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Michael Abbett [15] worked on the time dependent computational method for blunt body
problem in 1966. The shock wave phenomena may also occur in supersonic convergent-
divergent (CD) nozzle [10] which is infact the subject of the current study. The dissertation is

arranged as follow:

Chapter 1 includes the basic definitions of fluid flow, thermodynamic properties and governing
equations of fluid flow. A brief history of shock wave, its characteristics and the visualization
technique is elaborated. The numerical scheme for the simulation of the problem is also

described in this chapter.

In chapter 2, governing equations of the normal shock wave are derived. The physical
behaviour of the normal shock is described by using Iiankine-Hugoniot relations. The physical
behaviour of the flow through a CD nozzle is described and it is also examined that the shock
wave changes its location with the reduction of exit to inlet pressure ratio. Under expansion

and over expansion processes are also illustrated in this chapter.

Quasi one dimensional flow through a CD nozzle is discussed in chapter 3. The location of the
shock wave have been captured successfully with great accuracy which has been shown by the

appearance of abrupt changes to the flow properties.
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Chapter i

1.1  Introduction
Fluid flows are present everywhere in nature and are widely experienced by those people who

observe the nature with open eyes. As 75% of earth is covered with water ahd 100% with air, the
scope of the fluid is vast and has numerous application in human life. Fluid mechanics, as with
many other fields of scientific studies, is rooted in the history of humanity. Throughout its history,
fluid mechanics is a field that has been constantly advancing. As with other engineering fields, it
has now reached the point of scientific maturity with most of the fundamentals clearly understood.
As such, it has become a vital component for many engineering curricula. It is therefore useful

exercise to examine the historical development for this field.

Ancient civilization had enough knowledge to solve certain problems of their time. Archmedes
(285-212 B.C) formulated the buoyancy law and applied it to floating and submerged bodies.
Leonardo da Vinci (1459-1519) derived the equation of conservation of mass in one dimensional
steady flow. He experimented with waves, hydraulic jumps, eddy formations, etc. A French man
Edme Mariotte (1620-1684) built the wind tunnel an;i tested different models in it. Sir Isaac
Newton (1642-1727) postulated his laws of motion and laws of viscosity of linear fluids, now
called Newtonian fluids after his name. Leonhard Euler (1707-1783) developed both differential
and integral forms of the equations of motion known as Bernoulli equation now a days. William
Froude (1810-1879) and his son developed laws of model testing. Lord Rayleigh (1822-1919)
proposed the dimensional analysis of physical problems. Osborne Reynolds (1842-1912) worked
on the classical pipe experiments and showed the importance of dimensionless “Reynolds
number”. Navier (1785-1836) and Stokes (1875-1953) independently added Newtonian viscous
term to equation of motion known as Navier-Stokes equation. Ludwig Prandtl (1875-1953) gave
the idea of boundary layer which has become the most important tool in modern viscous flow

analysis.

Beside the study of low speed flows, high speed flows such as flow over the bodies and inside the
ducts were also investigated by the researchers and engineers. The importance of such high speed
flows over the bodies was enhanced when first successful airplane flight conducted by Wright’s

brothers in 1903. This was really a great achievement in the history of engineering science. After
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this experiment engineers had started to investigate the effects by which the speed of plane might
increase. The study of air over the wings and other parts of planes was conducted extensively in
order to reduce the resistance of air in turn to increase the speed of the plane. The speed of airplane
was increased successfully but not as fast as the speed of sound. Many experiments were conducted
to cross the speed of sound but whenever the planes approached it, the drag became more sever.
At that time, the piolets and some aeronautical engineers felt that airplanes could never move faster
than the speed of sound. But aecrodynamicists believed that planes could move faster than the speed
of sound. Adolf Busemann [1] presented his work on the swept wings and discussed how swept
wings would have less drag at high speeds than straight wmgs Eastman Jacobs [2] proposed wind-
tunnel test results for compressibility effects on alrf01ls at high subsonic speed. Jakob Ackeret
presented work on the design of supersonic wind-tunnels. Ludwig Prandt! also worked on
supersonic aerodynamics. The myth (sound barrier) was broken in 1947 when Captain Chuck
Yeager flew Bell-X1; approached the speed of sound and thus broke so-called “sound barrier”.
After breaking the sound barrier, he entered into the new era of flow, the “supersonic flow”. The
history was made with this experiment but with the generation of nonlinear high altitude wave
over the jet named as “Shock wave”. The rapid changes across this wave:had been experienced
that gave a new direction to researchers to investigate about its mechanism. The location of shock

wave had also become a new challenge for engineers and scientists.

The existence of shock wave had already been visualized over the solid obj ects and inside the ducts
by number of researchers but not over the jets. Knowledge of shock wave is not unique to the
twentieth century. Its existence was recognized in the early nineteenth century. The German
Mathematician G. F. Bernhard Riemann first attempted to calculate shock waves properties in
1858. But he neglected an essential physical feature and hence obtained incorrect results. Twelve
years later, William John Rankine [3] derived proper equations for the flow across a normal shock
wave. The French ballistician Pierre Hugoniot [4] rediscovered the normal shock wave equations
in 1887. The German aerodynamicist Ludwig Prandtl and his student Theodor Meyer [5]
discovered oblique shock waves in 1908. The nineteenth century was also the time of experimental
work on supersonic flows. The most important event was the proof of the existence of shock waves.
Ernst Mach [6] proved the existence of shock waves in 1887. He took the photographs of shock

wave on a moving body at supersonic speeds.
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The existence of shock wave had also been investigated mathematically since long. Number of
techniques have been developed to investigate it theoretically. In this dissertation, we intend to
study the existence of shock wave as well as it effects in the supersonic flow of air through CD
nozzle. The second order finite difference scheme [7] has been utilized in capturing and studying

the normal shock wave.
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1.2 Basic Definitions
1.2.1 Fluid

Fluid is a substance that deforms continiiously under the action of shear stress, no matter however

small. It can also be defined as a substance which is capable to flow.

