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Preface

The design of an efficient cooling system comprising of a rotating disk
arrangement is essential owing to the ever-growing demand in the power output and
thermal efficiency of turbomachinery systems, gas turbine, transport engineering,
chemical engineering, aircraft engineering, rotating disk contractors, and many other
rotating heat exchanging devices. The engineering sophistication and economic
incentives of industries do also require to improve the performance of heat exchangers
in order to obtain the optimum use of energy, and materials, to achieve further thermal
control, and to meet the compactness requirements. Ranging from the simple
turbomachinery to the state - of - the - art aerospace vehicles most of the practical
rotating systems have strong connections with the rotating disk configuration, either
rotating freely or in a housing. This signifies the importance of the geometrical
configuration of rotating disk system as it relates to a large number of practical
applications, namely, spin coating, rotational air-cleaners, disk drivers, atomizers, jet
cooling, food processing, rotating machinery, medical equipment and many more.
Further understanding of the convective transport mechanism due to a rotating disk,
whose surface is flat and also not essentially flat, is an important area of research.
Explanation to the non-trivial augmentation in heat transfer and the identification of the
agents contributing there are the fundamental reasons behind this study.

Therefore, the present monograph focuses on the prediction of the enhanced
heat transfer rate in some complex flows arising in the rotating disk system as it directly
links to the cooling performance of such systems. On the other hand the consequential
mitigation of environmental degradation has provoked many techniques of heat transfer
augmentation. In this context, different approaches, such as active, passive and
combined (i.e. both active and passive), techniques are employed to achieve the heat
transfer augmentation. The primary objective of this work is to investigate the impact
of non-homogenous distribution of nanoparticles, non-uniform disk temperature
distribution, disk transpiration, waviness of the disk and the external forced flow to the
rotating disk geometries. The detailed discussion of obtaining the heat transfer
enhancement via Nanofluid is given in Chapter 2 where the weak prediction of
homogeneous models (as compared to non-homogeneous model) on heat transfer
enhancements is identified. Almost 67% enhancement in heat transfer rate is noted for

the non-uniform nanoparticle distribution (non-homogeneous modeling) for some fixed
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values of the involved parameters whereas the uniform distribution (homogeneous
model) yields only 22% which signifies the role of nanoparticle distribution in heat
transfer augmentation. The research work presented in Chapter 2 are published in
Thermal Science: Year 2018, Vol. 22, No. 6A, pp. 1-16. Some new classes of rotating
disk temperatures have been considered in Chapter 3 due to which increased heat
transfer rates were noticed. For instance, exponentially increasing disk temperature of
a free rotating disk in the quiescent air yields 27% augmentation in heat transfer rate
while a radially increasing non-linear disk temperature corresponds to 15%
intensification in heat transfer rate as compared to isothermal disk. The heat transfer
augmentation has also been acquired by the mass addition/removal to flow inside the
gap between a cone and a disk. Chapter 4 highlights this analysis in detail. A serious
lack of work is felt in the study of surface roughness effects on rotating disk boundary-
layer and this is focused in Chapters S and 6. The sinusoidal-shaped (wavy) disk has
been opted as it can be dealt quite easily with the mathematical modeling. A
comprehensive discussion has been made in the aforementioned Chapters highlighting
the role of surface texture in different flow regimes like non-isothermal distribution of
disk temperature and under uniform forced flow. The findings of Chapter 5 are
published in International Journal of Heat and Mass Transfer: Year 2019, Vol.
129, pp. 96-102. Finally, inferences are drawn in the Conclusions section which are
very helpful in order to understand the heat transfer enhancement mechanisms in
rotating disk systems. It is important to mention here that the existence of the analogy
between convective heat and mass transfer phenomena leads this study to cover the

topic of mass transfer in a rotating disk systems as well.
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CHAPTER 1

Introduction and Preludes

The present research work highlights the analysis of heat and mass transfer from
a rotating disk surrounded by a quiescent or moving fluid and inside a gap between a
disk and a cone. It has been investigated that the heat (mass) transfer characteristics
strongly relies on some major features, namely, various flow conditions, surface
temperature distribution, design of the disk, non-homogeneous distribution of
nanoparticles in pure fluid, pressure gradient, and transpiration. The primary objective
of this dissertation is to predict the enhanced heat (mass) transfer rate in all these
aforementioned situations. Therefore, it is essential to explain, first, the significance of

heat and mass transfer enhancement, which is fully described in the next section.

1.1 Heat and mass transfer enhancement

A great societal challenge faced by the scientific community, especially working
in power engineering, in the current era is to save the energy and material to attain more
thermal control, sustainable developments, compactness requirements, etc. One of the
exertion made by the researchers is the heat transfer enhancement (intensification or
augmentation) towards energy saving and several other economical and mechanical
benefits. In many engineering applications, a mechanical process undergoes in a very
high temperature environment such as the rocket motor, Pyrolysis, Hypersonic vehicles,
load-bearing applications, etc. Similarly, there is a demand of proper operations, which
are capable of removing the heat produced by the prime movers of automobiles. The
requirement of cooling system for the heat dissipation of electronic devices is also
appropriate example. These situations necessitate an efficient heat transfer mechanism
so that the working machinery can continue without any collapse. Therefore the
engineers and scientists are always interested in searching the ways in which high rate
of heat transfer can be achieved. In doing so, different techniques are adopted like
nanoscale coating, surface coating at the micron scale, hydrodynamic cavitation, use of
nanofluid, surface roughness, surface porosity, external fluid motion, etc. depending

upon the suitability of the situation. Heat transfer enhancement is also essential for the



economic incentives of the industries (food process, chemical engineering, automobile,
nuclear energy, aeronautic industries, air conditioning, etc.) and fuel conservations as
it improves the efficiency of heat exchangers (i.e. increase the UA value of heat
exchanger, utilization of the maximum possible power, etc.). Furthermore, effective
heat transfer results in the reduction of size of heat exchangers which makes them more
compact by reducing their capital cost.

Different approaches or techniques are employed from which heat transfer
augmentation can be achieved, namely, active, passive and combined (active and
passive). In passive techniques, improvements in the process of heat exchange can be
obtained by increasing the surface area of heat exchanger (surface coating at micron
scale level, nano scale coating, waviness, etc.); by modification of the physical
properties of fluid or surface (nanofluid); by hydrodynamic cavitation; by turbulence
mixing promoters; boiling and condensation, etc. External power is required for active
methods to increase the heat transfer rate. Surface vibrations, jets (single/multiple
impinging jets, unsteady jets and synthetic jets), spray, mechanical aids,
electrodynamics, etc. are the well-known active techniques used to improve overall heat
transfer in heat exchangers.

Heat exchange (a concerned device is shown in Fig. 1.1) is the term used for the
heat transfer between a fluid and solid or between two or more fluids. Cooling or
heating of a fluid, condensation, evaporation, internal combustion engine, petroleum
refineries, chemical plant power stations, cooling of electronic appliances, ventilation,
etc. are the classical examples of heat exchange phenomenon. Heat and mass transfer
between a fluid and a solid surface depend strongly upon the character of the
momentum, thermal, and concentration boundary-layers. This fact signifies the
importance of convective heat transport phenomena which is essential for diverse
engineering or industrial applications, for example, heat exchangers, computer storage
devices, power engineering, aerodynamic extrusion of flexible surfaces, external
cooler, direct steam blowing or injection, melting spinning, glass and polymer industry,
paper production, gas turbine engines, rocket motor, air-cooled turbine disks, gear
wheels, fly wheels and many others. Convective heat transfer occurs as a result of the
fluid motion in the presence of temperature gradients where the main concern is to
estimate the heat transfer rate. There exists an analogy between heat and mass transfer
(which occurs due to the presence of concentration gradients) and is also of great

importance in heat exchange devices, cooling towers, condensers, evaporators, drying,
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absorption, etc. This analogy enables one to use the similar governing equations (based
on analogical laws) that were used to predict the heat transfer rate and acquired
solutions can directly be applied if one assumes the energy equation to by the diffusion
equation and heat transfer rate to be the mass transfer rate. The calculations of heat and
mass transfer rates require the information of velocity, temperature and concentration
fields. Therefore, to attain the increased heat and mass transfer rates in a rotating disk
arrangement first the phenomenon of fluid motion associated to this system needs to be

evaluated and understood.

Fig. 1.1: Heat exchanger.

1.2 Fluid mechanics features

Since we live in a dense gas atmosphere on a planet mostly covered by a liquid,
a simple grasp of fluid mechanics is part of our daily life. Air flow during respiratory
process, observance of water flowing at high speeds while walking along a river,
stirming of a tea cup containing sugar, irrigation process, etc. are good examples of fluid
mechanics problems. Fluid mechanics is an important field for engineers and scientists
with a lot of practical and exciting applications. Our water sewage and electrical
systems heavily depend on fluid equipment. Pipes and pumps are obvious constituents
of these arrangements. Furthenmore, automobiles, aircrafts, spacecrafts, ships, and
essentially all other vehicles comprise interactions with fluid of one kind or another,
both internally and externally, inside an engine or a portion of a hydraulic control
structure. It also helps us to understand and investigate many features of our body such
as blood flow from the heart with the help of a branching network of blood vessels,
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veins, capillaries and also lung's air cycle. Fluid mechanics problems were also being
of great interest which aroused from the environment like prediction of weather,
hurricanes, control of air and water pollution, flows of rivers, underground movement
of water, the tidal flows, the magma flows of volcanoes and the movement of melted
rocks within the earth.

The term gas, liquid, solid and fluid are casually used in daily conversation.
There exists a huge misconception among the people about fluids to be synonym of
liquids and the solids having so strong rigidity that they can’t be deformed. Actually,
the solids and fluids can basically be distinguished upon the responses given to the
applied shear stresses. Under the influence of small shear stress (ratio of tangential force
to area) the static deformation can be noticed in solids while a continuous deformation
is an attribute of fluids. This means that fluid is such a substance which is incapable of
deformation prevention. The branch of science which deals the fluid flows influenced
by external forces (body, surface, etc.) is named as fluid dynamics. The types of flows
are many, however, all such flows are usually categorized as: external or internal flows.
If a fluid moves in the interior of bounding walls it is known as internal flow. The
pumping of fluid through pipes is a common example of internal flows. Society could
not function without water, steam, oil, air, natural gas, and many other hydrocarbons
transported via piping systems. Besides this, the involved mathematicians and
engineers were also concerned with the external flows, i.e. a fluid flow around the
object such as a vehicle moving through a fluid or study of airfoils, etc. There are
different sorts of flows arising in practical applications such as laminar flow (movement
of fluids in layers) and turbulence (chaotic, disordered and unsteady). Laminar flows
are rare in nature while most of the flows are turbulent. But an important fact about the
laminar flows is that the solutions obtained from laminar flows serve as a basis for the
simulation of turbulent flows.

Applied fluid mechanics is usually involved in the analyses or design of a
mechanism having certain definite goals (e.g. an airplane, a heat exchanger, a piping
system, etc.). The primary objective is to estimate the device resistance to fluid motion.
For a vehicle, this flow resistance is called as drag. In piping system and in rotating
electrical machines the calculation of pressure loss is of practical importance. The
engineers and scientists were very much concerned with the boundary effects on fluid
flows, i.c. the nature of flows near a solid boundary. The mystery of fluid motion near

the walls (boundary-layer flows) was first resolved by L. Prandtl [1] in 1904. His
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investigations had a worth of milestone in the discipline of fluid mechanics as it was
Prandtl’s findings due to which famous D’Alembert’s paradox (given in 1752) was
resolved. He [1] investigated that the viscous effects are important in a thin near wall
regions. Examples of such flows include air flow over a sharp edged flat plate, water
flow over a flat plate at zero incidence, flow past a cylinder, sphere or disk, etc.
Therefore, from the Prandt!’s investigation the external flows had been categorized into
two regions: a thin region close to the body where viscous effects are prominent
(boundary-layer region) and the remaining region in which viscous effects are not

important (see Fig. 1.2).

Inviscid Region
Turbulent
Transition Region
Laminar i

! ot

| Y

v E E Viscous Region
M 1

SIS S S S

Fig. 1.2: Boundary-layer flow along a flat plate.

The calculation of drag, separation, heat, and mass transfer would have never
been possible without this contribution. From the engineering prospective, calculation
of the drag force, heat or mass transfer coefficient were the main concerns in boundary-
layer flow problems. Drag (fluid resistance) is the component of retarding force acting
on the body in the opposite direction of relative motion of fluid and object. Blasius [2],
who was the student of Prandtl, calculated the drag for the fundamental flow of fluid
mechanics which is known as Blasius’s flow (two-dimensional flow along a stationary
smooth plate). In order to model virtually all modern transportation systems the drag is
a key factor and is must to be explored. It depends highly on fluid motion and in fact
varies linearly with velocity in laminar flows, whereas quadratic function of velocity in
turbulent flows. Apart from this, the fluid rotation has also a great impact on drag and

its (drag coefficient) study is of huge importance in rotating flows. For instance, in the



design of hulls of full-scale ships, aircrafts, jet engines, etc. An overview of these flows

is presented in the next section owing their diverse applications.

1.3 Overview of rotating flows

Rotation phenomena happen in abundance in natural and engineering processes
such as, oceanic circulations, hurricanes, tornadoes, stirring tea in a tea cup, the
atmosphere, aerospace vehicles, centrifugal pumps and aircrafts, flow of waxy crude
oils, computer disk drives, car brake systems, etc. The rotation of various objects is very
important in many areas of engineering and science such as rotation of earth, a turbine
rotor or a space vehicle. Rotating flows are a good source of providing modeling and
design for various products for example, vacuum cleaners, pumps, jet engines, gas
turbine, and rotating machinery industries. Rotating fluid theory is also a helping
material for the understanding of some practically important situations like many subtle
fluid-structure interactions that turn out vorticity and secondary flows. For example,
movement of viscous fluid through a bend of pipe or channel induces secondary flow
which causes energy losses in many engineering applications. In designing of most
rotating machinery, there are some common features to be considered such as curved
motion, viscosity, boundary-layers, secondary flows, lift and drag. These flows are also
important for many vehicles that contain liquid as fuel. Some vehicles are independent
of fluid due to their heavy mass as compared to fluid. But on the other hand, for example
an oil tanker or a space vehicle (90% fuel mass), the fluid mass may exceed the
structural mass of vehicles. There are many technical applications of rotating flows,
including viscometry, lubrication, rotating machinery (e.g. centrifugal pumps). In order
to obtain 100% efficiency of the machine it is quite important to fully understand the
flow phenomena taking place at the rotating components of these machines. Swirling
generators, system rotation and flows in bends and turns are the common sources which
give rise to rotating flows. However, the present research work has been devoted to the
flows governed by rotating disk systems. The further explanation about the essence of

this system is described in the next section.

1.3.1 Essence of rotating disk systems

In order to search a desirable system to study the transport phenomena of
rotating fluid flow in three-dimensional boundary-layer, the rotating disk is confirmed

to be the best choice. There are a multitude reasons to garner the interest of this
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geometry. It allows the complete three-dimensional self-similar exact solution whereby
reducing the coupled system of Navier-Stokes equations to a simple non-linear system
of ordinary differential equations. Design of gas turbine, rotating disk electrodes
(electro-chemistry), transport engineering (vehicle breaks), bio-and chemical reactors,
rotating disk cleaners, computer disk drives, atomizers, extractors, evaporators,
chemical engineering, air craft engineering, etc. necessitate the utilization of rotating
disk systems. Despite the afore mentioning closely related engineering applications and
the potential of mathematical simplification the rotating disk flow serves as the global
paradigm for many three-dimensional flows, such as the flow on swept wings. The
generation of spiral vortices at the edge of swept wings is similar in nature to the class
of flow vortices developed due to the rotation of the disk in an infinite ambient fluid.
The presence of the point of inflection in the laminar velocity curve of the rotating disk
flow indicates the vulnerability of it to the cross flow instability. This ultimately makes
the rotating disk model as an alternative laboratory towards the study and understanding
of many boundary-layer features associated, particularly, with the three-dimensional
flows. Based on these observations and great resemblances among the rotating disk
boundary-layer and the three-dimensional boundary-layer Lingwood [3] preferred to
choose the rotating disk model towards the study of absolute instability associated with
the three-dimensional flow. Her investigation concludes that neither the Coriolis force
nor the streamline curvature affects the absolute instability in the disk flow, which
confirms the application of the disk results to the swept wing case where the Coriolis
effects are absent at all. Continuing with the Lingwood’s choice of disk model Pier [4]
proposed a new method in order to delay the onset of transition. This was accomplished
by introducing a continuously supplied periodic force in the unstable region in order to
improve the ongoing self-sustained nonlinear dynamics. The laminar-turbulent
transition in the boundary-layer flows can also be delayed, in some cases, because of
the advantageous effects of the compliant walls. In order to investigate the supportive
role of compliant wall in general, and to understand the drag reduction in the swimming
dolphin’s body due to the flexible nature of its skin in particular, Carpenter and Thomas
[5] also preferred to choose the rotating disk model as the convenient flow geometry.
Following the same analogy between the disk flow and three-dimensional boundary-
layers, as utilized by the above researchers, Davies and Carpenter [6] also considered it
as a prototype model for the investigation of linear global behavior of the absolute

instability in three-dimensional boundary-layers. Continuing in this way Imayama [7]
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contributed sufficient efforts towards the further understanding of laminar-turbulent
transition in the rotating disk flow. Further relevant, and of course interesting, studies
can also be found in the bibliographic items of [7]. The general reason behind the
preference to the rotating disk model in the above studies is the most general nature of
disk flow that resembles in large to the three-dimensional flows. The glimpses from the
bulk of available literature seem to be sufficient for the reader in order to make him
realize the wider scope and physical richness of the von Karman swirling flow [8].
Apart from this, the flow analysis of cone-disk systems are very useful in viscometry,
medical equipment, etc. From here one can feel the importance of investigation of flows
associated with the rotating disk systems and in order to find a gap for further
investigation one must need the comprehensive literature survey which is accomplished

in the coming section.

1.3.2 Literature review

A classical fluid mechanics problem, the free rotating disk boundary-layer flow
was initiated by von Karman [8] in 1921. He transformed the well-known Navier-
Stokes equations into coupled ordinary differential equations using similarity
transformations. Cochran [9] made the first extension in von Karman’s flow in 1934 by
considering the impulsive fluid motion started from rest. A steady state asymptotic
solution of accuracy of higher degree was reported by him. Theoretical as well as
experimental studies of this problem were also conducted by Goldstein [10] and
Gregory et al. [11] in 1935 and 1955, respectively. Schlichting and Truckenbrod [12]
and Tifford [13] in 1951 and 1952, respectively, studied the rotating disk flow in a
uniform stream. The permeability of rotating disk was discussed by Stuart [14] in 1954
and Mithal [15] in 1961 where they explored the influence of mass-withdrawal on
rotating disk boundary-layer. Axially-symmetric flow between two disks was analyzed
by Lance and Rogers [16] in 1961. In 1966, Benton [17] improved the unsteady solution
of Cochran. The flow between a stationary and a rotating disk was addressed by Mellor
et al. [18] in 1968. The micropolar fluid flow due to rotating disk was studied by Gram
and Anwar [19] in 1979. In 1979 also, Wang and Watson [20] examined the porosity
effects in the rotating disk system. The compressible flow over a rotating disk was
executed by Solan et al. [21] in 1983. The magnetic effects on the unsteady rotating
disk flow were studied by Attia [22] in 1998. Attia and Hassan [23] also investigated
the Hall effects on this flow in 2004. In the same year Miklavcic and Wang [24]
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considered the partial slip effects on the disk surface. The unsteady von Karman’s
swirling flow had been analyzed by Mehmood et al. [25] in 2010.

Laminar heat transfer due to a rotating disk was first investigated by Milsaps
and Pohlhausen [26] in 1952 for a small range of Prandtl numbers. A more general
analysis related to the Prandtl numbers was made by Sparrow and Gregg [27] in 1959
in the uniform disk temperature situation. Hartnett [28], Hartnett et al. [29] and Tien
and Tsuji [30] in 1959, 1961 and 1963, respectively, considered the non-uniform
temperature of the disk surface permitting the similarity solution. The convective mass
transfer due to rotating disk flow discussed in detail by Levich [31] in 1962. Oxygen
mass transfer rate due to rotating disk was reported experimentally by Ellison and
Comet [32] in 1971. Convective mass transfer rate had also been measured
experimentally by Beg [33] in 1973. A theoretical relation for the mass flux comprising
convective transport in the direction of axis of rotation to a disk rotating in a non-
Newtonian fluid was obtained by Grief and Paterson [34] in 1973. Heat transfer
performance in a flow between co-rotating parallel disks was determined theoretically
by Yoon and Yang [35] in 1984. Flow and heat transfer within rotating disk chemical
vapor deposition (CVD) had been modelled by Evens and Grief [36] in 1987 in which
helium gas was taken as a carrier gas. A more detailed and comprehensive study related
to heat/mass transfer in rotating disk systems had been accomplished by Shevchuk [37].
After the completion of brief review the flow structure of free rotating disk is necessary

to be understood, which is explained in the next section.
1.4 Flow, heat and mass transfer structure

Consider a uniform flat disk centered at z = 0 in three dimensional space. The disk is
surrounded by the fluid. The radius of the disk is assumed to be large enough so that it
is larger than the boundary-layer thickness; edge effects have been ignored due to which
the flow resembles to that considered by von Karman [8] for an infinite disk. The disk
rotates about the z — axis with an angular speed w. The disk temperature is T,, where
the ambient temperature is assumed to be Ty. A schematic of the flow geometry is
shown in Fig. 1.3. The structure of three-dimensional boundary-layer flow and heat
transfer is quite simple. v, be the first component of velocity representing the azimuthal
flow across the entire disk, as the fluid attached to the wall of the disk is spun up due
to the disk rotation and moves in circumferential direction. However, the fluid is also

thrown outwards in radial direction due to the influence of centrifugal force. The
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superimposition of these two flow directions acts in such a way that the fluid rotates in
a spiral fashion and it is lost at the disk edges due to its drawing in downwards direction
into the boundary-layer across the entire disk which is replaced by the axial component
of velocity. Thus, the flow induced by the free disk rotation operates similar to the
centrifugal pump. Whereas, the heat and mass transfer boundary-layers are the same as
they are on the flat plate. One directly looks forward to the ways which enhance the
heat and mass transfer rates in the rotating disk systems, after the complete
understanding of the rotating disk flow and associated heat and mass transfer

phenomena, which are briefly discussed in the next section.

