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ABSTRACT

Complex rotating machines are extensively used in modern industry with high
demanding performance. However. due to severe operating conditions, certain
unexpected breakdowns may occur in the machinery that mmay be expensive and
potentially catastrophic. This research addresses the early detection of common
faults occurring in rotating machinery using supervised learning based pattern

recognition (PR) methods.

The study focuses on obtaining the accurate and fault-related time domain (TD)
statistical features, with the intention of enhancing diagnostic capability of clas-
sifiers. Localized faults in rolling element bearing (REB) generate very weak vi-
brations and the extracted TD features may be affected by unrelated fluctuations
present in the vibration signal transmitted by joint machinery components. The
inaccurate feature values may mislead classifiers and consequently reduce their
fault classification accuracy. To deal with the issue, two new central tendency
(CT) based feature processing and extraction methods are presented that ade-
quately mitigate the affect of these fluctuations on the supervised learning based
classification process. The methods helps to extract accurate and fault related

features to improve the fault classification accuracy of the classifiers.

Unlike faults in REB, the most common faults in rotor, unbalance and misalign-
ment, produce larger amplitudes in vibration signal. Yet, the reliable identification
of these faults is often hard by using conventional frequency methods. Moreover,
misjudging misalignment with unbalance fault may even aggravate the situation

in machinery due to different maintenance strategies. Present research exploits
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the difference of mechanical forces exhibited by these faults in multiple axes of
the rotor, in terms of transmitted vibrations, for the extraction of very effective
TD features. These multi-axis features are processed further to improve the fault

classification accuracy of the diagnostic model.

Variety of classifiers are employed to evaluate the performance of the presented
methods. The classifiers include support vector machine (SVM), bavesNet. de-
cision table and decision tree. All the classifiers have shown considerable im-
provement in their fault classification accuracy. In case of REB’s four faults, the
achieved accuracy reaches to 96.8% from 76.3% obtained by using raw TD fea-
tures. Similarly, in rotor’s case, the fault classification accuracy is enhanced to

100% from 83.3% by using multi-axis TD features.
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Chapter 1

Introduction

This chapter begins with background knowledge of the subject and provides an
overview of the common faults occurring in rotating machinery and conventional
diagnostic techniques. This is followed by the motivation behind the research, de-
tailed description of the research problem and the resulting contributions. Finally,

the chapter describes the structure of thesis.

1.1 Background

Modern rotating machinery is part of almost every industry that require efficient,
economical and safe production. However, the machinery works generally under
severe operating conditions, which may cause sudden breakdowns and decrease of
performance. This may result in financial losses, lower products quality and op-
eration safety. Undetected malfunctions of machine components can also induce
failures in the related parts. Lack of timely available factual data, used to quan-
tify the actual need of maintenance, is often the main reason behind ineffective
maintenance management [1]. Therefore, early detection and diagnosis of complex

machinery faults is crucial for economical and safety reasons.

Condition-based maintenance (CBM) methods offer early prediction of machinery
faults using condition monitoring (CM) technologies [2]. Recent advancements in

1



sensors, instrumentation, communication and computation provide the means to
manage this kind of maintenance operations. The CM procedures cover different
disciplines, such as mechanical measurements, electrical measurements, perfor-
mance or process measurements, tribologv and non-destructive testing [3]. Typi-
cal parameters of mechanical measurements include vibration, acoustic emission,
temperature and strain. Among all, vibration measurement and analysis has been
the most common and popular approach [1]. The vibration parameter can address

majority of machinery faults and provides an earliest indication of any developing

fault. The parameter provides a clear picture of plant’s health, making it possible

to prior plan maintenance activities for those machines which have signs of anyv
potential failure. Mechanical systems produce vibration even when they are new
or operating properly. However, the vibration level is very small and constant in
that case, but the signature changes quickly with the development of some fault.
Machinery failures reveal a chain reaction of cause and defect. The fault diagnosis
works backwards to define the elements or root causes of the chain involved in the
failure. The root cause analysis also prevents the machinery from suffering the

same fault again and again.

Basic components of rotating machinery include bearings, gears, fans, rotors and

shafts. The most common of them is rotor-bearing mnechanisin. Bearing is very '

critical component due to bearing basic dynamic loads and forces. Faults in rolling
element bearing (REB) are common and categorized into distributed and local-
ized faults. Typical distributed bearing faults include surface roughness, waviness,
misaligned races and off-size rolling elements. These are usually caused by design
and manufacturing errors, improper mounting, wear and corrosion etc [4]. Local-
ized bearing faults include cracks, pits and spalls on the rolling surfaces that are
usually caused by plastic deformation, brinelling and material fatigue [5, 6]. Both
distributed and localized bearing faults can cause machinery malfunctions. From
the standpoint of health monitoring of machinery, however, localized fault diagno-
sis is more important as spalling of races or rolling elements having dominant style
of failure. Moreover, in real world applications, many distributed faults originate

from localized spalling [7]. Common rotor faults include unbalance, misalignment,



rub, bent, oil whirl and pedestal looseness [8]. Unbalance and misalignment are
the most common and frequently occurred faults. As many problems associated
with the machinery are attributed to bearing failures and faulty rotor, the present
research focuses on the study of localized faults in REB and most frequently oc-

curring faults in rotor.

There exist two principal approaches to machinery fault diagnosis, known as
model-based approach and data-driven approach [9]. The model-based approach
uses an analytical model of a process to analyze the systems dynamic behavior.
The mathematical model usually involves time dependent differential equations,
where deviations from the expected values of mouitoring parameter represent the
health state of machinery. However, inappropriately designed models can cause
false diagnostics. Hence, data-driven techniques are an alternative where analyti-
cal model is not feasible. In data-driven techniques, informative data is collected
from a system under test to implement appropriate analysis. Several methods
have been developed in data-driven domain using vibration data for fault diagno-
sis of rotating machinery. These methods mainly include signal processing, fuzzy
systems, artificial intelligence (AI) based pattern recognition (PR) and expert

systems.

As the CBM strategy is fully supported by computer technology, the recent ad-
vancements utilizes Al techniques as well-adopted tool [10]. Intelligent mainte-
nance systems can make inferences and arrive at reliable conclusion. In this regard,
supervised learning based PR is an emerging and useful technique for such situa-
tions. Main stages to recognize the fault patterns are feature extraction, feature
selection and fault classification. Extraction of appropriate diagnostic features
is very important for reliable PR process. The feature extraction stage mainly
utilizes signal processing methods, such as time domain (TD), frequency domain
(FD) and time-frequency domain (TFD). Although TD vibration signals contains
mixture of frequency components transmitted by machine parts, principal advan-
tage of TD analysis is that almost no data is lost in transformations. The signal
is often characterized using some statistical parameters or features. These fea-
tures can be compared with pre-defined thresholds to detect machinery faults and

3



for tracking their deterioration. Usually. the features involve indices, which are
sensitive to impulsive oscillations in vibration signal. Several TD statistical fea-
tures are reported in the literature used for PR of machinery faults, such as root
mean square (RMS), mean, standard deviation (SD), variance, skewness, kurtosis,
crest factor (CF), impulse factor (IF), shape factor (SF). median, range etc. The

features are described below.

e RMS: The RMS is the normalized second statistical moment of a signal and
commonly used to quantify the steady state signal. In vibration analysis, .
RMS describes the energy of the signal and is used for fault detection as a

most basic and important feature.
1 NP
RMS = (ﬁ 31X ()] ) (1.1)

e Mean: This is the first moment of probability distribution of a signal and

provides an average value of the signal.

N

Mean(u) = %qu) (1.2)

1=]

e Standard Deviation: The SD is used to quantify the amount of variation or

dispersion of a set of data values. The following relation calculates its value.
StandardDeviation(d) = (l Z(X(z) - ,u)2> : (1.3)
N

e Variance: This measure is the second moment of probability distribution of
a signal, and reflect that how far a set of numbers is spread out from its

mean.

Variance(o?) = 71[-2()((2') _ (1.4)



e Skewness: The feature is the third statistical moment that characterizes the

degree of asymmetry of data distribution around its mean.
N :
1 & (X)) - )y
Skewness = N Ezl (—U—) (1.5)

e Kurtosis: This is the fourth normalized statistical moment, which indicates
the flatness or the spikiness of a signal. The feature is being extensively used

for bearing’s fault diagnosis.
1 o [ (X () = m)y4
Kurtosis = N ; (——U——) (1.6)

e Crest Factor: Measuring RMS level is the siinplest approach to detect faults
in TD. However, this may not show appreciable changes at the early stages
of faults. The CF may be more sensitive to this situation as it is defined as
the ratio of the peak level of the input signal to its RMS level. Therefore,
peaks in a TD signal due to impulsive vibrations may result in an increase in

the CF, which can help to detect any possible changes in the signal’s pattern.

maz(|X|)

RMS (7).

CrestFactor =
e Impulse Factor: The IF is defined as the ratio of the peak level of an input
signal to its absolute average, and is also sensitive to shape of peaks generated

due to fault impacts.

maz(|X])

_ .8
Y X @) 18)

ImpulseFactor =

e Shape Factor: The SF is defined as the ratio of the RMS level of the input

signal to its absolute average.

RAMS

YV X)) (1.9)

ShapeFactor =



e Median: This measure is the middle score of elements present in a data set
when arranged in ascending or descending order. The following formula is
used to calculate the median, when N is odd number of elements in the data

set.
(1.10)

N+1
Median = magm'tude( + )

However, if the number of elements is even, then the median is calculated

by averaging the two middle elements.

e Range: The feature is the measure of peak to peak vibration and can be

used to detect the severity of spikes generated from machinery fault sources.

Range = maz(X) — min(X) (1.11)

In the above relations, X is the sequence of data samples obtained after digitizing
time domain vibration signals, X (i) is the amplitude of i** sample and N is the

total number of data samples in the sequence.

Although the PR is a popular domain for automatic diagnosis of machinery faults, !
noise in the systems often misleads the statistical classifiers in their training phase
[11]. Thus, to facilitate the fault detection process, most of the existing fault di-
agnosis methods involve certain pre-processing of raw TD vibration data before
further analysis. The data pre-processing normally includes extraction of appro-
priate frequency range {12-17] and noise reduction [18-23]. Literature reports
numerous vibration-based PR methods have so far been employed to detect faults
in rotating machinery using TD statistical features. However, maintaining an op-
timum fault classification accuracy using a minimal set of features has been a

challenge.



1.2 Research Problem

Rotating machinery components produce complex vibration signals. Problem
arises, when vibration produced by a faulty component is influenced by the vi-
brations generated from multiple components in rotating machinery. Analysis of
low amplitudes present in captured vibration signal then becomes very hard. On
the other hand, TD features may be very useful for the recognition of faults in
rotating machinery but are often sensitive to the undesired vibrations. Inaccurate
and unrelated feature values may mislead the supervised learning based classifiers

and consequently reduce the fault classification accuracy.

Very little work has been carried out regarding the accurate extraction of diag-
nostic features for machinery fault diagnosis. Signal quality along with machines
operating conditions like load, speed, or torque can affect a feature’s value [24, 25].
Difficulty with the existing methods is their complexity and computational cost,
especially employing TD features. This study investigates faults in two diverse
components of the rotating machinery, REB and rotor, with the intent to obtain

accurate and fault-related TD features.

1.2.1 Bearing Fault Diagnosis

Identification of the localized faults in REB is very hard due to presence of very
low amplitudes in captured vibration signal, which is often influenced by joint
machine components like rotor or gear. Thus, the spectra of raw vibration signal
contain very little diagnostic information regarding the bearing faults [2]. The
common faults include inner race (IR) fault, outer race (OR) fault, ball (BL)
fault and mixture of the above mentioned faults (MX). Numerous vibration-based
PR methods have so far been employed to detect the bearing faults using TD
statistical features {26-35]. However, the fault classification accuracy achieved
is not at the satisfactory level. Our initial investigations show that the random
nature of vibration signal can contain spikes or fluctuations, which may occur due

to change in dynamic operating conditions in the machinery. Nevertheless, the
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fluctuations may not be associated with the REB’s localized faults and produce

abnormal values or outliers in the extracted TD statistical features.

1.2.2 Rotor Faults Diagnosis

Unlike the bearing faults, the most commonly occurring faults in rotor, unbalance
and 1nisalignment, produce larger amplitudes in the transmitted vibration signal. .
Yet, the faults are very difficult to identify using conventional frequency methods ‘
due to exhibiting similar sort of spectra [8, 36]. On the other hand, accurate iden-
tification of these faults is extremely important as the rotor balancing procedure
1s based on attachment or removal of certain amount of weight to or from a partic-
ular location of the rotor. Thus, confirming the unbalance state of rotor is crucial
prior to take any corrective action [37]. Misjudging misalignment with unbalance
fault may even aggravate the situation in machinery. The literature shows that
mostly single-axis vibrations, specially from radial axis. have been utilized to ex-
tract TD features for the purpose [8, 35]. These TD features may not be able to

demonstrate properly the dissimilarity of exhibited forces by the rotor faults.

1.3 Philosophy of the Work

Taking into account the dynamics of machinery components, intelligent extraction
or processing of the TD features may help to obtain accurate and fault related fea-
tures. The extraction or processing methods may vary according to the mechanical

design of a component, the nature of its faults and transmitted vibrations.

1.4 Research Hypotheses

Below are the research hypotheses formulated to obtain accurate and fault-related
TD features. Hypothesis-1 addresses the classification of the bearing faults, whereas
Hypothesis-2 addresses the faults in rotor.
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Hypothesis-1 While diagnosing REB’s localized faults, the acquired vibration
signal may be affected by stronger impacts from joint machinery sources such as

rotor or gear. This may alter the statistical values of the extracted TD features and

consequently mislead a supervised learning based classifier. Isolating the external

sources from the bearing at feature level or feature-extraction-level may provide |

accurate and fault related TD features.

Hypothesis-2 Utilization of the TD features, extracted from simultaneously ac-

quired vibration signals, from multiple axes of rotor, may help to identify its un- °

balance and misalignment states accurately. The multi-axis features may be more '

|
|
|

sensitive due to the exhibition of dissimilar forces by these faults. The respective |

sensitivities of the features may be utilized intelligently for obtaining accurate and

fault related features.

1.5 Research Methodology

The present research is of experimental nature that proposes solution to an im- |
mediate problem. To address the research hypotheses, several experiments are

performed and the results are analyzed to derive conclusions. The research has

been conducted in three main phases.

In the first phase, the research problem has been formulated to write-up a research
proposal. Formulation of the research problem is comprised of literature review,

defining the problem and identifying the research gap.

Second phase of the research deals with the planning. Reliable data collection
procedures and data validation process are the main steps of this phase. The
experimental data contains data-sets of the bearing and rotor faults. Details of

the data-sets is described below.

1. To obtain data-sets from bearing faults, a mechanical testbed known as

machine fault simulator (MFS) is utilized along with a set of faulty bearings



containing localized faults. The PC-based vibration measurement system
contains 24-bit data acquisition hardware from National Instruments (NI).

(Chapter 4 and Chapter 5).

2. Bearing data from Curtin University (CU) is also utilized for in-depth anal-

ysis of the bearing faults. The data is freely available online (Chapter 3).

3. To obtain data-set from faulty rotors, again the MFS is used. Rotor mis- :
alignment and unbalance faults are generated in controlled environment re-

peatedly (Chapter 6).

The final phase concerns about conducting the research that include processing of
the data and writing of the thesis. Based on the observations from comprehensive
experiments, new methods have been presented to solve our research problem.
The data processing and analysis stage encompasses the experimental study to
evaluate the presented methods. NI's LabVIEW along with its Sound and Vibra-
tion Measurement Suite and Matlab are the mainly used software packages for the

purpose. Finally, the thesis concludes the research.

1.6 Contribution of the Research

The thesis fills a significant research gap by studying the role of accurate TD di-
agnostic features for supervised learning process. The reliable and accurate TD
features obtained through these methods have been found robust and provide
higher diagnostic information to PR-models. Therefore, the present research em-
phasizes the use of intelligently processed TD features for the problem at hand,
instead of using raw features. A substantial advantage of the proposed extraction
and processing of the features over conventional pre-processing of raw vibration
data is the computational cost. Only few values in feature distributions are re-
quired to be processed rather than processing the huge vibration data. Several

classifiers are used to evaluate the performance of the presented methods. These
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classifiers include support vector machine (SVM) [38], bayesNet [39], decision ta-
ble [40] and decision tree [41]. Classification accuracy of all the classifiers has been
enhanced considerably when applied the proposed methods. Major contributions

of the research include:

1. A central tendency (CT) based feature processing (CTBFP) method is devel-
oped prior to supervised learning based classification process to identify localized
faults in REB. The CTBFP method processes the features at data preparation
stage of instance formation. The method deals adequately with the possible fea-
ture outliers and ensures the supply of only fault-related feature values to clas- |
sifier by discarding the affected instances. The fault classification accuracy of -

the classifiers is improved considerably. In addition to computationally efficient,

the method is immune to possible fluctuations present in vibration signals. The
CTBFP method produces 94.4% accuracy at maximum using multi-class SVM to
identify four faults of REB employing ten TD features. Using the same vibration
data set, the classifier could provide only 76.3% accuracy when employed the same

raw TD features.

