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Preface 

The dusty fluids moving through channels having peristaltic walls extensively occur in almost all 

fields of life. The discussion of heat transfer effects on peristaltic dusty fluids is crucial especially 

in physiology, engineering and industry. In biology, the study of heat transfer is requisite for 

hyperthermia therapy to target cancer cells effectively, an efficient process of dialysis without 

damaging tissues, treating respiratory diseases. In industry, heat transfer analysis is helpful for the 

efficient flow of slurries and chemicals without harming the machinery due to overheating. 

Viscosity of various fluids also varies at different temperature. In automobiles, lubricants are used 

as coating agents. Effective results of such fluids at different temperature can only be assessed by 

thermal analysis of these fluids. In engineering, the thermal study of fluids is a key factor in 

designing mechanical systems for optimum output. In this thesis, thermal analysis of various nature 

of dusty fluids is performed. The passages considered are asymmetric or curved in nature, 

exhibiting peristaltic movement along the walls. The temperature profile is studied under various 

conditions like thermal slip, convective boundaries, and variable physical properties. The dusty 

fluids are examined with effects of MHD, porosity, radiation, and inhomogeneous distribution of 

dust particles. The ruling equations constructed for the issues are coupled and nonlinear and solved 

using regular perturbation technique. The effects of various eminent factors on fluid and 

temperature are illustrated through graphical presentation of the mathematical results. 

Chapter one is based on a description of basic concepts, fundamental equations to model the 

problem, and important non-dimensional quantities along with physical significance. A detailed 

discussion of the background of the study is also included in this chapter. 
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Walter’s B dusty fluid with peristalsis is considered through an asymmetric channel in Chapter 

two. The effects of radiation, velocity slip, and thermal slip are discussed. Regular perturbation 

technique is used to solve coupled differential equations and effects of radiation, velocity, and 

thermal slip are deliberated graphically. The study has applications in biology and engineering. 

The article is published in Alexandria Engineering journal (2024) 106:2024. 

Chapter three is based on discussion of peristaltic Jeffrey dusty fluid travelling through a curved 

channel. Mathematical model comprises of coupled differential equations. Stream functions are 

involved, and perturbation technique is employed using small wave number approximation. 

Results for stream functions, and velocity are illustrated graphically. The significance of 

retardation and relaxation time on stream functions and velocity profile is elaborated through 

graphs. The findings of the study are published in Advances in Mechanical Engineering (2021) 

13: 6. 

Heat transfer analysis of MHD peristaltic dusty fluid passing through a curved channel is presented 

in Chapter four. The non-uniform distribution of dust particles and variable thermal conductivity 

are considered. Problem is solved by taking Reynolds number small and wavelength large, and 

numerical solutions are portrayed graphically using NDSolve command in Mathematica. 

Graphical discussion is performed to study the effects of curvature of the channel, thermal 

conductivity, and MHD. The results are helpful in various biological treatments and optimum 

performance of energy storage devices. The results of the analysis are published in International 

Journal of Numerical Methods for Heat & Fluid Flow (2024) 34: 4. 

Chapter five focuses on entropy generation analysis on dusty fluid flow with slip conditions. The 

channel of the flow has a curved nature with peristaltic walls. Analytic solutions are obtained using 
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perturbation technique. The flow behavior and temperature distribution are analyzed under the 

impact of various significant parameters. Entropy generation rate is also debated for various 

parameters. The study finds its application in biomedical sciences and engineering models. The 

issue is accepted for publication in Fractals (2024). 

The emphasis of Chapter six is on a dusty second grade fluid propelling peristaltically through a 

porous asymmetric channel. Thermal effects with slip conditions are studied. Theoretical results 

of the problem are obtained through perturbation technique, taking wave number as a small 

parameter. Graphs showing the effects of porosity, MHD, and thermal slip are plotted. Due to the 

non-Newtonian nature of the fluid, the analysis has a wide role in understanding the behavior of 

many fluids occurring in biology, engineering, and industry. The results of research are submitted 

in Journal of Fluids and Structures. 

Chapter seven deals with viscous dusty fluid peristaltically flowing through curved conduit with 

variable properties. Thermal conductivity and fluid viscosity depend upon temperature. 

Convective boundary conditions are incorporated. The graphical results are obtained using 

NDSolve command in Mathematica to understand the impact of curvature, varying viscosity, and 

thermal conductivity. The issue is submitted in Advances in Mechanical Engineering for 

possible publication. 

In Chapter eight, concluding remarks of the thesis are included with the significance of results in 

various fields of life. Some aspects of future study are also presented in this chapter. 
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Nomenclature 

List of symbol 

𝑋, 𝑌 
Rectangular coordinates in horizontal and vertical direction in fixed 

frame 

𝑅, 𝑋 Radial and axial coordinates in fixed frame 

𝐻1, 𝐻2 Upper and lower walls of the channel in dimensional form 

𝑐 Speed of peristaltic wave 

𝑎1, 𝑎2 
Amplitudes of peristaltic waves along upper and lower walls 

respectively 

𝑑1 + 𝑑2 Width of asymmetric channel 

𝑽, 𝑽𝒔 Fluid and dust particles velocity profiles 

𝑈, 𝑉 Horizontal and verticle components of fluid velocity 

𝑈𝑠, 𝑉𝑠 Horizontal and verticle components of dust particles velocity 

𝑢, 𝑣 Non-dimensionalized fluid velocity components 

𝑢𝑠, 𝑣𝑠 Non-dimensionalized dust particles velocity components 

𝑇, 𝑇𝑠 Fluid and dust particles temperature 

𝑧 Heat transfer rate 

𝐹, 𝐸 Non-dimensionalized flow rate for fluid and dust particles 

𝑄,𝑄𝑠 
Non-dimensionalized flow rate for fluid and dust particles in fixed 

frame 

𝑃 Pressure 
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𝑘∗ Thermal conductivity of the fluid 

𝐶𝑝 Specific heat of the fluid 

𝐶𝑚 Specific heat of dust particles 

𝑚 Mass of solid particles 

𝑁 Mass of dust particles per unit volume 

𝐿 Curvature of the channel 

𝑘 Stokes resistance coefficient 

𝜏𝑇 Temperature relaxation time 

𝜏𝑉 Velocity relaxation time 

𝑅𝑒 Reynolds number 

𝐵𝑟 Brinkman number 

𝑃𝑟 Prandtl number 

𝐵𝑒 Bejan number 

𝐸𝑐 Eckert number 

𝑅𝑑 Radiation parameter 

𝑀 Hartmann number 

𝐵0 Induced magnetic field 

𝑧 Heat Transfer rate 

𝑚0 Porosity parameter. 
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Greek Letters 

𝜆 Length of peristaltic wave 

𝜙 Phase difference 

𝜑 Stream function for dust particles 

𝜓 Stream function for fluid 

Φ Viscous dissipation term 

𝛿 Wave number 

𝜇 Fluid viscosity 

𝜌 Fluid density 

𝛽 Velocity slip parameter 

𝜀 Thermal slip parametr 

𝛽1, 𝛽2 Biot numbers 

𝜂 Variable thermal conductivity coefficient 

Θ, Θ𝑠 Non-dimensional fluid and dust particles temperature 

𝛼 Walter’s B fluid parameter 

𝛼1 Second grade fluid parameter 

𝜔 Variable density of dust particles parameter 

𝜁 Variable viscosity coefficient 

𝜆2 Relaxation time of Jeffrey fluid 

𝛼0 Retardation time of Jeffrey fluid 
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Chapter 1 

Introduction 

1.1 Peristalsis 

The word peristalsis, evolved from the Greek letter “peristaltikos”, is dedicated to represent the 

successive contraction and expansion movements of walls of channels, tubes, muscles, and vessels. 

This phenomenon is responsible for transportation of almost all fluids in the human body. The 

food, we eat, is transferred to stomach due to wavy movement of esophagus. The chyme moves 

toward small intestine due to peristaltic waves. Urine is transported from kidneys to bladder by 

peristaltic propulsion. The movement of sperms through fallopian tubes is caused by peristalsis. 

Medical devices like heart-lung machine, dialysis machines, and pumps to infuse medicine are 

based on the peristaltic mechanism. In engineering, peristalsis is widely used in designing systems 

to transport materials and dealing with the liquids flow in chemical reactors. 

1.2 Dusty Fluids 

The fluids (gas or liquid) that contain a distribution of solid particles, are called dusty fluids. Dusty 

fluid flows have vast applications in physiological systems and industry. Various examples include 

chyme in small intestine, urine with infection, wastewater treatment, environmental pollution, 

discharge of sewage from industries, glittered paints, juices with pulp etc. 
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1.3 Magnetohydrodynamics (MHD) 

The study of electrically conductive fluids is known as Magnetohydrodynamics (MHD). Liquid 

metals, salt water, and plasma are few examples of such fluids. The mathematical equations 

describing MHD are known as Maxwell’s equations of electromagnetism given as 

∇. 𝑬 =
𝜌𝑣

𝜖0
, 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
, 

∇.𝑩 = 0, 

∇ × 𝑩 = 𝜇0 𝑱 + 𝜇0𝜖0

𝜕𝐸

𝜕𝑡
, 

where 𝑬 and 𝑩 are electric field and magnetic field, 𝑱 and 𝜌𝑣 are current and charge density, 𝜖0 

and 𝜇0 are permeability of fixed and free space. 

1.4 Fundamental Equations 

1.4.1 For Fluid Flow 

The flow behavior of fluid is described by the following equations. 

Continuity equation for incompressible fluid is 

𝛁. 𝑽 = 0.           (1.1) 

Momentum equation for incompressible fluid is 

𝜌
𝑑𝑽

𝑑𝑡
= −𝛁𝑃 + 𝛁. 𝝉 + 𝜌𝒇 + 𝑘𝑁(𝑽𝒔 − 𝑽).       (1.2) 
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The energy equation is 

𝜌𝐶𝑝 (
𝑑𝑇

𝑑𝑡
) = 𝐾𝛁2𝑇 + Φ +

𝑁𝐶𝑝

𝝉𝑇
 (𝑇𝑠 − 𝑇) +

𝑁

𝝉𝑼
(𝑈𝑠 − 𝑈)2,    (1.3) 

where Φ is viscous dissipation. 

1.4.2 For Particle Flow 

The flow behavior of solid particles is described by the following equations. 

Continuity equation for solid particles is 

𝛁. 𝑽𝒔 = 0.           (1.4) 

Momentum equation for solid particles is 

𝑚𝑁
𝑑𝑽𝒔

𝑑𝑡
= 𝑚𝑁𝒇 + 𝑘𝑁(𝑽 − 𝑽𝒔).        (1.5) 

The energy equation is 

𝑑𝑇𝑠

𝑑𝑡
= −

𝐶𝑃

𝐶𝑚
(𝑇 − 𝑇𝑠).          (1.6) 

1.5 Non-dimensional Numbers 

Dimensionless numbers are key factor in understanding the dynamics of the fluid. They are defined 

as correlation between parameters or forces and thus helpful to illustrate flow properties of the 

fluid. 

1.5.1 Reynolds Number 

The ratio of inertial forces to viscous forces is termed as Reynolds number. It is denoted by 𝑅𝑒. 

𝑅𝑒 =
Inertial Forces

Viscous Forces
=

𝜌𝒖𝐿

𝜇
 , 
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where 𝜌 is density, 𝒖 is fluid velocity, 𝐿 is characteristic length and 𝜇 is fluid viscosity. 

Reynolds number described the flow pattern of a fluid.  

1.5.2 Eckert Number 

Eckert number is the relation between kinetic energy of the flow and enthalpy difference due to 

temperature change in the system. It is denoted by 𝐸𝑐 and 

𝐸𝑐 =
𝒖2

𝐶𝑝∆𝑇
 , 

where 𝒖 is fluid velocity, 𝐶𝑝 is specific heat and ∆𝑇 is temperature difference. High Eckert number 

depicts that viscous dissipation has dominant role on temperature profile of the fluid otherwise 

viscous dissipation effects are negligible and heat transfer occurs due to conduction or convection. 

1.5.3 Prandtl Number 

Prandtl number (𝑃𝑟), named after German physicist Ludwig Prandtl, is ratio of momentum 

diffusivity to thermal diffusivity, i.e., 

𝑃𝑟 =
𝐶𝑝𝜇

𝑘
, 

where 𝜇 and 𝑘 are viscosity and thermal conductivity of the fluid. 

1.5.4 Brinkman Number 

The Brinkman number is dimensionless number introduced by Dutch mathematician and physicist 

Henri Brinkman. Brinkman number is denoted by 𝐵𝑟 and defined as 

𝐵𝑟 =
𝜇𝒖2

𝑘(𝑇𝑤 − 𝑇0)
 , 

https://en.wikipedia.org/wiki/Henri_Brinkman


24 
 

where 𝜇 is the dynamic viscosity, 𝒖 is the flow velocity, 𝑘 is the thermal conductivity, 𝑇0 is the 

bulk fluid temperature, 𝑇𝑤 is the wall temperature. 

1.5.5 Bejan number 

Bejan number is dimensionless number introduced by Adrian Bejan. In fluid dynamics, Bejan 

number denoted by (𝐵𝑒) is defined as the ratio of heat transfer irreversibility and total 

irreversibility due to heat transfer and viscous dissipation i.e., 

𝐵𝑒 =
Heat Transfer Irreversibility

Total Irreversibility(heat transfer + fluid friction)
 

The study of Bejan number is important to improve the systems by reducing energy loss due to 

both heat transfer and fluid viscosity. 

1.6 Methodology 

The mathematical models are developed by using Navier-Stokes equations. For dusty fluid, model 

consists of coupled equations which are non-linear. The introduction of stream functions reduces 

number of linearly independent solutions but non-linear terms still retain. Therefore, regular 

perturbation technique is applied by taking wave number as small parameter. Resulting zeroth 

order and first order systems are solved using DSolver built-in command in Mathematica. For 

numerical analysis of the problems, NDSolver command in Mathematica is employed.  

1.7 Literature Review 

Peristaltic propulsion of fluids abundantly occurs in physiology like blood movement through 

vessels, transport of chyme through small intestine, and urine flow through the kidney. In industry, 

peristaltic pumps are used to transport sensitive fluids. The study of peristalsis is crucial due to its 

https://en.wikipedia.org/wiki/Dynamic_viscosity
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Thermal_conductivity
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remarkable effect on flow behavior of fluids. Latham [1] primarily carried out both theoretical and 

experimental investigations of peristaltic pumping. Fung and Yih [2] analyzed peristaltic flow 

through flexible cylindrical tubes. Shapiro et al. [3] presented theoretical results of propulsion of 

peristaltic waves by using a low Reynolds number and long wavelength assumption. Weinberg et 

al. [4] performed experimental analysis of peristaltic pumping and compared experimental results 

with the theoretical study by Shapiro et al. [3]. Numerical technique was applied by Takabatake et 

al. [5] to study effects of Reynolds number, wavelength, and amplitude on axisymmetric peristaltic 

flow. Some other studies on peristaltic flow with different assumptions are [6-9]. Siddiqui and 

Schwarz [10] studied second grade fluid propelling peristaltically through axisymmetric tubes. 

Mekheimer [11] studied magnetohydrodynamic effects on blood flowing peristaltically through 

two-dimensional channel. Tsui et al. [12] investigated the flow behavior of peristaltic fluid in a 

finite tube. Nadeem and Akram [13] considered Williamson fluid model flowing through 

peristaltic asymmetric channel. Javid et al. [14] studied effects of porous media on biological fluid 

travelling through wavy channel. Rani et al. [15] carried out heat and mass transfer analysis of 

Walter’s B fluid moving sinusoidally through a symmetric channel with MHD and slip effects. 

MHD and partial slip impacts on Jeffery fluid propulsion under peristalsis through rectangular 

channel have been presented by Ellahi and Hussain [16]. Jagadesh et al. [17] worked on peristaltic 

propulsion of MHD Casson fluid with free convection through an inclined porous channel. Gafel 

[18] conducted the study for the effects of inclined magnetohydrodynamics and source/sink on 

peristaltic flow of blood in the presence of thermal radiation. Elmhedy et al. [19] focused on 

Robinowitsch fluid model with peristaltic transport through an inclined channel and studied effects 

of MHD and heat transfer. Some other studies are [20-24]. 
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Fluids having a distribution of solid particles occur abundantly in physiology and industry. Some 

instances include blood, chyme in the small intestine, urine, air containing dust particles, juices 

with pulp, paints with glitter, and crude oil. Saffman [25] primarily described the problem of 

laminar flow of gas containing tiny dust particles. The unsteady flow of incompressible gas with 

dust particle suspension is discussed by Gupta and Gupta [26]. Some other related studies are [27-

29]. The unsteady case of electrically conductive dusty fluid between two parallel plates with heat 

transfer effects has been investigated by Makinde and Chinyoka [30]. They also considered 

variable fluid viscosity and constant pressure gradient. The analysis of MHD dusty fluid travelling 

through a rectangular channel with porous medium under volume fraction effects has been 

provided by Madhura and Swetha [31]. Sivaraj and Kumar [32] analyzed unsteady Couette flow 

of Walter’s B fluid in an irregular configuration with MHD effects. Ali et al. [33] dealt with the 

study of unsteady flow of dusty fluid with elastic properties, MHD, and free convection. The 

discussion of dusty fluid through the channel exhibiting peristaltic movement is an emerging issue 

due to its immense application in medical science, engineering, chemical, and food industry. 

Mekheimer et al. [34] studied the dusty fluid passing through a wavy symmetric channel. 

Srinivasacharya et al. [35] conducted the investigation of liquid with particle suspension propelling 

through peristaltic channel with flexible walls. Eldesoky et al. [36] deliberated the influence of 

MHD and wall slip conditions on fluid-particle flow through flexible channel. Ramesh et al. [37] 

performed analysis of particle suspended fluid moving through asymmetric microchannel under 

peristalsis. They studied MHD and wall slip effects on Jeffrey fluid model. The impact of porosity 

and wall properties on dusty fluid flowing through uniform passage with wavy walls has been 

studied by Parthasarathy et al. [38]. While Tariq and Khan [39] reported the effects of porosity on 

MHD dusty fluid through an endoscope with peristalsis. Further, Tariq and Khan [40] considered 
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the dispersion of solid particles in the fluid inhomogeneous and studied the peristaltic propulsion 

through an asymmetric channel. Few contributions addressing different conditions are [41- 43]. 

Vessels and arteries in living organisms also involve curved geometries that influence the flow 

behavior as well as temperature transference of the fluid. The flow behavior of fluid in curved 

passage was primarily discussed by Dean [44]. Peristaltic flow through a curved configuration was 

addressed by Sato et al. [45] by neglecting inertial forces and assuming very large wavelength. 

Non-Newtonian fluid travelling through curved channel with peristalsis was studied by Ali et al. 

[46]. Javid et al. [47] focused on the numerical study of peristaltic effects on Jeffrey fluid driven 

through curved geometry. Flow is subject to an applied magnetic field. Ramanamurthy et al. [48] 

described the mathematical model of the unsteady problem of peristaltic flow in curved passage 

and carried out analysis for flow behavior and thermal effects. Abbasi et al. [49] conducted the 

analysis of MHD viscoelastic fluid with wavy propulsion through duct of curved nature with 

ciliated walls. The shear-thinning and shear-thickening fluid with rhythmic sinusoidal movement 

through curved channel was considered by Hina et al. [50]. The study highlights the impact of wall 

properties and heat and mass transfer on fluid flow. Jeffrey fluid with convective boundary 

conditions transported through curved path was dealt with Hayat et al. [51]. Simulations are used 

to highlight the effects of retardation and relaxation time parameters. The issue of peristaltic dusty 

fluid under mass transfer driven through curved conduit with elastic walls was explored by Khan 

[52]. Rashed and Ahmed [53] analyzed the dynamic of dusty nanofluid with peristaltic mechanism. 

Few other articles in this context are [54-56]. 

The study of temperature distribution through the peristaltic fluid and solid particles is a salient 

factor in the fields of medicine, engineering, and chemicals. Javed et al. [57] performed thermal 

analysis for dusty peristaltic fluid. They also studied the impact of magnetohydrodynamic and 
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flexible wall properties. Walter’s B dusty fluid progression through vertical wavy channel under 

convective boundary conditions and mass transfer has been investigated by Sivaraj and Kumar 

[58]. Bhatti et al. [59] modeled the problem of electrically conductive dusty fluid with elastic 

properties and peristaltic pumping and studied the impact of nonlinear thermal radiation, MHD, 

and porosity of the channel. Kalpana and Saleem [60] investigated the temperature profile of 

particulate fluid progressing through porous inclined channel with wavy walls under MHD. The 

focus of the article by Elmhedy et al. [61] was to discuss heat transfer and MHD effects on 

Rabinowitsch fluid with solid particle distribution. The passage of the fluid is inclined with 

peristaltic walls. Zeeshan et al. [62] conducted a study for heat and mass transfer effects on 

asymmetric flow of dusty fluid in peristaltic curved channel. Riaz et al. [63] considered porous 

medium of curved duct and partial slip while conducting thermal analysis of second grade dusty 

fluid under peristaltic propulsion. Tariq et al. [64] studied thermal and MHD effects on Walter’s 

B dusty fluid moving peristaltically. A study to illustrate Dufour and Soret effects on peristaltically 

travelling Jeffrey fluid is performed by Hayat et al. [65]. They considered channel of curved nature 

with convective conditions at the walls. 

The study of fluids under variable viscosity and thermal conductivity is a crucial factor in food 

processing, cosmetics production, automobile industry, cooling systems, and medicines. Sinha et 

al. [66] addressed the significance of variable viscosity and velocity slip on the peristaltic liquid 

flowing under MHD in an asymmetric channel. Hayat and Ali [67] deliberated the effects of 

temperature varying viscosity on viscous peristaltic fluid moving in an asymmetric channel. The 

effects of variable viscosity and velocity slip on non-Newtonian fluid through a wavy porous 

channel are illustrated through graphical results by Khan et al. [68]. Akbar and Abbasi et al. [69] 

presented the results to illustrate the impact of temperature dependent viscosity on a viscous fluid 
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with entropy generation transported peristaltically. Tanveer et al. [70] provided analysis of 

peristaltic fluid flow under the impact of temperature dependent viscosity in a curved 

configuration. They also carried out entropy analysis. Abbasi et al. [71] explored the peristaltic 

motion of Carreau-Yasuda fluid in the presence of velocity slip and by considering variable 

thermal conductivity and convective boundary conditions. The temperature varying thermal 

conductivity effects along with mass transfer on an MHD peristaltic fluid flow through porous 

medium with complaint walls have been examined by Vaidya et al. [72].  The article presented by 

Mekheimer and Abd Elmaboud [73] was based on the analysis of peristaltic fluid flow under the 

impact of both variable viscosity and thermal conductivity. Manjunatha et al. [74] aimed to discuss 

the flow behavior of Jeffrey fluid with variable nature of viscosity and thermal conductivity. The 

fluid flow was peristaltic with a non-uniform porous channel. The effect of varying aspect of 

thermal conductivity and viscosity on nanofluid following Carreau fluid model with MHD and 

peristalsis was discussed by Khan et al. [75]. The focus of the analysis provided by Bibi et al. [76] 

was to study wavy Sisko fluid with variable thermal conductivity and viscosity. They also 

discussed entropy generation in Sisko fluid. Bhatti and Zeeshan [77] carried out analysis for heat 

transfer and variable viscosity effects on dusty peristaltic fluid. Swetha and Madhura [78] 

performed the heat transfer analysis to study temperature varying viscosity on Jeffrey dusty fluid 

with sinusoidal movement. Kalpana and Madhura [79] formulated the problem of dusty fluid 

flowing through an inclined channel with porous medium and performed numerical analysis to 

study effects of MHD, variable viscosity, and pressure. Some other articles are [80-87].  
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Chapter 2 

Influence of Radiation and Thermal Slip on 

Electrically Conductive Dusty Walter’s B Fluid 

moving Peristaltically through an Asymmetric 

Channel 

This chapter presents the study of dusty Walter’s B fluid travelling peristaltically through an 

asymmetric channel with wall slip. A discussion is also presented to examine heat transfer effects 

with thermal radiation and slip at the wall. The regular perturbation technique is employed to 

evaluate the mathematical model of the problem, which is first simplified by using stream 

functions. Mathematical results are plotted to illustrate flow characteristics of fluid and solid 

particles in salient quantities. Also, graphs of temperature distribution of fluid and dust particles 

have been discussed to study the impacts of various parameters. 

2.1 Problem Formulation 

An incompressible dusty fluid obeying Walter’s B model is moving through an asymmetric 

channel having width 𝑑1 + 𝑑2 and walls exhibiting sinusoidal wavy motion. A uniform 

distribution of spherical particles is assumed in the fluid, with a magnetic field acting in a 

transverse direction. Wall geometry is given as: 
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𝐻1(𝑋, 𝑡) = 𝑑1 + 𝑎1 sin [
2𝜋

𝜆
(𝑋 − 𝑐𝑡)],       (2.1a) 

𝐻2(𝑋, 𝑡) = −𝑑2 − 𝑎2 sin [
2𝜋

𝜆
(𝑋 − 𝑐𝑡) + 𝜙].       (2.1b) 

 

Fig 2.1: Geometry of the channel 

The shear stress tensor for Walter’s B fluid model referred from [64] is 

 𝝉 = 2𝜇0𝑒 − 2𝜎0
𝜹𝒆

𝜹𝒕
,          (2.2) 

𝜹𝒆

𝜹𝒕
=

𝝏𝒆

𝝏𝒕
+ 𝑽. 𝛁𝒆 − 𝒆𝛁𝑽 − (𝛁𝑽)𝑻𝒆,        (2.3) 

where 𝒆 is rate of stress tensor and 𝜇0 (limiting viscosity of shear stress) and 𝜎0 (short memory 

coefficient) are  

𝜇0 = ∫ 𝑂(𝑡0)𝑑𝑡0
∞

0
,          (2.4) 

𝜎0 = ∫ 𝑡0𝑂(𝑡0)𝑑𝑡0
∞

0
,          (2.5) 

where 𝑡0 and 𝑂(𝑡0) are relaxation time and distribution function respectively. 