Fig. 1.3: Schematic of the free rotating disk.

1.5 Heat and mass transfer enhancement in rotating disk

systems

The working fluid in almost all heat transfer system is circulated by a pump and
one can reduce the consumption of associated power with the help of heat transfer
augmentation. Numerous industrial applications (turbo machinery, aerospace
engineering, flywheels, gear wheels, power engineering, air-cooled turbine disks, gas
turbine engines, etc.) highlighted the requirement of more precise understanding of flow
and heat transfer in disk pumps. Especially, there is still a room for the improvements
in heat transfer and viscous drag in the flow near a rotating disk in order to predict the
power losses and improved cooling phenomena in the devices which operate in the
situations of high speed and temperature. Heat/mass transfer augmentation in rotating

disk systems is the main concern in the current study where different techniques are
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adopted like the use of nanofluid, non-uniform disk temperature, suction/injection, disk
roughness and external flow which yield significant heat/mass enhancement thus
resulting in improving the efficiency of rotating disk systems. In the following the detail

is given one by one:

1.5.1 Improvements using nanofluid

The primary objective of the current analysis is to search out the mechanisms
which lead to heat transfer augmentation in rotating disk systems. In doing so, the heat
transfer enhancement in rotating disk boundary-layer has been first achieved through
nanofluid which is addressed in Chapter 2 in detail. The notion of nanofluid comes
from the fact that metals have higher thermal conductivity than liquids. Due to the
advent of nanotechnology it became possible to create metallic particles of nanoscale
that can be mixed in a fluid (called base fluid) to form a nanofluid with enhanced
thermal conductivity. Addition of small metallic particles has a big impact on
thermophysical properties of the fluid. The flow and heat transfer with micro size
particles was first studied by Maxwell [38] in 1904. Though he revealed some
enhancement in heat transfer but the particle dimensions caused sedimentation;
abrasion, and clogging (see, for instance [39]). It was realized that in order to keep the
mixture homogeneous, the size of the particles needed to be minimized. This can now
easily be achieved with the help of modern nanotechnology, which can produce
particles of the size between Inm-100nm. Due to extremely small- sized particles,
comparable to the size of the molecules of the base fluid, they are easily accommodated
by the fluid and the aforementioned issues caused by the micro sized metallic particles
get resolved. Choi [40] was the first who introduced the word ‘nanofluid’ for such
fluids. In most of the available literature on nanofluids, the researchers modeled the
nanofluid as a homogeneous mixture by incorporating the role of thermophoressis and
Brownian motion [41, 42] which are commonly known as the Buongiorno model and
the Tiwari and Das model, respectively. Several authors investigated heat and mass
transfer phenomena through Buongiorno {41] and Tiwari and Das [42] models for a
variety of flow geometries, a few of them are mentioned here [43, 44, 45, 46]. Based
on this modeling Magia et al. [45] and Avramenko et al. [47, 48] pointed out that, due
to homogeneous models, the heat transfer coefficients of nanofluid are underpredicted.
The reason is the incorrect incorporation of local concentration of the nanoparticles

within the boundary-layer. The drawback with the Buongiorno [41] and Tiwari and Das

11



[42] models are the consideration of uniform distribution of nanoparticles in the base
fluid. This is actually done on the basis of experimental evidences. However, the
homogeneous distribution of nanoparticles is not sustained within the boundary-layer
due to the relative motion of nanoparticles and fluid. Frank et al. [49] and Ding and
Wen [50] theoretically proved the non-homogeneous distribution of nanoparticles in
the nanofluid as a consequence of velocity and temperature gradients. The existence of
concentration gradients is also confirmed through experiments [46]. Such a
consideration of non-homogeneous concentration of nanoparticle also results in heat
and mass transfer rate augmentation. This issue has recently been addressed by
Avramenko et al. [47] and Mehmood and Usman [51, 52] where they successfully
incorporated the effects of convective transport of nanoparticles on momentum, thermal
and mass transfer phenomena within the boundary-layer. For detailed information it is
fruitful to follow [53, 54, 55]. Inspired from this idea and after a close look at the
available literature concerning the study of nanofluid over a rotating disk one finds a
room for studying heat and mass transfer enhancement in a rotating disk system using
the idea of non-homogeneous distribution of nanoparticles in the boundary-layer. In
literature, the majority of the researchers gave interest to study the homogeneous
distribution of nanoparticles. For instance, Bachok et al. [56] studied the effect of
nanofluid on heat transfer in rotating flow near a porous disk. Turkyilmazoglu [57]
considered the same flow for a non-porous disk taking five different types of
nanoparticles. Enhanced heat transfer rate was noticed in both the studies [56, 57] where
the uniform homogenous model of nanofluid was considered. Further results on the rate
of heat and mass transfer enhancement can be found in recent studies concerning
rotating disk systems [58, 59, 60]. In all these studies [56, 57, 58, 59, 60] the
nanoparticle concentration gradient as well as the dependence of fluid properties on
nanoparticle distribution has not been taken into account. Hence the main objective of
Chapter 2 is to consider forced convection heat and mass transfer phenomena in a
rotating disk boundary-layer. The fluid properties are considered as variable, depending
upon the nanoparticle concentration. Enhanced rate of heat transfer has been calculated
and the effects of nanoparticle concentration on mass flow rate and moment coefficients
are also highlighted. Results are interpreted through several graphs and Tables
presented in Chapter 2.
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1.5.2 Augmentation via non-uniform disk temperature

distribution

An interesting aspect of the rotating disk flow is the existence of self-similar
solution. In this connection an exact self-similar solution to the associated heat transfer
problem is possible if the disk temperature is either constant or variable; following the
power-law form. Owing to this fact an exact self-similar solution to the laminar heat
transfer due to an isothermal rotating disk was first investigated by Milsaps and
Pohlhausen [26] for a small range of Prandtl numbers. A more general analysis related
to the extended values of the Prandtl number was made by Sparrow and Gregg [27] for
the isothermal free rotating disk. Hartnett [28], Hartnett et al. [29] and Tien and Tsuji
[30] considered the non-uniform disk temperature (following the power-law form) and
obtained a similarity solution. So-far, the problem of thermal transport due to a rotating
free disk is restricted to the self-similar cases for which the disk temperature must, in
general, follow the power-law form. Other forms of the variable disk temperature, for
which the solution is non-similar, have never been considered, to the best of our
knowledge.

Therefore, for the case of non-uniform distribution of disk temperature a huge gap
is felt reflecting the requirement of considering the other forms of the disk temperature.
An attempt has been made in this regard in Chapter 3 to fill the gap, though by a little,
by taking the variable disk temperature generated by famous analytic functions such as
sinusoidal, exponential and the polynomial function which do not allow the self-similar
solution to the thermal transport equations. Interestingly, such specifications of the
variable surface temperature had already been reported in [61, 62] for the case of the

vertical flat plate.

Corresponding to the above mentioned forms of the disk temperature the wall
heat flux does not remain self-similar at all radial locations. Consequently, the Nusselt
number does also depend upon the radial variable r and is designated as a local Nusselt
number. The present analysis comprises of both quantitative and qualitative results for
the heat transfer rate as a function of radial distance on the disk surface for a wide range
of Prandtl numbers (from 0.1 to 100). It is worth mentioning that the heat transfer
characteristics reported for the flat plate case [61, 62] can also be seen in the disk case
for the considered all three cases in a qualitative sense. For the considered heat transfer
problem, detailed numerical data have been reported in the form of several Tables in
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Chapter 3. Such computed data can indeed serve as a reference for the other future

works either experimental or theoretical.

1.5.3 Intensification due to transpiration

The heat transfer augmentation has also been acquired by the mass
addition/removal to flow inside the gap formed between a cone and a disk. Chapter 4
highlights this analysis in detail. The arrangement of cone-plate is usually used in
viscometry [63, 64, 65], in the biomedical field [66], and also in engineering [67].
Mooney and Ewart [63] were the pioneer who considered such a geometry in 1934 by
developing the theory of conical region. They also verified the available theoretic
relations regarding the measurement of fluid viscosity, applied torque and rotation rate
with the aid of experimental measurements. After that many researchers [64, 65, 66,
67] utilized this geometry to measure the viscosity of fluids and to explore the
secondary flow phenomena associated with cone and plate devices. Analytical solution
of the cone-plate configuration for a small conical gap angle was obtained by
Sodougous [64] and Buchmann [66] with the help of perturbation techniques, whereas
a detailed numerical solution to this problem was reported by Fewell and Hellums [65]
in 1977. For a rotating disk and cone configuration, a comprehensive study was
performed by Shevchuk [68, 69, 70] in which he presented the self-similar formulation
of the momentum as well as the energy and diffusion equations. In ref. [68] Shevchuk
in fact analyzed the flow and heat transfer characteristics under different situations like
rotating cone with fixed disk, fixed cone and rotating disk, simultaneous co- as well as
counter-rotation of the disk and cone cases. He concluded that the rate of heat transfer,
under different flow situations, strongly depends upon the radial distribution of
temperature on the disk surface. The complexity of the aforementioned problem [68]
becomes more severe when the disk is permeable and permits the mass addition or
removal at its surface. Such fluid removal or injection is of particular interest as it helps
in analyzing the transport phenomena under the controlled boundary conditions,
especially in the cooling process and for the transpiration cooling. Owing to this
interesting feature, we have focused on mass transfer phenomena either to or from the
fluid occupying the gap between a cone and disk by direct suction or injection in
Chapter 4. The mass transfer rate (addition or removal) is considered to be uniform at
all points on the entire disk surface. All possible cases, namely, (i) rotating cone and

stationary disk (ii) stationary cone and rotating disk (iii) simultaneous co-rotation (iv)
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counter-rotation of the disk and cone have been investigated in order to analyze the
effects of suction/injection on the flow and heat transfer phenomena. The obtained
solution compromises of interesting findings, which provide the in-depth understanding
and detailed information regarding the dependence of flow and heat transfer
characteristics upon the small or large suction/injection velocities.
1.5.4 Enhancement due to disk topography

It has been generally (both empirically and theoretically) admitted that surface
interruptions usually expedite the heat transfer process. The periodic interruptions on
the heat transferring surface make the thermal boundary-layer thinner which
consequently increases the heat transfer rate. Consequently, pressure drop is enlarged
with this strategy which ultimately requires the increased pumping power. These facts
reflect the importance of design optimization which significantly affects the heat
exchanger performance. However, in the case of a rotating disk geometry with periodic
surface undulations on the disk surface an increased pumping power is also achieved
without any extra effort. The advantage of rotating wavy disk is not limited to the
increased heat transfer coefficient only. It also increases the power of the
turbomachinery by increasing the torque of the rotating components. In this regard the
advantage of the surface interruptions can be regarded as multifold.

Heat transfer enhancement due to the non-flat disk surface was first investigated by
Le Palec [71], to the best of our knowledge. The theoretical as well as experimental
work of Le Palec [71] and Le Palec et al. [72], signifies the impact of design parameters
on the mechanism of heat transfer enhancement related to rotating disk systems. The
periodic (sinusoidal) disk surface interruptions considered in [71] correspond to overall
15% heat transfer enhancement in comparison to the uninterrupted disk surface.
Similarly the moment coefficient increases appreciably for such configurations as
reported by Yoon et al. [73] which shows increased pumping power of wavy disk. These
facts indicate the significance of surface irregularities towards heat transfer
augmentation in laminar flow and heat transfer in a rotating disk boundary-layer. Heat
transfer coefficient had been quite significantly influenced by the wall topography and
it has been studied extensively by the researchers [74, 75, 76, 77, 78].

Compared to the flat disk situation the literature on the non-flat wavy disk is very
limited. Because of very few investigations devoted to this topic the convective

transport phenomena on a rotating rough disk is so-far less understood, as mentioned
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above. Within the available literature, the cases of uniform disk temperature and heat
flux have only been considered. Therefore, it is interesting to consider the other
boundary conditions for the wall temperature such as the non-isothermal wall
conditions. For this purpose, a non-uniform distribution of disk temperature in the form
of power-law function of its radius, which has directly been observed in many
engineering applications, is considered in Chapter 5. The prime objective of the work
presented in Chapter 5 is to quantify the results of local as well as overall heat transfer
rate in comparison to the flat disk and to explore the richer physics associated with the
geometry of disk. Numerical calculations are performed for a wider range of Prandtl
(Schmidt) number which varies from 1072 to 10* by varying the power index n, from
—2 to 4. Due to the analogy between convective heat transfer and mass transfer
phenomena the obtained findings of the study (in Chapter §) are two-fold as they also
characterize the mass transfer rate from the wavy rotating disk with a uniform
distribution of mass at the disk surface. The results are valid for the Schmidt number

ranging between 10~2 and 10*.

Different options can be adopted in the consideration of free disk flows
depending on whether the ambient fluid is stationary and the disk is rotating or whether
the disk is rotating in the presence of an external forced flow or the rotating fluid
surrounds the stationary disk etc. These different choices reflect the significant
variation in the flow characteristics, which in turn influence the heat transfer rate and
the other parameters of engineering interest. Impact of outer forced flow orthogonal to
the rotating disk is highly useful for cooling or heating the disk surface. Particularly,
rotor end surfaces of the gas turbine are cooled through the application of such flows.
The fundamental work regarding the analysis of these flows on a rotating flat disk along
with heat transfer phenomena can be found in [30, 79, 80, 81]. More recently a
comprehensive study was made by Wiesche and Helcig [82] in which theoretical as
well as experimental investigation accompanying convective heat transfer from rotating
disk subjected to stream of air has been done. They pointed out the advantageous aspect
(especially on heat transfer enhancement) of forced flow on a rotating disk under
different environments. This class of flow is also considered as a more general problem,
having the free rotating disk flow as a limiting case. The relative motion of the disk and
the fluid causes a considerable influence on the power needed to spin the flat disk as

the torque coefficient increases significantly.
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A large number of engineering applications require the study of the heat transfer
and fluid flow characteristics of a simultaneous forced flow combined with rotation of
solid bodies. By combining the useful effects of relative fluid motion along with altered
geometrical configurations of the disk surface, as specified by Le Palec [71], it is of
practical interest to investigate the flow and heat transfer phenomena in case of relative
motion of a wavy disk and a superimposed forced flow (i.e. to predict the heat transfer
rate and shear stresses in the situation of relative motion of fluid and sinusoidal-shaped
disk). This all has been fully addressed in Chapter 6. It is worth mentioning that the
flows addressed by von Karman [8], Mabuchi et al. [79], and Le Palec [71] are limiting
cases of the current study. The influence of surface texture of the disk rotating in a
superimposed forced flow on the heat transfer (along with a non-uniform distribution
of temperature on the disk surface) and the torque coefficient, which are of particular
interest in technological applications, is investigated in Chapter 6 by numerical
calcultions. The constant heat flux case under the action of uniform external radial flow
has also been explored in Chapter 6.

At the end (in Chapter 7) detailed conclusive remarks of the whole work of current
dissertation is given which in fact summarizes the outcome of the whole study.

Some of the basic terms, flow and heat and mass transfer assumptions,
governing equations for the problems discussed above and their solution techniques

have been explained in the rest of this chapter.
1.6 Preludes

1.6.1 Skin-friction coefficient

It is a dimensionless quantity describing the frictional force (at the boundary) occurring

between solid surface and a fluid. Mathematically, it can be written as
TW
Cr= T
ZPv

where 7,, denotes the skin shear stress at the wall and v being the characteristic velocity
of the flow such as v = wr for free rotating disk. In the case of rotating disk, the shear
stress has two components: radial and circumferential which lead to two components
of skin-friction coefficients.

Radial skin-friction coefficient

For the rotating disk, it can be written as
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Tangential skin-friction coefficient

Mathematically, it is written as

Crp = Twe _a&
o= v Twe
%pv2 g

1.6.2 Moment torque

The moment on one side of a rotating disk is denoted and defined as

b
M= —an r2Tyedr.
0

1.6.3 Moment coefficient

It is a dimensionless quantity to represent the power of a disk pump and is defined as
M

CM = 1 .
ipwzbs
1.6.4 Mass flow rate

The fluid which is pumped in outward direction on one side of the disk due to the

centrifugal force of a rotating disk is given by

my = anpf vdz.

z=0

1.6.5 Displacement thickness

It is the distance displaced by the fluid as a result of velocity variations within the

boundary-layer. It is defined as

1 [+ 0]
6'=— dz.
wrfz=ov"’ z

1.6.6 Swirl angle

The flow swirl angle at the disk surface is calculated as

avr /a
0z

a, = — av(p/a .
Z/ z=0
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1.6.7 Prandtl number
The Prandtl number (Pr) signifies the nature of the fluid. A dimensionless number

described by the ratio of momentum and thermal diffusivity, that is

pr— momentum dif fusivity v
"= Tthermal dif fusivity &

Most common gases and air at room temperature correspond to the value of Prandtl
number (Pr =) 0.71. For water its value is 7.56 (at 17°C). Larger values of Prandtl

number represent mostly liquids. For instance, Pr = 10° refers to some oils.

1.6.8 Schmidt number
The Schmidt number (Sc) is analogous to the Prandtl number and is the quotient of

momentum and mass diffusivity. Mathematically, it can be written as

S = momentum dif fusivity v
© = Tmass dif fusivity D

For the gases it takes the values in the range 0.20-3.20 whereas for the liquids it assumes

the values 100-1400 and even larger than this.

1.6.9 Lewis number
Simultaneous convective heat and mass transfer involves the Lewis number (Le) which
is the ratio of thermal and mass diffusivity. Mathematical form of Lewis number is
given by
_ thermal dif fusivity a
mass dif fusivity D’

It can also be written as

Sc

Le = —,
€ Pr

1.6.10 Nusselt number

The Nusselt number (Nu) is the quantitative measure of heat transfer rate to or from the
wall and is a dimensionless quantity which can be defined as the ratio of convective to

conductive heat transfer as

One can predict the heat transfer enhancement from the value of Nusselt number. From

engineering prospective, heat transfer rate is predicted in two aspects, namely, (i) the
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local heat transfer rate and (ii) the global heat transfer rate. On this basis the Nusselt
number is also classified as (i) the local Nusselt number and (ii) the global Nusselt
number which is explained as:

Local Nusselt number

It measures the heat transfer rate at a specific location of a bounding surface and its

mathematical form is given by

=

X
X
Nu, = ==,
K

In the local Nusselt number (Nu, ) the length ‘x’ should be considered as distance from
a certain fixed point on the surface. Such flows are usually of non-similar nature.
Global Nusselt number

It measures the overall heat transfer rate over the whole region of the surface. It is also
known as average Nusselt number because it is calculated by integrating the relation of
local Nusselt number over the range of interest and is given by

— 1t
Nu=- f Nu,dx.
L,
1.6.11 Sherwood number
Sherwood number (Sh) is a dimensionless number (analogous to the Nusselt number)

in the studies of convective mass transfer and is interpreted in the same way as the

Nusselt number for the heat transfer studies.

1.6.12 Suction/Injection

For the heat transfer enhancement suction is also an effective mode. In this process
mass (fluid) is drawn out from the boundary-layer in the inner region of the body
through narrow pores. Similarly the addition of fluid through pores of the body into the
boundary-layer is known as wall injection or blowing. In most cases heat transfer rate
increases due to the suction and reverse trend is seen in the case of blowing. Suction
also controls the boundary-layer and sufficient amount of suction can prevent the
separation of boundary-layer. On the other hand, blowing causes to destabilize the flow,

in general.

1.6.13 Axially-symmetric flow

Throughout this dissertation, the primary geometry of interest is the circular disk

configuration. All the work has been done with the assumption that fluid velocity is
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independent of circumferential angle and such assumption designates the flow (in

literature) as axially-symmetric flow.

1.7 General assumptions

Certain assumptions about the flow and heat transfer process have been made
throughout the presented research work which are listed as under:

a) Steady flow

b) Laminar flow

c) Incompressible flow

d) Axis-symmetric flow

e) Viscous dissipation is absent

f) Cylindrical (flat disk) and curvilinear (wavy disk) coordinates are considered

g) Newtonian fluids

h) Absence of body forces

i) Fixed frame i.e. the Coriolis forces are excluded

1.8 Governing equations

The flow of any viscous fluid is governed by the fundamental set of equations
commonly known as Navier-Stokes equations which were independently developed by
Claude-Louis Navier and George Gabriel Stokes in 1800’s. For a moving fluid, these
equations express the relationship existing among the velocity, temperature, pressure,
and density. The influences of viscosity had also crucial role on the fluid motion which
was incorporated in the Navier-Stokes equations and being an extension of the famous
Euler equations. These equations are provoked from Newton’s second law of motion.
For (almost) all actual practical situations, these lead to a complex system of partial
differential equations with the necessity of the satisfaction of law of conservation of
mass. For the studies involving heat and mass transfer phenomena the law of

conservation of mass and concentration are also appended to these equations.

1.8.1 Continuity equation
It is the mathematical statement of the law of conservation of mass and it serves
as a constraint which must be obeyed by the velocity vector. In cylindrical coordinates

it is given as
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which is reduces to

ad 1 d(rvy ad
(o) | 10(rv) 0 _ o
or r 0d¢ 0z

for an incompressible fluid.