2. Application of the CTBFP method may become somewhat limited when train-

ing data-set is small, due to the strategy of discarding the affected instances. Un- .

like processing the feature distributions at feature-level, a new CT-based feature |

extraction (CTBFE) method is presented that works at feature-extraction-level
to obtain reliable TD feature values to recognize the fault patterns of REB. The
presented method selects the most appropriate portion of a vibration signal for
the extraction of features. The CTBFE method not only preserves number of
instances but also provides more accurate results compared to that of aforemen-
tioned CTBFP method. The method is efficient and provides significant immunity
to possible fluctuations and background noises present in vibration signals. The
CTBFE demonstrates 96.8% accuracy at maximum using multi-class SVM to iden-

tify four faults of REB employing ten TD features.

3. The CTBFE is exploited further to develop a rule-based bearing diagnostic

11



system (RBDS). Each TD feature is processed statistically to approximate its pre-
cise central values (CVs) against the respective faults. In this way. every feature
provides a set of CVs that are equal in number to that of faults. Separating
distances among normalized CVs (NCVs) in a set allow to select or discard that
particular feature before further processing. The selected features or sets of NCVs
are finally used as references to generate rule-set for testing the unknown samples.
The results from RBDS are evident that the proposed method may be an effective
alternative to the existing classifier-based costly fault diagnosis, even in the pres-
ence of strong background noise. Using the same vibration data set, the RBDS

produce 95.6% accurate results employing only three salient features.

4. Multi-axis TD features are employed for accurate identification of unbalance
and misalignment faults in rotor. Every pair of alike features is then further
processed to have more effective feature to take part in the PR process, i.e. RMS-
radial and RMS-axial are processed adequately to produce a single robust RMS
feature. Multi-axis implementation of the TD features also maintains the length
of the feature vector for efficient data processing, in addition to providing very ac-
curate results. The method enhances the accuracy of binary-SVM model to 100%
using six multi-axis features only. The classifier provides only 83.3% classification |

accuracy employing the same but single axis TD features.

1.7 Scope of the Thesis

The present research utilizes only the TD features for the machinery problems
at hand, using supervised learning based PR methods. Sensitivity of the TD
features is investigated for the localized faults in REB and rotor’s unbalance &
misalignment faults. This study does not cover the physical causes or mechanical
phenomena behind the occurrence of random fluctuations in vibration signals dur-
ing the faults diagnosis of bearing. Similarly, the study does not cover the rotor

dynamics or generation of vibratory forces by the rotor faults under study.
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1.8 Organization of the Thesis

Chapter 2 provides critical literature review, which focuses on rotor and bearing
transmission system and its fault diagnosis using signal processing and vibration-

based PR methods.

Chapter 3 describes the CTBFP method used to identify localized faults in REB.
The chapter also deliberates the generation of outliers, their detection criteria and

discarding procedure of the affected instances. Sensitivity level of the TD features :
is investigated against the random fluctuations in vibration signal. Finally, the

noise immunity of the CTBFP method is discussed.

Chapter 4 describes the CTBFE method to classify again the localized faults in
REB. Accurate extraction of the TD features is demonstrated for trustworthy per-

formance of the classifiers. The performance of the presented method is compared

with that of CTBFP method.

Chapter 5 sheds light on the RBDS method to diagnose REB’s faults. The algo-
rithm explains the utilization of CTBFE-based feature values to develop rule-based

mechanism.

Chapter 6 describes the rotor’'s faults. The chapter explains the extraction of
multi-axis features and their processing according to the nature of faults to obtain

robust feature-set for trustworthy diagnostics.

Chapter 7 concludes the research work and suggests some future work.
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Chapter 2

Literature Review

The chapter covers a wide range of literature that includes rotating machinery,
maintenance methods and vibration-based fault diagnostic techniques. After a
preliminary literature search, the literature review focuses on fault diagnosis of

rotor and bearing using vibration-based PR methods.

2.1 Condition-based Maintenance

Maintenance is a combination of science, art, and philosophy [42]. The activity is
carried out to restore a faulty machine to working condition. Efficient maintenance
activity is a matter of having right the resources to be used at the right time.
Maintenance methods are broadly categorized into three main categories [1], and
each one has its own associated costs and benefits. The most expensive and oldest
maintenance method is breakdown or failure method [43], which is carried out
after a fault occurs. This often results in immediate halt of running process and
plant downtime. Apart from costly replacement of machinery components, the
situation can be catastrophic to workers. Preventative maintenance [44] is the next
logical method, which relies on periodic replacement of machinery components at
fixed-time calculated on their life-basis, even they are working properly. This

method usually has lower associated cost relative to the breakdown method as
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inventory and manpower can be better planned. The most advanced, logical and
cost effective method is predictive maintenance or CBM, in which maintenance
activity is carried out on the basis of condition of machinery parts [2]. As soon
as a machine begins to exhibit signs of incipient failure, CBM allows to plan its
inventory and repair schedule. The method also contributes to improve worker’s
health and safety as the developing fault may produces pollution or health hazards.
Moreover, the CBM is also used to check a newly installed machine before start-
up, in terms of its foundation. stability, proper alignment and overall integrity

[45).

; Condition Monitoring

Prarameters
\ 4 A l ]
Mechanical . Electrical Performance . Non-destructive |
Tribology ) :
Measurement Measurement Measurement Testing l
Vibration, Acoustic Current, voltage, Pressure, flow, Lubrication, Visual inspection ,
Strain, etc phase, etc temperature, etc debris, etc aquistic analysis, etc

FIGURE 2.1: Condition monitoring parameters

Advanced CM technologies or parameters provides the basis to implement CBM. ‘

i
|
|

The CM technologies cover different disciplines such as mechanical measurements, |
electrical measurements, performance and process measurements, tribology and |
non-destructive testing, as shown in Figure 2.1. Typical parameters of mechanical
measurements include vibration, acoustic emission and strain [46]. A CBM sys-
tem mainly includes measurement hardware and software to acquire and interpret
signals generated by the machine parameters being monitored. The system can

perform on-line, i.e. when the machine is in operation as well as off-line. Jardine

et al [3] presented a detailed review of the subject.

Among all the above mentioned parameters, vibration measurement and analysis
has been the most common and popular. Vibration can addresses majority of
the machinery faults, as shown in Table 2.1. The parameter is also an earliest
indicator of any developing fault. Vibration provides a clear picture of plant’s
health, and allows to plan the maintenance schedule for those machines only that
have signs of failures. Mechanical systems produce vibration even if they are new
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TABLE 2.1: Typical problems treated by vibration analysis [1]

Ttem Faults

Unbalance
Bent shaft
Eccentricity
Misalignment
Rotor and shaft Rubs
Cracked shaft
Critical speeds
Resonance
Blade problems

Pitting of roller or races
Rolling element bearing Spalling
Other defects in rolling ele-
ments
Oil whirl
Journal bearing Oval or barreled journal
Journal/bearing rub

Unbalance

Flexible coupling Misalignment

Damaged rotor bars
Unbalanced magnetic pulls
Air gap variations
Electrical machines Foundation and structural
faults
Piping resonance
Structural resonance
Vortex shedding

or operating properly. However, the vibration level is very small and constant in
that case. But the vibration signature changes quickly with the development of
some fault. Failures in machinery reveal a chain reaction of cause and defect. The
fault diagnosis procedure works backwards to define the elements or root causes
of the chain involved. The root cause analysis also prevents the machinery from
suffering the same fault again and again. Chenxing Sheng et al [47] discussed the

most recent progress in the CM of machinery and vibration-based fault diagnosis.
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2.2 Common Faults in Rotating Machinery

Basic components of rotating machinery include bearings, gears, fans, shafts or
rotors. The rotor-bearing mechanism is the most common part of the machinery.

As rotors runs on bearings, making the bearing very critical component due to bear

basic dynamic loads and forces. Many problems associated with the machinery

are attributed to faulty rotor and bearing failures. Therefore, the present research |

focuses on the study of frequently occurring faults in rotor and bearing.

2.2.1 Bearing’s Localized Faults

Basic purpose of bearing is to provide an interface between the stationary and

the rotating parts of a machine. Bearings provide a nearly frictionless support to
guide rotors or shafts. Even well maintained bearings are subjected to at least one

cause of failure that is its material fatigue [42]. There exists two general types of

bearings. the journal bearing and the REB. For lower speeds and lighter loaded |

machines, the REB is the popular choice. Faults in REB are categorized into |

distributed and localized category. Typical distributed faults include waviness,

!
|

i
i
d
i
|

surface roughness, off-size rolling elements and misaligned races. They are usually °

caused by design and manufacturing errors, improper mounting, wear, and corro-
sion [4]. Localized bearing defects include cracks, pits, and spalls on the rolling
surfaces. These type of faults are usually caused by plastic deformation, brinelling,
and material fatigue [5, 6]. Both distributed and localized bearing faults can cause
machinery malfunction. However, from the standpoint of health condition mon-
itoring, localized defect diagnostics are more important as spalling of races or
rolling elements is the dominant style of the failure of REBs. Additionally, in
real world applications, many distributed faults originate from a localized spalling
[7, 48]. Tandon et al 7] reviewed vibration and acoustic measurement methods

for the detection of defects in REBs.

Localized faults can be very small and difficult to detect. But these faults can re-

duce the life of bearing and may have a considerable impact on vibration-critical
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FIGURE 2.2: Structure and basic frequencies in ball bearing

machines. When a localized fault appears on the surface of any element of REB,
cyclical impulsive vibration is originated consequently. For example, an impact is -
produced when the rolling elements strike a local fault present on inner or outer
race. or any faulty rolling element strikes the races. Frequency of the impulsive
vibration is known as characteristic or fault frequency, the value of which depends
on the fault size, rotational speed and location of the faults. The fault frequencies
mainly include fundamental-train-frequency (FTF), ball-pass-frequency of inner
race (BPFI), ball-pass-frequency of outer race (BPFO), and ball-spin-frequency
(BSF). Figure 2.2 shows the geometric parameters of REB that involve to gen- '
erate the fault frequencies. Although the fundamental fault frequencies are ex-
pressed by simple formulas, but they are often complicated due to the presence of
other sources of machinery vibration. With stationary OR and rotating IR, the
fault frequencies are derived using bearing's geometry. Below is the mathematical

description of the aforementioned frequencies.

SF, By

FTF = T( -3, Co sﬁ) (2.1)

BPFI = N_b%ﬁ( B4 cos,e) (2.2)

BPFO = N—”gﬂ (1 _ e cos,s) (2.3)
_ SF x Pd 2

BSF = m—( (—) Cos?B ) (2.4)
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Where SF is the motor driving frequency or rotational frequency of shaft, N, is
the number of balls, By is the diameter of ball, P, is the pitch diameter and § is

the ball’s contact angle.

An IR fault generates a series of high energy vibration pulses, the rate of which is
equal to the ball pass frequency relative to IR. As the IR is rotating, the fault will

enter and leave the load zone during the rotation. As a result, the magnitudes of

pulses will be large within the load zone and smaller out of the zone. This phe-

nomenon produces a vibration signal that is amplitude-modulated at IR rotational |

|
i
|

|
]

frequency. The spectrum of signal not only gives rise to a discrete peak at the ball -

pass carrier frequency or BPFI but also produces pair of sidebands. The amount

of each sideband will equal to the modulating frequency or SF or rotational fre-

quency of IR. As the size of fault increases, magnitude of the FBFI increases as

well as more sidebands can be generated. An OR fault generates a series of high

energy vibration pulses, rate of which is equal to the ball pass frequency relative to
the OR. As the OR is stationary, the amplitude of generated pulses will theoret- |
ically remain same. The spectrum of signal will then show a single discrete peak
at BPFO. The transmission path of vibration signal from a faulty IR to sensor
position mounted at bearing’s housing is complicated, therefore fault on the OR

usually easier to detect. Fault on the rolling element can generate a vibration

signal containing BSF, along with the harmonics at FTF. Twice the BSF can also
be generated as the fault strikes both raceways during single rotation. The BSF
can also be amplitude-modulated at the FTF as the fault enters and leaves the

load zone at the rate of FTF. This cause the sidebands in the spectrum around

the BSF.

The amplitude of generated signal may be very low as the rolling element is not
always lies in the load zone when the fault strikes. Energy is also lost during
the propagation of vibration signal through the structural interfaces to sensor.
When the defect is orientated in the axial direction it will not strike the IR or OR.
Due to the above mentioned reasons, the rolling element or ball fault is usually
very difficult to detect. Unlike raceway faults, cage defects do not excite specific
fault frequencies usually. The vibration signal is likely to have random bursts as
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the cage wears or deforms and the balls slides. Wide range of frequencies may
be shown by the spectrum, such as excessive clearance can also produce peak at

FTF.

2.2.2 Unbalance and Misalignment Faults in Rotor

Basic forces excite mechanical vibrations are applied to rotor. Vibration mea-
sured on bearing’s housing is the respouse of forces transmitted by the rotor to |
stationary parts of a machine. Vibration-based identification of rotor faults such
as unbalance, misalignment. bent, crack, oil whirl, rub, or pedestal looseness are
well-studies and widely dealt by CBM [8]. Unbalance and misalignment are the
most commonly occurred faults in rotor. Often, these faults produce similar sort
of frequency patterns that make the diagnosis process very difficult. The rotor
balancing procedure involves attachment or removal of certain amount of weight
to or from a particular location of the rotor. Such treatment can not be appropri-
ate to address the misalignment faults. Therefore, accurate identification of these

faults is extremely important prior to taking corrective action.
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FI1GURE 2.3: Unbalance in single-plane

Unbalance in rotor occurs due to the uneven distribution of mass around its ro-
tational axis. Unbalance force causes a moment produces wobbling movement
during the rotation. A rotor is said to be out of balance when rotational axis of
the rotor is misaligned or eccentric with its geometric axis. Figure 2.3 elaborates
the unbalance in single plane of a rigid thin disc having mass m. In the figure, the
point O is the central point of the rotation and G is the rotor’s center of gravity.
The eccentricity e will then be measured as the distance between the center of
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rotation and the center of gravity, i.e. length OG in the figure. Parameter w is
the rotational speed, 6 is the position at any instant. Practically the tolerable
eccentricity depends upon the type of applications. Unbalance and exerted force

in the disc can be defined as,

U=me (2.5)

Unbalanceforce = m e w? (2.6)

where the unbalance U is measured in kg-m or g-mm. It concerned with the
centrifugal force, which is one of the basic excitation force in rotating machinery.
Even with less eccentricity in large rotors running at high speed, the effect of
unbalance force can be devastating. Therefore, these forces are very harmful and
cause increased load to rotor, bearings and supporting structures. To balance
out the forces, balancing procedure of a rotor usually involves the attachment of
additional mass opposite to the detected uneven mass m. Parkinson [49] and Foiles
et al [50] presented comprehensive reviews on rotor balancing procedures. Causes

of unbalance condition mainly include the following,

a) Due to imperfect machine design, i.e. some parts may be asymmetrical
b) Due to non-homogeneous rotor material
¢) Due to manufacturing imperfections

d) Due to installation errors

Misalignment is the result of incorrect aligned machines. Nandi et al [51] reviewed
the phenomena in detail. The rotor axis should be concentric with the axis of
housing and bearings. Figure 2.4 shows correctly aligned machines and types of

misalignment, i.e. parallel, angular and combined misalignments.

It is quite obvious that only the aligned rotors can produce desired torque without

any transmission of any additional forces and moments by couplings. Misalignment

21



Combination Misalignment

FIGURE 2.4: Types of misalignment

can be a major cause of vibration, due to reaction forces generated in the couplings.
Basic pre-conditions are created by manufacturers to attain correct alignment as
well as provision of suitable choice couplings. Sekhar et al [52] also discussed the
effect of misalignment in terms of vibration of rotating machinery. Misalignment

can arise the following issues in machinery,

a) Bad machine performance
b) Increase of required power to drive a machine, as some part of the power may '
be wasted in coupling and transformed to heat

c) Wear of bearings, parts of a coupling and seals due to excessive force transinis-
sions

d) Vibration and noise

General perception is that the misaligned coupled rotors generate significant 2X
component or second harmonic in the spectrum as well as smaller 1X component
[63]. Lees et al [54] proposed a method to estimate the severity of rotor unbalance
and misalignment. They developed a finite element model of the rotor-coupling-
bearing system and the effect of misalignment was introduced via coupling-co-
ordinate system. The developed model agrees well with empirical results, in which

the 1X response is not as significantly affected as the 2X.
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However, Jordan [55] discussed that the misalignment fault initially affects the
1X response causing an elliptical shape of XY-orbit. They proposed two distinct
approaches, forces at the couplings were identified in the first approach while in
the second one the bearing loads are identified. Patel et al [56] discussed the effect
of parallel and angular misaligniment in coupled rotor on its vibrational behavior.
With the help of an experimental setup, they investigated vibrations in bending,
torsional, longitudinal modes. The spectral analysis revealed that 1X vibration
component was stronger in axial direction from parallel alignment than that of

angular alignment.

2.3 Fault Diagnosis Approaches

There exist mainly two approaches for fault diagnosis, model-based and data-
driven [9]. Model-based approaches [57, 58] create explicit mathematical model of
a system under investigation. This approach can be effective if an accurate model

is built. However, it is very difficult to build models for complex systems.

F Data
l Measurements !

