and a mapping
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£1: 3 — & which commutes with £ and satisfies £1(3) C £ (&) and

(L1l s £1(n2))) S mp(£ (1) . £ (1)),

for p, uy € G, then £ and £, have fixed point in .

Theorem 5.1.3 [55]. If £, £, : & — S are commuting and continuous such that
£1(9) C £(9). Also, £ satisfiy the condition:

(o ( L1y L1a)) S mp (£1p1y, £11) + 0ap (L1415, £11) +
M3p (£1py. Loy} + myp (Laptg, £p11) +
Wsp(fﬂhfﬂz),

with 7, > 0, for all i and 5, + Mzt M3 +2n, + 15 < 1, then £ and £;possesses a common

fixed point in &.

Theorem 5.1.4 [59], If £isa map of the complete metric space < into itself and

satisfy the condition

(P (Lasy. £11))° <1y (p (g, £130) p (s, £113) + p (1, £115) p (g, L)) +
M2 (0 (ys £} p (i, £11) + p (1, £11) p (11, Lus)),

for py, iy € 9, and 7, N2 2 0, such that 7, + 25, < 1, then £ has a unique fixed point.
Theorem 5.1.5 [68]. Iff:3- g satisfy

(p (£ £p))* < my (p (s £10) p (g, L113) + p (s, L19) p (g £10)) +
2 (0 (kas £11) (g £111) + 0 (y, £123) p (11, L11,)) +
Ny (0 (12, £101)) + (p (g, L1ty))?) |

for some y,, py € & and - 72, 3 2 0 such that 7, 4+ 25, + 9, < 1, then £ possesses a
fixed point in &.
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Definition 5.1.6. Themap p: xS — Rtis called sequentially convergent if for every

sequence {u, } of & if {£y,} is convergent then {u_} has a convergent subsequence,

3.2 Main results

In this section, we state and prove our main result on the common fixed points of commut-
ing maps in the frame work of complete metric spaces. We use Jungck’s idea of common
fixed point for commuting maps with one of the functions need to be continuous. We

start with the following result.

Theorem 5.2.1. If £ £, .3 = S are commuting self-maps of § with £ continuous

such that £;{3) ¢ £(3) and £, satisfy the condition

(P (L£1(m), £, (Hz)J)Z < mp(£ (), £1( ) p (£ (H2), £1(1q)))
+772 p (£ (ug), £4 (.Uz) (T4 p (£ (), £ (#1))))

P(L (1), £1(12)) £ (L1 (11), £1 (1))
(L4 p (£ (), £5 (1))
+174 (p (£ ( #1) f: ;tg))p(f (12} £1 (1))

( L)) p(L (ﬂ2):£1(#2)))2
(1+p( (1), €1 (1))

o (P ) £1{10)) p (£ (1), £1 ((165)))\ 2
*”ﬁ( (1= (2 () 21 (1)) ) 5.1)

for some y;, 1y € 3, where M1+ M2: 13, 7145 M5, Mg = 0, such that
Mt + g+ 204+ 5 < 1, (5.2)
then £ and £, admits a common fixed point in <.

Proof Ifpu, e Sis arbitrary. Then for 4, € § we have £ 1 (o) = £ (11;). We construct
sequence {y, } in  such that £, (4, ) = £ (Hus1). Since, £,(3) ¢ £ (). Using (5.1),
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we get

(0 (£ (tasa) £ (1ar2))) < 10 (0 (£ () £ (pnn)) 0 (£ (Hns1) + £ (1nsa))) +

(
12 (6 (£ () £ (#2)) (14 (£ (1001} £ (101))
(

m(pf%m @ww<(%mf@m»)
3 (140 (£ () £ (1))
s (p (£ {pa), £ (a12)) £ (£ (ftnyr o L (tar2)))

+%(1+Mfmm) (1)) ¢ (@Mofmwm)ﬁ

(1 +po(L(y,), (#n+1)))

(
%Vw@“%““ﬂﬁwwwhummmy

(Tt 2 (£ (1) £ (t1201)))
NP (£ (k) s £ () + 100 (£ (o) s £ (11ay2)) +

180 (£ (1) s £ (1g)) + 140 (£ (1) £ (tn3))
058 (£ (i) + £ ((fn12)))

IA

or

(M +ny) 0 (f (n), £ (#n+1)) )