1.8.2 Momentum equation
It is based on the basic law of mechanics (Newton’s 2™ law of motion) and has

three components which correspond to following set of equations (in the absence of

body force)
radial component:
v v, Vo v, vyt v ap v 2 v
(ot im+ i 4y ) ==y (Vy -5 -53%), (D)

circumferential component:

av av vy OV vy, av a v 2 dv
p(Ge+ v g2+ 5+ 2k, 28) =~y (Vo -+ 537), (13)

axial component:

dv, vz | Vo dv, avz) _ dp 2 1.4
p(6t+vr6r+r6(p+vzaz - az+”(v Vz), (1.4)
22 1 @ 1 9% 92
2~ _ 4, -2 4, -9 49
where V"= arz " r dr  r2d¢p? @ 9z%2°

1.8.3 Energy equation
It is based on law of conservation of energy (first law of thermodynamics) and has the

following form in cylindrical coordinate system

—+tv—+2— vzg—:= a(VT). (1.5)

1.8.4 Diffusion equation

The transport phenomena of any species in a fluid flow is described by Fick’s law and

is governed by the following equation

ac Vyp 0C

ac 9C | Ve 0C ¢ _ 2
6t+vr6r+r6(p Uzaz_D(Vc)' (1.6)

1.9 Boundary-layer equations for flat disk

According to the Prandtl’s idea of boundary-layer, the flow of fluid can be divided into

two regions: viscous and inviscid. It has been observed that the viscous part of the flow
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domain is actually very thin as compared to the whole domain. Based on this
observation it was realized that the velocity varies very rapidly across this thin region.
Because of this fact Prandtl proposed that (for a two-dimensional flow (say)) there must
be two different length scales for the non-dimensionlization of space variables. This
idea then gave birth to the order of magnitude analysis which simplifies the governing
differential equations to a great extent. Continuity equation (1.1) remains the same after
the implementation of order of magnitude analysis. Whereas the application of this
analysis to the laws of conservation of momentum, energy, and concentration
corresponds to the following assumptions:
() The magnitude of axial velocity component is much smaller than the
magnitude of the radial or tangential velocity components.
(i)  The radial rate of change of all involved variables excluding pressure is
much smaller than their axial rate of change.
(iti)  The pressure is only function of radial distance from rotation axis.
These assumptions hold for rotating disk boundary-layer flows as explained by Owen
and Rogers [83]. Under these boundary-layer assumptions the momentum, energy, and

concentration equations are reduced to the form (for an axially-symmetric flow):

v,%';r-ﬂf—z+vz%'g=-§gg+vf;;n (1.7
o ey, Doy T (1.8)
oty T=a 2l (1.9)
nE4y,L=pls (1.10)

These simplified equations are still coupled, non-linear partial differential equations.
However, they are now of parabolic nature instead of elliptic one (as the original system

((1.1) - (1.6) was).

1.10 Boundary-layer equations for sinusoidal disk

Consider a non-flat, axially-symmetric circular disk having radius b rotating around
its vertical axis with a constant rotation rate w. The disk is assumed to rotate in a fixed
frame due to which the Coriolis force is absent and the flow resembles to the classical
von Kérman’s flow. Such a rotating flow is assumed to be steady, viscous,
incompressible, with constant thermo physical properties inside and away from the

boundary-layer. The effects of viscous dissipation and gravity are also neglected. The
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disk surface is structured (as depicted in Fig. 1.4) by the function s(r*) =
a, cos(2Nnr*) , which specifies the non-flat surface of the disk as sinusoidal wavy
surface as considered by Le Palec [71]. It is important to define the ratio (ay/4) known
as the surface roughness ratio which controls the surface topography of the disk. To
avoid the flow separation and the occurrence of secondary flow the roughness ratio is
kept small (ag/A < 0.2) with the restriction that (§ <« 4) so that the governing system
(given below) remains valid. The so chosen surface topography is not mandatory rather
one is free to choose any other form. The reason behind the choice of current sinusoidal
wavy surface is that it is a smooth differentiable function which is also of periodic
nature. All these features of this sinusoidal function provide an ease during the
computation process. Furthermore, this shape allows the current results to be compared
with those reported by Le Palec [71]. After having the little surface undulations
sprouted on the flat disk surface it is useful to choose an appropriate system of
coordinates for its mathematical description. For this purpose the governing equations
are derived in terms of an orthogonal curvilinear coordinate system (x, 8,y) in which
the direction along the wavy surface of the disk is represented by x and normal to the

surface is y while the azimuthal direction is described by 8 (see Fig. 1.4).

A
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Fig. 1.4: Configuration of wavy disk.

In view of above assumptions the considered flow is axially symmetric and three-
dimensional in nature. In accordance with the chosen system of coordinates the

equation of continuity reads as
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The Navier-Stokes equations after the implementation of boundary-layer

approximations look like

vy dvy vidr 1dp 3%v,

— — ez ———t Y —= 1.12
Vx 3% t vy dy  rdx p 0x ay2’ ( )

dvg dug , vxvg dr _ _ vy 1.13
vx6x+vyay+ r dx—vayz' (1.13)

The appearance of the coefficient S—;— with some terms in Eqgs. (1.11) — (1.13) signifies
the contribution of surface curvature. In view of the definition of disk surface, defined

. dr . .
above, the coefficient — s determined as

& J1 + 487 ginz (227),
b

dx A2
The energy equation for this flow comes out to be

aT aT 2T
Uxa+vy5=a"ay—2, (1.14)

which is apparently same as Eq. (1.9). However, the variables are not the same in these
equations. In accordance with the energy equation the concentration equation is also of

the form (1.14) and is given by

% _p e (1.15)

v, L4
X ox Y oy ay?’

1.11 Solution techniques

Unfortunately, the equations arising in the analyses of the flow and heat or mass
transfer in a rotating disk system are highly non-linear and a complex set of pdes (partial
differential equations) and their exact solution is not possible. For the reduction of
complexity of the governing system, these equations were converted into a simpler form
using the boundary-layer transformations. Their further simplified form would either
comprised of self-similar (set of odes) or non-similar system (set of pdes). The self-
similar problems lead to the boundary value problems comprising of odes (ordinary
differential equations) which can be tackled easily with the help of numerical methods
such as shooting, finite difference, etc. The handling of such problems has also been
made easy with the availability of high speed computing machines along with several
D-solve Packages in different softwares like MATHCAD, MATLAB,
MATHEMATICA, MAPLE, COMSOL, etc. On the other hand, a non-similar system

involves a set of pdes whose solution is not that easy. However such system can be

25



dealt efficiently and easily with the implicit finite difference scheme commonly known
as Keller-box method. In the current research work both self-similar and non-similar
systems have been solved with the employment of different numerical techniques which

are mentioned in the following.

1.11.1 The bvp4c algorithm

The bvp4c is a built-in MATLAB program of finite difference method (uses
three stage Lobatto formula) and is developed by Kierzenka and Shampine [84] in 2001
for finding the numerical solution of boundary value problems. It has a low storage and
computational cost with the advantage of adaptive meshes which leads to high
precision. Due to this it is more consistent and robust than other numerical techniques.
The highly non-linear terms that arise in boundary value problems (like terms arising
in Chapter 2) can easily be managed by this algorithm while the remaining methods
offer more difficulty when these are implemented to the system of odes described in
Chapter 2. Similar to other numerical techniques, it also depends on initial guess and

it may fail for the poor initial guesses.

1.11.2 The shooting method

The shooting method is also a boundary value problem solving technique by
converting it into initial value problem. This method starts with a guessed initial
condition and it is refined with several iterations until a solution is obtained satisfying
all the boundary conditions. It is also a very robust method and is applicable to a variety
of scientific and engineering problems. For instance, problem arising in mathematical
modelling of rotating disk-cone system (Chapter 4) cannot be solved by bvp4c but the
shooting method is easily implemented with the usage of MATHCAD software to

acquire the solution.

1.11.3 The Keller-box Method

All the non-similar problems have been dealt with the help of Keller-box method which
is quite efficient and specifically designed for the boundary-layer flow problems. Keller
[85] was the pioneer who introduced this box method in 1970 which is commonly
named as Keller-box method or Preissman box scheme. The method is described in few

steps which are listed below:
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Step1: In this step by introducing new functions higher order differential equations are
reduced to a system of first order differential equations.

Step2: The derivatives are replaced by central difference approximation, and the
functions by their average value on rectangular net. After discretization one obtain a
system of nonlinear or linear algebraic equations.

Step3: Newton’s method is employed in order to linearize the non-linear algebraic
equations.

Stepd: The set of linear equations is written in a tri-diagonal matrix form and is solved
by the block-elimination or LU-decomposition method.

The main features of this method are:

As compared to other implicit methods it is slightly more arithmetic
It can work out with arbitrary spacing of space coordinates
Its accuracy is of second order

This method allows very swift x-variations

vV V. V V VY

Due to this technique (by simple programming) mixed (coupled) problems can
be solved with a great ease

» It is specially developed for the boundary-layer flows
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CHAPTER 2

Heat Transfer Enhancement in Rotating Disk Boundary-

Layer using Nanofluid

A generally admitted fact about nanofluids is the expedition of heat transfer
process in comparison to pure fluids. The calculation of enhanced rate of heat transfer
depends strongly upon the nanofluid modeling. Following the experimental evidences
most of the researchers assume the nanofluid to be a homogeneous mixture. However,
this is a severe condition that results in under prediction of heat transfer rate. Due to the
ongoing convection phenomena the nanoparticle concentration is actually non-
homogeneous within the boundary-layer because of the presence of concentration
gradients. The objective of this Chapter is to calculate the heat transfer enhancement
in three-dimensional boundary-layer when the working fluid is a nanofluid. The
rotating disk geometry, which perhaps serves as the bench mark for the three-
dimensional boundary-layers, have been chosen for the purpose here. The non-
homogeneous nanofluid modeling has been utilized and percent increase in Nusselt
number has been calculated. Detailed analyses of flow and heat transfer phenomena for

nanofluid have been conducted under the influence of several physical parameters.
2.1 Mathematical formulation

2.1.1 Nanofluid modeling

Consider a mixture of a pure fluid and metallic particles of nanosize in it. The
concentration of nanoparticle in the base fluid is fixed and is denoted by ¢. The
presence of nanoparticles in the base fluid alters the material properties of the mixture
such as viscosity, density and thermal conductivity. Because of the diverse nature of
nanofluid with regard to the nature, size, shape, and concentration of the nanoparticle
within the base fluid, it is quite hard to propose a single model for every such property
which would be applicable everywhere in general. So far, the theory and experiment
have not been succeeded in doing so. Consequently, there exist several empirical and
theoretical models for the description of effective viscosity, density and thermal heat
capacity of the nanofluid. These models have their own merits and demerits within the
limited domain of applicability. For example, a list of several models, based on theory

and experiment, for the effective viscosity of nanofluid is given in a nice book by
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Minkowycz et al. [86]. Most of the models have particularly been developed for
nanoparticle of spherical shape. The spherical shaped nanoparticle with no intra
interaction are usually preferred where the nanoparticles are required to behave, to some
extent, as the fluid particles. Einstein [87] introduced the simplest model for effective
viscosity of the nanofluid by using the hydrodynamic equations, where the nanoparticle
volume fraction was limited to 2% only, in the form

=1+ 2.5¢)u;. 2.1)
The Einstein’s model (2.1) was further improved by Brinkman [88], Batchelor [89] and
Lundgren [90] in order to extend it to high-moderate concentration or to incorporate the
Brownian motion effects. Lundgren [90] simply assumed the Einstein’s model as the
first two terms of the Taylor series expansion of the form

pu=0Q-250)"u = (1+25¢ + 6.25¢* + - g, 2.2)
and proposed the consideration of the complete series (2.2) instead of the first two
terms. The model is, however, still limited to the dilute suspension of nanoparticle. The
Batchelor’s model [89] improves the Einstein’s one by including a one more term of
the Taylor series (2.2) whose coefficient is taken as 6.2 instead of 6.25 as in Eq. (2.2).
This model is actually based on the reciprocal theorem of Stokes flow and includes the
effects of Brownian motion. The Brinkman model [88] also considers the Taylor series
of the form

u=(1-25¢)", 23)
whose first two terms also cover the Einstein’s model. This model is applicable to the
moderate and high concentration of the nanoparticle. In addition to these, there are
several other nanofluid models for effective viscosity which are though limited to the
spherical shaped nanoparticle but also include the radius of the spherical particles with
some other restrictions. However, literature is not limited to the spherical shaped
nanoparticle but also includes some other shapes such as cylinder, cone, brick, etc.
Despite the presence of all such theoretical models the literature is also quite rich in the
empirical models of the effective viscosity based wholly on the experimental data.
Although, the empirical models are quite exact and have the capacity of predicting the
very true results, but the problem with such models is that they are very limited in scope
and apply only to those particular situations for which the corresponding experimental
data have been collected. While in the theoretical analysis, as conducted in the current

study, one is more inclined towards the general analysis of heat and mass transport
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phenomena in order to make a general qualitative analysis of the whole process. On
these basis the theoretical models are usually being preferred having wider scope of
applicability with some compromise on the qualitative measurements. Another aspect
which is somehow more preferred by the theoretical analysts is the mathematical
simplification of the chosen models. In the current analysis we choose to assume the
spherical shape of nanoparticle and the moderate range for nanoparticle concentration.
Owing to these properties and the mathematical ease the Brinkman model is observed
to be the appropriate for current analysis. The effective density of the nanofluid based
on the physical rule of mixture is given by

p=(1-¢)ps +bpy, 24)
which also shows an excellent agreement with the experiment. Maxwell [91] was the

first to derive the effective thermal conductivity of the solid-liquid mixture and

proposed that
_ 1 [kpr2kp+2¢(ky—ky)
k= ks [kp+2kf—q)(kp—kf) ' (2.5)

which is applicable to the moderate concentration levels. The formula (2.5) was

extended to high concentration nanofluid by Bruggeman [92] in the form

k
Bo-1)L+3(1-¢)-1+V2 B 2
k=kf[ L ]: A=[(—3"’—1’ﬁ+3(1—¢)—1] +8-Z—;,

ks

which readily reduces to the Maxwell’s one for the case of moderate concentration. The
thermal heat capacity of the nanofluid based on the analytical model reads as

pc = (1= ¢)(pc)s + ¢ (pc)p. (2.6)
It has been shown by Minkowycz et al. [86] that the expansion (2.6) finds an excellent
agreement with the experimental data. The Brownian motion diffusion coefficient and

thermophoresis parameters are given by

=220 D = Bvo, @.7)

B

where f stands for thermal expansion and has the following form

B =1 —¢)Br + Ppp. (2.8)
An alternative definition of 8 is also available in literature with a certain modified form,
given as

PB = (1= ¢)(pB)s + d(0B)p. (2.9)
In comparison to the experimental data both definitions of 8 do not find a good

agreement; a poor approximation due to Egs. (2.8) & (2.9) can, however, not be denied.
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However, it has also been observed that the selection of (2.8} or (2.9) does not hanm the
results of skin friction and Nusselt number by any large. Staying on equal footing
regarding the experimental data, Eqs. (2.8) or (2.9) ar¢ equally valid with Eq. (2.8)
having an edge of mathematical simplicity.
2.1.2 Mathematical model
Consider a uniform flat disk resting at z = 0 in three dimensional space. The
disk is surrounded by the non-homogeneous nanofluid. The disk rotates about the z —
axis with an angular speed w. The disk temperature is fixed as T,, where the ambient
temperature is assumed to be T, such that T, < T, . A schematic of the flow is shown

in Fig. 2.1.

Nanofluid

Fig. 2.1: Flow geometry.

The symmetry of flow geometry requires the consideration of cylindrical coordinates
for further analysis. In this way the conservation laws (1.1) — (1.4) (under the
assumption of steady and axially-symmetric flow) have been implemented (with
modified thermophysical properties). The enthalpy and the concentration equations for

the non-homogeneous model read as

e L 4, SRy _ 9 () 97 3¢ 7 | Dr (9T\?

p(vr ar + az _Bz(kaz)+ppcp (DB oz 9z + T (az) )' (2.10)
2, ., 96 _3(p 2 prar

vr6r+vz 3z~ a9z Dﬂaz+ Taz)' 2.11)

and the relative boundary data is given by:
at the disk surface {z = 0)

U= v, = vy —rw =0k, —hyy =0, T—T, =0, (DB%)FO +(EL =0 (212)
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at ambient locations (z = o)

Uy =V = 0,k = hoo =0, T=Too = 0, ¢ = ¢s. 2.13)

2.2 Self-similar form of equations

Similar to the classical von Karman flow, the considered nanofluid flow induced by the
disk rotation does also admits a solution in the separable form given by

vr =1f(2),v, =19(2),v, = h(2),p = p(2), he = he(2), ¢ = ¢(2). (2.14)
The non-dimensional variables are constructed (with the help of Buckingham Pi

Theorem)' as

n=7 [7. = wF (.5 = WG R = [FGHD,P = prywPr). he = hmHe(nL} 215)
¢ =)

The combination of Egs. (2.14) and (2.15) is used to obtain the self-similar variables.
Since the continuity equation involves variable density therefore the consideration of
flow rates (instead of velocities only) is a convenient choice [47]. Keeping this fact in
mind we write

PYr = puT@WF (M), pVy = puTwG(N), PU; = Pooyf/VswH (). (2.16)
Also the variable nature of thermophysical properties of nanofluid which depend upon
concentration or temperature is described as

p=p(@).u= pu(@),Dg = Dg(T),Dyr = Dr(p),c = c(¢), k = k(¢). (2.17)
The utilization of Egs. (2.14) — (2.17) into the system (1.1) — (1.4) and Egs. (2.10)-

(2.11) results in the transformed self-similar form of the governing equations, given by

H +2F =0, (2.18)
"2 " ]
7] 2 1 pipt 12 R R n R PN - 1]
M(F —2F'¢'R +F(d> (2(?) -9 -R—)>)+(M¢> —pH)(F -
R =2 2
Fo ;)—p(F -G =0, 2.19)
I} "2 " '
" r 11 R 12 R R n R >N - '
M<G —26¢>?+G<¢> (2(?) -0 —R—)>>+(M¢ —pH)(G _
o' 2)—2pFG =0 (2.20)
R ’ .

! However this construction of dimensionless group is not unique.
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M (H” 2H'' S 1+ H (¢'2 (2 (&) - - %))) +(M'®' — pH) (H' -

wo)-2 oo 2.21)
K, + b, |~ Pri 4 o (K’ +—+ Z(R_'_R_Ci)(i( +25;)> + H, ((';'

R RC

RC)(qu” +o? (2 + K’))+¢'2(5(R7'—R—C—')2+K(2R—C'2—2R—fﬂ+"—"—

RC RC RC? R RC R
%))) it (222)
o (1D (5 50 + 9 (55 +00) o) o (5 -

) (@ + ) 5 (-2 + )+ (-2 0 )

kp+2kp+2d(kp—ky)
kp+zkp—d(kp—ks)’

where M(®) = (1 - ®)7, R(¢)=(1—¢)+¢"—';, p=t=, K@) =
Pr—-Lﬁ RC(¢)—(1—¢)+¢ T)=DT Sc[H.(m)] = “’B, Le[H,(n)] =

Sc[He(m)] (p)s 24
Pr (po)p (2.24)

In the above equations F',G’', H',H; and @' mean differentiation with respect to 7,
R',RC',M',K'and D;' represent the derivative with regard to @, and Dj' denotes the
derivative with respect to T. From Eq. (2.24) it is observed that the Prandtl number
depends on pure fluid properties only.

The self-similar form of boundary data given in Egs. (2.12) and (2.13) read as
1=0F=G-"E =y poon =t to - g (D)
n=oc:F=06= H,—-1=®—-¢,=0

(2.25)

The ratio h.,/he in the above equation is accommodated by the replacement of
enthalpy by temperature in energy Eq. (2.10). In doing so, the specific heat capacity of
the nanofluid is also kept uniform ¢4, which is a valid assumption [47] and especially
holds for large values of the Schmidt number, which is a characteristic of flow of
nanoparticle. Further Dp and Dy are also taken as constant, and constant temperature
equals to T in the denominator of last term in Eqgs. (2.10) and (2.11). Under these
assumptions Eqgs. (2.10) and (2.11) are must to be simplified to the following form:
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" i (P o, @ " & _
KO"+0' (20" +Z +K'® —pPrH)_o, (2.26)

" — gScHdJ’ +DO" =0, (227)
_TTw g, _ ScPrie = To=Tw Or
Where 0(77) - Too_Tw’ - Pr pp Cp and D - Too DB.

The boundary conditions simplify to the form

n:o;p:a:%:y:p:a:pgq. @ =0
N=w:F=(G=0-1=®—¢y=0

(2.28)

2.2.1 Numerical solution

The numerical solution of the reduced boundary-layer equations (2.18) - (2.21),
and (2.26) — (2.28) is acquired through the famous computing tool MATLAB in which
built in scheme bvp4c is used. The convergence of the solution is assured after several
runs under the default tolerance level of 10™*. The present numerical procedure has
been checked by solving the system of self-similar equations for pure fluid. Table 2.1
gives the comparison of the current numerical solution with that reported by Shevchuk
[37]. An excellent match to four decimal places can easily be seen in this Table. This

authenticates our program and permits for the solution of current equations.

Table 2.1: The comparison between current results and Shevchuk [37].

Pr 0'(0) F'(0) G'(0)

Shevchuk Present | Shevchuk Present | Shevchuk  Present
[37] [37] [37]

0.10 | 0.0766 0.0766 0.5102 0.5102 -0.6159 -0.6159

1.00 | 0.3969 0.3969 0.5102 0.5102 -0.6159 -0.6159

10.0 1.1341 1.1341 0.5102 0.5102 -0.6159 -0.6159

13.0 1.2579 1.2579 0.5102 0.5102 -0.6159 -0.6159

2.3 Results and discussion

The impact of nanofluid on heat transfer rate has been understood by the
detailed analysis of the involved parameters namely, ¢, D, Sc, and Pr. A strong
convective heat transfer in rotating disk boundary-layer is found when ¢, is varied from
0.0 to 0.4 at a fixed Prandtl number (Pr = 6 ) and diffusion parameter (D = 0.05). The
Schmidt number (Sc) is also varied for a wide range (10 — 1000) and is suitable for
the base fluid to be a liquid. The insertion of nanoparticles in the base fluid have also
strong impact on the momentum transport across the boundary-layer. The influence of

Schmidt number on all components of velocity and pressure is depicted in Figs. 2.2 &

34



2.3. Clearly, the influence of Sc is very weak on all the velocity components and slightly

stronger on pressure. Pressure decreases within the boundary-layer by increasing the

values of Sc.
1 ¢ =0.0I H
G ]
\ — Sc=10
0.51 Tl -~ Sc=100
F/N. 0 e Sc=1000
0 ..'\¥ A Il

0 2 4 6 8 10
n

-0.1
-0.2
-0.3

Sc=1000, 100, 10

0.5 : :
0 2 n 4 6

Fig. 2.3: Effects of Sc on pressure profile.
Similarly the temperature profiles are not affected by changing the values of Sc
parameter as shown in Fig. 2.4. However strong dependence of the concentration profile
on Sc can be seen in Fig. 2.5. Clearly, concentration boundary-layer thickness decreases
by increasing Sc number which reflects that the large values of Sc depreciate the mass

transport phenomena across the boundary-layer and limit it to a very thin near-wall
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region. In comparison with momentum boundary-layer thickness, the concentration
boundary-layer makes about 10% of the momentum boundary-layer which means that
over the most part of the momentum boundary-layer the nanoparticle concentration is
uniform and is varying rapidly in the region close to the rotating disk. This is the reason
that large values of S¢ correspond to weak Brownian diffusion of nanoparticles. In such
a sitwation nanofluid behaves more or less as a homogenous mixture. Therefore
simulation of transport processes with a homogeneous mixture is justified for situations

where Sc¢ accepts large values.