;
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FIGURE 2.5: Model based diagnostics

Figure 2.5 shows main phases of model-based fault diagnosis approach; residual
generation and residual evaluation. A residual is obtained at first stage by com-
paring available system measurements with priori information. At second stage,
the generated residual is evaluated and fault is determined by applying any deci-
sion rule such as a threshold test. A generated residual acts as fault indicator to
reflect condition of the system under investigation. A detailed review of model-

based fault diagnosis is referred to [59]. Various model-based fault diagnosis are
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applied of rotating machinery such as bearings [60, 61], rotors [36, 62, 63] and
gearboxes [64]. Generally, conventional statistical signal processing methods treat
vibration random signals as statistically stationary. But in cases where multiple
periodicities are involved, the randomness can also be modeled as cyclostationary

[65], i.e. time-varying statistical parameters with single or multiple periodicities.

Data-driven based signal processing methods have extensively been applied for the
purpose of faults diagnosis of rotating machinery. These techniques are classified -
on the basis of type of signals or CM parameters, such as acoustic signal analy- |
sis, temperature measurement. lubricant analysis, electrical current analysis, and

vibration measurement. Next section provides the details.

2.4 Signal Processing based Fault Diagnosis

Literature reports several signal processing based techniques to process various
CM parameters. Monitoring the temperature of a bearing housing or lubricant is
the simplest method for fault detection in rotary machines. Bearing distributed
defects generate excessive heat in the rotating components that can be used to
detect their health [66]. Debris analysis detects the presence of metallic particles
in the lubricant [67]. The analysis of the various kind of metallic elements can
also facilitate to find the location of the fault. Operating conditions of machinery
also monitored by analyzing the motor current. Changes in the electric signals
in the machinery can be associated with the health of mechanical components
[68]. Acoustic emission is a transient impulse generated by solid material under
mechanical or thermal stress due to the rapid release of strain energy [69]. Crack
detection is the prime application of acoustic emission. Acoustic analysis is also
used to detect bearing faults and shaft cracks. Accuracy of these methods typically
depend on the sound intensity. Since abnormal vibration of rotating machinery
is the first indicator component failure, the vibration measurement and analysis

has been widely used in various kind of industries. Tandon et al [7] reviewed the
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vibration and acoustic measurement methods to detect faults in REBs. Vibration-
based signal processing can be performed mainly in TD [70], FD (71} and TFD
[72].

2.4.1 Time domain

Simple statistical parameters, evaluated over the measured TD signal, can pro- !

vide some interesting information about potential faults in the machinerv. The

TD analysis is directly based on the time waveform acquired from sensor, i.e.e
vibration signal from bearing casing. The simplest technique is the visual inspec-
tion of specific portions of a time waveform. Principal advantage of TD analysis
is that almost no data is lost prior to inspection. However, vibration signals are
often very complicated due to containing mixture of components transmitted by
machine parts. Therefore, it is unlikely to detect any fault by simple visual in-
spection. Thus, the signal is often characterized using some statistical parameters

or features. These features can be compared with pre-defined thresholds to de- \

Il

!

tect machinery faults and for tracking their deterioration. Some commonly used |

statistical measures found in the literature [26-35] include RMS, mean, SD, vari- ‘

ance, skewness, kurtosis, CF, IF, SF and range. Mathematical description of the :

features can be found in Section 1.1.

The RMS, mean and SD values define the energy of vibration signal, its CT and
the dispersion respectively. These parameters are defined with the same units as
the vibration signal. The standard ISO 2372 defines three different RMS levels
to alarm different machine conditions. The CF, IF, SF, skewness and kurtosis
are dimensionless statistics, advantage of which is that they are less sensitive
to variations in load and speed [73]. The CF, SF and IF are sensitive to the
existence of peaks in the signal. These features are often used to detect faults
that involve impacting, i.e. REB, wear, gear tooth wear or cavitation in pumps.
Higher-order statistics, such as skewness and kurtosis describe the shape of the
signal’s amplitude distribution. As the skewness is a measure of asymmetry of

the distribution, a machine having Gaussian distribution is considered in good
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condition. Kurtosis expresses an aspect of spikiness of the signal and is being used

widely for fault diagnosis in rotating machinery.

Orbital analysis, obtained from acquiring orthogonal vibration sensors, are also
used to detect rotor problems. J. J. Carbajal-Hernandez et al [74] used orbit
analysis method to detect misalignment and unbalance problems in electrical in-
duction motors. After mapping the faults into patterns. a classifier was utilized

for recognizing induction motor faults.

2.4.2 Frequency Domain

Potential faults in rotating machinery can be analyzed using FD spectrum, which
is based on the transformed signal. The FD analysis is the most common technique -
for the purpose. The technique is now part of almost every commercial available
vibration analysis software. The analysis method is usually performed using the
fast Fourier transform (FFT) algorithm [75]. The algorithm is an efficient version

of the discrete Fourier transform (DFT). The FFT processing can be described as

N-1

X(k)= 3" X(n) e E)™ k= (01,28 1) (2.7)
X(n) = % - X (k) ej(%)"k, n=(0,1,2..N - 1) (2.8)

Frequency analysis can identify and isolate certain frequency components of inter-
est. Generally, the amplitudes of the fault-related frequencies are compared with
some standard values. In case these values are below certain threshold levels, the
machine is considered healthy [76-79]. Otherwise, the characteristic rotational
frequencies related to specific machinery faults are investigated for further action.
Beside comparing the amplitudes of specific frequencies, the amplitudes of partic-
ular frequency bands of interest can also be investigated [80]. The fundamental

assumption in frequency analysis is that the data to be analyzed is stationary or
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can be reduced to stationarity by a simple transformation. If frequency content
of a signal vary with time, the Fourier analysis will provide a time-averaged sum-
mary. Therefore, it is not an appropriate method for non-linear, non-stationary

signals such as sliding in REB, rotating fluctuations or so on.

Other spectra, based on the Fourier transformation, have also been reported for
fault diagnosis of rotating machinery [3]. These spectra include power spectrum
[2], cepstrum [81], bi-spectrum [82], tri-spectrum [83], and holo-spectrum [84].

Power spectrum defined as the Fourier transform of autocorrelation function of

signal. and reflects the energy at some specific frequency. Whereas, the cepstrum

can detect harmonics and sideband patterns in power spectrum.

2.4.2.1 Envelope Analysis

Fault frequencies (Equations 2.1 to 2.4) generated by localized faults of REB,
already discussed in Section 2.2.1, can be observed by frequency analysis of en-

veloped vibration signal. Enveloped analysis is also known as high frequency reso-

nance technique (HFRT). and is considered as the benchmark method for bearing

diagnostics at early stages. Procedure of envelope analysis involves bandpass fil-
tering of the signal, envelope calculations and finally transformation to frequency
domain with FFT, as illustrated by Figure 2.6.

Raw yibration Selecting Signa} Enveloped
signal , bandpass filter enveloping spectrum
J

FIGURE 2.6: Envelope analysis procedure

The impulses, generated by REB’s localized fault excite resonant frequency of
the structure or bearing housing. Consequently, fault frequency components are
generated in a high frequency region of the spectrum. This is also described as
amplitude-modulation operation where the resonance frequency is carrier signal
and the fault generates the modulating signal. The spectrum of the modulated
signal will be a peak of the carrier frequency with sidebands of the modulating

frequency. However. in noisy vibration signal, it is very difficult to visualize these
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sidebands directly in the raw spectrum. By applying enveloping or demodulating
technique. the information is transferred at low frequency region. During the
process, the bandpass filtering process is crucial, its purpose is to reject the low
frequency and high amplitude components in the signal. Low and high frequencies
often associated with rotor’s misalignment or unbalance and the noise respectively.
Squared envelope spectrum is recommended due to exhibit lesser sensitivity to high
order harmonics [85]. The squared envelope spectrum also improve the signal to

noise ratio in certain situations [86].

In spite the envelope analysis is a powerful technique, the improper selection of the
frequency band can render the analysis ineffective [14]. The efficiency of enveloping
for REB fault diagnosis depends on the choice of the most impulsive band for
demodulation. The most common practice is to determine the characteristics of
the band-pass filter in terms of center frequency and bandwidth. Howieson [87]
states that the most common choice of bandpass filter is between the 2.5 and
5 kHz spectrum region. Nevertheless there is a debate on the proper method
to determine the optimum bandwidth of the filter. Many approaches have been
proposed in the literature for optimal selection of frequency band, such as spectral
kurtosis based methods, spectral energy based methods, wavelet based methods
etc, that are discussed in [15, 17]. Spectral kurtosis (SK) based fast kurtogram
method, proposed by Antoni [13, 88], was also utilized in this study for frequency
range selection to employ enveloping-based data validation process. Application
of hammer test is also proposed in order to identify the resonant frequency of the

structure.

2.4.3 Time-Frequency Domain

Previously mentioned FD methods such as Fourier transform assume stationary
signals to be analyzed. However, localized faults in REB generally introduce non-
stationary signal components [3], which cannot be properly described by ordinary
spectral methods. The drawback can be overcome by the use of TFD methods,
such as short-time Fourier transform (STFT) [89], wavelet transform (WT) [90],
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Wigner-ville distribution (WVD) [91], Hilbert-huang transform (HHT) [92] and
Teager-huang transform (THT) [93]. A comprehensive information regarding TFD
analysis can be found in the review presented by Feng et al [94]. According to the
signal’s decomposition paradigms, the WT are classified as the continuous WT

[95], the discrete WT [96] and wavelet packet analysis [97].

The TFD methods have wide applications for the fault detection of REB. X.
Lou and K. A. Loparo [19] presented a fault classification scheme based on WT
and neuro-fuzzy. The WT was used to process vibration signals and to generate
feature vectors for adaptive neural-fuzzy inference system (ANFIS). J. Altmann
and J. Mathew [22] presented a method to enhance the detection of low-speed
REB’s faults that was based on discrete WT. To achieve better signal-to-noise
ratio (SNR), wavelet packets was performed via an adaptive ANFIS for automatic
extraction of fault-related features. An autoregressive (AR) spectrum of the en-
veloped signal was used in conjunction during the fault detection process. W.
Caesarendra et al [18] also dealt very low rotational-speed REB to identify its
localized faults. Empirical mode decomposition (EMD) and ensemble empirical
mode decomposition (EEMD) were applied. C. Smith et al [20] explored fault
detection in aircraft. The characteristic features were extracted from noise using '
the daubechies, haar and morlet wavelets. Then detection of the vibration signal |
was achieved via signal’s scalogram. D. Yang [98] addressed the fusion of Hilbert
transform and bi-spectral analysis to extract features of faults in a number of con-
ditions in induction motor bearing. Wavelets have also been utilized for denoising

[21, 23] the vibration signals to enhance the fault detection in REBs.

The TFD methods also contributed to rotor faults detection. Climente-Alarcon
et al [99] presented a wideband diagnosis method using WVD to detect eccen-
tricity and high-order components generated by asymmetric rotor. Liu et al [100]
proposed a new multiple window S-method based on time-frequency analysis for
motor fault diagnosis. Z. Feng et al [94] reviewed various TFD methods including
linear and bilinear timefrequency representations applied extensively to machin-

ery fault diagnosis. The systematic study presented over 20 major TFD methods
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reported in more than 100 representative articles since 1990. Advantages and

disadvantages have been discussed along with their fundamental principals.

2.4.3.1 Spectral Kurtosis

Based on the STFT. the Fourier transformation is applied to many short-time win-
dows. Spectral Kurtosis (SK) determines a portion of signal containing maximum
impulsivity using frequency bands. The SK provides the measure of impulsiveness
as a function of frequency and has been used to determine the most appropri-
ate band for the envelope analysis [2]. Assuming a signal z(t) and X (¢, f) is its
complex envelope computed by the STFT, then the SK can be calculated as,

<X N>
K= x> ~

2 (2.9)

where < . > is the time averaging operator. The following important properties

makes SK very effective for the fault diagnosis of bearing [101],

i) It is zero for a stationary Gaussian process
ii) It acts as a constant function of frequency for a stationary process
iii) Its value for non-stationary signal, in the presence of stationary noise, has

large values at frequencies where the SNR is high.

Antoni and Randall [102] utilized these concepts to define a representation tool
known as kurtogram. The kurtogram determine the optimal filter characteristics to
find center frequency (f) and frequency bandwidth (A f). Antoni [13] introduced
an improvement of the method for industrial applications named Fast Kurtogram,
which progressively decomposes a vibration signal in bands. The SK is computed
for each band then using a FIR filter bank. The filter bank structure decomposes
the signal via a dyadic grid extended to a richer 1/3 decomposition with three ad-

ditional filters offering a finer frequency resolution plane. The optimal filters center
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frequency and bandwidth can be used finally to select the appropriate bandpass

filter for the envelope analysis.

2.4.3.2 Order Tracking

In non-stationary working conditions like time-varying speed, the order tracking
method is applied to transform a vibration signal from time domain to angu-

lar or order domain to maintain stationarity [103]. In this way, smearing prob- .
lem of discrete frequency components, due to rotating speed fluctuations. can
be avoided. Three main categories of order tracking techniques are re-sampling
method, Kalman filter based method and the transformation based methods [104]. |
The most commonly used re-sampling method is also employed in this research
during data validation process in conjunction with envelope analysis. In this meth-
ods, both vibration and tachometer signals are acquired simultaneously at constant
time intervals ([A]). The acquired samples are re-sampled then using software-
based interpolation to obtain new data samples. These new samples lie at constant
angular increments with the rotation of shaft (A#). The re-sampled data can be

further processed using traditional FFT analysis, described as follows.

X(Q) = / ” z(0) ¥ dp (2.10)
N-1
X[k] = % > (z[NAG] 2MkInas (2.11)

where A@ is the resolution in angular domain, N is the number of samples of
interpolated signal z(#) and 2[k] indicates the vector of orders to represent order

spectrum.
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2.4.4 Phase Analysis

Position of a rotating part captured at any instant with respect to a fixed point
is known is phase, which indicates the direction of vibratorv motion. Collection
of phase measurements taken from various machine locations reveal information
regarding relative motion of vibrating parts of machinery. Phase is usually mea-
sured using absolute or relative techniques [1]. Absolute phase is measured using
single sensor and single tachometer referencing a mark on the rotor. At each mea-
surement point, the analyzer calculates the time between trigger of tachometer ‘
and next positive peak of vibration waveform. The calculated time interval is con-
verted to degrees and then displayed as the absolute phase that is also used in rotor
balancing application. On the other hand the relative phase is measured with the
help of multi-channel analyzer to calculate the cross-channel phase. One single-
axis sensor serves as the fixed reference and the other one is moved sequentially

to the other required test points. On the other hand, relative phase is the time

difference between the waveforms, converted to degrees, at a specific frequency.

A phase should be studied for machines where the source of the vibration is not
clear or when it is necessary to confirm suspected sources of vibration, for example |
soft foot, cocked bearings and bent shafts, confirm unbalance state of rotor, me- |
chanical looseness, bending/twisting and shaft misaligniment [105]. Phase is very
important tool to detect unbalance fault because 1X harmonic of vibration can
also be generated by other machine parts as well. For example, the phase shift
from horizontal to vertical should be approximately 90 degrees for rotor unbalance

faults.

2.5 Machine Learning based Diagnostics

Many modern approaches to fault identification are based on the emerging field
of PR based on Al [106]. Worden et al [107] reviewed the machine learning based

fault diagnostic techniques for automatic decision making. Machine learning falls
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in two categories; supervised learning and unsupervised learning. The choice of
the learning method depends on the availability of data. Supervised learning is
feasible where historical information or fault data are available. However, there
may be situations in which it is difficult to acquire data in some real systems. In
that case unsupervised learning is used. The present research employed supervised

learning methods.

Data ' Pre- ‘ Feature Feature 4 Decision- .
acquisition iProcessing ‘LExtraction Selection | Making

FIGURE 2.7: Pattern recognition process

Figure 2.7 shows the main phases of supervised learning based faults classification
process that include data acquisition and its pre-processing, feature extraction,

feature selection and decision-making.

2.5.1 Data Acquisition

Measuring appropriate data is the first requirement to develop an intelligent fault
diagnostic system. Data acquisition deals with the type of measured data and type

of sensors and their placements or mounting locations on machinery. The selec- |

|

tion of appropriate sensors and their locations depend upon the type of machine
under test, its construction and fault diagnosis application [108]. The sensors and
recording equipment used to measure data are discussed in detail in [108, 109]. The
measured data can be vibration, acoustics, oil analysis information, pressure, tem-
perature, and environment data etc. Vibration-based diagnostic system consists
of accelerometers, velocity transducers, dual vibration probes, laser vibrometers,
encoders, tachometers, etc. [110]. Overview of using multiple sensors and data

fusion techniques are also covered in [3].

2.5.2 Pre-Processing

The collected data may be polluted by different kind of noises, i.e. sensor response,
the measurement noise, quantization noise in adopting digital representation and
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the unrelated noise from other sources. Before fault features are extracted, it
is often required to clean-up the measured TD data. For the purpose, filtering
and removal of outliers are the popular methods [107]. Various approaches exist
for noise filtration. such as classical approach like kalman filtering [111], adaptive
filtering [112] and WT based methods [113]. However, pre-preesessing should be
performed carefully to avoid loss of any valuable information concerned with the

fault diagnosis.