1.2.2 Fluid Mechanics

The branch of applied mechanics in which the behavior of fluid is examined under the action of

forces. It may be classified as following

i.  Fluid statics
ii.  Fluid kinematics

iii.  Fluid dynamics

The study of fluid at rest is known as fluid statics whéreas the study of fluid in motion without
considering the cause of motion (external forces) is known as fluid kinematics. The study of fluid

in motion with the consideration of cause of motion is known as fluid dynamics.

The fluid dynamics may also be classified as hydrodynamics and gas dynamics. Hydrodynamics
contains the study of liquids whereas gas dynamics contains the study of gases. Usually air is
assumed for the experimental study of gas dynamics, therefore it may be named as

“Aerodynamics”.

1.3 Physical Properties of Fluid
1.3.1 Dénsity

The density is defined as mass per unit volume and is used to characterize the mass of fluid system.

k
It is designated by Greek symbol p (rho); SI unit of density is m—i .

1.32  Pressure

The pressure exerted on or by the fluid is a force applied normal to the surface of an object per
unit area over which the force is distributed. It is designated by p and has SI unit Pascal (pa). If
the distribution of applied force over the surface area is uniform, then the mathematical

formulation is given as

p="
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If the distribution of applied.force over the surface area is not uniform then we have

AF  dF

p= A}qr-r»)o A4 dA
where AA is smallest element of the surface area over which AF acts.

1.3.3  Temperature
Temperature is defined as the measure of the intensity of heat in certain body of mass. Different

scales are used to measure the temperature. Three commonly used scales are given as follow:

i.  Celsius (°C)
ii.  Fahrenheit (°F)
iii.  Kelvin (K)

1.3.4 Total Temprerature
Total temperature at a given point in a flow is the temperature that exists if the flow is

slowed down adiabatically to zero velocity. It is designated by Tg.

1.3.5 Total Pressure "
Total pressure at a given point in a flow is the pressure that exists if the flow is brought to rest

isentropically. It is designated by po.

1.3.6  Total Density
Total density at a given point in a flow is the density that exists if the flow is brought to rest

isentropically. It is designated by po.

4

1.4 Types of Fluid
1.4.1 Incompressible and Compressible Fluids

The fluid having constant density with the change in temperature and pressure is known as
incompressible whereas the fluid whose density changes with temperature and pressure is known

as compressible.

1.4.2  Inviscid and Viscous Fluids
The fluid whose viscosity is zero is known as invicid fluid whereas the fluid having finite viscosity

is known as viscous.
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143 Ideal and Real Fluids

An inviscid, incompressible fluid is known as ideal whereas a viscous fluid is known as real fluid.

1.5 Types of Flows
1.5.1 Uniform and Non-Uniform Flows -
A flow is said to be uniform if the fluid properties such as velocity, pressure, temperature, etc. do

not change from point to point during the whole course of flow, i.e.

av ar ar
.—:0 _— = —_—
ar ' oar 0, ar

= 0, etc.
A flow is said to be non-uniform if the fluid properties change from point to point during the

flow, i.e.

av- ae ar
5‘;¢0, E¢O, -a—r¢0,etc.

1.5.2 Steady and Unsteady Flows
A flow is said to be steady if the fluid properties don’t change with respect to time, i.e.

aT
—_—= tc.
Py 0, etc

v _ . op

at—O' _6—t=0'

A flow is said to be unsteady if the fluid properties change with respect to time, i.e.

aP ar A
,eqo, E¢O,th.

av
T #0
1.5.3  Internal and Exterhal Flows
The flows through confined mediums such as ducts are known as internal flows whereas the flows
which occur over the objects immersed in an unbounded fluid are known as external flows. The

flows over airplanes, missiles and submarines are the examples of external flows.

1.54 Subsonic and Transonic Flows
A flow is said to be subsonic if it is moving with the speed less than 273 ms~" whereas the flow

moving with the speed in between 273-409 ms ™! is said to be transonic flow.
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1.5.5 Supersonic and Hypersonic Flows
A flow is said to be supersonic if it is moving with the speed in between 409-1,702 ms™? whereas

the flow moving with the speed higher than 1,702 ms™? is said to be hypersonic flow.

1.5.6  One-, Two-, and Three-Dimensional Flows

A flow can be classified as one-, two-, and three- dimensional flow depending on the number of
space coordinates. A flow is said to be one-dimensional flow if the fluid properties are depending
only on one space coordinate. The flow across a duct is an example of one-dimensional flow. A
flow is said to be two-dimensional flow if the fluid properties are depending on two space
coordinates. The flow over a plate is an example two-dimensiénal. A flow is said to be three-
dimensional flow if the fluid properties are depending only on all three space coordinates. The

flow over a wing is an example of three-dimensional flow.

1.6 Thermodynamic Properties
Thermodynamics is defined as the study of the relationship between the heat and other forms of

energy. It plays an important role in the flow of gas, particularly for high speed flows i.e. flows

around high spéed flight of aircrafts and missiles.

1.6.1 1deal Gas
A gas in which intermolecular forces are neglected is known as an ideal gas. It is also known as a

perfect gas. The equation of an ideal gas is given as
p= pRT,
where R is the specific gas constant. It has different values for different gases.