1 T
¢ =001

D 05 L .
—Sc=10

- - -Sc=100
. SC=1000

Fig. 2.4: Temperature profile for different Sc.

0.04 . . : : :
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® 0.02 : |
0.01} ’
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Z

Fig. 2.5: Concentration profile for different Sc.
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Figures 2.6 & 2.7 depict the effects of nanoparticle concentration ¢, on velocity
components, temperature, and pressure. It is clearly seen that all the velocity
components are increased by increasing ¢,. Moreover increase in the level of
nanoparticle concentration leads to increase the boundary-layer thickness also which
means that the momentum transport is enhanced across the boundary-layer with the
insertion of nanoparticle in the base fluid. An interesting role of nanoparticle
concentration on the rotating disk boundary-layer is highlighted in Fig. 2.6 showing the
enhancement in the downward axial velocity due to the increasing level of nanoparticle
concentration. Hence this tends to enhance the mass flux which ultimately supports the
heat transfer augmentation. This behavior can also be seen from Table 2.2 in which the
relative mass flow rate is increased with increasing the nanoparticle concentration and
consequently the Nusselt number is also enhanced. The definitions of relative mass flow
rate and some other dimensionless physical parameters such as relative moment
coefficient, relative displacement thickness, relative tangent of the flow swirl angle, and

the relative Nusselt number are given as

00 b -
Mg _ sz=ovrd2 Cn a pfo rzrz,pdr i_ fz=0v¢dz
mdo Pr f;:o erdZ, Cmo pf fob rZTZ‘Podr' 66 fzoio U‘POdZ,
Gy _ [0v,/02/3v,/0z] _ Nu _ [0T/9z),-
Uy  [0v,,/02/v,, [0z 0' Nug ~ [0T,/02],=
z=

Fig. 2.6: Radial, transverse and axial component of velocity and temperature profiles.
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Fig. 2.7: Effects of ¢, on pressure profile.

The calculation of tangent of flow swirl angle and moment coefficient have also been
displayed in Table 2.2 for different values of ¢, and Sc. These results are in fact very
useful and emphasize the significance of non-uniform distribution of nanoparticles
across the boundary-layer. An increase in the values of relative Nusselt number is
clearly observed in this Table by increasing nanoparticle concentration but it (relative
Nusselt number) decreases upon increasing Sc for a fixed nanoparticle concentration.
Moreover, the rate of increase of relative Nusselt number (Nu/Nu,) regarding
nanoparticle concentration (¢, ) is higher for the smaller Schmidt number than that of
higher Schmidt number. The reason behind this fact is that at smaller values of the
Schmidt number the impact of non-homogeneous distribution of nanoparticle on heat
transfer rate is strong whereas this character (non-homogeneous) is weaker at the larger
values of Schmidt number for which the nanoparticle concentration becomes uniform
in most part of the momentum boundary-layer. Here one can realize the significance of
current non-homogeneous modelling of nanofluid which in fact correctly incorporates
the role of Brownian motion of nanoparticles towards the momentum and thermal
transport. It is also observed from Table 2.2 that moment of a rotating disk is
significantly influenced by ¢, meaning that power of rotating disk system gets
increased when the working fluid is nanofluid. The influence of nanoparticle
concentration parameter ¢, on temperature profile is displayed in Fig. 2.6. The thermal
boundary-layer grows in the same fashion as the momentum boundary-layer for higher
values of ¢. The parameters Nu/Nug, Cpn/Cpy , @y/@y, and my/mig  are depicted
in Figs. 2.8 — 2.11 against the nanoparticle concentration. A linear (almost) correlation
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occurs between Nu/Nu, and ¢, but non-linear for C,,/C,,o. The nonlinearity is more
prominent for the 20% or higher concentration level of nanoparticles (i.e. ¢ > 0.2).
The relative values of tangent of the flow swirl angle (a,,/a,,,) are weak function of
nanoparticle concentration but these values are higher for nanofluid than the pure fluid.
A non-linear correlation is also owned by the relative mass flow rate (mig/m,,,) with
nanoparticle concentration ¢, but the nonlinearity weakens as the concentration level
grows. The values of Nu/Nug, Cp/Cno , @y /@wo, Mg /Mg, and §° /6" yare quantized
in Tables 2.2 — 2.5 for specific values of Sc, D, Pr and ¢,. Form Table 2.2, it is noticed
that the relative Nusselt number, the tangent of the flow swirl angle, moment
coefficient, mass flow rate and displacement thickness are increased on increasing the
nanoparticle concentration ¢,. The values of all these parameters decrease by

increasing the value of Sc.

Table 2.2: Impact of nanoparticle concentration and Schmidt number on relative values

of vital physical parameters for Pr = 6,D = O.OS,Z—;’r = 3.98195.
Do 0 0.01 0.1 0.15 0.2 0.3 0.4

[—

Sc = 10 (Nu/Nug)ereo 10537 13341 1.5001 16746 2.0528 2.4780

(Nu/Nug) e I 1.0558 13368 15032 1.6781 20570 2.4828
Con/Como I 1.0418 13166 14925 1.6903 21744 2.8344

Ao/ Ao 1 1.0380 1.0356 1.0350 1.0348 10353 1.0369

Mg /Mg, 1 1.1084 13813 1.5569 1.7548 22417 2.9080
5/58% 1 10060 1.0102 1.0284 1.0570 1.1481 1.2959

Sc = 50 (Nu/Nug)ponw 1 10391 13184 14839 16579 2.0350 24594
(Nu/Nug),. 1 1.0400 13196 14852 1.6593 2.0367 2.4614
Con/Como 1 1.0329 13060 14809 1.6775 2.1586 2.8148

@ /Ao 1 10230 1.0215 1.0210 1.0207 1.0206 1.0209
Ma/Ma, 1 10836 13564 15317 17292 22139 2.8766
8/8% I 1.0025 10065 1.0242 10522 1.1420 1.2020

Sc = 100 (Nu/Nug)onw 1 10355 13146 1.4800 1.6539 20311 24557
(Nu/Nug) e 1 1.0361 13153 14808 1.6548 20322 2.4570
Con/Como 1 1.0308 13036 14781 16745 2.1550 2.8104

Ay /e 1 10173 1.0162 10158 1.0155 1.0153 1.0153

Mg/ Mg, 1 10740 13464 15212 17184 22016 2.8622
8'/6% 1 1.0014 1.0051 1.0226 1.0506 1.1400 12854

Sc = 1000 (Nu/Nug)enw 1 10306 13097 14751 16491 20267 2.4522
(Nu/Nug),e 1 1.0307 13098 14753 16493 2.0269 24525
Cn/Como 1 1.0281 13003 14746 16706 2.1505 2.8050
A/t 1 1.0054 1.0050 1.0047 1.0049 1.0046 1.0045

Mg /Mg, 1 1.0509 13234 14979 1.6948 21767 2.8343
5'/8% 1 09989 10024 1.0197 10474 11362 1.2807
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Fig. 2.9: Relative Nusselt number as a function of nanoparticle concentration.
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Fig. 2.10: Relative mass flow rate as a function of nanoparticle concentration.
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Fig. 2.11: Relative tangent of the swirl angle plotted against ¢..

The reliance of physical quantities, namely, the moment coefficient, the mass flow rate,
the tangent of angle of swirl, the displacement thickness, and the Nusselt number on
the pure fluid is a significant feature of present work. The current findings help one to
identify a specific pure fluid which should be employed to attain optimal results in
practical applications. This information can be found from Tables 2.3 and 2.4 where
the results are listed for several Prandtl numbers. Table 2.3 contains percent increase in
the heat transfer rate for different types of pure fluids. It is obvious that higher heat
transfer rate occurs for pure fluids having larger Prandtl number. For a fixed Sc = 10
and ¢, = 0.01, an enhancement of almost 129% in heat transfer is achieved when the
Prandtl number is varied 130 times (i.e. from 0.1 to 13). But for the nanofluid with 20%
nanoparticles the enhancement is not that significant, which is almost 3.18%. Almost
the same situation persists with some depreciation for Sc = 100. On the other hand
68% augmentation in heat transfer rate is observed for water containing 20%
nanoparticles. Table 2.3 concludes that the heat transfer rate is increased for the base
fluid having larger Prandtl numbers, but the major enhancement in heat transfer rate
exists at higher nanoparticle concentration. The relative values of aforementioned
parameters are demonstrated in Table 2.4 for various Prandtl numbers. From this Table
it is revealed that all the parameters are not a strong function of Prandtl number. This
means that the substantial augmentation in heat transfer rate (as observed in Table 2.3)
is just because of the insertion of nanoparticles and the nature of clear fluid does not

matter by a lot. However, the fluids of larger Prandtl number serve as a good coolant at
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very low concentration levels of nanoparticles. In a similar manner the impact of the
diffusion parameter (D) has been explored in Table 2.5. The values of the moment
coefficient, the mass flow rate, displacement thickness, tangent of the flow swirl angle,
and the Nusselt number are enhanced up to 5%, 7%, 8%, 14%, and 8%, respectively,
when the values of D were enlarged by 20 times. This reveals a considerable impact of
the diffusion parameter towards flow and heat transfer augmentation. The discussion of
Tables 2.3-2.5 concludes that maximum gain in the heat transfer rate is attained by
increasing the concentration level of nanoparticle and further augmentation is acquired
by incorporating the effect of diffusion parameter and the nature of the pure fluid. Table
2.6 exhibits very vital findings about the current non-homogeneous model of the
nanofluid. A comparison has been made in Table 2.6 between the non-homogeneous
(in the current work) and homogeneous (Tiwari and Das [42]) models towards the
augmentation of heat transfer rate. The comparison shows that the non-homogeneous
model predicts higher heat transfer rate at all nanoparticle concentration levels and for
all Prandtl numbers. It is also noted that the difference gets wider when the nanoparticle
concentration is 10% or higher. Particularly, almost 30% more gain in the rate of heat
transfer is observed for water having 20% nanoparticles for non-homogeneous model
in comparison to the homogeneous model. From here one can realize the importance of
non-uniform distribution of nanoparticles within the boundary-layer which is

completely ignored in the Tiwari and Das [42] model (i.e. homogeneous model).

Table 2.3: Percent increase in the values of Nusselt number relative to the pure fluid
calculated at different Pr when D = 0.05, -:f = 3.98195.

Pr Sc=10 Sc =100

Do =001 Po=01 ¢u=02 ¢o=001 ¢p=01 ¢,=02
0.1 | 2.8463%  30.2198% 66.5684%  2.8069%  30.1748% 66.5140%
1.0 | 3.7659% 31.5972% 66.3448%  3.0856%  30.8465% 65.5093%
60 | 55816% 33.6799% 67.8088%  3.6071%  31.5329% 65.4810%
100 | 6.1954%  34.3412% 68.3926%  3.8613%  31.8120% 65.6580%
13.0 | 6.5041%  34.6684% 68.6865% 4.0140%  31.9754% 65.7776%

Table 2.4: Relative values of important physical parameters for different values of Pr
when D = 0.05, Z—’; = 3.98195, ¢o, = 0.1.

Pr 0.1 1 6 10 13
Sc=10 Nu/Nu, |1.3022 1.3160 1.3368 1.3434 1.3467
Cm/Cmo |1.3028 13122 13166 1.3162 1.3157
ayla,,, |0.9922 1.0065 1.0237 1.0281 1.0030
mgy/my, | 1.3108 1.3439 13813 1.3919 1.3974

§*/8*, {1.0038 1.0122 1.0202 1.0219 1.0225
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Sc=80 Nu/Nu, |[1.3018 1.3088 1.3165 1.3197 1.3215
Cn/Cno |1.3004 13026 13042 1.3044 1.3044
ay /oy |0.9902 09969 1.0061 1.0090 1.0105
my/mig, |1.3066 1.3246 13497 13593 1.3640

§*/8%, [1.0022 1.0054 1.0097 1.0108 1.0113

Table 2.5: Effects of D for Pr = 6, % = 3.98195, ¢, = 0.1.
f

D 001 005 0.1 0.15 02
Sc=10 Nu/Nu, | 13145 13368 13640  1.3905 1.4163
Cn/Cmo | 13032 13166 13328  1.3483 1.3632

a,/a,, |0.9955 1.0237 1.0598  1.0967 1.1347

nig/mg, |1.3169 13809 14589 15348 1.6097

5'/6%, |1.0056 10202 1.0398  1.0592 1.0791

Sc=80 Nu/Nu, |1.3104 13165 13239 13310 1.3378
C/Cmo | 13007 13042 13086 13128 13168

a,la,, |09921 1.0061 1.0239  1.0418 1.0599

mig/mg, |1.3110 13494 13960  1.4420 1.4871

5°/8%, | 1.0031 1.0097 1.0180  1.0263 1.0348

Table 2.6: Percent increase in heat transfer rate computed for homogeneous and non-
homogeneous models.

Pr Homogeneous Non-homogeneous (Sc = 10 )

b =001 ¢y =01 ¢ =02 B =001 ¢y =01 g = 0.2

0.1 0.00% 0.94% 4.93% 2.85% 30.22% 66.57%
1.0 1.13 % 1091%  22.03% 3.77% 31.60% 66.34%
6.0 1.60 % 1585% 31.83% 5.58% 33.68% 67.81%
10.0 1.66% 16.53%  33.20% 6.19% 34.34% 68.39%
13.0 1.68% 16.80%  33.77% 6.50% 34.67% 68.69%
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CHAPTER 3

Heat Transfer Enhancement via Non-Isothermal Rotating

Disk

The consideration of variable disk temperature is another strategy towards the
enhanced heat transfer phenomena. Usually, according to literature, certain convenient
forms of variable wall temperature are considered which consequently give rise to a
self-similar heat transfer problem. However, in this chapter a new class of variable
surface temperatures of rotating disk has been considered for which the heat transfer
phenomenon turns to non-similar nature within the rotating boundary-layer. Within the
volume of available literature only those variable disk temperatures have been
considered for which the self-similarity of the associated convective heat transport
phenomenon does not break down; such a variable disk temperature, in general, belongs
to the power-law family. In this chapter, consideration has been given to those variable
forms which do not belong to this family. Specifically, the sinusoidal; the exponential
(increasing/decreasing), and the non-linearly varying (increasing/decreasing) surface
temperature distribution of the rotating disk have been considered for which the self-
similar solution is impossible; and have never been studied so-far, to the best of our
knowledge. The motivation behind this study is twofold: first, to extend the heat transfer
phenomenon in the rotating disk flow from self-similar to non-similar case; second, to
find out the best possible situations which result in the enhanced heat transfer process
with the consideration of above mentioned interesting forms. Our analysis reveals a
significant heat transfer enhancement for the case of exponential and non-linearly
increasing distribution of the disk temperature. For example, exponentially increasing
disk temperature of a freely rotating disk in the quiescent air yields 27% augmentation
in heat transfer rate in comparison to the isothermal case. Similarly, an enhancement of
15% in the heat transfer rate is obtained for the case of increasing non-linear disk
temperature when again compared with the isothermal case. Whereby the other forms
of the variable disk temperature show a reverse trend with some interesting findings
highlighting the insulating role of rotating disk under certain conditions. In addition to

these conclusions the considered cases have been investigated in detail and the results
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have been reported in several Tables which would serve as a reference for the future

experimental and theoretical studies.
3.1 Problem statement

It is an established and well known fact that the problem of rotating free disk does
admit an exact similarity solution for both, the boundary-layer equations and the full
Navier-Stokes equations with the consideration of no boundary-layer assumption at all.
However, it is also generally agreed upon that the rotating free disk flow does exhibit
the boundary-layer character. Being convinced by this fact, we do prefer to utilize the
boundary-layer equations in this study. The axially-symmetric nature of this flow
makes the velocity, pressure, and the temperature function independent of the polar
coordinate. The absence of any potential flow makes the pressure constant within the
boundary-layer. Consequently, the pressure gradient terms, appearing in the Navier-
Stokes equations, get vanished. In view of the above facts the boundary-layer equations
for the steady, incompressible three-dimensional, axi-symmetric flow due to a rotating
free disk are given in Eqgs. (1.7)-(1.10). The associated boundary data is

U =V, = Vg — wr =0, Tw —To = Sy(1), atz=0}
V,=0,=0, T=T, at z - o)

(3.1)

where S, (r) is an arbitrary temperature distribution. The similarity variables are

defined as

T =£' 77 = Z. (32)

e

The non-dimensional functions are defined by
T—Tw

Y(r,2) =Vvor?f(r,n), g n) = %, O(e,n) = e (3.3)
a i}
where v, = %, v, = —a—f.

In view of above relation the equation of continuity is satisfied identically and the
utilization of these relations along with Eq. (3.3) transforms the Egs. (1.8) & (1.9) to

the self-similar form and the Eq. (1.10) to non-similar form given, respectively, by

frmr} = fnz + gr2) + szrm =0, (3.4)
Iy — zfngn + zfgrm =0, (3.5)
e L] *

ﬁ + 2f@,, - P(r )f,,@ =r fn@r': (3.6)

» dlns, (")
dar* '

where P(r*) =r 3.7)

The corresponding boundary data, defined in Eq. (3.1), do also transform as

45



f=9=f=9,—-1=0-1=0 atn=90

fn=0 9,=0, ©6=0 at n = 00}' (3-8)
In view of Eq. (3.3) the definition of the Nusselt number furnishes the following
formula:

Nu = -0,(r",0). (3.9)

3.2 Heat transfer analysis

Three different forms of the disk temperature functions have been considered in this
study, as mentioned in the introduction part, namely, the sinusoidal form, the
exponential form, and the polynomial form. Both, the quantitative and qualitative
descriptions of the results have been made in this section for a wide range of Prandtl
number values (i.e. from 0.1 to 100). An implicit finite difference scheme (Keller-box)
has been utilized for the solution of Egs. (3.4) — (3.6) & (3.8).

3.2.1 Sinusoidal disk temperature variations

The surface temperature of the disk in this case is taken of sinusoidal form T, —
T = Asinr® which transforms the Eq. (3.7) into the form
P(r*) =r*cotr*; P(0) = 1. (3.10)
The values of heat transfer coefficient are quantified in Table 3.1 (also see Fig. 3.1)
with the help of numerical computations. From Table 3.1 it is clear that the values of
the Nusselt number decrease as one marches in the increasing radial direction. This
depreciation in the heat transfer phenomena is found to depend on the nature of the fluid
by noticing an overall (i.e. from r* = 0.0 to 1.0) decrease in the heat transfer rate (when
one moves from r* = 0.0to0 1.0) is 9%, 5.8%, 5.4%, 4.3% and 4.4% for Pr =
0.1,0.71,1.0,10 & 100, respectively, (refer to Table 3.1) in comparison to the

isothermal case.

Table 3.1: Local Nusselt number at various stations for sinusoidal disk temperature.

r*/Pr 0.1 0.71 1 10 100

0 0.1104 0.4319 0.5180 1.4094 3.3035
0.05 0.1104 0.4319 0.5179 1.4085 3.2839
0.10 0.1104 0.4317 0.5177 1.4081 3.2831
0.20 0.1101 0.4310 0.5170 1.4064 3.2795
0.50  0.1081 0.4260 0.5114 1.3945 3.2539
0.75 0.1050 0.4183 0.5028 1.3761 3.2143
090 0.1024 0.4120 0.4956 1.3608 3.1815
1.00  0.1004 0.4068 0.4899 1.3487 3.1554
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Fig. 3.1: Variation in Nusselt number for sinusoidal disk temperature.

3.2.2 Exponential disk temperature distribution
In this case the variation of the disk temperature is taken of the form T, — T, =

Ae™ " which modifies the Eq. (3.7) as

P(r*) =mr*; P(0) =0. (3.1
Interestingly, for r* = 0 = m the disk temperature reduces to the isothermal case for
which the thermal transport is self-similar. In view of solution procedure, the self-
similar solution (at 7* = 0) has been utilized as an initial solution for the non-similar
case. Figure 3.2 depicts the heat transfer rate obtained for m = +1,+2and +
3at Pr = 0.71 against r* showing increasing behavior for m > 0 and decreasing
behavior for m < 0 as one marches outwards radially. Obviously the positive values of
m correspond to radially increasing surface temperature, whereas the negative values
of m correspond to radially decreasing distribution of temperature. Consequently, the
rate of heat exchange is an increasing function of r* for m =1,2,and 3 and a
decreasing function for m = —1,—2,and — 3. However, the radial dependence of the
heat transfer rate is linear for all m = +1,+2,and + 3 which is an interesting
observation, indeed. More detailed analysis of this case has also been made reflecting
the dependence of heat transfer rate on the exponent m which is summarized in Tables
3.2 —3.4. It is observed that the values m > 0 lead to heat transfer enhancement (see
Table 3.2 and Fig. 3.2) whereas m < 0 cause to decrease the Nusselt number (see Table
3.3 and Fig. 3.2). Table 3.4 contains the information about the particular values of r*

(for m = —3 and m = —4) beyond which the heat transfer phenomena seizes to exist.
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The r* —stations corresponding to (almost) zero heat transfer rate were found to depend

on the exponent m as well as the Prandtl number Pr. For example, such local stations

are r* = 0.545,0.68,0.705, 0.84 & 0.89 corresponding to Pr = 0.1,0.71,1,10 &100,

respectively, for m = —4. Clearly, higher values of Pr cause to shift these local

r* —stations towards the disk rim (r* = 1). For m = —3 there are no such local

r* —stations for Pr = 10 & 100 having negligible heat transfer rate. This means that

the heat transfer phenomenon survives for m = —3 (for Pr = 10 & 100) but couldn’t

sustain at the further reduced disk temperatures (i.e. the case m = —4).

0.6

0.4
=
0.2

0.2

0.4

»x

r

0.6

Fig. 3.2: Local Nusselt number corresponding to exponentially varying disk

temperature.

