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ordinary differential equation arises along with an initial condition.
Five Homotopy base solution are obﬁained and compared.

In third chapter, we consider a problem from fluid mechanics. In
which a power law fluids flows over a streching surface [26]. Some
are transformation applied and problem is formed in the domain o
and 1. The problem is solved using five homotopy base technique and
solutions are compared with each other.

In fourth chapter, the problem of micro polar fluid with n=(k/2) is
assumed. The equation of micro rotation reduces to zero [27].
Problem is reduced to ordinary differential equation by using
similarity transform. Different Homotopy solution are obtained and
compared. ’_

Fifth chapter is formulated to discuss the homotopic solution by
coupled ordinary differential equations [27]. The problem in
previous chapter is repharased  with k=1 and equation of
microrotation appear. The equations are coupled and boundary
conditions are described at x=0 and x=co. The problem is solved

using varity of homotopy techniques.
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Chapter 1

Introduction

This chapter is oriented to define some basic defination and methods which are involved in

subsiquent chapters.

1.1 Basip Definations

1.2 Differential Equation

An equation containing the derivatives or differential of one or more dependent variables with

respect to one or more independent variables is said to be a differential equation .

1.3 Classification by Type

1.3.1 Ordinary Differential Equation

An equation contains only ordinary derivatives of one or more dependent variables with respect

to a single independent variable it is then said to be an ordinary differential equation (ODE).

1.3.2 Partial Differential Equation

An equation involving the partial derivative of one or more dependent variables of two or more

independent variables is called a partial differential equation (PDE).




1.4 Classification Linear or Non-Linear

1.4.1 Linear Equation

A differential equation is said to be linear if it can be written in the form

——3{ F o + al(z)% + ap(z)y = g(). (1.1)

1.4.2 Non-Linear Equation

An equation which cannot be written in the form of Eq (1.1) is said to be non-linear equation.

1.5 Homogenous and Non-Homogenous Differential Equation

1.5.1 Homogenous Differential Equation

An equation in differential form M(x,y)dx+N(x,y)dy=0, is said to be homogenous when written

in derivative form
dy

2= fzy) =92), (1.2)

there exist a function g such that f(x,y)=g(¥).

1.5.2 Non-Homogenous Differential Equation

A differential equation, which fails the condition (1.2) is called non-homogenous differential

equation.

1.6 Initial and Boundary-Value Problem

1.6.1 Initial-Value Problem

An initial value problem has all of the conditions specified at the same value of the independent

variable.
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1.6.2 Boundary-Value Problem

A boundary value problem has conditions specified at the boundaries of the independent variable

in the equation or the condition define at more than one point in the domain.

1.7 Homotopy Analysis Method

Homotopy Analysis method(HAM) allows perturbation solution to be valid for moderate to
large value of parameter. HAM has been developed by Liao in 1992 [8]. This method has been
successfully applied to solve many types of non-linear problems[12]-{14]. The basic idea of HAM
is to produce a succession of approximate solutions tend to the exact solution from any initial
guess of the problem. The presence of auxiliary parameter and functions in the approximate
solution results in a production of a family of approximation solution rather than the single
solution produced by traditional perturbation methods. By varying these auxiliary parameter

and functions, it is possible to adjust the region and rate of convergence of series solution.

1.7.1 General Approach of HAM

consider non-linear equation
N{u(z)] =0, (1.3)

subject to some initial condition or boundary conditions. The first step in the HAM solution

of the equation is construct the homotopy
H(g(x; q); bo(z), H(2), B, q] = (1 — ) L[¢(z; ¢) — bo(2)] ~ ¢hH (z)N[¢(; 9)].

where fi # 0 is an auxilary parameter , H(z) # 0 is an auxilary function, ¢ € [0,1] is an
embedding parameter, ¢(z) is an initial approximation to the solution that satisfies the given
initial condition or boundary conditions, ¢(z; q) satisfies the initial or boundary conditions and
L is some linear operator. The linear operator L should normally be of the same order as the

non-linear operator N. Setting homotopy equal to zero so that

(1 - q)L[¢(; q) — ¢o()] = ghH (z)N[¢(2; 9)]- (1.4)
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Eq (1.4) is known as the zero-order deformation equation. By letting q=0 in this equation, we

obtain

Lip(;0) — do(d)] = 0. (1.5)

it follows from our defination of L{¢(z)], #(z; g)and ¢y(z) that
¢(z;0) = do(2), (1.6)

now letting q=1 then
N{¢(z; 1)) = 0.

It is clear that ¢(z;q) satisfy the initial or boundry condition of the problem and
$(z;1) = ¢(z), (1.7)

so, ¢(z;q) varies continuously from initial approximation to the required solution ¢(z) as g

increases 0 to 1. Now we define the terms

1 0™¢(z;9)

By Taylor’s Theorem we can write
oy o 1 8mg(z;9) m_ - m
m= gq= m=

Now we differentiate Eq (1.4) with respect to q and setting q=0 and finally dividing by m!

Then so called mth-order deformation equation become

1 8™ !N¢(z; q))

Ligm(z) = s ()] = M) oy =g | (1.10)
where,
0,....m<1
M =
1,...... else
7
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Thus this equation is valid for all m > 1. The right hand side of Eq (1.10) will depend on
term ¢,,(z) with n<m. As a result the terms ¢,,(z) can be obtained in order of increasing
m by solving the linear deformation equations in succession. The solution to the mt*order

deformation equation can be written as,
bn() = 07(2) + 2(2), (L11)
Where ¢"(z) satisfies the homogenus equation
Lig"(z)] = 0, (1.12)

and ¢P (z) is a particular solution of Eq (1.9) we can express it as

m—1 T
mw=mﬁﬂw+r%minf s

> , (1.13)
q=0

L1 is the inverse operator of the linear operator L. The m" partial sum of the terms ¢,,(z) as

¢™(z) =Y di(2), (1.14)
k=0
thus solution can be expressed as
$(z) = ¢(z;1) = ) _ $y(z) = lim- ¢™(z). (1.15)
k=0

This solution will be valid wherever the series converges.