It is usually very difficult to detect their low amplitudes in acquired vibration sig-
nals, especially in REB’s case. The signals usually contains vibration components |
produced by other joint machine parts. For example, in rotor-bearing system, the
rotor often produce some amount of unbalance or misalignment producing larger
amplitudes comparing to REB’s faults. Therefore, the spectra of raw vibration
signals contain very little diagnostic information regarding the these faults [2]. To
facilitate the fault detection process, most of the existing fault diagnosis meth-
ods involve certain pre-processing of raw data. Apart from noise reduction, the
pre-processing normally includes the extraction of an appropriate frequency range
before further analysis. In this regard, enveloping [12-17] and empirical mode &

wavelets decompositions [18-23] are the most frequently used techniques.

2.5.2.1 Outlier Detection

Outliers are the values in data pattern that do not adapt an expected behavior,
and outlier detection (OD) methods have been used in a wide variety of appli-
cations such as military surveillance, fraud detection for credit cards, intrusion
detection in cyber security, insurance and fault detection in critical systems [114].
The OD is also a well studied area of data mining, and has been classified mainly
into statistical approaches, depth-based approaches, deviation-based approaches,
distance-based approaches, density-based approaches and high-dimensional ap-
proaches [115]. A number of surveys, review articles and books cover these ap-
proaches in machine learning and statistical domains [116-121]. Data mining

generally utilizes a collection of data instances, i.e. pattern. object, record, point,
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vector, event, case, sample, observation, entity etc [122]. Each data instance is
described using a set of features or attributes, which can be of different types such
as binary, categorical, or continuous. The nature of attributes also determiues the
applicability of the OD methods [122], as the selection of right detection method
is vital according to the nature of application and normal behavior of the specific
phenomena [114]. This research utilizes the Box plot [123] for OD of features

values because of offering functional simplicity and situation.

2.5.3 Feature Extraction

After acquiring and pre-processing, the fault features can be extracted using sig- |
nal processing techniques already covered in Section 2.4. The techniques allow the
extraction of various kind of diagnostic features for the PR process. This section
contains an overview of the most important feature extraction methods for PR-
based diagnostics. Statistical values can be extracted using TD data, amplitudes of
specific frequencies from FD, and decomposition results (e.g. wavelet coefficients)
from TFD. The TD feature extraction methods are considered among the first di-
agnostic tool because of utilizing time waveform directly. Some simple statistical
measures like RMS, mnean, SD, variance, skewness. kurtosis, CF, IF, SF, range etc
can be used to compare and identify the state of a machine. The FD methods are
certainly among the most common feature extraction techniques for bearing fault
detection due to its ability in identifying and isolating certain frequencv compo-
nents of interest. The methods rely on the detection of the characteristic rotational
frequencies related to specific machinery faults. These frequencies could be noticed
by observing the envelope of the vibration signal acquired for a damaged bearing.
They are FTF, BPFO, BPFI, BSF, described already in Section 2.2.1. Most of
the traditional signal processing methods can only be applied to stationary signals
and cannot reveal the local features in both time and frequency domains simul-
taneously. The TFD techniques are then powerful methods to identify the health
information. Time variant features and the frequency components from acquired

non-stationary signals can be extracted as fault features. Yang et al [124] reviewed
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a variety of vibration feature extraction techniques that are successfully applied
to rotating machinery fault diagnosis. The literature is mainly categorized again
into TD, FD, TFD based extraction. Worden et al [125] also sumarized these
methods as per Figure 2.8. Main discrimination was that whether the methods

were appropriate for stationary signals or non-stationarv signals.
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FIGURE 2.8: Feature extraction domains

Several researchers utilized TD statistical features in supervised learning based
PR process for the classification of rotating machinery faults. B. Samanta et al
[26] presented a study to compare the performance of bearing fault detection using
ANNs and SVMs. The role of signal pre-processing techniques are investigated in
terms of fault classification accuracy. L.B. Jack and A.K. Nandi [27] used ANNs
to detect rotating machinery faults. They employed statistical methods to pre-
process the vibration signals to be used as input features. The study examines the
performance of classifiers via genetic algorithm based feature selection procedure.
A. Rojas and A. K. Nandi [28] studied the application of SVMs for classification
of REB’s faults. Mechanism for selecting adequate training parameters was pro-
posed using sequential minimal optimization (SMO) algorithm. Various scenarios

were examined using two sets of vibration data and the results are compared with
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those available in the relevant literature. B. Samanta and K. Al-Balushi [29] pre-
sented a procedure for fault diagnosis of REBs through ANN. The characteristic

TD features were used as inputs to the ANN with normal and defective bearings,

consisting of input, hidden and output layers. The TD features were obtained from |

direct processing of the vibration signal segments. The effects of some preprocess-
ing techniques were studied prior to feature extraction like high-pass filtration,
band-pass filtration, enveloping and wavelet transform of the vibration signals.

B. S. Yang et al [30] presented a new neural network (NN) for fault diagnosis

of rotating machinery. The technique synthesizes the adaptive resonance theory '

(ART) and the learning strategy of kohonen neural network. In order to test the |

proposed network, the vibration signal were processed as inputs. The results of the

experiments were compared with other NNs. L. Zhang et al [31] utilized genetic

programming (GP) to detect rotating machinery faults. Feature sets from two |

different machines were used to determine the performance of bi-class recognition.
The results are compared with a few other methods for fault detection. The GP
have been used for feature selection for ANNs and SVMs. The proposed method
demonstrated better perforinance than that of the previous approaches on these

data sets. The training times are also found to be considerably shorter and the

generated classification rules were easy to understand. V. Sugumaran and K. Ra-

machandran [32] presented a method to form a rule set from the TD features for
fuzzy classifier. Decision tree was employed to generate the rules automatically
from the extracted features. The features discriminated the different fault con-
ditions in REB. P. Kankar [33] utilized ANN and SVM to study faults in REB.
Statistical methods were used to extract features and to reduce the dimensional-
ity of original vibration features. The study examined that the machine learning
algorithms can be used effectively for automated diagnostics of REB. V. Sugu-
maran and K. I. Ramachandran [34] examined that often the researchers overlook
the issue of choosing the number of features for optimum performance of a clas-

sifier The SVM and PSVM classifiers were fed statistical and histogram features

extracted from vibration signals for REB’s fault diagnosis. M. Saimurugan et al

[35] emphasized that majority of machine problems were generated from faulty |
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bearings that consequently affect the rotor. They employed ¢-SVC and nu-SVC
models of SVM with four kernel functions for fault classification. Decision tree
algorithm was used to select the salient TD features to diagnose multiple faults in

rotor and REB.

The literature survey reveals that a little work has been carried out regarding the
accurate extraction of diagnostic features for rotating machinery fault diagnosis.
Lee et al [24] examined the sensitivity of diagnostic features for prognostic and
health management (PHM) system, with respect to the signal quality and fail-
ure modes,/ operating conditions of the system like speed, load, or torque. The
presented methods utilized several features from time and frequency domains to
develop algorithms to identify various faults in bearing, gear and shaft [25]. The
frequency domain features included the fault frequencies exhibited by the rotating
components. The traditional TD statistical features, i.e. RMS, kurtosis, crest
factor etc. were also examined for fault detection and prognosis. The authors
emphasized that it is critical to reduce signal noises and eliminate outliers before
extracting diagnostic features to obtain accurate results and prevent the system |
from high false alarm rates. Widely implemented existing outlier detection meth-
ods, such as distance based [126], density-based spatial clustering of applications '
with noise [127], and minimum covariance determinant [128], were employed to
identify the data points to be discarded. While focusing on the front end of a
PHM system, the authors suggested following steps for reliable outcome from the
system; 1) outlier detection to remove abnorinal data from raw vibration signal, 2)
pre-processing of the vibration signal to reduce unwanted noises, 3) cluster based
operational mode detection method to group various operating conditions, and
4) neural network training based feature normalization to mitigate the effects of

operating conditions on the features.

Difficulty with the above mentioned method was the complexity and computa-

tional cost, especially employing TD features. Recently, M. M. Tahir et al [129]

presented a vibration-based feature processing method, which was employed prior -

to use classifier in PR model. The CT-based method was applied to identify lo- |

calized faults in REB using several TD features. The authors discussed that the
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random nature of vibration signals can contain fluctuations, which might not be
related the faults under investigation but can affect the statistical values of the fea-
tures. It was investigated that the affected features inight not be able to represent
the true fault conditions, and mislead the classifier rather. During feature-level
processing, the presented method put every feature distribution under test sepa-
rately to check whether the feature contained one or more outlier values. In case
any feature distribution contained any outlier, the whole instance was discarded
from the training data-set. The strategy was analogous to discarding the specified
vibration sample from which the TD features were extracted and isolating the un-
related machine components from the problem at hand. The method adequately
mitigated the affect of undesired fluctuations on PR-model and improved its di-
agnostic capability. In addition to efficiency, the method also offered significant
immunity background noises. The authors emphasized to employ accurate TD
features for trustworthy recognition of bearing’s fault patterns instead of using

raw features.

2.5.4 Feature Selection

The stage of selecting salient features is of great importance because the feature -
extraction process often generates a large quantity of features. These features may
have marginal importance for classification or even they can reduce the classifier’s
performance. The performance of a diagnostic model also rely on number of
features dimensionality of feature vector v. Increasing the size of feature vector
may not necessarily provide additional information to the model. Thus, dimension
reduction is desired for efficient decision-making. Guyon [130] gave an introductory

treatment about this subject in the field of machine Learning.

There exits two ways to for dimension reduction. One is known as transformation-
based reduction, which involves an irreversible transformation. Principal compo-
nent analysis (PCA), project pursuit (PP) [131], Isomap [132] are commonly used
algorithms for the purpose. For instance, the PCA chooses the first few valuable

components and discarding the rest of unimportant principal components. The
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other method is known as feature selection, which preserve the physical meaning of
the original feature set. Unlike creating new features like in transformation-based
reduction, the feature selection method chooses a feature subset from the original
feature set. The method removes redundant and irrelevant features from the orig-
inal feature set. This can improve the learning ability of a diagnostic model. A
review from Saeys et al [133] reviewed the feature selection area, methods of which
falls generally into three categories, i.e. filter, wrapper and embedded methods.
Filter methods rank the features with an adhoc measure and then find a feature
subset based on that ordering. In wrapper methods, a machine learning algorithm
is used to score features. In embedded methods, feature selection is performed in
the process of training. A paper collection about computational methods of fea-
ture selection is presented by Kudo & Sklansky [134] did an extensive experimental

comparison of the algorithms.

2.5.5 Pattern Recognition

Recognizing fault patterns is the final stage to judge the condition of machinery
using feature vectors. Supervised learning based classifiers analyze the training
data set to infer a function representing relationship between the input feature
vector and a fault label. The function is inferred using a set of training examples
or known samples. Each sample consists of an input or feature vector v and a
fault condition or class label c¢. A learning-based algorithm produces an inferred
function between v and ¢. The function then utilized to predict the label ¢ for
any unknown input v. Unsupervised learning, on the other hand, discovers the
particular patterns reflecting some kind of structure of training samples, such as
relations between the samples and properties of their distribution. In this case,
a training sample is described only by a feature vector v, i.e. no target label
is included. The training samples are employed to explore the structure. For
instance, clustering method grouped the data into clusters, where each cluster
stands for single fault condition. A supervised learning problem can be grouped

mainly into three categories, according to the fault labels type. If the label is of
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continuous data type, the problem is called regression. If the label is discrete, the
problem is divided into further two categories, i.e. for nominal variable label, the
problem is called classification and in case of an ordinal variable. the problem is

known as ordinal ranking [135].

There exist several supervised learning based classification inethods, which have
been used for fault classification in rotating machinery. These methods mainly
include Bayesian classification methods, nearest-neighbor search, ANNs, SVMs,
decision tables, decision trees, fuzzy systems and hybrid systems. There is a trade-
off between the resolution of the diagnosis and the noise rejection capabilities of
the algorithms. Even if the cleaned data has little noise in the measurement from
normal operating condition, small damages will cause detectable deviations [108].
Thus, eliminating noises is necessary for intelligent fault detection. Most of the
above mentioned learning methods are already covered in the previous sections to
identify faults in bearing and rotor. Bearing fault diagnosis has been carried out
using Bayesian networks [136], nearest-neighbors {137, 138], ANNs [139], SVMs
[140-142], decision tables [129], decision trees [34, 35], fuzzy systems [143] and
hybrid systems [144-146]. The PR has also been a popular domain for automatic
diagnosis of rotor faults. The methods include artificial neural networks [147],
Bayesian networks [148], SVM [8, 149], entropy & optimization methods [150]
and fuzzy logic [151]. Main objective of the present research is to enhance the
reliability of TD features extracted from vibration signals for PR-based faults
classification models. New methods are presented to obtain accurate and fault-
related features to the classifier for trustworthy decision making. To evaluate
the performance of the proposed methodologies and their effect on classification
models, SVM [38], bayesNet [39], decision table [40] and decision tree [41] are

utilized. These classifiers are explained in the next chapter.

As mentioned above, the supervised learning paradigm requires a data-set with
labeled patterns to train a classifier. Once the classifier is trained, it is then.
employed to test the unknown examples. Figure 2.9 illustrates the supervised

learning based PR process.
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FIGURE 2.9: Supervised learning based pattern recognition

The performance estimation method K — fold cross validation is mostly used for
training and testing of all the classifiers. The method splits the data D into &k
equal parts, i.e. D;...., Di. A single part is retained as the validation data to test
the model, and the remaining k — 1 parts are used as training data. The process
is repeated k times, with each of the k parts used exactly once as the validation
data. The k results obtained from the folds are then averaged out to produce a

global accuracy or single estimnation.

k
Accuracygiobal = Z Accuracy, (2.12)
j=1

> =

The advantage of cross validation method is that all examples are involved for

both training and validation.

The formulated research hypotheses, in Chapter 1, may not be addressed properly
using conventional fault diagnosis methods like TD, FD or TFD methods. The
reason is very weak vibrations produced by the bearing faults that can also be in-
fluenced by the other joint machine parts. Moreover, the vibration signals usually
have to be propagated through complex machine structures [3]. The rotor faults,
mentioned in the research problem, are not simple to be distinguished using the
conventional methods. Therefore, this research utilizes the emerging field of PR

for trustworthy diagnostics of these critical faults.
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2.6 Summary

This chapter covers a wide range of literature regarding rotating machinery, oc-
currence of common faults, fault diagnosis methods and vibration-based fault
diagnostic techniques [2, 7]. The chapter starts from CM technologies, which
cover different disciplines including vibration analysis [1]. Focus of the chapter
is vibration-based fault diagnosis of the machinery faults using supervised learn-
ing based PR methods [10]. Diagnosis of the localized faults in REB [5, 6] and

unbalance [49, 50] and misalignment [51] faults in rotor are discussed in detail.

The literature reveals that the PR methods are effective but noise in the signals
can mislead the statistical classifiers [11]. The TD features can be very useful but
need to be extracted carefully for best results, otherwise inaccurate feature values
may influence the supervised learning process. Major contributions for REB fault
diagnosis using TD features include [26-35, 129]. Section 2.5.3 covers most of the
pre-processing methods, which have been applied to clean up the vibration signals
for better results. In this regard, enveloping [12-17] and empirical mode & wavelets
decompositions [18-23] are the most frequently used techniques. In case of rotor
fault diagnosis, confirming the unbalance state of rotor is crucial prior to take
any corrective action due to criticality of maintenance techniques [37]. Misjudging
misalignment with unbalance fault can even aggravate the situation. The TD
features have also been employed to recognize the fault patterns of rotor [8, 32,
35]. The present research emphasis on the extraction of accurate TD features to

enhance the fault classification accuracy of the faults.

The literature survey shows very little effort has been made to obtain accurate
TD features from vibration signals with the intent to fault diagnosis of rotating
machinery. The main contributions include [24, 25, 126-128]. The present re-
search also takes into account the outlying values of the extracted TD to achieve,
the goal. A number of surveys, review articles and books cover these approaches{‘
in machine learning and statistical domains [116-121]. This research utilizes the
Box plot [123] for the detection of these outliers for obtaining the accurate fea-
tures. Several classifiers are utilized to evaluate the performance of the proposed
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methodologies and their effect on the fault classification accuracy. Section 2.5.5
covers the classifiers, which include SVM [38], bayesNet [39], decision table [40]

and decision tree [41].
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Chapter 3

Enhancing Fault Classification
Accuracy of Ball Bearing using
Central Tendency based Time

Domain Features

Presence of fluctuations or spikes in random vibration signals can considerably
affect consequently the statistical values of the extracted features. This chapter
discusses the sensitivity of TD features against these unrelated fluctuations while
classifying localized faults in REB. Based on the sensitivity level, the features are
statistically processed prior to employing classifier in PR-model. A CT based fea-
ture processing method (CTBFP) [129] is developed and employed prior to use
classifier in vibration based PR model to classify ball bearing’s localized faults.
Idea is to disassociate the effect of undesired fluctuations on the sensitive TD fea-
tures before supervised learning and fault classification. The adequately processed
features are found robust and provide higher diagnostic information to the models.

Major contributions of this research include:

e The CTBFP method is developed and employed prior to use classifier in
vibration based PR model to classify ball bearing’s localized faults.

45



e The presented method ensures the provision of only appropriate features

values to the classifier, and enhances the fault classification accuracy.

e In addition to computationally efficient. the method is immune to possible

fluctuations present in steady state vibration signals.