It is sometime convenient to define the values of thermodynamic properties per unit mass; such

values are distinguished by the word “specific”. i

1.6.2 Specific Volume

It is defined as the volume occupied by a unit mass of the fluid and is denoted by V.

VS=

o I~
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1.6.3 Specific Weight

It is defined as the weight per unit volume and is defined as

W
Y=y

myg
V ’
where W is the weight per unit volume.

1.6.4 Specific Internal Energy

It defined as the energy per unit mass of the fluid due to molecular activity and is denoted by U.

1.6.5 Specific Enthalpy

It is defined as the total heat introduced per unit mass of the fluid and is denoted by H.
H=U+pV.

1.6.6  Specific Heat
It is defined as the amount of heat required to raise the temperature of a unit mass of fluid by one

degree. It is denoted by C and is defined as

1.6.7  Ratio of Specific Heats

It is defined as a measure of the relative internal complexity of the molecules of the fluid and is

denoted by y,
C
Y= Z‘B'
v »
v
Forair, y = 1.4.

1.7 Types of Thermodynamic Processes
When gases are expanded or compressed, the relationship between the pressure, temperature, and

density depends on the nature of the process. The types of thermodynamic processes are discussed

in the coming subsections.

8|Page
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1.71 Reversible Process

The process in which no dissipative phenomena occurs, i.e. the process occurs in such a manner

that it can be returned to its original state.

1.7.2 Irreversible Process

The process that is not reversible is known as irreversible process.

1.7.3 Adiabatic Process

A process in which no heat is added to or taken away from a gas during expansion or compression.

In this case
0Q =0.
1.7.4  Isentropic Process

A process which is reversible and adiabatic is said to bé isentropic process.

1.7.5  First Law of Thermodynamics
It states that the heat added and work done on a gas causes a change in energy of the gas. Its

mathematical form is

dq + ow = de,
where dq is the heat added, dw is the work done and de is the change in energy of the gas.
1.7.6 Second Law of Thermodynamics

It states that the entropy change is greater than the heat transferred to the system divided by the

temperature, that is

aQ
> —.
as = T

For an adiabatic process, 3Q = 0, then dS = 0.

1.8 Speed of Sound
The distance travelled by a sound wave through a medium in a unit time is khown as the speed of

sound and is designated by a. The mathematical expression for the speed of sound is given as '

a = .JyRT.

9|Page
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At standard sea level, the value of speed of sound is
a =3409ms™"

1.9 Mach Number

The Mach number is a dimensionless number and is defined as the ratio of the speed of an object

V to the speed of sound a in the same medium. It is designated by M and has expression

The flows can also be classified with the help of Mach number M. The types of flow are given in
the coming subsections. The aforementioned subsonic, transonic, supersonic and supersonic flows
can also be characterized through Mach number which is usually being practiced by the

aerodynamists. In the following, the said flows have been defined in terms of Mach ranges.

1.9.1 Subsonic Flow

A flow is said to be subsonic if the Mach value M is less than 1.0, i.e. M < 0.8.

1.9.2 Transonic Flow

A flow is said to be transonic if the Mach value M is in'between 0.8 — 1.2,1.e. 0.8 <M < 1.2,

1.9.3 Supersonic Flow

A flow is said to be supersonic if the Mach value M is in between 1.2 — 5.0, i.e. 1.2 < M < 5.0.

1.9.4  Hypersonic Flow
A flow is said to be hypersonic if the Mach value M is higher than 5.0, i.e. M > 5.0.

1.10 Shock Wave

There are flows for which the fluid properties change continuously. The flows are also possible in

nature for which these quantities vary discontinuously. Such discontinuities occur in explosions,
i . ’

detonations, supersonic movements, powerful electric discharge and such other phenomena’s that

create extreme changes in fluid properties.

1.10.1  Definition
Shock wave is a surface of discontinuity propagating in a gas at which temperature, pressure,

density and velocity experience abrupt changes.
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1.10.2  History of Shock Wave

Many scientists and engineers had faced such discontinuous phenomena (shock wave phenomena)
in their research and they gavé different names to this phenomena. Without mentioning the name
of shock wave, Euler (1759) talked about the “size of disturbance of sound wave meaning its
amplitude”. Poisson (1808) mentioned about an instance sound wave as the case “where the
molecular velocities can no longer be regarded as very small”, Stokes (1848) used term “surface
of discontinuity” and Reimann (1859) used the term “shock compression” and “compression
wave” to describe the jump-like steepening of the wave front. Toepler (1864) was the first to use
the term shock wave, he originated shock wave from a spark discharge and for the first time
visualized it using stroboscopic method. Rankine (1870) used the terms “abrupt disturbance and
wave of finite longitudinal disturbance” and Hugoniot (1885) used the term “discontinuity”. Ernst
Mach and Coworkers (1875-1885) used the terms “sho;:k wave, Riemann wave, bang wave and
explosion wave”. Earnst and Ludwig also dé'signated shock wave as “a sound wave of large
amplitude”. Von Oettingen and Von Gernet (1888) used the term “detonation wave”. Vieille and
Hadamard (1898), Duhem (1901) and Jouguet (1904) used the term shock wave. Lord Rayleigh
(1910) used the term “aerial waves of finite amplitude” while discussing the characteristics of

shock wave in the air.