1.8 Advantages of Homotopy Analysis Method

HAM provides the liberty in how to develop the solutions to nonlinear problems. This liberty

endure several benefits over ordinary perturbation methods such as,

1. It is always valid no matter whether there exist small physical parameter or not.

2. The HAM technique can be used to develop valid solution even to problems that are

-_ﬁ_H ‘7_u-' o T~ o g g: & 3 DL
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mth-order deformation equation.

m—1 T
L[¢m($) - Xm¢m_1($)] = ﬁH(.’L‘) (m_l_ 1)| 4 a];,qu—s—(l ’q)]

q=0‘
1.9.1 HAM Solution Using Rational Function

To improve on the polynomial approximation it is essential to use technique Pade approxi-
mation. This technique uses the terms of a polynomial approximation to generate a rational

approximation to a function ¢(z). The [m,n] pade rational approximation is written as

= Lk=07k" o N ozt 1.17
mnl®) = T~ 2 O .
m+n
where Z Ciz* is the (m +n)® degree polynomial approximation to f(x). From this we obtain
k=0

m+n m+n

Z Apzk ~ Z Cz* (1 + inx’“) . (1.18)
k=0 k=0 k=1

By equating the coeffiecients of the various powers of = on each side of this equation, system
of linear equation is obtained that can be easily solved for the coefficients A, and Bg. We can
improve the effectiveness of the pade technique by combining it with the HAM method . We

can then express the [m,n] Homotopy-Pade approximation to the solution of equation

= =1, 1.19
$rnl®) = T B (119)
since the actual solution is ,
o0
$(z) = $(z;1) = Y be(2)a"lg=1, (1.20)
k=0
we write
m
3 Amp@d* .
= ~ ) pi(2)d", (1.21)

1+ Bpi(z)gt  *0
k=1

10
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after solving for the coefficient with the Pade approximation, we set ¢ = 1 to obtain the desired

Pade approximation. Now

> Ami(z)dt =~ (1+ZBmk($ )Z‘f’k :
k=0

k=1
2m m
—Zm z)q +ZZan<$ )b-n(@)g" + D D Brn(@)beon(z)g® + O(¢"™1),
k=1n=1 k=m+1n=1
Pr(z)+ .
_¢O(x +Z ¢k(x +Zan($ ¢k n(z :| ! i —;}-l Zan(fB (f)k 'n(x) o (122)

By equating the coefficients of the various powers of ¢ on each side of this equation we obtain

the following equations: .

Amp(z) = do(z), (1.23) |
e |

Ami(z) = bp(2) + Y Bmn(@)bp_n(z), 1<k<m, (1.24)
) n=1 ;
0=6(2) + ) Brn(®)be_n(x), m+1 <k < 2m. (1.25) |
n=1 1

1.9.2 HAM Solution Using Exponential Functions

The HAM polynomial and rational approximation have provided great improvement over the
perturbation Solution. Ideally we would like an approximation that agrees with the exact
solution even for large value of x. This can be accomplished by choosing the set of base

function

{e7®la>0;n=0,1,2...}.

with these base functions, it is possible to construct an initial approximation that satisfies both,
the initial condition and has the asymptotic behaviour. The exponential base function also
suggest that we define the linear operator L[¢(z; g)] such that of it gives exponential function
in resultant form. Where ¢ is the unknow function, x is the independent variable L is the linear

operator and q is the embedding parameter.and to find the inverse linear operator we can write

11
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In 1997, Liao[21] introduced such a nonzero auxilary parameter co to construct two para-

meter family of equation,so, the Zeroth-order deformation equation becomes
(1 - q)L[u(z; q) — uo(z)] = g N[u(z; q)]- (1.31)

In this way the homotopy series solution is not depent only x but also depend on the auxilary
parameter cg. This auxilary parameter co can adjust and control the convergence region and
rate of homotopy series solution. The use of the convergence control parameter cp has a great
progress. Thus, in 1999, Liao[21] further introduced the more "artificial" degrees of freedom by

using zero order deformation equation in more general form:
(1 — B(g; c2)) L[u(z; ) — uo(z)] = coA(g; c1) Nu(z; q)), (1.32)

where A(q) and B(q) is the deformation function satisfying

A(0) = B(0) =0 and A(1) = B(1) = 1. (1.33)
whose Taylor’s series
+0c0 +oo
AGe) =Y pm(@)d™ Bgea) = Y om(c)a™ (1.34)
m—1 m—1

There are infinite number of deformation function. For the sake of simplicity we choose

wmle) = 1-a, pala)=1-a)d™, m>1, (1.35)
o1(cs) = 1—e, om(e)=(1—c)g™h,m>1,
13

R L mrwwr—a._




C T -

1.11 One-Step Optimal Homotopy Analysis Method (OOHAM)

The idea of One-step Optimal Homotopy Analysis Method is based on the OHAM. For this we

define non-linear operator

Nlu(z)] =0,

We set H(q) = hA(q) and B(q) = ¢ then the zeroth-order deformation equatiom becomes
(1 — q)Lfu(z; q) — uwo(z)] = H(q)N[u(z; )], (1.36)

where L is non-linear operator, ug(z) is initial guess and ¢ is embedding parameter where

q € [0,1]and H(q) is called the convergence control function satisfying H(0) = 0 and H(1) # 0
+o00 +o0
u(z;q) = Z um(z)g™and H(q) = Z hig®. (1.37)
m=0 k=0
so the mth-order deformation equation for unknown um,(z) becomes
m
L{um(z) — stmtm(z)] = D b (N [u(z;9)]). (1.38)
k=1

In this method hy is calculated at each step such that the residual is minimum. Different

technique employed to find h;. In this thesis a hybrid Genetic Algorithm and Neldermead is

used to solve the problem.

14
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Chapter 2

Homotopy Base Solution of Initial

Value Problem

In this chapter we solve non-linear initial value problem arising in mathematical modeling of free
falling body. A first order ordinary differential equation arises along with an initial condition.

Five Homotopy base solution are obtained and compared.

