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Preface

Abundant of flows exist in nature for which the fluid properties change continuously' Flows

are also possible for which the behaviour of fluid properties vary discontinuously' Such

discontinuities occur in explosions, detonations, etc. which is actually caused by shock wave'

Many scientists and engineers had faced such discontinuous phenomena and used different

names in order to elaborate it. Euler (1759) talked about the "size of disturbance of sound wave

meaning its amplitude". Poisson (1808) mentioned about an instance sound wave as the case

..where the molecular velocities can no longer be regarded as very small"' Stokes (1848) used

term "surface of discontinuity" and Reimann (1859) used the term "shock compression" and

,,compression wave" to describe the jump-like steepening of the wave front' Toepler (1864)

was the first to use the tenn shock wave, he originated shock wave from a spark discharge and

for the first time visualized it using stroboscopic method. Rankine (1870) used the tetms

,,abrupt disturba,ce and wave of finite longitudinal disturbance" and Hugoniot (1885) used the

term,,discontinuity". Ernst Mach and coworkers (1875-1885) used the terms "shock wave'

Riemann wave, bang wave and explosion wave". Eamst and Ludwig also designated shock

wave as ,,a sound wave of large amplitude". Von oettingen and Von Gernet (1888) used the

term "detonation wave". Vieille and Hadamard (1898), Duhem (1901) and Jouguet (1904) used

the term shock wave. Lord Rayleigh (1910) used the tenn "aerial waves of hnite amplitude"

whilediscussingthecharacteristicsofshockwaveintheair.

The visuali zation of shock wave over different objects was made possible through different

visualization techniques. Schliren and Shadowgraph techniques were applied by different

researchers in order to visualize the shock wave. August Toepler, the inventor of schliren

technique, used it to visualize the shock wave in 1864' Ernst Mach [6] had also used schliren

technique and proved the existence of shock wave through photographs' shadowgraph

technique [9] was also used by many researchers for the visualization of shock wave'

After the successful and history making experiment of Bell-Xl in 1947, the researchers has

started to calculate the shock wave and it's properties over the different parts of the jet'

Belotserkovskii and O. M I l2] worked on the flow past a circular cylinder with detached shock

wave in 1958. Van Dyke and M. D tl3l reviewed and extended the supersonic blunt body

problem in 1958. Garabedian, P. R and Lieberstein, H' M. t14] worked on the numcrical

calculation of the bow shock waves in hypersonic flow on the same year' Gino Moretti and
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Michael Abbett [15] worked on the time dependent computational method for blunt body

problem in 1966. The shock wave phenomena may also occur in supersonic convergent-

divergent (CD) nozzle [0] which is infact the subject of the current study. The dissertation is

arranged as follow:

Chapter 1 includes the basic definitions of fluid flow, thermodynamic properties and governing

equations of fluid flow. A brief history of shock wave, its characteristics and the visualization

technique is elaborated. The numerical scheme for the simulation of the problem is also

described in this chapter.

In chapter 2, governing equations of the normal shock wave are derived. The physical

behaviour of the normal shock is described by using i{ankine-Hugoniot relations. The physical

behaviour of the flow through a CD nozzle is described and it is also examined that the shock

wave changes its location with the reduction of exit to inlet pressure ratio. Under expansion

and over expansion processes are also illustrated in this chapter.

Quasi one dimensional flow through aCD nozzle is discussed in chapter 3. The location of the

shock wave have been captured successfully with gteat accuracy which has been shown by the

appearance of abrupt changes to the flow properties.
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Chapter I
1.1 Introduction
Fluid flows are present everywhere in nature and are widely experienced by those people who

observe the nature with open eyes. As 75% ofearth is covered with water and 100% with air, the

scope of the fluid is vast and has numerous application in human life. Fluid mechanics, as with

many other fields of scientific studies, is rooted in the history of humanity' Throughout its history,

fluid mechanics is a field that has been constantly advancing. As with other engineering fields, it

has now reached the point of scientific maturity with most of the fundamentals clearly understood'

As such, it has become a vital component for many engineering curricula. It is therefore useful

exercise to examine the historical development for this field.