∫ (𝑡0)
𝑛𝑂(𝑡0)𝑑𝑡0

∞

0
 , 𝑛 ≥ 2.         (2.6) 
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Momentum and energy equations describing fluid flow in fixed frame are 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,           (2.7) 

𝜌
𝑑𝑈

𝑑𝑡
= −

𝜕𝑃

𝜕𝑋
+

𝜕𝜏𝑋𝑋

𝜕𝑋
+

𝜕𝜏𝑋𝑌

𝜕𝑌
+ 𝑘𝑁(𝑈𝑠 − 𝑈) − 𝜎𝐵0

2𝑈,     (2.8) 

𝜌
𝑑𝑉

𝑑𝑡
= −

𝜕𝑃

𝜕𝑌
+

𝜕𝜏𝑋𝑌

𝜕𝑋
+

𝜕𝜏𝑌𝑌

𝜕𝑌
+ 𝑘𝑁(𝑉𝑠 − 𝑉),       (2.9) 

𝜌𝐶𝑝 (
𝑑𝑇

𝑑𝑡
) = 𝑘∗𝛁2𝑇 + Φ +

𝜕𝑞𝑟

𝜕𝑌
+

𝑁𝐶𝑝

𝜏𝑇
 (𝑇𝑠 − 𝑇) +

𝑁

𝜏𝑈
(𝑈𝑠 − 𝑈)2.    (2.10) 

Momentum and energy equations for solid particles in fixed frame are 

𝜕𝑈𝑠

𝜕𝑋
+

𝜕𝑉𝑠

𝜕𝑌
= 0,           (2.11) 

𝑑𝑈𝑠

𝑑𝑡
=

𝑘

𝑚
(𝑈 − 𝑈𝑠),          (2.12) 

𝑑𝑉𝑠

𝑑𝑡
=

𝑘

𝑚
(𝑉 − 𝑉𝑠),          (2.13) 

𝑑𝑇𝑠

𝑑𝑡
= −

𝐶𝑃

𝐶𝑚
(𝑇 − 𝑇𝑠).          (2.14) 

Fixed frame coordinates (𝑋, 𝑌) are related to moving frame coordinates (𝑥, 𝑦) by 

𝑥 = 𝑋 − 𝑐𝑡, 𝑦 = 𝑌, 𝑣 = 𝑉, 𝑢 = 𝑈 − 𝑐, 𝑢𝑠 = 𝑈𝑠 − 𝑐, 𝑣𝑠 = 𝑉𝑠, 𝑝(𝑥) = 𝑃(𝑋, 𝑡).  (2.15) 

Introducing the dimensionless quantities and stream functions 

𝑥′ =
𝑥

𝜆
 , 𝑦′ =

𝑦

𝑑1
 , 𝛿 =

𝑑1

𝜆
, ℎ1,2 =

𝐻1,2

𝑑1
, 𝑢 =

𝜕𝜓

𝜕𝑦
, 𝑣 = −𝛿

𝜕𝜓

𝜕𝑥
, 𝑢𝑠 =

𝜕𝜑

𝜕𝑦
,   𝑣𝑠 = −𝛿

𝜕𝜑

𝜕𝑥
,  

Θ =
𝑇−𝑇0

𝑇1−𝑇0
,   Φ′ =

𝑑1
2Φ

𝜇0𝑐2 ,   𝑀
2 =

𝜎𝑑1𝐵0
2

𝜇0
, 𝑅𝑒 =

𝜌𝑐𝑑1

𝜇0
, 𝐸𝑐 =

𝑐2

𝐶𝑝(𝑇1−𝑇0)
, 𝑃𝑟 =

𝜇0𝐶𝑝

𝑘∗ , 𝛼 =
𝜎0𝑐

𝜇0𝑑1
,  

𝐴 =
𝑘𝑁𝑑1

2

𝜇0
,   𝐵 =

𝑘𝑑1

𝑚𝑐
, 𝐴1 =

𝑁𝑑1
2

𝜇0𝜏𝑇
, 𝐵1 =

𝑁𝑑1
2

𝜇0𝜏𝑼
,   𝐶 =

𝑑1𝐶𝑃

𝑐𝐶𝑚
.     (2.16) 
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where 𝐴, 𝐵, 𝐶, 𝐴1, and 𝐵1 are non-dimensional quantities. 

Shear stress components for Walter’s B fluid in nondimensionalized form are 

𝜏𝑥𝑥 = 4𝛿
𝜕2𝜓

𝜕𝑥𝜕𝑦
− 𝛼 [4𝛿2 (

𝜕2𝜓

𝜕𝑥2) (
𝜕2𝜓

𝜕𝑦2) + 4𝛿2 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
− 8𝛿2 (

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

− 4𝛿4 (
𝜕2𝜓

𝜕𝑥2)
2

− 4𝛿2 𝜕3𝜓

𝜕𝑦2𝜕𝑥
], 

            (2.17) 

𝜏𝑥𝑦 = 2 [
𝜕2𝜓

𝜕𝑦2 − 𝛿2 𝜕2𝜓

𝜕𝑥2] − 𝛼 [2𝛿
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦2𝜕𝑥
+ 2𝛿3 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥2𝜕𝑦
− 2𝛿

𝜕3𝜓

𝜕𝑦3

𝜕𝜓

𝜕𝑥
− 4𝛿

𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕2𝜓

𝜕𝑦2 −

4𝛿3 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕2𝜓

𝜕𝑥2
− 2𝛿3 𝜕3𝜓

𝜕𝑥3

𝜕𝜓

𝜕𝑦
],         (2.18) 

𝜏𝑦𝑦 = −4𝛿
𝜕2𝜓

𝜕𝑥𝜕𝑦
− 𝛼 [4𝛿2 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦2𝜕𝑥
+ 4𝛿2 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑦2 − 4𝛿2 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
− 8𝛿2 (

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

− 4 (
𝜕2𝜓

𝜕𝑦2)
2

]. 

(2.19) 

For fluid and solid particles, compatibility equations are obtained as 

𝛿𝑅𝑒 [
𝜕𝜓

𝜕𝑦
 

𝜕

𝜕𝑥
(∇1

2𝜓) −
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑦
(∇1

2𝜓)] = (
𝜕2

𝜕𝑦2 − 𝛿2 𝜕2

𝜕𝑥2) 𝜏𝑥𝑦 + 𝛿 (
𝜕2

𝜕𝑥𝜕𝑦
{𝜏𝑥𝑥 − 𝜏𝑦𝑦}) − 𝑀2 𝜕2𝜓

𝜕𝑦2 +

𝐴 (
𝜕2𝜑

𝜕𝑦2 −
𝜕2𝜓

𝜕𝑦2),          (2.20) 

𝛿 [
𝜕𝜑

𝜕𝑦
 

𝜕

𝜕𝑥
(∇1

2𝜑) −
𝜕𝜑

𝜕𝑥

𝜕

𝜕𝑦
(∇1

2𝜑)] = 𝐵(∇1
2𝜓 − ∇1

2𝜑).      (2.21) 

Energy equations for fluid and dust particles are nondimensionalized as 

𝑅𝑒𝛿 (
𝜕𝜓

𝜕𝑦

𝜕Θ

𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕Θ

𝜕𝑦
) =

1

𝑃𝑟
(𝛿2 𝜕2Θ

𝜕𝑥2 +
𝜕2Θ

𝜕𝑦2) + 𝐴1(Θ𝑠 − Θ) + 𝐵1𝐸𝑐 (
𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑦
)
2

+
𝑅𝑑

𝑃𝑟

𝜕2Θ

𝜕𝑦2 + 𝐸𝑐Φ, 

            (2.22) 

𝛿 (
𝜕𝜑

𝜕𝑦

𝜕Θ𝑠

𝜕𝑥
−

𝜕𝜑

𝜕𝑥

𝜕Θ𝑠

𝜕𝑦
) = 𝐶(Θ𝑠 − Θ).        (2.23) 
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The nondimensionalized expression of viscous dissipation term is 

Φ = 2(
𝜕2𝜓

𝜕𝑦2)
2

+ 4𝛿2 (
𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

+ 4𝛼𝛿3 𝜕3𝜓

𝜕𝑦2𝜕𝑥

𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕𝜓

𝜕𝑥
− 4𝛼𝛿2 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+ 8𝛼𝛿3 (

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
3

−

12𝛼𝛿3 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑦2 + 6𝛼𝛿5 (
𝜕2𝜓

𝜕𝑥2)
2

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 4𝛿2 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑦2 − 2𝛼𝛿
𝜕2𝜓

𝜕𝑦2

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦2𝜕𝑥
+ 2𝛼𝛿3 𝜕2𝜓

𝜕𝑦2

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥3 +

2𝛼𝛿
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2

𝜕3𝜓

𝜕𝑦3 − 2𝛼𝛿3 𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+ 6𝛼𝛿 (

𝜕2𝜓

𝜕𝑦2)
2

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 6𝛼𝛿

𝜕2𝜓

𝜕𝑦2

𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 2𝛿4 (

𝜕2𝜓

𝜕𝑥2)
2

+

2𝛼𝛿3 𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥2

𝜕3𝜓

𝜕𝑦2𝜕𝑥
− 2𝛼𝛿5 𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥2

𝜕3𝜓

𝜕𝑥3
− 2𝛼𝛿3 𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2

𝜕3𝜓

𝜕𝑦3
+ 2𝛼𝛿5 𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

6𝛼𝛿4 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 4𝛿2 (

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

− 4𝛼𝛿3 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+ 2𝛼𝛿3 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦2𝜕𝑥
− 8𝛼𝛿3 (

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
3

+

2𝛼𝛿3 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑦2

𝜕2𝜓

𝜕𝑥𝜕𝑦
.          (2.24) 

The walls exhibiting peristaltic movement are described in dimensionless form as 

ℎ1(𝑥) = 1 + 𝑎 sin(2𝜋𝑥),         (2.25a) 

ℎ2(𝑥) = −𝑑 − 𝑏 sin(2𝜋𝑥 + 𝜙),        (2.25b) 

having boundary conditions 

𝜓 =
𝐹

2
,  

𝜕𝜓

𝜕𝑦
+ 2𝛽

𝜕2𝜓

𝜕𝑦2
= −1, 𝜑 =

𝐸

2
      𝑎𝑡      𝑦 = ℎ1(𝑥),     (2.26a) 

𝜓 = −
𝐹

2
,

𝜕𝜓

𝜕𝑦
− 2𝛽

𝜕2𝜓

𝜕𝑦2 = −1,𝜑 = −
𝐸

2
     𝑎𝑡      𝑦 = ℎ2(𝑥),     (2.26b) 

Θ − 𝜀
𝜕Θ

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (2.26c) 

Θ + 𝜀
𝜕Θ

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (2.26d) 

Θ𝑠 − 𝜀
𝜕Θ𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (2.26e) 
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Θ𝑠 + 𝜀
𝜕Θ𝑠

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥),        (2.26f) 

The dimensionless time mean flow rate is denoted by 𝐹 

𝑄 = 𝐹 + 1 + 𝑑,          (2.27a) 

where 

𝐹 = ∫
𝜕𝜓

𝜕𝑦

ℎ1(𝑥)

ℎ2(𝑥)
𝑑𝑦.          (2.27b) 

The dimensionless time flow rate of solid particles is 

𝑄𝑠 = 𝐸 + 1 + 𝑑,          (2.28a) 

where 

𝐸 = ∫
𝜕𝜑

𝜕𝑦

ℎ1(𝑥)

ℎ2(𝑥)
𝑑𝑦.          (2.28b) 

The heat transfer coefficient in non-dimensionalized form is described as 

𝑧 =
𝜕Θ

𝜕𝑦
 
𝜕ℎ1

𝜕𝑥
. 

2.2 Method of Solution 

Mathematical formulation of the problem consists of coupled nonlinear differential equations. 

Regular perturbation technique is applied to solve the system. We use 𝛿 as perturbation parameter 

to describe fluid and particle stream functions 𝜓 and 𝜑, fluid and particle temperature Θ and Θ𝑠, 

time flow rates of fluid and particles 𝐹 and 𝐸 and pressure 𝑝 as 

𝜓 = 𝜓0 + 𝛿𝜓1 + 𝑂(𝛿2),         (2.29) 
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𝜑 =  𝜑0 + 𝛿 𝜑1 + 𝑂(𝛿2),         (2.30) 

Θ = Θ0 + 𝛿Θ1 + 𝑂(𝛿2),         (2.31) 

Θ𝑠 = Θ0𝑠 + 𝛿Θ1𝑠 + 𝑂(𝛿2),         (2.32) 

𝐹 = 𝐹0 + 𝛿𝐹1 + 𝑂(𝛿2),         (2.33) 

𝐸 = 𝐸0 + 𝛿𝐸1 + 𝑂(𝛿2),         (2.34) 

𝑝 =  𝑝0 + 𝛿𝑝1 + 𝑂(𝛿2).         (2.35) 

2.2.1 Zeroth Order System  

2
𝜕4𝜓0

𝜕𝑦4 − 𝑀2 𝜕2𝜓0

𝜕𝑦2 + 𝐴 (
𝜕2𝜑0

𝜕𝑦2 −
𝜕2𝜓0

𝜕𝑦2 ) = 0,       (2.36) 

𝐵 (
𝜕2𝜓0

𝜕𝑦2 −
𝜕2𝜑0

𝜕𝑦2 ) = 0,          (2.37) 

(1 + 𝑅𝑑)
𝜕2Θ0

𝜕𝑦2 + 𝐴1 Pr(Θ0𝑠 − Θ0) + 𝐵1𝐵𝑟 (
𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
)
2

+ 2𝐵𝑟 (
𝜕2𝜓0

𝜕𝑦2 )
2

= 0,  (2.38) 

Θ0𝑠 − Θ0 = 0,           (2.39) 

with boundary conditions 

𝜓0 =
𝐹0

2
,
𝜕𝜓0

𝜕𝑦
+ 2𝛽

𝜕2𝜓0

𝜕𝑦2 = −1,𝜑0 =
𝐸0

2
      𝑎𝑡      𝑦 = ℎ1(𝑥),     (2.40a) 

𝜓0 = −
𝐹0

2
,

𝜕𝜓0

𝜕𝑦
− 2𝛽

𝜕2𝜓0

𝜕𝑦2 = −1,𝜑0 = −
𝐸0

2
     𝑎𝑡      𝑦 = ℎ2(𝑥),    (2.40b) 

Θ0 − 𝜀
𝜕Θ0

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (2.40c) 

Θ0 + 𝜀
𝜕Θ0

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (2.40d) 
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Θ0𝑠 − 𝜀
𝜕Θ0𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (2.40e) 

Θ0𝑠 + 𝜀
𝜕Θ0𝑠

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (2.40f) 

Using DSolver command in Mathematica, the solution of zeroth order system is as follows: 

𝜓0(𝑦) = 𝐴1 + 𝐴2𝑦 + 𝐴3 cosh (
𝑀

√2
𝑦) + 𝐴4 sinh (

𝑀

√2
𝑦) ,     (2.41) 

𝜑0(𝑦) = A5 + 𝑦A6 +
𝑀

√2
(

√2A3cosh(
𝑀

√2
𝑦)

𝑀
+

√2A4sinh(
𝑀

√2
𝑦)

𝑀
) .     (2.42) 

2.2.2 First Order System 

𝑅𝑒 (
𝜕𝜓0

𝜕𝑦

𝜕3𝜓0

𝜕𝑥𝜕𝑦2 −
𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑦3 ) =
𝜕2

𝜕𝑥𝜕𝑦
(𝜏0𝑥𝑥 − 𝜏0𝑦𝑦) +

𝜕2𝜏1𝑥𝑦

𝜕𝑦2 + 𝐴 (
𝜕2𝜑1

𝜕𝑦2 −
𝜕2𝜓1

𝜕𝑦2 ) − 𝑀2 𝜕2𝜓1

𝜕𝑦2 , (2.43) 

𝜕𝜑0

𝜕𝑦

𝜕3𝜑0

𝜕𝑥𝜕𝑦2 −
𝜕𝜑0

𝜕𝑥

𝜕3𝜑0

𝜕𝑦3 = 𝐵 (
𝜕2𝜓1

𝜕𝑦2 −
𝜕2𝜑1

𝜕𝑦2 ),       (2.44) 

𝑅𝑒 [
𝜕Θ0

𝜕𝑥

𝜕𝜓0

𝜕𝑦
−

𝜕Θ0

𝜕𝑦

𝜕𝜓0

𝜕𝑥
] = (1 + 𝑅𝑑)

𝜕2Θ1

𝜕𝑦2 + 𝐴1(Θ1𝑠 − Θ1) + 2𝐵1𝐵𝑟 (
𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
) (

𝜕𝜑1

𝜕𝑦
−

𝜕𝜓1

𝜕𝑦
) +

𝐸𝑐Φ1,            (2.45) 

𝜕𝜑0

𝜕𝑦

𝜕Θ0𝑠

𝜕𝑥
−

𝜕𝜑0

𝜕𝑥

𝜕Θ0𝑠

𝜕𝑦
= −𝐶(Θ1𝑠 − Θ1),       (2.46) 

where 

𝜏0𝑥𝑥 = 0,           (2.47) 

𝜏0𝑦𝑦 = 4𝛼 (
𝜕2𝜓0

𝜕𝑦2 )
2

,          (2.48) 

𝜏1𝑥𝑦 = 2
𝜕2𝜓1

𝜕𝑦2
− 𝛼 (2

𝜕𝜓0

𝜕𝑦

𝜕3𝜓0

𝜕𝑥𝜕𝑦2
− 2

𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑦3
− 4

𝜕2𝜓0

𝜕𝑦2

𝜕2𝜓0

𝜕𝑥𝜕𝑦
),    (2.49) 
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Φ1 = 4
𝜕2𝜓0

𝜕𝑦2
(
𝜕2𝜓1

𝜕𝑦2
)
2

+ 2𝛼 (3
𝜕2𝜓0

𝜕𝑥𝜕𝑦
(
𝜕2𝜓0

𝜕𝑦2
)
2

−
𝜕𝜓0

𝜕𝑦

𝜕2𝜓0

𝜕𝑦2

𝜕3𝜓0

𝜕𝑥𝜕𝑦2
+

𝜕𝜓0

𝜕𝑥

𝜕2𝜓0

𝜕𝑦2

𝜕3𝜓0

𝜕𝑦3
− 3

𝜕2𝜓0

𝜕𝑦2

𝜕2𝜓0

𝜕𝑥𝜕𝑦
). 

            (2.50) 

with boundary conditions 

𝜓1 =
𝐹1

2
,
𝜕𝜓1

𝜕𝑦
+ 2𝛽

𝜕2𝜓1

𝜕𝑦2
= 0, 𝜑1 =

𝐸1

2
      𝑎𝑡      𝑦 = ℎ1(𝑥),     (2.51a) 

𝜓1 = −
𝐹1

2
,

𝜕𝜓1

𝜕𝑦
− 2𝛽

𝜕2𝜓1

𝜕𝑦2 = 0,𝜑1 = −
𝐸1

2
     𝑎𝑡      𝑦 = ℎ2(𝑥),    (2.51b) 

Θ1 − 𝜀
𝜕Θ1

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (2.51c) 

Θ1 + 𝜀
𝜕Θ1

𝜕𝑦
= 0        at 𝑦 = ℎ2(𝑥).        (2.51d) 

Θ1𝑠 − 𝜀
𝜕Θ1𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (2.51e) 

Θ1𝑠 + 𝜀
𝜕Θ1𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ2(𝑥).        (2.51f) 

Above system of differential equations has been solved by applying DSolver command in 

Mathematica. Since 𝛿 is small parameter therefore the terms of 𝑂(𝛿2) have negligible contribution 

and thus they have been neglected. 

2.3 Graphical Analysis 

This section aims to present a comprehensive analysis of the effects of various significant factors 

on the velocity and temperature profiles of fluid flow and solid particles. Graphs of fluid velocity 

are plotted for Walter’s B fluid parameter 𝛼, slip parameter 𝛽, wave number 𝛿, MHD parameter 

𝑀, and Reynolds number 𝑅𝑒. The effects of Prandtl number 𝑃𝑟, Brickman number 𝐵𝑟, thermal 
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slip parameter 𝜀, and radiation parameter 𝑅𝑑 on temperature distribution are delineated 

graphically. 

2.3.1 Fluid Flow Analysis 

The analysis of fluid flow for Walter’s B fluid parameter 𝛼, wave number 𝛿, slip parameter 𝛽, 

MHD parameter 𝑀, and Reynolds number 𝑅𝑒 is represented in Figs. 2.2-2.6. Fluid velocity 

exhibits parabolic behavior. Fig. 2.2 deliberates the fluid flow behavior as Walter’s B fluid 

parameter 𝛼 changes. As 𝛼 increases, velocity of the fluid reduces. The effect of the slip parameter 

𝛽 is shown in Fig. 2.3. A rise in 𝛽 values increases resistive force, which results in a significant 

decrease in fluid speed. It is observed from Fig. 2.4 that an increase in wave number 𝛿 enhances 

fluid velocity. A considerable reduction in fluid velocity occurs with increasing Hartmann number 

𝑀 as Fig. 2.5 illustrates. Due to a magnetic field, a Lorentz force is generated that opposes fluid 

flow direction, and consequently, fluid motion slows down. The high Reynolds number indicates 

that inertial forces are dominant which implies an enhancement of fluid speed, as presented in Fig. 

2.6.  

2.3.2 Solid Particle Flow Analysis 

The solid particle velocity is discussed for Walter’s B fluid parameter 𝛼, slip parameter 𝛽, MHD 

parameter 𝑀, wave number 𝛿, and Reynolds number 𝑅𝑒, which are represented in Figs. 2.7-2.11 

via graphs. Fig. 2.7 elaborates the effect of viscoelastic parameter 𝛼 on velocity of solid particles. 

As viscosity increases, movement of solid particles becomes slightly slower. In Fig. 2.8, particle 

velocity graph is demonstrated for slip parameter 𝛽. High values of 𝛽 generates resistance and 

hence solid particle velocity declines. Fig. 2.9 is representation of particle velocity under the 

impact of wave number 𝛿. As wave number 𝛿 increases, contraction and expansion of boundaries 
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becomes frequent and hence particles move faster. Fig. 2.10 exhibits Hartmann number 𝑀 effect 

on particle speed. An increase in Hartmann number remarkably slows down the movement of solid 

particles. Reynolds number 𝑅𝑒 has a minimal effect on the velocity of solid granules. Fig. 2.11 

shows that particle velocity increases with a rise in Reynolds number 𝑅𝑒 because viscous forces 

become ineffective. 

2.3.3 Temperature Distribution Analysis 

The transfer of heat through the fluid and particles is deliberated for Brinkman number 𝐵𝑟, 

radiation parameter 𝑅𝑑, and thermal slip parameter 𝜀 in Figs. 2.12-2.15. Fig. 2.12 shows the fluid 

temperature profile for Brinkman number 𝐵𝑟. High values of Brinkman number 𝐵𝑟 indicate that 

viscous effects are assertive that enhances heat conduction and hence the temperature rises. As 

radiation parameter 𝑅𝑑 is enlarged, fast heat transfer is observed through the fluid as shown in Fig. 

2.13. Slow heat transfer through the fluid is noticed in Fig. 2.14 as slip parameter 𝜀 is assigned 

higher values. As the slip intensifies the connection of fluid molecules and boundary becomes 

weak therefore heat transfer of the fluid becomes slow. Fig. 2.15 is drawn for temperature 

distribution of solid particles to study effects of Brinkman number 𝐵𝑟. It is revealed that the 

temperature of solid particles also rises as Brinkman number 𝐵𝑟 is enhanced, as in the case of fluid 

temperature profile. 

2.3.4 Validation of Present Study 

The graph of shear stress has been compared with the graph presented in the article by Mehmood 

et. al. [89]. Fig. 2.16 shows that shear stress graph obtained in recent work exactly matches with 

the graph obtained by Mehmood et. al. [89]. 
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Table 2.1 represents the comparison of recent study with the work of Srinivas and Kothandapani 

[88]. The data for viscous fluid presented by Srinivas and Kothandapani [88] has been reproduced. 

 

 

Fig. 2.2: The fluid flow behavior with 𝑅𝑒 = 10, 𝛿 = 0.01, 𝛽 = 0.4, 𝑀 = 0.2, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.2, 𝑑 = 0.3, 𝑏 = 0.77, 𝜙 =
𝜋

3
. 
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Fig. 2.3: The fluid flow behavior with 𝑅𝑒 = 10, 𝛿 = 0.01, 𝛼 = 0.6,𝑀 = 0.2, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.2, 𝑑 = 0.3, 𝑏 = 0.77, 𝜙 =
𝜋

3
. 

 

Fig. 2.4: The fluid flow behavior with 𝑅𝑒 = 30, 𝛼 = 0.3, 𝛽 = 0.4,𝑀 = 0.2, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.2, 𝑑 = 0.3, 𝑏 = 0.78, 𝜙 =
𝜋

3
. 

 

Fig. 2.5: The fluid flow behavior with 𝑅𝑒 = 5, 𝛿 = 0.01, 𝛼 = 3, 𝛽 = 0.4, 𝐴 = 0.6, 𝐵 = 0.4,

𝑎 = 0.1, 𝑑 = 0.3, 𝑏 = 0.8, 𝜙 =
𝜋

3
. 
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Fig. 2.6: The fluid flow behavior with 𝛿 = 0.01, 𝛼 = 0.3, 𝛽 = 0.4,𝑀 = 0.2, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.2, 𝑑 = 0.3, 𝑏 = 0.77, 𝜙 =
𝜋

3
. 

 

Fig. 2.7: The particle velocity with 𝑅𝑒 = 20, 𝛿 = 0.01, 𝛽 = 0.4, 𝑀 = 0.3, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.2, 𝑑 = 0.3, 𝑏 = 0.77, 𝜙 =
𝜋

3
. 
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Fig. 2.8: The particle velocity with 𝑅𝑒 = 20, 𝛿 = 0.01, 𝛼 = 0.3, 𝑀 = 0.3, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.1, 𝑑 = 0.3, 𝑏 = 0.78, 𝜙 =
𝜋

3
. 

 

Fig. 2.9: The particle velocity with 𝑅𝑒 = 20, 𝛽 = 0.2, 𝛼 = 0.3, 𝑀 = 0.3, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.1, 𝑑 = 0.36, 𝑏 = 0.75, 𝜙 =
𝜋

3
. 
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Fig. 2.10: The particle velocity with 𝑅𝑒 = 0.5, 𝛽 = 0.4, 𝛼 = 0.3, 𝛿 = 0.01, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.1, 𝑑 = 0.34, 𝑏 = 0.8, 𝜙 =
𝜋

3
. 

 

Fig. 2.11: The particle velocity with 𝛽 = 0.4, 𝛼 = 0.3, 𝛿 = 0.01,𝑀 = 0.2, 𝐴 = 0.2, 𝐵 = 0.6,

𝑎 = 0.2, 𝑑 = 0.3, 𝑏 = 0.77, 𝜙 =
𝜋

3
. 
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Fig. 2.12: The fluid temperature profile with 𝑅𝑒 = 0.3, 𝑅𝑑 = 3, 𝑃𝑟 = 1.5, 𝜀 = 0.2, 𝛽 = 0.4,

𝛼 = 0.5, 𝛿 = 0.01,𝑀 = 0.5, 𝐵1 = 0.7, 𝐴1 = 0.2, 𝐴 = 0.1, 𝐵 = 0.6, 𝐶 = 0.8, 𝑎 = 0.2, 𝑑 = 0.2,

𝑏 = 0.8, 𝜙 =
𝜋

3
. 

 

Fig. 2.13: The fluid temperature profile with 𝑅𝑒 = 0.3, 𝐵𝑟 = 0.5, 𝑃𝑟 = 0.2, 𝜀 = 0.2, 𝛽 = 0.4,

𝛼 = 0.6, 𝛿 = 0.01,𝑀 = 0.4, 𝐵1 = 0.7, 𝐴1 = 0.55, 𝐴 = 0.1, 𝐵 = 0.6, 𝐶 = 0.4, 𝑎 = 0.35,

𝑑 = 0.2, 𝑏 = 0.8, 𝜙 =
𝜋

3
. 
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Fig. 2.14: The fluid temperature profile with 𝑅𝑒 = 0.3, 𝐵𝑟 = 0.5, 𝑃𝑟 = 0.8, 𝑅𝑑 = 3, 𝛽 = 0.4,

𝛼 = 0.5, 𝛿 = 0.01,𝑀 = 0.4, 𝐵1 = 0.6, 𝐴1 = 0.2, 𝐴 = 0.1, 𝐵 = 0.6, 𝐶 = 0.6, 𝑎 = 0.2, 𝑑 = 0.2,

𝑏 = 0.78, 𝜙 =
𝜋

6
. 

 

Fig. 2.15: The particle temperature profile with 𝑅𝑒 = 0.3, 𝑃𝑟 = 1.5, 𝑅𝑑 = 3, 𝜀 = 0.2, 𝛽 = 0.4,

𝛼 = 0.5, 𝛿 = 0.01,𝑀 = 0.5, 𝐵1 = 0.7, 𝐴1 = 0.2, 𝐴 = 0.1, 𝐵 = 0.6, 𝐶 = 0.8, 𝑎 = 0.4, 𝑑 = 0.2,

𝑏 = 0.8, 𝜙 =
𝜋

3
. 
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Fig. 2.16: Comparison of shear stress graph for  𝛼 = 0.5, 𝛽 = 𝑅𝑒 = 𝑀 = 𝐴 = 𝐵 = 𝐸 = 0 with 

the graph of Mehmood et. al. [89]. 