2.1 Mathematical Modeling

The problem is modeled for body falling under the effect of gravity with an air resistance
propotional to the square of the velocity is assumed. A body of mass m falling freely through
space with a velocity U(7)that varies with a time 7 under the influence of gravity g and air
resistance al/?(7).Newton’s second law for this situation takes the form

du(r) _
dr

m mg — aU%(7). (2.1)

With the initial condition
U(0) =0, (2.2)

as 7 — oo, U(7) will approach a terminal velocity

U = 9. (2.3)




- g

We make the subsitution

T= U7°°~z, U(1) = Uod(z).

Using this transformation, we get the equation

XED | (b =1, 24)

with initial condition

#(0) =0, (2.5)

and the condition in (2.3) become
limz—0od(z) = 1.

2.1.1 Close Form Solution

To find the close form solution series of the form

¢(:L‘) = Z anz",

n=0

is assumed using initial condition (2.5). We subsitute the expression of ¢(z) given in Eq

(2.4) into the Eq (2.5) to obtain

i ((n +1)apt+1 + i aran_r> =1 (2.6)

n=0 r=0

The recursive form as

n
a1=1, apt1 = p——T T;Oaran_,. (2.7)
The series solution is
p(z)=z— -2+ 2—25— 17 '+
= 3 15 apg® o
Which is the series of tanh(z) when t is small. Hence ,
¢(z) = tanh(z). (2.8)

16




2.2 Homotopy

To solve this problem with Homotopy Analysis method first we introduced the Non-linear

operator

Nioia) = 2EL 4 (o0 - 1. .9)

The mth-order deformation equation become

m—1

L{$m(2) = 5mbm_y ()] = BH(Z) |bpn1(2) + D 6:(2)mr1(8) = (1 = 3m) | ,

r=0

we require our initial guess'to satisfy

¢(0) = 0.
2.3 HAM Solution Using Polynomial Function

Assuming the base function of polynomial type in the form
{a:“"+b|a >0;b2> 6;n =0, 1,2....} .
In accordance to the initial condition
$o(z) = =.
Assuming the linear operator
09(z;q)

Lig(z;9) = ——— ~ (2.10)

The mth-order deformation equation becomes

m—1 .
o 9 (2) = Himn 1 (@)] = KH (2) <¢:n_1<x> + 3 6,(@bmrale) = (1= m) SCEtY

r=0

17




The constant of integration in each iteration found using

¢.,(0) = 0,m > 0.

For simplicity auxilary function is taken

The first three itration yields the solution

#(z) =
#(z) =
¢Pl(z) =

1
—hxd
:1:+3 s

H(z)=1.

1 2
z + -had(2 + h) + — Kb,

3

15

(2.12)

(2.13)
17

2
T+ %ﬁz3(3 + 3+ K) + 1—5h2x5(2 + ) + o= k32"

Table 2 -1

Analysis of Error

315 '

x tanh(x) Polynomial
Ezact Appro Error
0 0 0 0
0.2 0.19737532  0.19737532 0
0.4 0.379948962 0.379948962 0
0.6 0.537049567 0.537049567 0
0.8 0.66403677 0.664036954 —1.84 x 107
1 0.761594156 0.761622106 —0.00002795
1.5 0.905148254 1.135710851  —0.230563
2 0.96402758 126.6691007 —125.705

18




2.4 HAM Solution Using Rational Function

To find the better solution the the polynomial function, the solution can be found in form

of rational function using Homotopy-Pade approximation as described in section 1.11.2. Here

Pade approximation is applied on embedding parameter ’q’, and then putting q=1 as defined
g P g

in (1.17-1.25) using Homotopy-Pade technique on Eq (2.1). The solution obtained in section

2.9 is used and found the coeffiecient at each step. The first three approximations are stated

as,
bralz) = %‘?2;”—2 (2.14)
bralz) = (945 + 1022 + 1:4)’
' 15(63 + 28z2 + )
bea(2) (135135 + 1732§z2 + 37824 + 1:6).
' 7(19305) + 891012 + 45024 + 48
Table 2 — 2
Analysis of Error
x tanh(x) Rational
Ezxact Appro Error
0 0 0 0
0.2 0.19737532  0.19737532 0
0.4 0.379948962 0.379948962 0
0.6 0.537049567 0.537049567 0
0.8 0.66403677 0.664036775 —5x 107°
1 0.761594156 0.761594203  —0.0975574
1.5 0.905148254 0.905150215 —1.961 x 107°
2 0.96402758 0.964048866 —0.000021286

19




2.5 HAM Solution Using Exponential Function

As time varies from 0 to co the polynomial solution also tends to infinity. To get the better
approximation assymptotic solution should be taken. This can accomplished by choosing the

set of base function in the form of
{e7a>0;n=0,1,2...}. (2.15)
The initial guess which satisfy the initial condition with exponential function can be
do(z)=1—€"". (2.16)

The exponential base function also suggest that we define the linear operator by

o
Lig(z; q)] = ¢(x ) + ¢(z;9), (2.17)
it follows that the inverse linear operator is
L7 Yg(z;9)] = e_I/eId)(x;Q)dx. (2.18)

The mth-order deformation equation is written as

¢m—1(m) +z ¢r x)¢m—-r—- ( ) ) , (219)

(ﬁ N 1) [$(2) = b (2)] = FH () (1= )

oz

re1(2) + T 65(2)$mr1 () )dx, (2.20)
—(1 - }fm)

b (2) = smbpm_1(2) + e_’ﬁ/e’H(m) (

We find that the deformation equation has the solution in the form of To simplify this equation

the auxilary function is defined as
H(z)=¢€"". (2.21)

20
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)

Eq (2.20) becomes

() = (@) + 0 [ (

where C,, is constant of integration satisfies the Eq (2.12). The first three approximation

obtained are

o0(z) = 1-¢77,

oMz = 1- %(2 + h)e™® + he % - %ne—“,

¢ (z)

Table 2 -3

Analysis of Error

bm-1(2) + S 6(2)brmr—1 ()~
(1 = 36m)