The chapter is organized as follows. Section 3.1 Section 3.3 elaborates the major
steps involved in the proposed diagnostic scheme. Section 3.4 discusses the results
achieved and findings of the proposed research, whereas the study is summarized

in Section 3.5.

3.1 Pre-Processing

In the last chapter, Section 2.4 already covers basic techniques of pre-processing,
which normally includes noise reduction and extraction of appropriate frequency
range. As the identification of REB’s localized faults is normally very difficult
due to producing very low amplitudes in vibration signals. Thus, most of the
existing fault diagnosis methods involve certain pre-processing of raw vibration
data. Section 2.5 already discusses numerous vibration-based machine learning PR
methods, the performance of which may be effected by the presence of background
noise. Several methods have so far been employed to detect the bearing faults using
TD statistical features. Maintaining an optimum classification accuracy, however,
using a minimal set of features has been a challenge for the researchers, in spite

of applying certain costly pre-processing methods.

Instead of pre-processing the raw vibration data, this research proposes statis-
tical processing of features prior to employing classifier in PR-model. Besides
efficiency, the pre-processed features considerably enhance the diagnostic capabil-
ity of a classifier. The TD features utilized are RMS, mean, variance, skewness,
kurtosis, CF, IF, SF, median and range. The feature processing technique is based
on the detection of outliers during data preparation stage of supervised learning
[10]. The purpose is to supply only the appropriate features to classifier for better
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decision making. A substantial advantage of the proposed pre-processing of TD
features over conventional pre-processing of raw data is the computational cost.
Because few values in a feature distribution are required to be processed rather

than processing the huge vibration signals to aid the diagnostic process.

The literature survey (Section 2.4) shows very little work has been carried out so
far regarding the accurate extraction of diagnostic features for the fault diagnosis
of rotating machinery. The literature suggests that it is very crucial to reduce
signal noises and eliminate outliers before extracting diagnostic features to obtain
accurate results. The presented methods utilized several features from TD, FD
and TFD to develop algorithms to identify various faults in bearing. Difficulty
with the existing methods is their complexity and computational cost, especially
employing the TD features. Reliability of the TD features may be improved by
simpler means rather, particularly for PR-based diagnostic models. The random
nature of vibration signals can contain fluctuations. which may occur due to even
change in dvnamic operating conditions. The variations in acquired vibration
signals consequently produce outlying values in the extracted features. Physical
causes or mechanical phenomena behind the occurrence of signal fluctuations are
not discussed in this study. However, an important and valid assumption was
made here that the particular phenomena should not be associated with the faults
under investigation, i.e. bearing faults in our case. This particular situation allows
processing of TD features directly instead of pre-processing the huge set of raw
vibration data. A feature processing method has been developed that is based on
CT of the features distributions. The method deals with the possible outliers ade-
quately while preparing data before incorporating classifier in a PR model. Several
classifiers including SVM, bayesNet, decision table, and decision tree are used to
evaluate the proposed method. All the classifiers are found better decision makers
while utilizing processed features. The feature pre-processing method works in
two distinct steps; 1) detection of outliers present in the features distributions,
and 2) discarding the affected instances or examples before introducing classifier
in the model. This study utilizes the median score in any feature distribution as

its CT measure, as the median effectively isolated the outliers generated due to
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the fluctuations in vibration signals. Median-based commonly used outlier detec-
tion methods include Box plot and median absolute variance (MAD). The Box
plot [123] is employed because of offering functional simplicity and suitability to

our application.

3.2 Experimental Setup

The data set from CU [152] has been used to evaluate the performance of the
proposed method. Radial vibration measurements are taken using a MFS. An
accelerometer is mounted on the top of outboard bearing housing to acquire data
for IR and OR bearing faults. Ball bearings model MB ER-16K are used to rotate
healthy shaft containing a loader in the middle, as shown in schematic of the setup
in Figure 3.1. The bearing model contains 9 balls (N,=9) having diameter (B;)
7.94 mm, whereas the pitch diameter (P;) is 38.50 mm and contact angle (3)
is zero degree. Motor speed was 29 Hz measured using tachometer. Vibration
signals along with their respective speed signals are captured at the sampling rate

of 51200 samples/sec. For more details, the reader is referred to [152].

In-Board Out-Board
Flexible Bearing Loader Bearing
Coupling
[ w" -w ]

Work Table

FIGURE 3.1: Schematic of experimental setup

3.2.1 Data Validation

Envelope analysis has been used as benchmark method for bearing’s fault diagno-
sis over the years [2]. We have employed spectral kurtosis based fast kurtogram

method proposed by Antoni [13, 88] for frequency range selection in terms of
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FIGURE 3.2: Enveloped spectra of the bearing faults

center frequency and bandwidth. Section 2.4.2.1 already explained the envelop-
ing method, which was implemented for IR and OR vibration signals using NI
LabVIEW. Order analysis based function OAT Fnuvelope Detection {Even Angle
Output) was employed prior to obtain power spectra of the envelope signals (Sec-
tion 2.4.2.1). The function utilizes a frequency band and tachometer signal for
extracting even-angle envelope signal. The angle-domain output signal maintains
constant number of samples per revolution to mitigate the effect of speed vari-
ations. Table 3.1 shows BPFI and BPFO frequencies representing IR and OR
faults, calculated using Equations 2.1 to 2.3.. The calculated center frequencies
and bandwidths of IR and OR faults are also shown in the table respectively, i.e.
CFjr & BW;g, and CFgp & BWgps.

TABLE 3.1: Bearing fault frequencies along with the central frequencies and
bandwidths {Hz)

SF FTF BPFI BPFO CF;z BW;z CFor BWop
29 115 1574 103.6 24533 2133 Y060 1066

Figure 3.2(a) provides the enveloped spectrum of bearing’s IR fault, in which the
BPF1T is visible along with the side-bands of shaft’s speed. Figure 3.2(b) shows the
several harmonics of the BPFO to represent OR fault. Thus, the data-set used in

the present study contains every required information for data validation.

49



3.3 Materials and Methodology

The proposed fault diagnostic scheme consists of four steps, which are elaborated
in the block diagram in Figure 3.3. Details of the proposed methodology are in

the following subsections.

Vibration Data Samples
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Feature Extraction

’

CT-based Feature Processing ™

~

QOutlier Detection
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Instance Pruning
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FIGURE 3.3: Block diagram of CTBFP-based fault diagnosis of ball bearing

3.3.1 Vibration Data Samples and Feature Extraction

At first step, vibration signals were segmented to obtain data samples, and features
were extracted from these samples to form data set at second step. Every signal
of 10 seconds duration was divided into 40 segments. As the motor speed was 29
Hz, each segment holds vibratory history of more than 7 revolutions of the shaft.
In this way, the segments contained a valid sample length to compute trustworthy
statistical features. Above mentioned ten feature were extracted from every data
segment of each fault to form the data-set for the supervised learning and fault

classification. The features are described mathematically in Section 1.1.

3.3.2 CT-based Feature Processing (CTBFP)

The third step implements the feature processing mechanism, which is the central
theme of the proposed research. The feature processing ensures the use of most
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appropriate data by the classifiers. The CTBFP works in two phases; firstly the
Box Plot outlier detection method was utilized to implement the Median-based
Outlier Detection (MOD) procedure, and then the instances were pruned based

on the outcome of MOD. Details are in the following subsections.

3.3.2.1 Outlier Detection

The CT measure describes a set of data values with a single value. The measures
such as mean, median and mode are used usually to describe the CT of the data
set [153]. Each measure can be more significant and advantageous under specific
conditions. Mean is an effective measure when data distribution remains symmet-
ric. It is susceptible to outlying values and skewed data due to taking into account
every element of a data set for its calculation. Median score, on the other hand,
occupies the middle position in an ordered set of data and thus less sensitive to
the outliers [153]. Usually, more than half elements in a vibration sample belong
to normal distribution, and accordingly outliers in the extracted features should

lie above the median score when sorted in an ascending order.

histogram count
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(a) Ascending ordered elements of kurtosis (b) Histogram of lower half distribu-
feature extracted from IR and OR vibration tion of OR kurtosis feature bisected
data segments from the median

FIGURE 3.4: Median as central tendency measure

Figure 3.4(a) shows the ascending ordered kurtosis feature, where median values
of IR and OR distributions are almost insensitive to the outliers. Figure 3.4(b)
shows histogram of lower half distribution of OR kurtosis feature, i.e. the part

of distribution below its median score. The histogram shows that the lower half
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FIGURE 3.5: Parameters of Box plot

distribution lies well within the limits, and therefore no outlier is present in this

half of distribution.

Figure 3.5 shows parameters of Box plot that include a median, two hinges at
lower and upper quartiles (fourths), and two whiskers that connect these hinges

to the limits. Box plot can be constructed using the following rules.

e Arrange the data distribution in ascending order.
e Calculate the first quartile (Q1), third quartile (@3) and the inter-quartile
range (IQR = Q3 — Q1).

e Compute Lower limit = Q1 — (1.5 x IQR) and Upper Limit = Q3 + (1.5 X
IQR), where the value 1.5 acts as a scale to define the limits. Any value in
a feature distribution below the Lower Limit or above the Upper Limit was

considered as outliers.

The median based outlier detection method offers simplicity and suits to our sit-

uation.
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TABLE 3.2: Sample instances containing marked outliers as 99.999

RMS Mean Variance Skewness Kurtosis CF IF SF Median Range Class
B.883 0.038 78 915 0 016 7.984 8.864 12.160 1.372 0.014 148 161 OR
19.764 0.037  390.642 -0.089 9.620 8694 13.019 1.497 0043 327637 IR
09.999 0.062 99.999 0.224 99.999 13.373 19 534 99.999 -0.098 99.999 OR
19.502 0.044 380.368 -0.111 9 782 7.610 11.540 1.516 0.255 276 110 IR
19267 0006 371 236 -0.021 10 034 7221 11118 1540 0.165 273 081 IR
7.930 0.055 62.889 0.050 4 295 4.848 6.353 1.311 -0 039 74.771 OR
7.899 0.064 62.389 0.033 4.344 5.924 TR 1.313 0 045 82.998 OR
18.973  0.040 359 999 -0.018 9 434 7793 11.741 1.507 0.103 286 635 IR
8.045 0.044 64.733 0.036 8 288 10402 13992 1.345 -0.047 159.318 OR
19.512 0.005 380 729 -0.100 10.766 9.438 14.432 1.529 0.157 99.999 IR
8.360 0.050 69.892 -0073 5.503 6.746 9.048 1.341 0.080 106.921 OR
18.759 0.026 351.926 ~0.044 9.685 7.367 11.185 1.518 0.251 267.394 IR
21.021 0.020 441 919 -0 108 9 950 9 528 14415 1513 0.099 341 423 IR
99.999 0 069 99.999 -0 094 99.999 10.973 16.602 99.999 09.999 243 627 OR
7 823 0 064 61.194 0076 4 320 5 505 7.208 1309 0029 81 223 OR
19 349 0009 374 399 -0.052 9 578 7.021 10 745 1 530 0.221 266 801 IR
99.999 0.041 99.999 0.085 99.999 12.640 20299 99.999 0.095 99.999 OR
20.143 0.010 405.759 -0 056 8779 6.885 10.213 1.483 0.231 272.107 IR
7.744  0.045 59.978 0.045 4 333 5789 7.598 1.312 0.009 81.879 OR

3.3.2.2 Instance Pruning

Instance pruning is the process of discarding the unsuitable instances marked by
the MOD, which was applied to every feature separately. The instances containing
outliers were discarded during the data preparation process. Each element of every
features was checked whether that lie within the relevant range, otherwise that
element was marked as an outlier. The main stages of the instances pruning are

given below;

e Detection of outliers present in the features by employing the MOD.

e Discarding the instances containing one or mnore outliers.

Table 3.2 shows the marked outlying value in every feature by the MOD. The
algorithm puts a dummy value ”99.999” to mark the outliers, so that the affected
instances (rows) could easily be discarded from the data set. There is no loss of
information as long as the captured vibration data is of appropriate length, from
which the instances are generated. The smoother values of features were then fed

to the classifiers for training and testing purpose.

3.3.3 Fault Classification

The supervised learning paradigm was used for bearing’s fault classification at
final stage. Data-set with labeled patterns are used to train a classifier. Once
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FIGURE 3.6: Supervised learning and fault classification procedure

the classifier is trained, it is then employed to test the unknown examples, as
elaborated by Figure 3.6. The SVM, bayesNet, decision table and decision tree

were implemented to evaluate the performance of the proposed method.

The performance estimation method K — fold cross validation was utilized for
training and testing of all the classifiers. Main advantage of cross validation
method is that all examples are involved for both training and validation. The
method is already explained in Section 2.5.5. This study employed the commonly

used 10-fold cross validation method.

A brief description of the classifiers are presented. The interested reader is referred
to [38] for details on SVM, [39] for bayesNet, [40] for Decision Table, and [41] for

Decision Tree.

3.3.3.1 SVM

The SVM is an efficiently learning system, which utilizes a hypothesis space of
linear functions in a high dimensional feature space. The simple SVM algorithm
solves a binary classification problemn. The data are separated by a hyperplane
defined by support vectors, which are subset of training data as shown in Figure
3.7. These support vectors can create complex boundaries, and the margin of

separation is maximized between each class of data.
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FIGURE 3.7: Margin and support vectors in SVM

Suppose N-dimensional input data z; belong to class 1 or class 2, where i = 1...N.
The associated labels y, = 1 represent class 1 and y, = —1 correspond to class 2.
In case the data are separable linearly, a hyperplane f(z) can be determined to
separate the data. The hyperplane follows the rule f(z,) > 0 in case z belongs to

class 1, whereas f(z;) < 0 if  belongs to class 2.

N
f(x)=w.x+b=2wkxk+b (3.1)

k=0
where w is the N-dimensional normal vector which defines the hyperplane and b is
the learning bias. An optimal hyperplane maximizes the geometrical margin and

is obtained by solving the convex quadratic optimization problem min % ||u7||2.

3.3.3.2 BayesNet

Bayesian network is a well established algorithm to represent probabilistic rela-
tions among random variables in a set as a directed acyclic graph. The variables
are represented by nodes, and are connected via edges depicting causal relations
between variables. Conditional probability distribution is given at each variable.
In the example show in Figure 3.8, the edge from node A to node B indicates that

A causes B.

Conditional probability distribution (CPD) is specified at each node having par-

ents, whereas the prior probability is specified at node having no parents, i.e the
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FIGURE 3.8: A simple Bayesian network

root node. The CPDs of variables B and C. are P(B|A) and P(C|A) respectively,
whereas the prior probability of A is P(A). The edges in the graph represent the
joint probability distribution (JPD) of the connected variables, i.e. the JPD for
edge (A, B) is P(B, A) representing the probability of joint event BN A. The

fundamental rule of probability calculus shows that

P(B,A) = P(B|A).P(A) (3.2)
Generally the JPD for bayesNet with given nodes X = X;,..., Xz is

P(X)= H P(X,|Parents(X,)) (3.3)

j=1
where Parents(X) is the parent set of node X;. The Equation 3.3 is known as

the chain rule representing the JPD of all variables in the Bayesian network, as

the product of probabilities against each variable are its parent’s values.

Computation of probability for each variable is performed using the known values
of other variables. In other words, once some evidence is asserted into the network
regarding states of the variables, the effect of evidence is propagated through the
network and probabilities of adjacent nodes are updated in every propagation.

The inference process can be formalized mathematically as the Bayes theorem:

P(Y|X).P(X)
P(Y)

PX|Y) = (3.4)
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The above relation represents the probability of node X given evidence Y. The
posterior probability of node X is P(X|Y'), which can be computed using known
likelihood P(Y|X)) and prior probability P(X). The term P(Y') denotes a nor-

malizing factor.

Fault diagnosis, in a qualitative sense, can be seen as the cause-effect or fault-
svmptom relations. Every fault and symptom is modeled by a random variable
in the network with a probability distribution. Taking the observed symptoms
or evidences as input to the network, probabilities of every fault are computed

accordingly to the Bayes rule.

3.3.3.3 Decision Table

Decision tables are used to model complex rule sets comprising conditions and
actions in a compact way. A decision table is formulated to have four quadrants
as shown in Table 3.3. The quadrants on the left describe the conditions as well
as the actions being modeled in the table, while the right hand quadrants show
the corresponding condition alternatives and action entries. The columns in the
right quadrants are called rules. Thus each column has two portions; some of its
values are in the condition portion, called inputs, while others are in the action
area, termed as outputs. A rule, hence, associates a set of input conditions to a

corresponding set of output actions.

TABLE 3.3: Layout of decision table

Conditions Condition combinations
Actions Action Entries

Decision tables can be represented in a number of ways according to data being
modeled. One way of exploiting decision tables is to model cause-effect relationship
by replacing conditions with causes and actions with faults. An example of such an
application is machine diagnostics where, on the basis of prior knowledge (rules)
connecting observed symptoms to faults, an unknown fault can be classified into

known faults.
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3.3.3.4 Decision Tree

The classification algorithm producing decision tree is based on information theory.

Construction of the tree is based on the learning data set. that is mentioned below;

e Leaf nodes or answer nodes contains the name of fault class

e Decision nodes or non-leaf nodes specifies some test to be carried out on a
single attribute or feature value. A decision node contains one branch and

sub-tree against each possible outcome of the test.