(1= (47 + 1)) P (f (n“n+1) L (:“n+2)) <
(71 + 74)
£ < L .
p( (#’n+1) s £ (Ju’ﬂ+2)) = (l _ (?]2 + N4 + ?]5))10 (f (lu'n) ! (#n+1)) :
P (‘{-') (#n+1) ’ '€ (lun-r-Q)) S ne (‘E (ﬂn) ’ £ (unfl)) H
where 1 = W%m < 1, on continuous repetition of the above process for . € N,
we get

P (f (#n+1) 4 (#n+2)) S0 (£ (1), £ (1)) (5.3)

On taking limit as n — o0, we get limn_*wp(f (,unﬂ),.f (#n+2)) = 0. Since G is
complete, there exists w € 3 such that limy, o0 £ (p2,) = limu_o £ (,un +1) = w. Since

£ is continuous and £, £ commute, we have, £fw = ¢ (limy_oe £11,,) = lim,_, ., L2
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Also fw = L (limy oo L1t,) = iMoo £ £y, = lim,,_ . £1£p, and by (5.1) we get

(£ (W) £1(E1W))* < m(p(£ (£ (1), £1(£ (1)) p (£ (£1(w)), £1{L£3{w)))

Mo (P (L£(L1 (W) L1 (£ (WP (1+p(L (£, (w RITN)Y
PIL (L1 (), £1 (£1 () p (L1 (£ flflu)
+73
(1+p(£ (£ (W), £ ( )
10 (0 (£ (£ (1)), £1 (£1())) p (£ (£ ()) £ ()
(u+pun£mwn,(f(a>)( ),fm )2
: L+ p (2 (L (1), L1 (£ (& n
PLEL(£1 (@), £1(£ (1)) (£ (£1 () .
+%( T+ p(£(Z (1)), £:2 ({1 »n )

Now, since £ is continuous, we have, £, (£ (1)) = £(L1 (1)) = £ (£ (,unﬂ)) =L (w)
from which we have

(PIE@) L1 (£ @) S m (0 (£(E (1)), £1 (£ (1)) p (£ (£: ( W)}, £1 (L1 (w)))) +
m2 (P (£(£1( o«) £1( -El(au)) 1+P(f( (w)) £1 (£ (1)))))

L)) p(£1{L (W) £y (£ ()
( (@)} £1(£ (1))
alp f (W))) (£(£1( (L1 (@) +

(((HJ(-C L1(W), £ (£ 1)) p «2 1()) (:(t«))})2

). £
(£
(T+p(Z (£ wu)fmfwnn)
p(£ flfma)(fuf(

I (T4 (£ (£ (m), 21 (£ ((n

J)

(& W
)
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on taking limit as n — oo and use continuity, we obtain

(P (L)) LLE)® < mp(£ (@) (£ @) p(£(£1 (W), £1(£1(w) +
T (P (£ (£ (W), £y (£1 () (1 p (£(£, (W), £ (w))))
03 (0 (£{£1 (W), £1(L1 W) (1 + p(£(£1 (W), £ (w))))
4 (P (£ (W), £1(£1 (W) p(£(£1 (), £1 (£, ()
o ((1+p(£(£1 (W) (L @) p (£ (£ {w)), £ mwm)
5 1+ p((£ (W), (£ (W)

UL (£1(w), (£ (@))) p (£ (£1 (), £1 ((£1 () )
s ( T+ 2((£ (W), £ (@) ) /

Since, £ and £ icommute, we have

(L) L1 (L1 w))? < (ﬂ(f(w)-(f(wJ))ﬂ(f(') L1(£1{w)))) +
M (P{L (W), £1(£1 (@) (1 + p (£ (w )£ (W) +
M5 (P (L (W) L1 (L @D (14 p(£ (), £ (w)))) +

0 (p (£ (W), £, (£, (wmp( (@), £1(£1 () +
) ((1+p(£(w),(£(w pIL (W), £ (£, (W)
; (1+p( m ff(w»

PILW) (£ @) p(£(£1(w), £ ((£1 (W)
””“( {1+p(f(u} L)) ) |

which implies,

PULE(W)), £1(£1(w)))

in

Map (L (W), £1(L1 (W) +mep (£ (W), £1(£) (W)
Map (£ () £1(£1(W))) +msp (£ (W), £1(£, ()
(12 + 13 + 04+ 15) p (£ (), £1 (£, (W),