1 1 1 1
1-(4+4r+ h2)e™ + —z-h(4 + h)e™% — Sh2+ R)e 3 4 5&%‘“ -

) dz 4+ Cpe *,m>0.

x tanh(x) Exponential
Exact Appro Error

0 0 0 0

0.2 0.19737532  0.19737532 0

0.4 0.379948062 0.379948836 1.26 x 1077

0.6 0.537049567 0.537047239 2.382 x 10~°

0.8 0.66403677 0.66402516  0.00001161
1 0.761594156 0.761564619 0.000029537
1.5 0.905148254 0.90507308  0.000075174
2 0.96402758 0.963946923 0.000080657

21
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2.6 HAM Solution Using Optimal Homotopy Analysis Method

For the solution of problem (2.1) with initial condition (2.2) by the OHAM. The initial guess

is choosen by polynomial type

¢0(1") =,

and linear operator is

Dip(enia) = 2250,

by the homotopy series solution

$(z) = go(@) + ) _ du(@)-

k=1 .
The mth-order deformation equation becomes
m—1 m—1
Lipm(@) — 3 om-k(c)us(@)] = c0 D tm—k(c1) Ri(2).
k=1 k=1

subject to the condition u(0) =0

where

Rk(l‘) _ _1_6’°N[¢(z, Q)]

k
R = ¢i(z) + go 6;(2)pp_i(x) — L1 = 30641)-

g=0

we can obtain the first three itration for solution of (2.1) is

¢0(:z:) = I,
3
$1(z) = z+(1-c2) (Zxco+60'%),
3
ble) = o+ (1) (20w + B ) +
3 3.2 5
_ 2. o...2 coT 5z°c5 O o 3 23z _32 5
(1 —c2)e2 <2c0:1:+2c09: 2zc0c1+—~——3 + 3 30017 + 5 Tpa” )

22




T

The values of cg c1, ¢z are calculated after sixth iteration. which are
co = —0.99999999999941, ¢; = 0.8803960001, c; = 0.973410425.

Table 2 — 4

Analysis of Error

x  tanh(x) Optimal
Ezact Appro Error
0 0 0 0

0.2 0.197375  0.197381 0.0004943
0.4 0.3799489 0.379937 0.0008912
0.6 0.5370495 0.537162 0.0068876
0.8 0.6640367 0.664384 0.0046528
1 0.7615941 0.761651 —0.00005684
1.5 0.9051482 0.905272  —0.0000238
2 0.9640275 0.9641376 —0.0000101

2.7 HAM Solution Using One-Step Optimal Homotopy Analy-
sis Method

Using the same linear operator and initial guess as in section 2.5. The mth-order deformation

equation .
L[d)m(z) - J{'md)m—l(:l:)] = Z hkRﬂ—k(k)’
k=1
where
1 8"N|g¢|z; , id
Ra(z) = H_g_g’r[zi] R j§0¢j(z)¢n_j(x) Z1(1 = 5tp1),

The first three approximation obtained are

¢0[$] = T,
¢,(z) = z+23h[0] and h[0] = —0.211439, (2.29)
¢ylz] = x—0.422877z° — 0.634316z°A[1] — 0.4228772°h[1] and A[1] = —0.172246.

23




Table 2 ~ 5

Analysis of Error

x  tanh(x) One — stepoptimal
Ezxact Appro Error
0 0 0 0
0.2 0.197375 0.197384 0.00199132
0.4 0.3799489 0.379149 0.01479996
0.6 0.5370495 0.537824  0.0432256
0.8 0.6640367 0.660193  0.0788433
‘1 0.7615941 0.766705  0.0918892
1.5 0.9051482 0.9061324 0.0000158
2 0.9640275 0.9650213 6.2 x 107°
24
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Chapter 3

Homotopy Base Solution of
Boundary Value Problem with

Finite Domain

In this chapter we consider a problem from fluid mechanics. In which a power law fluids flows

over a streching surface. Some transformation are applied and problem is formed in the domain

0 and 1. The problem is solved using five homotopy base technique and solutions are compared

with each other.

3.1 Mathematical Model

The equation is taken from the flow problem of power law fluid past streching sheet [26]. It

is assumed that the flow is axisymmetric. The problem is reduced to ordinary deformation

equation and finite domain by using similarity transfroms. The ODE is given as

dz? k \dz k dz k T
o du(l)
u(0) =0, . =1
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3.2 Homotopy

To solve this problem we introduced the Non-linear operator

N{u(z; 9)] = w(z; q) zu(z; q). (3.3)

Pulziq) 1 (0u(za)\*, 22 ou(ziq) (k=2
dz? k oz k Oz k

The mth-order deformation equation become

sy 1=, 2 k-2
Lum(z)—stmtim—1(z)] = KH(z) [Z Upln g — z Z Uy g + ?u'm_l + — TUm-1] -
r=0 r=0
(3.4)
we require our initial approximation to satisfy
u0(0) = 0, ug(1) = 1. (3.5)
and subsequient term to satisfy
um(0) =0 = up,(1) m>0. (3.6)
3.3 HAM Solution Using Polynomial Function
To find the solution of (3.1) we use the base function of polynomial type,
{z*"*a > 0,6>0,n=0,1,2....}.
uo(z) = z. (3.7
which satisfies our boundary condition (3.2) and linear operator is defined by
Llu(z;q)) = Ou(z;q) (3.8)
) q 6:1:2 " *

The mth-term in the Polynomial HAM solution is given by

m—1 :l:'
@) = ste) 1 | [ 16 ("’—%"“—J

26
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choose H(z) = 1, then

m—1 m—1
§ : " 1 E : 1,
Urlpr—1 ~ & UpUypy—p—1
=0

Um(Z) = smum—1(z) + h// e dzdz + com +c1,m- (3.9)

xz2, 1 k=2
T F Um—1 T T TUm-1

where ¢om and ¢y, are chosen so that Eq (3.6) is satisfied for each value of m>0. so we get

the first few terms in the polynomial approximation.