Table 3.2: Local Nusselt number at various stations for exponentially increasing disk

temperature.
m=1 m=2
r*/Pr 0.1 0.71 1 10 100 0.1 0.71 1 10 100
0 0.0766 03259 0.3962 1.1341 2.6871 | 0.0766 0.3259 0.3962 1.1341 2.6871
0.05 0.0782 0.3304 0.4014 1.1457 2.7120 | 0.0797 0.3349 0.4066 1.1571 2.7366
0.10 0.0798 0.3352 0.4069 1.1578 2.7383 | 0.0830 0.3444 04174 1.1810 2.7885
020 0.0830 03447 04176 1.1816 2.7897 | 0.0893 0.3629 0.4384 12274 2.8889
0.50 0.0926 0.3722 0.4489 1.2506 2.9391 | 0.1080 0.4153 0.4980 1.3581 3.1719
0.75 0.1004 0.3942 0.4740 1.3056 3.0583 | 0.1230 0.4560 0.5440 1.4585 3.3888
0.90 0.1050 0.4071 0.4886 1.3377 3.1276 | 0.1318 0.4791 0.5702 1.5154 3.5116
1.00  0.1081 0.4155 0.4982 13587 3.1730 | 0.1376 0.4941 0.5871 1.5521 3.5907
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Table 3.3: Local Nusselt number at various stations for exponentially decreasing disk
temperature.

m=-2 m=-1

r*/Pr 0.1 0.71 1 10 100 0.1 0.71 1 10 100
0 0.0766 0.3259 03962 1.1341 2.6871 | 0.0766 0.3259 0.3962 1.1341 2.6871
0.05 0.0736 03167 03858 1.1111 2.6369 | 0.0751 0.3213 0.3910 1.1227 2.6621
0.10  0.0702 0.3068 0.3745 1.0860 2.5825|0.0735 0.3164 0.3855 1.1103 2.6353
020 0.0636 0.2867 03515 1.0349 24716 | 0.0702 0.3066 0.3742 1.0854 2.5812
0.50 0.0431 02226 02780 0.8703 2.1139 | 0.0602 0.2762 0.3395 1.0080 2.4132
0.75 0.0254 0.1644 02110 0.7186 1.7838 | 0.0517 0.2498 0.3092 0.9403 2.2662
090 0.0145 0.1271 0.1679  0.6204 1.5696 | 0.0465 0.2335 0.2905 0.8983 2.1748
1.00  0.0070 0.1012 0.1379  0.5516 1.4195 | 0.0431 0.2224 0.2777 0.8696 2.1124

Table 3.4: Local Nusselt number at various stations for exponentially decreasing disk
temperature.

m=—4 m=-3

r*/Pr 0.1 0.71 1 10 100 r*/Pr 0.1 0.71 1 10 100

0.000 0.0766 0.3259 0.3962 1.1341 2.6871 0 0.0766 0.3259 0.3962 1.1341 2.6871
0.050 0.0705 0.3075 0.3752 1.0875 2.5858 | 0.05 0.0720 0.3121 0.3805 1.0993 2.6115
0.100 0.0638 0.2872 0.3521 1.0360 24743 | 0.10 0.0670 0.2971 0.3634 1.0612 2.5289
0.200 0.0502 0.2452 0.3039 0.9284 22405 ( 020 0.0570 0.2663 0.3281 0.9825 2.3581
0.500  0.0072 0.1018 0.1386 0.5534 1.4233 [ 0.50 0.0255 0.1647 0.2113 0.7194 1.7855
0.545 0.0004 0.0777 0.1107 0.4892 12829 | 0.725 0.0005 0.0781 0.1111 0.4901 1.2849

0.680 0.0007 0.0210 0.2813 0.8280 | 0.75 0.0678 0.0992 0.4626 1.2249
0.705 0.0034 0.2401 0.7377 | 0.90 0.0033 0.0241 0.2884 0.8336
0.840 0.0011 0.2132 | 0.905 0.0011 0.0215 0.2823 0.8302
0.890 0.0016 | 0.945 0.0003 0.2327 0.7217

1.000 0.1625  0.5676

3.2.3 Polynomial (increasing or decreasing) form of disk temperature
A polynomial (increasing/decreasing) form of disk temperature i.e., T\, — T =

(1 £ r*™) is considered in this case due to which Eq. (3.7) modifies as

P(r*) = L P(0) = 0. (3.12)

Ty
The selection of ‘+’ and ‘—’ signs in the above expression, respectively, correspond to
the increasing and decreasing disk temperatures. Figure 3.3 shows the variation of heat
transfer rate against the radial coordinate (r*) in the case of increasing and decreasing
polynomial temperature distributions. Heat transfer augmentation can be noticed in the
increasing case, whereas the reverse is observed in the case of decreasing distribution
of the disk temperature. However, the rate of increase/decrease of the Nusselt number,
in this case is lesser than the exponential case. Furthermore, the variation in Nusselt
number does not follow the linear relationship with r*as it was observed in the
exponential case. Table 3.5 reflects that a total increase of 21.7%, 15.4%, 14.5%,
11.2%, 10.3% (for n = 1) and 40.9%, 26.8%, 25%, 19%, 17.4% (for n = 2) in heat
transfer rate (for the case of (1 + r*™)) is observed when one moves from r* = 0.0 to
r* = 1.0 corresponding to Pr = 0.1,0.71,1,10 & 100, respectively. Again, higher
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values of the Prandtl number lead to the increased value of the heat transfer rate, while
on the other hand a decreasing trend is noted for the decreasing disk temperature
(1 = r*™). Table 3.6 signifies that a decrease of 22.3%, 16.8% 15.8%, 12.5%, 11.4%
(for n = 1) and 43.5%, 30.4%, 28.5%, 22%, 20% (for n = 2) in the heat transfer rate
are observed, for the same variation of Pr, as one moves fromr* = 0.0tor* = 1.0. In
comparison to the exponential case a general observation is possible to draw that the
thermal transport is, in total, depreciated in the polynomial distribution case. However,
an interesting advantage of the polynomial distribution in the case of the decreasing
disk temperature is that the heat transfer process starts to seize for the higher values of
the power index n. For instance, heat transfer rates are diminished at r* = 1.0 forn =
51(Pr=0.1),n=128(Pr =0.71),n = 15.2 (Pr = 1),n = 32.2 (Pr = 10), and
n = 46 (Pr = 100).

0.4 Pr=20.71
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Fig. 3.3: Local Nusselt number for polynomial distribution of disk temperature.

Table 3.5: Local Nusselt number at various stations for non-linearly increasing disk
temperature.

n=1 n=

r*/Pr 0.1 0.71 1 10 100 0.1 0.71 1 10 100
0.00 0.0766 0.3259 0.3962 1.1341 2.6871 | 0.0766 0.3259 0.3962 1.1341 2.6871
0.05 0.0781 0.3303 0.4012 1.1452 27110 | 0.0768 0.3263 0.3967 1.1351 2.6891
0.10 0.0796 0.3345 0.4061 1.1559 2.7344 | 0.0772 0.3275 0.3980 1.1380 2.6954
020 0.0821 0.3420 0.4146 1.1748 2.7755 | 0.0789 0.3321 0.4033 1.1494 27202
0.50 0.0876 0.3587 0.4337 1.2174 2.8678 | 0.0888 0.3593 0.4341 1.2165 2.8653
0.75 0.0908 0.3685 0.4449 1.2424 29221 | 0.0989 0.3874 0.4659 1.2861 3.0158
090 0.0923 0.3732 0.4503 1.2544 29482 {0.1045 0.4033 0.4840 1.3257 3.1013
1.00  0.0932 0.3760 0.4535 1.2615 29636 | 0.1079 0.4131 0.4951 1.3500 3.1539
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Table 3.6: Local Nusselt number at various stations for non-linearly decreasing disk

temperature.
n=1 n=

r'/Pr 0.1 0.71 1 10 100 0.1 0.71 1 10 100
0.00 00766 03259 03962 1.1341 26871 |0.0766 0.3259 0.3962 1.1341 2.6871
0.05 0.0752 03215 03912 1.1231 26631 | 0.0765 0.3255 0.3958 1.1333 2.6852
0.10 0.0737 03172 0.3863 1.1120 2.6392 | 0.0761 0.3244 0.3945 1.1303 2.6789
020 0.0712 03094 03774 1.0922 25962 | 0.0744 03196 03892 1.1187 2.6538
0.50 0.0654 0.2913 03566 1.0454 2.4944 | 0.0642 0.2910 0.3567 1.0478 2.5003
0.75 0.0621 02801 0.3437 1.0162 24307 | 0.0534 0.2589 0.3201 0.9673 2.3260
090 0.0605 0.2746 0.3373 1.0016 2.3796 | 0.0471 0.2393 0.2977 0.9175 2.2181]
1.00  0.0595 0.2713 03335 0.9928 2.3796 | 0.0433 0.2267 0.2832 0.8852 2.1479
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CHAPTER 4

Heat Transfer Augmentation in Rotating Flow

between a Cone and Disk with Suction/Injection

The impact of mass removal or addition on the flow and heat transfer
phenomena inside a gap between a cone and a porous disk has been examined in this
chapter. The convective transport phenomena are examined under various conditions
including stationary disk with rotating cone and vice versa, co- and counter-rotation of
cone and disk with prescribed values of mass transfer parameter. It is revealed that mass
removal or addition plays an important role in altering the nature of flow inside the gap
in all the considered cases. The heat transfer phenomenon is also strongly influenced
by the mass removal or fluid injection. Specifically, an interesting relation between the
exponent of the radial distribution of disk temperature and the mass transfer parameter
is realized in the current study. For the radially increasing temperature of the disk
surface the fluid injection optimizes the heat transfer phenomenon whereas for the
isothermal and radially decreasing temperature situations the wall suction is required
for the augmentation of heat transfer process. In this regard, some threshold values of
the mass transfer parameter are determined which correspond to the diminishing of the

heat transfer process.

4.1 Problem formulation

An incompressible viscous fluid having constant properties is assumed to be
filling the gap between a flat porous disk of sufficiently large radius and a vertical
circular cone joining the disk at its center. In general, the disk and the cone are assumed
to rotate with different rotation rates. This gives rise to a main rotating flow and a
secondary radial flow within the conical gap. The disk surface is assumed to be heated
variably; following the power-law distribution in . The advantage of such a power-law
temperature distribution of the disk surface is twofold: (i) such a power-law form in r
does not alter the self-similarity of the thermal transport because of the admissibility of
the scaling symmetry by it; just for mentioning, the rotating velocities of the disk and

the cone does also follow a power-law form in r (with the selection of power-law
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exponent equal to unity) which are in fact responsible for its self-similar nature, (ii) in
many practical applications the variable disk temperature usually follows the power-
law form such as in the heated cavities of the gas turbine. A stationary frame of
reference with respect to the rotating disk or cone has been considered (as shown in
Fig. 4.1). The body forces are assumed to be absent and the energy losses due to viscous
dissipation have been neglected. Moreover the internal heat generation/absorption is
also assumed to be absent in the considered flow. With the consideration of these
assumptions the laws of conservation of mass, momentum and energy are given in

system (1.1) — (1.5) subject to the boundary conditions

z=0: v, =0, v, =Vyq, v, =0r, T, =Ty = cer™ 4l
z=h(r): v =0, v,=0, Vyy,=0r, T=T, (.1)
Cone
¥4
w \ h(r)
1 Fluid
oyl _—
l l Vywa l l l Disk T
D

Fig. 4.1: Schematic of the flow.

The quantity v,,4 denotes the suction/injection velocity at the disk boundary (wall). The
constant n, permits to model the temperature of the disk as radially decreasing (n, <
0), constant (n, = 0), and radially increasing (n, > 0) which is of significant
importance from the engineering perspective. The conical gap height is denoted and
defined by

h(r) = rtany. “4.2)

Since the heat transfer phenomenon within the gap, due to the radial distribution of disk
temperature, is the focus of this study. In this regard, the cone temperature is assumed

to be the reference ambient temperature (T,).
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4.2 Similarity solution

In the absence of any cone the gap widens to an open semi-infinite space above
the rotating disk, and the considered problem turns to the classical von-Karman problem
for which the three-dimensional Navier-Stokes equations admit an exact solution.
Therefore, the current problem is better to be considered as an extension of the classical
von-Kéarman swirling flow. In this perspective, the considered problem may or may not
allow for an exact self-similar solution, in general. In view of a similarity criteria of the
classical von-Karman problem, a similarity solution is likely to exist for a gap geometry
if the gap height remains constant at all local radial locations. In this way the current
problem seems quite unlikely to admit an exact self-similar solution therefore a
corresponding non-similar formulation would be the better ultimate strategy. However,
in view of the existing researches on this flow, a self-similar formulation has been
reported to work quite good in order to achieve an excellent agreement of the theoretical
results with the available experimental data (see for instance [68]). An acceptable
mathematical justification to this fact could be that, as the flow is self-similar for a
rotating free disk as well as for the gap of constant height, where the variable height of
the gap is not a big departure from the self-similarity situation which also does not
destroy the self-similarity by a lot and allows to obtain a quite exact solution (due to
the self-similar formulation) at the local r-locations which could be designated as
locally self-similar in nature. Based upon these facts the considered problem does also
allow for a locally self-similar solution in an analogous manner. Therefore, the self-

similar form of the governing transport equations are obtained as

H' —nF' =0, (4.3)
MF" +nP' +LF' +2P +F?+ G%? =0, 4.4)
MG" + LG' =0, (4.5)
MH" + LH' + H1+ F)-P' =0, (4.6)
®" - Pr(n,FO + ®'(H —nF)) =0, 4.7
by the utilization of the similarity variables defined by (see [68])

n=§,F=rVﬁ,G=5?,H=I%,P=Z—:z,®=%, 4.8)

due to which the related boundary conditions do also transform as

n=0: F=0, G=G, H=H,, e=1}

n=n: F=0, G=G, H=0, ©=0 (4.9)
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where M =n2 +1, L =3n+nF —H, n; ==, G = Reg, Gy = Re,,, Req =

n.rZ wrz . .
—V—,Rew == In Eq. 4.9) H, (=v,41r/v) denotes the non-dimensional wall

velocity normal to the disk surface. Negative values of H,, correspond to suction (i.e.
mass withdrawal) whereas the positive values correspond to the uniform wall injection.
The primes in Egs. (4.3) — (4.7) denote the differentiation w.r.t. . The transformed
system of equations, namely, Egs. (4.3) - (4.7) and Eq. (4.9) allow to make an important
note here. The transformed transport equations (4.3) — (4.7) are in self-similar form with
the complete elimination of the previous variables, but, the boundary conditions (4.9)
do not appear in self-similar form because of the appearance of the original (previous)
variable r in Eq. (4.9). However, an exact self-similarity solution is still possible and
limited to the cases: fixed disk with G; being constant or for stationary cone with Gg
being constant. In general, such type of boundary conditions (in full) are designated as
locally self-similar where both the parameters (Go & G;) are considered at each
concrete location r [69]. Interestingly, such consideration produces quite accurate
results which are in very good accordance with the experimental and predicted data as
reported by Shevchuk [68].

Built-in solver of the Mathcad software is used for the solution of Egs. (4.3) —
(4.7) and (4.9) with the help of shooting method for various arbitrarily chosen values
of H,,. The influence of mass transfer parameter H,, on the velocity and temperature
profiles, for all possible considered situations, is depicted through several plots where

the quantified data have been reported in the form of numerous Tables. Following

Shevchuk [68], only two values of the gap angle (y = 4—”5 (n, = 0.0698) and % (m =

1)) have been taken into account just to make the present outcomes in accordance with
the already existing results. The calculations are performed for only a single value of
Prandtl number i.e. 0.71 (air). By doing so the attention has been focused upon the
realization of an interesting relationship (inter-dependence) between the mass transfer
parameter (H,,) and the temperature power-law index (n,) which enables one to
understand its important role towards the heat transfer enhancement. For this purpose,
different values of n,, for example n. = —1 (decreasing), n, = 0 (constant), n, = 1
(linearly increasing) and n, = 2 (quadratically increasing) have been taken into account
which characterize the heat transfer from the disk, as observed in the related engineering

applications. The value of Re = Reqn?/12 or Re = Ren?/12 is taken equal to unity.
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Consequently, Req = Re, = 12 at n; = 1 and Req = Re,, = 2463 at n; = 0.0698.
A detailed analysis has been made in four different cases which are discussed one-by-
one in the following:
Case I: Rotating cone with stationary permeable disk

The velocity components in a large conical gap (n; = 1) are drawn in Figs. 4.2
~ 4.4 under the action of fluid injection or mass withdrawal. The radial velocity
distribution is depicted in Fig. 4.2 for the prescribed values of suction/injection
parameter H,,. The impermeable disk case (H,, = 0) is better to observe first for which
the flow is centripetal near the disk and centrifugal near the cone. In this situation both
the centripetal and centrifugal flows do co-exist simultaneously. But, as the mass
removal (H,, < 0) is introduced at the disk surface, the centripetal flow starts to
dominate. It is depicted (in Fig. 4.2) that the centripetal flow gradually strengthens and
extends towards the cone region upon continuous strengthening the mass removal
parameter H,,. Ultimately a stage is reached when the centrifugal flow vanishes
completely and there is only the centripetal flow within the whole gap. The value of H,,
for which this situation is achieved is called the minimum threshold value HJ%,,s of
H,, for which the total radial flow in the gap becomes centripetal and is calculated to be
H3¥4,.. = —1.384. This means that the fluid drawn out, at the disk surface, supports
the centripetal flow on the disk and radially draws the more fluid into the gap which
consequently reduces the centrifugal flow near the cone. Analogously, a reverse of this
situation is observed for the mass injection case. The centrifugal flow can be seen to
extend towards the disk surface as one continuously increases the mass injection

velocity at the disk surface. In this case too there exists a minimum threshold value

H‘Z#’hrs of H,, for which the entire radial flow within the gap becomes centrifugal. This

particular value of H,, is calculated as H:V'}.ihrs = 1.1 (see Fig. 4.2).

Tangential velocity component under the influence of fluid injection or mass
withdrawal in a large conical gap has been plotted in Fig. 4.3. Slope of tangential
velocity component rises as suction becomes stronger (see Fig. 4.3) which means that
the flow establishes within the gap; whereas the blowing depreciates the flow which
ultimately correspond to decrease the velocity gradient at the rotating disk. The effects
of suction/injection on axial velocity component have also been depicted in Fig. 4.4.
Obviously, the magnitude of the axial velocity is higher in the case of fluid injection;

which is somewhat a trivial fact. The pressure distribution is also greatly influenced by
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the mass withdrawal and blowing phenomena. A decrease in pressure is noticed when
the mass is drawn out from the disk surface (see Fig. 4.5) whereas blowing has an
opposite effect and leads to increase the pressure in the gap and on the disk surface,

also.
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Fig. 4.2: Dimensionless mass transfer parameter effects on radial-velocity distribution
in a large conical gap between a rotating cone and stationary permeable disk.

Fig. 4.3: Dimensionless mass transfer parameter effects on tangential velocity

distribution in a large conical gap between a rotating cone and stationary permeable
disk.
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Fig. 4.4: Dimensionless mass transfer parameter effects on axial velocity distribution
in a large conical gap between a rotating cone and stationary permeable disk.
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Fig. 4.5: Dimensionless mass transfer parameter effects on pressure in a large conical
gap between a rotating cone and stationary permeable disk.

Temperature profiles are plotted in Figs, 4.6 (i — iii) for various values of n,(=
—1,0 & 2). A downward shifting of temperature curves can be noticed in Figs. 4.6 (i &
ii} exhibiting increased wall temperature gradients, as one assumes the decreasing
values of dimensionless velocity H,,. This clearly highlights the key role of wall suction
velocity towards the convective heat transfer enhancement for the cases n, = 0.0 and

n, = —1.0 (see Fig. 4.6 (i & ii)). But, on the other hand, when the fluid (having the
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same temperature as that of disk) is injected through the disk, it leads to flatten the
temperature curves. These effects are more pronounced when one considers the strong
wall blowing. Eventually, at H,, = 2.621 (n. = —1),15 (n. = 0), the injected fluid
behaves as an insulating layer which corresponds to no heat transfer from the disk
surface (see Figs. 4.6 (ii)). This phenomena can also be observed from Fig. 4.7 where
Nusselt number (Nu = —0'(0)) hits the zero value at corresponding values of H,, =
2.621 & 15. But forn, = 1 & 2, it takes large values of H,, (greater than 20) to vanish
the heat transfer rate. These values are not evaluated in this study as solution is more
sensitive and highly dependent upon the initial guess which requires the extra efforts.
Similarly for the small conical gap heat transfer seizes at H,, = 220 for the considered
values of n,. Interestingly, the role of suction/injection gets reversed when one assumes
n, > 0.0 (see Figs. 4.6(iii) & 4.7) i.e. the fluid injection is now responsible for the heat
transfer enhancement and suction results to decrease the heat transfer rate. Ultimately
the flattened temperature curves (for n, = 2.0) are obtained at H,, = —1.367 where no
heat transfer is observed (see also Fig. 4.7, n, = 2.0). Heat transfer enhancement due
to fluid injection is given quantatively in Table 4.1 where it can be noticed that the trend
in heat transfer enhancement is the same for small conical gap, also. For instance,
corresponding to the fixed value H,, = —2, heat transfer is enhanced by 6% and
(almost) by 4% when n, = —1 & 0, respectively, with small gap (n; = 0.0698), and
99% and 52% for large gap (n, = 1), respectively. For the radially increasing
temperature, an enhancement of 0.9% (n, = 1) & 44% (n, = 2) for the large gap and
0.05% (n, = 1) & 5.6% (n, = 2) for the small gap are achieved. With the availability
of this quantitative data it is noticed that the heat transfer enhancement in the mass
injection case is not that rapid as it is in the suction case. Interestingly, radially
decreasing temperature case corresponds to highest enhancement in the heat transfer
rate. The reason behind this fact is that the suction causes the centripetal flow and the
injection causes the centrifugal flow. In the case (n > 0) the disk temperature is higher
near the rim and lower near the center. When the radially inward (centripetal) flow
enhances, it brings the hotter fluid towards the cooler region which ultimately reverses

the cooling process.
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(iii)
Fig. 4.6: Dimensionless mass transfer parameter effects on temperature distribution in
a large conical gap between a rotating cone and stationary permeable disk. (i) n, = 0.0,
(i) n, = ~1.0 & (iii) n. = 2.0.
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Fig. 4.7: Heat transfer rate as a function of dimensionless mass transfer parameter in a
large conical gap between a rotating cone and stationary permeable disk.

Table 4.1: Data of heat transfer rate, rotating cone and stationary permeable disk.