(L= 1y 14 +5)) p (£ (W), £1 (£ () <0
PIE(W), L1(£ (w))) =0,

Llw) = £ (£ (w)),

H

i

LR

83



Next, we prove that £ (w) is a common fixed point of £ and £,. So, by (5.1}, we have

(PELL @), £ @) < (p (£ (£1(W)), £1(£1 (W) pl£ (), £1(w))) +

(o(£ £mm +p(£ (W), £1(£1 (W) +
), £ (u, (L (f @), £1()) ) N
1+M£ £,w)))) )
m(p (£ D£MWJ(()£MMJ+
1+p L1 (W) p{£ (W), £, (w))\?
”( L), £1 (21 (@) )*
w) -51(51( N e (£{w), £1((w))
K ( T+ p(£(£, (@) £ (£ @)) )’

or

(£ (W), £1(w)))® < (0 (L), £((W)) p (£ (w), £1 (w))) +
M2 (p{£ (W), £1()) (14 p(£ (W), £ (W) +
N3 (P{£ (W), L1 (W) p (£ (w), £1 (w)) ( (L+p(L(w), £{w)))

1, (p (£ (w), £1 (w )p((quw»+f
q(u+ﬂf(>f( pw@mfmwgz
; (I+p(£(w), £(w)))

ne (LWL L)) p(£ (), £ ()2
*“( L+ p(£ (@), £ (@) )’

= (L), £1(w) <myp (L (W), £1 (W) + M3 (£ {w), £1(w)) +
NP (£(w), £1(w)) + n5p (£ (W), £, (W),
implies
(D= (245 + 10 +15) p (£ (W), £1(w)) < 0.
and the inequality is possible only fp(£(w), £1(w)=0= £ (w) =
use £(Ly (W) = £, (£ (w)) = Hw)) = £(w) = £, (w).

To see uniqueness, suppose w; = £{wr) = £1(w) and £, = £{w2) = L9 (wy). By

£y (w). Hence, we
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(5.1) we get

(Plwrwa))® <y (p(£(wr), £1(w1)) p (£ (wa), £1(wa))) +
2 (p(£ (w2), £ (wz))2(1+p(f (W), £1 (wi)))} +
73 (p (£ (w2), £1{wa)) p(£1 (w1}, £1(w2)) (1 + p (£ (), £1 (W) +

M (p (£ {w1), £1(wa)) p (£ (wa), £1(wa))) + )
(14 p(£(wa), (1)))!3( (wa2), £1 (wa))
”5( T+ (£ (@), £1 (1)) ) "
, (P(f(wz).f 1 (w1)) p(f(wz),flm)))?
° (1+p(£ (w1), £1(w1))) ’
M (p (w1, w1} p(we,w2)) + 1y (p (wa, w2)? (1 + p(wa,w1)))

IA

M3 (P (w2, w2) p (w1, wa) (1 + p(wa,w1))) + 7y (p (w1, w2) plwa, wa)) +
. ((1 +p(w,w1))P(w?.wz))?+TI (P(wz,wl)P(wz,w2))2
’ (1+p(wr,wn)) ° {1+ p(wiwi)) ‘
= (plwr.w2))? <0,

which is possible only if p (w),ws) = 0 = w; = w,, which shows the uniqueness of fixed

point of mappings £ and £,.

Corollary 5.2.2. If £, : 3 — 3 satisfy the condition:

(P (L () £ ) < (o (g, £1 () p (0 £1 (1)) +
Nz (P (12 £1 (12))* (1 + p (g, £1 (1))} +
N3 (P (g, L1 (2)) p (L1 (1), £1 (1)) (1 + p (£9, £, (11,)))) +

Ma (o (11, £1 (12)) p (g, £ (122))) +

( 1+ p {9, 411)) 0 (129, £1 (#2))) +
(1 +p ,U'];-El #1)))

; ( (10, £1 (111)) p (uta, fl((ug))))z
6 (14 p(pyq, fl(#] )
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for some 1. p1y € , where 0,15, 75, 75.75, 76 > 0, such that Tyt +2n,+0; <1,

then £, has a unique fixed point in .
Proof Put £ = I, (Identity mapping) in Theorem 5.2.1 and follow the result.
Remark 5.2.3. If we put 7, = 0, then we get Theorem 5.1.3 in [55].

Remark 5.2.4. If we put T2 =73 =ny =105 =14 =0, then we get Theorem 5.1.2 in
[46).