Table 2.1: Comparison of recent work with results of Srinivas and Kothandapani [88] for heat 

transfer coefficient. 

𝑎 = 0.5, 𝑏 = 0.6, 𝑑 = 1.5, 𝑃𝑟 = 1, 𝜙 =
𝜋

4
, 𝐹0 = −2, 𝑅𝑒 = 0, 𝑅𝑑 = 0, 𝜀 = 0, 𝛼 = 0, 𝛿 = 0, 𝛽 =

0, 𝐵1 = 0, 𝐴1 = 0, 𝐶 = 0, 𝐴 = 0, 𝐵 = 0, 𝐸 = 0  

𝑥  𝑀  

0 2 3 4 

0.1 1.8449 1.9440 2.1353 2.3848 

0.2 1.8352 1.8582 1.912 1.9920 

0.3 1.9378 1.9789 1.9932 2.0182 
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2.4 Conclusion 

In this chapter, analysis of heat transfer in Walter’B fluid is presented, with dust particles 

distributed uniformly through the fluid and sinusoidal waves propelling along the walls of 

asymmetric channels. The results of velocity and temperature profiles are graphically analyzed for 

several influential parameters. Significant findings are listed as follows: 

• As Walter’s B fluid parameter, Hartmann number, and slip parameter grow, fluid and dust 

particles both move slowly. 

• Fluid and particle movement is accelerated by increasing Reynolds number and wave 

number 𝛿. High wavenumber means frequency of waves per unit length is increased that 

implies contraction and expansion is occurring more frequently along the length of blood 

vessel and consequently movement of blood is accelerated. As Reynolds number is 

increased velocity of blood flow in the vessels is greater than the viscosity of blood. 

Therefore, blood moves faster that results in efficient transport of nutrients and oxygen 

from blood to organs and tissues. 

• Heat transfer becomes slower when thermal slip parameter increases. 

• High values of Brinkman number are responsible for fast heat conduction through the fluid 

and solid granules.  
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Chapter 3 

Effect of Relaxation and Retardation Times on 

Dusty Jeffrey Fluid in a Curved Channel with 

Peristalsis 

In this chapter, the Jeffrey liquid with uniform dust particles in a symmetric channel is studied. 

Moving sinusoidal wave is executed on the walls of the channel, which generates peristaltic 

transport in the fluid. The governing equations for fluid and dust particles have been formulated 

using stream functions. Perturbation method is used to get analytic solution of the problem by 

using small wave number. Graphical analysis has been carried out for stream function and velocity 

of fluid and dust particles. Effects of different parameters such as curvature 𝑘, relaxation time 𝜆2, 

wave number 𝛿, and retardation time 𝜆1 are debated through graphs for both dust particles and 

fluid. 

3.1 Problem Formulation 

We consider flow of an incompressible Jeffrey fluid having uniform dust particles, whose number 

density N is considered as a constant. A two-dimensional curved channel of width 2a is taken. The 

radial velocities of fluid and dust particles are 𝑉̅ and 𝑉𝑠̅ while 𝑈̅ and 𝑈̅𝑠 are axial velocities, 

respectively. The walls are geometrically described by 

𝐻̅(𝑋̅, 𝑡̅) = 𝑎 + 𝑏 sin [
2𝜋

𝜆
(𝑋̅ − 𝑐𝑡)̅] , Upper Wall      (3.1) 
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𝐻̅(𝑋̅, 𝑡̅) = −𝑎 − 𝑏 sin [
2𝜋

𝜆
(𝑋̅ − 𝑐𝑡̅)] , Lower Wall     (3.2) 

 

Figure 3.1. Geometry of the channel 

The stress tensor of Jeffrey fluid is given as [65] 

𝝉 =
𝜇

1+𝜆2
[𝑨𝟏 + 𝜆1 (

𝜕𝑨𝟏

𝜕𝑡
+ (𝑽̅ . ∇)𝑨𝟏)],       (3.3) 

where 

𝑨𝟏 = (∇𝑽̅ ) + (∇𝑽̅ )𝑇 .          (3.4) 

The flow problem is explained by the following equations: 

The equations of fluid flow are defined as [65] 

𝜕

𝜕𝑅̅
(𝑅̅ + 𝑅∗)𝑉̅ + 𝑅∗ 𝜕𝑈̅

𝜕𝑋̅
= 0,         (3.5) 

𝜌 (
𝜕𝑉̅

𝜕𝑡
+ (𝑉̅. ∇)𝑉̅ −

𝑈̅2

𝑅̅+𝑅∗) = −
𝜕𝑃

𝜕𝑅̅
+

1

𝑅∗+𝑅̅

𝜕

𝜕𝑅̅
[(𝑅̅ + 𝑅∗)𝜏𝑟𝑟] +

𝑅∗

𝑅∗+𝑅̅

𝜕𝜏𝑟𝑥

𝜕𝑋̅
−

1

𝑅̅+𝑅∗ 𝜏𝑥𝑥 + 𝑠𝑁(𝑉𝑠̅ − 𝑉̅), 

            (3.6) 
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𝜌 (
𝜕𝑈̅

𝜕𝑡
+ (𝑉̅. ∇)𝑈̅ +

𝑈̅𝑉̅

𝑅̅+𝑅∗) = −
𝑅∗

𝑅̅+𝑅∗

𝜕𝑃

𝜕𝑋̅
+

1

(𝑅∗+𝑅̅)2
𝜕

𝜕𝑅̅
[(𝑅̅ + 𝑅∗)2𝜏𝑟𝑥] +

𝑅∗

𝑅̅+𝑅∗

𝜕𝜏𝑥𝑥

𝜕𝑋̅
+ 𝑠𝑁(𝑈𝑠

̅̅ ̅ − 𝑈̅). 

            (3.7) 

The equations of solid particles are defined as [52] 

𝜕

𝜕𝑅̅
(𝑅̅ + 𝑅∗)𝑉𝑠̅ + 𝑅∗ 𝜕𝑈̅𝑠

𝜕𝑋̅
= 0,         (3.8) 

𝜕𝑈̅𝑠

𝜕𝑡
+ 𝑉𝑠̅

𝜕𝑈̅𝑠

𝜕𝑅̅
−

𝑈̅𝑠

𝑅̅

𝜕

𝜕𝑋̅
((𝑅̅ + 𝑅∗)𝑉𝑠̅) +

𝑈̅𝑠𝑉𝑠̅

𝑅̅+𝑅∗
=

𝑘

𝑚
(𝑈̅ − 𝑈𝑠

̅̅ ̅),     (3.9) 

𝜕𝑉̅𝑠

𝜕𝑡
+ 𝑉̅𝑠

𝜕𝑉̅𝑠

𝜕𝑅̅
+

𝑅∗𝑈̅𝑠

𝑅̅+𝑅∗

𝜕𝑉̅𝑠

𝜕𝑋̅
−

𝑈𝑠
2

𝑅̅+𝑅∗ =
𝑘

𝑚
(𝑉̅ − 𝑉̅𝑠),       (3.10) 

The laboratory frame (𝑅̅, 𝑋̅) and the wave frame (𝑟̅, 𝑥̅) coordinates are associated by the following 

transformation. 

𝑢̅ = 𝑈̅ − 𝑐 , 𝑢̅𝑠 = 𝑈̅𝑠 − 𝑐 , 𝑣̅ = 𝑉̅ ,      𝑣̅𝑠 = 𝑉̅𝑠 , 𝑦̅ = 𝑌̅, 𝑥̅ = 𝑋̅ − 𝑐𝑡, 𝑟̅ = 𝑅̅.  (3.11) 

Introducing the following stream functions and dimensionless quantities 

𝑥 =
𝑥̅

𝜆
  ,   𝐿 =

𝑅∗

𝑎
 , 𝑝 =

𝑃𝑎2

𝜆𝜇𝑐
, 𝑅𝑒 =

𝜌𝑐𝑎

𝜇
, 𝑟 =

𝑟̅

𝑎
, 𝝉∗ =

𝝉𝑐

𝜇𝑎
 ,   𝑣 =

𝑣̅

𝛿𝑐
 ,   𝛿 =

𝑎

𝜆
,    𝐴 =

𝑘𝑁𝑎2

𝜇
, 𝑢 =

𝑢

𝑐
,  

 𝐵 =
𝑘𝑎

𝑚𝑐
,     𝛼0 =

𝜆1𝑐

𝑎
,   𝑢 = −

𝜕𝜓

𝜕𝑟
 , 𝑣 =

𝑘

𝑟+𝑘

𝜕𝜓

𝜕𝑥
 , 𝑣𝑠 =

𝑘

𝑟+𝑘

𝜕𝜑

𝜕𝑥
 , 𝑢𝑠 = −

𝜕𝜑

𝜕𝑟
 .  (3.12) 

where 𝐴 and 𝐵 are non-dimensional parameters. 

After using above quantities, the governing equations thus become as: 

For fluid flow 

𝑅𝑒 𝛿 [−
𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕2𝜓

𝜕𝑥𝜕𝑟
−

𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟2
−

𝐿

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
)] = −

𝐿

𝑟+𝐿

𝜕𝑝

𝜕𝑥
+

𝜕𝜏∗
𝑥𝑟

𝜕𝑥
+

2𝜏∗
𝑥𝑟

𝑟+𝐿
+

𝛿𝐿

𝑟+𝐿

𝜕𝜏∗
𝑥𝑥

𝜕𝑥
+ 𝐴 (

𝜕𝜓

𝜕𝑟
−

𝜕𝜑

𝜕𝑟
),        (3.13) 
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𝑅𝑒 𝛿 [
−𝛿2 𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑥2 + 𝛿2 (
𝐿

𝑟+𝐿
)
2 𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟𝜕𝑥

+𝛿2 (
𝐿

𝑟+𝐿
)
2

(1 −
𝜕𝜓

𝜕𝑟
)

𝜕2𝜓

𝜕𝑥2 − (1 −
𝜕𝜓

𝜕𝑟
)
2 1

𝑟+𝐿

] = − 𝛿
𝜕𝑝

𝜕𝑟
+

 𝛿2𝐿

𝑟+𝐿

𝜕2𝜏∗
𝑥𝑟

𝜕𝑥2
+

𝜕𝜏∗
𝑟𝑟

𝜕𝑟
+

𝜏∗
𝑟𝑟

𝑟+𝐿
+

𝐿𝛿

𝑟+𝐿

𝜕𝜏∗
𝑥𝑥

𝜕𝑥
−

𝜏∗
𝑥𝑥

𝑟+𝐿
+ 𝐴 [

 𝛿𝐿

𝑟+𝐿
(
𝜕𝜑

𝜕𝑥
−

𝜕𝜓

𝜕𝑥
)].        (3.14) 

For solid particles 

 𝛿 [−
𝐿

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑟2
+

𝛿𝐿

𝑟(𝑟+𝐿)

𝜕2𝜑

𝜕𝑥2
(1 −

𝜕𝜑

𝜕𝑟
) +

𝐿

(𝑟+𝐿)2
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕𝜑

𝜕𝑥
] = 𝐵 [

𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
],  (3.15) 

𝛿 [
𝛿2𝐿

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑟𝜕𝑥
+ 𝐿𝛿2 (1 −

𝜕𝜑

𝜕𝑟
)

𝜕2𝜑

𝜕𝑥2 −
1

𝐿
(1 −

𝜕𝜑

𝜕𝑟
)
2

] = 𝐵 (
𝜕𝜓

𝜕𝑥
−

𝜕𝜑

𝜕𝑥
).    (3.16) 

The compatibility equations for solid particles and fluid are 

𝑅𝑒𝛿

[
 
 
 
 
 
 
1

𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
−

1

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟2 +
1

(𝑟+𝐿)2
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕𝜓

𝜕𝑥
−

1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕2𝜓

𝜕𝑟𝜕𝑥

+
𝐿+𝑟

𝐿

𝜕3𝜓

𝜕𝑟2𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟3 −
𝑟+𝐿

𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕2

𝜕𝑟2 (
𝐿

𝐿+𝑟

𝜕𝜓

𝜕𝑥
)

+
𝛿2𝐿

𝑟+𝐿

𝜕3𝜓

𝜕𝑟3 +
2𝛿2𝐿2

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2 − 𝛿2 (
𝐿

𝑟+𝐿
)
2 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟𝜕𝑥2

−𝛿2 (1 −
𝜕𝜓

𝜕𝑟
) (

𝐿

𝑟+𝐿
)
2 𝜕3𝜓

𝜕𝑥3 +
2

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕2𝜓

𝜕𝑟𝜕𝑥 ]
 
 
 
 
 
 

= (𝛿
𝜕2

𝜕𝑟𝜕𝑥
+

𝛿

𝑟+𝐿

𝜕

𝜕𝑥
) 𝜏𝑥𝑥

∗ +

[
𝜕

𝜕𝑟
(

1

(𝐿+𝑟)𝐿

𝜕

𝜕𝑟
(𝑟 + 𝐿)2) −

𝛿2𝐿

𝑟+𝐿

𝜕2

𝜕𝑥2] 𝜏𝑥𝑟
∗ −

𝛿

𝐿+𝑟

𝜕2

𝜕𝑟𝜕𝑥
[(𝑟 + 𝐿)𝜏𝑟𝑟

∗ ] +

𝐴

[
 
 
 
 ((

𝐿+𝑟

𝐿
)

𝜕2

𝜕𝑟2 +
1

𝐿

𝜕

𝜕𝑟
+ 𝛿2 𝜕2

𝜕𝑥2)𝜓

−((
𝑟+𝐿

𝐿
)

𝜕2

𝜕𝑟2
+

1

𝐿

𝜕

𝜕𝑟
+ 𝛿2 𝜕2

𝜕𝑥2
)𝜑

]
 
 
 
 

 ,        (3.17) 

𝛿

[
 
 
 
 

1

𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
−

1

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑟2 +
1

(𝑟+𝐿)2
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕𝜑

𝜕𝑥
−

1

𝑟+𝐿
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕2𝜑

𝜕𝑟𝜕𝑥

+(
𝑟+𝐿

𝐿
)

𝜕3𝜑

𝜕𝑟2𝜕𝑥
−

𝜕𝜙

𝜕𝑥

𝜕3𝜑

𝜕𝑟3 − (
𝑟+𝐿

𝐿
) (1 −

𝜕𝜑

𝜕𝑟
)

𝜕

𝜕𝑟
(−

𝐿

(𝑟+𝐿)2
𝜕𝜑

𝜕𝑥
+

𝐿

𝑟+𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
)

+𝛿2 𝜕3𝜑

𝜕𝑥3 +
𝛿2

𝑟+𝐿

𝜕2𝜑

𝜕𝑥2 − 𝛿2 𝜕3𝜑

𝜕𝑥2𝜕𝑟
−

𝛿2𝐿

𝑟+𝐿
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕3𝜑

𝜕𝑥3 −
2

𝐿
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕2𝜑

𝜕𝑟𝜕𝑥 ]
 
 
 
 

=

𝐵 [
(
1

𝐿

𝜕

𝜕𝑟
+

𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2 + 𝛿2 𝜕2

𝜕𝑥2)𝜑

−(
1

𝐿

𝜕

𝜕𝑟
+

𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2
+ 𝛿2 𝜕2

𝜕𝑥2
)𝜓

],        (3.18) 
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where 

𝜏𝑟𝑟
∗ =

𝛿

(1+𝜆2)

[
 
 
 
 
 −

2𝐿

(𝐿+𝑟)2
𝜕𝜓

𝜕𝑥
+

2𝐿

𝐿+𝑟

𝜕2𝜓

𝜕𝑟𝜕𝑥

+2𝛼0𝛿 (
2𝐿2

(𝑟+𝐿)4
(
𝜕𝜓

𝜕𝑥
)
2

+ (
𝐿

𝑟+𝐿
)
2 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟2𝜕𝑥
−

2𝐿2

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟𝜕𝑥
)

+2𝛼0𝛿 (1 −
𝜕𝜓

𝜕𝑟
) (−

𝐿2

(𝑟+𝐿)3
𝜕2𝜓

𝜕𝑥2 + (
𝐿

𝑟+𝐿
)
2 𝜕3𝜓

𝜕𝑟𝜕𝑥2) ]
 
 
 
 
 

 ,   (3.19) 

𝜏𝑟𝑥
∗ =

1

(1+𝜆2)

[
 
 
 
 
 
 

𝛿2𝑘2

(𝑟+𝐿)2
𝜕2𝜓

𝜕𝑥2 −
1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
) −

𝜕2𝜓

𝜕𝑟2 −
2𝛿3𝐿3𝛼0

(𝑟+𝐿)4
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2

+
𝛿3𝐿3𝛼0

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟𝜕𝑥2 +
𝛿3𝐿3𝛼0

(𝑟+𝐿)3
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕3𝜓

𝜕𝑥3 +
𝛿𝐿𝛼0

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2

+
𝛿𝑘𝛼0

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
) +

𝛿𝐿𝛼0

(𝑟+𝐿)2
𝜕2𝜓

𝜕𝑟𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
)

−
𝛿𝐿𝛼0

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟3 −
𝛿𝐿𝛼0

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕3𝜓

𝜕𝑥2𝜕𝑟 ]
 
 
 
 
 
 

 ,   (3.20) 

𝜏𝑥𝑥
∗ =

𝛿

(1+𝜆2)

[
 
 
 
 
 

2𝐿

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
−

2𝐿

𝐿+𝑟

𝜕2𝜓

𝜕𝑟𝜕𝑥

−2𝛼0𝛿 (
2𝐿2

(𝑟+𝐿)4
(
𝜕𝜓

𝜕𝑥
)
2

−
2𝐿2

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟𝜕𝑥
+ (

𝐿

𝑟+𝐿
)
2 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟2𝜕𝑥
)

−2𝛼0𝛿
2 (1 −

𝜕𝜓

𝜕𝑟
) (−

𝐿2

(𝑟+𝐿)3
𝜕2𝜓

𝜕𝑥2 + (
𝐿

𝑟+𝐿
)
2 𝜕3𝜓

𝜕𝑟𝜕𝑥2) ]
 
 
 
 
 

.   (3.21) 

The walls in dimensionless form are 

𝑟 = ±ℎ = ±(1 + 𝜑 sin(𝑥)),         (3.22) 

with boundary conditions 

𝜓 =
𝐹

2
 ,    𝜑 =

𝐸

2
,   

𝜕𝜓

𝜕𝑟
= 1,   at 𝑟 = ℎ,      (3.23) 

𝜓 = −
𝐹

2
 ,    𝜑 = −

𝐸

2
,

𝜕𝜓

𝜕𝑟
= 1,   at 𝑟 = −ℎ.      (3.24) 

3.2 Method of Solution 

For low Reynolds number and small wave number, the momentum equation (3.17) for fluid 

particles becomes 

(𝛿
𝜕2

𝜕𝑟𝜕𝑥
+

𝛿

𝑟+𝐿

𝜕

𝜕𝑥
) 𝜏𝑥𝑥

∗ + [
𝜕

𝜕𝑟
(

1

𝐿(𝐿+𝑟)

𝜕

𝜕𝑟
(𝑟 + 𝐿)2) −

𝛿2𝐿

𝑟+𝐿

𝜕2

𝜕𝑥2
] 𝜏𝑥𝑟

∗   
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−
𝛿

𝑟+𝐿

𝜕2

𝜕𝑟𝜕𝑥
[(𝐿 + 𝑟)𝜏𝑟𝑟

∗ ] + 𝐴 [
(

𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2
+

1

𝐿

𝜕

𝜕𝑟
+ 𝛿2 𝜕2

𝜕𝑥2
)𝜓

−(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2 +
1

𝐿

𝜕

𝜕𝑟
+ 𝛿2 𝜕2

𝜕𝑥2)𝜑
] = 0.    (3.25) 

Perturbation method has been utilized to find the solution of the problem. The stream functions 𝜓 

and 𝜑, 𝐸 and 𝐹 are expanded in terms of 𝛿 as 

𝜓 = 𝜓0 + 𝛿𝜓1 + 𝑂(𝛿2),          (3.26) 

𝜑 = 𝜑0 + 𝛿𝜑1 + +𝑂(𝛿2),         (3.27) 

𝐹 = 𝐹0 + 𝛿𝐹1 + 𝑂(𝛿2),    𝐸 = 𝐸0 + 𝛿𝐸1 + 𝑂(𝛿2).       (3.28) 

3.2.1 Zeroth Order System 

[
𝜕

𝜕𝑟
(

1

(𝑟+𝐿)𝐿

𝜕

𝜕𝑟
(𝑟 + 𝐿)2)] 𝜏0𝑥𝑟

∗ + 𝐴 [
(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2 +
1

𝐿

𝜕

𝜕𝑟
)𝜓0

−(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2 +
1

𝐿

𝜕

𝜕𝑟
)𝜑0

] = 0,     (3.29) 

𝐵 [
1

𝐿
(
𝜕𝜑0

𝜕𝑟
−

𝜕𝜓0

𝜕𝑟
) +

𝑟+𝐿

𝐿
(
𝜕2𝜑0

𝜕𝑟2 −
𝜕2𝜓0

𝜕𝑟2 )] = 0,       (3.30) 

where 

𝜏0𝑥𝑟
∗ =

1

(1+𝜆2)
[−

1

𝑟+𝐿
(1 −

𝜕𝜓0

𝜕𝑟
) −

𝜕2𝜓0

𝜕𝑟2 ],       (3.31) 

along with the boundary conditions  

𝜓0 = −
𝐹0

2
 , 𝜑0 = −

𝐸0

2
,   

𝜕𝜓0

𝜕𝑟
= 1  at 𝑟 = −ℎ,      (3.32) 

𝜓0 =
𝐹0

2
 , 𝜑0 =

𝐸0

2
,

𝜕𝜓0

𝜕𝑟
= 1   at 𝑟 = ℎ.      (3.33) 

3.2.2 First Order System 

(
𝜕2

𝜕𝑟𝜕𝑥
+

1

𝑟+𝐿

𝜕

𝜕𝑥
) 𝜏0𝑥𝑥

∗ + [
𝜕

𝜕𝑟
(

1

(𝑟+𝐿)𝐿

𝜕

𝜕𝑟
(𝑟 + 𝐿)2)] 𝜏1𝑥𝑟

∗   
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−
1

𝑟+𝑘

𝜕2

𝜕𝑟𝜕𝑥
[(𝐿 + 𝑟)𝜏0𝑟𝑟

∗ ] + 𝐴 [
(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2
+

1

𝐿

𝜕

𝜕𝑟
)𝜓1

−(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2 +
1

𝐿

𝜕

𝜕𝑟
)𝜑1

] = 0,     (3.34) 

[
 
 
 
 

1

𝐿

𝜕2𝜑0

𝜕𝑟𝜕𝑥
−

1

𝑟+𝐿

𝜕𝜑0

𝜕𝑥

𝜕2𝜑0

𝜕𝑟2 +
1

(𝑟+𝐿)2
(1 −

𝜕𝜑0

𝜕𝑟
)

𝜕𝜑0

𝜕𝑥
−

1

𝐿+𝑟
(1 −

𝜕𝜑0

𝜕𝑟
)

𝜕2𝜑0

𝜕𝑟𝜕𝑥

+
𝐿+𝑟

𝐿

𝜕3𝜑0

𝜕𝑟2𝜕𝑥
−

𝜕𝜑0

𝜕𝑥

𝜕3𝜑0

𝜕𝑟3 −
𝐿+𝑟

𝐿
(1 −

𝜕𝜑0

𝜕𝑟
)

𝜕

𝜕𝑟
(−

𝐿

(𝑟+𝐿)2
𝜕𝜑0

𝜕𝑥
+

𝐿

𝑟+𝐿

𝜕2𝜑0

𝜕𝑟𝜕𝑥
)

−
2

𝐿
(1 −

𝜕𝜑0

𝜕𝑟
)

𝜕2𝜑0

𝜕𝑟𝜕𝑥 ]
 
 
 
 

 =

𝐵 [
(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2 +
1

𝐿

𝜕

𝜕𝑟
)𝜑1

−(
𝑟+𝐿

𝐿

𝜕2

𝜕𝑟2
+

1

𝐿

𝜕

𝜕𝑟
)𝜓1

],         (3.35) 

where 

𝜏0𝑥𝑥
∗ = 0 ,   𝜏0𝑟𝑟

∗ = 0 , 

𝜏1𝑥𝑟
∗ =

1

(1+𝜆2)
[
−

1

𝑟+𝐿
(1 −

𝜕𝜓1

𝜕𝑟
) −

𝜕2𝜓1

𝜕𝑟2 +
𝐿𝛼0

(𝑟+𝐿)2
𝜕𝜓0

𝜕𝑥

𝜕2𝜓0

𝜕𝑥2 +
𝐿𝛼0

(𝑟+𝐿)3
𝜕𝜓0

𝜕𝑥
(1 −

𝜕𝜓0

𝜕𝑟
)

+
𝐿𝛼0

(𝑟+𝐿)2
𝜕2𝜓0

𝜕𝑟𝜕𝑥
(1 −

𝜕𝜓0

𝜕𝑟
) −

𝐿𝛼0

𝑟+𝐿

𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑟3 −
𝐿𝛼0

𝑟+𝐿
(1 −

𝜕𝜓0

𝜕𝑟
)

𝜕3𝜓0

𝜕𝑥2𝜕𝑟

] ,  (3.36) 

along with the boundary conditions 

𝜓1 = −
𝐹1

2
 , 𝜑1 = −

𝐸1

2
,   

𝜕𝜓1

𝜕𝑟
= 0    at 𝑟 = −ℎ,      (3.37) 

𝜓1 =
𝐹1

2
 , 𝜑1 =

𝐸1

2
,   

𝜕𝜓1

𝜕𝑟
= 0           at 𝑟 = ℎ.       (3.38) 

The solution of above system of equations are calculated by applying DSolver in Mathematica.  

3.3 Graphical Analysis 

Graphical demonstration of various parameters on velocity profile and stream functions will be 

discussed in this section. The establishment of an internally circulating bolus of fluid by closed 

stream lines is called trapping and this is pushed along with the peristaltic wave.  
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3.3.1 Analysis of Stream Lines 

In the Figs. 3.2 to 3.4 streamline graphs have been drawn for different values of curvature 𝐿, 

retardation time 𝛼0, and wave number 𝛿 and behavior of bolus has been discussed. In Fig. 3.2, 

streamline graphs are drawn for different values of 𝐿. This figure indicates that bolus moves 

towards left by increasing curvature 𝐿 of the channel. Fig. 3.3 shows that size of bolus increases 

as wave number increases. Effect of retardation time can be seen in Fig. 3.4. It shows that 

significant increase in retardation time moves bolus towards left. 

3.3.2 Fluid Flow Analysis 

Impact of curvature 𝐿, relaxation time 𝜆2, retardation time 𝛼0, and wavenumber 𝛿 on fluid velocity 

can be seen in Figs. 3.5 to 3.8. In Fig. 3.5, velocity profile is plotted for different values of 

retardation time 𝛼0. It is depicted that velocity increases by increasing 𝛼0. In Fig. 3.6, fluid velocity 

graph is plotted for different values of relaxation time 𝜆2. It is observed that by increasing 

relaxation time 𝜆2, fluid velocity decreases. This specifies more time is required by the fluid 

particles to derive back to the equilibrium condition from perturbed condition. In Fig. 3.7, velocity 

graph is presented for varying values of wave number 𝛿. It portrays the enhanced behavior of 

velocity by increasing 𝛿. In Fig. 3.8, velocity graph is drawn for variation of curvature 𝐿. It 

indicates that fluid velocity is decayed by increasing curvature of channel. Velocity rises for 

straight channel in contrast with curved channel. 