1.10.3 Characteristics of Shock Wave

P'hysically the generation of shock waves is-always characterized in the fluid flow by instantaneous
changes in temperature, pressure, density and velocity. This means that, in comparisons with free-
stream flow conditions, the region between the body and shock wave will be a region of high
temperature, pressure and density. In other words, whenever a flow passes .throﬁ gh a shock wave,
instantaneous increase in pressure, temperature and c}ensity is observed with the decrease in
velocity of the flow. This instantaneous change in the flow properties is one of the unique feature

that characterizes the presence of shock wave.

1.10.4 Types of Shock Wave

A shock wave may occur inside a nozzle or over a solid body like flat plate, wedge or blunt body,
etc. when such bodies are inserted in a supersonic flow. A shock wave perpendicular to the
direction of flow is named as normal shock wave whereas a shock wave inclined at some angle to

the direction of flow is named as oblique shock wave. Another form of shock wave which is
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perpendicular as well as inclined to the direction of flow is named as bow shock wave. The normal
shock wave may form inside a nozzle whereas an oblique shock wave may form over a wedge or
a concave comer. A bow shock wave may form over a blunt body. The aforementioned types of

shock waves are shown in the figures (1.1), (1.2) and (1.3).

Normal shock wave
/,/’inside‘ the nozzle

Flow through a nozzle

Fig. 1.1: Normal shock wave inside a nozzle.

= Oblique shock wave

M=>1

= Wedge

Fig. 1.2: Oblique Shock wave over a wedge.
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strong function of the density of that gas. The greatest advantage of these techniques is
that only a single beam of light is used during the experiment. If the density of the gas
is uniform in the flow direction, the beam of light crossing the test section remains
parallel whereas if the density of the gas is non-uniform in the flow direction, the light
rays crossing the test section are refracted. The simplest one of these techniques is the
shadowgraph technique. It is quick in setup and adaptable to large fields of view. The
images obtained from this technique may be cast on projection screens, ground glass,

photoelectric film or on any reasonable flat reflecting surface.

glass'wall . — . _glass wall ~ screen
\; A T B ~ E & —

 B—
£
E‘n >
g
5 >
| >

L

E Flow =

. J

Fig. 1.4: Test section used for visualization techniques.
1.12.1 Shadowgraph Technique

Shaddwgraph technique is applied to obtain the direct view of the flow phenomena. A
screen is placed at some distance opposite to the light source and effect of refracted
rays are made visible. When there is no flow across the test section, the distribution of
light rays remains uniform and hence, illumination of the ligi)t is average. On the other
hand, when flow passes the test section, the distribution of the light becomes non
uniform. Dark and bright spots appear on the screen. Dark spots mark the region where
the light rays diverge whereas the bright spots mark the region where the light rays
culminate togatﬁer. There are places on the screen where the intensity of light rays
remain uniform, the brightness is average. These effects produce shadows on the screen

called shadowgram. For example, the visualization of shock waves due to the
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Equation (1.9) is evaluated by using the predicted value E obtained from equation (1.5) whereas
equation (1.8) represents the average value of E obtained from equations (1.6) and (1.9) at time

steps At and t + At. The final value of the dependent variable E is obtained from equation (1.7).

H
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Chapter 2

Physical Description of Flow Properties Across Normal Shock Wave

2.1 Introduction
Since the physical properties such as Mach number, density, temperature, pressure, etc. experience

abrupt changes across a normal shock wave, therefore the behaviour of these properties is
described with the help of graphs [6]. In the second part, the governing equations for quasi one-
dimensional flow through a variable area duct are derived first [6]. Then the construction of a CD
nozzle is elaborated briefly. Next, the behavior of flow through a CD nozzle is examined. As the
pressure ratio is a key factor in the nozzle flow, so the flow for different pressure ratios with the
corresponding changes in the Mach values is described. The generation of normal shock wave,

“under expansion” and “over expansion” phenomenon are also described briefly [9] in this chapter.

2.2 Governing Equations for Normal Shock Wave
Consider a normal shock wave shown in Fig. 2.1. Assume that flow is steady, one dimensional

and adiabatic with no body forces. The area is assumed to be constant throughout the normal shock
wave. The region in front of the upstream shock is a uniform flow, and the region behind the
downstream shock is a different uniform flow. The velocity, temperature, pressure, density, Mach
number, total pressure, total temperature, total enthalpy, and entropy in front of the shock are

uy, Ti, P1, P, My, Po1s Toa hoy and s; respectively. The corresponding quantities behind the

shock are uy, Ty, P2, P2, M2, Doz, To2s hoz and s, respectively.

Upstream conditions Shock wave Downstream conditions
Uy SRR | DS SN Uz
P1 ‘ ; P2
M, i : M,
P1 P2
Poa ) i Po.2
To ? | To2
ho,l : i ho'z'
54 R SRR | R s

Fig. 2.1: Sketch of normal shock wave.
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The continuity, momentum and energy equations (1.1), (1.2) and (1'.3) for an inviscid,

compressible flow under the above assumptions are

p1uUy = Pauy, 2.1)
D1y PIUS = Py P2U3, 2.2)
2 2 o
Uy Uz (2.3)
h1+ 7 = h, +7.

The quantities upstream of the shock wave uy, p1, Py, etc. are known. We have a system of three

algebraic equations with four unknowns up, pz, P> and h,. If we add the following

thermodynamics relations

hz = CpTz, (24)

p2 = PzRTz.' 23)

To the governing system, we have five equations with five unknowns, namely,
Uy, Ta, P2» P2, and hy. The above equations can explicitly be solved to obtain the values of

unknowns.