Remark 5.2.5. Ifn, =, = A, M3 =1y = Az and 15 = g = A3, we get Theorem 5.1.5
in [6§].

Example 5.2.6. If & = [0, 3] isany set and p: § x & — R+ is a metric on § given by
Pty ta) = |y — pol for py, #z € 3. If £ and £, on S are given by £ (p) = p?, £ (n) =
#°. Then £ and £, commute with each other such that £ (£, (u)) = £, (£ (n)) = u
and £, (S) = [0, %] € [0, L] = £(D) with 0 as the only common fixed point of £ and
£,

Our next theorem, is a generalization of Theorem 5.2.1 in the context of a compact
metric space. In concluding the section, we observe that Theorem 5.2.1 remains valid

even if § happens to be a compact metric space.

Theorem 5.2.7. If£, £,:3x 3 — R* are two mappings of a compact metric space

with £ is continuous and £, £ 1 commute with each other such that £, (3)C £(3) and
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£ satisfy the following condition:

(p(£3 (1), £1(ma)))’ < m{p (£ () £1(m)) p (£ (1), £1 (1a))) +
Mo (P (£ (k2) . £ (12))" (1 + p (£ (g) , £1 (112))) +
p(L (k) £1 (k) p (£1 (1), £1 (1)) = ) 3
(L+p(£ (1), £1 (1))

M (p (£ (1), £1 (1)) p (£ (1), £1 (1)) +
((1+P(f(#2) £{u)) e (£ (1 )51(#2))>2+

3

))
L+ p(£ (1), £1 (1))
p (L (1), £1(p1)) p (£ (113) , £1 ({122))) )"‘
(14 p(£ (1), £1(111))) '

for py, py € 9, py # pay m; > 0 and
Mtne+03+2n+ 15 =1, (5.4)
then £ and £, have a unique common fixed point in 3

Proof If y, € $ is arbitrary and £, (3) C £(3), there exists y; € & such that

Lipg = £y We construct a sequence {g,} in § satisfying £, = Ly, using (5.4)
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and (o (£ (thi1) £ (1022)))" = (p (L1 0}, £1 (p0s1)))” we get

(P (£ (tnsr) - £ (1ns)))® < (p(f( )2 L1 (1) 2 (£ (o) s £1 (1)) +
p(-t’ bi1) s £1 (#a1)) (L4 0 (£ (#n+1),£1(un))))
(p(i’ Bost) £1 (#nﬂ))p(fl(#n),f(#nﬂ)))
l—l-p ( +1) £1(l”n)))
(o (£ () s £1 (1031} 2 (£ (tns1) + £1 (s1))
( + 0 (£ (), fu%n>(fuaﬂyflmwaﬁf

+14

(T+p (L (), £1 (1)

(s) fl%npuxmﬂyfwwwan :
(1+p( £{u,), £ (1))

(A

(p
(P (£ () s £ (tn51)) 2 (£ (ttas1) s £ (ftng2))) +

( () MHQ)U+Mf@HJJ0mﬂD)+
( tun-H -u’n+2)) 12 (f (nu'n+l) L (#un+2)) ) v

Iy

1+P (nun+l) f(ﬂm—l)))
74 ( f(#n £ (1ns2)) (L (ns1) s £ (tana) ) +

() L) o 1) £ ))
1+p(f (st} f(#nﬂ))) ) :-
.un+1) ": Hn +1 )p(f(“ﬂﬂ) "9(("‘ *2)))) ’

(1+o(£(un). £{n, -1)))

which gives us p (£ (4,,,), £ (ay2)) < p(£(u,), £ (#ing1)) for n > 0. Hence, Prr1 <
Prs where p, = p (£(pa) £ (1)) 80d ppy = 0 (£ (toer) s £ (ftnsa) ) 7 + 10 + 0y +
2y + 15 = 1. Hence, p, = {p(£(u,). £ (#1,41))} is non-increasing and so converges
to a limit p > 0 such that lim, ,. p_ = lim,_ {p(£(u). £ (#p41)}} = p. Since G is
compact, using sequential compactness of <, there exists a subsequence { ,unk} of {u,}
such that for any ¢ € § and k — oo, we get limy oo g1, = 6. Using continuity of £,

and p, to obtain Po, = P (,u,nk,,unkﬂ) = P(#nk=£1#nk) — p{0,£,8) as k — 0. Since
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Pn, — P, we have p = p (0, £,6). Similarly,