3.3.3 Particle Flow Analysis 

Impact of curvature 𝐿, relaxation time 𝜆2, and retardation time 𝛼0 on particle velocity can be 

observed in Figs. 3.9 to 3.11. In Fig. 3.9, dust particle velocity graph is plotted for different values 
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of retardation time 𝛼. It is observed that by increasing 𝛼0, particle velocity decreases. In Fig. 3.10, 

velocity graph is presented for varying values of curvature 𝐿. It portrays the decreasing behavior 

of velocity by increasing curvature of the channel. In Fig. 3.11, velocity profile for dust particles 

is drawn for variation of relaxation time 𝜆2. It depicts that velocity declines by increasing 𝜆2. 

3.3.4 Pressure Gradient  

Graphs of pressure gradient versus 𝑥 are shown in Figs. 3.12-3.14 for different values of wave 

number 𝛿, relaxation time 𝜆2, and retardation time 𝛼0. In Fig. 3.12, pressure gradient graphs are 

drawn for different values of wave number 𝛿. Graphs of pressure gradient are plotted for various 

values of retardation time 𝛼0 in Fig. 3.13. Influence of relaxation time 𝜆2 on pressure gradient is 

graphically demonstrated in Fig. 3.14. The pressure gradient increases as relaxation time increases. 

The pressure gradient as produced by the peristaltic motion of the walls is closely associated to the 

azimuthal normal stress and shear stress which are both controlled by fluid’s elasticity (see Eq. 

3.13). 
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(a) 

 

(b) 

 

(c) 

 

Fig. 3.2: Streamline presentation for fluid for (𝑎) 𝐿 = 4 (𝑏) 𝐿 = 10 (𝑐) 𝐿 = 20 with  𝜇 = 0.1,

𝑎 = 0.2, 𝐶 = 0.3, 𝛼0 = 0.6, 𝛿 = 0.01, 𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 0.1, 𝜆2 = 0.4. 



60 
 

 

(a) 

 

(b) 

 

(c) 

 

Fig. 3.3: Streamline presentation for fluid for (𝑎) 𝛿 = 0.02  (𝑏) 𝛿 = 0.06  (𝑐) 𝛿 = 0.09 with 

     𝐿 = 4, 𝜇 = 0.1, 𝑎 = 0.2, 𝐶 = 0.3, 𝛼0 = 0.6, 𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 0.1, 𝜆2 = 0.4. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 3.4: Streamline presentation for fluid for  (𝑎)  𝛼0 = 60   (𝑏) 𝛼0 = 160   (𝑐) 𝛼0 = 360   with 

 𝛿 = 0.09, 𝐿 = 4, 𝜇 = 0.1, 𝑎 = 0.2, 𝐶 = 0.3, 𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 0.1, 𝜆2 = 0.4. 
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Fig. 3.5: The fluid velocity with   𝜇 = 0.1,   𝜆2 = 0.7,   𝐿 = 4,   𝑎 = 0.2, 𝐶 = 0.3, 𝛿 = 0.01,

𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 0.1. 

 

Fig. 3.6: The fluid velocity with   𝜇 = 0.1,    𝐿 = 4,   𝑎 = 0.2,   𝐶 = 0.3, 𝛼0 = 0.2, 𝛿 = 0.01,

𝜙 = 0.2,   𝐴 = 0.2, 𝐵 = 0.1. 
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Fig. 3.7: The fluid velocity with  𝜇 = 0.1, 𝜆2 = 0.7, 𝑎 = 0.2, 𝐶 = 0.3,    𝛼0 = 0.2,    𝐿 = 4,

𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 0.1. 

 

Fig. 3.8: The fluid velocity with 𝜇 = 0.1, 𝜆2 = 0.7, 𝛼0 = 0.2, 𝐶 = 0.3, 𝛼 = 0.2, 𝛿 = 0.01,

𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 0.1. 
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Fig. 3.9: The particle velocity with  𝜇 = 0.1, 𝜆2 = 0.3, 𝐿 = 4, 𝑎 = 0.2, 𝐶 = 0.3, 𝛿 = 0.05,

𝜙 = 0.6, 𝐴 = 0.2, 𝐵 = 0.4. 

 

Fig. 3.10: The particle velocity with 𝜇 = 0.1, 𝜆2 = 0.3, 𝑎 = 0.2, 𝐶 = 0.3, 𝛼0 = 0.5, 𝛿 = 0.01,

𝜙 = 0.6, 𝐴 = 0.2, 𝐵 = 0.4. 

 

 



65 
 

 

Fig. 3.11: The particle velocity with  𝜇 = 0.1, 𝛼0 = 0.5, 𝐿 = 4, 𝑎 = 0.2, 𝐶 = 0.3, 𝛿 = 0.05,

𝜙 = 0.6, 𝐴 = 0.2, 𝐵 = 0.4. 

 

Fig. 3.12: Pressure gradient with  𝜇 = 0.1, 𝑅𝑒 = 6, 𝜆2 = 0.1,   𝑎 = 0.2, 𝐶 = 0.8, 𝛼0 = 0.2,

𝐿 = 2, 𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 1.2, 𝑟 = 2, 𝑄 = 1. 
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Fig. 3.13: Pressure gradient with 𝜇 = 0.1, 𝑅𝑒 = 6, 𝜆2 = 0.3, 𝑎 = 0.2, 𝐶 = 0.8, 𝐿 = 2, 𝛿 = 0.001,

𝜙 = 0.2, 𝐴 = 0.2, 𝐵 = 1.2, 𝑟 = 2, 𝑄 = 1. 

 

Fig. 3.14: Pressure gradient with 𝜇 = 0.1, 𝑅𝑒 = 6, 𝛼0 = 0.3, 𝑎 = 0.2, 𝐶 = 0.8, 𝐿 = 2, 𝛿 = 0.001,

𝜙 = 0.2,    𝐴 = 0.2,    𝐵 = 1.2, 𝑟 = 2, 𝑄 = 1.  
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3.4 Conclusion 

This chapter presents the analysis of peristaltic motion of dusty fluid following Jeffrey fluid model 

with curved boundary walls. Impacts of various parameters on stream function, fluid velocity, and 

particle velocity has been discussed graphically. Significant features of current analysis are: 

• Size of bolus increases by increasing wave number. 

• Significant increase in retardation time moves bolus towards left. 

• Bolus moves toward left by increasing curvature. 

• Fluid velocity decays by increasing curvature parameter, relaxation time. 

• Particle velocity decays as retardation time, relaxation time and curvature increase. 

• Pressure gradient enhances by increasing relaxation time. 
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Chapter 4 

Heat Transfer Analysis of 

Magnetohydrodynamics Peristaltic Fluid with 

Inhomogeneous Solid Particles and Variable 

Thermal Conductivity through Curved 

Passageway 

In this chapter inhomogeneous dispersion of solid particles in Newtonian dusty fluid is considered. 

The fluid flows through wavy curved passage under applied magnetic field. Heat transfer is 

discussed with variable thermal conductivity. The mathematical model of the problem consists of 

coupled differential equations which are simplified using stream functions. The results of time 

flow rate for fluid and solid granules have been derived numerically. The fluid and dust particle 

velocity profiles are being presented graphically to analyze the effects of density of solid particles, 

magnetohydrodynamics, curvature, and slip parameters. Heat transfer analysis is also performed 

for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter, 

and curvature.  
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4.1 Problem Formulation 

Consider the dusty viscous fluid flowing through a curved channel as shown in Fig. 3.1. The walls 

of channel undergo peristaltic movement. Solid particles are considered to be spherical in shape 

and their distribution in the fluid is not homogeneous. Thermal conductivity depends on 

temperature and applied magnetic field is considered in radial direction. The density of solid 

particles 𝑁(𝑅̅) depends on 𝑅̅. The passage is curled into a circle having center 𝑂 and radius 𝑅∗. 

The sinusoidal wave is propelling along the walls with speed 𝑐 and wavelength 𝜆. The width of 

the curved channel is 2𝑎 and wave amplitude is 𝑏. The description of walls is expressed in Eqns. 

(3.1) and (3.2). 

Fluid flow is described by the following equations. 

4.1.1 For Fluid Flow: 

𝑅∗ 𝜕𝑈̅

𝜕𝑋̅
+

𝑉̅

(𝑅̅+𝑅)
+ (𝑅̅ + 𝑅∗)

𝜕𝑉̅

𝜕𝑅̅
= 0,         (4.1) 

𝜌 (
𝜕𝑉̅

𝜕𝑡
+ 𝑉̅

𝜕𝑉̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅
𝜕𝑉̅

𝜕𝑋̅
−

𝑈̅2

𝑅̅+𝑅∗) = −
𝜕𝑃̅

𝜕𝑅̅
+ 𝜇 (

1

𝑅̅+𝑅∗

𝜕

𝜕𝑅̅
[(𝑅̅ + 𝑅∗)

𝜕𝑉̅

𝜕𝑅̅
] + (

𝑅∗

𝑅̅+𝑅∗)
2 𝜕2𝑉̅

𝜕𝑋̅2 −
𝑉̅

(𝑅̅+𝑅∗)2
−

2
𝑅

(𝑅̅+𝑅∗)2
𝜕𝑈̅

𝜕𝑋̅
) + 𝑘𝑁(𝑅̅)(𝑉̅𝑠 − 𝑉̅),         (4.2) 

𝜌 (
𝜕𝑈̅

𝜕𝑡
+ 𝑉̅

𝜕𝑈̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅
𝜕𝑈̅

𝜕𝑋̅
+

𝑈̅𝑉̅

𝑅̅+𝑅∗) = −
𝑅∗

𝑅̅+𝑅∗

𝜕𝑃̅

𝜕𝑋̅
+ 𝜇 (

1

𝑅̅+𝑅∗

𝜕

𝜕𝑅̅
[(𝑅̅ + 𝑅∗)

𝜕𝑈̅

𝜕𝑅̅
] + (

𝑅∗

𝑅̅+𝑅∗)
2 𝜕2𝑈̅

𝜕𝑋̅2 −

𝑈̅

(𝑅̅+𝑅∗)2
− 2

𝑅∗

(𝑅̅+𝑅∗)2
𝜕𝑉̅

𝜕𝑋̅
) + 𝑘𝑁(𝑅̅)(𝑈𝑠

̅̅ ̅ − 𝑈̅) − 𝜎𝐵0
2 (

𝑅∗

𝑅̅+𝑅∗
)
2

𝑈̅,     (4.3) 
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𝜌𝐶𝑃 (
𝜕𝑇̅

𝜕𝑡
+ 𝑉̅

𝜕𝑇̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅
𝜕𝑇̅

𝜕𝑋̅
) = −∇. (−𝐾(𝑇̅)∇𝑇̅) + 𝜇 [2 (

𝜕𝑉̅

𝜕𝑅̅
)
2

+ (
𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
−

𝑈̅

𝑅̅+𝑅∗) (
𝜕𝑈̅

𝜕𝑅̅
−

𝑈̅

𝑅̅+𝑅∗ +

𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
) +

𝜕𝑈̅

𝜕𝑅̅
(
𝜕𝑈̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
−

𝑈̅

𝑅̅+𝑅∗) + 2 (
𝑅∗

𝑅̅+𝑅∗

𝜕𝑈̅

𝜕𝑋̅
+

𝑉̅

𝑅̅+𝑅∗)
2

] +
𝑁𝐶𝑃

𝜏𝑇
(𝑇𝑠̅ − 𝑇̅) +

𝑁

𝜏𝑣
(𝑈𝑠
̅̅ ̅ − 𝑈̅)2,  

            (4.4) 

where 𝐾(𝑇̅) is thermal conductivity that depends on temperature. Mathematically it is described 

by [84] as 

𝐾(𝑇̅) = 𝐾0(1 + 𝜂(𝑇̅ − 𝑇0)) ,         (4.5) 

where 𝐾0 is constant thermal conductivity. 

4.1.2 For Solid Particles: 

𝑅∗ 𝜕𝑈̅𝑠

𝜕𝑋̅
+

𝑉̅𝑠

(𝑅̅+𝑅∗)
+ (𝑅̅ + 𝑅∗)

𝜕𝑉̅𝑠

𝜕𝑅̅
= 0,        (4.6) 

(
𝜕𝑉𝑠̅

𝜕𝑡
+ 𝑉𝑠̅

𝜕𝑉̅𝑠

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅𝑠
𝜕𝑉̅𝑠

𝜕𝑋̅
−

𝑈̅𝑠
2

𝑅̅+𝑅∗) =
𝑘

𝑚
(𝑉̅ − 𝑉̅𝑠),      (4.7) 

(
𝜕𝑈̅𝑠

𝜕𝑡
+ 𝑉̅𝑠

𝜕𝑈̅𝑠

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅𝑠
𝜕𝑈̅𝑠

𝜕𝑋̅
+

𝑈̅𝑠𝑉̅𝑠

𝑅̅+𝑅∗) =
𝑘

𝑚
(𝑈̅ − 𝑈̅𝑠),      (4.8) 

(
𝜕𝑇̅𝑠

𝜕𝑡
+ 𝑉̅𝑠

𝜕𝑇̅𝑠

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅𝑠
𝜕𝑇̅𝑠

𝜕𝑋̅
) = −

𝐶𝑃

𝐶𝑚
(𝑇̅ − 𝑇̅𝑠).       (4.9) 

Fixed frame coordinates (𝑅̅, 𝑋̅) are related to moving frame coordinates (𝑟, 𝑥) by 

𝑋̅ = 𝑥 + 𝑐𝑡, 𝑅̅ = 𝑟, 𝑈̅ = 𝑢 + 𝑐, 𝑉̅ = 𝑣, 𝑈̅𝑠 = 𝑢𝑠 + 𝑐, 𝑉̅𝑠 = 𝑣𝑠 , 𝑇̅ = 𝑇, 𝑇̅𝑠 = 𝑇𝑠, 𝑃̅ = 𝑃. (4.10) 

The dimensionless quantities and stream functions are given by: 

𝑟′ =
𝑟

𝑎
, 𝑥′ =

𝑥

𝜆
, 𝑢′ =

𝑢

𝑐
, 𝑣′ =

𝑣

𝛿𝑐
, 𝑢′𝑠 =

𝑢𝑠

𝑐
, 𝑣′𝑠 =

𝑣𝑠

𝛿𝑐
, 𝑃 =

𝑝𝜆𝜇𝑐

𝑎2
,   Θ =

𝑇−𝑇0

𝑇1−𝑇0
,    Θ𝑠 =

𝑇𝑠−𝑇0

𝑇1−𝑇0
,

𝑢 = −
𝜕𝜓

𝜕𝑟
,     𝑣 = −

𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥
, 𝑢𝑠 = −

𝜕𝜑

𝜕𝑟
, 𝑣𝑠 = −

𝐿

𝑟+𝐿

𝜕𝜑

𝜕𝑥
, 𝛿 =

𝑎

𝜆
, 𝐿 =

𝑅∗

𝑎
,  𝑅𝑒 =

𝜌𝑐𝑎

𝜇
, 𝐴 =

𝑘𝑁𝑎2

𝜇
,
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𝐵 =
𝑘𝑎

𝑚𝑐
,  MHD(𝑀2) =

𝜎𝐵𝑜
2𝑎2

𝜇
, 𝑃𝑟 =

𝜇𝐶𝑃

𝐾0
, 𝐸𝑐 =

𝑐2

𝐶𝑃(𝑇−𝑇0)
, 𝐴1 =

𝑁0𝑎2

𝜏𝑇𝜇
, 𝐵1 =

𝑁0𝑎2

𝜏𝑢𝜇
, 𝛾 =

𝑎𝐶𝑃

𝑐𝐶𝑚
,

𝑁(𝑟′) =
𝑁(𝑟)

𝑁0
 .            (4.11) 

where 𝐴, 𝐵, 𝛼, 𝛽 and 𝛾 are dimensionless quantities. To study non-uniform distribution of solid 

particles, density of solid particles in dimensionless form is described in [40] as 

𝑁(𝑅̅) = 𝑒−𝜔𝑟 = 1 − 𝜔𝑟.         (4.12) 

Using Eqs. (4.11) and (4.12), the equations of compatibility for fluid and dust particles are 

𝑅𝑒𝛿 (
1

𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

(𝑟+𝐿)

𝐿

𝜕3𝜓

𝜕𝑟2𝜕𝑥
−

𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑟2 −
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟3 −
𝜕2𝜓

𝜕𝑟2

𝜕2𝜓

𝜕𝑟𝜕𝑥
−

𝜕3𝜓

𝜕𝑟2𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
) −

1

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟2 +

1

𝑟+𝐿

𝜕2𝜓

𝜕𝑥2 (1 −
𝜕𝜓

𝜕𝑟
) −

1

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
) −

𝐿

𝑟+𝐿

𝜕3𝜓

𝜕𝑥3 +
𝐿

(𝑟+𝐿)2
(
𝜕2𝜓

𝜕𝑥2)
2

− 𝛿2 (−2
𝐿2

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2 +

𝐿2

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥3 −
𝐿2

(𝑟+𝐿)2
𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿2

(𝑟+𝐿)2
𝜕3𝜓

𝜕𝑥3 (1 −
𝜕𝜓

𝜕𝑟
) +

2

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕2𝜓

𝜕𝑟𝜕𝑥
)) = −

1

𝐿

𝜕2

𝜕𝑟2 ((𝑟 +

𝐿)
𝜕2𝜓

𝜕𝑟2) +
1

(𝑟+𝐿)2
(1 −

𝜕𝜓

𝜕𝑟
) +

1

𝐿(𝑟+𝐿)

𝜕2𝜓

𝜕𝑟2 + 𝛿2 (−
𝐿

𝑟+𝐿

𝜕4𝜓

𝜕𝑟2𝜕𝑥2 + 3
𝐿

(𝑟+𝐿)2
𝜕3𝜓

𝜕𝑟2𝜕𝑥
− 3

𝐿

(𝑟+𝐿)3
𝜕2𝜓

𝜕𝑥2 +

2

𝑟+𝐿

𝜕

𝜕𝑟
(

𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑥2) −
1

(𝑟+𝐿)

𝜕

𝜕𝑟
{(𝑟 + 𝐿)

𝜕

𝜕𝑟
(

𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑥2)}) − 𝛿4 𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥
+ 𝑀2 𝜕

𝜕𝑟
(

𝐿2

𝑟+𝐿

𝜕𝜓

𝜕𝑟
) −

𝐴 (
𝜕

𝜕𝑟
{
(𝑟+𝐿)

𝐿
(1 − 𝜔𝑟) (

𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)}  + 𝛿2(1 − 𝜔𝑟)

𝐿

𝑟+𝐿

𝜕2

𝜕𝑥2
(𝜑 − 𝜓)),   (4.13) 

𝛿 (
1

𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
+

(𝑟+𝐿)

𝐿

𝜕3𝜑

𝜕𝑟2𝜕𝑥
−

1

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑟2
−

𝜕2𝜑

𝜕𝑥2

𝜕2𝜑

𝜕𝑟2
−

𝜕𝜑

𝜕𝑥

𝜕3𝜑

𝜕𝑟3
+

𝜕2𝜑

𝜕𝑟2

𝜕2𝜑

𝜕𝑟𝜕𝑥
−

𝜕3𝜑

𝜕𝑟2𝜕𝑥
(1 −

𝜕𝜑

𝜕𝑟
) +

1

𝑟+𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
(1 −

𝜕𝜑

𝜕𝑟
) −

1

(𝑟+𝐿)2
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕𝜑

𝜕𝑥
−

𝐿

𝑟+𝐿

𝜕3𝜑

𝜕𝑥3 +
𝐿2

(𝑟+𝐿)2
(
𝜕2𝜑

𝜕𝑥2)
2

− 𝛿2 (−
𝐿

𝑟+𝐿

𝜕3𝜑

𝜕𝑥3 +
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𝐿2

(𝑟+𝐿)2
(
𝜕2𝜑

𝜕𝑥2
)
2

−
𝐿2

(𝑟+𝐿)3
𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑥2
+ (

𝐿

𝑟+𝐿
)
2 𝜕𝜑

𝜕𝑥

𝜕3𝜑

𝜕𝑟𝜕𝑥2
− (

𝐿

𝑟+𝐿
)
2 𝜕2𝜑

𝜕𝑟𝜕𝑥

𝜕2𝜑

𝜕𝑥2
+ (

𝐿

𝑟+𝐿
)
2 𝜕3𝜑

𝜕𝑥3
(1 −

𝜕𝜑

𝜕𝑟
) +

2

𝑟+𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
(1 −

𝜕𝜑

𝜕𝑟
))) = 𝐵 (

(𝑟+𝐿)

𝐿
(
𝜕2𝜑

𝜕𝑟2 −
𝜕2𝜓

𝜕𝑟2) +
1

𝐿
(
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
) −

𝐿

𝑟+𝐿
𝛿2 𝜕2

𝜕𝑥2
(𝜓 − 𝜑)).   (4.14) 

The non-dimensional energy equations for fluid and solid particles are: 

𝛿 [−
𝜕Θ

𝜕𝑥
+

𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕Θ

𝜕𝑟
+

𝐿

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕Θ

𝜕𝑥
] = (1 + 𝜂Θ) {

𝜕2Θ

𝜕𝑟2 +
1

𝑟+𝐿

𝜕Θ

𝜕𝑟
} + 𝜂 (

𝜕Θ

𝜕𝑟
)
2

+ 𝛿2 (
𝐿

𝑟+𝐿
)
2

{(1 +

𝜂Θ)
𝜕2Θ

𝜕𝑥2 + 𝜂 (
𝜕Θ

𝜕𝑥
)
2

} + 𝐵𝑟

(

 
2𝛿2 (

𝜕

𝜕𝑟
(

1

𝑟+𝐿

𝜕𝜓

𝜕𝑥
))

2

+ 2𝛿2 (
𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
)
2

+(𝛿2 (
𝐿

𝑟+𝐿
)
2 𝜕2𝜓

𝜕𝑥2 −
1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
) −

𝜕2𝜓

𝜕𝑟2)
2

)

 + 𝐴1 Pr(1 −

𝜔𝑟)(Θ𝑠 − Θ) + 𝐵1𝐵𝑟(1 − 𝜔𝑟) (
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)
2

,       (4.15) 

𝛿 [−
𝜕Θ𝑠

𝜕𝑥
+

𝐿

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕Θ𝑠

𝜕𝑟
+

𝐿

𝑟+𝐿
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕Θ𝑠

𝜕𝑥
] = −𝛾(Θ𝑠 − Θ).      (4.16) 

The non-dimensional form of boundaries of the passage are given by the Eqn. (3.22). 

4.2 Method of Solution 

Under the assumption of long wavelength and low Reynolds number, Eqns. (4.13) to (4.16) 

become 

𝜕2

𝜕𝑟2 ((𝑟 + 𝐿)
𝜕2𝜓

𝜕𝑟2) −
1

(𝑟+𝐿)2
(1 −

𝜕𝜓

𝜕𝑟
) −

1

(𝑟+𝐿)

𝜕2𝜓

𝜕𝑟2 + 𝐴
𝜕

𝜕𝑟
{(𝑟 + 𝐿)(1 − 𝜔𝑟) (

𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)} −

𝑀2 𝜕

𝜕𝑟
(

𝐿2

𝑟+𝐿

𝜕𝜓

𝜕𝑟
) = 0,          (4.17) 

(𝑟 + 𝐿) (
𝜕2𝜑

𝜕𝑟2
−

𝜕2𝜓

𝜕𝑟2
) + (

𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
) = 0.       (4.18) 
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(1 + 𝜂Θ) {
𝜕2Θ

𝜕𝑟2
+

1

𝑟+𝐿

𝜕Θ

𝜕𝑟
} + 𝜂 (

𝜕Θ

𝜕𝑟
)
2

+ 𝐵𝑟 (
1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
) +

𝜕2𝜓

𝜕𝑟2
)
2

+ 𝐴1 Pr(1 − 𝜔𝑟)(Θ𝑠 − Θ) +

 𝐵1𝐵𝑟(1 − 𝜔𝑟) (
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)
2

= 0,        (4.19) 

Θ𝑠 − Θ = 0.           (4.20) 

Non-dimensional boundary conditions are 

𝜓 =
𝐹

2
 , 𝜑 =

𝐸

2
,   

𝜕𝜓

𝜕𝑟
+ 𝛽

𝜕2𝜓

𝜕𝑟2
= −1,   at 𝑟 = ℎ,     (4.21) 

𝜓 = −
𝐹

2
 , 𝜑 = −

𝐸

2
,

𝜕𝜓

𝜕𝑟
− 𝛽

𝜕2𝜓

𝜕𝑟2 = −1,   at 𝑟 = −ℎ,      (4.22) 

Θ = 1        at 𝑟 = ℎ,          (4.23) 

Θ = 0        at 𝑟 = −ℎ,          (4.24) 

Θ𝑠 = 1        at 𝑟 = ℎ,          (4.25) 

Θ𝑠 = 0        at 𝑟 = −ℎ.         (4.26) 

The non-dimensional form of heat transfer rate is 

𝑧 =
𝜕Θ

𝜕𝑟
 
𝜕ℎ

𝜕𝑥
. 

This leads to a system of coupled differential equations (4.17) - (4.20) that are nonlinear in nature 

which is solved by using NDSolver command in Mathematica. 
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4.3 Graphical analysis 

The velocity and temperature profiles are discussed through graphs plotted for various influential 

parameters. These include slip parameter 𝛽, curvature 𝐿, MHD 𝑀, inhomogeneous parameter 𝜔, 

and Brickman number 𝐵𝑟.  

4.3.1 Fluid Flow Analysis 

Figs. 4.1- 4.4 are plotted to discuss fluid velocity profile for slip parameter 𝛽, curvature 𝐿, MHD 

𝑀, and inhomogeneous parameter 𝜔. Fig. 4.1 reveals the fluid velocity behavior as curvature 

varies. As curvature 𝐿 increases velocity decreases near lower wall and increases near upper wall. 

This is due to the centrifugal force that moves the fluid towards the upper wall of the channel and 

fluid speeds up near the upper boundary and velocity of fluid declines near lower wall. Fig. 4.2 

presents impact of varying density 𝜔 of dust particles on fluid flow behavior. Below the central 

line of the passage fluid velocity increases while above the central line velocity of fluid decreases 

as value of 𝜔 increases. The effects of magnetohydrodynamics 𝑀 are depicted in Fig. 4.3. As 

MHD parameter 𝑀 rises, the fluid velocity decrease near lower boundary and increases near upper 

wall of the channel. Due to resistive force generated by magnetic field, maximum velocity is 

reduced and symmetry of the flow is disturbed. The variation in fluid velocity due to slip on the 

channel walls can be seen in Fig. 4.4. It shows increase in fluid velocity near the walls by 

increasing values of slip parameter 𝛽. This is because friction force is minimized between fluid 

and boundary and thus allows fluid move more freely. While in the central part of channel fluid 

moves slowly as 𝛽 increases. Fig. 4.5 shows the comparison of fluid velocity results obtained by 

NDSolver command with HPM. Both results exactly match. 
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4.3.2 Solid Particle Flow Analysis 

Figs. 4.6-4.9 are plotted to discuss particle velocity profile for slip parameter 𝛽, curvature 𝐿, MHD 

𝑀, and inhomogeneous parameter 𝜔. Fig. 4.6 portrays impact of curvature 𝐿 on particle velocity. 

By increasing curvature, particles flow becomes slower in lower half and speeds up in upper half 

of the passage. Fig. 4.7 exhibits effect of particle density. The behavior of particle velocity is dual. 

As particle density 𝜔 enhances, particles movement speeds up near lower boundary and slows 

down near upper boundary. Influence of MHD on particle velocity is manifested in Fig. 4.8. Dust 

particles travel more quickly close to the channel's walls and more slowly in its center as the MHD 

parameter rises. Plots for different values of slip parameter are drawn in Fig. 4.9. Decrease in 

particle velocity is observed by increasing slip parameter in the middle of passage. The increased 

values of slip reduce drag force near the walls allowing solid particle to move freely. 