Criteria to select the root of tree is based on information gain. The measure is used
to select among the candidate features at each step of the tree growth. Information

gain (S, A) of a feature A relative to a collection of examples S is defined as;

Gain(S, A) = Entropy(S)— ) '—SSL‘Entmpy(sv) (3.5)

veValue(A) | |

where Value(A) is the set of all the possible values for attribute A and S, are the

subset of S for which feature A has value v.

The information gain is the expected reduction in entropy, which measures homo-
geneity in a set of examples. The gain measures how well a given feature separates

the training examples according to the target classification.

3.4 Results and Discussion

Vibration data from CU was found appropriate to validate the proposed feature
processing based fault diagnosis scheme. Figure 3.9(a) and Figure 3.9(b) show the
time domain signals of IR and OR bearing faults respectively. The OR signal, con-
taining fluctuations, has been cut into two segments Segsp and Segpc as marked

in Figure 3.9(b). The envelope analysis of both the segments was performed using
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CFor and BWpg in Table 3.1. The Segap does not contain any fluctuations and
the spectrum of its enveloped signal testifies the OR fault frequencies (BPFQ)
clearly, as shown in Figure 3.10(a). The enveloped spectrum is quite similar to
that of full OR signal already shown in Figure 3.2(b). On the other hand, the
Segpe of OR fault contains some fluctuations. and its enveloped spectrum shows

some extra frequencies regarding the bearing cage (FI'F) in Figure 3.10(b}.
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(a) Waveform of IR faults (b) Waveform of OR faults

FIGURE 3.9: Waveforms of IR and OR faults
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FIGURE 3.10: Enveloped Spectra of the segments Segap and Seggc of OR
waveform

The discussion about the phenomena is out of scope for the present research. It
is worth mentioning that the features extracted from OR signal generated outliers
due to the fluctuations in Segpo, which significantly reduced the classification
accuracy of the classifier. Nevertheless, the phenomenon exhibited in the Segpe

is undesired to study OR bearing fault.

Outliers in a feature, extracted from different faulty signals, can cause overlapping
of elements from those fault classes. This may reduce the diagnostic capability

of that particular feature, and is a factor of misleading the classifiers. The MOD
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FIGURE 3.11: Feature processing via MOD

adequately handled the issue and ensured the usage of only smoother distributions

of the features in diagnostic process.

Figure 3.11(a} shows the raw elements of kurtosis feature extracted from IR and
OR faulty signals, which are overlapping repeatedly with each other mainly due
to the outliers in OR feature. These outliers were detected by the MOD. and the

respective instances were discarded later by the proposed scheme.

The value of 1.5 for scale parameter, suggested by [123], was good enough for the
problem as almost all the detected outliers belonged only to the fluctuated parts of
OR signal. Figure 3.11(b) shows the kurtosis elements of IR and OR fault classes
after discarding the outliers. The figure elaborates smoother distributions of the
feature against both the faults. Similarly, Figure 3.11{c) and Figure 3.11(d} show
the SF feature before processing (BP) and after processing (AP} by the MOD,
respectively. Box Plot outlier detection process is shown in Figure 3.12(a} and
Figure 3.12(b}) for kurtosis and SF features respectively. In this way, every feature

was processed separately to mark the outliers in their respective distributions.
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TABLE 3.4: Individual accuracies of the features before and after processing,
using SVM, BayesNet, Decision Table and Decision Tree classifiers

Feature SVM BayesNet D. Table D. Tree
BP AP BP AP BP AP BP AP
RMS 99.2 100 100 100 100 100 100 100

Mean 64.4 644 7277 727 722 722 73.0 73.0
Variance 100 100 100 100 100 100 100 100
Skewness &3.7 852 86.4 &7.1 883 &9.8 943 95.1
Kurtosis 93.2 99.2 93.9 100 95.5 100 95.5 100

CF 86.2 86.4 86.1 86.4 881 &8.3 871 8&7.1
IF 87.1 87.4 883 883 90.2 90.5 90.5 902
SF 93.9 100 955 100 95.5 100 95.5 100

Median  79.7 79.9 84.0 84.3 84.0 843 84.0 8&4.0
Range 90.2 100 939 100 939 100 93.9 100

During the data preparation process, for the training and testing of the classifier,

only those instances were selected which are free from outliers.

Diagnostic capability of the classifiers was observed against every feature indi-
vidually. Table 3.4 elaborates the impact of proposed method on every feature’s
fault identification ability, using SVM, bayesNet, decision table and decision tree

classifiers. Several features improved their performances significantly in terms of
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FIGURE 3.12: Qutlier detection via Box Plot
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enhancing the classification accuracy of the classifiers. Those features were par-
ticularly affected whose elements from both fault classes were overlapped due to
the fluctuations present in the OR signal. The features include Kurtosis, SF and
Range. It is worth noticing that every feature has shown different sensitivity level

against these fluctuations.

Figure 3.13 shows the sensitivity level of every feature (p) against the OR signal

fluctuations. The following relation was used to calculate their sensitivity levels.

_ Range of Upper Half Distribution
r= Range of Lower Half Distribution

(3.6)

The OR ascending ordered feature distribution is bisected into two halves from its
median point. The ratio of the upper half to the lower provides an impact of fluc-
tuations through the spread of outliers in the respective halves of the distribution.
The Kurtosis feature was affected most by these fluctuations, whereas the skew-
ness showed least sensitivity to the same. Figure 3.14 shows the skewness feature,
which is hardly effected by the fluctuations in OR signal, and consequently the

results in Table 3.4 demonstrate least improvement in the classification accuracy.

On the other hand, there may be case where a sensitive feature apparently does
not improve its accuracy even after the processing. For instance, Figure 3.15 illus-
trate the processing of variance feature. Figure 3.15(a) exhibits the sensitivity of
the feature against the OR signal fluctuations, and consequently Box Plot (Figure
3.15(c)) detects several outliers in the respective distribution. As a result, the

MOD produces quite smoother distribution, as shown in Figure 3.15(b)). Yet,
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FIGURE 3.15: Variance feature processing

i
!
no enhancement in classification accuracy is noticed for variance feature in Ta- |

ble 3.4. The reason is that the feature was well separating the faults even before
processing, i.e. no overlapping exists between the distributions of two classes. But
the unprocessed feature may not demonstrate the same performance if more fault
classes are added to the PR-model. Nevertheless, it is worthwhile to disassociate
the effect of unrelated fluctuations on the sensitive TD features before further

processing.

3.5 Summary

In this chapter, the effect of feature processing on vibration-based PR-model has

been investigated with the intent to diagnose ball bearing’s localized faults. It
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has been observed that undesired fluctuations occurring randomly in vibration
signals produce outliers in the extracted TD features, which mislead the classifiers
in their supervised learning process. It has also been noticed that the occurrence
of these fluctuations have not been associated with the bearing’s fault under in-
vestigation. On the basis of the above observations, this chapter presented a new
CTBFP method to detect the outliers adequately by implementing the MOD, and
the affected instances have been pruned at the next stage based on the MOD
outcome. In this way. the presented technique assures the employment of only
relevant and precise features in the diagnostic models. The SVM, bayesNet, deci-
sion table. and decision tree classifiers were used to evaluate the proposed method,
and the classifiers were found better decision makers when processed features were
utilized. Several features, kurtosis, shape factor and range, considerably improved
their individual diagnostic capability as per their sensitivity levels to the signal
fluctuations and separation ability. Due to feature-level processing in PR-model,
the CTBFP method is computational efficient, and may be used for real time fault

diagnosis of REB.
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Chapter 4

Extracting Accurate Time
Domain Features from Vibration
Signals for Reliable Classification
of Ball Bearing Faults

Application of the CTBFP method, discussed earlier in Chapter 3, may become
somewhat limited when available training data-set is small. This chapter presents
a new CT-based feature extraction approach, named as CTBFE method [154], for
fault diagnosis of REB’s localized faults. However, unlike processing the feature
distributions, the CTBFE works at feature-extraction-level to obtain reliable TD
feature values. The CTBFE method not only preserves number of instances but
also provides more accurate results compared to that of CTBFP method. Same
TD features and classifiers were utilized in the present study that were used for

CTBFP method. Major contributions of this research include:

e New CTBFE method is developed that improves PR capability of classifiers
for REB’s localized faults.

e The method utilize fault related appropriate portion of a vibration signal for
TD feature extraction.
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e The CTBFE is computationally efficient and immune to possible fluctuations

and noises present in random vibration signals.

The chapter is organized as follows. Section 4.2.2 introduces the CTBFE tech-
nique. Major steps involved in the development of CTBFE method are elaborated
in Section 4.2 along with its application. Section 4.3 discusses the results obtained

and findings of the proposed study, whereas it is summarized in Section 4.4.

4.1 CTBFE Technique

The CTBFE examines the sensitivity of TD features to signal’s unrelated fluctu-
ations. Unlike CTBFP, which process the feature distributions during the data
preparation stage of supervised learning, the CTBFE method applied at feature-
extraction-level. The method dynamically selects the most appropriate portion of
vibration signal for the extraction of most accurate feature values, ensuring the
supply of very accurate feature values to a classifier for truthful decision making.
Features extracted through CTBFE procedure considerably enhances the fault
classification capability of the classifiers. The CTBFE method outperforms the
previously presented CTBFP method, which may have limitations due to strategy
of discarding the affected instances. The presented method is efficient and pro-
vides significant immunity to possible fluctuations and background noises present
in vibration signals. Vibration data is acquired from different REBs containing

localized faults using a test rig to validate the performance of the CTBFE method.

4.2 Proposed Methodology

The proposed fault diagnostic scheme works mainly in three steps, elaborated
by the block diagram in Figure 4.1. Details of each step are in the following

subsections.
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FIGURE 4.1: Block diagram of CTBFE-based fault diagnosis of ball bearing

4.2.1 Vibration Data Acquisition

Vibration data from faulty bearings was acquired using a MFS from SpectraQuest
Inc. A set of ball bearings MB ER-12K model was utilized containing different
localized faults. The bearing contains 8 balls of diameter 7.94 mm, having pitch
diameter 33.50 mm and contact angle of zero degree. The faults include IR fault,
OR fault, BL fault and MX fault. The generated fault size measured as 1.5 mm
wide and 0.3 mm deep. Figure 4.2 shows the schematic of experimental setup, in
which healthy bearing is installed at in-board and the faulty bearing is installed
at out-board. A mass of 5kg was placed in the middle of healthy shaft acting as
loader. An ICP industrial accelerometer model 608A11 was stud-mounted at the
top of out-board bearing housing to measure radial vibration from bearing under
test. Sensitivity of the accelerometer was 100mv/g, having operating frequency
range 0.5 Hz to 10 KHz and resonance frequency 22 KHz. NI LabVIEW software
was utilized along with NI hardware PCI-4472 to acquire data at the rate of 60K
samples/sec at motor speed of 1000 RPM. Forty vibration samples have been

acquired for each fault, and each sample contains vibratory history of 10 seconds.

To validate the acquired data set, envelope analysis has been implemented again

using fast kurtogram method [88]. Table 4.1 shows fault frequencies calculated
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FIGURE 4.2: Schematic of experimental setup

using Equations 2.1 to 2.4.

TABLE 4.1: Fault frequencies of bearing

Motor Speed FTF BPFI BPFO BSF
16.7 6.4 82.5 50.9 33.2

The enveloped spectrum of IR fault is shown in Figure 4.3(a). Harmonics of
the BPFT are present in the spectrum along with the side-bands of shaft’s speed.
Figure 4.3(b) elaborates the first harmonic of the BPFO representing bearing’s
OR fault. The BL fault is evident in Figure 4.3(c¢), where twice the BSF is present
along with the FTF. Figure 4.3(d) shows the enveloped spectrum of MX fault
of the bearing, in which the BPFO and the BSF are dominating. Figure 4.3(c)
and Figure 4.3(d) demonstrated no noteworthy frequency patterns above the 250
Hz, and thus the maximum limit of the graphs is set to 250 Hz to zoom-in the
valuable part of the graphs. Hence, all the required information related to ball

bearing Jocalized faults are present in the data set.

4.2.2 CT-based Feature Extraction (CTBFE)

The second step is the core of diagnostic scheme. The features are extracted in
three distinct stages, as shown in Figure 4.4. Details of which are in the following

subsections.
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4.2.2.1 Data Segmentation

At first stage, each acquired vibration signal or sammple of every fault was segmented
into n segments or sub-samples (n=30 here}. As the motor speed was 16.67 Hz,
thus each segment holds vibration history of more than 5.5 revolutions of the shaft.

In this way, the segments contained a valid sample length to compute trustworthy

statistical features.
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4.2.2.2 TD Feature Extraction from the Segments

Ten TD features were extracted from every segment. The features include RMS,
variance. skewness, kurtosis, CF, IF. SF, median and range. The features are

described mathematically in Section 1.1.

4.2.2.3 Obtaining CT of the Features

The presented method utilized CT of TD features to judge which part of signal
is most appropriate to extract the features. Section already explained the CT
measures. This research uses median value as central tendency measure. The
respective part of vibration signal is taken to proceed further, which produces

median value of a feature

@
©
=
=
E
< .
) ]
1.2‘ T T T vl 1 |
0 5 0 15 20 25 30
Samples
(a) Shape Factor unsorted elements (b) Shape Factor elements sorted in ascending

order

FI1GURE 4.5: Shape Factor feature extracted from every faulty signal

Figure 4.5(a) shows range feature extracted from vibration samples of every fault.
The feature values are varying due to fluctuations in random vibration signals.
Figure 4.5(b) shows the same elements sorted in ascending order. Median values
of the feature from every fault are nearly insensitive to these outliers. Therefore,
the proposed CTBFE method considers the median values of TD features as the
most accurate features to recognize bearing’s faults patterns, i.e. the values that
are unaffected by undesired fluctuations. This choice indirectly points out the
most appropriate vibration sub-sample or portion, which produces the feature's

median value. In other words, the proposed method picks a particular vibration

70



sub-sample for feature extraction to take part in pattern recognition process, while

discarding the rest of vibration sub-samples.

4.2.3 Fault Classification

Supervised learning based PR-model was employed at final stage of the proposed
methodology. SVM, bayesNet, decision table and decision tree were used sepa-
rately to judge the performance of CTBFE method. At first stage, a classifier
is trained using known data examples or instances and then employed for test-
ing unknown data. Section 3.3.3 already explained the classifiers, the supervised

learning and classification procedure.

4.3 Results and Discussion

Vibration data was acquired from a set of ball bearings containing localized faults
using MFS. The intention was to identify these faults using PR methods with TD
statistical features. An important phenomena was observed that fluctuations may
be occurred in random vibration signals, and statistically calculated values of the

TD features can be altered consequently [129].

Figure 4.6 shows the fluctuations present in the vibration signals acquired from
faulty bearings. The reasons behind the occurrence of this particular phenomena
are outside the scope of this study. However, the fluctuations may not be related to
bearing’s localized faults, and can reduce the fault classification ability of classifiers
[129]. The inaccurate feature values made the fault identification difficult for the
classifiers. Thus, the CTBFE method was developed that ensure the provision of
reliable and accurate TD features to the diagnostic models. The proposed method
selects the most appropriate portion of a time domain signal before extracting any
feature to take part in PR process. The diagnostic capability of the classifiers was

improved considerably.
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FIGURE 4.6: Waveforms of bearing faults

Unlike the conventional way, the TD features were not extracted directly from
vibration signal or sample. An acquired vibration signal was initially segmented
or divided into suitable number of sub-samples, as already discussed in Section
4.2.2. Then at the next stage, any TD feature was extracted from every segment,
forming distribution of that feature. The feature distribution might contain out-
lying values extracted from the segments having fluctuations. Finally, median
value of the distribution was chosen as a reliable value of the feature used by the
classifier later. Remaining values of that feature were discarded. In other words,
a portion of time domain vibration signal, which produced median value in the
feature distribution was considered as the most appropriate part of the signal to
extract that particular feature for classifier. Similarly, every vibration signal or
sample, acquired from different faulty bearings, were processed, and data-set was
prepared for the supervised learning and testing of a clasgsifier using all the TD

features.

Figure 4.7 shows the RMS and median features extracted from all the vibration

samples acquired against every fault, ie. forty samples of vibration data against
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FIGURE 4.7: Distribution of features for every faults. using conventional feature
extraction and CTBFE methods

each fault as already explained in Section 4.2.1. Figures 4.7(a} and 4.7(¢) shows
fluctuated values of RMS and median features respectively due to presence of fluc-
tuations in the samples, Overlapping amnong the inedian elements can be observed,
extracted conventionally against different fault classes. On the other hand, figures
4.7(b) and 4.7(d) show much smoother and stable values of RMS and median

features respectively, extracted using CTBFE method against every fault.