Proes =P (#nk?l.#nm) = o (Littne L1drp,) = p(£40, £:£:0) =p  (5.6)

as k — oo. Since, the sequence {pm“} is a subsequence of the sequence {p,}, we get
p=p{8 £.0) = p(£,0, £;£,0). Next, we claim p = 0. Suppose p # 0, then 8 £ £,0
and by (5.6) we obtain

p=Tim p, = Tim p (£ (1), £1(£) () = p(£2(8) . £1(£:(6))) < p(6, £1(6))
which is contradiction, hence p = 0. Hence,
lim p (£, Latgyq) = 0. (5.7)
Since, £1p,, = £u,,, for each n = 0,1,2, ... From (5.7), we get
inf {d(£{p}, £1{u)): n€ S} =0. (5.8)

Since the mapping p : & — R defined by p — p(£ (i), £1 (1)) is continuous, so for

f) € & we get
p(£(01), £1(01)) = inf {p(£ (k) £1(n)) - € B}

By (58). p(£(61),£1(61)) = 0 and so £(6,) = £1{(8;) = 0. Now, since £ and £,
commute, we have £ () = £ (£, (6h)) = £,(£(0,)) = £,(8). Thus,

£(8) = £,(8) =0, (5.9)

and so # is a common fixed point of £ and £;.

To prove, # is unique. Suppose, on the contrary that there exists another point w € &
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such that £ (w) = £, (w) = w with £ (w) # £ (§). Using condition (5.4) we get

(P(.w))® < mip(£(0), £1(0)) p(£ (W), £1 (w))) +
nz(p(f(w w)2(1+p( £(w), £1(6)))) +
13 (p (£ (@) Ly @)) p(L1(w), £1 (W)} (1+ p(£ (W), £, (w)))) +
N (p(£(0), L1 (W) p (£ (w), £1(w))) +

(L+p(£(6),£,(8)))
p (£ (w) .f: (9) f:(w), ((wm)2
) £1 () ’
n]{pﬁﬁ)pww))‘i"?z(( W) (14 p(w,0))) +

M3 (p(w,w) p(0,w) (14 p(w,0))) + 1y (p(6,w) p (w,w)) +

(1+p(w.0) p(w,w)\* p(w,v) p(w,w)
7?5( (1+p(8,6)) ) +n6( (1+p(6,0)) )

( +p(f (w). £(6)p f(“’)’f‘(w)))2+
(

Fa

this gives us

(p(0.w)* < 0
(o(6.0))* = 0,
plbw) = 0,

which implies that 6 = w and this gives us uniqueness of 6.
Corollary 5.2.8. If £ £,:3 - G are seif maps and $ with p is compact and satisfy

(P (L1 (), £1 (1)) < A Xy + Ao Xo + A X3
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where

Xy =p (£ (), £1 (1)) p (L (e}, £1 ()} + p (£ (1), £1 (12))?
(L4 p{£ (1), £1 (1))
Ko =p(£(ka), £1(12) o (£1 (1), £1 (1)) (1 + p (£ (1), £1 (1))

+p (£ (#1) 1{12)) p (£ (pa}, £1(p3))

Y. = [ relL) Ll ))p m)r:(mn) 4 p(f(pz).mmlnp(f(uz),xl((p?)n)?
A S (T+p( L), -':1 (1)) Qrp(£{p ) Lilug ) '

for o1, puy € S, where Ay, Ay, Az > 0 with A, + 2A2 + A3 = 1, then £ and £ have unique

common fixed point in &

Proof  Putting 9, =7, = A, 7, = M4 = Az and 75 = Ay in Theorem 5.2.4 we get the

required result.

Corollary 5.2.9. If £;: S — 9 satisfy

(P () L1 (12)))* < my (o (a, £1 (1)) p(£2, £1 (1)) +
M2 (P (o £1 (2))* (14 p (o, £1 (1)) +
)P (L1 () La(pa)) (1 + ppg, £1(my)))) +
Ma (P (1115 £1 (1)) p (112, £1 (1))
iy (P (e £ ()} o (pgy £1(13)))

na (P (p2, £1 (12)
)

for u;, 1y € $ and n,, 5y, 7, 71 2 0, such that n; + 7, +7; + 29, = 1, then £, has fixed

point in &

Proof Puttingn, =0and £ = I, (Identity mapping) in Theorem 5.2.4 and the result

follows.
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Corollary 5.2.10. If £;:9 -> S is mapping of the compact metric space and satisfy

(L () £1 () € my (e £1(110)) £ (g £1 (1)) +
12 (P (Hay £1 (11))° (2 + p (g, £1 (1)) ,

for p;. p5 € S such that n; + 25, = 1, then £, has a unique fixed point in .
Proof Putting n; =1, =75 = 5 = 0, in Theorem 5.2.7 and the result follow.