Ancient civilization had enough knowledge to solve certain problems of their time' Archmedes

(285-212 B.C) formulated the buoyancy law and applied it to floating and submerged bodies'

Leonardo da Vinci (1459-1519) derived the equation of conservation of mass in one dimensional

steady flow. He experimented with waves, hydraulic jumps, eddy formations, etc' A French man

Edme Mariotte (1620-1684) built the wind tunnel and tested different models in it' Sir Isaac

Newton (1642-1727) postulated his laws of motion and laws of viscosity of linear fluids' now

called Newtrjnian fluids after his name. Leonhard Euler (1707-1783) developed both differential

and integral forms of the equations of motion known as Bernoulli equation now a days' william

Froude (1810-1879) and his son developed laws of model testing' Lord Rayleigh,(1822-1919)

proposed the dimensional analysis of physical problems. osbome Reynolds (1842-1912) worked

on the classical pipe experiments and showed the importance of dimensionless "Reynolds

number,,. Navier (1785-1836) and Stokes (1875-1953) independently added Newtonian viscous

term to equation of motion known as Navier-Stokes equation. Ludwig Prandtl (1875-1953) gave

the idea of boundary layer which has become the most important tool in modern viscous flow

analysis.

Beside the sfudy of low speed flows, high speed flows such as flow over the bodies and inside the

ducts were also investigated by the researchers and engineers. The importance of such high speed

flows over the bodies was enhanced when first successful airplane flight conducted by Wright's

brothers in I 903. This was really a great achievement in the history of engineering science' After

,-e
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this experiment engineers had started to investigate the effects by which the speed of plane might

increase. The study of air over the wings and other parts of planes was conducted extensively ih

order to reduce the resistance ofair in turn to increase the speed ofthe plane. The speed ofairplane

was increased successfully but not as fast as the speed of sound. Many experiments were conducted

to cross the speed of sound but whenever the planes approached it, the drag became more sever.

At that time, the piolets and some aeronautical engineers felt that airplanes could never move faster

than the speed of sound. But aerodynamicists believed that planes could move faster than the speed

of sound. Adolf Busemann [] presented his work on the swept wings and discttssed how swept

wings would have less drag at high speeds than straight.wings. Eastman Jacobs [2] proposed wind-

tunnel test results for compressibility effects on airfoils at high subsonic speed. Jakob Ackeret

presented work on the design of supersonic wind-tunnels. Ludwig PranJtl also worked on

supersonic aerodynamics. The myth (sound banier) was broken in l9!7 when Captain Chuck

yeager flew Bell-X1; approached the speed of sound and thus broke so-called "sound barrier"'

After breaking the sound barrier, he entered into the new era of flow, the "supersonic flow". The

history was made with this experiment but with the generation of nonlinear high altitude wave

over the jet named as "Shock wave". The rapid changes across this waverhad been experienced

that gave a new direction to researchers to investigate about its mechanism. The location of shock

wave had also become a new challenge for engineers and scientists.

The existence of shock wave had already been visualized over the solid objeits and inside the ducts

by number of researchers but not over the jets. Knowledge of shock wave is not unique to the

twentieth century. Its existence was recognized in the early nineteenth century. The Genlan

Mathematicial G, F. Bemhard Riemann first attempted to calculate shock waves properties in

lg5g. But he neglected an essential physical feature antl hence obtained incorrect results. Twelve

years later, William John Rankine [3] derived proper equations for the flow across a normal shock

wave. The French ballistician Pierre Hugoniot [4] rediscovered the normal shock wave equations

in 1887. The German aerodynamicist Ludwig Prandtl and his student Theodor Meyer [5]

discovered oblique shock waves in 1908. The nineteenth century was also thi time of experimental

work on supersonic flows. The most important event was the proof of the existence of shock waves.

Ernst Mach [6] proved the existence of shock waves in 1887. He took the photographs of shock

wave on a moving body at supersonic speeds.
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The existence of shock wave had also been investigated mathematically since long. Number of

techniques have been developed to investigate it theoretically. In this dissertation, we intend to

study the existence of shock wave as well as it effects in the supersonic flow of air through CD

nozzle.The second order finite difference scheme [7] has been utilized in capturing and studying

the normal shock wave.

I
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1.2 Basic Definitions

1.2.1 Fluid

Fluid is a substance that deforms continirously under the action of shear stress, no matter however

small. It can also be defined as a substance which is capable to flow.