H, n.=-1 n,=0 n,.=1 n,=2 n,=-1 n,=0 n.=1 n,=2
-2.0 2.084 1.473  0.621 16.189 13.878 11.410 8.768
-1.2 1.649 1.246  0.755 0.136 15.822  13.685 11418 9.006
-04  1.241 1.045 0.834  0.606 15458 13.495 11.424 9.235
0.0 1.047 0.954 0.858 0.759 15.276  13.401 11.427 9.346
0.5 0.816 0.849 0.876 0.899 15.051 13.283 11.429 9.481
1.0 0.599 0.752 0.882 0.995 14.826  13.167 11.431 9.613
2.0 0.209 0.583 0.866 1.093 14379 12.936 11.433 9.866

Re, = 12 (large conical gap)

Re, = 2463 (small conical gap)

Case II: Rotating permeable disk and stationary cone

This is a reverse of the above case which obviously causes to reverse the
associated phenomena. Now the centripetal flow shifts to the cone region and the
centrifugal flow happens to appear near the porous disk. The influence of mass
withdrawal or blowing has been the same on velocity as well as on temperature profiles
in this case also where the more removal/supply in the form of suction/injection can
diminish the occurring of centrifugal and centripetal flows, respectively. However,
from Fig. 4.8 it can be seen that the threshold values for diminishing the heat transfer
phenomenon are altered i.e. H, = 2.2065 (n, = —-1),15 (n, = 0),20 (n, = 1) and
H,, = —1.9032 (n. = 2); which is also an obvious fact, now. The threshold values for
small gap again exist for the large value of H,, = 220 for considered value of n,. The
heat transfer increment for suction (H,, = —2) inside the large and small gap situations

are, respectively, 112% & 7% (n, = —1) and 51% & 3% (n, = 0), whereas, for the
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fluid injection (H,, = 2) it is 21% & 2% (n. = 2), respectively (see Table 4.2). Again
in the situation of radially decreasing distribution of the disk temperature the heat
transfer increment is the largest and it is in fact also greater than the value obtained in
the previous case which is 99% with the same temperature distribution. This indicates
that the efficiency of cone-disk arrangement, used in cooling processes, can be higher
for a rotating porous disk (subject to mass removal) with radially decreasing

temperature and a stationary cone.

Table 4.2: Data of heat transfer rate, stationary cone and permeable rotating disk.

Re, =12 Re, = 2463
H, n,.=-1 n,=0 n,=1 n,=2 n,=-1 n,=0 n,=1 n,=2
2.0 2.032 1.572 0.919 14310  15.858 17.347 18.779
-1.2 1.585 1.341 1.038 0.646 13918 15.655 17.323 18.927
-04  1.162 1.135 1.103  1.065 13.528 15.453 17.298 19.067
0.0 0.960 1.041 1.120 1.197 13.334  15.353 17.284 19.134
0.5 0.719 0931 1.128 1.312 13.093  15.228 17.267 19.215
1.0 0.490 0.830 1.125 1.385 12.852  15.104 17.249 19.293
2.0 0.076 0.651 1.090 1.443 12.373  14.859 17210 19.440
2 ' Re =12 -==n,=-10 1
n,=00
n,=10
n,=20 |
0 3 o 10 15 20

Fig. 4.8: Heat transfer rate as a function of dimensionless mass transfer parameter in a
large conical gap between a stationary cone and permeable rotating disk.

Case III: Co-rotating cone and permeable disk

The flow pattern in the current case is characterized by the ratio (Req/Re,). If
cone rotates faster (Re, > Reg), motion of the fluid is centripetal over the disk and
centrifugal near the cone. The flow pattern is reversed when disk revolves faster (Req >
Re,,). Therefore, it is important to investigate the situation when both the disk and cone

rotate almost with identical velocities (Re,, = 1.01 Reg or Re,, = 0.99 Rey,). Table 4.3
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contains the numerical values of heat transfer rate with the effects of suction/injection
when the ratio (Req/Re,,) is 0.99. The threshold values of H,, are 2.4223 (n, = —1),
15 (n, =0), 20 (n, = 1) & — 1.71754 (n, = 2) for which no heat transfer (see Fig.

4.9) is found for a large gap (1, = 1). Similar to the above two cases such threshold

values exist at H,, = 220 for small conical gap. According to Table 4.3 the

augmentation in heat transfer rate for mass removal (H,, = —2) in a large and small

gap are, respectively, 105% & (almost) 7% (n, = —1) and 53% & (almost) 4% (n, =

0), whereas for the blowing (H,, = 2) it is 25% & 2% (n. = 2), respectively.
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Fig. 4.9: Heat transfer rate as a function of dimensionless mass transfer parameter in a
large conical gap between a co-rotating cone and permeable disk.

Table 4.3: Data of heat transfer rate, co-rotating cone and permeable disk.

Hy
-2.0
-12
-0.4
0.0
0.5
1.0
2.0

Re, = 12 Re, = 2463
n.=-1 n=0 n,=1 n,=2 n,=-1 n,=0 n,=1 n,=2
2.051 1.533 0.810 15239 14.848 14.448 14.040
1.611 1.301  0.925 0.453 14.864 14.646 14425 14.202
1.196 1.095 0.987 0.872 14.491 14.446 14.400 14.355
0.999 1.001 1.003 1.004 14306 14.346 14.387 14.428
0.764 0.892 1.010 1.121 14.075 14223 14.370 14.516
0.542 0.791  1.007 1.196 13.845 14100 14352 14.601
0.145 0.615 0973 1.259 13.389 13.856 14313 14.761

Case IV: Counter-rotating cone and permeable disk

First consider the impermeable disk (H,, = 0) in which most complicated radial

flow pattern is exhibited by both the cone and the disk. In fact centrifugal flow exists

over the disk and cone whereas centripetal at the in-between region (center) of the
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conical gap. Mass withdrawal has an interesting effects on this centripetal flow (in the
central part of the gap) and its region can be extended towards the disk and cone due to
the increased wall suction. Particularly, for H,, = —0.6, disk rotation effects are almost
negligible and at H,, = —1.91 fully centrifugal flow is observed in the whole gap region
and over the disk and the cone as well. But again a reverse behavior in the flow pattern
is observed when blowing is considered, as shown in Fig. 4.10. Table 4.4 gives the
detailed information about the different flow situations due to the mass withdrawal or
fluid injection. Heat transfer has been affected in the same manner as like the previous
cases discussed above. The computations of Nusselt number (over the disk surface)
with the influences of suction/injection are depicted in Table 4.5. Heat transfer
augmentation (for n, < 0) and diminution (for n, > 0) can clearly be seen when greater
mass is sucked from the disk surface (refer to Fig. 4.11). Heat transfer is diminished at
H,, = —1.4848 (n, = 2). The fluid injection has an opposite role and zero heat transfer
is observed at H,, = 2.3562 (n, = —1),15 (n, = 0) & 20 (n, = 1). According to
Table 4.5 the intensification in heat transfer with mass removal (H,, = —2) are 105%
& 7% (n. = —1) and 51% & 3% (n, = 0) for the large and small gap situations,
respectively, whereas for the blowing (H,, = 2) it is almost 40% & 4% (n., = 2),

respectively.

v, Jwr

-0.24

- 0.4

Fig. 4.10: Dimensionless mass transfer parameter effects on radial-velocity distribution
in a large conical gap between a counter-rotating cone and permeable disk.
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Table 4.4: Situation of centripetal and centrifugal flow under the influence of
dimensionless mass transfer parameter in the situation of counter-rotating of porous
disk and cone.

H,  Centripetal flow Centrifugal flow Constant
-1.91 100% - -
-1.00 85% 15% -
-0.80 60% 40% -
0.00 40% 60% -
0.80 35% 65% -

1.00 - 78% 22%

1.50 - 90% 10%
2.00 - 93% 7%
3.00 - 94% 6%

Table 4.5: Data of heat transfer rate, counter-rotating cone and permeable disk.

H,
-2.0
-1.2
-0.4
0.0
0.5
1.0
2.0

Re, = 12 Re, = 2463
n,=-1 n,=0 n,=1 n,=2 n.=-1 n, = n.=1 n, =2
2.072 1.496 0.675 15.187 14905 14.584 14.218
1.630 1.274 0.833 0.264 14.796 14.718 14.613 14.479
1.211 1.078  0.933 0.774 14408 14.532 14.639 14.728
1.011 0.989 0.966 0.942 14210 14.440 14.652 14.849
0.772 0.885 0.993 1.096 13.973 14325 14.666 14.997
0.544 0.789  1.007 1.202 13.733 14.211 14.680 15.140
0.132 0.621 1.002 1.314 13.255 13.984 14.705 15416

Fig. 4.11: Heat transfer rate as a function of dimensionless mass transfer parameter in
a large conical gap between a counter-rotating cone and permeable disk.
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CHAPTER §

Heat Transfer Enhancement from a Non-Isothermal

Rotating Disk with Surface Topography

Augmentation in heat transfer rate through wall roughness is a passive technique
which is extensively being used in the modern technologies. For the rotating disk
geometries its implementation is very rare as the literature does not include any
significant works on this topic except a very few. The isothermal rotating wavy disk is
available in literature (studied by Le Palec [71]) in which he reported 15% increase in
the rate of heat transfer compared to the flat disk case. Such an increased heat transfer
rate can further be increased by assuming certain other flow assumptions. An attempt
in this regard is made in this chapter in order to acquire the increased heat transfer
coefficient when the rotating wavy disk temperature is distributed non-uniformly. The
disk temperature is assumed to depend on radial distance in the form of power-law
function. In the situation of increasing wall temperature of disk having quatratic
function of its radius corresponds to 110% intensification in the overall heat exchange
from a hot wavy disk (with two waves and surface roughness ratio equals to 0.1) to the
surrounding quiescent air in comparison to the isothermal flat disk. Apart from this,
rate of heat transfer from a wavy disk has also been estimated for a very wide range of
Prandtl number (1072 to 10*). In the current analysis some threshold values of
exponent of disk temperature distribution has also been manipulated for which the heat
transfer rate is seized. The invariant threshold value (n, = —2) of the flat disk is
observed to be variant for a non-flat disk case. However, this variation is found to be
small for a variety of fluids. Due to the analogy between convective heat transfer and
mass transfer phenomena the obtained findings of this study are two fold as they also
characterize the mass transfer rate from a wavy rotating disk with a uniform distribution

of mass at the disk surface.

5.1 Model description

Consider a non-flat circular disk rotating around its vertical axis with a constant

rotation rate w. The disk is assumed to rotate in a fixed frame due to which Coriolis
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forces are absent and the flow resembles to the classical von Karman’s flow. Such a
rotating flow is assumed to be steady, viscous, incompressible, with constant thermo
physical properties inside and away from the boundary-layer. The effects of viscous
dissipation and gravity are neglected. The disk surface is described by the continuous
differentiable function s(r*) = a, cos(2Nmr*) which specifies the non-flat surface of
the disk as a sinusoidal wavy surface. A schematic diagram of the disk geometry is
shown in Fig. 1.4. The so chosen surface topography facilitates a comparison of the
current results with those of Le Palec [72], otherwise one is free for choosing any other
differentiable form. The governing equations are obtained in an orthogonal curvilinear
coordinate system (x,8,y) in which the direction along the surface of the disk is
represented by x, and normal to the surface is y, while the azimuthal direction is
described by 8 (see Fig. 1.4). The continuity, momentum, energy, and concentration
equations for the rotating wavy disk after the utilization of boundary-layer
approximations are given in Eqs. (1.11) — (1.15). Where the pressure gradient terms
disappeared because of the ambient conditions. These ambient conditions along with
wall conditions are specified below.
5.1.1 Boundary conditions
Wall conditions
(1) No slip condition at the rotating disk surface in the absence of suction/injection
correspond to the restriction v, = v, = vy — wr = 0.
(2) A non-isothermal wall temperature of the power-law form T,, (r) = T, + cor™
is considered, where n, characterizes the radially increasing (for n, > 0);
radially decreasing (n, < 0), or isothermal (n, = 0) temperature distribution at
the disk surface.
(3) The analogy between heat and mass transfer can be established if one utilizes

the constant distribution of concentration on the disk surface, i.e. C,, = Const.

Ambient conditions
(1) The fluid motion is induced solely due to the disk rotation and the surrounding
fluid is quiescent. This certainly gives rise to the condition v, = 0 = vy.
(2) The ambient temperature of the fluid is given by T,.
(3) Similar to the ambient temperature a uniform ambient concentration (C,) is

considered outside the boundary-layer.
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5.2 Solution procedure

5.2.1 Non-dimensionalization
In order to obtain the dimensionless form of the governing system we follow the

dimensionless variables defined by Le Palec [71] as

S Rw(Xy) @R ¥(x,y)
 n= [y k=11 f(en)—J_ glem) = (212

Oe,m) = ==, ®(e1) = £

(5.1

Cw C

where the relationship between the velocity components and the stream-functions is

given by
_ 1awr) _ _1an) _ ¥
X" r 3y Yy =77 ax ' Yo = ay’ (-2)

These dimensionless variables transform the original governing system into the

following dimensionless non-similar form:

fom = o (12 = 93) + 5+ 32 50) Ffan = (e = Fin o). (5.3)
Iy — ;Zangn (l+z:f£)f 9oy = €(FnGne — Innfe): (4
oy (343258 fe, — 2% f,0 = &(f, 0, — O, ), (5.5)
20 4 (342258 fo, = &(f,0, - pfe). (5.6)

Notice that Egs. (5.5) and (5.6) admit the same solution whenever the parameters Pr
and Sc take the same values (at n, = 0). This means that the solution of Eq. (5.5) can
serve as the solution of Eq. (5.6) (n, = 0) by designating the same values to Sc as
designating to Pr. Because of this analogy we shall prefer to solve Eq. (5.5) only and
to use the same solution for ® by assigning the same values to Sc to Pr. By using Eqgs.

(5.1) & (5.2) the boundary conditions defined in Sec. 5.1.1 can be transformed as

f=9=f=g,-1=0-1=0-1=0, atn:o}

ﬁ]=0i gn:'o, @=O,¢=O' atnzm' (5.7)

5.2.2 Numerical method
An implicit finite difference scheme commonly known as Keller-box method
has been implemented to acquire the solution of non-similar Egs. (5.3) — (5.7). The
commercial tool MATLAB was used for this numerical solution. The program has been
validated by reproducing heat transfer data for a non-isothermal rotating flat disk,
already studied by Shevchuk [37]. The comparison of the two data is presented in Tale

5.1 where an excellent matching of the two data can be seen. Apart from this, several
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runs were also made in order to acquire the grid independence of the data, especially
for the large Prandtl (Schmidt) numbers Finally, the results were obtained by setting
An = 0.001 for Pr >» 1 and for small values of the Prandtl number (Pr « 1) Anp =
0.01 was used. However, for the values Pr < 1 the outer edge of the boundary-layer
varies with Pr. For example, for Pr = 0.1 the outer edge of the boundary-layer is taken
as Ne = 90 which rapidly increases to the value n, = 700 for Pr = 0.01. It is
important to mention here that our results of the Nusselt number (local and average),
depicted graphically for isothermal case (i.e. n. = 0), for the rotating sinusoidal-shaped
disk for Pr = 0.71 are identical to the results of Le Palec [71] which indeed shows the

validation of the current method.

Table 5.1: Comparison of data of heat transfer rates for non-isothermal flat disk.

n,=-2 n,=-1 n,=0 n.=2
Shevchuk Shevchuk Shevchuk Shevchuk
Pr(Sc) [37] Present [37] Present [37] Present [37] Present
10~2 0.00000  0.00000 0.00438 0.00438 0.00871 0.00871 0.01726  0.01726
107! 0.00000  0.00000 0.0399 0.0400  0.0766 0.0766 0.1417 0.1417
10° 0.00000  0.00000 0.3221 0.3221 0.3963 0.3963 0.6159 0.6159
10! 0.00000  0.00000 0.7368 0.7368 1.1341 1.1341 1.6206 1.6205
102 0.00000  0.00000 1.8009 1.8009  2.6871 2.6871 3.7422 3.7421
103 0.00000  0.00000 4.0802 4.0802 6.0162 6.0160 8.2972 8.2973
10* 0.00000  0.00000 8.9846 8.9849 13.181 13.181 18.104 18.105

5.2.3 Quantities of physical interest
The dimensionless temperature gradient at the disk surface is an important
engineering quantity which represents the rate of heat transfer from the heated disk to

the surrounding fluid. Owing to the surface roughness heat transfer rate can be analyzed

-1/2
w

as locally and globally. The local Nusselt (Sherwood) number, Re_'“Nu =

\E 0,(0) (Re;l/ ’Sh = \/g d),,(O)) predicts the local heat (mass) transfer rate whose

dependence upon the local locations on the disk surface is obvious from this expression.
The overall estimation of the heat transfer can, however, be made by calculating the
average Nusselt number. The calculation of average Nusselt number does also facilitate
one to make the comparison among the wavy disk situation and the flat disk situation.
With the aid of above expression of local Nusselt (Sherwood) number it is possible to

define the average Nusselt (Sherwood) number as

NuReg"” =% [(Reg"/*Nu dS (ShRe;"* =3 [ Re;/*sh ds). (5.8)
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The impact of surface roughness can be calculated with the use of flat disk area (b?)

as a reference. This leads to an average Nusselt (Sherwood) number of the form

— _ =S (e _ TS
Nu, = Nu— (Sh, = 5h). (5.9)

nth?

For the smooth disk § = mb? and consequently one obtains MI,, = Nu Shy, = m

5.3 Heat transfer analysis

The analysis of heat (mass) transfer phenomena strongly depends upon the involved
physical quantities. In this regard four physical parameters are involved in this study,
namely; (i) the surface roughness ratio (ay/ A), (ii) the number of sinusoids (N), (iii)
the Prandtl (Pr) (Schmidt (Sc)) number, and (iv) the temperature distribution exponent
(n.), among which all influence the heat transfer rate significantly. The parameters (i)
and (ii) characterize the surface roughness, whereas (iii) represents the nature of the
fluid and (iv) enables the rotating disk to be non-isothermal. The influence of Prandtl
number upon the heat transfer rate is first elucidated by varying it over a very wide
range i.e. from 1072 to 10*. Its impact on temperature profile in the presence of surface
roughness (ap/ A = 0.1) is shown in Fig. 5.1. A rapid increase is observed in the
thermal boundary-layer thickness for small values of Pr while keeping other parameters
fixed, whereas the larger values of Pr make the boundary-layer thinner. Such thinning
of the boundary-layer is also found to depend on increasing values of the temperature
distribution exponent n, (depicted in Fig. 5.2). This means that the higher values of Pr
and n, lead to enhance the heat transfer rate at disk surface. These increased rates of

heat transfer are quantized in Table 5.2 corresponding to various values of the involved
parameters. Due to the presence of surface roughness, the values of N_up have been
manipulated in this Table. It is found that the impact of Prandtl number remains the
same for wavy disk also. Interestingly, for Pr = 1 the value of N_up enhances by 3.27

times with an increase in exponent n, from —1 to 4 whether the disk is flat or sinusoidal.
It is also fascinating to note that for Pr = 10%, the corresponding value increases up to
2.38 times over the same range of n, with and without surface roughness. Therefore,
one can say that higher values of Prandtl number weakens the influence of temperature
distribution exponent n, for a sinusoidal-shaped disk, also. These influences were

already reported in literature by Shevchuk [37] for a flat rotating disk. From Table 5.2,
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one also notices that an increase in Pr results to increase the heat transfer rate for the
wavy disk. Almost 28 times enhancement in the overall heat transfer rate is observed
when Pr is varied from 10° to 10* at n, = 4 for both types of disks (either smooth or
sinusoidal). But a clear quantitative difference between the values of heat transfer rate
of smooth (ay/ A = 0) and wavy (ag/ 2 = 0.0625 & 0.1) disks can also be seen in this
Table showing more transfer of heat due to the rough rotating disk. For the fixed Prandtl
number and exponent index, the increase in the roughness ratio of sinusoidal disk
causes to further enhance the heat exchange at the disk surface. Almost 5%
enhancement in heat transfer is observed for roughness ratio equals to 0.1 by keeping
Pr = 1.0 & varying n, = —1.0 to 4.0. Furthermore for all considered range of Prandtl
number and temperature distribution exponent, the surface roughness (for surface
roughness ratio = 0.1) contributes almost 1.04 times in the augmentation of heat
transfer rate. From Table 5.2, it can also be seen that the variation in n, from 0 to 4
corresponds to 101% enhancement in heat transfer rate for a flat disk situation. But the
incorporation of the surface roughness (ap/ A = 0.1, N = 2) leads to further enhance
this value up to 110% in comparison to the isothermal flat disk (i.e. numerically heat
transfer rate is increased from 0.3259 to 0.6842). The data reported in Table 5.2
indicates that the heat transfer rate increases significantly by increasing the height of
bumpy surface. But it is also important to note here that the height of bumpy surface
(ag/ A) is taken small enough so that they (surface bumps) do neither cause any flow
separation nor they give rise to any secondary flow. The dependence of the local Nusselt
number on temperature distribution exponent n, under the influence of the wavy
texture parameter (a,/ A) is depicted in Fig. 5.3 which reveals the periodic nature of
the thermal profile due to the impact of surface waviness for each exponent n,. Similar
trend is observed when the local Nusselt number is plotted for various values of Pr and
aq/ A (see Fig. 5.4). In contrast to the geometry of the disk a double periodicity is
exhibited by the local Nusselt number with decreasing amplitude as one departs from
the axis of rotation for all considered values of n,. A similar trend of the local heat
transfer rate under the influence of Prandtl number with quadratic law of radially
increasing temperature distribution of rough disk are also shown in Fig. 5.4. The local
heat exchange at the surface of the disk is higher for larger Prandtl numbers for smooth

as well as rough disk.
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n, =2, ao/A =01
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Fig. 5.1: Temperature profile for different values of the Prandtl number.