Remark 5.2.11. Corollary 5.2.10 is the result of Fisher [34].

Now, we give an example to support the validity of the above Theorem 5.2.4.

Example 5.2.14. If & = {1.5,9} is a finite set and £ be the metric with ordinary
distance. If £ and £ on § be defined by

Then, it is clear that £ (3) € £(J) with £ and £ 1 commute, continuous and (S, p) is
a compact metric space. Then, this example satisfy all the conditions of Theorem 5.2.7
with 9 as the only common fixed point in .

In the third and last section of this chapter, the third theorem deals with common

fixed point of two continuous mappings defined on a hausdorff space.

Theorem 5.2.15. If £ and £, are continuous mappings of a hausdorff space 3 with

£ and £, commute with each other such that £, (S)C £(8). v :3Ix3 > Rt is
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continuous and for each pair of elements p, yy €  with £ (u)) # £ (i1,) and satisfy

((-51(!11)--51(#2)))2 < (@ (£ ( )fl(#l))?}(f(n% L1 (1)) +

2 (U (£ (), £1 ()P L+ v (£ m))) +
b(f (12), ) £ ( (#2)) (L -51 #2 )
(#2)
£{0g) 4 1) 6 (£ (s <\,
1+w(f(uz) -fl
74 (e { ()} (£ (g} £4 (/12 s
1+u #2) £(11))) ¥ (£ (1), £3 (1))
”5( L+ ¢ (£ (1), £1 (1)) )*
( ). & (Pl))¢(£ ;. £ (#2 ))
1+w( ) L1 (p 1)) ’

for ; > 0, such that 5, +n, 4+ 5 + 20, + 75 < 1. If for some Ly € G, the sequence {£,}

in § has a convergent subsequence. Then £ and £, admits a common fixed point.

Proof Since £,(S) ¢ £(S). So, for Ly € 3, we choose £; € & such that £, (L) =
£ (L£1) ,with the sequence {L,} defined by £,£, = ££;, LLy=LLo o, £1L, = £L,,
£1w = LLuwhere (W{L (Carr), £ (Las2)))* = (§(£1(La), £1(Lns1)))? and using
(5.10) to obtain

(0 (£ (Lasa) £ (Lns2)))’ < my (0 (£(Ln), £1(La)}w (£ (Lnt1) . £1(Lnp1))) +
M2 (v (£ (Lng1) s 1 (Laet) N2 (1 + 0 (£ (Lsa) L £ (La)))) +
w(f(cnwtl):fl (Cn-f-l))w(fl (En)efl (£71+1))x
(146 (£ (Lass), £1 (L))
M (W (£ (L), fl (L)) ¥ (£ (Lnga), £1(Lns1))) +
((mu Los1) £ (L)) ¥ (£ (Lnr), £ (cn+l)>)"'+
1+ v (£{L.), £1(L,))
)¢

( (£ (Lns1), L1 (L)) 6 (£ (Lnyr), fl(cm)))?
L+ (£(L,). £1(L,)) ’

+

3
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or

(¥ (£ (Lnsr) £ (Law))) S 1y (0(£(Ln), £ (Lasr)) B (£ (Los)s £ (Lnsa))) +
M2 (€ (£ (Lar1) s £(Las2)))’ (14 ¥ (£ {Los) . £ (Las1))) +
G (£ (L), £ (Cov)) 6L (Lar) ) £ (Cnsa) ) N
(149 (£ (Las1), £ (Lrnn)

T4 (V‘) (-E (En) y £ (£n+2)) 'U() ('E (£11+1) ) £ (£n+2))) + ‘
(u T UL (Lnnt), L L)Y (£ (Lnn1) £ (Lnsa)) ) .
s 1+ (£(L£2), £ (Lorr)
(w (£ (Lry1) £ (Lt 1)) ¥ (£ (L), £ (Lngo)) )
& 146 (£(Ln), £ (Lngy)) ’

3

or

U L) £ (Lay2)) < mu (£(La}, £ (Lurr)) +map (£ (Ln1), £ (Losa))
039 (£ (Lnwr) s £ (Lav2)) + 038 (£ (L), £ (Loya)) +
15¥ (£ (Lnsr, £ (Laga))) |

' (my +14) )
L ('E (Ln+l) 3 £ ([-"n+2)) S (1 _ (7]2 +]773 T T + ns))w (“E (Cn) ' 'C(‘CnJrl))' (511)

If £, = £(y,) for some n € N, by (5.11), we get

_‘ i . (7?1 +74) . _ - .’