1 hWa-k) R o Hk-1) 4
wie) = e =t Y O
2 _ R(142h — 14Kk — 115k + 96k — 24k?)  W(8h—2hk+3k) o WP(2—k) 5
wie) = o+ 72k2 ‘ 6k2 Tt e T
K(4h — 5hk + hk? + 3k —3k?) , K4 —13k+6k?) ; R*2(2—-k—K?) 4
36K? e s o (10
Table 3 -1

Analysis of Error

x Numerical Polynomial approx  Error

0 0 0 0
0.2  0.060335 0.060335 0
0.4  0.146390 0.146383 7% 1076
0.6  0.262502 0.262497 5% 106
0.8  0.411729 0.411727 2 x 10~
1 0.595021 0.595020 1x 1076

3.4 HAM Solution Using Rational Function

Now we use the Homotopy-Pade technique to produce a rational approximation on the terms
which we obtain by the polynomial approximation. In the Eq (1.19). The coefficient of Am k
and By, x can be obtained by solving the 2m+1 linear equation given by (1-23),(1-24) and (1-25)
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3.6 HAM Solution Using Optimal Homotopy Analysis Method

To find the solution from Optimal Homotopy Analysis Method, we choose polynomial type base

function with initial guess

’U.Q(IE) =z,
and linear operator
0%u(z; q)
L 1) = ———.
[u(z; q)) azz

By the homotopy series solution
o0
u(z) = up + Z k().
k=1

The mth-order deformation equation becomes

m—1 m—1
Llum(@) = 3 om-k(c2)ur(2)) = co ) Hmk(c1)Ri(2).
k=1 k=1

The deformation function o,, and g, are defined above. Now

m—1 1 m—1 :I:2 k—2
! [
Ry(z) = § UrlUp_p 1 — % E u:'um—r-ll_*_ E Um-1 + ( A ) TUm—1-

r=0 r=0
So we obtain the first two terms of approximation

wlz] = =,

dcozr  cokxz  cox? ozt 1 4
e = ”"+(1_c2)( 3% 3 2k 19k 1277 ) (3.15)

The values of cg, c1, ¢z are calculated after fifth iteration that are

co = —1,¢1 = 0.626816, c; = —0.0967632.
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Table 3 -4

Analysis of Error

x Numerical Optimal approx Error
0 0 0 0
0.2  0.060335 0.060336 -1x10-%
0.4  0.146390 0.146388 2 x 1076
0.6  0.262502 0.262508 -6 x107°
0.8  0.411729 0.411727 2 x 10~
1 0.595021 0.595022 -1x10°%

3.7 HAM Solution Using One-Step Optimal Homotopy Analy-
sis Method

Now we find the solution of the Eq (3.1) by the one step-optimal HAM firstly we choose the

initial guess polynomial type which we define above in Eq (3.7) and same linear operator as in

Eq (3.8)

ugp(z) = .
Z’U, T
Liu(zsq) = T80,

The mth-order deformation equation become

L{tm(z) — #mum-1(2)] = Y _ ~x Rk (k).

k=1
where
m—1 1 m—1 T _
! [
Rn(z) = }:0 Upllny 1 — A Zo U ly—g1 + — Um-1 + o Tum-1,
== r=
m—1 m—1 2
” 1 ,, ! L7 -
U (T) = #mum—1(2)+ / / hi Urllp—p-1 7~ T Z Upl—r—1 T - Um—1 + ZUm—1 | dzdz.
r=0 r=0
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Here we choose k = 1. So we get the first few approximation solution

u1(z)

ug(z)

z + zh[0] — %mzh[O] and h[0]= — 0.571491,

—0.142982z + 0.5714912% — 1.14298zh[1] + 1.14298z2h(1] —

(3.16)

0.285746z3h[1] — 0.285746zA[1] + 0.142873z°A(1] and  h[1]= — 0.91655.

Table 3 — 5

Analysis of Error

x
0
0.2
0.4
0.6
0.8
1

Numerical
0
0.060335
0.146390
0.262502
0.411729
0.595021

One — StepOptimal approx
0
0.060361
0.146381
0.262522
0.411732
0.595025

Error
0
—0.000026
9 x 1076
—0.00002
-3 %1078
~4 % 1078
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Chapter 4

Homotopy Base Solution of
Boundary Value Problem with

Infinite Domain

In this chapter, the problem of micro polar fluid with n = k/2 is assumed. The equation of
micro rotation reduces to zero. Problem is reduced to ordinary differential equation by using

similarity transform. Different Homotopy solution are obtained and compared.

4.1 Mathematical Formulation

The stagnation point flow of micropolar fluid past a streching sheet is defined. The partial

differential equation in flow problem transformed to ordinary differential equation [27].

-~

<1+§> 1% =0, (4.1)
with boundary condition
F0)=F©0)=0, f(c0)=1. (4.2)
The subsequent term is
Fm(0) =0= f,(0) f(00) =1m > 0. (4.3)
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4.2 Homotopy

we now solve this problem first by using HAM. To solve this problem we introduced the Non-

linear operator
N k 0°f(z;q) *f(z;9) 9f(z;9)
M=+ HEIED B0 4y (UED)
mth-order deformation equation becomes

BV (z m-1 ¢ (z)f" T)—
L{fne) = stmfn(@) = () | (Dm0 s }

Sl f1(@) fopo1 (2) + 1(1 = 54m)

we require our initial approximation to satisfy
f0)=£(© =0, f(o0)=1.