4.3.3 Temperature Distribution Analysis 

Figs. 4.10 to 4.14 are plotted to discuss fluid temperature distribution for slip parameter 𝛽, 

curvature 𝐿, variable thermal conductivity 𝜂, inhomogenous parameter 𝜔, and Brickman number 

𝐵𝑟. Fig. 4.10 is graph of temperature distribution for differing values of curvature 𝐿. Rise in 

temperature is observed as channel becomes more curved. In Fig. 4.11, it is found that as density 

parameter increases fluid temperature reduces. Fig. 4.12 shows results of fluid temperature profile 

as slip parameter 𝛽 varies. High slip parameter slows down the fluid and as a result heat transfer 

enhances. Thermal conductivity is ability to transfer heat between molecules of fluid. High thermal 

conductivity results in fast heat transfer within the fluid which is illustrated in Fig. 4.13. The impact 

of Brinkman number Br is demonstrated in Fig. 4.14. Decline in temperature is observed with 

increase in Brinkman parameter. 
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4.3.4 Heat Transfer Coefficient 

Impact of slip parameter 𝛽 and Brickman number 𝐵𝑟 on heat transfer coefficient is discussed in 

Figs. 4.15 and 4.16. As the movement of the channel walls is peristaltic therefore the behavior of 

heat transfer coefficient is oscillatory. Influence of slip parameter 𝛽 on heat transfer coefficient is 

exhibited in Fig. 4.15. As slip parameter 𝛽 increases heat transfer coefficient decreases in the 

interval −1.8 ≤ 𝑥 ≤ 1.8 and increases otherwise. Fig. 4.16 shows effect of Brickman number 𝐵𝑟 

on heat transfer coefficient. With the rise in Brickman number heat transfer coefficient increases 

in the range −1.8 ≤ 𝑥 ≤ 1.8 and decreases elsewhere. 

 

Fig 4.1: The fluid velocity profile with  𝛽 = 0.2,𝑀 = 0.1, 𝑏 = 0.8, 𝑎 = 0.6, 𝐴 = 0.5, 𝜂 = 0.03,

𝐵𝑟 = 0.3, 𝑃𝑟 = 0.02, 𝜔 = 3, 𝜙 =
𝜋

6
. 
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Fig 4.2: The fluid velocity profile with  𝛽 = 0.3,𝑀 = 0, 𝑏 = 0.8, 𝑎 = 0.6, 𝐴 = 0.5, 𝜂 = 0.1,

𝐵𝑟 = 0.5, 𝑃𝑟 = 0.2, 𝐿 = 5, 𝜙 =
𝜋

6
. 

 

Fig 4.3: The fluid velocity profile with 𝛽 = 0.3, 𝑏 = 0.3, 𝑎 = 0.3, 𝐴 = 0.5, 𝜂 = 0.2, 𝐵𝑟 = 0.3,

𝑃𝑟 = 0.2, 𝐿 = 2,𝜔 = 3, 𝜙 =
𝜋

4
. 



78 
 

 

Fig 4.4: The fluid velocity profile with  𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.3, 𝐴 = 0.3, 𝜂 = 0.06, 𝐵𝑟 = 0.1,

𝑃𝑟 = 0.2, 𝐿 = 10.5, 𝜔 = 5, 𝜙 =
𝜋

3
. 

 

 

Fig 4.5: Comparison of HPM and NDSolver. 
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Fig 4.6: The particle velocity profile with 𝛽 = 0.2,𝑀 = 0.1, 𝑏 = 0.8, 𝑎 = 0.6, 𝐴 = 0.5 𝜂 = 0.03,

𝐵𝑟 = 0.3, 𝑃𝑟 = 0.02, 𝜔 = 3, 𝜙 =
𝜋

6
. 

 

Fig 4.7: The particle velocity profile with  𝛽 = 0.5,𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.8, 𝐴 = 0.5, 𝜂 = 0.03,

𝐵𝑟 = 0.1, 𝑃𝑟 = 0.2, 𝐿 = 3, 𝜙 =
𝜋

6
. 
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Fig 4.8: The particle velocity profile with 𝛽 = 0.3, 𝑏 = 0.6, 𝑎 = 0.3, 𝐴 = 0.3, 𝜂 = 0.06, 𝐵𝑟 = 0.1,

𝑃𝑟 = 0.2, 𝐿 = 5,𝜔 = 5, 𝜙 =
𝜋

3
. 

 

Fig 4.9: The particle velocity profile with 𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.3, 𝐴 = 0.3, 𝜂 = 0.06,

𝐵𝑟 = 0.1, 𝑃𝑟 = 0.2, 𝐿 = 10.5, 𝜔 = 5, 𝜙 =
𝜋

3
. 
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Fig 4.10: The fluid temperature profile with  𝛽 = 0.2, 𝑀 = 0.1, 𝑏 = 0.8, 𝑎 = 0.6, 𝐴 = 0.5,

𝜂 = 0.03, 𝐵𝑟 = 0.3, 𝑃𝑟 = 0.02, 𝜔 = 3, 𝜙 =
𝜋

6
. 

 

Fig 4.11: The fluid temperature profile with  𝛽 = 0.5, 𝑀 = 0.1, 𝑏 = 0.3,   𝑎 = 0.8, 𝐴 = 0.5,

𝜂 = 0.06, 𝐵𝑟 = 0.7, 𝑃𝑟 = 0.6, 𝐿 = 3. , 𝜙 = 0.8. 
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Fig 4.12: The fluid temperature profile with  𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.3, 𝐴 = 0.3, 𝜂 = 0.06,

𝐵𝑟 = 0.1, 𝑃𝑟 = 0.2, 𝐿 = 10.5, 𝜔 = 5, 𝜙 =
𝜋

3
. 

 

Fig 4.13: The fluid temperature profile with  𝛽 = 0.2,𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.8, 𝐴 = 0.5,

𝐵𝑟 = 0.6, 𝑃𝑟 = 0.4, 𝐿 = 10,𝜔 = 3, 𝜙 = 0.8. 
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Fig 4.14: The fluid temperature profile with  𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.8, 𝐴 = 0.5, 𝜂 = 0.6,

𝐵𝑟 = 0.1, 𝑃𝑟 = 0.4, 𝐿 = 10,𝜔 = 3, 𝜙 = 0.8. 

 

Fig 4.15: Heat transfer coefficient for slip parameter with  𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.8, 𝐴 = 0.5,

𝜂 = 0.6, 𝐵𝑟 = 0.4, 𝑃𝑟 = 0.1, 𝐿 = 2, 𝜔 = 3, 𝜙 = 0.2, 𝑄 = 2, 𝑄𝑠 = 2.5, 𝑑 = 0.3. 
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Fig 4.16: Heat transfer coefficient for thermal conductivity with  𝑀 = 0.1, 𝑏 = 0.3, 𝑎 = 0.8,

𝐴 = 0.5, 𝜂 = 0.6, 𝛽 = 0.4, 𝑃𝑟 = 0.1, 𝐿 = 2,𝜔 = 3, 𝜙 = 0.2, 𝑄 = 2, 𝑄𝑠 = 2.5, 𝑑 = 0.3, 𝑞 = 1. 

4.4 Conclusion 

The recent work focuses on the effects of MHD and non-uniform dispersion of solid particles on 

fluid and particle velocities and fluid temperature distribution. The geometry of the walls is curved 

and exhibiting peristaltic motion. Temperature profile is also analyzed under variable thermal 

conductivity. Important points of the study are: 

• As density of particles increases the fluid and particle velocity exhibit same pattern of flow. 

i.e., fluid and particle velocities decrease in the vicinity of upper boundary and increase 

near lower boundary. 

• The increase in particle density slows down heat transfer through the fluid. 

• The presence of magnetic field reduces the fluid speed in lower region of the channel 

whereas opposite behavior in upper region of the channel.  

• The particle velocity enhances near the walls due to magnetic field. 
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• By increasing curvature, both fluid and particle velocities decline near upper wall and 

enhance near lower wall. Increase in fluid temperature is also observed. 

• Slip parameter slows down the fluid and particle velocities but temperature rises. 

• High Brinkman number reduces temperature of fluid but increase in thermal conductivity 

results fast heat conduction. 
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Chapter 5 

Entropy Generation Analysis of Dusty Fluid with 

Peristalsis in Asymmetric Channel with Slip 

Effects 

Peristaltic dusty fluid flow with uniformly distributed dust particles is considered in this chapter. 

The passage of flow is asymmetric. Slip conditions have been incorporated in both momentum and 

thermal profiles. The mathematical model is constructed using laws of momentum and energy 

conservation. The resulting coupled equations are solved using small wave number approximation. 

Impacts of important quantities on temperature and velocity profiles of fluid along with solid 

particles have been debated through graphs. Entropy generation analysis has been carried out for 

influential parameters.  

5.1 Problem Formulation 

The two-dimensional fluid flow is considered in asymmetric channel of width 𝑑1 + 𝑑2. Dust 

particles are distributed uniformly. Sinusoidal wave propagation is considered along the boundary 

walls. The geometry of the walls due to sinusoidal waves is expressed by the Eqns. (2.1a) and 

(2.1b). 

The ruling equations describing fluid flow are  

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,           (5.1) 
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𝜌 [
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑋
+ 𝜇∇2𝑈 + 𝑘𝑁(𝑈𝑠 − 𝑈),     (5.2) 

𝜌 [
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑌
+ 𝜇∇2𝑉 + 𝑘𝑁(𝑉𝑠 − 𝑉),     (5.3) 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
] = 𝑘∗[∇2𝑇] +

𝑁𝐶𝑝

𝜏𝑇
(𝑇𝑠 − 𝑇) +

𝑁

𝜏𝑉
(𝑈𝑠 − 𝑈)2 + Φ,   (5.4) 

where viscous dissipation is 

Φ = 𝜇 [2 {(
𝜕𝑈

𝜕𝑋
)
2

+ (
𝜕𝑉

𝜕𝑌
)
2

} + (
𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)
2

] ,       (5.5) 

The ruling equations for dust particles are  

𝜕𝑈𝑠

𝜕𝑋
+

𝜕𝑉𝑠

𝜕𝑌
= 0,           (5.6) 

𝜕𝑈𝑠

𝜕𝑡
+ 𝑈𝑠

𝜕𝑈𝑠

𝜕𝑋
+ 𝑉𝑠

𝜕𝑈𝑠

𝜕𝑌
=

𝑘

𝑚
(𝑈 − 𝑈𝑠),        (5.7) 

𝜕𝑉𝑠

𝜕𝑡
+ 𝑈𝑠

𝜕𝑉𝑠

𝜕𝑋
+ 𝑉𝑠

𝜕𝑉𝑠

𝜕𝑌
=

𝑘

𝑚
(𝑉 − 𝑉𝑠),        (5.8) 

𝜕𝑇𝑠

𝜕𝑡
+ 𝑈𝑠

𝜕𝑇𝑠

𝜕𝑋
+ 𝑉𝑠

𝜕𝑇𝑠

𝜕𝑌
= −

𝐶𝑝

𝐶𝑚
(𝑇𝑠 − 𝑇).       (5.9) 

The coordinates (𝑋, 𝑌) in fixed frame of reference are transformed to the coordinates (𝑥̅, 𝑦̅) in 

wave frame of reference by the relation 

𝑦̅ = 𝑌, 𝑥̅ = 𝑋 − 𝑐𝑡, 𝑣̅ = 𝑉, 𝑢̅ = 𝑈 − 𝑐, 𝑢̅𝑠 = 𝑈𝑠 − 𝑐, 𝑣̅𝑠 = 𝑉𝑠 , 𝑇̅(𝑥̅, 𝑦̅) = 𝑇(𝑋, 𝑌, 𝑡),

𝑇̅𝑠(𝑥̅, 𝑦̅) = 𝑇𝑠(𝑋, 𝑌, 𝑡), 𝑝̅(𝑥̅, 𝑦̅) = 𝑃(𝑋, 𝑌, 𝑡).       (5.10) 

Using transformation (5.10), Eqns. (5.1) - (5.9) become 

For fluid flow 

𝜕𝑢

𝜕𝑥̅
+

𝜕𝑣̅

𝜕𝑦̅
= 0,           (5.11) 
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𝜌 [𝑢̅
𝜕𝑢

𝜕𝑥̅
+ 𝑣̅

𝜕𝑢

𝜕𝑦̅
] = −

𝜕𝑃

𝜕𝑥̅
+ 𝑁(𝑢̅𝑠 − 𝑢̅)𝑘 + 𝜇∇2𝑢̅,      (5.12) 

𝜌 [𝑢̅
𝜕𝑣̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑣̅

𝜕𝑦̅
] = −

𝜕𝑃

𝜕𝑦̅
+ 𝑁(𝑣̅𝑠 − 𝑣̅)𝑘 + 𝜇∇2𝑣̅,      (5.13) 

𝜌𝐶𝑝 [𝑢̅
𝜕𝑇̅

𝜕𝑥̅
+ 𝑣̅

𝜕𝑇̅

𝜕𝑦̅
] = 𝑘∗[∇2𝑇̅] +

𝑁𝐶𝑝

𝜏𝑇
(𝑇̅𝑠 − 𝑇̅) +

𝑁

𝜏𝑉
(𝑢̅𝑠 − 𝑢̅)2 + Φ,    (5.14) 

Viscous dissipation term 

Φ = 𝜇 [2 {(
𝜕𝑢

𝜕𝑥̅
)
2

+ (
𝜕𝑣̅

𝜕𝑦̅
)
2

} + (
𝜕𝑢

𝜕𝑦̅
+

𝜕𝑣̅

𝜕𝑥̅
)
2

] ,       (5.15) 

For solid particles 

𝜕𝑢𝑠

𝜕𝑥̅
+

𝜕𝑣̅𝑠

𝜕𝑦̅
= 0,           (5.16) 

𝑢̅𝑠
𝜕𝑈𝑠

𝜕𝑥̅
+ 𝑣̅𝑠

𝜕𝑈𝑠

𝜕𝑦̅
=

𝑘

𝑚
(𝑢̅ − 𝑢̅𝑠),         (5.17) 

𝑢̅𝑠
𝜕𝑉𝑠

𝜕𝑥̅
+ 𝑣̅𝑠

𝜕𝑉𝑠

𝜕𝑦̅
=

𝑘

𝑚
(𝑣̅ − 𝑣̅𝑠),         (5.18) 

𝑢̅𝑠
𝜕𝑇̅𝑠

𝜕𝑥̅
+ 𝑣̅𝑠

𝜕𝑇̅𝑠

𝜕𝑦̅
= −

𝐶𝑝

𝐶𝑚
(𝑇̅𝑠 − 𝑇̅).        (5.19) 

The expressions of stream functions and dimensionless quantities for fluid phase and particle phase 

are: 

 𝑥 =
𝑥̅

𝜆
, 𝑦 =

𝑦̅

𝑑1
, 𝑢 =

𝑢

𝑐
, 𝑣 =

𝑣̅

𝛿𝑐
,   𝑢𝑠 =

𝑢𝑠̅̅̅̅

𝑐
,    𝑣𝑠 =

𝑣𝑠̅̅ ̅

𝛿𝑐
,   𝑝 =

𝑝̅𝑑1
2

𝜇𝜆𝑐
,   𝛿 =

𝑑1

𝜆
,    𝑎 =

𝑎1

𝑑1
, 𝑏 =

𝑎2

𝑑1
,

𝑑 =
𝑑2

𝑑1
, 𝑅𝑒 =

𝜌𝑐𝑑1

𝜇
, 𝐸𝑐 =

𝑐2

𝐶𝑝(𝑇1−𝑇0)
, 𝑃𝑟 =

𝜇𝐶𝑝

𝑘∗ ,   Θ =
𝑇−𝑇0

𝑇1−𝑇0
,   Φ′ =

𝑑1
2Φ

𝑐2𝜇
, 𝜓′ =

𝜓

𝑐𝑑1
, 𝜑′ =

𝜑

𝑐𝑑1
,

𝑢 =
𝜕𝜓

𝜕𝑦
,    𝑣 = −𝛿

𝜕𝜓

𝜕𝑥
, 𝑢𝑠 =

𝜕𝜑

𝜕𝑦
 , 𝑣𝑠 = −𝛿

𝜕𝜑

𝜕𝑥
,   𝐴 =

𝑘𝑁𝑑1
2

𝜇
,   𝐵 =

𝑘𝑑1

𝑚𝑐
,   𝐴1 =

𝑁𝑑1
2

𝜇𝜏𝑇
,   𝐵1 =

𝑁𝑑1
2

𝜇𝜏𝑣
 ,

𝐶 =
𝐶𝑝𝑑1

𝐶𝑚𝑐
.               (5.20) 
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Using the quantities in Eqn. (5.20), momentum and energy equations for fluid and solid particles 

presented in Eqns. (5.11) - (5.19) become as: 

For fluid flow 

𝑅𝑒 𝛿 [
𝜕𝜓

𝜕𝑦
 
𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
] = −

𝜕𝑝

𝜕𝑥
+ 𝛿2 𝜕3𝜓

𝜕𝑥2𝜕𝑦
+

𝜕3𝜓

𝜕𝑦3
+ 𝐴 (

𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑦
),    (5.21) 

𝑅𝑒 𝛿3 [
𝜕𝜓

𝜕𝑥
 
𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥2] = −
𝜕𝑝

𝜕𝑦
− 𝛿4 𝜕3𝜓

𝜕𝑥3 − 𝛿2 𝜕3𝜓

𝜕𝑦2𝜕𝑥
− 𝛿2𝐴 (

𝜕𝜑

𝜕𝑥
−

𝜕𝜓

𝜕𝑥
),   (5.22) 

𝑅𝑒 𝛿 [
𝜕Θ

𝜕𝑥

𝜕𝜓

𝜕𝑦
−

𝜕Θ

𝜕𝑦

𝜕𝜓

𝜕𝑥
] =

1

𝑝𝑟
[𝛿2 𝜕2Θ

𝜕𝑥2 +
𝜕2Θ

𝜕𝑦2] + 𝐴1(Θ𝑠 − Θ) + 𝐵1𝐸𝑐 (
𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑦
)
2

+ 𝐸𝑐 Φ, (5.23) 

Viscous dissipation term in terms of stream function is 

Φ = 4𝛿2 (
𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝜓

𝜕𝑦2 − 𝛿2 𝜕2𝜓

𝜕𝑥2)
2

.       (5.24) 

For solid particles 

𝛿 (
𝜕𝜑

𝜕𝑦

𝜕2𝜑

𝜕𝑥𝜕𝑦
−

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑦2) = 𝐵 (
𝜕𝜓

𝜕𝑦
−

𝜕𝜑

𝜕𝑦
),        (5.25) 

𝛿 (−
𝜕𝜑

𝜕𝑦

𝜕2𝜑

𝜕𝑥2 +
𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑥𝜕𝑦
) = 𝐵 (

𝜕𝜓

𝜕𝑥
−

𝜕𝜑

𝜕𝑥
),       (5.26) 

𝛿 (
𝜕𝜑

𝜕𝑦

𝜕Θ𝑠

𝜕𝑥
−

𝜕𝜑

𝜕𝑥

𝜕Θ𝑠

𝜕𝑦
) = −𝐶(Θ𝑠 − Θ).        (5.27) 

Compatibility equations for fluid and solid particles are 

𝑅𝑒𝛿 [(
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦2𝜕𝑥
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
) + 𝛿2 (

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥3
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥2𝜕𝑦
)] = 2𝛿2 𝜕4𝜓

𝜕𝑥2𝜕𝑦2
+

𝜕4𝜓

𝜕𝑦4
+ 𝛿4 𝜕4𝜓

𝜕𝑥4
+ 𝐴(∇1

2𝜑 −

∇1
2𝜓),            (5.28) 

𝛿 [
𝜕𝜑

𝜕𝑦

𝜕

𝜕𝑥
∇1

2𝜑 −
𝜕𝜑

𝜕𝑥

𝜕

𝜕𝑦
∇1

2𝜑] = 𝐵[∇1
2𝜓−∇1

2𝜑],       (5.29) 
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where 

∇1
2= 𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2.          (5.30) 

The dimensionless description of walls is expressed by the Eqns. (2.25a) and (2.25b). 

Non-dimensionalized boundary conditions are 

𝜓 =
𝐹

2
,

𝜕𝜓

𝜕𝑦
+ 𝛽𝜏𝑥𝑦 = −1, 𝜑 =

𝐸

2
           at 𝑦 = ℎ1(𝑥),     (5.31a) 

𝜓 = −
𝐹

2
,

𝜕𝜓

𝜕𝑦
− 𝛽𝜏𝑥𝑦 = −1, 𝜑 = −

𝐸

2
         at  𝑦 = ℎ2(𝑥),     (5.31b) 

Θ − 𝜀
𝜕Θ

𝜕𝑦
= 0           at 𝑦 = ℎ1(𝑥), Θ + 𝜀

𝜕Θ

𝜕𝑦
= 1          at 𝑦 = ℎ2(𝑥).   (5.31c) 

Θ𝑠 − 𝜀
𝜕Θ𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥), Θ𝑠 + 𝜀

𝜕Θ𝑠

𝜕𝑦
= 1       at 𝑦 = ℎ2(𝑥).   (5.31d) 

5.2 Method of Solution: 

The perturbation technique is applied to solve the nonlinear differential equations. We use 𝛿 to 

express fluid stream function 𝜓,  particle stream function 𝜑, pressure 𝑝, fluid temperature Θ, 

particle temperature Θ𝑠, time flow rate of fluid 𝐹 and time flow rate of dust particle 𝐸 as 

𝜓 = 𝜓0 + 𝛿𝜓1 + 𝑂(𝛿2),         (5.32) 

𝜑 =  𝜑0 + 𝛿 𝜑1 + 𝑂(𝛿2),         (5.33) 

Θ = Θ0 + 𝛿Θ1 + 𝑂(𝛿2),         (5.34) 

Θ𝑠 = Θ0𝑠 + 𝛿Θ1𝑠 + 𝑂(𝛿2),         (5.35) 

𝐹 = 𝐹0 + 𝛿𝐹1 + 𝑂(𝛿2),         (5.36) 
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𝐸 = 𝐸0 + 𝛿𝐸1 + 𝑂(𝛿2).         (5.37) 

5.2.1 Zeroth Order System: 

𝜕4𝜓0

𝜕𝑦4 + 𝐴 (
𝜕2𝜑0

𝜕𝑦2 −
𝜕2𝜓0

𝜕𝑦2 ) = 0,         (5.38) 

𝐵 (
𝜕2𝜓0

𝜕𝑦2 −
𝜕2𝜑0

𝜕𝑦2 ) = 0,          (5.39) 

1

𝑝𝑟

𝜕2Θ0

𝜕𝑦2
+ 𝐵1𝐸𝑐 (

𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
)
2

+ 𝐸𝑐 (
𝜕2𝜓0

𝜕𝑦2
)
2

+ 𝐴1(Θ0𝑠 − Θ0) = 0,    (5.40) 

𝐶(Θ0𝑠 − Θ0) = 0.          (5.41) 

Boundary conditions are 

𝜓0 =
𝐹0

2
,

𝜕𝜓0

𝜕𝑦
+ 𝛽𝜏0𝑥𝑦 = −1, 𝜑0 =

𝐸0

2
           at 𝑦 = ℎ1(𝑥),     (5.42a) 

𝜓0 = −
𝐹0

2
,

𝜕𝜓0

𝜕𝑦
− 𝛽𝜏0𝑥𝑦 = −1, 𝜑0 = −

𝐸0

2
           at 𝑦 = ℎ2(𝑥),    (5.42b) 

Θ0 − 𝜀
𝜕Θ0

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥), Θ0 + 𝜀

𝜕Θ0

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).   (5.42c) 

Θ0𝑠 − 𝜀
𝜕Θ0𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥), Θ0𝑠 + 𝜀

𝜕Θ0𝑠

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).   (5.42d) 

Applying DSolver command in Mathematica, solution of zeroth order system is obtained as 

𝜓0(𝑦) =
(ℎ2+ℎ1−2𝑦)(2(ℎ2−ℎ1)(ℎ2−𝑦)(ℎ1−𝑦)+F0(ℎ2

2+ℎ1
2+2ℎ1𝑦−2𝑦2+2ℎ2(−2ℎ1+𝑦−3𝛽)+6ℎ1𝛽))

2(ℎ2−ℎ1)2(ℎ2−ℎ1−6𝛽)
 ,  (5.43) 

𝜑0(𝑦) =
(ℎ2+ℎ1−2𝑦)(2(F0−ℎ2+ℎ1)(ℎ2−𝑦)(−ℎ1+𝑦)+E0(ℎ2−ℎ1)(ℎ2−ℎ1−6𝛽))

2(ℎ2−ℎ1)2(ℎ2−ℎ1−6𝛽)
,    (5.44) 

Θ0(𝑦) =
1

4(ℎ2−ℎ1)4(−ℎ2+ℎ1+6𝛽)2
𝐵𝑟 (−3𝐹0

2(ℎ2 + ℎ1 − 2𝑦)4 + 2(ℎ2 − ℎ1)
2𝑦2(−36ℎ2

2 −

72ℎ2ℎ1 − 36ℎ1
2 + 𝐸0ℎ2

3
𝐵1 − 3𝐸0ℎ2

2ℎ1𝐵1 + 3𝐸0ℎ2ℎ1
2
𝐵1 − 𝐸0ℎ1

3
𝐵1 + 48ℎ2𝑦 + 48ℎ1𝑦 −
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24𝑦2 − 12𝐸0(ℎ2 − ℎ1)
2𝐵1𝛽 + 36𝐸0(ℎ2 − ℎ1)𝐵1𝛽

2) + 2𝐹0(ℎ2 − ℎ1)𝑦
2(72ℎ2

2 + 144ℎ2ℎ1 +

72ℎ1
2 − ℎ2

4
𝐵1 + 4ℎ2

3ℎ1𝐵1 − 6ℎ2
2ℎ1

2
𝐵1 + 4ℎ2ℎ1

3
𝐵1 − ℎ1

4
𝐵1 − 96ℎ2𝑦 − 96ℎ1𝑦 + 48𝑦2 +

12(ℎ2 − ℎ1)
3𝐵1𝛽 − 36(ℎ2 − ℎ1)

2𝐵1𝛽
2)) + 𝐶1 + 𝑦𝐶2 .     (5.45) 

5.2.2 First Order System: 

𝑅𝑒 (
𝜕𝜓0

𝜕𝑦

𝜕3𝜓0

𝜕𝑥𝜕𝑦2 −
𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑦3 ) =
𝜕4𝜓1

𝜕𝑦4 + 𝐴 (
𝜕2𝜑1

𝜕𝑦2 −
𝜕2𝜓1

𝜕𝑦2 ),     (5.46)  

𝜕𝜑0

𝜕𝑦

𝜕3𝜑0

𝜕𝑥𝜕𝑦2
−

𝜕𝜑0

𝜕𝑥

𝜕3𝜑0

𝜕𝑦3
= 𝐵 (

𝜕2𝜓1

𝜕𝑦2
−

𝜕2𝜑1

𝜕𝑦2
),       (5.47) 

𝑅𝑒 𝛿 [
𝜕Θ0

𝜕𝑥

𝜕𝜓0

𝜕𝑦
−

𝜕Θ0

𝜕𝑦

𝜕𝜓0

𝜕𝑥
] =

1

𝑝𝑟

𝜕2Θ1

𝜕𝑦2 + 𝐴1(Θ1𝑠 − Θ1) + 2𝐵1 𝐸𝑐 (
𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
) (

𝜕𝜑1

𝜕𝑦
−

𝜕𝜓1

𝜕𝑦
) +

2𝐸𝑐
𝜕2𝜓1

𝜕𝑦2

𝜕2𝜓0

𝜕𝑦2 ,           (5.48) 

𝜕𝜑0

𝜕𝑦

𝜕Θ0𝑠

𝜕𝑥
−

𝜕𝜑0

𝜕𝑥

𝜕Θ0𝑠

𝜕𝑦
= 𝐶(Θ1 − Θ1𝑠).        (5.49) 

Boundary conditions are 

𝜓1 =
𝐹1

2
,

𝜕𝜓1

𝜕𝑦
+ 𝛽𝜏1𝑥𝑦 = 0, 𝜑1 =

𝐸1

2
           at 𝑦 = ℎ1(𝑥),     (5.50a) 

𝜓1 = −
𝐹1

2
,

𝜕𝜓1

𝜕𝑦
− 𝛽𝜏1𝑥𝑦 = 0, 𝜑1 = −

𝐸1

2
           at 𝑦 = ℎ2(𝑥),    (5.50b) 

Θ1 − 𝜀
𝜕Θ1

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥), Θ1 + 𝜀

𝜕Θ1

𝜕𝑦
= 0        at 𝑦 = ℎ2(𝑥),   (5.50c) 

Θ1𝑠 − 𝜀
𝜕Θ1𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥), Θ1𝑠 + 𝜀

𝜕Θ1𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ2(𝑥).   (5.50d) 

Solution of above system of differential equations has been obtained by applying DSolver 

command in Mathematica. 
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5.3 Entropy: 

The entropy generation is described by the equation  

𝑆𝐸 =
𝑘∗

𝑇0
2 (

𝜕T

𝜕𝑦
)

2

+
𝜇

𝑇0
(
𝜕𝑢

𝜕𝑦
)
2

, 

with dimensionless form as 

𝑁𝑠 = (
𝜕Θ

𝜕𝑦
)
2

+ 𝐵𝑟. ∆𝑇 (
𝜕2𝜓

𝜕𝑦2
)

2

, 

here 𝑁𝑠 =
𝑆𝐸𝑑1

2𝑇0
2

𝑘∗(𝑇1−𝑇0)2
 , 𝐵𝑟 = 𝑃𝑟. 𝐸𝑐 and ∆𝑇 =

𝑇0

𝑇1−𝑇0
 represent entropy generation, Brinkman 

number and non-dimensionalized temperature difference. 