2.3 Special Forms of Energy Equation

The energy equation (2.3) for an inviscid, steady, one dimensional and adiabatic flow is given as

2 2
Uy U;
e 5 =Rt 5

For a calorically perfect gas, the ratios of total to static temperature; pressure and density are the

function of Mach number M only. Their relations are given as

To y+1 (2.6)
Tr— =14+ 2 M=,
Po = (1+ 1;1 MZ)Y/(y—1)‘ 2.7
p 2
Po y—1 (2.8)

1
Po_ 14+ 22 M2y To-v,
o=+ M?)
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From these ratios, the quantities Tp, po, and py can be calculated from the actual

conditions T, p, and p. oy

Consider the case when flow is exactly sonic i.e. M = 1. The static temperature, pressure, and

density, at sonic condition, are denoted by T*, p*, and p*. Then the above relations become

Z_'_ 2 2.9
To v+171
P = ( 2 )r/(r—l)‘ (2.10)
Po y+1
E = (__2_)1/(7-1)_ (2.11)
po v+1
From the definition of Mach number, = E , where a is the speed of sound. Let us introduce a
“characteristic” Mach number M* defined by
we v (2.12)
= .

where a* is the speed of sound at sonic condition. The relationship between the actual Mach

number M and the characteristic Mach number M” is given as

2 (}’+ 1)M12 (2.13)
T 2+ (y-1) M2

*

2.4 Calculation of Normal Shock Wave Properties
The flow properties across a normal shock wave can be obtained from the following useful

relations:
y—11,,2 (2.14)
. 1+ [ M
y M7 —(y—1)/2

pr  w_ (y+ M} (2.15)
pr U 2+(y-1) Mlz'
P, 2y o o ’ (2.16)
o1+ - (ME- 1),
P1 y+1 ( ! )
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Which clearly disobeys the second law. Hence, in nature a normal shock wave occurs only in

supersonic flows (M; = 1).

The behaviour of the total temperature and pressure across a normal shock wave can be observed

as follow. From equation (2.3) and using h = C,,T, we have

u? L u? (2.24)
gn+%=gu+§.

By the definition of total temperature Ty, we have from equation (2.24) that

u? (2.25)
CpT + ‘é_ = CpTo.

Combining equations (2.24) and (2.25), we get
TO,I = To'z. (226)

Equation (2.26) states that for a normal shock wave, the total temperature is constant. The equation
(2.26) can be used in equation (2.18) in order to examine the behaviour of the total pressure pg.
We have
Poz _ o=(s3-s)/R, (2.27)
Do
From equation (2.22), the equation (2.27) gives the result po, < o, Which states that the total

pressure decreases across a normal shock wave. The following figures show the variation in the

behaviour of flow properties across a normal shock wave,
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Fig. 2.5: The variation of static temperature T across a normal shock wave as a function of
upstream Mach number M;: for y=1.4.
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Fig. 2.6: The variation of total pressure po across a normal shock wave as a function of upstream
Mach number M;: for y=1.4.

It can be observed that as long as the upstream Mach value M, increases, the downstream values
of Mach number M, and total pressure p, decrease. On the other hand, the values of density p,
static pressure p and temperature T downstream of the normal shock wave increase with the

increase of upstream Mach value M;.

2.5 Governing Equations for Quasi One-Dimensional Flow
The quasi one-dimensional flow is defined as the flow in which properties of the flow variables

changes in one direction only by changing the flow area. A schematic of the flow is shown is
shown in Fig. (2.7). The governing equations for quasi one-dimensional flow [11] obtained from
conservation equations (1.1), (1.2) and (1.3) take the new form

1.
)
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dp = —pu du, (2.33)
Energy:
dh +udu=0. (2.34)

Equation (2.33) is known as Euler’s equation.

2.52  Area-velocity Relation
The relation which relates the nozzle area to the flow velocity obtained from the differential form

of the equations of quasi one-dimensional flow is given as

dA

du (2.35)
— = 2 _1—
M2 -1)—.

The equation (2.35) is used to construct the of flow passage required for a nozzle in subsonic and

supersonic flow.

2.6 The Nozzle

Nozzle is a device such as pipe or duct designed to control the flow rate of a fluid. There exist
various forms of a nozzle like convergent nozzle, divergent nozzle or convergent-divergent nozzle

(CD nozzle).

2.6.1 Convergent Nozzle
Convergent nozzle is a nozzle that has wide diameter from entrance as compared to the exit

diameter. It is used to accelerate a subsonic flow as well as to decelerate a supersonic flow.

Fig. 2.8: Shape of convergent nozzle:
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2.62  Divergent Nozzle

A divergent nozzle is a type of nozzle that has small diameter from entrance as compared to the

exit diameter. It is used to decelefate a subsonic flow as well as to accelerate a supersonic flow.
t:

Fig. 2.9: Shape of the divergent nozzle.

2.6.3 Convergent-Divergent Nozzle
A convergent-divergent nozzle [11] is a device used to increase the velocity of a fluid flow as its

pressure is reduced in order to produce thrust. It is shown in Fig 2.12.

2.6.4 Construction of CD Nozzle
The shape of a nozzle is an important factor in the flow rate phenomena. The area-velocity relation

describes about the formation of a CD nozzle. The relation is given as

dA du
- = 2 1) —
A (M* - 1) u’

(2.36)

This relation gives the following information:

1. For a subsonic flow, i.e. 0 <M <1, the R.ILS of the relation becomes negative. Note
that if velocity increases, the area decreases. Similarly, if velocity decreases, the area
increases. The conclusion is that for a subsonic flow, we must have a convergent nozzle in
order to increase the velocity whereas a divergent nozzle is needed to decrease the velocity.
These results are described in Fig. 2.10.