VEI L) =L £ 00) S e By (13 £ (o)) < 600,
Similarly,

V(Lo Lg) = U (£ (vg), £ (7)) < DLy 00)) £ () < 0 (L0 L),

(1= (n, + 13+ 1y +n5))

Since, (1 + 1y + 13 + 27, + 15) < 1, repeting the above process, we get

(Lo, L1) 2w (Lo Ly) > ... > Y(Ln, Ly1) > ...
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This shows that the sequence v (L,,, L,+1) is bounded which converges along with all its
subsequences to some positive real number w. If {£,} has a convergent subsequence of

{L,,} which converges to the real number w. Then,

viw 1) = v (Jim (£a), £ (Jim (o)) =6 (lim (£0). Jim (Ln,,,),
= t,bkll‘l’lgo ((c'nk+l) ? (ﬁnk+2)) = w (kh_'n;lo (Enk-t-l) ’kh_.nolo (Lﬂku)) !
= v (£ fim (La), £1 (£ Jim (£a,))) = & (£2 (@), £1 (£1 (@))).

Next, to show w is fixed point of £ and £,. First, we show that £, admit a fixed point
w. Suppose, for contradiction that £, (w) # w, then by (5.10) we have (¢ (w, £1 (w)))* =
(v (£1 (w). £1(£1 (w))))? and hence,

(@ (w, £1 @))€ m (@ (£ W), £1(W) ¥ (£ (£ W), £ (£ @)))
1y (¥ (£ (£1 (W), £1(£, (w))))?

NP1+ (£(£: (W), £ W) +
. (f(fl( DAL @) (£ @) L1 (6 D) |
1+ ¥ (£ (£ (@), £1 ()
s (¥ (£ (W), £1 (L1 (W)W (£ (£1(w)), £ (£1 (W) +
((1+¢( (£1(w), £ (W))W (£(£1 (W), f;(fl(w))))g
5 1+ (£ {w), £ (W)
. (w(ﬁ(fl (W), £1 (W) W (£(£1 (), £1 (£, (w))))2
° 1+9 (£ (), £ ()) ’
< (@ (£ (W), £ @)Y (£ (W), £1(£1 (@) +
na (¥ ((£1 (@), £1 (£ (w ))))2(1+w(( (W), £y (@) +
v ((£1(w), £1 (£ (W)))

Y (L1 (w), £1(£1 (W) 4
(@)), £1 (w)))
(

(£1(w), £1(£1{w)))) +
) (£ (w

(1+uv((£
AL (w) . £y (£1(w))

o
((1+¢((£1(M)),£1(( )
(

1+




Hence,

(Clw £1 (@))€ m (@ (w,w) e (@ £1 (W) + 10 ((w, £1 (@) (1 + ¥ (w,w)) +
1y (¢ (w0, £1{w)) ¥ (w, £1 (W) (1 + ¥ (w,w))) +
Mg (6 (w0, £1 (@) & (w, £1(w))) + 15 (& (w, £1 (@))%,

implies

viw £1(w)) < ppur{w, £1 (W) + ¢ (w, £1(w)) + 0% (w, £1(w)) + ¢ (w, £1 (@),

= (I=(np+ny+mn+ns)¢(w, £ (W) <0,

which is contradiction, because 7, + 7, + 13 + 27, + 75 < 1. Hence, ¥ (w, £ (w)) =
0= w=L(w). Thus, w € ¥ is a fixed point of £;. Since, £ and £, commute and
are continuous so, £ (£, (Ln, )} — £(w) and £, (£(L,,)) — £, (w) as k — oo, which
implies that £ (£, (£,,,)) = £1(£(L,,)) a8 Nk and by the uniqueness of limit we have
L{w)=£1{w)=w.