The ratio of heat transfer irreversibility and total entropy is represented by Bejan number and given 

as: 

𝐵𝑒 =
Heat Transfer Irreversibility

Total Irreversibility
, 

𝐵𝑒 =
(
𝜕Θ

𝜕𝑦
)
2

(
𝜕Θ

𝜕𝑦
)
2
+𝐵𝑟.∆𝑇(

𝜕2𝜓

𝜕𝑦2)
2. 

5.4 Graphical Analysis: 

This section is reserved for graphical discussion of entropy generation, velocity, and temperature 

distribution of fluid and particles for various parameters. 
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5.4.1 Fluid Flow Analysis 

The fluid velocity profile for slip parameter 𝛽, wave number 𝛿, and Reynolds number 𝑅𝑒 is plotted 

in Figs. 5.1-5.3. In Fig. 5.1, fluid flow behavior is discussed for various values of slip parameter 

𝛽. Decrease in velocity profile is observed as slip parameter 𝛽 increases. Physically, high values 

of slip parameter increase resistance that reduces velocity of the fluid. Fig. 5.2 represents results 

for different values of wave number 𝛿. As wave number 𝛿 increases fluid velocity decreases. The 

Reynolds number 𝑅𝑒 impact on velocity behavior is illustrated in Fig. 5.3. Higher values of 

Reynolds number 𝑅𝑒 enhance fluid velocity. This is the consequence of dominant inertial forces. 

5.4.2 Solid Particle Flow Analysis 

The particle flow behavior for slip parameter 𝛽, wave number 𝛿, and Reynolds number 𝑅𝑒 is 

shown in Figs. 5.4-5.6. In Fig. 5.4, plots are presented for different values of slip parameter 𝛽. The 

increase in slip parameter 𝛽 causes decline in particle velocity field. The effect of wave number 𝛿 

is depicted in Fig. 5.5. Increase in particle velocity is observed when wave number 𝛿 increases. 

Fig. 5.6 is the demonstration of Reynolds number 𝑅𝑒 effect on particle flow. As Reynolds number 

𝑅𝑒 increases particle velocity is enhanced. Impact of wave number 𝛿 on particle velocity is 

opposite to that of fluid velocity. 

5.4.3 Temperature Distribution Analysis 

Graphs of fluid and particle temperature distribution for wave number 𝛿, and Brinkman number 

𝐵𝑟 have been discussed in Figs. 5.7-5.9. In Fig. 5.7, results to demonstrate effect of Brinkman 

number 𝐵𝑟 are simulated. Rise in fluid temperature is noticed with the increase in Brinkman 

number 𝐵𝑟. Higher values of Brinkman number imply significant viscous dissipation impact that 

leads rise in heat transfer. Fig. 5.8 demonstrates the effect of wave number 𝛿 on fluid temperature 
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profile. Higher temperature is noticed with the increasing values of wave number 𝛿. Behavior of 

temperature profile for dust particles is depicted in Fig. 5.9 for various values of Brinkman number 

𝐵𝑟. Temperature of dust particles increases as Brinkman number 𝐵𝑟 increases. Thus, impact of 

Brinkman number 𝐵𝑟 on fluid and particles temperature profile is same. 

5.4.4 Entropy Generation 

Entropy generation graphs are plotted for Brinkman number 𝐵𝑟, wave number 𝛿, and thermal slip 

parameter 𝜀 in Figs. 5.10-5.12. In Fig. 5.10, entropy generation is discussed for different values of 

Brinkman number 𝐵𝑟. Increase in entropy generation is observed as Brinkman number 𝐵𝑟 

increases. As entropy generation is directly related to temperature therefore entropy generation 

also increases due to viscous dissipation impact. Graphical illustration of entropy generation for 

numerous values of wave number 𝛿 is presented in Fig. 5.11. As wave number increases, dual 

results are obtained for entropy generation function. Fig. 5.12 represents effect of thermal slip 

parameter 𝜀 on entropy generation. As thermal slip parameter 𝜀 increases, entropy generation 

increases. 

5.4.5 Bejan Number  

The plots of Bejan number 𝐵𝑒 for Brinkman number 𝐵𝑟, wave number 𝛿, and thermal slip 

parameter 𝜀 are shown in Figs. 5.13-5.15. The influence of Brinkman number 𝐵𝑟 on Bejan number 

is shown in Fig. 5.13. It can be seen that Bejan number 𝐵𝑒 decreases as Brinkman number 𝐵𝑟 

increases. The influence of wave number 𝛿 on Bejan number 𝐵𝑒 is portrayed in Fig. 5.14. Bejan 

number declines with the rise in wave number 𝛿. Fig. 5.15 exhibits thermal slip parameter 𝜀 effect 

on Bejan number 𝐵𝑒. Increasing behavior of Bejan number 𝐵𝑒 is observed for increasing values 

of thermal slip parameter 𝜀. 
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5.4.6 Validation of Present Study 

Fig. 5.16 presents the comparison of recent work with the results obtained by Kothandapani and 

Srinivas [90]. It shows that graph of velocity profile of fluid obtained in recent chapter exactly matches 

with the graph obtained by Kothandapani and Srinivas [90]. 

 

Fig 5.1: The fluid velocity with  𝑅𝑒 = 0.005, 𝑎 = 0.3, 𝑏 = 0.8, 𝑑 = 0.1, 𝛿 = 0.05, 𝜙 =
𝜋

4
,

𝐴 = 0.2, 𝐵 = 0.3. 
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Fig 5.2: The fluid velocity with 𝑅𝑒 = 0.15, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝛽 = 0.1, 𝜙 =
𝜋

6
, 𝐴 = 0.2,

𝐵 = 0.3. 

 

Fig 5.3: The fluid velocity with  𝛽 = 0.5, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

6
, 𝐴 = 0.2, 𝐵 = 0.3,

𝛿 = 0.2. 

 

Fig 5.4: The particle velocity with  𝑅𝑒 = 0.15, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

6
, 𝐴 = 0.2,

𝐵 = 0.3, 𝛿 = 0.01. 
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Fig 5.5: The particle velocity with 𝛽 = 0.1, 𝑅𝑒 = 0.15, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

6
,

𝐴 = 0.2, 𝐵 = 0.3. 

 

Fig 5.6: The particle velocity with  𝛽 = 0.5, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

6
,   𝐴 = 0.2,

𝐵 = 0.3, 𝛿 = 0.2. 
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Fig 5.7: Fluid temperature profile with 𝑃𝑟 = 0.9, 𝑅𝑒 = 0.2, 𝛽 = 0.2, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6,

𝛿 = 0.01, 𝜀 = 0.01, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 1.5, 𝐵1 = 0.3, 𝐴1 = 0.5, 𝐿 = 0.7. 

 

Fig 5.8: Fluid temperature profile with 𝑃𝑟 = 0.7, 𝑅𝑒 = 10, 𝛽 = 0.2, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6,

𝐵𝑟 = 0.2, 𝜀 = 0.4, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝐵1 = 0.1, 𝐴1 = 0.3, 𝐿 = 0.7. 
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Fig 5.9: Particle temperature profile with 𝑃𝑟 = 0.9, 𝑅𝑒 = 2, 𝛽 = 0.2, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6,

𝛿 = 0.01, 𝜀 = 0.01, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 1.5, 𝐵1 = 0.3, 𝐴1 = 0.5, 𝐿 = 0.7. 

 

Fig 5.10: Entropy generation function with 𝑃𝑟 = 0.5, 𝑅𝑒 = 0.5, 𝛽 = 0.2, 𝑎 = 0.2, 𝑏 = 0.8,

𝑑 = 0.6, 𝛿 = 0.2, 𝜀 = 0.1, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝐵1 = 0.5, 𝐴1 = 0.3, 𝐿 = 0.7,

∆𝑇 = 0.9. 
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Fig 5.11: Entropy generation function with 𝑃𝑟 = 0.5, 𝑅𝑒 = 5, 𝛽 = 0.2, 𝑎 = 0.2, 𝑏 = 0.8,

𝑑 = 0.6, 𝐵𝑟 = 0.3, 𝜀 = 0.5, 𝜙 =
𝜋

4
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝐵1 = 0.5, 𝐴1 = 0.3, 𝐿 = 0.7,

∆𝑇 = 0.9. 

 

Fig 5.12: Entropy generation function with 𝑃𝑟 = 0.5, 𝑅𝑒 = 0.5, 𝛽 = 0.2, 𝑎 = 0.2, 𝑏 = 0.8,

𝑑 = 0.6, 𝛿 = 0.2, 𝐵𝑟 = 0.7, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝐵1 = 0.5, 𝐴1 = 0.3, 𝐿 = 0.7,

∆𝑇 = 0.9. 
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Fig 5.13: Bejan number with 𝑅𝑒 = 20, 𝛽 = 0.2, 𝐵1 = 0.5, 𝐴1 = 0.3, 𝜀 = 0.4, ∆𝑇 = 0.9, 𝐿 = 0.7,

𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝑃𝑟 = 0.5, 𝛿 = 0.07. 

 

Fig 5.14: Bejan number with 𝑅𝑒 = 20, 𝛽 = 0.2, 𝐵1 = 0.5, 𝐴1 = 0.3, 𝜀 = 0.4, ∆𝑇 = 0.9, 𝐿 = 0.7,

𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝑃𝑟 = 0.5, 𝐵𝑟 = 0.2. 
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Fig 5.15: Bejan number with 𝑅𝑒 = 20, 𝛽 = 0.2, 𝐵1 = 0.5, 𝐴1 = 0.3, 𝛿 = 0.05, ∆𝑇 = 0.9,

𝐿 = 0.7, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.6, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.3, 𝐶 = 0.5, 𝑃𝑟 = 0.5, 𝐵𝑟 = 0.2. 

 

 

 

Fig 5.16: Comparison of velocity profile for 𝑅𝑒 = 0, 𝛽 = 0 with the results of Kothandapani and 

Srinivas [90]. 
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5.5 Conclusion 

Effects of wall slip have been discussed for velocity profile of viscous fluid travelling through an 

asymmetric channel. Simulations to illustrate effects of thermal slip on temperature profile have 

been presented. Discussion on entropy generation is also included. Some significant results of 

recent study are listed as: 

• Fluid velocity is enhanced by increasing Reynolds number while decreases by increasing 

slip parameter and wave number. 

• Particle velocity increases with increase in Reynolds number and wave number while 

declines by increasing slip parameter. 

• Fluid temperature rises by increasing wave number and Brinkman number. Also, solid 

particle temperature increases by increasing Brinkman number. 

• Entropy generation rate increases by increasing Brinkman number and thermal slip. 

• Bejan number decreases by growing Brinkman number and wave number and reducing 

thermal slip parameter. 
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Chapter 6 

Thermal and Magnetic Effects on Second Grade 

Dusty Liquid with Peristaltic Propagation in 

Porous Medium 

The chapter is dedicated for the discussion of heat transfer effects on MHD second grade dusty 

fluid propelling peristaltically. A porous medium carries the fluid in an asymmetric channel. 

Stream functions have been introduced to simplify governing equations. Analytic solution of 

coupled equations has been obtained using perturbation method under small wave number 

approximation. The results of fluid and dust particle profiles have been debated graphically. 

Graphs have been employed to carry out comparisons of influential parameters for fluid and solid 

particle velocity. Furthermore, temperature distribution analysis has been performed for significant 

quantities. Pressure distribution graphs have also been studied.  

6.1 Problem Formulation 

A two-dimensional second grade peristaltic fluid with dust particles suspended in it is flowing 

through a porous medium. The channel is asymmetric of width 𝑑1 + 𝑑2. An applied magnetic field 

𝐵0 is incorporated along y-direction. Sinusoidal wave propagation is deliberated along the 

boundary walls. The geometry of walls due to sinusoidal waves is expressed by Eqns. (2.1a) and 

(2.1b). 
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The Stress tensor 𝝉 for second grade fluid is 

𝝉 = 𝜇𝑨𝟏 + 𝛼1𝑨𝟐 + 𝛼2𝑨𝟏
2,         (6.1) 

where 

𝑨𝟏 = (𝛁.𝑽) + (𝛁.𝑽)𝑻, 𝑨𝟐 =
𝑑𝑨𝟏

𝑑𝑡
+ 𝑨𝟏(𝛁. 𝑽) + (𝛁. 𝑽)𝑻𝑨𝟏.     (6.2) 

The momentum and energy equations describing fluid flow are 

𝜕𝑈

𝜕𝑋
+

𝜕𝑉

𝜕𝑌
= 0,           (6.3) 

𝜌 [
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑋
+ 𝑉

𝜕𝑈

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑋
+

𝜕𝝉𝑋𝑋

𝜕𝑋
+

𝜕𝝉𝑋𝑌

𝜕𝑌
+ 𝑘𝑁(𝑈𝑠 − 𝑈) −

𝜇

𝑘1
𝑈 − 𝜎𝐵𝑜

2𝑈,  (6.4) 

𝜌 [
𝜕𝑉

𝜕𝑡
+ 𝑈

𝜕𝑉

𝜕𝑋
+ 𝑉

𝜕𝑉

𝜕𝑌
] = −

𝜕𝑃

𝜕𝑌
+

𝜕𝝉𝑋𝑌

𝜕𝑋
+

𝜕𝝉𝑌𝑌

𝜕𝑌
+ 𝑘𝑁(𝑉𝑠 − 𝑉) −

𝜇

𝑘1
𝑉,    (6.5) 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑋
+ 𝑉

𝜕𝑇

𝜕𝑌
] = 𝑘∗ [

𝜕2𝑇

𝜕𝑋2 +
𝜕2𝑇

𝜕𝑌2] +
𝑁𝐶𝑝

𝜏𝑇
(𝑇𝑠 − 𝑇) +

𝑁

𝜏𝑈
(𝑈𝑠 − 𝑈)2 + Φ,  (6.6) 

where viscous dissipation is 

Φ = 𝜏𝑋𝑋
𝜕𝑈

𝜕𝑋
+ 𝜏𝑋𝑌

𝜕𝑈

𝜕𝑌
+ 𝜏𝑌𝑋

𝜕𝑉

𝜕𝑌
+ 𝜏𝑌𝑌

𝜕𝑉

𝜕𝑌
 ,       (6.7) 

The momentum and energy equations for dust particles are  

𝜕𝑈𝑠

𝜕𝑋
+

𝜕𝑉𝑠

𝜕𝑌
= 0,           (6.8) 

𝜕𝑈𝑠

𝜕𝑡
+ 𝑈𝑠

𝜕𝑈𝑠

𝜕𝑋
+ 𝑉𝑠

𝜕𝑈𝑠

𝜕𝑌
=

𝑘

𝑚
(𝑈 − 𝑈𝑠),        (6.9) 

𝜕𝑉𝑠

𝜕𝑡
+ 𝑈𝑠

𝜕𝑉𝑠

𝜕𝑋
+ 𝑉𝑠

𝜕𝑉𝑆

𝜕𝑌
=

𝑘

𝑚
(𝑉 − 𝑉𝑠),        (6.10) 

𝜕𝑇𝑠

𝜕𝑡
+ 𝑈𝑠

𝜕𝑇𝑠

𝜕𝑋
+ 𝑉𝑠

𝜕𝑇𝑠

𝜕𝑌
= −

𝐶𝑝

𝐶𝑚
(𝑇𝑆 − 𝑇).       (6.11) 
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The coordinates (𝑋, 𝑌) in fixed frame of reference are transformed to the coordinates (𝑥̅, 𝑦̅) in 

wave frame of reference by the relation 

𝑦̅ = 𝑌, 𝑥̅ = 𝑋 − 𝑐𝑡, 𝑣̅ = 𝑉, 𝑢̅ = 𝑈 − 𝑐, 𝑢̅𝑠 = 𝑈𝑠 − 𝑐, 𝑣̅𝑠 = 𝑉𝑠 , 𝑝̅(𝑥) = 𝑃(𝑋, 𝑡).  (6.12) 

The expressions of stream functions and dimensionless quantities for fluid and solid particles are 

 𝑥 =
𝑥̅

𝜆
, 𝑦 =

𝑦̅

𝑑1
, 𝑝 =

𝑝̅𝑑1
2

𝜇𝜆𝑐
, 𝛿 =

𝑑1

𝜆
, 𝑎 =

𝑎1

𝑑1
 , 𝑏 =

𝑎2

𝑑1
, 𝑑 =

𝑑2

𝑑1
, 𝑅𝑒 =

𝜌𝑐𝑑1

𝜇
, 𝛼1

′ =
𝛼1𝑐

𝜇𝑑1
 , 𝛼2

′ =
𝛼2𝑐

𝜇𝑑1
,

𝜏′ =
𝜏𝑑1

𝜇𝑐
, 𝐸𝑐 =

𝑐2

𝐶𝑝(𝑇1−𝑇0)
, 𝑃𝑟 =

𝜇𝐶𝑝

𝑘∗ , Θ =
𝑇−𝑇0

𝑇1−𝑇0
,   Φ =

𝑑1
2Φ

𝑐2𝜇
,   𝜓′ =

𝜓

𝑐𝑑1
,   𝜑′ =

𝜑

𝑐𝑑1
,   𝑢 =

𝜕𝜓

𝜕𝑦
,

𝑣 = −𝛿
𝜕𝜓

𝜕𝑥
,   𝑢𝑠 =

𝜕𝜑

𝜕𝑦
 , 𝑣𝑠 = −𝛿

𝜕𝜑

𝜕𝑥
, 𝐴 =

𝑘𝑁𝑑1
2

𝜇
, 𝐵 =

𝑘𝑑1

𝑚𝑐
, 𝐴1 =

𝑁𝑑1
2

𝜏𝑇𝜇
, 𝐵1 =

𝑁𝑑1
2

𝜇𝜏𝑢
 , 𝑀2 =

𝜎𝐵𝑜
2𝑑1

2

𝜇
,

𝑚0 =
𝑑1

2

𝑘1
, 𝐶 =

𝐶𝑝𝑑1

𝐶𝑚𝑐
,𝐾 = 𝑚 + 𝑀2,        (6.13) 

where 𝑎, 𝑏, 𝑑 are non-dimensional lengths describing the channel and  𝐴, 𝐵, 𝐶, 𝐴1, and 𝐵1 are 

dimensionless quantities. 

Using above quantities, momentum and energy equations become as: 

For fluid flow 

𝑅𝑒 𝛿 [
𝜕𝜓

𝜕𝑦
 
𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2] = −
𝜕𝑝

𝜕𝑥
+ 𝛿 

𝜕τ𝑥𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+ 𝐴 (

𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑦
) − 𝐾 (

𝜕𝜓

𝜕𝑦
+ 1),  (6.14) 

𝑅𝑒 𝛿3 [
𝜕𝜓

𝜕𝑥
 
𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥2] = −
𝜕𝑝

𝜕𝑥
+ 𝛿3 𝜕𝜏𝑥𝑦

𝜕𝑥
+ 𝛿

𝜕𝜏𝑦𝑦

𝜕𝑦
+ 𝛿2𝐴 (

𝜕𝜓

𝜕𝑥
−

𝜕𝜑

𝜕𝑥
),   (6.15) 

𝑅𝑒 𝛿 [
𝜕Θ

𝜕𝑥

𝜕𝜓

𝜕𝑦
−

𝜕Θ

𝜕𝑦

𝜕𝜓

𝜕𝑥
] =

1

𝑝𝑟
[𝛿2 𝜕2Θ

𝜕𝑥2 +
𝜕2Θ

𝜕𝑦2] + 𝐴1(Θ𝑠 − Θ) + 𝐵1 𝐸𝑐 (
𝜕𝜑

𝜕𝑦
−

𝜕𝜓

𝜕𝑦
)
2

+ 𝐸𝑐 Φ. (6.16) 

Stresses in terms of stream functions are 

𝜏𝑥𝑥 = 2𝛿
𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝛼1 [2𝛿2 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
− 2𝛿2 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥𝜕𝑦2 + 𝛿4 (
𝜕2𝜓

𝜕𝑥2)
2

− (
𝜕2𝜓

𝜕𝑦2)
2

],   (6.17) 
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𝜏𝑥𝑦 = (
𝜕2𝜓

𝜕𝑦2
− 𝛿2 𝜕2𝜓

𝜕𝑥2
) + 𝛼1 [−𝛿3 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥3
+ 𝛿

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥𝜕𝑦2
+ 𝛿3 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥2𝜕𝑦
− 𝛿

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
+ 2𝛿

𝜕2𝜓

𝜕𝑦2

𝜕2𝜓

𝜕𝑥𝜕𝑦
+

2𝛿3 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑥𝜕𝑦
],           (6.18) 

𝜏𝑦𝑦 = −2𝛿
𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝛼1 [−2𝛿2 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+ 2𝛿2 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥𝜕𝑦2 − 𝛿4 (
𝜕2𝜓

𝜕𝑥2)
2

+ (
𝜕2𝜓

𝜕𝑦2)
2

].  (6.19) 

Viscous dissipation term in terms of stream function is 

Φ = 2𝛿2 (
𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

+ 2𝛿3 (
𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

+ (
𝜕2𝜓

𝜕𝑦2
)
2

− 𝛿2 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑦2
− 𝛿2 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕2𝜓

𝜕𝑦2
+ 𝛿4 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑥𝜕𝑦
+

𝛼1 [2𝛿3 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 2𝛿3 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦2𝜕𝑥

𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝛿5 (

𝜕2𝜓

𝜕𝑥2)
2

𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝛿

𝜕2𝜓

𝜕𝑥𝜕𝑦
(
𝜕2𝜓

𝜕𝑦2)
2

+

2𝛿4 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥2𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 2𝛿4 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦2𝜕𝑥

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 𝛿2 𝜕2𝜓

𝜕𝑥𝜕𝑦
(
𝜕2𝜓

𝜕𝑦2)
2

+ 𝛿6 𝜕2𝜓

𝜕𝑥𝜕𝑦
(
𝜕2𝜓

𝜕𝑥2)
2

− 𝛿3 𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑦2

𝜕3𝜓

𝜕𝑥3 +

𝛿
𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑦2

𝜕3𝜓

𝜕𝑦2𝜕𝑥
+ 𝛿3 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥2𝜕𝑦

𝜕2𝜓

𝜕𝑦2 − 𝛿
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3

𝜕2𝜓

𝜕𝑦2 + 2𝛿3 𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕2𝜓

𝜕𝑦2 + 𝛿5 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥3 −

𝛿3 𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦2𝜕𝑥

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 𝛿5 𝜕2𝜓

𝜕𝑥𝜕𝑦

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥2𝜕𝑦
+ 𝛿3 𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3

𝜕2𝜓

𝜕𝑥𝜕𝑦
− 2𝛿3 𝜕2𝜓

𝜕𝑦2
(

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

− 2𝛿5 𝜕2𝜓

𝜕𝑥2
(

𝜕2𝜓

𝜕𝑥𝜕𝑦
)
2

]. 

            (6.20) 

For solid particles 

𝜕𝜑

𝜕𝑦

𝜕2𝜑

𝜕𝑥𝜕𝑦
− 𝛿

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑦2 =
𝑘

𝑚
(
𝜕𝜓

𝜕𝑦
−

𝜕𝜑

𝜕𝑦
),        (6.21) 

−
𝜕𝜑

𝜕𝑦

𝜕2𝜑

𝜕𝑥2 + 𝛿
𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑥𝜕𝑦
=

𝑘

𝑚
(
𝜕𝜑

𝜕𝑥
−

𝜕𝜓

𝜕𝑥
),        (6.22) 

𝛿 (
𝜕𝜑

𝜕𝑦

𝜕Θ𝑠

𝜕𝑥
−

𝜕𝜑

𝜕𝑥

𝜕Θ𝑆

𝜕𝑦
) = −𝐶(Θ𝑠 − Θ).        (6.23) 

Compatibility equations are: 

For fluid flow 
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𝑅𝑒 [𝛿 (
𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑦𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦3
) − 𝛿3 (

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥𝜕𝑦𝜕𝑥
−

𝜕𝜓

𝜕𝑦

𝜕3𝜓

𝜕𝑥3
)] = 𝛿

𝜕2

𝜕𝑥𝜕𝑦
(𝜏𝑥𝑥 − 𝜏𝑦𝑦) + (

𝜕2

𝜕𝑦2
−

𝛿2 𝜕2

𝜕𝑥2) 𝜏𝑥𝑦 + 𝐴(∇1
2𝜑 − ∇1

2𝜓) − 𝐾∇1
2𝜓.       (6.24) 

For dust particles 

𝛿 [
𝜕𝜑

𝜕𝑦

𝜕

𝜕𝑥
∇1

2𝜑 −
𝜕𝜑

𝜕𝑥

𝜕

𝜕𝑦
∇1

2𝜑] = 𝐵[∇1
2𝜓−∇1

2𝜑],       (6.25) 

where 

∇1
2= 𝛿2 𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2.          (6.26) 

The dimensionless description of walls is given by Eqns. (2.25a) and (2.25b). 