2. For a supersonic flow, i.e. M > 1, the RH.S of the relation becomes positive. Note that
if velocity increases, the area increases and if velocity decreases the area also decreases.

Hence, for supersonic flow, a divergent nozzle is needed to increase the velocity and a
3
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convergent nozzle i§ needed to decrease the velocity. These results are described in Fig.
(2.37)

2.11.
3. For the sonic flow, i.e. M = 1 we have
dA =0,

This shows the area location where the Mach number is unity. At this value, thé flow area is

either minimum or maximum. Physically, it corresponds to the minimum flow area.

’ u .‘d‘écrea‘sing.}
= > 8

‘M<1,

4 (incréasing

—

Fig. 2.10: The results for thecase 0 < M < 1.

Fig. 2.11: The results for the case M > 1.
From the above discussion, one may conclude that for a flow to expand it from subsonic speed to
supersonic speed, it must first accelerate sub-sonically through a convergent nozzle. As soon as
the flow approaches the sonic speed, it must be accelerated through a divergent nozzle in order to
28|Page
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Fig. 2.12: Shape of a convergent-divergent nozzle.

achieve the supersonic flow. Hence, a nozzle designed to achieve supersonic flow at its exit is a
“convergent-divergent nozzle” as shown in Fig. 2.12. The minimum area that divides the

convergent and divergent portion of the nozzle is named as throat area.

2.7 Flow through Convergent-Divergent Nozzle
Consider a convergent-divergent nozzle as shown in Fig. 2.13. The pinched area of the nozzle is

known as throat. At this location, the flow must be sonic. The Mach number, velocity and area
associated to this location are denoted by M*, u* and A*, respectively. The Mach number, velocity

and area associated to any other location are denoted by M, u and A4, respectively.

Fig. 2.13: Flow through a CD nozzle.

The area-velocity relation for a convergent-divergent nozzle is given below

+1
AD 1 2 r—1__\jr1 (2.38)
(?1_) =W[1+r<1+ 2 M)] '

29|Page



(i)

M
a

- s

@

e - s el e e - R e mee ——

a

The relation shows that for a given area ratio A/ 4> there exists two values of Mach number M.

One for subsonic flow and other for supersonic flow.

The inlet temperature and pressure are denoted by T, and py. The corresponding values of
temperature and pressure at the exit of nozzle are denoted by T, and p,whereas the Mach number
at the exit is denoted as M,. The flow through a CD nozzle depends on the exit to inlet pressure
ratio P e/Po' If the pressure ratio P e/Pa is unity, i.e. p, = po, there would be no flow through the
nozzle. The flow through the nozzle exists only when the exit pressure is small as compared to the

inlet pressure, i.e. p, < py. For a small pressure ratio, say E‘i =0.99, there exists a very low speed
o

flow through the nozzle. The Mach number increases slightly in the convergent portion of the
nozzle and reaches to its maximum value at throat. Since flow speed is low and the sonic condition
is not achieved, it would be some subsonic value. Hence, it decreases to a miﬁ‘imum Mach value
while passing through the divergent portion of the nozzle. The minimum value of Mach number
at the nozzle exit is denoted by M, ; and the corresponding value of the Pressure at the nozzle exit

is denoted by p, ;. This phenomena is shown in Fig. 2.14(a, b).

Let us further reduce the pressure ratio Pe / p,asa result the flow moves a bit faster than the first

case through the convergent portion of the nozzle and reaches to its maximum Mach value. But
the sonic condition is not achieved at the throat. The flow is subsonic at the throat and downstream

of the throat, it passes through the divergent portion of the nozzle and attain the Mach value M, ;at

the exit with the corresponding exit pressure p, 5. This phenomena is shown in Fig. 2.14(a, b).

The further reduction in pressure ratio P €/p helps to move the flow more faster than first two
0 - . TN "

cases through the convergent section and will attain the sonic conditions at the throat, i.e. M = 1.
Downstream of the throat, the Mach value at the exit becomes M, 3 with the corresponding exit

pressure p, 3. This phenomena is shown in Fig. 2.14(a, b).
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Fig. 2.36(b): Abrupt change in pressure due to flow through normal shock wave.
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Fig. 2.16(c): Abrupt change in Mach number due to flow through normal shock wave.
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When the atmospheric pressure also known as back pressure pg is higher thanp, s, 1.e. pg > Pes, .

oblique shock waves occur attached to the tip of the nozzle in order to adjust the pressure with the
back pressure. This situation is known as over expansion and is shown in Fig.1 2.17. When the back
pressure pg is reduced such that it becomes equal to the exit pressure say pe,s, i.e. pgp = Pe,p, NO
wave is formed and the flow will be uniformly supersonic in the divergent section of the nozzle.
This pressure is known as the design pressure and is shown in Fig. 2.18. If the back pressure is

reduced to the design pressure the flow must expand in order to adjust the back pressure pg. The

.expansion waves occur attached to the exit. This situation is known as under expansion and is

shown in Fig. 2.19.
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i '
@ Fig. 2.18: Situation of nozzle flow at design pressure, i.e.pp = Pes-
%.iﬁansfon fan-
Fig. 2.19: Formation of expansion waves at nozzle exit when pp < pes-
o 2.7.1 Under Expansion

Under expansion is a phenomena [9] that occurs when the back pressure pp is lower than the design

pressure. Such kinds of phenomena occur in propulsive devices such as rocket engines or jet
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engines when these devices are operated at high altitudes. As the atmospheric pressure (back
pressure) is very low at high altitudes, therefore high pressure ratio (which requires high area ratio)
is required in order to get very low pressure ratio at the exit of the nozzle ‘which is practically
impossible due to structural and acrodynamic limitations. When the jet engine is operated at such
a low atmospheric pressure region where the design pressure is higher than the back pressure,
expansion takes place outside the nozzle exit to the atmospheric region. Same situation arises when
a rocket engine is operated in space where the atmospheric pressure is zero. The under expansion

process outside the nozzle is shown in Fig. 2.19.