1.2.2 Ftuid Mechanics

The branch of applied mechanics in which the behavior of fluid is examined under the action of

forces. It may be classified as following 'r':'

i. Fluid statics

ii. Fluid kinematics

iii. Fluid dynarnics

The study of fluid at rest is known as fluid statics wh|reas the study of fluid in motion without

considering the cause of motion (external forces) is known as fluid kinematics' The study of fluid

in motion with the consideration of cause of motion is known as fluid dynamics'

The fluid dynamics may also be classified as hydrodynamics and gas dynamics' Hydrodynamics

contains the study of liquids whereas gas dynamics contains the study of gases. Usually air is

assumed for the experimental study of gas dynamics, therefore it may be named as

"Aerodynamics".

1.3 PhYsical ProPerties of Fluid

1.3.1 D0nsitY

The density is def,rned as mass per unit volume and is used to characterizethemass of fluid system'

It is designated by Greek symbol p (rho); Sl unit of density '" # '

1.3,2 Pressure
.. .;

The pressure exerted on or by the fluid is a force applied normal to the surface of an object per

unit area over which the force is distributed. It is designated by p and has SI unit Pascal (pa)' If

the distribution of applied force over the surface area is uniform, then the mathematical

formulation is given as

r.rr*

-+ru
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If the distribution of applied force over the surface area is not uniform then we have

.. Ar dF
P : o'iTo il= il'

where A.4 is smallest element of the surface area over which AF acts.

t) 1.3.3 Temperature

Tempeiature is defined as the measure of the intensity of heat in certain bodV of mass' Different

scales are used to measure the temperature. Three commonly used scales are given as follow:

i. Celsius ("C)

ii. Fahrenheit ('F)

iii. Kelvin (K)

1.3.4 Total TemPrerature

Total temperature at a given point in a flow is the temperatuie that exists if the flow is

slowed down adiabatically to zero velocity. It is designated by Ts'

. 1.3.5 Total Pressure ' !

9l Total pressu re at agiven point in a flow is the pressure that exists if the flow is brought to rest

isentropically. It is designated by po'

1.3.6 Total DensitY

Total density at a given point in a flow is the density that exists if the flow is brought to rest

isenhopically. It is desigiated by po'

1,.4 TYPes of Fluid

l.4,l,IncompressibleandCompressibleFluids

Thefluidhavingconstantdensitywiththechangeintemperatureandpressureisknownas

incompressible whereas the fluid whose density changes with temperature and pressure is known

as comPressible'

:'r 1.4.2 Inviscid and Viscous Fluids
'u.

The fluid whose viscosity is zero is known as invicid fluid whereas the fluid having finite viscosity

is known as viscous.

5lPege



1.4.3 Ideal and Real Fluids

An inviscid, incompressible fluid is known as ideal whereas a viscous fluid is known as real fluid'

1.5 TYPes of Flows

1.5.1 Uniform and Non-Uniform Flows .,

!9 A flow is said to be unifomr if the fluid properties such as velocity, pressure, temperature, etc' do

not change from point to point during the whole course of flow, i'e.

#=0,#=o,u#=0,"r".

A flow is said to be non-uniform if the fluid properties change from point to point during the

flow, i.e.

#'*0,#*0,ff+0,"t"'

1.5.2 SteadY and UnsteadY Flows

A flow is said to be steady if the fluid properties don't change with respect to time' i'e'

. li , 'u*=o'*=''#=o'"'"'

A flow is said to be unsteady if the fluid properties change with respect to time' i'e'

# * o, Lu, * o, Lu, + o, 
"t,.'

1.5.3 internal and Exterhal Flows

The flows through confined mediums such as ducts are known as internal flows whereas the flows

which occur over the objects immersed in an unbounded fluid are known as external flows' The

flows over airplanes, missiles and submarines are the examples of external flows'

1.5.4 Subsonic and Transonic Flows

A flow is said to be subsoiric if it is moving with the speed less than 273 ms-1 whereas the flow

moving with the speed in between 273-409 ms-1 is said to be transonic flow'

r$'
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1.5,5 Supersonic and Hypersonic Flows

A flow is said to be supersonic if it is moving with the speed in between 409-l,7\2ms-1 whereas

the flow moving with the speed higher than 1,702 ms-t is said to be hypersonic flow.