Now, we claim that w is the unique common fixed point of £ and £;. Supnose, for

contradiction that w, is another fixed point of £ and £; so that £ (wy) = £, (wy) = wy,

96



then by (5.10} we obtain

(v ()’ € 0@ (L) £ @)L ), £1 () +

U (£ (W), £1 (1) ¥ (L (w), £1(w

T3 | V) +
(1+ (£ {w1), £1{w)))
¥

(L (W) Ly(wr1) v (£ (wn), fl(vdl)))

() Lo (MDY+
1+ (£ (w), £1(w))

wi), £ (1))

(«)) )‘

¥ (w1,w01))? (144 (wr, @) +

(Mfwﬂiﬂw)((
e 1+ v (£(w), £

T (¢ (w, W} (w1,w1)) + 74 ((

My (¥ (wr,wi) ¥ (w,wi) (1 + 9 (wr,w))) +
D ((1 +TL‘(W1,£A}))"¢’(L01,W1)>2+ ) (L‘ (wl.w)v(wl,wi))

1+ v (w,w) 1+ ¢ (w,w)

IA

< O

This implies that (v (w,«-))* < 0, which is contradiction because (m+n+n3+2n,+n) <

1. Hence, (¥ (w,w,))? = 0 = w = w,. Hence, w is unique.

Corollary 5.2.16. If £, : ¥ — O is continuous on a hausdorfl space Fand ¥ : GxG§ —

RTis continuous so that for each pair of elements p,, u, € S, £ (1) # £ (u5) and satisfy

W (La{an), £1 () <y (0 (s £3 () ¥ (g, £1 (112))) +
Mg (¥ (2, £1 (12)))" (1 + 9 (g, £1 (1)) +
M3 (¥ (pg. L1 (¥ (L1 (11y) s £1 (9)) (1 + % (g, £1 (1)) +

(
7?4( #1 £1 () (#2’ 1 ()} +
(1 + 9 (g 1)) ¥ (g, £, (#2)))2+
1+TI)(,U.1 £1 (1))
(w ta, £1 (1)) ¥ (19, fl(uz)))2
L+ (g, £ (1)
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where 7; > 0 satisfy the condition 7, + 7y + 75 + 217, -+ 5 < 1. If for some p4 € 9, the
sequence {x,} in § has a convergent subsequence.Then £;admits a unique fixed point

in G,
Proof Put £ = I; (Identity mapping) in Theorem 5.2.15 and the result follow.

Corollary 5.2.17. If £ and £, are continuous mappings of a hausdorfl space S and if £
and £, commute with each others with the condition £, (¥) C £(9). fv : xS — R

is a continuous function and for each pair of u, p, € 3, £ (1) # £ (o) satisfy

W (£1 (1), £1 () <y (0 (£ (), £1 (1)) % (£ (1) 5 £1 (1)) +
7 (0 (£ (i), £1 () (1 + 0 (£ (1y) , £1 (1)) +,

where n,,7, > 0, such that ; + 7, < 1. If for some g, € S, the sequence {u,} in & has

a convergent subsequence.Then £ and £, admit a common fixed point.

Proof Putn, =mn, =1, =1 =0, in Theorem 5.2.15 we get Corollary 5.2.17.
Remark 5.2.18. Corollary 5.2.16 is the result of [55].

Remark 5.2.19. Corollary 5.2.17 is the result of [23].

Example 5.2.20. If S ={3,4,5}and define by ¢ : I x ¥ — [6,00) and £, £ : F - R

’QL'(El,[:}) = Oand¢(£1,£2)=w(£2,cl) for Cl,ﬁg E%W]th
v(3.4) = Lv{(3,5)=%(4,5 =2and
£(3) = 4,£(4)=3,£(5)=5L1(3) = £,(4) = £1(5) = 5.

Now, it is clear that Theorem 5.2.15 is satisfied and 5 is the common fixed point of £
and £,
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Conclusion

This research deals with function spaces in general and fixed point theory in particular.
In this thesis, we have mainly focused on the generalizations of certain fixed theorems
available in the literature on fixed point theory, which include generalizations of fixed
results in complete, compact, pseudo-compact, hausdorff and b-metric spaces using the
notions of continuous, commuting and weakly commuting mappings. We used the meth-
ods adopted by Bailey, Edelstein, Fisher and Jungch etc. The applications of fixed point
theory is to seek unique solution of linear algebraic, differential and integral equations

reduced to functional equations.
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