TABLE 4.2: Fault classification accuracies (%) demonstrated by the classifiers
using TD features extracted through conventional method, CTBFP method and
CTBFE method

TD Features SVM BayesNet D. Table D. Tree

Conventional 76.3 731 73.8 75.6
CTBFP-based 94.4 93.1 93.8 93.1
CTBFE-based 96.8 95.6 96.3 95.3

Table 4.2 shows the results in terms of fault classification accuracies produced by
the SVM, bayesNet, decision table and decision tree. The classifiers provides quite
low classification accuracy when trained over the conventional TD features. The

above mentioned overlapping may be reason of misclassification. On the other
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hand, the CTBFE method provides the most accurate results, even higher than
that of CTBFP method [129]. Every classifier considerably enhances its classi-
fication accuracy using the features extracted through CTBFE method. Table
4.3 shows the CTBFE-based instances fed to the classifiers. Unlike the CTBFP
method. which examines a vibration sample whether to adopt or discard before
incorporating classifier in a PR svstem, the CTBFE method preserves vibration
sample or the data instance. In other words, every vibration data sample was taken
into account for the training and testing of classifier. The CTBFE method locally
examines the vibration sample to find the best portion to extract a particular fea-
ture rather. As the proposed method operated at feature extraction-level, thus few
values in any feature distribution were processed. This makes the method compu-
tational efficient over the conventional method of pre-processing the big TD raw
vibration data. Therefore, the proposed method more feasible to apply, especially

in on-line systems.

TABLE 4.3: Sample instances

RMS Mean Variance Skewness Kurtosis CF IF SF Median Range Class

0.104251 0.010171 0.010769 -0.060896 3.107096 4.180617 5.262083 1 255357 0.011670 0 855635 MX
0.097082 0.009646 0.009326 0.024434  3.111147 4.304330 5.431385 1.260813 0.009161 0.786403 OR
0.114673 0.010069 0.013055 -0.001619 3.487579 5.580402 7.072814 1.274444 0.010164 1.080577 BL
0.109926 0.009739 0.011995 -0.028010 3.477397 4.880355 6.215002 1272296 0.010298 1.047131 BL
0.107676 0.010239 0.011491 -0.063840 3.213316 4.559395 5.753273 1.260497 0.011645 0.932939 MX
0.123887 0.006732 0.015308 0.039166  4.130151 5.402507 7.052314 1.290309 0.006705 1.238731 IR
0 096585 0.009771 0.009227 0.028402 3.106420 4.408249 5.563598 1 260118 0.009311 0.797831 OR
0.117095 0.006637 0.013665 0.061755  3.848648 5.270918 6.751742 1 283447 0.006443 1.126882 IR
0.097541 0.009738 0.009424 0.021167 3 089156 4.238921 ©5.338348 1 258566 0.009404 0.792569 OR
0117171 0.009918 0.013623 -0.034957 4 090413 6.121256 7.859428 1.288918 0.010311 1.340206 BL
0.123120 0.006549 0.015118 0.018975  4.087831 5.219351 6.697593 1 289506 0.006412 1.200625 IR
0.104262 0.010232 0.010764 -0.053463 3.063545 4.191004 5.259959 1 255473 0.011146 0.852375 MX
0.098299 0.009691 0.009569 0.009942  3.083072 4.241622 5.326563 1.259690 0.009423 0.791360 OR
0.105448 0.010175 0011023 -0.075306 3.250603 4.788783 6.073055 1.263119 0.011103 0.923451 MX
0.123027 0.010081 0.015032 -0.093497 5.105299 7.220242 9.686619 1312410 0.010679 1.717667 BL
0.118982 0.006575 0.014116 0.018851 3.659112 4.876021 6.244959 1276700 0.006698 1.076432 IR
0.097786 0.009659 0.009464 0.047652  3.148428 4.410911 5.577425 1 261922 0.008843 0.824528 OR
0.128342 0.009797 0.016382 -0.068345 6 964402 8 247482 11 168003 1 348729 0.010348 1.993567 BL
0.098446 0.009844 0.009596 0.028482 3 100508 4 175840 5.244687 1260199 0.009236 0.779015 OR
0.119826 0.006562 0.014313 0.011161 3.839070 5.185884 6.688230 1.284385 0.006910 1.135910 IR
0.103058 0.010192 0.010521 -0.073351 3.107329 4.346817 5.480032 1.256962 0.011770 0.859868 MX
0.104754 0.010201 0.010868 -0.060541 3.132232 4.318295 5.446635 1.256244 0.011209 0.872841 MX
0.097683 0.009828 0.009443 0.014793  3.155368 4.285214 5.426932 1262211 0.009473 0.802919 OR
0118858 0.009756 0.014034 -0.050718 5.433235 6.766725 9.134587 1323466 0010379 1.653648 BL
0120009 0.006516 0.014364 -0.005199 3.637722 4.789050 6.092252 1276882 0.007023 1.058688 IR
0 097517 0.009707 0.009409 0.037788  3.076821 4.304325 5.426315 1259559 0.008862 0781715 OR
0.106686 0.010117 0011280 -0.054581 3.286501 4.938892 6.205985 1 262083 0.011439 1.007855 MX
0.111537 0.009981 0.012329 -0.031095 3.464394 5.006476 6.372134 1.272795 0.010679 1.019008 BL

Finally, background noise was added to the acquired vibration signals at differ-
ent SNRs. The purpose was to examine the robustness of the CTBFE method
against possible background noise. Table 4.4 shows a comparative accuracies us-

ing SVM with conventionally extracted raw TD features, CTBFP-based features
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TABLE 4.4: Comparison of the influence of background noise on SVM classifi-
cation accuracy (%)

TD Features 40dB 30dB 20dB 10dB 5dB

Conventional 76.3 75.6 75.0 73.6  70.2
CTBFP-based 94.4 94 .4 93.1 92.5 91.8
CTBFE-based 96.8 96.8 96.3 96.3 96.1

and CTBFE-based features. The results are evident that the CTBFE method is

considerably immune to strong background noise.

In conclusion, it is worthwhile to disassociate the unrelated vibration signal fluc-
tuations before extracting TD features for better results. The proposed method
provides an effective way to extract accurate features for reliable PR of REB’s

localized faults.

4.4 Summary

Vibration-based PR methods have been utilized to identify localized faults of REB
using statistical TD features. It is observed that undesired fluctuations present in
random vibration signals consequently swung the statistical values of TD features.
It has also been observed that these fluctuations might not be related to REB’s
localized faults, and employment of inaccurate feature values in PR systems might
be the source of misleading the supervised learning based classifiers. Thus, unlike
the conventional extraction of TD features, the CTBFE method is proposed to
supply accurate and reliable feature values to the diagnostic models. Only the
respective appropriate portions of vibration signals have been utilized to extract
the desired TD features for the fault classification process. Variety of classifiers
have been employed to evaluate the proposed methodology. and the results were
evident that all the classifiers were performed better when utilized the CTBFE-
based features. Moreover, the proposed method has shown its robustness against
the strong background noise. When compared to the most related existing CTBFP
method. the proposed CTBFE method provides better fault classification accuracy.
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Chapter 5

Rule-based Identification of
Bearing Faults using CTBFE
method

The TD features extracted through CTBFE method in Chapter 4 are utilized
to develop a new diagnostic scheme with the intent classify localized faults of ‘
REB. The scheme employs CTBFE-based features to develop decision making w
procedure. Accurate and stable feature values are named as CVs here in this ;
Chapter 5. Thus, every feature extracted from vibration samples of different
faulty bearings, produces a set of CVs. Number of CVs in the set are equal to the
number of fault classes involved in the diagnostic process. Separating distances
among the normalized CVs, i.e. NCVs in a distinct set, are exploited then to
choose the salient features. Finally, the respective sets of NCVs, produced by the
selected features, are processed to define the threshold limits for the formation
of rule-set and decision making. The RBDS is robust against strong background

noise and offers real-time processing and may be an effective alternative to costly

training-based classifier.
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5.1 RBDS Methodology

The proposed methodology work in four steps, as shown in Figure 5.1. The first
two steps of the ethology are already covered in Chapter 4. Data acquisition and
validation process is explained along with the CTBFE method. The outcome of
CTBFE method are utilized to form sets of NCVs. For instance, four vibration
samples are taken from four bearing faults. A TD feature like RMS is extracted
from each vibration sample using CTBFE method. Thus. the RMS feature pro-
duces a set of four values, which are known as CVs against the respective faults.
The CVs are normalized later to obtain a set of NCVs for the RMS feature. In this
way, every feature produces a set of NCVs. These sets are processed at the third
step to select most informative features using a newly presented distance based
method. At last step, these sets of NCVs, which are obtained using selected fea-
tures only, are exploited to develop rule-based decision making criterion. Detailed

description of the presented scheme is given in the following subsections.

Data Acquisition
.
CTBFE
S
Feature Selection

<.”
Rules Formation &

Decision Making

FIGURE 5.1: Block diagram of the RBDS

5.1.1 Feature Selection

Most informative features were chosen for the formation of the rules. This ensures
efficient and reliable diagnosis. As mentioned earlier, every feature produces a set
of CVs that are equal in number to the bearing’s fault classes. This study dealt
with four bearing faults. Thus, for convenient separation of these faults, every set

of CVs was then normalized between 0 and 3 using the relation below.
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Value — min value in a set of CVs )

Norm. Value = 3 x ( (5.1)

maz value in CVs — min value in CVs

The sets of NCVs are exploited further to select most informative features and rule-
set formation. Separating distances between the NCVs in a specific set was used to
develop the feature selection mechanisin. A feature capable of well separating its
respective NCV was considered worthy for the diagnostic process. The rule-based

algorithm is elaborated via flowchart in Figure 5.2.

First of all, values in each set was sorted in an ascending order. This provided
relative distances between every pair, which represented any two adjacent NCVs
lie in a set. Hence, there exists three pairs in any NCV-set. As the normalization
in a set of four NCVs is done from 0 to 3, thus an ideal distance between each pair
was 1. Increasing the distance between any pair above 1 will result in reduction

of distances between the other neighboring pairs.

Start

CVs of feature 7

v

FNCV = Normalization ofCVgsJ

v
‘ Ascending sorting the NCVﬂ

Set of NCVs
from a feature

c=1, numNCVs= 4—‘

True

setDist \»{dist (¢)= NCV (c+1)= NCV (c)J
Oto1

Distance between all adjacent NCV's should be greater
than the setDist limit for selection of the feature

FIGURE 5.2: Flow chart of a feature evaluation procedure
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FIGURE 5.3: Relative distances among respective NCVs of every feature

Figure 5.3 shows distances among the NCVs of respective sets, i.e. the NCVs
produced by every feature. Horizontal axis of the XY-graph indicates the features
by the assigned numbers for convenience. The numbers 1 to 10 stands for the
ten features RMS, mean, variance, skewness. kurtosis, CF, IF, SF, median and
range respectively. For the selection of a particular feature, a minimum distance-
limit between all the pairs is required to be fulfilled in the respective set of NCVs
to which that feature belonged. To provide flexibility, a user defined parameter,
named as setDist, was defined to set the limit from 0 to 1. In case the separat-
ing distances between all pairs in a set of NCVs were greater than the defined
limit, then that particular feature was chosen to which the NCVs belonged (FS
= True). For instance, setting the value of setDist parameter equal to 0.66, the
feature selection algorithm returned three top ranked features that included RMS,
variance and shape factor respectively (numbered as 1, 3 and 8 in Figure 5.3 re-
spectively). Though, several features demonstrated reasonably good separation
among their respective NCV-sets, as shown by minimum distances in Table 5.1.
The features include RMS, median, variance, SF, CF and IF. When the setDist
value approaches to its utmost setting, i.e. 1, then the criteria of feature evalua-
tion turn out to be more strict for a feature to be selected for further processing

and vice versa.
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TABLE 5.1: Minimum distances between any pair in a set of NCVs

Feature No. Feature Distance (0 to 1) Status
1 RMS 0.6731 Selected
2 Mean 0.0452 Discarded
3 Variance 0.7177 Selected
4 Skewness 0.2268 Discarded
5 Kurtosis 0.1402 Discarded
§ Crest Factor (0.4843 Discarded
7 Impulse Factor 0.5167 Discarded
8 Shape Factor 0.7444 Selected
9 Median 0.6568 Discarded
10 Range 0.3146 Discarded

5.1.2 Rule Formation and Decision Making

The corresponding NCV-sets chosen against the three salient features were used
to construct rules to identify bearing faults. Three most important features were
RMS, variance and shape factor respectively. As there were three pairs in a NCV-
set, which contains four values. Thus, three reference limits (refNCVs) were ob-
tained by averaging the NCVs of each pair, as shown graphically for RMS feature
in Figure 5.3. The reference limits lo(k), med(k) and hi(k) were obtained for every
feature; k = 1 for RMS feature. The rule formation procedure utilized these ref-
erences to make decisions, as illustrated in Algorithm 1. The algorithm generated

only four rules for the purpose, i.e. single rule for the identification of single fault.

To test the unknown vibration sample, three selected TDF's were extracted from
the test sample also, i.e. RMS, variance and shape factor. The features were also
processed through the feature processing step explained already. Three test CVs
were produced against the three salient features. The test CV were also normal-
ized using the same Equation 5.1, i.e. between 0 and 3. During the normalization
process, the same corresponding values of min and max were utilized that were
obtained using the reference CV-sets. Finally, each of the normalized test CV
(testNCV) was compared with its corresponding reference set (refNCVs) to recog-

nize the fault type to which the particular vibration sample might belonged. For
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Algorithm 1 Rules generation using selected features

Input: nFeatures=3, nNCVs=4, ref NCV[3, 4] (3 chosen sets of NCVs, each
one contains 4 references), testNCV[3] (Set of 3 test NCVs obtained from 3
chosen features)
Output: Fault type
for k =1 — nFeatures do

form=1—-nNCV —1do

limit(m) = (ref NCV(k,m) + ref NCV (k,m + 1)) /2

end for

lo(k) = limit(1)

med(k) = limit(2)

hi(k) = limat(3)
end for
if testNCV (1) > hi(l) and testNCV(2) < lo(2) and testNCV (3) > hi(3)
then Fault type = IR fault
else if testNCV (1) < lo(1) and test NCV (2) > hi(2) and test NCV (3) < lo(3)
then Fault type = OR fault
else if testNCV(1) > med(1) and test NCV(1) < hi(1) and testNCV(2) >
med(2) and testNCV(2) < hi(2) and testNCV(3) >
med(3) and test NCV(3) < hi(3) then Fault type = BL fault
else if testNCV (1) > lo(1) and testNCV (1) < med(1) and testNCV(2) >
lo(2) and testNCV (2) < med(2) and test NCV (3) > lo(3) and test NCV (3) <
med(3) then Fault type = MX fault
else Fault type = Unidentified fault
end if

example, the test NCV of RMS feature were compared with refNCVs, which were

obtained using the RMS feature extracted from reference vibration data-set.

5.2 Results and Discussion

The CTBFE method was utilized further to generate rules with the intent to
classify localized fault in ball bearing. A test rig was used to acquire vibration
data for every fault of the bearing. The TD features or CVs were extracted via
CTBFE method explained already in Chapter 4. The CVs were used as references
to form rules and judge the type of fault. Importantly, only the chosen salient
features participated in the diagnostic process to achieve efficient and reliable

results.
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To evaluate the performance of the RBDS, total 160 vibration test samples were
captured, i.e. 40 samples for each fault. Every test sample was processed via
feature processing step. Each sample then produced a set of three testNCVs
against the selected three features. Thus. the Algorithm 1 utilized 3 160 testNCVs
in total. The algorithm provides 95.6% accuracy of fault identification. Out of 160
samples, only three vibration samples of BL fault and four samples of MX fault

were remained unidentified.

To evaluate the performance of the RBDS, a supervised learning model SVM was
implemented. The training data was prepared using the same vibration data that
was used to obtain reference NCVs. In the same way, test data was prepared from
the same vibration data that was used to test the proposed RBDS. All the ten
TDFs were transformed into instances, i.e. by adding fault labels. In this way,
total 160 instances, 40 instances for each fault class, were fed to the classifier.
The multi-class SVM produced only 76.3% fault classification accuracy applying
10-fold cross validation method for the training and testing purpose. Table 5.2

summarizes the vibration samples involved for the RBDS and SVM-model.

TABLE 5.2: Vibration data samples used for RBDS, and for SVM model

Vibration Samples IR OR BL MX

RBDS References 1 1 1 1
RBDS Testing 40 40 40 40
SVM Train & test 40 40 40 40

Finally, the background noise was added to the vibration signals at various SNRs
to prove the robustness of the presented method against the background noises.
Fault classification accuracies using SVM and RBDS are compared in Table 5.3.
The results obtained are evident that the RBDS provides considerable immunity
to the added noise.
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TABLE 5.3: Effect of background noise on the fault classification accuracies (%)
from RBDS and SVM

Features 404B 30dB 204dB 10dB 5dB

SVM 76.3 756 75.0 733 70.2
RBDS 956 956 956 944 944

5.3 Summary

The TD features extracted via CTBFE method were exploited to develop a new
RBDS to identify localized faults in ball bearing. Several vibration samples were
acquired to investigate bearing’s four faults with the help of a test rig. Distances
between the CTBFE-based NCVs in respective sets were exploited to build a
feature selection mechanism and generate simple rule-set for identification of the
faults. The RBDS produced excellent results, even in the presence of considerable
background noises. The presented methodology may be an efficient alternative to

the costly supervised learning based PR-based fault diagnosis.
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Chapter 6

Classification of Unbalance and
Misalignment Faults in Rotor
using Multi-Axis Time Domain

Features

Rotor unbalance and misalignment faults are usually difficult to identify using con-
ventional vibration-based frequency analysis methods. Main reason is that both
faults often produce similar sort of frequency spectra. The balancing procedure
of an unbalanced rotor is based upon attachment or removal of certain amount of
weight to or from a particular location of the rotor. Misjudging the misalignment
fault with the unbalance, may causes additional problems in the rotor due to dif-
ferent maintenance strategies. Therefore, confirming the unbalance state of rotor
is extremely important prior to take any corrective action. This study utilizes
PR-based fault classification technique for the problem at hand using TD features
[155]. Same classifiers, i.e. SVM, bayesNet, decision table, and decision tree, are
used to determine the effectiveness of the proposed method, which provide 100%

accuracy. Major contributions of this research include:
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e Employing multi-axis TD features for accurate identification of unbalance

and misalignment faults.

e The multi-axis feature processing mechanism produce more robust features

for eflicient fault diagnosis.

e 100% accurate results are achieved.