1.5.6 One-, Two-, and Three-Dimensional Flows

g A flow can be classified as one-, two-, and three- dimensional flow depending on the number of

space coordinates. A flow is said to be one-dimensional flow if the fluid properties are depending

only on one space coordinate. The flow across a duct is an example of one-dimensional flow' A

flow is said to be two-dimensional flow if the fluid properties are depending on two space

coordinates. The flow over a plate is an example two-dimensional. A flow is said to be three-

dimensional flow if the fluid properties are depending, onr, on all three space coordinates' The

flowoverawingisanexampleofthree-dimensionalflow.

1.6 ThermodynamicProPerties
Thermodynamics is defined u, ,h. study of the relationship between the heat and other forms of

energy. It plays an important role in the flow of gas, particularly for high speed flows i'e' flows

around high speed flight of aircrafts and missiles'

&' 1.6.1 Ideal Gas

A gas in which intermolecular forces are neglected is known as an ideal gas. It is also known as a

perfect gas' The equation ofan ideal gas is given as

P 
_ PRT,

where R is the specific gas constant' It has different values for different gases'

It is sometime convenient to define the values of thermodynamic properties per unit mass; such

values are distinguished by the word "specific"' 
'i

I.6.2 SPecific Volume

It is defined as the volume occupied by a unit mass of the fluid and is denoted by Vr'

V, =;'
TF
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1.6.3 SPecific Weight

It is defined as the weight per unit volume and is defined as

w mg
Y= T= T,

g where lzl is the weight per unit volume'

1.6.4 SPecific Internal EnergY

It defined as the energy per unit mass of the fluid due to molecular activity and is denoted by U'

1.6.5 SPecific EnthalPY

It is defined as the total heat introduced per unit mass of the fluid and is denoted by H'

H=U+pVy

1.6.6 SPecific Heat

It is defined as the amount of heat required to raise the temperature of a unit mass of fluid by one

degree. It is denoted by C and is defined as

^ aQ

dT

1.6.7 Ratio of SPecific Heats

It is defined as a measure of the relative internal complexity of the molecules of the fluid and is

denoted bY Y,

cp
v= d' \

For air' Y = 1'4 '

1.7 Types of Thermodynamic Processe.s

when gases are expanded or.l-pr"rred, the relationship between the pressure, temperature, and

densitydependsonthenatureoftheprocess.Thetypesofthermodynamicprocessesarediscussed

S in the coming subsections'

g
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1.7.1 ReversibleProcess

The process in which no dissipative phenomena occurs, i.e. the process occurs in such a manner

that it can be returned to its original state'

1,7,2 IrreversibleProcess

'S The process that is not reversible is known as irreversible process'

1.7.3 AdiabaticProcess

A process in which no heat is added to or taken away from a gas during expansion or compression'

Inthiscase 

oQ=o'

1,7.4 IsentroPicProcess

A process which is reversible and adiabatic is said to bb isentropic process'

1.7.5 First Law of ThermodYnamics

It states that the heat added and work done on a gas causes a change in energy of the gas' Its

g mathematical form is

0q* 0w = de,

where 0q is the heat added, dw is the work done and de is the change in energy of the gas'

1.7,6 Second Law of ThermodYnamics

It states that the entropy change is greater than the heat transferred to the system divided by the

temPerature, that is

0Q
dS '- r'

For.an adiabatic process, 0Q = }'then dS = 0' 
, r,

1.8 SPeed of Sound

.sr, The distance travelled by a sound wave through a medium in a unit time is kirown as the speed of

1t+ ,; and is designated by a. The mathematical expression for th'e speed of sound is giveh as

a= J@.
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At standard sea level, the value of speed of sound is

a = 340.9 m-s-l.