4.3 HAM Solution Using Polynomial Function

To solve the above problem (4.1) by the polynomial approximation we first choose the initial

guess which satisfies our boundary condition (4.2)

— 4.5
fo=o— 10 (4.5)
and we choose our linear operator is
B f(z;
L(f(z;9)] = —'g(za 2, (46)

mth-order deformation equation becomes

(1 + 5 fmea (@) + 0 Fr(@) frra (@) ) (47)

d
—[fm (@) — 3m fm—1(z)] = RH(z)
= o ( S fi(@) fy o1 (2) + 11 — 26m)
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5 (z m-1 ¢ (z)f" T)—
fm(2) =%mfm—1(:c)+ﬁ// H(z) Ut Dnea (@) + 2o Sl )f’"_r_l(l ) dzdzdz,
STy 1@ freroa(2) + 1(1 — 36m)

we choose H(z) = 1 so the equation become

o ] (1 +§) frr (@) + 75 @) s (@)=
fm(x) = s frm—1(2) + ﬁ/// ( S (@) + 11— ) dzdzdz.

using all the values in above equation we get few terms of approximation

T
I— ’
1+=zx
T 6hx 41ha? Fkz?
hi@) = x_1+$+1+$+6(1+$)+2(1+$)_ (48)
6hln(1+z) 10Acln(l+z) 4hzln(l+2)
14z 14z 14z )

fo(z) =

Table 4 —1

.Analysis of Error

x Numerical Polynomial approx  Error

0 0 0 0

0.3 0.0433709 1.22474 1.18137

0.5  0.115047 1.33141 ~1.21636

0.8  0.274385 1.61573 —1.34135
1 0.408703 2.12279 ~1.71409
15  0.816017 2.34076 —1.52474
2 1.20187 2.11967 ~0.8278
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4.4 HAM Solution Using Exponential Function

To obtain the solution of the Eq (4.1) by the exponential approximation we choose our initial

guess in the form of exponential which satisfies boundary condition (4.2). By the rule of

expression, we choose

fo=z—1+¢€77, (4.9)
and linear operator will be
o 8f(ziq) | B*f(z:9)
L[f(.’l}, Q)] - 6I3 + 6I2 . (410)

The mth-order deformation equation become

(1 -;— g)f”'_l(a:) + ZT___I fr(z)fr,rlz—r—l(z)'_ ) '

63 82
( _—> [fm(.'E)—Kmfm—-l(I)] = hH(-T) ( Z:.nz—ol f,’.(.’l))f’ —r—l(m) + 1(1 — xm)

3 a2
Choose H(z) = e~® and k = 1 so we get first few approximation

x

folz) = z-1+e€7,
filz) = -1+e*+ %’E - ge—hm T - -r;f - %e'%hz. (4.11)
Table 4 — 2
Analysis of Error
x Numerical Exponential approx Error
0 0 0 0
0.3 0.0433709 0.0432467 0.0001242
0.5 0.115047 0.113249 0.001798
0.8 0.274385 0.258496 0.015889
1 0.408703 0.295639 0.113064
1.5  0.816017 1.07845 —0.262433
2 1.20187 1.69799 —0.40612
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4.5 HAM Solution Using Rational Function

Now we use the Homotopy-Pade technique to produce a rational approximation on the terms

which we obtain by the polynomial approximation. Eq (1.19) becomes

() = g Ama@T|
, 1+ Ezn’:l Bm’k(l‘)qk g=1

(4.12)

The coefficient of A, x and Br, x can be obtained by solving the 2m+1 linear equation given by

(1-23),(1-24) and (1-25) using the term calculated in previous section Eq (4.8). The first two

rational approximation with choosing k=1, calculated are

T
foo 1tz
~ 0.33333(3 + h)z?
fin = TaR)z . 0.5(1h+23h%)z2 "

€
I+ 5=+ =@

and further terms are calulated easily.

Table 4 — 3
Analysis of Error

x Numerical Rational approx Error

0 0 0 0
0.3  0.0433709 0.0432455 0.0001254
0.5  0.115047 0.115859 0.000812
0.8 0“.274385 0.253574 0.020811
1 0.408703 0.303026 0.105677
1.5  0.816017 1.642708 —0.826691
2 1.29187 2.15337 —0.86150
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with condition

f(0)
9(0)

5.2 Homotopy

0=£'(0), f(c0) =1, (5.2)

To solve this problem with Homotopy Analysis method first we introduced the Non-linear

operator
3 2
Niwa) = a+kSh f e >Zm£ - (gf) v+,
2g &2
Nig(z;q)] = (1 + ’;) j 5 + f(z ) g(:c)(—ii -k (2 + E_£> (5.3)

The mth order deformation equations becomes

L[fm(x) - %mfm—l(x)] = ﬁH(.’L‘)

L[gm(x) - %mgm—l(x)] = ﬁH("L‘)

[ (14 B fa() + E7 S (@) e (2) ] |
L :751 fr(x)fm—r—l(x) + kg;n—l + 1(1 - %m)

| S 00(2) framr o1 (2) + Ky — 2kgmo1(2) = K fmos(2)

we require our initial guess to satisfy

fo(0)

0 = fo(0), fo(oo) =1, (5.4)

90(0) = 0,g0(c0) =0

and subsequent terms to satisfy are

Fn(0) = 0= fi(0), f(c0) =1, m>0 (5.5)
‘ K gm(0) = 0, gm(c0) =0 , m>0
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5.3 HAM Solution Using Polynomial Function

To find the solution of Eq (5.1) by polynomial we choose our initial approximation which satisfy

our boundary condition (5.2)

= r— 5.6
fO T 1+ z! ( )
B S
9 = Tr1Tz-1
and choose linear operator in the form of
& f(z;q)
Lif(mq] = —53 (5.7)
8%g(z; 9)
Lg(z;9) = —5—=5—

The mth-order deformation equations becomes

A+ k) oy (2) + X frl2)
(@) = smfmer(z)+h / / H(z) " (@)— fia) | dedzdz. (58)
! () + kg g+ 1(1 = 5m)
(1+3 )gm—-l(m +Z'r—0 fr(z)
gm(z) = Hmgm-1(z) + ﬁ/ H@) | g i(@) = S 9r(@) fonpa (@) + kgl | dTd2.
—2kgm—1(x) = kfpr_1(2)
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Choose H(z) =1 in both equations.so we get first few approximation

fo(z)
90(2)

fi(=)

q1(z)

T

?

1+z
1 1
z+1 + z—1
ro % 6hz 47zh 6hln(z+1) 10Azln(z +1) 4hz?In(z + 1)
1+z 14z 6(1+<z) 14z 1+z 1+z ’
1 1 6hz hz? 8hzd  4hln(l-=z
pra g e prupe il prape: S g B ——1(+:1:2)— (59)
7Thzin(l —z) 4z?Aln(l1-z) 7he®In(l-z)  6hln(l4+zx)  9Azin(l +z)
2(—-1+ z2) (-1+z2)  2(-1+2?) -1+ x2 + 2(-1+x2)
622kIn(1+z) 9kz3In(l +z)
2(-1+22)  2(-1+az?) °

and further calculations can be easily calculated.