The chapter is organized as follows. Section 6.1 explains the theory behind rotor
faults. The proposed scheme is elaborated in Section 6.2. Section 6.3 discusses the
results and findings of the presented method. Finally, the study is summarized in

Section 6.4.

6.1 Rotor Faults

Unbalance is the most common fault in rotor that occurs due to uneven mass dis-
tribution around rotor’s rotation center. Unbalance force pulls the rotor towards
a specific orientation or location, which is also known as heavy spot. Severity
level of measured vibration and rotor’s speed correlate directly with the amount
of unbalance. If the rotational speed doubles and the amount of unbalance re-
mains constant, then the centrifugal forces will increase by a factor of four and
consequently the vibration amplitudes would also increase accordingly (Refer to
Equations 2.5 and 2.6). The dynamics admit the attachment or removal of cer-
tain amount of weight to or from that specific rotor’s location to balance out the
unwanted force. Usually, radial vibrations dominates in case of unbalance fault,
which produce primary harmonic of vibration (1X) that is higher than that of

normal rotor [36].

Misalignment is the next common fault to unbalance. Vibration due to misalign-
ment fault is often produced by reactive forces in the coupling, when two coupled
shafts are not perfectly collinear. Unlike the unbalance, correlating the effects of

misalignment with vibration amplitude can be difficult. Types of misalignments
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along with more details of the fault can be found in second part of Section 2.2.2.
Present study deals with only angular misalighment type, which generate forces
in both radial & axial directions. Consequently, the vibrations acquired from both
axes contain information about the fault. The vibrations due to misalignment
fault generally presents the fundamental harmonic at 2X [36]. Theoretical aspect

of these rotor faults is already covered in Section 2.2.2.

6.2 Proposed Methodology

The proposed method works in four steps, which are shown in the block diagram

in Figure 6.1. Following subsections explain each of the step.

Data Acquisition

3 [

| . . |
= Multi-Axis |
= 1} TD Feature Extraction |
o | |
2l <z I
g_ : Feature Processing :
D‘t

Fault Classification

FIGURE 6.1: Block diagram of Multi-axis features based fault diagnosis of rotor

6.2.1 Data Acquisition

At first step, a machine fault test rig was used to generate vibration signals for un-
balance and misalignment faults. Two piezoelectric accelerometers were mounted
at the housing of out-board bearing. Radial measurement is taken from vertically
mounted sensor (Radial-V) whereas the other one is taken from axial direction
simultaneously, as shown in Figure 6.2. Seventy samples were acquired at the rate
of 40K Samples/sec. Duration of each sample was 3 seconds, while the motor

speed was kept at 1400 RPM (23.3 Hz).
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FIGURE 6.2: Schematic of the experimental setup

Figure 6.3 shows the spectra of both the rotor faults. Figure 6.3(a} shows spectrum
of unbalance fault containing harmonic at 1X, whereas 6.3(b} shows spectrum of
misalignment fault containing two harmonics at 1X and 2X. The typical spectra

of both the faults validates the data.
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{a} Spectrum of unbalance fault {b} Spectrum of misalignment fault

FIGURE 6.3: Spectra of rotor faults

6.2.2 Multi-Axis TD Feature Extraction

At second step, TD features were extracted from each of the radial vibration
sample and axial vibration sample to form data set. Ten TD features are utilized
that include RMS, mean, variance, skewness, kurtosis, CF, IF, SF, median and

range. The features are already described mathematically in Section 1.1,

6.2.3 Feature Processing

The third step is the key step that implements the feature processing mechanism to

feed the most appropriate features to classifier. The alike features are subtracted
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to calculate a sort of signed distance to obtain new resultant feature. For example,
the RMS-Axial is subtracted from RMS-Radial to produce resultant single feature
again, i.e. RMS-Multiaxis. In this way, the length of feature vector is remained
the same, i.e. again ten features in an instance. Below is the relation used to

process every feature.

N

fi) =Y <fRAD1AL(i) - fozAL(i)> (6.1)

i=1
where f(i) represents i** feature, and N=10 in our case.

Six TD features were selected in this research by employing attribute evaluation
method. The reason to reduce the dimensionality of the feature vector in this
study is that even six multi-axis features produced 100% accuracy to identify two
fault classes. This is just to make the comparison purposeful, i.e. comparison
between multi-axis and single-axis usage of features. Otherwise, adding extra
feature might increase the classification accuracy of the models with even single-
axis features. The selected features include RMS, Variance, skewness, kurtosis,
impulse factor and range. Info-GainAttributeEval was used to evaluate the worth
of an attribute by measuring the information gain with respect to the fault class,

using the Equation 6.2 below.

InfoGain(Class, Attribute) = H(Class) — H(Class|Attribute) (6.2)

The method discretizes the numeric attributes employing supervised discretization

method before evaluation using ranker method.

6.2.4 Fault Classification

During the supervised learning process, a classifier is trained and used to test

unknown examples. Total 140 instances were fed to classifier, i.e. 70 for each
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FIGURE 6.4: Fault classification procedure

fault. Figure 6.4 describes the fault classification process, where 10-fold cross

validation method is used to train and test the unknown examples.

6.3 Results and Discussion

The literature shows that only single axis (radial or axial) vibration measurements
are used to extract TD features, especially the radial axis vibrations. Importantly,
the unbalance and misalignment faults may demonstrate different forces in radial
and axial axes. Consequently, a TD feature can exhibit different sensitivity to both
axes, when extracted from simultaneously captured vibration signals. Thus, the
proposed study exploits multi-axis vibrations to extract TD features for supervised
learning based recognition of fault patterns. In addition to incorporating features
from both axes, every pair of alike features is then further processed to obtain
very effective single feature. For instance, feature RMS-Radial and RMS-Axial
are processed adequately to produce single RMS-Multiaxis feature. Apart from
robustness, the simple feature processing method suits to our application because

of maintaining the length of feature vector.

As discussed in Section 6.1, large amplitude at 1X in spectrum has been consid-
ered to detect rotor’s unbalance fault. On the other hand, misalignment fault is
supposed to produce high amplitude at 2X. However, due to emergence of new

technologies, it has become easier to analyze the amplitudes of entire frequency

89



range in spectrum. The previous research reveals that most often the largest am-
plitude produced by misalignment may not be at 2X, but it may be at 1X instead.

Therefore, unbalance has often been blamed for misalignment [37].

As discussed earlier, the rotor balancing procedure involves additional weight at-
tachment or removal of extra weight. The rotor may exhibit unusual behavior, if
applied the same treatment to address misalignment fault. Thus, accurate iden-
tification of these faults becomes very crucial. The task is not as simple using
conventional frequency analysis methods, because both the faults can produce
similar form of frequency patterns. To address this issue, this study investigated
the diagnostic capability of multi-axis TD features, i.e. the TD features extracted

from radial and axial vibration signals acquired simultaneously.

Table 6.1 shows 83.3% classification accuracy using six radial features, and 81.7%
accuracy using six axial features. On the other hand, combing both kind of fea-
tures (twelve multi-axis features), resulted in 100% accuracy. However, the vector
length increased to twelve, and generally classifier’s accuracy may be enhanced by
increasing number of features [34]. Yet, the assumption was that utilization of both
radial and axial features together enhances the fault identification of the classifier,
as the unbalance force acts mainly towards radial direction whereas the angular
misalignment force acts in both radial and axial direction. This phenomenon may
cause variation in vibratory behavior between both axes, and consequently in the

extracted features.

TABLE 6.1: Classification accuracies (%) demonstrated by SVM using radial,
axial and multi-axis TD features

Multi-axis Multi-axis
Combined Processed

83.3 81.7 100 100

Radial Axial

Features Features Features Features
6 6 12 6

To validate the above stated hypothesis, every pair of alike features was then

further processed to produce single feature, i.e. radial and axial features were
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TABLE 6.2: Classification accuracies (%) demonstrated by every classifier using
radial, axial and multi-axis TD features

Classifier Radial Axial Multi-axis Features

Processed used
SVM 83.3 81.7 100 6
bayesNet 82.3 81.3 100 6
Decision Tree 82.6 82.1 100 6
Decision Table 83.1 81.1 100 6

processed adequately to produce single robust feature. As a result, a feature set
of obtained having more diagnostic information. 100% accuracy for six multi-axis
processed features is evident of the effectiveness and efficiency of the proposed
method. Decision making capability of the classifier was improved by using multi-

axis features comparing to single-axis features, especially after processing.

Other classifiers, i.e. bayesNet, decision table, and decision tree also provide 100%
accuracy using only six processed multi-axis features. Whereas, all the classifiers
show similar sort of performance using six radial or six axial features. For radial
single-axis, the accuracies lie between 82.3% to 83.1% and for axial single-axis the

accuracies lie in the range between 81.1% to 82.1%.

It is worth-mentioning that the sensitivity of TD features to different mechanical
forces is utilized in a way that the decision making capability of the supervised

learning based classifiers was enhanced considerably.

6.4 Summary

Unbalance and misalignment are the most commonly occurring faults in rotating
machinery. It is very important to confirm the unbalanced state of rotor before
maintenance because the balancing procedure of an unbalanced rotor is based
on weight adjustment technique. Otherwise, the rotor may introduce additional
problems in the machine. The task becomes difficult using conventional spectral

analysis methods as both the faults can produce similar type of frequency patterns.
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To solve the problem, this study exploited the difference of behavior exhibited
by these faults in terms of vibration transmission in radial and axial directions.
Combining the multi-axis TD features provides very accurate result. Furthermore,
every pair of alike features were processed adequately to produce single robust
feature. This enhanced the efficiency of the diagnostic model by maintaining the
length of feature vector. All the classifiers provides 100% results using multi-axis

processed TD features.
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Chapter 7

Conclusions and Future Work

This thesis proposed and evaluated novel methods for diagnosis of faults in rotat-
ing machinery based on supervised machine learning techniques using vibration
data. Obtaining accurate and fault-related TD statistical features was the focus
of the study. with the intent to improve fault classification accuracy. As the rotat-
ing machinery components transmit complex and random vibration signals, this
research emphasizes to use processed TD features to recognize fault patterns in-
stead of using raw features directly. For instance, localized faults in REB produce
very low amplitudes in vibration signals. The faults identification is therefore very
difficult by using conventional frequency analysis methods. In addition, unrelated
spikes or fluctuations transmitted by joint machinery components may easily alter
the statistical values of the features. The affected features inay not represent true
fault conditions. This consequently mislead the classifiers and making the fault
identification process very hard. The present study presented new CT-based fea-
ture processing and extraction methods for obtaining accurate features to aid the
PR-based diagnostic process. Other case was concerned about rotor faults, which
although produces stronger impacts in vibration signals but most common faults
like unbalance and misalignment produce very similar sort of frequency spectra.
Pattern identification of these faults using raw TD statistics may not be very ef-
fective again as the features can be sensitive to severity levels of these faults. The

present research exploited the dissimilarity of mechanical forces produced by the

93



faults to extract multi-axis TD features from simultaneously captured radial and
axial vibration signals. Adequate processing of these features prior to incorpo-
rate classifier greatly helped to improve the diagnostic capability of the classifier.
Variety of classifiers were employed to evaluate the presented methodologies, and
the results were evident that all the classifiers performed better when utilized TD
features obtained through the proposed methods. The classifiers include SV,

bayesNet, decision table and decision tree.

Two new methods were presented to achieve trustworthy decision making for the
identification of localized faults of REB. The CT-based feature processing methods
adequately mitigate the affect of undesired fluctuations on PR-inodels. The first
method is CTBFP, discussed in Chapter 3, that work at the feature-level i.e.
data preparation stage of forming instances prior to incorporate classifier in the
diagnostic model. The TD features were extracted from several vibration samples.
Every feature distribution was put under test separately to check whether the
feature contained one or more outlier values. In case any feature distribution
contained any outlier, the whole instance was discarded from the data-set. This is
analogous to discarding the specified vibration sample from which the TD features
were extracted and isolating the unrelated machine components from the problem
at hand. The CTBFP method took advantage of the sensitivity of TD features
as they produce outliers indicating an inappropriate vibration sample to proceed
on. The CTBFP is an efficient method and offered significant immunity to not
only signal fluctuations but even background noises. Moreover, the statistical
TD features have shown different levels of sensitivity to these randomly occurred
fluctuations. The method produced 94.4% accuracy at maximuin using the multi-
class SVM to identify four faults of REB employing ten TD features. Whereas,
the classifier could provide only 76.3% accuracy when employed the same raw
TD features. Other classifiers demonstrated similar sort of difference in their

performances using raw and processed features.

The other method is CTBFE which was discussed in Chapter 4. The presented
method was used to identify bearing’s localized faults. Unlike processing the fea-

ture distributions at feature-level, this method works at feature-extraction-level
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rather to obtain reliable TD feature values. The CTBFE method overcome the
inherited limitations of applying CTBFP method in situations where availability
of data size is limited. The method does not discard the affected instances but
utilized every available vibration sample. It selects the most appropriate portion
or sub-sample of a vibration sample for the extraction of TD features. This strat-
egy ensures the supply of very accurate feature values to a classifier for truthful
decision making. In addition to efficiency, the presented method provided signifi-
cant immunity to possible fluctuations and background noises in vibration signal.
Apart from preserving number of instances, the CTBFE provided even more accu-
rate results compared to that of CTBFP method. However, the CTBFP is more
efficient when the availability of data is not restricted. The CTBFE demonstrated
96.8% accuracy at maximum using the multi-class SVM to identify four faults of
REB employing ten TD features. Whereas, the classifier could provide only 76.3%
accuracy when employed the same raw TD features. Both the above mentioned
methods disassociated the effect of unrelated vibrations adequately from sensitive
TD features before the start of supervised learning process. It is worth mentioning
that only fewer values of features were required to processed than with conven-

tional pre-processing techniques to enhance the fault classification accuracy.

The CTBFE method is exploited further to present a RBDS to identify local-
ized faults in REB. The method utilized the accurate and stable feature values
extracted through CTBFE method. The CTBFE-based feature values, acted as
CVs, were obtained against the respective bearing faults. Distances between NCVs
in the respective sets were employed to build a kind of feature selection mechanism,
and to generate simple rule-set for the fault identification. The RBDS produced
excellent results and offered an unique alternative to the existing PR-based fault
diagnosis. The method produced 95.6% accurate results employing only three

salient features.

Finally, the TD features were also processed to identify rotor’s most common
faults, such as unbalance and misalignment. Confirming the unbalanced state of
rotor before the maintenance activity is important as balancing procedure is based
on weight adjustment technique. Misjudging misalignment with unbalance may
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lead to additional problems in machinery. This study exploited the difference of
behavior exhibited by these faults in terms of vibration transmission in radial and
axial directions. Combining the multi-axis TD features provides very accurate
results. Every pair of alike features were processed adequately to produce again
a single robust feature. The method enhanced the accuracy of the binary-SVM
model to 100% using six multi-axis features only while maintaining the length of
feature vector. Whereas, the classifier provides only 83.3% classification accuracy

employing the single axis same TD features.

7.1 Future Work

e The CTBFP and CTBFE are applied to localized faults in REB. Due to pro-
viding very accurate results, the future research may continue to apply these
methods to diagnose other faults in rotating machinery, for example gear
faults. However, care must be taken before isolating the fault under inves-
tigation from any undesired data that any related and valuable information

might not be lost.

e The CTBFP method processes the features efficiently via outlier detection
by implementing the MOD function, discussed in Chapter 3. The affected
instances were pruned at next stage of the algorithm based on the MOD
outcome. The MOD's parameter scale determines the threshold to catego-
rize any feature value as outlier. The parameter acts as trade-off between
the resulting accuracy and the size of remaining data-set used in supervised
learning process. The present research used a standard threshold value sug-
gested in the literature due to limited resources. However, value of the pa-
rameter may be adjusted according to the nature of data-set or application
of other rotating component of machinery. The future research should in-
vestigate the adaptive value of the scale parameter using some optimization

technique before employing the MOD function for best results.
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e Multi-axis TD features may also applied to identify multiple rotor problems,
i.e. in addition to unbalance and misalignment. The problems may include
bent shaft, coupling probleins, eccentricity etc. As the transmission of me-
chanical forces from these faults may vary, the phase information in vibration
signals captured from multiple axes may be a usetul tool to include as addi-
tional features for reliable distinction of the faults. Taking into account the
phases as features may diagnose the above mentioned multiple rotor faults

accurately, especially the spectra of which do not provide clear distinction.

e The presented methods are evaluated using supervised learning based fault
classification techniques. The future research may apply these methods to
investigate their effectiveness on un-supervised or semi-supervised learning

based fault classification models.
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