1.9 Mach Number
The Mach number is a dimensionless number and is defined as the ratio of the speed of an object

,$ v to the speed of sound a in the same medium. It is designated by M andhas expression

The flows can also be classified with the help of Mach number M. The types of flow are given in

the coming subsections. The aforementioned subsonic, transonic, supersonic and supersonic flows

can also be characterized through Mach number which is usually being practiced by the

aerodynamists. In the following, the said flows have been defined in terms of Mach ranges'

1.9.1 Subsonic Flow

A flow is said to be subsonic if the Mach value M is less than 1'0, i'e' M < 0'B'

1,9,2 Transonic Flow

1:9.3 SuPersonic Flow

AflowissaidtobesupersoniciftheMachvalueMisinbetween\.2_5,0,i,e.L'2<M<5.0.

i' Lg.q HYPersonic Flow

A flow is said to be hypersonic if the Mach value M is higher than 5'0' i'e' M > 5'0'

1.10 Shock Wave ^ i ---:1,^ '

There are flows for which the fluid properties change continuously. The flows are alsci possible in

nature for which these quantities vary discontinuously. Such iliscontinuities occur in explosions'

dJtonations, supersonic movements, powerful electric discharge and such other phenomena's that

create extreme changes in fluid properties'

1.10.1 Definition

r\ Shock wave is a surface of discontinuity propagating in a gas at which temperature, pressure'

t+
density and velocity experience abrupt changes' 

, i.

Vlf =-.a
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1.L0.2 HistorY of Shock Wave

Many scientists and engineers had faced such discontinuous phenomena (shock wave phenomena)

in their research and they gavd different names to this phenomena. Without mentioning the name

of shock wave, Euler (1759) talked about the "size of disturbance of sound wave meaning its

amplitude". Poisson (1808) mentioned about an instance sound wave as the case "where the

molecular velocities can no longer be regarded as very Small"' Stokes (1848) used term "surface

of discontinuity" and Reimann (1859) used the term "shock compression" and "compression

wave" to describe the jump-like stbepening of the wave front' Toepler (1864) was the first to use

the term shock wave, he originated shock wave from a spark discharge and for the first time

visualized it using stroboscopic method. Rankine (1820) used the terms "abrupt disturbance and

wave of finite longitudinal disturbance" and Hugoniot (1885) used the term "discontinuity"' Ernst

Mach and coworkers (1g75-1gg5) used the terms "shock wave, Riemann wave' bang wave and

explosion wave". Eamst and Ludwig also ddsignated shock wave aS "a sound wave of large

amplitude". Von oettingen and von Gernet (1888) used the term "detonation wave"' vieille and

Hadamard (1898), Duhem (1901) and JougUet (1904) used the term shock wave' Lord Rayleigh

(1910) used the term "aerial waves of finite amplitude" while discussing the characteristics of

shock wave in the air.

1.10.3 Characteristics of Shock Wave

physically the generation of shock waves is always characterized in the fluid flow by instantaneous

changes in temperature, pressure, densiiy and velocity' This means that' in comparisons with free-

sffeam flow conditions, the region between the body and shock wave will be a region of high

temperature, pressure and density. In other words, whenever a flow passes through a shock wave'

instantaneous increase in pressure, temperature and, density is observed with the decrease in

velocity of the flow. This instantaneous change in the fiow properties is one of the unique feature

that characterizes the presence of shock wave'

1.10.4 TYPes of Shock Wave

A shock wave may occur inside anozzleor over a solid body like flat plate, wedge or blunt body,

etc. when such bodies are inserted in a supersonic flow' A shock wave perpendicular to the

direction of flow is named as normal shock wave whereas a shock wave inclined at some angle to

the direction of flow is named as oblique shock wave. Another form of shock wave which is

I

$
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perpendicular as well as inclined to the direction of flow is named as bow shock wave' The normal

shock wave may form inside anozzle whereas an oblique shock wave may form over a wedge or

a concave corner. A bow shock wave may form, over a blunt body. The aforementioned types of

shock waves are shown in the figures (1.1), (1.2) and (1'3)'

Normal shock wave
v"-'insidri the nozzle

Flow through a nozzle

Fig. 1.1: Normal shock wave inside anozzle'

Oblique strock wave

l{> 1

\frIedge

Fig. 1.2: Oblique Shock wave over a wedge'

I

.f,}
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Blunt bodY

Fig. 1.3: Bow shock wave over a blunt body'

1.11 Governing Equations for Compressible Flow

The governing equations for an inviscid, compressible flow in their integral form are

given as follow

Continuity:

Bow shock wavt

*ffipdr+#o,.d's=o
(l.l)

Momentum:

*ffi pvdl) + ff ou.ds)v = -ff,ot. ffi Pf dY
(1.2)

Energy:

*ffi p(e +frrou * ff o('.T1' o' (1.3)