Table 5.2: Values ofmp (ﬁp) atN =2,

Pr(S¢) ag/A n,=-1 n,=0 n,=1 n,=2 n,=4
0.01 0 0.0044  0.0087 0.01301 0.0173  0.0256
1/16 0.00532 0.00971 0.01406 0.01836 0.02685

0.1 0 0.0400 0.0766 0.1104  0.1417  0.1982
1/16 0.0411 0.0783 0.1127 0.1446  0.2021

1/10 0.0426 0.0808 0.1160  0.1487  0.2076

0.71 0 0.1893  0.3259 0.4319 0.5185  0.6555
1/16 0.1928 0.3318 0.4397  0.5279  0.6674

1/10 0.1979 0.3403 0.4510 0.5413  0.6842

1.0 0 0.2352  0.3963 0.5180  0.6159  0.7693
1/16 0.2395 0.4035 0.5274  0.6271 0.7832

1/10 0.2457 0.4137 0.5407 0.6428  0.8028

5.0 0 0.5444 0.8533  1.0697 1.2382 1.4971
1/16 0.5544 0.8688 1.0891 1.2605 1.5241

1/10 0.5670  0.8900 1.1161 1.2920 1.5623

10.0 0 0.7368  1.1341  1.4083 1.6205 1.9460
1/16 0.7502  1.1548 1.4339  1.6499  1.9812

1/10 0.7667 1.1825 1.4962  1.6909  2.0308

100 0 1.8009  2.6871 3.2840  3.7421 4.4421
1/16 1.8334  2.7359  3.3435  3.8098  4.5222

1/10 1.8714  2.8007 3.4251 3.9040 4.6351

500 0 3.2033  4.7351 5.7596  6.5441 7.7413
1/16 3.2609 4.8211 5.8640  6.6625  7.8809

1/10 3.3276  4.9348 6.0070  6.8271 8.0777

1000 0 4.0802 6.0160 7.3083  8.2973  9.8058
1/16 4.1535 6.1253  7.4408  8.4474  9.9827

1/10 42383 6.2696 7.6560  8.6560 10.2320

10* 0 8.9849 13.1813 15.9721 18.1054 21.3573
1/16 9.1463 13.4209 16.2620 18.4333 21.7430

1/10 93318 13.7364 16.6579 18.8883 22.2856
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Table 5.3: Values of temperature distribution exponent for which heat transfer from
the wavy disk (at N = 2) is seized.

Pr(Sc)
ag/A 0.1 0.71 1 5 10 100 1000 10000
0.0 -2 -2 -2 -2 -2 -2 -2 -2 .
1/16 -2 2 2 -1.9999  -19998  -1.9995  -1.9994  -1.99937 ,
1/10 | -1.9996 -1.9996 -1.9995 -1.9993  -1.9990 -1.9932 -19927 -1.9925 ||
] |
n=-1,0124

Pr=071, ao/A =01

6 10

8

7

Fig. 5.2: Temperature profile for different values of the disk temperature distribution
exponent 7, (the curve i, = 0 also characterize the concentration profile at Sc = 0.71).

T TP T
-t n,=2 i afr=90

0.5} - =116 |
5‘3., - @A =110
"o n=0 e ag/\=1/8
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= Neman™ iy vl

0.3 _ Pr=1

n,=-1
0’2 Lo . . " v {1

3

Fig. 5.3: Local Nusselt number variations with surface roughness ratio for a non-
isothermal wavy disk (the curve n. = 0 also depicts the local Sherwood number at Sc =

1).
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Fig. 5.4: Influence of Prandtl number on local Nusselt number.
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Fig. 5.5: Averaged Nusselt number Nu (curve 1) and ?V_up (curve 2) under the influence
of non-uniform temperature distribution and surface roughness ratio parameters (the
curves 1, = 0 also correspond the variation of averaged Sherwood numbers Sk and

Shy, at Sc = 0.71).

Average Nusselt numbers Nu and Nu,, are computed including the area of the wavy
disk with the use of the smooth disk area as a reference. Figure 5.5 depicts these values
as a function of amplitude — to — wavelength ratio and clearly reflects that the absence
of wavy disk area (Eq. (5.8)) shows lower heat transfer rate in comparison to the flat
disk (see curve (1) of Fig. 5.5) for increasing values of @/ A. But with the inclusion of
actual area of the rough disk (Eq. (5.9)), it shows the increased heat transfer rate (curve
(2) of Fig. 5.5) for higher values of a,/ A. Similar paitern is obvious in this Figure for

all other chosen values of n,. It is also noticed that the increase in exponent n,
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corresponds to higher the values of both Nu &N_up. The influence of the number of

sinusoids (N) on the average Nusselt number N_up for different values of temperature
distribution exponent n, is highlighted in Fig. 5.6. It can be seen that the influence of
number of sinusoids on all considered values of n, is quite weak. It is observed that
the multiple waves fitted to the fixed radius of the disk do contribute towards the heat
transfer augmentation. However, the augmentation in the heat transfer rate gets weaker
with increasing N. From Fig. 5.6 it seems that the impact of number of sinusoids
becomes negligible when the parameter N exceeds the value 4. Again, the Tvﬂ,, obeys
a same trend (as observed in Fig. 5.6) for all considered values of n, apart from a
quantitative difference.

From the above discussion, it is realized that the heat transfer rate is reduced when
the disk temperature assumes a radially decreasing distribution (i.e. n, < 0); and the
heat exchange from the surface of the flat disk to the surrounding is seized at n, = —2,
as reported in ref. [37]. Surprisingly this seizing (threshold) value of n, is found to vary
slightly in the considered flow (refer to Table 5.3) due to the wavy nature of the surface.
From Table 5.3, it is clear that the threshold value in the presence of surface waviness
is found to depend on the Prandtl number quite appreciably, whereas in the case of a
flat disk it is independent of the Prandtl number and remains unchanged ( n,¢preshotd =
—2). The influence of surface roughness ratio is also crucial on this critical value where
an increase in its value leads to an increase in the critical value also which in turn

highlights the role of surface waviness.
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0201 F n,=- .
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0552 / n,=2 {
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Fig. 5.6: Effects of number of sinusoids on heat transfer rates for various temperature
distribution exponent at Pr = 0.71(the curve n, = 0 also represents the mass transfer
rate at Sc = 0.71).
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CHAPTER 6
Heat Transfer from a Wavy Disk Rotating in Forced

Flow

The geometric characteristics of the bounding surface and the various flow conditions
impart a significant impact on heat transfer augmentation. The surface roughness; the
pressure gradient, and the non-uniform disk temperature of the power-law form all
attribute to increase the heat transfer rate. These techniques are utilized in this chapter
to enhance the convective heat transfer rate in a non-similar boundary-layer flow
induced by the rotation of the sinusoidal-shaped disk in a uniform forced stream. The
heat transfer coefficient is calculated numerically with the help of Keller - box method.
The numerical solution of the governing system is first validated, which is found to be

in good agreement with the previous published (theoretical and experimental) results

for rotating wavy disk in the absence of external flow (& = 0) and also for a flat disk

rotating in a uniform forced stream. It is observed that the impact of surface waviness
with a relative motion of fluid and disk on heat transfer rate, shear stresses and shaft
torque is quite pronounced and indicates that it is very productive in engineering
prospective for the rotating disk systems. Specifically, enhancement of moment
coefficient due to waviness of the disk leads to increase the power of wavy disk pump
in comparison to the smooth disk. Furthermore, 119%, 174%, 86%, and 86%
enhancement in the heat transfer rate (for the case of constant heat flux), the radial shear
stress, the tangential shear stress, and the moment coefficient is observed for the wavy
disk rotating in forced flow at a fixed a/w = % and ay/ A = 0.125 in comparison to
the free rotating flat disk. The considered rough non-isothermal disk rotating in the
linear stream of air (Pr = 0.71) leads to a significant (about 263%) enhancement in
overall heat transfer rate compared to that of the flat free rotating disk when the wavy
disk (with two sinusoids) having surface temperature as quartic function of its radial
distance. Furthermore, a special attention is also given in identifying the threshold
values of the temperature distribution exponent for which the rate of heat transfer is
seized from the disk surface and these values are found to depend upon the disk

structure only. Furthermore, the present calculations showed that the variation in these
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threshold values was not that huge and they remained very close to the flat disk value

(i.e. n, = —2) under various circumstances.
6.1 Flow configuration and heat transfer

The alteration of the flat disk surface to the non-flat wavy surface is depicted in

Fig. 6.1 with the description of the boundary-layer coordinate system.

520

Fig. 6.1: Schematic of the disk geometry and the used coordinate system.

As depicted in Fig. 6.1, the rotating wavy disk is also assumed to be subjected
to a linear forced flow. However, the rigid nature of the wavy disk surface and the
axially-symmetric nature of the concentric wavy patterns ensure the absence of any
wall normal flow and the independence of the dependent quantities form 6. This study
considers two cases: first, the disk surface is assumed to be heated in a manner that
there exists a constant heat flux throughout the disk surface, second, the disk
temperature is assumed to follow the same power-law form as considered in previous
chapter. Far away from the disk surface the fluid assumes the ambient temperature
denoted by T,,. These flow and thermal conditions can be stated, mathematically, as,
v, =1y, =Vvg—awr=0, (i) —kg—;= q,{)T, =Ty +cer™, aty= 0}. 61
ve=ar, vg=0, T="T,, at y -

The thermal boundary condition (i) will be called as CHF (constant heat flux) case and
(ii) will be refereed as VWT (variable wall temperature) case in the coming analysis.
The presence of external forced stream of fluid gives rise to the pressure variation
within the boundary-layer which is determined with the aid of Bernoulli’s equation.

However, the pressure variations across the boundary-layer are still ignorable.
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Therefore, the governing system remains the same as it was in the previous chapter with

an additional term (vx %) appearing in Eq. (1.12) due to the pressure variation
y-

outside the boundary-layer.

6.2 Normalization

The normalization of the variables has been carried out in the same manner as it was
initially done by Le Palec [71]. However, a little modification is introduced where the
disk rotation speed w has been replaced by the combined rotation rate A=

(a? + w?)/2. Therefore, the new independent variables are defined as

—X ,_— [AR
€=3 n—\/:y, (6.2)

whereby the velocity functions have been replaced by their appropriate relations with

the stream functions. Therefore, the normalization of the dependent variables is carried

out as
flem = [BHED g(cn) = [RIED (e, = TTe (vw),
o(e,n) = ==k f’v‘—-f (CHF). (6.3)

The Eq. (5.3) modifies in the presence of outer radial flow as

Fomm = :Zi(fn"(— g,,) ( z:‘;’:)fﬁn (‘) :Zﬁ e(fatoe = fnfe). (64)

and the boundary data transforms to the form

f=g=f=g,-1=0, (D0, +1=0 (i) ®—1=0, atn=0
fn=%. gn =0, 06=0, at n = oo}' (65)

6.3 Numerical solution

The non-similar Egs. (6.4), (5.4) and (5.5) subject to boundary conditions (6.5) have
been solved numerically by implementing the famous Keller-box method to obtain the
velocity and temperature profiles. The validity of the present method is first confirmed

by acquiring for isothermal wavy disk case studied by Le Palec [71] and Le Palec et al.
[72] (for CHF) by fixing the parameter % = (. A comparison is made for the case of

flat disk rotating in the external forced flow, reported by Mabuchi et al. [79] with the
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present numerical procedure and the values are listed in Table 6.1. Our numerical

calculations show an excellent agreement with Mabuchi et al. [79] (refer to Table 6.1).

Table 6.1: Comparison of the present numerical calculations with the work of Mabuchi
et al. [79].

zﬁm(o) _gnn(o)
Mabuchi  Present Mabuchi Present
a/o  etal. [79] et al. [79]
0 1.020 1.020 0.6159 0.6159

0.1 1.037 1.037 0.6413  0.6413
0.25 1.124 1.124 0.6991  0.6991
0.5 1.373 1.373 0.8004  0.8004
1 1.871 1.872 09334  0.9335
2 2.332 2.333 1.0250  1.0250
00 2.624 2.624 1.0750  1.0750

6.4 Velocity profiles
6.4.1 Radial component of velocity

The radial velocity component in dimensionless form is displayed in Fig. 6.2 for the

surface roughness ratio ay/4 = 0.1.

0.8}

«50.6

6 7

Fig. 6.2: Variation of the radial velocity component with a/w for a wavy disk.

The impact of external uniform flow on wavy disk is similar to the flat disk case and
the disk rotation effects become more lessen as one increase the values of the axial
velocity ratio a /w. This means that when the radial pressure gradient starts to dominate
then the surface irregularities do not contribute too much to assist the flow induced by
the disk rotation. This fact can also be understood form Fig. 6.3 which depicts that the

positive change in surface roughness ratio corresponds to enhance the radial component
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of velocity very slightly and do not interrupt the nature of the flow pattern that was
exhibited by the smooth disk.

0.3 Ld L L) L) |
0.2 ——a,/A =0 - ‘
-m-ay /A =116 !
- -
oo @y [ X = 1/10
0.1 ey /A= 1B ]

4 5

Fig. 6.3: Variation of the radial velocity component with the surface roughness ratio at
afixed a/w = 0.5.

6.4.2 Circumferential component of velocity
Again the impact of radial pressure gradient on circumferential velocity component
remains the same, as shown in Fig. 6.4, in the presence of surface irregularities where
the velocity profile shows the typical boundary-layer character. The influence of disk
surface texture on this velocity component is also quite weak and increase in surface

roughness ratio corresponds 1o decrease (very slightly) the circumferential component

of velocity (refer to Fig. 6.5).

I T R
ao/A =07
0.8 4
0.6t =0 01025051420
bok‘
0.4}
0.2F
0
0 .
Ui
Fig. 6.4: Variation of the circumferential velocity component with a/w for a wavy
disk.
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Fig. 6.5: Variation of circumferential velocity component with the surface roughness
ratio at a fixed a/w = 0.5.

6.4.3 Radial and circumferential shearing stresses on wavy
disk
The shear stresses acting on the disk surface in the radial and circumferential directions

due to the radial and azimuthal flows are, respectively, given by

tr=ya—;;" 0,and tg=;1‘31‘i (6.6)

y= 9 ly=o

In terms of dimensionless variables, they are transformed to the forms
R R
Re}*Cp, =2 \/; fin(0,€), Rey*Crg = —2 J; I (0,6), (6.7)

2 . pe e
where C¢, = 2 and Cro = #— denote the coefficients of wall skin-friction in the
pr prinz

. . o Ar?
radial and circular directions, and Re, = —:- represents the local Reynolds number. One

can recover the relation for smooth disk from the above ones (Eq. (6.7)) when the
surface roughness effects are removed (see Mabuchi et al. [79]). The surface roughness
ratio (ay/ A) strongly effects both the local azimuthal and radial skin-friction
coefficients which have been displayed in Figs. 6.6 & 6.7 for a relative motion of fluid
and disk (a/ w = 0.25). Due to the disk shape, both are periodic functions with double

periodicity in contrast to the surface geometry. This behavior is a consequence of the

dR

typical form of the factor o

It can also be noticed from these Figures that an increase

in the amplitude-to- wavelength ratio leads to decrease in both these parameter and
interestingly, both shear stresses have maximum value for the case of smooth disk

(ag/ A = 0) for which the boundary-layer thickness takes the least value. This suggests
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that the local shear stresses (of wavy disk) are lesser in magnitude than smooth disk and
it is necessary to calculate the overall shear stresses (by calculating average values) on
the whole disk surface in order to see the true picture of the shear stresses generated by
the simultaneous rotation and motion of fluid flow. The average values of the radial and
tangential shear stresses are obtained by integrating Eq. (6.7} over the disk surface as

CroRe;”* =< [ Rel*Crg dS, C,oRey” =< f(Rer*Cy, dsS. (6.8)

1.45 - v
a/A=UI6 ay/A<0

N

N

‘;,; 1.35
© 13
N
1.25F Van=luo ay/A =118
0 A 2A 3

r

Fig. 6.6: Local azimuthal skin-friction coefficient as a function of amplitude-to-~
wavelength ratto with relative motion of disk and fluid.
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Fig. 6.7: Local radial skin-friction coefficient as a function of amplitude-to-wavelength
ratio with relative motion of disk and fluid.
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The influence of roughness can be quantified with the help of area of smooth disk (b?)
taking as a reference. In doing so the corresponding average skin-friction coefficients

modify to the form

Crop= Crompz» Crpp = Crro. (6.9)
These calculations (Egs. (6.8) and (6.9)) are demonstrated in Figs. 6.8 & 6.9 from where
it can clearly be observed that the Efg and Z‘}r both decrease (curves 1 in Figs. 6.8 &
6.9) as the surface roughness ratio ay/ A increases. But with the contribution of the

actual area of the wavy disk the corresponding average shear stresses given in Eq. (6.9)

have higher values in comparison to the smooth disk (refer to curves 2 in Figs. 6.8 &
6.9). Both of these shear stresses (Efgp & Efrp) have been enlarged up to 15% for the

fixed surface roughness ratio (i.e. ag/ A = 0.2) due to the wavy surface in the absence
of radial pressure gradients. The influence of a relative motion of the disk and the
potential flow on these shear stresses can also be seen from these Figs. 6.8-6.9. It can
be seen that these quantities take higher values due to the increasing radial pressure
gradient. Interestingly, in the presence of a radial pressure gradient the wavy surface
contributes the same (15%) increment in the shear stresses (refer to Table 6.2) as it does
in the absence of external flow. In comparison to the free rotating flat disk, the radial

and tangential shear stresses of wavy rotating disk in forced flow have been increased

up to 174% and 86%, respectively, for ay/ A = 0.125 and % = 00,

Table 6.2: Average azimuthal and radial skin-friction coefficients, moment coefficient,
and Nusselt number (CHF) (Pr = 0.71,N = 3).
a/w aO/’l Efgl Efﬂ, EM mp
0 0.0 12319 1.0204 19351 0.3259
1/16 1.2543 1.0391 1.9703 0.3318
1/10 1.2865 1.0656 2.0208 0.3402
1/8 1.3135 1.0878 2.0633 0.3473
0.1 0.0 1.2827 1.0372 2.0149 0.3587
1/16 13061 1.0562 2.0516 0.3652
1710 1.3395 1.0832 2.1041 0.3745
1/8 1.3677 1.1057 2.1483 0.3823
025 0.0 1.3983 1.2325 2.1964 0.4103
1/16 1.4237 1.1441 2.2363 04178
1710 14602 1.1734 2.2937 0.4285
1/8 14910 1.1978 2.342]1 0.4374
0.5 0.0 1.6011 13711 2.5150 0.4858
1/16 1.6300 1.3982 2.5604 0.4946
1/10  1.6719 1.4340 2.6262 0.5072
1/8 1.7073 1.4641 2.6819 0.5180

83




1 0.0 1.8675 18720 29335 0.5764

/16 1.9010 1.9060 2.9862 0.5870

1/10 19498 1.9548 3.0628 0.6020

1/8  1.9914 1.9961 3.1281 0.6148

2 0.0 20512 23332 3.2220 0.6368
/16 2.0877 2.3752 3.2794 0.6484

1710 2.1414 2.4361 3.3637 0.6650

1/8  2.1869 2.4875 3.4352 0.6790

0 0.0 21505 26248 3.3780 0.6690
1/16 2.1886 2.6718 3.4378 0.6812

1710 22450 2.7404 3.5264 0.6986

1/8 22927 27983 3.6013 0.7133
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Fig. 6.8: Influence of surface roughness ratio on average radial skin-friction
coefficients Cyy (curve 1) and Cy,p, (curve 2).
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Fig. 6.9: Influence of surface roughness ratio on average azimuthal skin-friction
coefficients Crg (curve 1) and Cyg), (curve 2).
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The role of number of sinusoids on the average tangential frictional coefficient (E'}gp)

is also crucial to be explored. This is presented in Fig. 6.10 where E;gp is plotted against
the number of waves N. The average tangential shear stress increases slowly when N

is varied from 1 to0 8. For N > 4, its value becomes almost constant,

2.4 —
14— —————
o~ t'?/u,’ = ﬂ.! 2.3 a/“" -
<. 138}
% 22
]g« 136}
2 " a‘/w' = f
| J
1.34 aliw = 0,0 —————
2 f
f? 5 i0 { 5 in i
N N '

Fig. 6.10: Dependence of average azimuthal skin-friction coefficient on the number of
sinusoids.

6.4.4 Heat transfer rate (CHF)
The calculation of influence of sinusoidal-shaped disk on the heat transfer
phenomenon is very important. In fact the shape of the disk results in more heat transfer
rate as anticipated. The dimensionless local heat transfer rate from the disk surface is

computed by the relation

qumpng (6.10)

8(e,0)

ﬂ(fw = ”.25 v v v '

0.4

& .38 ;oag /A =0
'Tq::‘ 036t r oa,/A=1/16
I%:- i aﬂf,\ = Au
f_»: 034}V s=p LePalecctal [72] ‘ a”/r\ =18 1

032¢
33 ) ) o o . .

Fig. 6.11: Local Nusselt number as a function of surface roughness ratio with relative
motion of disk and fluid for Pr = 0.71.
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The effect of surface roughness on local heat transfer coefficient is depicted in the Fig.
6.11 which shows the double periodicity in local heat transfer rate with decaying
amplitude for the case of a/ w = 0 and a/ w = 0.25; where the absence of radial
pressure gradient (a/ w = 0) corresponds to the free rotating wavy disk case
investigated by Le Palec et al. [72] . The local heat transfer rate at the wavy disk surface
in the forced stream are qualitatively the same as for the free rotating wavy disk
situation apart from the fact that the relative motion of the disk and fluid is to strengthen
the heat exchange from disk to fluid. Similar to the shear stresses, the local heat transfer
rate presented in Fig. 6.11 is lower than the flat disk case and in order to analyze the
real heat transfer situation, one must be interested to calculate the overall heat exchange
from the wavy disk to the surrounding fluid which can be done by computing the
average Nusselt number corrected by the surface area ratio. The average Nusselt
number relation can be found in the similar manner as the average skin-friction

coefficients were calculated and is given by

~—p.-1/2 _ 1 -1/2

NuRe;'* =< [ Rey"/*Nu ds, (6.11)
—_— =S

Nu, = Nu;rﬁ. (6.12)
These calculations are demonstrated in Fig. 6.12. From this Figure, it can clearly be
observed that the Nu decreases (curves 1 of Fig. 6.12) as the ratio ay/ A increases while
the average Nusselt number 'ﬁp (curves 2 of the Fig. 6.12) shows increasing trend in
comparison to the smooth disk for increasing values of the surface roughness ratio

aq/ A. In both situations (free rotating disk with and without forced flow), the overall

heat transfer rate is 15% higher due to the shape of the disk (for az/ A = 0.2). The
influence of waviness on Nu &TV_up in the forced flow is again identical to the case

when the disk is rotating freely whereas both the Nusselt numbers (Nu & I_V—u-p) take
larger values in the presence of external forced flow. This means that the relative motion
of the disk and fluid corresponds to the cooling of the wavy disk quite significantly. In
Table 6.2 the enhancement in the heat transfer rate due to the waviness and the relative
motion of the disk and fluid is reported in detail. In the case of a/w = © and ay/ A =
0.125, an enhancement of 119% in comparison to free rotating flat disk has been

achieved in heat transfer exchange from the disk to the surrounding fluid.
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Fig. 6.12: Influence of surface roughness ratio on average Nusselt numbers Nu (curve
1) and Nuy, (curve 2) for Pr = 0.71.
The impact of the number of sinusoids on the average Nusselt number Wp is

displayed in Fig. 6.13 which is the same (in qualitative sense) as it is already observed

for the average tangential stress.
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Fig. 6.13: Dependence of heat transfer on number of waves at Pr = 0.71.