Table 5 — 1 for f(x)

Analysis of Error

x Numerical Polynomial Approxi Error

0 0 0
0.3  0.0444 0.042795 0.001605
0.7 0.1676 0.16532 0.002279
1 0.3542 0.35150 0.002697
1.7 0.8595 0.83161 0.02789
2 11541 1.12361 0.03049
4 3.1066 201453 1.09207
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Table 5 — 1 for g(x)

Analysis of Error

x Numerical Polynomial Approxi Error
0 0 0 0
0.3 0.0679 0.06561 0.00229
0.7 0.0937 0.08912 0.00458
1.3 0.0803 0.07524 0.00506
1.7 0.0619 0.05674 0.00516
2 0.0438 0.0325 0.01131
4 1.0313 0.01345 1.01785

5.4 HAM Solution Using Exponential Function

To obtain the solution of the Eq (5.1) by the exponential approximation we choose our initial

guess which satisfy our boundary conditions (5.2)

and linear operator’

fo

go

L{f(z;q)]

Llg(z;9))

= —l+z+e 7

= e T _ 6_2::,

_ 8%f(z;9) N & f(x;q)

- Ox3 ox2 '’
&g(z;9) ,

= T ez + 9(z;9).
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Then the mth-order deformation equation becomes

(L+ k) fr1(2) + £ fol2)

o3 0*
<29?3‘+ é?) @) = stmma(@)] = BH@) | fh, (@)~ 0 £1(@)
Frner=1(%) + kg1 + 1(1 = 56m)
5 (14 §)gma (2) + 7 fr(a)
(2 1) 0m(®) ~smom-s(@)] = AH) | ghra(@) = T3 0 o)
+kg:,n_1 - 2kgm_1(.’l:) - kf”__l(l')
and we choose
H(z)=¢%,
so we get first few terms
folz) = —-l+z+e’%,
Qo) = e~ e,
_ -z h 1 -3z _ _h_f l —2z
filz) = -1+e"+3 ﬁge 12 4h.7:e +z, i
1 7 1 347, ., 5, _ -
= T g2y —dzy g -3 Ipo—2m T T _ “hk 2 | Zpke™®
g1(z) e e+ 5¢ h 16he ghe 720he g ke +6 e
1 —3z 1 —2z
+4h.7:e 3h.7:e
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The coefficient of A, ; and By, x can be obtained by solving the 2m+1 linear Egs (1-23),(1-24)
and (1-25) using the term calculated with Eq (5.13). The first two rational approximation

calculated are

foo(z) = ~1+z+e™7,
90,0(35) = e *— e—2:c’
0.458333x2

(5.15)

fal=) = 5 T 0.3636362 — 0.049586872°
(@) = —1.19444z + 12.0919¢?
LT = 10076027 — 10.615422

Table 5 — 3 for f(x)

Analysis of Error

x Numerical Rational Approx Error

0 0 0 0
0.3 0.0444 0.0425884 0.001812
0.7 0.1676 0.165538 0.002062
1 0.3542 0.350969 0.003231
1.7 0.8595 0.85524 0.00426
2 1.1541 1.14923 0.00487
4 1.1066 1.06723 0.03937
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Table 5 — 3 for g(x)

Analysis of Error

x Numerical Rational Approx  Error

0 0 0 0
0.3 0.0679 0.0645948 0.0033052
0.7 0.0937 0.08936 0.004336
1.3 0.0803 0.07516 0.00514
1.7 0.0619 0.05641 0.00549
2 0.0438 0.02541 0.01839
4 0.0513 0.01245 0.03885

5.6 HAM Solution Using Optimal Homotopy Analysis Method

To find the solution from Optimal homotopy analysis method we choose exponential type base

function with initial guess
fo=z—-1+€e" go=e"—e

with linear operator

B flz;q)  0°f(z;9)

Lif(ma) = —33 T gz
Lig(z;q)) = L%gfg;q—)+g(w;q)- (5.16)

By the homotopy series solution
oo
f) = fol@)+)_ filz),
k=1

9(x) = go()+)_ ok(z).
k=1
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The mth-order deformation equation becomes

]

m—1 m-1

Llfm(@) = 3 omk(e)fi@)] = 0D pmk(c)Br(2),
k=1 k=1
m—1 m—1

Llom(@) = 3 vm (c0ae@] = 0 Y tnos(c)ér(2).
k=1 k=1

where the deformation function ¢,,,7,,, Umand p,, are defined. and

1-oa, }Lm(Cl) = (1 - CI)CT_l m > 1a

pla) =

o1(ce) = 1—co om(c2) =(1-c2)cy “m>1,
mies) = 1—cs pm(ca) =(1—e3)g™" m>1,
vi(ca) = 1-—cq, Umlcs) =(1- c)ep ™t m> 1.

and
m—1 m—1
Rez) = (L4 Bfor@+ 3 @) faers(®) = D FUE) fin 1 (@) + Koy + 11 = 50m)
r=0 r=0
m~—1 m—1
60) = (L4 Doma(®) + Y Jole)imros(8) = 2 () e (@) +
r=0 r=0

kg‘:n—l - 2kgm_1(l‘) - kf”_l(x).

so we obtain the first few terms of approximation

folg) = z—1+4€7%,
go(z) = %~ 6—2:’ -
fiz) = s—l4e®+(1—c) ~3eo + 3eoe™ o S — geoke ™ (5.17)
1 = - - ' ‘
cox + 2coze® — cozk + 1coe™"x?

qz) = 7~ e 4 (1 —ca)

e s

—x _
_é_cOe—Sz _ che—Zz 1 47(_:9726 + %C().’L‘e 2z __

1coze™* + 2coe"kz + %c()e‘“”a:2
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The values for ¢y, 1, c2, c3, c4 are obtained after third iteration which are

o= —0.229192, ¢; = —1,¢p = —0.736885, c3 = —1, cs = —0.805561.