2,72 Over Expansion

Over expansion phenomena [9] occurs when the atmospheric pressure pp is higher than the design
pressure. Such situation arises when a high altitude jet or rocket engine nozzle is operated at low
altitudes or at sea level. In such situation, there occurs an oblique shock wave attached to the exit
of nozzle. Since the back pressure is higher than the design pressure, the flow has to get
compressed to the back pressure pg. The oblique shock wave helps to compress the exit flow and
increases its pressure to the required back pressure pg. The over expansion process is shown in

Fig. 2.17.

Discussion

1. As discussed before, the flow properties experience abrupt changes across the normal
shock wave. Here, the changes in these properties are examined with the help of graphs.
It is observed that density p, pressure p and temperature T increase whereas Mach
number M, and total pressure p, decrease across the shock wave. The total temperature
T, remains constant due to the isentropic condition. It is also examined that a normal
shock wave can only occur in the supersonic flow with the help of second law of
thermodynamic.

2. It is observed that how a CD nozzle is formed by using area velocity relation. The
physical aspects of the generation of normal shock wave are examined and also
observed that it changes its location when the pressure ratio is decreased. It is also
observed that under expansion process occurs at high altitudes whereas over expansion

process occurs at low altitudes.
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Chapter 3

Quasi One Dimensional Flow Through CD Nozzle

3.1 Introduction o
The shock wave phenomena may arise in nozzle flows or over wedge or blunt body flows as

mentioned before. Different types of shock waves may occur in nature but the topic of our
concentration is the normal shock wave. The normal shock wave phenomena may occur inside a
CD nozzle used in turbine engines, ramjets and scramjets which generate thrust. A Swedish
inventor Gustaf de Laval (1888) was the first who developed a CD nozzle [11] and used it in a
steam turbine. The nozzle flow phenomena [10] solved in this chapter is a very important and
interesting problem in aerodynamics. It has established in chapter 2 that the generation as well as
the location of a normal shock wave depends strongly on the pressure ratio. In this chapter, the
location of normal shock wave will be determined for the given conditions. The changes in flow
properties will also be examined. A finite-difference MacCormack’s scheme is used to simulate

this flow problem.

3.2 The Setup

Consider a CD nozzle whose area is defined by the following relation
A =1+422(x" — 152 (3.1)

The area A, describes the location of the shock wave and A* is the throat area. The nozzle area is

Y

———s Normal shock wave

shown in the following Fig. 3.1.

M<l1 M=1 M>1 | M<1

Fig. 3.1: Area of the convergent-divergent nozzle.
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The continuity, momentum and energy equations for quasi-one-dimensional flow are given below

o'y | a(p'A'V") 0 3.2)
at’ ax'
6(p'A’V’)+6(p’A’V'2) _ g% (3.3)
at’ ax' T ax”
9 ' ,+V'2 A 0 | 1 VIZ nye At Z; (3.4)
6t’p e 5 +6_x—’p e+7 AV '+ P AV =0.

The above governing equations can be written in dimensionless from with the help of the following
dimensionless parameters.
TI pl VI PI t, ! AI el (3'5)

T::——, =—'V=—'P=—-'t=
To P Po ag by L/ao

where

RT,
g = R}’To, €y = CUTO = y — 1

By using these dimensionless parameters, the governing equations take the new form

d(pA) +6(pAV) P (3.6)
at dx !
1 a7
at dx y ox'
e 2 (e |2 | 38
oo (o +5v2) A alp(GEg+yve)va+pval (3.8)
ot + dx =0,

The equations (3.6), (3.7) and (3.8) are the dimensionless forms of the continuity, momentum
and energy equations for quasi-one-dimensional flow. These equations can be expressed in a
generic form. let us define the elements of the solution vector by E, the flux vector by F and the
source term by J as follows:

E, = pA, (3.9

E, = pAV, (3.10)
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E3 =p( +—V2)A, (311)

y—1 v
F, = pAV, o (3.12)
1 .
F, = pAV? + = PA, (3.13)
14
e 2 )
F; = p(——+—V2) VA + PVA, (3-14)
y—-1 vy
1 04 (3.15)

]2'—';,' ar

Note that J; and J5 are zero. Using these elements, the system (3.6), (3.7) and (3.8) takes the form

0B, _ Ok 616
gt~ ox’
dE, daF, (3.17)
——=——=—+/2
ot ox )
08; _ _0Fs 619
ot  ox

It should be remembered that the above equations will result in the form of solution vectors Ey, E;
and E3. In order to obtain the results in the form of the primitive variables (p,V,T, P), etc. we are

to decode the elements E;, E, and E3 as follows

-k ' (3.19)
pP= 74—,
E
yoB (3.20)
E;
Es vy 3.21
P =pT, (3.22)
where
e’ C,T'
abralrx

Hence, after obtaining all E’s, the primitive variables can be obtained.
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The flux terms F;, F, and F; can be expressed in terms of the dependent variables Ey, E, and E3,

respectively. Substituting equations (3.19) and (3.20) in (3.12) for F;, we get

F, = E,. (3.23)
Substituting equations (3.19), (3.20) and (3.22) for F,, we have

F

E? y—-1 E2 o 3.24
E, Y 2E
For the flux term F;, substituting (3.19), (3.20), (3.21) and (3.22) result in

EEs v -DE (3.25)
E, 14 E12.