6.4.5 Heat transfer rate from non-isothermal wavy disk

(VWT)

The local heat transfer rate from the non-isothermal wavy disk is measured by the local

Nusselt number yielding the following relationship in terms of normalized variables

Re ' Nu = ‘E- 0,(€,0). (6.13)
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The spatial variation in the heat transfer rate is illustrated in Fig. 6.14 depicting the
wavy nature of the heat transfer rate undergoing two cycles per wavelength (wavelength
of Nu = 1/2) with the decreasing amplitudes (irrespective to the geometrical
configuration) for the non-isothermal disk (n, # 0) also. Such exhibition of the local
Nusselt number had already been reported by Le Palec [71] for the isothermal free
rotating disk case (n, = 0). Clearly (see Fig. 6.14) the higher values of temperature
distribution exponent (n, > 0) correspond to increase the local heat transfer rate and
decreasing values (n. < 0) result in lowering the local heat transfer rate than the
isothermal case (n, = 0). A similar trend of the local heat transfer rate is also seen in
Fig. 6.15 when the relative velocity ratio takes various values (i.e. a/w # 0). This
Figure also illustrates that an increase in the relative velocity ratio leads to increase the
associated local heat transfer rate as anticipated for the non-uniform distribution of disk
temperature. The zero value of the relative velocity ratio refers to the flow purely
induced by the rotation of the sinusoidal disk, whereas its infinite value corresponds to
the axis-symmetric stagnation point flow over a resting wavy disk. One thing is most
important to note in these Figures (Figs. 6.14 & 6.15) that the surface irregularities of
the disk result in the reduction of local heat transfer rate as compared to the smooth
disk. This behavior had already been reported for the isothermal sinusoidal-shaped disk
rotating freely (i.e. n, = 0 & a/w = 0) by Le Palec [71].

n, =2 i ! ]
NI T T T
/ H”//\‘l) 4
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N 3 a,/A= 110
T n,=0 /A= 1/8
e —————
=
0.4 a/w=05
n,=-1
0.3 , :
0 A . 22X 3

Fig. 6.14: Spatial variation of Nusselt number for different temperature distribution

exponents with fixed relative velocity ratio.
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The global heat transfer rate from the non-isothermal wavy disk is measured by the

mean Nusselt number (Nu ) which is acquired by the integration of Eq. (6.13) on the

whole disk surface and this leads to the following mathematical relation
Top.-1/2 _ 1 -1/2
NuRe, "/ =< [ Re, 2Ny dS. (6.14)

It is also worth mentioning that the flat disk area (rb?) serves as a reference area which
is ultimately utilized to predict the actual global heat transfer rate under the influence

of surface irregularities. Such utilization modifies the Eq. (6.14) as

Nu, = NE-T%. (6.15)
These calculations (Eqgs. (6.14) & (6.15)) are demonstrated in Fig. 6.16 where the three
values of the temperature distribution exponent n, are considered and a same pattern
for the overall heat transfer rate is observed for each considered value of n,. The curve
1 in Fig. 6.16 shows the calculation of Eq. (6.14) (i.e. without inclusion of wavy surface
area) and it clearly decreases with increasing the values of the surface roughness ratio
ay/ A. Whereas the mean Nusselt number obtained from Eq. (6.15) shown in curve 2
in Fig. 6.16 reflects that heat transfer is enhanced with increasing roughness of the disk
incongruity to the one which is shown in curve 1. Apart from this it is also noted in Fig.
6.16 that the temperature distribution exponent n, has also a substantial role on heat
transfer enhancement and its higher values yield considerable improvements in the
exchange of heat from the hot wavy disk to the cold surrounding fluid. For instance, the
considered rough non-isothermal disk rotating in a forced stream of air (Pr = 0.71)
leads to a significant (about 263%) enhancement in the overall heat transfer rate
compared to that of the flat free rotating disk when the wavy disk (with two sinusoids)
temperature is quartic function of its radial distance (see Table 6.3(i)). An increment of
3.46 times (for any ay/ 4) in the heat transfer rate is also observed when n, is varied
from —1 to 4 for the situation of flow induced by the pure rotation of the sinusoidal
disk. For the relative velocity ratio a/w = 0.5 & o0, ahike 0f2.70 & 2.58 (respectively)
times in the average heat transfer rate is observed. Obviously, the larger values of the
relative velocity ratio correspond to frail the influence of the temperature distribution
exponent. Interestingly, the values of temperature exponent n, has no association with
waviness of the surface and perhaps it enhances the heat transfer rate at the same time
whether the disk is flat or rough. It is also important to note that the influence of n,
gets also weaken when the nature of fluid (flowing in axial stream) is changed (i.e. with

the increase in values of Pr). As an example, refer to Table 6.3 (iii) (Pr = 10), where
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it can be seen that an increment of 2.64, 2.50 and 2.43 times is achieved when n, is
varied from —1 to 4 for a/w = 0, 0.5, 0, respectively for any a,/ A showing the weak

character of n, as compared to the case Pr = (.71.
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Fig. 6.15: Spatial variation of Nusselt number for different values of relative velocity
ratic with fixed temperature distribution exponent.
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Fig. 6.16: Mean Nusselt number Nu (curve 1) and Fﬁp (curve 2) under the influence
of non-uniform temperature distribution and amplitude — to — wavelength ratio.
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The effects of Prandtl number on the mean Nusselt number are also presented

in Fig. 6.17 in the presence of surface roughness (aq,/ A = {.1) for three values of n,

and for the different relative velocity ratios. Increase in heat transfer rate with the larger

values of Pr can clearly be seen from this Figure which is, however, a trivial fact.

Table 6.3 (i) Pr = 0.71, (i) Pr = 1 & (iii) Pr = 10: Values of mean Nusselt number
Nu,, for different temperature distribution exponent and relative velocity ratios with

two sinusoids.

@

a/w dy /A n,==1 n,=0 n,=1 n=2 n, =4
0.0 0.0 0.1893 03259 04319 0.5185 0.6555
1/16 0.1928 03318 04397 0.5279 0.6674

1/10 0.1979 03403 04510 05413 0.6842

05 00 0.3132  0.4858 0.6065 07006 0.8461
1/16 0.3190 0.4947 06175 07133 0.8614

1/10 0.3272 05073 0.6332 0.7315 0.8832

1 0.0 0.3763  0.5765 0.7143 0.8211 0.9851
1/16 0.3832 0.5870 0.7273 0.8360 1.0028

1/10 0.3930  0.6019 (.7457 0.8571 1.0281

2 0.0 04174 0.6368 0.7872 09033 1.08]12
1/16 04251 0.6484 (0.83014 09196 1.1007

1/10 04358 0.6648 0.8217 0.9428 1.1284

o0 0.0 04392 0.669¢ 0.8262 09476 1.1332
1/16 0.4473 06812 0.8412 09647 1.1536

1/10 04588 0.6987 0.8627 0.9893 1.1829
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(ii)

a/w ag/A n.=—-1 n,=0 n,=1 n,=2 =4
0.0 0.0 02352 03963 05180 0.6159 0.7693
1/16 0.2395 0.4035 0.5274 0.6271 0.7832

1/10 02457 0.4137 0.5407 0.6428 0.8028

0.5 0.0 03615 0.5577 0.6942 0.8004 0.9641
1/16 0.3681 0.5679 0.7068 0.8149 0.9816

1/10 03776 0.5824 0.7248 0.8356 1.0064

1 0.0 04320 0.6583 0.8135 09334 1.1173
1/16 0.4399 0.6703 0.8282 0.9503 1.1375

1/10 04512 0.6874 0.8493 0.9744 1.1662

2 0.0 04784  0.7260 0.8949 1.0251 1.2244
1/16 0.4871  0.7392 09111 1.0436 1.2465

1/10 0.4997 0.7581 09343 1.0701 1.2780

o 0.0 0.5031 0.7622 09387 1.0747 1.2826
1/16 0.5123  0.7761 0.9557 1.0941 1.3057

1/10 0.5254  0.7960 0.9802 1.1220 1.3388

(iii)

a/w ag/A n.=—1 n,=0 n,=1 n,=2 n,=4
0.0 0.0 0.7368 1.1341 1.4083 1.6205 1.9460
1/16 0.7502  1.1548 1.4339 1.6499 1.9812

1/10 0.7667 1.1825 1.4962 1.6909 2.0308

0.5 0.0 0.8932 13411 1.6445 18781 22356
1/16 09094 13655 1.6743 19121 2.2759

1/10 0.9320 1.4001 1.7169 19606 2.3335

1 0.0 1.0315 1.5355 1.8744 2.1346 2.5319
1/16 1.0501 1.5634 1.9084 2.1731 2.5775

1/10 1.0779  1.6041 19577 2.2289 2.6432

2 0.0 1.1293  1.6754 2.0417 2.3223 2.7507
1/16 1.1496  1.7059 2.0786 2.3643 2.8003

1/10 1.1803  1.7503 2.1322 24248 28715

00 0.0 1.1825  1.7522 2.1337 2.4260 2.8720
1/16 1.2038 1.7840 2.1724 2.4698 2.9237

1/10 1.2346  1.8295 2.2277 2.5326 29977

The average heat transfer is also found to depend upon the number of sinusoids
fitted to the disk radius of 0 < r < b in Fig. 6.18. It is observed that whatever the flow
situation is for any a/w or whether the disk is isothermal or non-isothermal (for any

n.) the mean Nusselt number increases slowly with the increase in the number of cycles

N up to N = 4. After that it becomes almost constant.

According to Shevchuk [37], the heat transfer rate from the free rotating flat
disk seizes at the value n, = —2. This value does also remain invariant for the flat
rotating disk in the presence of radial pressure gradient or with the alteration of Prandtl

number. Bur interestingly, this threshold value is found to depend upon the waviness
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of the surface; the radial pressure gradient, and as well as the Prandtl number which
play their role when the disk texture is changed from smooth to non-smooth. The
threshold values of temperature distribution exponent vary as: n, = —1.996 (Pr =
0.71),-1.995 (Pr = 1.0) & — 1.990 (Pr = 10) for fixed a;/A1=01&a/w =10
(see Table 6.4 (i) — (iii)). This indicates that the variations in the threshold values are
not too huge and a slightly decreasing trend is observed for increasing Prandtl numbers.
These variations become more less when surface roughness ratio is kept smaller than
0.1. Furthermore, the relative motion of wavy disk and the forced flow also have their

role in altering this value (n. = —2). In Table 6.4 (i) one can notice that this value

(n. = —2.0001) is further close to the flat disk value ( n, = —2) for the wavy disk
(ap/ A = 0.1) in the presence of an axial stream (a/w = 1,2 & o). The relative motion
of the disk and fluid, for the case Pr = 10, causes to change this threshold value further
away from the flat disk (see Table 6.4 (iii)). This means that the surface roughness have

strong impact on the threshold values for which heat transfer is seized.
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Fig. 6.18: Heat transfer rate influenced by number of sinusoids at Pr = 0.71.

Table 6.4: (i) Pr =0.71, (ii) Pr =1 & (iii) Pr = 10: Values of temperature
distribution exponent for which heat transfer from the wavy disk is seized.

®
a/w
ag/A | 0 0.5 1 2 o
0.0 -2 -2 -2 -2 -2
1/16 -2 -2 -2.0001 -2.0001 -2.0001
1/10 | -1.9996 -2.0001 -2.0004 -2.0004 -2.0004
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(i)

a/w
ag/A 0 0.5 1 2 o0
0.0 -2 -2 -2 -2 -2
1/16 -2 -2 -2 -2 -2
_1/10 | -1.9995 -1.99997 -2 -2 -2
(iii)
a/w
ay/2 0 0.5 1 2 o0
0.0 -2 -2 -2 -2 -2
1/16 | -1.9998 -1.9996 -1.9996 -1.9996 -1.9996
_1/10 [ -1.9990 -1.9990 -1.9989 -1.9989  -1.9989
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CHAPTER 7

Conclusions

In this dissertation, special attention is given to enhance the heat/mass transfer
in three-dimensional complex flows which arise in rotating disk systems. In this regard,
significant enhancement in heat/mass transfer is achieved by considering non-uniform
distribution of nanoparticle in the fluid flowing over a rotating disk. This strategy has
been considered in Chapter 2. The influence of non-homogeneous distribution of
nanoparticle on working fluid is observed as many-fold; it enhances the heat transfer
rate, and also increases the disk power. The nanofluid flow and the associated heat
transfer rate depend upon the nanoparticle concentration and the Schmidt number. The
analysis of Chapter 2 reveals that the concentration profile within the boundary-layer is
strongly effected by the variation in Schmidt number but the same variation of Schmidt
number on velocity and temperature profile is not that significant. The concentration
boundary-layer becomes almost 10% of the momentum boundary-layer at higher
Schmidt numbers. However, the variations in nanoparticle concentration parameter
(¢) contribute by different means i.e. the velocity profiles are increased at higher
concentration levels. The mass flow rate and the moment coefficient are also enlarged
with increasing ¢, which means that the pumping capability of the rotating disk is
enhanced when the working fluid is a nanofluid. The pressure raises (in magnitude)
with increasing nanoparticle concentration whereas it falls at higher Schmidt numbers.
The displacement thickness is also observed to be increased at higher concentration
levels.

Additionally, the heat transfer enhancement is observed by changing the values of
Prandtl number at a fixed concentration level but more heat transfer augmentation has
been attained by varying the nanoparticle concentration parameter ¢, and fixing the
Prandt] number. An enhancement of 68% in heat transfer rate is observed for water at
20% concentration level of nanoparticle. The comparison beween the non-
homogeneous and the homogeneous models reflects that the heat transfer enhancement
is higher for non-homogeneous model. From this one can realize that the non-
homogeneous model is more advantageous while analyzing the convective heat transfer

of nanofluid. For instance, a significant intensification (of almost 30%) in heat transfer
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rate is obtained through the non-homogeneous modeling for a mixture of 20%
nanoparticles and water in comparison to the homogeneous modeling. This fact
emphasizes the character of non-uniform distribution of nanoparticle within the rotating
disk boundary-layer.

A new class of wall temperature distribution on the rotating disk boundary-layer
has been analyzed in Chapter 3 for which no self-similar solution exists. The problem
is modelled with the boundary-layer equations which are then solved numerically with
the aid of Keller-box scheme. A detailed and careful analysis has been made for
different cases of wall temperature following the sinusoidal, exponentially increasing
or decreasing, and non-linearly increasing or decreasing forms. The manipulations
revealed that significant heat transfer enhancement is achieved for the exponentially
increasing and non-linearly increasing distribution of disk temperature. Furthermore,
enhancement in heat transfer is directly linked to the exponent as well as Prandtl number
while a reversed trend is observed for the remaining cases and some values of exponents
are reported for which disk surface becomes insulator at specific radial locations.

The self-similar transport equations were used to simulate the flow and heat transfer
in a conical gap between a porous disk and cone (which touches the disk by its apex) in
Chapter 4. Different situations were considered for the flow analysis which comprise
of cone rotation with fixed disk, and vice versa, simultaneous and counter rotation of
the disk and cone. The disk surface temperature has been assumed to follow the power-
law radial distribution whereas the cone surface was considered as isothermal. The mass
transfer (addition or removal) has a strong impact on different flow regimes along with
heat transfer. Mass withdrawal (suction), as usual, stabilizes the flow in all cases but
surprisingly, in the current analysis, a sufficient amount of suction completely changes
the nature of flow within the gap or near the disk or cone. For instance, Table 4.4 gives
the information regarding the case of counter-rotating disk and cone. It can easily be
noticed that with the supply of sufficient amount of suction the centrifugal flow is
converted into centripetal flow. In fact, fully 100% centripetal flow is observed at H,, =
—1.91 whereas for impermeable disk case it was 40% and remaining 60% was
centrifugal flow within the gap which is greatly influenced by mass addition or removal.
Moreover, heat transfer enhancement has been achieved through mass removal from
the disk surface for n, < 0. But for n. > 0, even suction was unable to enhance the

heat transfer and rate of heat transfer decreases considerably with mass removal. Mass
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addition (fluid injection) was responsible for the heat transfer enhancement for this case
(n. > 0) which clearly shows the reversed influence of fluid injection. This opposite
outcome can also be observed on flow regimes with all considered cases of disk and
cone rotation. Apart from this, current investigation also contains some threshold values
of mass transfer parameter in the large conical gap case which are responsible for zero
heat transfer rate for the prescribed values of n,. For n, = 2, heat transfer was
diminished due to the suction whereas for n, = —1 fluid injection was responsible for
zero heat transfer rate. Neither the suction nor injection were able to diminish the heat
transfer for the isothermal or linearly increasing temperature distribution cases.
Diminishing of heat transfer is also absent when the gap is small for all the considered
values of n,.

From the engineering point of view and practicality of the problem some
conclusions were drawn that the efficiency of cone-and-disk arrangement used in
cooling processes can be higher for a rotating porous disk (with mass removal)
distributed with radially decreasing temperature and stationary cone. But when the disk
is isothermal then one can obtain higher heat transfer rate (with suction) in the case with
simultaneous rotation of disk and cone with almost identical velocities. In the case of
quadratic distribution of disk temperature one can acquire increased heat transfer rate
(with fluid injection) in the situation when disk is fixed and cone is rotating.

Heat and mass transfer over a rotating rough non-isothermal disk has been
investigated in Chapter 5 for a very large range of Prandtl (Schmidt) number. The
roughness of the disk is modelled by periodic sinusoids with a surface roughness ratio
ay/ A < 0.2. Numerical solution of the governing non-similar equations are obtained
with the aid of Keller-box method and attained results show that the presence of surface
irregularities account towards the significant enhancement in heat transfer rate. For
instance, 110% enhancement in overall heat transfer rate is observed for a surface
roughness ratio equals to 0.1 by keeping Pr = 0.71 & n. = 4.0 in comparison to the
isothermal flat disk case. Furthermore, for the whole considered range of Prandtl
(Schmidt) number and temperature distribution exponent, the non-flatness of the disk
(for surface roughness ratio = 0.1) contributes almost 1.04 times in the augmentation
of global heat transfer rates. Apart from this a similar trend (like smooth disk) in a wavy
disk was also noticed when the temperature/mass distribution exponent n, was

increased i.e. it results in thinning the thermal boundary-layer thickness which in turn
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increases the heat transfer rate. An identical influence of the number of sinusoids on
heat transfer coefficient was observed in the case of non-isothermal sinusoidal disk like
the work reported by Le Palec [71]. An interesting observation related to the threshold
value (N enresnola = —2 for a flat disk) for which heat transfer is seized from the disk
surface, has been made for the wavy disk which highlights the role of surface roughness
on non-isothermal disk. The threshold value which is independent of the Prandtl
number in the case of flat disk is found to depend on Prandtl number. Surprisingly this
seizing (threshold) value is found to vary slightly in the considered flow due to the
wavy nature of the disk surface.

A numerical study is performed in Chapter 6 for the flow and heat transfer subject
to uniform heat flux and for a rotating wavy disk in the presence of a uniform forced
stream. The numerical solution has been validated for a flat rotating disk case in the
presence of an external forced flow with the results reported in [79] and in excellent
agreement has been found. Moreover, the authenticity of our solution is also confirmed
with the theoretical and experimental work of Le Palec et al. [72] (i.e. the heat transfer
and flow is induced only due to the rotation of sinusoidal-shaped disk) and the present
results are in good accordance with those reported by Le Palec et al. [72]. The analysis
presented in Chapter 6 reveals that all the physical parameters of interest like the radial
and tangential wall shear stresses, moment coefficient, and heat transfer rate (Nusselt
number) exhibit double periodicity in both situations (rotating disk with and without
forced stream) in comparison to the geometrical configuration. Due to the surface
roughness almost 15% enhancement in the values of the average radial, azimuthal skin-
friction coefficients and the average Nusselt number is observed for both conditions
(rotating disk with and without external flow field) at ay,/ A = 0.2. The moment
coefficient is also increased due to the sinusoidal-shaped disk which in turn shows that
the power of such a disk is increased in comparison to the smooth disk. Furthermore,
119%, 174%, 86%, and 86% enhancement in the heat transfer rate, the radial shear
stress, the tangential shear stress, and the moment coefficient, respectively, is observed
for the wavy disk rotating in forced flow at a fixed a/w = o0 and ay;/ A = 0.125 in
comparison to the free rotating flat disk. This fact highlights the beneficial role of disk
with sinusoidal waves under the action of a uniform external forced stream.

Heat transfer over a non-isothermal sinusoidal disk rotating inside a uniform stream

has also been examined numerically in Chapter 6. The numerical results reveal that
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the power-law exponent of the non-isothermal distribution of temperature has the key
role in enhancing the heat transfer rate in the presence of surface roughness. The role
of temperature exponent becomes weakened with the increase in Prandtl number,
similar to the flat disk case. The double periodicity has also been exhibited by the local
heat transfer rate with non-isothermal disk situation in the presence or absence of the
radial pressure gradient. The local Nusselt number has been found to decrease from the
flat disk value for all considered values of temperature distribution exponent. This
decrease is more pronounced when the amplitude — to — wavelength ratio is increased.
For this purpose a mean Nusselt number is calculated which reveals the clear picture of
heat transfer from the corrugated disk. In fact, the mean Nusselt number increases
showing heat transfer enhancement due to surface roughness. Such enhancement in the
heat transfer rate is observed to be a strong function of the amplitude — to — wavelength
ratio; the relative velocity ratio, and the temperature exponent. It is worth mentioning
here that some threshold values of temperature exponent were also identified for which
the disk surface behaves like a layer of isotherm and heat transfer is seized from the
disk surface. These values were found to depend only on the wavy character of the disk.
Furthermore, a very small variation in the threshold values was observed and these

values are just slightly different from those of the smooth disk case.
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