Table 5 — 4 for f(x)

Analysis of Error

x Numerical Optimal Approx Error
0 0 0 0
0.3 0.0444 0.04387 0.00053
0.7 0.1676 0.166974 0.00062
1 0.3542 0.353548 0.000652
17 08595 0.858752 0.000748
2 1.1541 1.15321 0.0008923
4 1.1066 1.105701 0.0008999
Table 5 — 4 for g(x)
Analysis of Error |
P x Numerical OptimalApprox Error
0 0 0 0
0.3 0.0679 0.067721 0.000179
0.7 0.0937 0.093481 0.000219
1.3 0.0803 0.080061 0.000239
1.7 0.0619 0.06164 0.000252
2 0.0438 0.043506 0.000294
4 0.0513 0.05101 0.000298
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5.7 HAM Solution Using One-Step Optimal Homotopy Analy-
sis Method

To obtain the solution by the One-step homotopy analysis method of Eq (5.1) we define the

non-linear operator

(1+k) +f( )dzf (%) +kd—+1 (5.18)

Mgzl = (1+2) d2"+f< )% oLk (20+ 2L).

I

N(f(z;9))

with initial guess

fo = z-1+¢77%, (5.19)

go = l1-e ’

and linear operator

3f(z;9) N 3%f(z; )

Lif(z;q9)] = 913 o2
20(
Lol = 2050 4 gl

The mth-order deformation equation

L{fm(z) = #mfm1(@)] = D heRmi(k),

k=1

Z P (K)-
k=1

L[gm(m) — Xmdm—1 (:B)]
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where

€i(z)

" m_l
L+ K (@) + Y frl@) frra(2) —
r=0

m~1
Z F (@) fraer1(2) + kgrn_q + 1(1 = 56),
=0

k.o m—1
(1 + E)gm—l(z) + ZO fr(z)g;n—r—l(z) -
m~1

> 9:(&) frrr-1(®) + Ky — 2kgm-1(z) — k1 ().
=0

so we get first few approximated terms

folz) = z-1+e7,

-z ~2z

g(](.’l,‘) = € " —¢ )

1 -
filz) = z-1+e*— 5aszh[()] + e % 2%h[0] — e *z2R[0] + %e"’z:"h[O], h[0] = —0.185689.

91(1‘) = e % _— 6—2: _

3

hl0] = —0.185689.

3
5¢ h[0] + 5

e~*%h[0] — 2¢7%h[0] +

e *h[0] — 2ze~3%h[0] + 3ze**h[0] — ze~*h[0],

Table 5 — 5 for f(x)

Analysis of Error

X

Numerical One — Step Approx  Error

0
0.3
0.7

1
1.7

2

4

0 0 ‘ 0
0.0444 -0.044185 0.000215
0.1676 0.16738 0.000218
0.3542 0.35392 0.00028
0.8595 0.85916 0.00034
1.1541 1.15373 0.00037
1.1066 1.1059 0.0007
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Table 5 — 5 for g(x)

Analysis of Error

x Numerical One — Step Approx Error
0 0 0 0

0.3 0.0679 0.0679 0.000216

0.7 0.0937 0.093458 0.000242

1.3 0.0803 0.07991 0.00039

1.7 0.0619 0.06149 0.00041
2 0.0438 0.043382 0.000418
4 0.1243 0.12386 0.00044
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Chapter 6

Results and Conclusion

This thesis is designed to discuss and analysis some homtopy base analytical solutions of differ-
ential equations. The thesis consists of four numerical examples, all of which are solved using
five homtopy base techniques, namely Homtopy Analysis Method with polynimal type base
functions, Homtopy Analysis Method with Pade approxifnation, Homtopy Analysis Method
with exponential type base functions, Optimal Homtopy Analysis Method, One step Optimal
Homtopy Analysis Method. The problem chosen are non-linear in nature and have diverse
boundaries. First order non-linear, non-homogenous intial value problem due to Newton’s law
for freely falling body was chosen as first problem. From intial value problem next aim is
boundary vale problems. Second problem was Non-linear homogenous problem with bounded
domain. This problem was modeled for Power law fluid on streching sheet and uses similarty
transform to reduce the problem to finite domain and ODEs. Third and fourth problem is
for infinite domian. In third problem a non-linear,non- homogenous differential equation was
solved, whereas, two coupled ODEs are solved in chapter five. The solutions obtained are

compared with exact or numerical solutions for different values of domain. It is observed that

1. Homtopy Analysis Method with polynimal type base functions gives good and quick ap-
proximation in bounded domain and for infinte domain the results close to the boundaries
as r increases the solution starts to diverge, also choice of intial guess is very difficult if
domain is between zero and infinite. The solution might tends to convert to logrithmic

form in such cases.
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. Homtopy Analysis Method with exponetial type base functions gives good approximation

in infinite domain and for bounded domain it is hard to find expontial type guess also

solutions are not as accurate.

. Homtopy Analysis Method with Pade approximation gives excellent approximation in

bounded domain, also, Results are better for infinte domain then polynimial function
infact results gives good approximation for larger values of z, but these results are two

large and take a lot of computation time.

. Optimal Homtopy Analysis Method gives excellent solutions. It helps to attain convergent
solutions at smaller number of itrations which reduces the computational time. But,
finding the approximate values of convergence control parameter is a difficult job. Here,

we use hybrid genetic algorithms and Nelder mead to find the value of these parameter.

5. One step Optimal Homtopy Analysis Method also provide excellent solutions and helps

to attain convergent solutions at smaller number of itrations. But, it each itration it need
to find approximate values of convergence control parameter which increase computation,

again we hybrid genetic algorithms and Nelder mead to find the value of these parameter.

Every techniques we use have there advantages we recomend Polynomial type base functions

either HAM is applied or any optimal scheme is used if domain is bounded and expontiential

type base function for infinte domain. we could use Pade of any optimal technique to reduce

the error by minimizing Residual.
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