Boundary conditions in dimensionless form are 

𝜓 =
𝐹

2
,
𝜕𝜓

𝜕𝑦
+ 𝛽𝜏𝑥𝑦 = −1, 𝜑 =

𝐸

2
           at 𝑦 = ℎ1(𝑥),      (6.27a) 

𝜓 = −
𝐹

2
,
𝜕𝜓

𝜕𝑦
− 𝛽𝜏𝑥𝑦 = −1, 𝜑 = −

𝐸

2
           at 𝑦 = ℎ2(𝑥),     (6.27b) 

Θ − 𝜀
𝜕Θ

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (6.28a) 

Θ + 𝜀
𝜕Θ

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (6.28b) 

Θ𝑠 − 𝜀
𝜕Θ𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (6.29a) 

Θ𝑠 + 𝜀
𝜕Θ𝑠

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (6.29b) 
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6.2 Method of Solution 

The modeled nonlinear differential equations are evaluated by perturbation method. We use 𝛿 to 

express fluid stream function 𝜓, particle stream function 𝜑, pressure 𝑝, fluid temperature Θ, 

particle temperature Θ𝑝, time flow rate of fluid 𝐹, and time flow rate of dust particles 𝐸 as 

𝜓 = 𝜓0 + 𝛿𝜓1 + 𝑂(𝛿2),         (6.30) 

𝜑 =  𝜑0 + 𝛿𝜑1 + 𝑂(𝛿2),         (6.31) 

𝑝 =  𝑝0 + 𝛿𝑝1 + 𝑂(𝛿2),         (6.32) 

Θ = Θ0 + 𝛿Θ1 + 𝑂(𝛿2),         (6.33) 

Θ𝑠 = Θ0𝑠 + 𝛿Θ1𝑠 + 𝑂(𝛿2),         (6.34) 

𝐹 = 𝐹0 + 𝛿𝐹1 + 𝑂(𝛿2),         (6.35) 

𝐸 = 𝐸0 + 𝛿𝐸1 + 𝑂(𝛿2).         (6.36) 

6.2.1 Zeroth Order System 

𝜕2𝑆0𝑥𝑦

𝜕𝑦2
+ 𝐴 (

𝜕2𝜑0

𝜕𝑦2
−

𝜕2𝜓0

𝜕𝑦2
) − 𝐾

𝜕2𝜓0

𝜕𝑦2
= 0,       (6.37) 

𝐵 (
𝜕2𝜓0

𝜕𝑦2 −
𝜕2𝜑0

𝜕𝑦2 ) = 0,          (6.38) 

1

𝑃𝑟

𝜕2Θ0

𝜕𝑦2 + 𝐵1𝐸𝑐 (
𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
)
2

+ 𝐸𝑐 Φ0 + 𝐴1(Θ0𝑠 − Θ0) = 0,    (6.39) 

𝐶(Θ0𝑠 − Θ0) = 0,          (6.40) 

where  
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𝜏0𝑥𝑦 =
𝜕2𝜓0

𝜕𝑦2
,           (6.41) 

Φ0 = (
𝜕2𝜓0

𝜕𝑦2 )
2

,           (6.42) 

𝑑𝑝0

𝑑𝑥
=

𝜕𝜏0𝑥𝑦

𝜕𝑦
+ 𝐴 (

𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
) − 𝐾 (

𝜕𝜓0

𝜕𝑦
+ 1).       (6.43) 

Boundary conditions are 

𝜓0 =
𝐹0

2
,
𝜕𝜓0

𝜕𝑦
+ 𝛽𝜏0𝑥𝑦 = −1, 𝜑0 =

𝐸0

2
           at 𝑦 = ℎ1(𝑥),     (6.44a) 

𝜓0 = −
𝐹0

2
,
𝜕𝜓0

𝜕𝑦
− 𝛽𝜏0𝑥𝑦 = −1, 𝜑0 = −

𝐸0

2
           at 𝑦 = ℎ2(𝑥),    (6.44b) 

Θ0 − 𝜀
𝜕Θ0

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (6.45a) 

Θ0 + 𝜀
𝜕Θ0

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (6.45b) 

Θ0𝑠 − 𝜀
𝜕Θ0𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (6.46a) 

Θ0𝑠 + 𝜀
𝜕Θ0𝑠

𝜕𝑦
= 1        at 𝑦 = ℎ2(𝑥).        (6.46b) 

6.2.2 First Order System 

𝑅𝑒 (
𝜕𝜓0

𝜕𝑦

𝜕3𝜓0

𝜕𝑥𝜕𝑦2 −
𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑦3 ) =
𝜕2

𝜕𝑥𝜕𝑦
(𝜏0𝑥𝑥 − 𝜏0𝑦𝑦) −

𝜕2𝜏1𝑥𝑦

𝜕𝑦2 + 𝐴 (
𝜕2𝜑1

𝜕𝑦2 −
𝜕2𝜓1

𝜕𝑦2 ) − 𝐾
𝜕2𝜓1

𝜕𝑦2 , (6.47) 

𝜕𝜑0

𝜕𝑦

𝜕3𝜑0

𝜕𝑥𝜕𝑦2 −
𝜕𝜑0

𝜕𝑥

𝜕3𝜑0

𝜕𝑦3 = 𝐵 (
𝜕2𝜓1

𝜕𝑦2 −
𝜕2𝜑1

𝜕𝑦2 ),       (6.48) 

𝑅𝑒 𝛿 [
𝜕Θ0

𝜕𝑥

𝜕𝜓0

𝜕𝑦
−

𝜕Θ0

𝜕𝑦

𝜕𝜓0

𝜕𝑥
] =

1

𝑃𝑟

𝜕2Θ1

𝜕𝑦2 + 𝐴1(Θ1𝑠 − Θ1) + 2𝐵1 𝐸𝑐 (
𝜕𝜑0

𝜕𝑦
−

𝜕𝜓0

𝜕𝑦
) (

𝜕𝜑1

𝜕𝑦
−

𝜕𝜓1

𝜕𝑦
) +

𝐸𝑐 Φ1,            (6.49) 
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𝜕𝜑0

𝜕𝑦

𝜕Θ0𝑠

𝜕𝑥
−

𝜕𝜑0

𝜕𝑥

𝜕Θ0𝑠

𝜕𝑦
= −𝐶(Θ1𝑠 − Θ1),       (6.50) 

𝑑𝑝1

𝑑𝑥
= −𝑅𝑒 (

𝜕𝜓0

𝜕𝑦

𝜕2𝜓0

𝜕𝑥𝜕𝑦
−

𝜕𝜓0

𝜕𝑥

𝜕2𝜓0

𝜕𝑦2 ) +
𝜕𝜏0𝑥𝑥

𝜕𝑥
+

𝜕𝜏1𝑥𝑦

𝜕𝑦
+ 𝐴 (

𝜕𝜑1

𝜕𝑦
−

𝜕𝜓1

𝜕𝑦
) − 𝐾 (

𝜕𝜓1

𝜕𝑦
),  (6.51) 

where 

𝜏0𝑦𝑦 = 𝜏0𝑥𝑥 = −𝛼1 (
𝜕2𝜓0

𝜕𝑦2
)
2

,         (6.52) 

𝜏1𝑥𝑦 =
𝜕2𝜓1

𝜕𝑦2
+ 𝛼1 (

𝜕𝜓0

𝜕𝑦

𝜕3𝜓0

𝜕𝑥𝜕𝑦2
−

𝜕𝜓0

𝜕𝑥

𝜕3𝜓0

𝜕𝑦3
+ 2

𝜕2𝜓0

𝜕𝑦2

𝜕2𝜓0

𝜕𝑥𝜕𝑦
),     (6.53) 

Φ1 = (
𝜕2𝜓1

𝜕𝑦2 )
2

+ 𝛼1 (
𝜕2𝜓0

𝜕𝑥𝜕𝑦
(

𝜕2𝜓0

𝜕𝑦2 )
2

+
𝜕𝜓0

𝜕𝑦

𝜕2𝜓0

𝜕𝑦2

𝜕3𝜓0

𝜕𝑥𝜕𝑦2 −
𝜕𝜓0

𝜕𝑥

𝜕2𝜓0

𝜕𝑦2

𝜕3𝜓0

𝜕𝑦3 ),   (6.54) 

with boundary conditions 

𝜓1 =
𝐹1

2
,
𝜕𝜓1

𝜕𝑦
+ 𝛽𝜏1𝑥𝑦 = 0, 𝜑1 =

𝐸1

2
           at 𝑦 = ℎ1(𝑥),     (6.55a) 

𝜓1 = −
𝐹1

2
,
𝜕𝜓1

𝜕𝑦
− 𝛽𝜏1𝑥𝑦 = 0, 𝜑1 = −

𝐸1

2
           at 𝑦 = ℎ2(𝑥),    (6.55b) 

Θ1 − 𝜀
𝜕Θ1

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (6.56a) 

Θ1 + 𝜀
𝜕Θ1

𝜕𝑦
= 0        at 𝑦 = ℎ2(𝑥).        (6.56b) 

Θ1𝑠 − 𝜀
𝜕Θ1𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ1(𝑥),        (6.57a) 

Θ1𝑠 + 𝜀
𝜕Θ1𝑠

𝜕𝑦
= 0        at 𝑦 = ℎ2(𝑥).        (6.57b) 

Above system of differential equations has been solved by applying DSolver command in 

Mathematica. 
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6.3 Graphical Analysis 

For better illustration of flow behavior, results for fluid velocity, particle velocity, pressure 

gradient, and temperature distribution have been demonstrated graphically for various parameters 

in this section. 

6.3.1 Fluid Flow Analysis 

Figs. 6.1-6.5 show behavior of fluid velocity for second grade parameter 𝛼1, slip parameter 𝛽, 

wave number 𝛿, porosity parameter 𝑚0, and Hartman number M. Results for fluid velocity for 

different values of 𝛼1 are shown in Fig. 6.1. It is noticed that by increasing second grade parameter 

𝛼1, velocity of the fluid increases. Increase in second grade parameter 𝛼1 results in low fluid 

viscosity therefore fluid flows swiftly. In Fig. 6.2, fluid velocity graphs are drawn to discuss impact 

of slip parameter 𝛽. It portrays that fluid velocity declines by raising 𝛽. Thus, slip parameter 𝛽 and 

second grade parameter 𝛼1 have opposite impact on velocity of the fluid. Fig. 6.3, depicts variation 

of velocity profile when wave number 𝛿 varies. It depicts that increase in wave number 𝛿 enhances 

velocity profile significantly. High wave number implies small wavelength. Therefore, frequency 

of waves along channel walls increases. Physically fluid is squeezed frequently that accelerates 

the fluid flow. When medium is porous it hinders the velocity of the fluid therefore velocity 

declines with the rise of porosity parameter 𝑚0 and it is deliberated in Fig. 6.4. Fig. 6.5 is 

illustration of velocity field under the impact of MHD. Decline in velocity is noticed by growing 

Hartmann number M. The decreasing behavior of velocity is due to the friction that is incorporated 

by increasing electromagnetic forces. 
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6.3.2 Solid Particle Flow Analysis 

Figs. 6.6 and 6.7 demonstrates analysis of particle velocity for second grade parameter 𝛼1 and 

porosity parameter 𝑚0,. In Fig. 6.6, graphs are plotted for different values of second grade 

parameter 𝛼1. It expresses increasing trend of velocity profile with enhancement of 𝛼1. Fig. 6.7 

represents particle velocity trend under the effect of porous parameter 𝑚0. Increasing behavior of 

particle velocity is observed when porosity increases. In contrast to velocity profile, porosity 𝑚0 

and second grade parameter 𝛼1 have minimal effects on solid particle velocity. 

6.3.3 Pressure Gradient Graphs  

Pressure gradient graphs versus 𝑥 are plotted in Figs. 6.8-6.10 for several values of second grade 

parameter 𝛼1, slip parameter 𝛽, and wave number 𝛿. In Fig. 6.8, plots are drawn for various values 

of 𝛼1. With an increase in 𝛼1, the pressure gradient decreases. Fig. 6.9 provides a graphic 

representation of how slip parameter affects pressure gradient. Pressure gradient decreases as 𝛽 

grows. The influence of wave number 𝛿 on pressure gradient is discussed in Fig. 6.10 by drawing 

graphs for different values of 𝛿. Pressure gradient declines as 𝛿 increases.  

6.3.4 Temperature Distribution Analysis 

For fluid, temperature distribution graphs for wave number 𝛿, Eckert number 𝐸𝑐, and Reynolds 

number 𝑅𝑒 have been discussed in Figs. 6.11-6.13. Parabolic behavior is observed in presence of 

slip. In Fig. 6.11, graphs are presented for different values of Eckert number 𝐸𝑐. It is noticed that 

fluid temperature rises when Eckert number 𝐸𝑐 increases. Eckert number 𝐸𝑐 is the ratio of fluid 

kinetic energy to enthalpy driving force. The increasing trend of Eckert number 𝐸𝑐 implies higher 

kinetic energy due to higher fluid velocity relative to temperature difference at the walls. The 

presence of viscous dissipation converts this kinetic energy into heat that results increase in fluid 
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temperature. In Fig. 6.12, graphs are plotted for several values of wave number 𝛿. Increase in 

temperature is observed when wave number increases. It is noticed that effect of wave number 𝛿 

on temperature distribution is same as on velocity distribution. Fig. 6.13 is graphical representation 

of temperature distribution for Reynolds number 𝑅𝑒. It illustrates that temperature decreases as 

Reynolds number 𝑅𝑒 increases. This is consequence of low viscosity. 

Graphs of temperature distribution for solid particle for wave number 𝛿 and Eckert number 𝐸𝑐 

have been drawn in Figures 6.14 and 6.15. Fig. 6.14 demonstrates effect of wavenumber on 

temperature of solid particles. As wavenumber increases, temperature also increases. In Fig. 6.15, 

effect of Eckert number 𝐸𝑐 on particle temperature profile has been shown. Higher temperature is 

observed for higher values of 𝐸𝑐. The impact of wave number 𝛿 and Eckert number 𝐸𝑐 on particle 

temperature is same as on fluid temperature. 

 

Fig 6.1: The fluid velocity with 𝛽 = 0.2, 𝑅𝑒 = 0.15,𝑚0 = 0.1, 𝑀 = 0.5, 𝑎 = 0.2, 𝑏 = 0.8,

𝑑 = 0.3, 𝛿 = 0.01, 𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.1. 
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Fig 6.2: The fluid velocity with 𝑅𝑒 = 0.3,𝑚0 = 0.01, 𝑀 = 0.4, 𝑎 = 0.2, 𝑏 = 0.6, 𝑑 = 0.3,

𝛿 = 0.01, 𝜙 =
𝜋

6
, 𝐴 = 0.1, 𝐵 = 0.1, 𝛼1 = 0.2. 

 

Fig 6.3: The fluid velocity with 𝛽 = 0.2, 𝑅𝑒 = 0.15, 𝐾 = 0.3, 𝑎 = 0.2, 𝑏 = 0.8, 𝑑 = 0.3,

𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.1, 𝛼1 = 2. 
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Fig 6.4: The fluid velocity with  𝛽 = 0.2, 𝑅𝑒 = 0.15,𝑚0 = 0.1, 𝑎 = 0.3, 𝑏 = 0.8, 𝑑 = 0.3,

𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.1, 𝛼1 = 2, 𝛿 = 0.01. 

 

Fig 6.5: The fluid velocity with  𝛽 = 0.2, 𝑅𝑒 = 0.15,𝑀 = 0.15, 𝑎 = 0.3, 𝑏 = 0.8, 𝑑 = 0.3,

𝜙 =
𝜋

3
, 𝐴 = 0.2, 𝐵 = 0.1, 𝛼1 = 2, 𝛿 = 0.01. 
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Fig 6.6: The particle velocity with 𝛽 = 0.6, 𝑅𝑒 = 0.15, 𝑎 = 0.2, 𝑏 = 0.5, 𝑑 = 0.9, 𝜙 =
𝜋

6
,

𝐴 = 0.6, 𝐵 = 0.8, 𝛿 = 0.01,𝑚0 = 0.3,𝑀 = 0.5. 

 

Fig 6.7: The particle velocity with 𝛽 = 0.4, 𝑅𝑒 = 0.15,𝑀 = 0.1, 𝑎 = 0.3, 𝑏 = 0.5, 𝑑 = 0.9,

𝜙 =
𝜋

6
, 𝐴 = 0.6, 𝐵 = 0.8, 𝛼1 = 2, 𝛿 = 0.01. 

 

u
s
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Fig 6.8: The pressure gradient with 𝛽 = 0.1, 𝑅𝑒 = 0.1, 𝑎 = 0.2, 𝑏 = 0.4, 𝑑 = 0.6 , 𝜙 =
𝜋

6
,

𝐴 = 0.9, 𝐵 = 1.5, 𝛿 = 0.01, 𝐾 = 40. 

 

Fig 6.9: The pressure gradient with 𝛿 = 0.01, 𝑅𝑒 = 0.1, 𝑎 = 0.2, 𝑏 = 0.4, 𝑑 = 0.6, 𝜙 =
𝜋

6
,

𝐴 = 0.9, 𝐵 = 1.5, 𝛼1 = 0.01, 𝐾 = 40. 
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Fig 6.10: The pressure gradient with 𝛽 = 0.1, 𝑅𝑒 = 0.1, 𝑎 = 0.2, 𝑏 = 0.4, 𝑑 = 0.6, , 𝜙 =
𝜋

6
,

𝐴 = 0.9, 𝐵 = 1.5, 𝛼1 = 0.01, 𝐾 = 40. 

 

Fig 6.11: Temperature distribution with 𝑃𝑟 = 0.03, 𝑅𝑒 = 0.2, 𝐵1 = 0.5, 𝛽 = 0.2, 𝐾 = 0.5,

𝑎 = 0.3, 𝑏 = 0.5, 𝑑 = 0.9, 𝛿 = 0.01, 𝜀 = 0.2, 𝜙 =
𝜋

6
, 𝐴 = 0.6, 𝐵 = 0.8, 𝛼1 = 2. 
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Fig 6.12: Temperature distribution with 𝑃𝑟 = 0.1, 𝑅𝑒 = 0.2, 𝐸𝑐 = 0.02, 𝐵1 = 0.5, 𝛽 = 0.2,

𝜀 = 0.2, 𝐾 = 0.5, 𝑎 = 0.3, 𝑏 = 0.4, 𝑑 = 0.6, 𝜙 =
𝜋

3
, 𝐴 = 0.5, 𝐵 = 0.8, 𝛼1 = 2. 

 

Fig 6.13: Temperature distribution with 𝑃𝑟 = 0.07, 𝐸𝑐 = 0.02, 𝐵1 = 0.5, 𝛽 = 0, 𝐾 = 0.5,

𝑎 = 0.3, 𝑏 = 0.4, 𝑑 = 0.6, 𝛿 = 0.01, 𝜙 =
𝜋

3
, 𝐴 = 0.5, 𝐵 = 0.8, 𝛼1 = 2, 𝜀 = 0. 
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 Fig 6.14: Particle temperature distribution with  𝑅𝑒 = 0.2, 𝐸𝑐 = 0.02, 𝐵1 = 0.5, 𝛽 = 0.2,

𝐾 = 0.5, 𝑎 = 0.3, 𝑏 = 0.5, 𝑑 = 0.6, 𝜙 =
𝜋

3
, 𝐴 = 0.5, 𝐵 = 0.8, 𝛼1 = 2, 𝜀 = 0.2, 𝐶 = 5,

𝑃𝑟 = 0.03. 

 

Fig 6.15: 𝑅𝑒 = 0.2, 𝑃𝑟 = 0.03, 𝐵1 = 0.5, 𝛽 = 0.2, 𝐾 = 0.5, 𝑎 = 0.3, 𝑏 = 0.5, 𝑑 = 0.9,

𝛿 = 0.01, 𝜙 =
𝜋

6
, 𝐴 = 0.6, 𝐵 = 0.8, 𝛼1 = 2, 𝜀 = 0.2, 𝐶 = 5. 
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6.4 Conclusion 

The current investigation highlights the impacts of heat transfer on the flow of second-grade dusty 

fluid with peristalsis. In an asymmetric channel, fluid is considered to propagate through a porous 

media. Some important findings of the study are listed as follows: 

• Fluid is accelerated by increasing second grade parameter and wave number while 

decreases by increasing slip parameter and porosity. 

• Particle velocity increases by increasing second grade parameter and porosity. 

• Pressure gradient decreases by increasing wave number, slip parameter and second grade 

parameter. 

• Fluid temperature rises by increasing Eckert number and wave number. Temperature 

declines by increasing Reynolds number. 

• Particle temperature rises by increasing Eckert number and wave number. 
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Chapter 7 

Theoretical Analysis of Peristaltic Dusty Fluid 

under Temperature Varying Thermal 

Conductivity and Viscosity Passing Through 

Curved Geometry 

This chapter presents an analysis of a Newtonian fluid with viscosity dependent upon temperature. 

The fluid is assumed to pass through a peristaltic curved channel. Moreover, thermal conductivity 

also varies with temperature. Boundary conditions considered are convective. The ruling equations 

under prescribed assumptions are nonlinear and therefore solved numerically using Mathematica. 

The simulations for velocity and temperature of fluid and particles are discussed under the effect 

of various physical properties. 

7.1 Problem Formulation 

We consider Newtonian fluid flow with solid spherical particles dispersed in the fluid. Channel 

has curved walls propagating peristaltically. Viscosity and thermal conductivity depend upon 

temperature. Convective boundary conditions are considered at the walls of the curved channel. 

Peristaltic wave along the walls is travelling with speed 𝑐, wave length 𝜆 and amplitude 𝑏. Under 

above assumption, mathematical expression of the walls is given by Eqns. (3.1) and (3.2). 

The equations for the fluid flow and heat transfer are: 
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𝑅∗ 𝜕𝑈̅

𝜕𝑋̅
+

𝑉̅

(𝑅̅+𝑅∗)
+ (𝑅̅ + 𝑅∗)

𝜕𝑉̅

𝜕𝑅̅
= 0,         (7.1) 

𝜌 (
𝜕𝑉̅

𝜕𝑡
+ 𝑉̅

𝜕𝑉̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅
𝜕𝑉̅

𝜕𝑋̅
−

𝑈̅2

𝑅̅+𝑅∗) =
1

𝑅̅+𝑅∗

𝜕

𝜕𝑅̅
(2(𝑅̅ + 𝑅∗)𝜇(𝑇̅)

𝜕𝑉̅

𝜕𝑅̅
) +

𝑅∗

𝑅̅+𝑅∗

𝜕

𝜕𝑋̅
(𝜇(𝑇̅) (

𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
+

𝜕𝑈̅

𝜕𝑅̅
−

𝑈̅

𝑅̅+𝑅∗)) −
2𝜇(𝑇̅)

𝑅̅+𝑅∗ (
𝑅∗

𝑅̅+𝑅∗

𝜕𝑈̅

𝜕𝑋̅
+

𝑉̅

𝑅̅+𝑅∗) −
𝜕𝑃̅

𝜕𝑅̅
+ 𝑘𝑁(𝑉̅𝑠 − 𝑉̅),      (7.2) 

𝜌 (
𝜕𝑈̅

𝜕𝑡
+ 𝑉̅

𝜕𝑈̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗
𝑈̅

𝜕𝑈̅

𝜕𝑋̅
+

𝑈̅𝑉̅

𝑅̅+𝑅∗
) =

1

(𝑅̅+𝑅∗)2
𝜕

𝜕𝑅̅
((𝑅̅ + 𝑅∗)2𝜇(𝑇̅) (

𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
−

𝑈̅

𝑅̅+𝑅∗
+

𝜕𝑈̅

𝜕𝑅̅
)) +

𝑅∗

𝑅̅+𝑅∗

𝜕

𝜕𝑋̅
(2𝜇(𝑇̅) (

𝑅∗

𝑅̅+𝑅∗

𝜕𝑈̅

𝜕𝑋̅
+

𝑉̅

𝑅̅+𝑅∗)) −
𝑅∗

𝑅̅+𝑅∗

𝜕𝑃̅

𝜕𝑋̅
+ 𝑘𝑁(𝑈̅𝑠 − 𝑈̅),    (7.3) 

𝜌𝐶𝑃 (
𝜕𝑇̅

𝜕𝑡
+ 𝑉̅

𝜕𝑇̅

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅
𝜕𝑇̅

𝜕𝑋̅
) = 𝜇(𝑇̅) [2 (

𝜕𝑉̅

𝜕𝑅̅
)
2

+ (
𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
−

𝑈̅

𝑅̅+𝑅∗) (
𝜕𝑈̅

𝜕𝑅̅
−

𝑈̅

𝑅̅+𝑅∗ +
𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
) +

𝜕𝑈̅

𝜕𝑅̅
(
𝜕𝑈̅

𝜕𝑅̅
−

𝑈̅

𝑅̅+𝑅∗ +
𝑅∗

𝑅̅+𝑅∗

𝜕𝑉̅

𝜕𝑋̅
) + 2 (

𝑅∗

𝑅̅+𝑅∗

𝜕𝑈̅

𝜕𝑋̅
+

𝑉̅

𝑅̅+𝑅∗)
2

] − ∇(−𝐾(𝑇̅)∇𝑇̅) +
𝑁𝐶𝑃

𝜏𝑇
(𝑇𝑠̅ − 𝑇̅) +

𝑁

𝜏𝑈
(𝑈𝑠
̅̅ ̅ −

𝑈̅)2,            (7.4) 

where thermal conductivity 𝐾(𝑇̅) and viscosity 𝜇(𝑇̅) depend on temperature and described as 

𝐾(𝑇̅) = 𝐾0(1 + 𝜂(𝑇̅ − 𝑇0)) ,         (7.5) 

𝜇(𝑇̅) = 𝜇0𝑒
−𝜁(𝑇̅−𝑇0) ≅ 𝜇0(1 − 𝜁(𝑇̅ − 𝑇0)),       (7.6) 

where 𝐾0, 𝜇0 denote constant thermal conductivity. 

The flow and heat transfer equations for solid particles are 

𝑅∗ 𝜕𝑈̅𝑠

𝜕𝑋̅
+

𝑉̅𝑠

(𝑅̅+𝑅∗)
+ (𝑅̅ + 𝑅∗)

𝜕𝑉̅𝑠

𝜕𝑅̅
= 0,        (7.7) 

(
𝜕𝑉𝑠̅

𝜕𝑡
+ 𝑉𝑠̅

𝜕𝑉̅𝑠

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅𝑠
𝜕𝑉̅𝑠

𝜕𝑋̅
−

𝑈̅𝑠
2

𝑅̅+𝑅∗) =
𝑘

𝑚
(𝑉̅ − 𝑉̅𝑠),      (7.8) 

(
𝜕𝑈̅𝑠

𝜕𝑡
+ 𝑉̅𝑠

𝜕𝑈̅𝑠

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅𝑠
𝜕𝑈̅𝑠

𝜕𝑋̅
+

𝑈̅𝑠𝑉̅𝑠

𝑅̅+𝑅∗) =
𝑘

𝑚
(𝑈̅ − 𝑈̅𝑠).      (7.9) 
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(
𝜕𝑇̅𝑠

𝜕𝑡
+ 𝑉̅𝑠

𝜕𝑇̅𝑠

𝜕𝑅̅
+

𝑅∗

𝑅̅+𝑅∗ 𝑈̅𝑠
𝜕𝑇̅𝑠

𝜕𝑋̅
) = −

𝐶𝑃

𝐶𝑚
(𝑇̅ − 𝑇̅𝑠),       (7.10) 

Problem is transformed from fixed frame with coordinates (𝑅̅, 𝑋̅) to the coordinates (𝑟, 𝑥) in 

moving frame using the relation 

𝑅̅ = 𝑟, 𝑋̅ = 𝑥 + 𝑐𝑡, 𝑈̅ = 𝑢 + 𝑐, 𝑈̅𝑠 = 𝑢𝑠 + 𝑐, 𝑉̅ = 𝑣, 𝑉̅𝑠 = 𝑣𝑠, 𝑇̅ = 𝑇, 𝑇̅𝑠 = 𝑇𝑠, 𝑃̅ = 𝑃. (7.11) 

Problem is further simplified by introducing the dimensionless quantities and stream functions 

described as: 

 𝑢′ =
𝑢

𝑐
, 𝑣′ =

𝑣

𝛿𝑐
, 𝑢′𝑠 =

𝑢𝑠

𝑐
, 𝑣𝑠

′ =
𝑣𝑠

𝛿𝑐
, 𝑥′ =

𝑥

𝜆
,   𝐿 =

𝑅̂

𝑎
, 𝑟′ =

𝑟

𝑎
, 𝑃 =

𝑝𝜆𝜇0𝑐

𝑎2 ,   Θ =
𝑇−𝑇0

𝑇1−𝑇0
, Θ𝑠 =

𝑇𝑠−𝑇0

𝑇1−𝑇0
,

𝑢 = −
𝜕𝜓

𝜕𝑟
, 𝑣 =

𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥
, 𝑢𝑠 = −

𝜕𝜑

𝜕𝑟
, 𝑣𝑠 =

𝐿

𝑟+𝐿

𝜕𝜑

𝜕𝑥
, 𝛿 =

𝑎

𝜆
, 𝑅𝑒 =

𝜌𝑐𝑎

𝜇0
, 𝐴 =

𝑘𝑁𝑎2

𝜇0
, 𝐵 =

𝑘𝑎

𝑚𝑐
,

𝑃𝑟 =
𝜔𝐶𝑃

𝐾0
, 𝐸𝑐 =

𝑐2

𝐶𝑃(𝑇−𝑇0)
, 𝐴1 =

𝑁𝑎2

𝜏𝑇𝜇0
, 𝐵1 =

𝑁𝑎2

𝜏𝑢𝜇0
, 𝐶 =

𝑎𝐶𝑃

𝑐𝐶𝑚
, 𝜔0 = 𝜁(𝑇1 − 𝑇0),  (7.12) 

where 𝐴, 𝐵, 𝐴1, 𝐵1 and 𝐶 are dimensionless quantities. 