=y

Similarly, the source term J, takes the new form

2 E,

_y-—1 Y EZ\ d(In A) (3.26)
]2 - y 3 ax .

3.2.1 Boundary Conditions

At the inflow boundary, two dependent flow-field variables are held fixed and one other variable
is allowed to float, i.c. density p and temperature T are held fixed at the inflow boundary and
velocity V is allowed to float. Note that by holding density p fixed at point 1, E; is also fixed. The
value of E, is linearly extrapolated at grid point 1 from the known value at grid points 2 and 3

respectively,i.e.

Eji=1) = 2E3(i=2) — Ez(i=3)- - (3.27)
The floating value of V is calculated from equation (3.27). Since V is floating at the inflow

boundary, so is E3.

T 2
By = Ey ) (3.28)
‘y —
At the out flow boundary which is also subsonic, all the flow-field variables are allowed to float
instead of the exit pressure P, which must be specified. The values.of E; and E; at the outflow

boundary are calculated by linear extrapolation from their adjacent points.

1
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i (Ez)t+At = (EZ)l + ( )l At
' — 0E
D = (B} + (505 G4
) where
B (351) _(Fisa — (F)i (3.46)
i Ax »
0Ez, _ _ (Fa)iva = (F)i (3.47)
T o -
sy (B — ()i (3.48)
at Ax '
The flux terms F’s used in this step are obtained from equations (3.23), (3.24) and (3.25),
respectively.

3.3.2  Corrector Step

In the corrector step, the predicted values are corrected for the time step t + At by the following

way:
K Pyean _ D™+ (R (3.49)
ac’t T Ax '
aEZ t+At --(ﬁz_)-lﬁ.At + (F )f+ft t+At (350)
(—at_ e Ax + 0z ) !
(6E3)t+At __mi (3.51)
Ax '
where the values of F, s are calculated from equations (3.23), (3.24) and (3.25), respectively.
Then the average values of the dependent variables are obtained as
i R
(aEl) _1 (_c3£1_) + (@_1 e | (3-52)
at’ e 2\at/; ottt |
(aEZ) = .1. (a_Ei)t + (aEZ)t+AtW (353)
5 ac ¢ 2|\at/; ‘ot ’
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(6E3) 1 <6E3)t+ 03, ae (3.54)
at "¢ " 2|\ at /; GO |

Finally, the final values of the dependent variables E;, E, and E3 at the next'time step t + At are

calculated as

: 3.55
(E$ = B+ G hanett, (:39)
3.56
D = B! + G Danelt (336
(B = (B + G2 amebt G37)
The above equations (3.55), (3.56) and (3.57) can be used to calculate the values of the primitive
variables p,P,T and V from equations (3.19), (3.20), (3.21) and (3.22). The value of Mach
number M can be obtained by the following equation:
4
M= —. (3.58)
3.4 Artificial Viscosity
Artificial viscosity is introduced in order to remove oscillations occurred in the solution [10]. The
implementation of the artificial viscosity is described by the following way. The expression for
artificial viscosity is '
Cel (PYfaq ~ 2(P)E + (P)iy] (359)
t X i+1 i -1 t
i = (P)i1 +2(P)f + (PYial.
i (P)lt+1 + Z(P)f + (P)f_l [ ) i+1 i-1
As before, the predicted values of the dependent variables are obtained as
oE 3.60
T = (0 + Gl G0
dat
with the addition of the artificial viscosity, the predicted values are obtained as
o) | 3.61
= B = (B +( )tAt+ (S1)i o0
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B = (B! +( iar+ (5,), (3.62)

G = (B + (2 a EAL + ()L, (3.63)

where the values of S's are calculated from equation (58) with their respective values E, s.
Similarly, the corrected values of the dependent variables are calculated as

@ = @)+ Camedt 6.6

But with the addition of artificial viscosity, the corrected values of the dependent variables are

calculated as

(El)f+"‘-(E1)l+( )aveAt+(Sl)l, (3.65)
(Ez)”“—(Ez)L+( )aveAH(sz)“ (3.66)
(EB)HM—(Es)ﬁ( )aveAt+(S3) (3.67)

where
G = C(PYE" — 2(PY*™ + (P)i21] (2 — 2@ + (ﬁfﬁf‘ Y

(P + 2(P)+A + (P)iZY

3.5 Results and Discussion
1. The following numerical results are obtained with 31 grid points that can be increased in

order to obtain the precise location of shock wave. The grid points are not increased
because increment in grid points gives slight changes in the solution which are acceptable.
Therefore, solution is grid independent.

2. It is seen that artificial viscosity is added with adjustable constant 0.1 in order to avoid
oscillations in the solution. Also, a courant number of 0.5 is employed for the obtained
results shown in figures 3.2 and 3.3. Notice that shock wave is located at point x = 2.1

and across this location, the Mach value M decreases suddenly whereas pressure p
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[15] Gino Moretti and Michae! Abbett, A time dependent computational method for blunt body

flows, AIAA, 1966.

0, e—

g

(R AR,

ok e

s

¢ R g sk
Fl

Wi ind
&

e did cdaCodtdalt
- e

¥

Pt

i s
h

e

. wckisdatist
Ead
e b Wi e e en

o

.4w -

" ok
o gk

T e AT Tl 4
"

S

1
Al e e

1_,;.
X}

T M o= A A
-t
a

N A 48 |Page