Using Eqns. (7.11) and (7.12) in Eqns. (7.1) -(7.10), compatibility equations for fluid and particles 

are obtained as 

𝑅𝑒𝛿 (
1

𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

(𝑟+𝐿)

𝐿

𝜕3𝜓

𝜕𝑟2𝜕𝑥
−

𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑟2 −
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑟3 −
𝜕2𝜓

𝜕𝑟2

𝜕2𝜓

𝜕𝑟𝜕𝑥
−

𝜕3𝜓

𝜕𝑟2𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
) −

1

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑟2 +

1

𝑟+𝐿

𝜕2𝜓

𝜕𝑥2
(1 −

𝜕𝜓

𝜕𝑟
) −

1

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
(1 −

𝜕𝜓

𝜕𝑟
) −

𝐿

𝑟+𝐿

𝜕3𝜓

𝜕𝑥3
+

𝐿

(𝑟+𝐿)2
(
𝜕2𝜓

𝜕𝑥2
)
2

− 𝛿2 (−2
𝐿2

(𝑟+𝐿)3
𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑥2
+

𝐿2

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥3 −
𝐿2

(𝑟+𝐿)2
𝜕2𝜓

𝜕𝑥2

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿2

(𝑟+𝐿)2
𝜕3𝜓

𝜕𝑥3 (1 −
𝜕𝜓

𝜕𝑟
) +

2

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕2𝜓

𝜕𝑟𝜕𝑥
)) =

2𝛿2

𝑟+𝐿

𝜕2

𝜕𝑟𝜕𝑥
((𝑟 +

𝐿)(1 − 𝜔0Θ)
𝜕

𝜕𝑟
(

𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥
)) +

𝐿𝛿2

𝑟+𝐿

𝜕2

𝜕𝑥2
((1 − 𝜔0Θ)(𝛿2 (

𝐿

𝑟+𝐿
)
2 𝜕2𝜓

𝜕𝑥2
−

𝜕2𝜓

𝜕𝑟2
−

1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
))) −
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2𝛿2

𝑟+𝐿

𝜕

𝜕𝑥
((1 − 𝜔0Θ) (−

𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
)) −

𝜕

𝜕𝑟
[

1

𝐿(𝑟+𝐿)

𝜕

𝜕𝑟
((𝑟 + 𝐿)2(1 −

𝜔0Θ)(𝛿2 (
𝐿

𝑟+𝐿
)
2 𝜕2𝜓

𝜕𝑥2
−

𝜕2𝜓

𝜕𝑟2
−

1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)))] − 𝛿2 𝜕2

𝜕𝑟𝜕𝑥
(2(1 − 𝜔0Θ) (−

𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
)) + 𝐴 (𝛿2 𝐿

𝑟+𝐿

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑟2) (𝜑 − 𝜓),       (7.13) 

𝛿 (
1

𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
+

(𝑟+𝐿)

𝐿

𝜕3𝜑

𝜕𝑟2𝜕𝑥
−

1

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑟2
−

𝜕2𝜑

𝜕𝑥2

𝜕2𝜑

𝜕𝑟2
−

𝜕𝜑

𝜕𝑥

𝜕3𝜑

𝜕𝑟3
+

𝜕2𝜑

𝜕𝑟2

𝜕2𝜑

𝜕𝑟𝜕𝑥
−

𝜕3𝜑

𝜕𝑟2𝜕𝑥
(1 −

𝜕𝜑

𝜕𝑟
) +

1

𝑟+𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
(1 −

𝜕𝜑

𝜕𝑟
) −

1

(𝑟+𝐿)2
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕𝜑

𝜕𝑥
−

𝐿

𝑟+𝐿

𝜕3𝜑

𝜕𝑥3 +
𝐿2

(𝑟+𝐿)2
(
𝜕2𝜑

𝜕𝑥2)
2

− 𝛿2 (−
𝐿

𝑟+𝐿

𝜕3𝜑

𝜕𝑥3 +

𝐿2

(𝑟+𝐿)2
(
𝜕2𝜑

𝜕𝑥2)
2

−
𝐿2

(𝑟+𝐿)3
𝜕𝜑

𝜕𝑥

𝜕2𝜑

𝜕𝑥2 + (
𝐿

𝑟+𝐿
)
2 𝜕𝜑

𝜕𝑥

𝜕3𝜑

𝜕𝑟𝜕𝑥2 − (
𝐿

𝑟+𝐿
)
2 𝜕2𝜑

𝜕𝑟𝜕𝑥

𝜕2𝜑

𝜕𝑥2 + (
𝐿

𝑟+𝐿
)
2 𝜕3𝜑

𝜕𝑥3 (1 −
𝜕𝜑

𝜕𝑟
) +

2

𝑟+𝐿

𝜕2𝜑

𝜕𝑟𝜕𝑥
(1 −

𝜕𝜑

𝜕𝑟
))) = 𝐵 (

(𝑟+𝐿)

𝐿
(
𝜕2𝜑

𝜕𝑟2 −
𝜕2𝜓

𝜕𝑟2) +
1

𝐿
(
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
) −

𝐿

𝑟+𝐿
𝛿2 𝜕2

𝜕𝑥2
(𝜓 − 𝜑)). (7.14) 

For fluid and dust fragments, the energy equations are nondimensionalized as: 

𝑅𝑒𝛿 [−
𝜕Θ

𝜕𝑥
+

𝐿

𝑟+𝐿

𝜕𝜓

𝜕𝑥

𝜕Θ

𝜕𝑟
+

𝐿

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)

𝜕Θ

𝜕𝑥
] = (1 + 𝜂Θ) {

𝜕2Θ

𝜕𝑟2 +
1

𝑟+𝐿

𝜕Θ

𝜕𝑟
} + 𝜀 (

𝜕Θ

𝜕𝑟
)
2

+

𝛿2 (
𝐿

𝑟+𝐿
)
2

{(1 + 𝜂Θ)
𝜕2Θ

𝜕𝑥2 + 𝜂 (
𝜕Θ

𝜕𝑥
)
2

} + 𝐵𝑟(1 − 𝜔0Θ) (2𝛿2 (
𝜕

𝜕𝑟
(

1

𝑟+𝐿

𝜕𝜓

𝜕𝑥
))

2

+ 2𝛿2 (−
𝐿

𝑟+𝐿

𝜕2𝜓

𝜕𝑟𝜕𝑥
+

𝐿

(𝑟+𝐿)2
𝜕𝜓

𝜕𝑥
)
2

+ (𝛿2 (
𝐿

𝑟+𝐿
)
2 𝜕2𝜓

𝜕𝑥2
−

1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
) −

𝜕2𝜓

𝜕𝑟2
)
2

) + 𝐴1 Pr(Θ𝑠 − Θ) + 𝐵1𝐵𝑟 (
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)
2

, 

            (7.15) 

𝛿 [−
𝜕Θ𝑠

𝜕𝑥
+

𝐿

𝑟+𝐿

𝜕𝜑

𝜕𝑥

𝜕Θ𝑠

𝜕𝑟
+

𝐿

𝑟+𝐿
(1 −

𝜕𝜑

𝜕𝑟
)

𝜕Θ𝑠

𝜕𝑥
] = −𝐶(Θ𝑠 − Θ).     (7.16) 
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7.2 Method of Solution 

Assuming wavelength large and low Reynolds number small, Eqns. (7.13) -(7.16) take the form 

𝜕

𝜕𝑟
[

1

𝐿(𝑟+𝐿)

𝜕

𝜕𝑟
((𝑟 + 𝐿)2(1 − 𝜔0Θ)(−

𝜕2𝜓

𝜕𝑟2
−

1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
)))] − 𝐴

𝜕2

𝜕𝑟2
(𝜑 − 𝜓) = 0, (7.17) 

𝐵 (
(𝑟+𝐿)

𝐿
(
𝜕2𝜑

𝜕𝑟2
−

𝜕2𝜓

𝜕𝑟2
) +

1

𝐿
(
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)) = 0,       (7.18) 

(1 + 𝜂Θ) {
𝜕2Θ

𝜕𝑟2 +
1

𝑟+𝐿

𝜕Θ

𝜕𝑟
} + 𝜂 (

𝜕Θ

𝜕𝑟
)
2

+ 𝐵𝑟(1 − 𝜔0Θ) (
1

𝑟+𝐿
(1 −

𝜕𝜓

𝜕𝑟
) +

𝜕2𝜓

𝜕𝑟2)
2

+ 𝐴1 Pr(Θ𝑠 − Θ) +

 𝐵1𝐵𝑟 (
𝜕𝜑

𝜕𝑟
−

𝜕𝜓

𝜕𝑟
)
2

= 0,         (7.19) 

Θ𝑠 − Θ = 0.           (7.20) 

The non-dimensional form of the configuration are given by Eqn. (3.22). 

Boundary conditions in dimensionless form are 

𝜓 = −
𝐸

2
 , 𝜙 = −

𝐹

2
,   

𝜕𝜓

𝜕𝑟
= −1,   at  𝑟 = −ℎ,     (7.21) 

𝜓 =
𝐸

2
 , 𝜙 =

𝐹

2
,

𝜕𝜓

𝜕𝑟
= −1,       at  𝑟 = ℎ,        (7.22) 

𝜕Θ

𝜕𝑟
+ 𝛽1(1 − Θ) = 0        at  𝑟 = −ℎ,        (7.23) 

𝜕Θ

𝜕𝑟
+ 𝛽2Θ = 0        at   𝑟 = ℎ,         (7.24) 

𝜕Θ𝑠

𝜕𝑟
+ 𝛽1(1 − Θ𝑠) = 0        at   𝑟 = ℎ,        (7.25) 

𝜕Θ𝑠

𝜕𝑟
+ 𝛽2Θ𝑠 = 0        at   𝑟 = −ℎ,        (7.26) 
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where 𝛽1 and 𝛽2 are Biot numbers at lower and upper wall of the channel. 

7.3 Graphical Analysis 

A comprehensive analysis of the problem has been performed by plotting graphs of velocity and 

temperature profiles by varying curvature parameter 𝐿, viscosity parameter 𝜔0, thermal 

conductivity parameter 𝜂, biot numbers 𝛽1, and 𝛽2. 

7.3.1 Fluid Flow Analysis 

Figs. 7.1 and 7.2 show graphical results for velocity of fluid propagation. The flow behavior of 

fluid is parabolic. Fig. 7.1 is graphical view of fluid velocity for various values of curvature 

parameter 𝐿. As curvature parameter increases velocity of fluid decrease below central line and 

increase above central line. This is due to the fact that near the upper boundary path is straighter 

than lower boundary and fluid flow becomes smooth and fast. The fluid velocity profile for varying 

viscosity parameter 𝜔0 has been portrayed in Fig. 7.2. Flow is accelerated near center and 

deaccelerated near upper boundary of the passage as 𝜔0 grows. Viscosity effects the fluid near the 

walls more considerably therefore increase in viscosity reduces the speed of the fluid close to the 

walls and it has less effect in the center therefore fluid moves freely in the central part of the 

passage. 

7.3.2 Solid Particle Flow 

Figs. 7.3 and 7.4 depict locomotion of dust particles under the impact of curvature parameter and 

viscosity parameter. In Fig. 7.3, particle velocity trends are shown as curvature parameter 𝐿 varies. 

As curvature parameter 𝐿 increases, velocity of particles decreases below center and increases 

above central line of the channel. Fig. 7.4 illustrates the impact of variable viscosity parameter 𝜔0 

on particle flow. In the vicinity of center, particles speed increases whereas in the neighborhood 



130 
 

of upper wall speed of the particles declines. The effects of curvature and viscosity parameter are 

same on fluid velocity and particle velocity. 

7.3.3 Temperature Distribution Analysis 

Temperature profile plots are shown in Figs. 7.5-7.9 portraying the effect of curvature parameter 

𝐿, viscosity parameter 𝜔0 , thermal conductivity parameter 𝜂, Biot numbers 𝛽1, 𝛽2, and Brinkman 

number 𝐵𝑟. Fig. 7.5 represents variation in temperature with the varying values of viscosity 

parameter 𝜔0. As viscosity parameter grows temperature transference becomes slow. The behavior 

of temperature profile under the impact of thermal conductivity parameter 𝜂 is depicted in Fig. 7.6. 

The enhancement of thermal conductivity parameter 𝜂 implies slow heat transfer through the fluid. 

Plot in Fig. 7.7 shows the effect of Brinkman number 𝐵𝑟 on temperature distribution. The large 

values of Brinkman number 𝐵𝑟 gives rise to temperature profile of fluid. 𝛽1 is Biot number at the 

lower wall. Significant decline in temperature profile is observed by increasing values of 𝛽1 as 

shown in Fig. 7.8. 𝛽2 is Biot number at the upper wall of the channel. Slow heat transfer is noticed 

with the rise in 𝛽2. The effect is prominent near upper wall as revealed in Fig. 7.9. The Biot number 

is ratio of resistance for conduction of the solid boundary to the resistance for convection at the 

surface of the boundary. As Biot number becomes high, the conduction inside the boundary 

becomes slow as compared to convection inside the fluid. Therefore, heat travels from the fluid to 

the boundary that results in fall of temperature of the fluid.  
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Fig 7.1: Flow behavior of fluid for curvature with 𝜂 = 0.1,   𝐵𝑟 = 0.3,    𝜔0  = 0.6,    𝑑 = 0.2,

𝑏 = 0.8, 𝐴 = 0.5, 𝛽1 = 2.5, 𝛽2 = 0.3. 

 

Fig 7.2: Flow behavior of fluid for viscosity parameter with 𝜂 = 0.1, 𝐵𝑟 = 0.3, 𝐿 = 5, 𝑑 = 0.2,

𝑏 = 0.8, 𝐴 = 0.5, 𝛽1 = 2.5, 𝛽2 = 0.3. 
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Fig 7.3: Dust particles flow behavior for curvature with 𝜂 = 0.1, 𝐵𝑟 = 0.3, 𝜔0 = 0.4, 𝑑 = 0.2,

𝑏 = 0.8, 𝐴 = 0.5, 𝛽1 = 2.5, 𝛽2 = 0.3. 

 

Fig 7.4: Dust particles flow behavior for viscosity parameter with 𝜂 = 0.1, 𝐵𝑟 = 0.3, 𝐿 = 5,

𝑑 = 0.2, 𝑏 = 0.8, 𝐴 = 0.5, 𝛽1 = 2.5, 𝛽2 = 0.3. 
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Fig 7.5: Fluid temperature distribution for viscosity parameter with 𝜂 = 0.1, 𝐵𝑟 = 0.1, 𝐿 = 3, 𝑑 =

0.8, 𝑏 = 0.7, 𝐴 = 0.8, 𝛽1 = 2.5, 𝛽2 = 0.3. 

 

Fig 7.6: Fluid temperature distribution for thermal conductivity with 𝜔0 = 0.3, 𝐵𝑟 = 0.1, 𝐿 = 3,

𝑑 = 0.7, 𝑏 = 0.7, 𝐴 = 0.8, 𝛽1 = 2.5, 𝛽2 = 0.3. 
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Fig 7.7: Fluid temperature distribution for thermal conductivity with 𝜔0 = 0.3, 𝜂 = 0.1, 𝐿 = 3,

𝑑 = 0.8, 𝑏 = 0.7, 𝐴 = 0.8, 𝛽1 = 2.5, 𝛽2 = 0.3. 

 

Fig 7.8: Fluid temperature distribution for Biot number 𝛽1 with 𝜔0 = 0.3, 𝐵𝑟 = 0.1, 𝜂 = 0.1,

𝐿 = 5, 𝑑 = 0.8, 𝑏 = 0.7, 𝐴 = 0.8, 𝛽2 = 0.3. 
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Fig 7.9: Fluid temperature distribution for Biot number 𝛽2 with 𝜔0  = 0.3, 𝐵𝑟 = 0.1, 𝜂 = 0.1,

𝐿 = 5, 𝑑 = 0.8, 𝑏 = 0.7, 𝐴 = 0.8, 𝛽1 = 2.5. 

7.4 Conclusion 

In the current study Newtonian fluid with uniform distribution is investigated. The peristaltic 

progression of fluid is considered through symmetric channel with curved walls. Velocities of both 

fluid phase and particle phase are examined for variable viscosity and curvature parameter. Heat 

transfer analysis is carried out and effects of variable viscosity and thermal conductivity along with 

Biot numbers are discussed. The key findings of the study are listed as: 

• Velocity profiles of fluid and dust particles are parabolic in shape. 

• In both cases increase in curvature decreases velocity close to the lower wall and increases 

in the vicinity of upper wall. 

• Due to increase in viscosity parameter, velocities of both fluid and particles increase near 

center of flow and reduce in the locality of upper boundary. 
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• Variable viscosity and thermal conductivity both are responsible to slow down the heat 

transfer through the fluid. Temperature profile declines due to increase in the values of Biot 

numbers. 

• By increasing Brinkman number, temperature of the fluid rises.  
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Chapter 8 

Conclusions 

This dissertation aimed to conduct thermal analysis of peristaltic dusty fluids theoretically. The 

presence of particles in many biological and industrial fluids affects thermal conductivity of the 

fluids. Therefore, heat transfer analysis of particulate fluids is an influential factor in designing 

devices with optimum performance.  

In chapter 1, basic definitions, fundamental mathematical equations, non-dimensional parameters, 

and their significance and comprehensive discussion on literature history are presented.  

In chapter 2, Walter’s B dusty fluid with radiation and MHD effects has been considered. Study 

shows that high values of Reynolds number result in fast movement of blood through vessels. 

Consequently, nutrients are delivered to tissues and organs efficiently. It has been noticed that 

when the radiation parameter is increased, heat transfer becomes faster within the fluid. In industry, 

engineers select the design and material of furnaces and boilers to get the optimum results of 

radiation to obtain the desired temperature of the fluid inside boilers and furnaces. The fluid in 

joints has characteristics of Walter’s B fluid, so this study is helpful in assessing the joints health. 

In chapter 3, the movement of visco-elastic fluid following Jeffrey fluid model with the distribution 

of dust particles has been examined. The passage of flow is curved. Effects of relaxation and 

retardation time on bolus movement and velocity profiles of fluid and particles are key findings of 

the study. It has been observed that fluid takes more time to return to equilibrium. As retardation 

time increases, fluid response to applied stresses is delayed, and therefore bolus movement towards 
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left (backward) is observed. The analysis of bolus movement is beneficial for efficient delivery of 

drugs to veins and organs. The study also has applications in the polymer industry. 

In chapter 4, effects of variable thermal conductivity on dusty fluid with an inhomogeneous 

distribution of solid particles have been investigated. The channel of flow is curved. As the density 

of solid particles increases, heat transference becomes slow. As thermal conductivity increases, 

heat transfer within the fluid becomes faster. The discussion of variable thermal conductivity is of 

great concern as many procedures in medical science and optimization of thermal energy storage 

systems performance requires accurate measurement of fluid's thermal conductivity. 

In chapter 5, Newtonian dusty fluid propelling peristaltically through an asymmetric channel with 

both wall and thermal slip has been studied. Entropy generation analysis has also been carried out. 

Entropy generation rate grows as thermal slip enhances. The study of Entropy generation has vast 

implications in engineering for examining the performance of systems like power plants and 

refrigerators. Lower the entropy generation, the more efficient the system is. High entropy 

generation implies the system requires improvement. 

In chapter 6, peristaltic second grade dusty fluid flowing through porous medium has been 

analyzed. Many biological structures, for instance lungs, kidneys, skin, bone marrow, and 

lymphatic systems are porous in nature. Filtration processes, water absorption in river beds and 

water transport through plant roots and stems are examples from geology. The porosity of the 

medium has significance effect on fluid velocity. As medium becomes more porous, fluid motion 

through medium becomes slow. This fact is helpful in improving the filtration process and 

controlling drug diffusion. 
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In chapter 7, effects of variable properties on viscous peristaltic fluid with particle suspension have 

been illustrated. Convective boundary conditions have also been incorporated. Variable viscosity 

and thermal conductivity are both responsible for slowing down the heat transfer through the fluid. 

Temperature profile declines due to an increase in the values of Biot numbers. This analysis is 

very productive for lubricant effectiveness in automobiles, accessing weather trends and cloud 

formation, cooling systems, and chemical reactors. 

Thermal analysis of dusty viscous fluid with peristaltic movement through curved geometry have 

been discussed. This study can be extended to Non-Newtonian fluids. Thermal effects on few 

viscoelastic models have been studied in this dissertation while a vast class of viscoelastic fluids 

are left for future analysis. The current analysis further can be extended to other geometries like 

tubes, endoscopes, sheets etc. 
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Appendix 

Chapter 2 

A1 =
(ℎ2+ℎ1)(−2√2+2√2(1+F0𝑀2𝛽)cosh(

(ℎ2−ℎ1)𝑀

√2
)−𝑀(F0+4𝛽+2F0𝑀2𝛽2) sinh(

(ℎ2−ℎ1)𝑀

√2
))

−4√2+4√2(1+(ℎ2−ℎ1)𝑀2𝛽)cosh(
(ℎ2−ℎ1)𝑀

√2
)−2𝑀(ℎ2−ℎ1+4𝛽+2(ℎ2−ℎ1)𝑀2𝛽2) sinh(

(ℎ2−ℎ1)𝑀

√2
)
 , 

A2 =
2√2−2√2(1+F0𝑀2𝛽) cosh(

(ℎ2−ℎ1)𝑀

√2
)+𝑀(F0+4𝛽+2F0𝑀2𝛽2) sinh(

(ℎ2−ℎ1)𝑀

√2
)

−2√2+2√2(1+(ℎ2−ℎ1)𝑀2𝛽) cosh(
(ℎ2−ℎ1)𝑀

√2
)+𝑀(−ℎ2+ℎ1−4𝛽+2(−ℎ2+ℎ1)𝑀2𝛽2) sinh(

(ℎ2−ℎ1)𝑀

√2
)
 , 

A3 =
(F0−ℎ2+ℎ1)(√2cosh(

ℎ2𝑀

√2
)−√2cosh(

ℎ1𝑀

√2
)−2𝑀𝛽(sinh(

ℎ2𝑀

√2
)+sinh(

ℎ1𝑀

√2
)))

−2√2+2√2(1+(ℎ2−ℎ1)𝑀2𝛽)cosh(
(ℎ2−ℎ1)𝑀

√2
)+𝑀(−ℎ2+ℎ1−4𝛽+2(−ℎ2+ℎ1)𝑀2𝛽2) sinh(

(ℎ2−ℎ1)𝑀

√2
)
 , 

A4 =
(F0−ℎ2+ℎ1)(2𝑀𝛽(cosh(

ℎ2𝑀

√2
)+cosh(

ℎ1𝑀

√2
))+√2(−sinh(

ℎ2𝑀

√2
)+sinh(

ℎ1𝑀

√2
)))

−2√2+2√2(1+(ℎ2−ℎ1)𝑀2𝛽)cosh(
(ℎ2−ℎ1)𝑀

√2
)+𝑀(−ℎ2+ℎ1−4𝛽+2(−ℎ2+ℎ1)𝑀2𝛽2) sinh(

(ℎ2−ℎ1)𝑀

√2
)
 , 

𝐶1 =
E0(ℎ2+ℎ1)+2A3 ℎ1 cosh(

ℎ2𝑀

√2
)+2A4ℎ1 sinh(

ℎ2𝑀

√2
)−2ℎ2(A3cosh(

ℎ1𝑀

√2
)+A4sinh(

ℎ1𝑀

√2
))

2(ℎ2−ℎ1)
 , 

C2 = −
E0+A3cosh(

ℎ2𝑀

√2
)−A3cosh(

ℎ1𝑀

√2
)+A4sinh(

ℎ2𝑀

√2
)−A4sinh(

ℎ1𝑀

√2
)

ℎ2−ℎ1
 . 

Chapter 4 

C1 = −
1

4(ℎ2−ℎ1)3(−ℎ2+ℎ1+6𝛽)2(ℎ2−ℎ1+2𝜀)
(4(ℎ2 − ℎ1)

3(−ℎ2 + ℎ1 + 6𝛽)2(ℎ1 − 𝜀) − 𝐵𝑟(ℎ2 − ℎ1 +

2𝜀) (3F0
2(ℎ2 − ℎ1)

2(ℎ2 − ℎ1 + 8𝜀) + 2F0 (ℎ2ℎ1 (−ℎ2
4
𝐵1 + 4ℎ2

3
𝐵1(ℎ1 + 3𝛽) + 4ℎ2ℎ1𝐵1(ℎ1 +

3𝛽)(ℎ1 + 6𝛽) − ℎ1
2(−24 + 𝐵1(ℎ1 + 6𝛽)2) − 6ℎ2

2
(−4 + 𝐵1(ℎ1

2
+ 6ℎ1𝛽 + 6𝛽2))) + (ℎ2 −

ℎ1)
3(−24 + 𝐵1(−ℎ2 + ℎ1 + 6𝛽)2)𝜀) + 2(−ℎ2 + ℎ1) (ℎ2ℎ1 (12ℎ1

2
− E0ℎ2

3
𝐵1 − 3E0ℎ2𝐵1(ℎ1 +
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2𝛽)(ℎ1 + 6𝛽) + E0ℎ𝐵1(ℎ1 + 6𝛽)2 + 3ℎ2
2
(4 + E0𝐵1(ℎ1 + 4𝛽))) + (ℎ2 − ℎ1)

2 (12ℎ1 + E0ℎ2
2
𝐵1 +

E0𝐵1(ℎ1 + 6𝛽)2 − 2ℎ2(6 + E0𝐵1(ℎ1 + 6𝛽))) 𝜀))) , 

C2 =
1

2(ℎ2−ℎ1)3(−ℎ2+ℎ1+6𝛽)2(ℎ2−ℎ1+2𝜀)
(2(ℎ2 − ℎ1)

3(−ℎ2 + ℎ1 + 6𝛽)2 + 𝐵𝑟(ℎ2 + ℎ1) ((ℎ2 −

ℎ1)(12ℎ2
2 + 24ℎ2ℎ1 + 12ℎ2 − E0ℎ2

3
𝐵1 + 3E0ℎ2

2ℎ1𝐵1 − 3E0ℎ2ℎ1
2
𝐵1 + E0ℎ1

3
𝐵1 +

12E0(ℎ2 − ℎ1)
2𝐵1𝛽 + 36E0(−ℎ2 + ℎ1)𝐵1𝛽

2) + F0 (ℎ2
4
𝐵1 − 4ℎ2

3
𝐵1(ℎ1 + 3𝛽) − 4ℎ2ℎ1(12 +

𝐵1(ℎ1 + 3𝛽)(ℎ1 + 6𝛽)) + ℎ1
2(−24 + 𝐵1(ℎ1 + 6𝛽)2) + 6ℎ2

2 (−4 + 𝐵1(ℎ1
2 + 6ℎ1𝛽 +

6𝛽2)))) (ℎ2 − ℎ1 + 2𝜀)). 
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