= ffi qpdv - fr ,,'ot * ffi Pff'v)dv

l.l2 Shock Wave Visualization Techniques

The most common techniques used for the visualization of compressible flows are the

shadowgraph and the schliren techniques t9l. The working principle of these

techniques is illustrated as the change in density of a gas produces corresponding

change in the index of refraction of the gas i.e' the refractive index n of a gas is a
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strong function of the density of that gas. The greatest advantage of these techniques is

that only a single beam of light is used during the experiment. If the density of the gas

is uniform in the flow direction, the beam of light crossing the test section remains

parallel whereas if the density of the gas is non-uniform in the flow directioir, the light

rays crossing the test section are refracted. The simplest one of these techniques is the

shadowgraph technique. It is quick in setup and adaptable to large fields of view. The

images obtained from this technique may be cast on projection screensl ground glass,

photoelectric film or on any reasonable flat reflecting surface.

i_-'-!--

Avmge

__Btishl_-

Daik

L-.-..--_ ----/
+
I

Fig. 1.4: Test section used for visualization techniques.

l.l2.l Shadowgraph Technique

Shadowgraph technique is applied to obtain the direct view of the flow phenomena. A

screen is placed at some distance opposite to the light source and effect of refracted

rays are made visible. When there is no flow across the test section, the distribution of

light rays remains uniform and hence, illumination of the light is average. On the other

hand, rvhen flow passes the test section, the distribution of the light becomes non

uniform. Dark and bright spots appear on the screen. Dark spots mark the region where

the light rays diverge whereas the bright spots mark the region where the light rays

l togatlier. There are places on the screen where the intensity of light raysrF. culminatr

remain uniform, the brightness is average. These effects produce shadows on the screen

called shadowgram. For example, the visualization of shock waves due to the

scrqln

A

OD

bo

o
o,tr

9

glars'wall
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deflection of light rays i.e. due to the change in density is given in the figures (1.5) and

(1.6).

Fig. 1.5: Shadowgram of Mach 3 airflow over an l8 degree compression comer which shows the

shock wave (from G. Settles PhD thesis, Princeton, lg75). Prof. Gary Settles of Gas Dynamics

Lab, Penn State UniversitY.

Fig. 1.6: Shadowgram of Mach 3 airflow around a sphere which shows a bow wave'

1.13 MacCormack Numerical Scheme

The MacCormack scheme is an explicit second-order finite difference numerical

scheme introduced by Robert W. MacCormack in 1969 l7). It is a discretization

scheme used for solving hyperbolic partial differential equations. This scheme is good

15 | i'I g e



enough to implement over the nonlinear equations such as Euler's equations. The

MacCormack scheme contains predictor and corrector steps. In the predictor step,

forward difference is applied whereas backward difference is applied in the corrector

step. This order can be reversed for the time steps. In order to describe this scheme, let

us take a first order hlperbolic partial differential equation
v

ar+ 
kil-- 0'

wherekisaconstant.

1.2,3 Predictor Step

In this step, the value of the dependent variable E is predicted

value is designated and is expressed as

(fl3+at = (EX +1ff1',tt,

(Efe*at - (E iif'

(1.4)

at time t + At. This

(1.5)

(1.6)

(1.7)

(1.8)

(l.e)

where

rf;t= -k [E)t'- 
(E'}i]

1,2,4 Corrector Step

ln the corrector step, the predicted value (E)t+at is corrected as follows:

(E)i*ot = (E)i + 1ff1,u"tt,

where

in which

aE tl fiE{
(-6)"u' = z[(ar/, *H,.^'],

t,
H,.^'=-,,[
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Equation (1.9) is evaluated by using the predicted value E obtained from equation (l'5) whereas

equation (1.8) represents the average value of E obtained from equations (1'6) and (l'9) at time

steps At and t + At. The final value of the dependent variable E is obtained from equation (l '7)'

,v

,v

'.9.
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ChaPter 2

Physical Description of Flow Properties Across Normal Shock wave

2.1 Introduction
Since the physical properties such as Mach number, density, temperature, pressure, etc' experience

abrupt changes across a normal shock wave, therefore the behaviour of these properties is

described with the help of graphs [6]. In the second part, the governing equations for quasi one-

dimensioiral flow through a variable area duct are derived frrst [6]. Then the construction of a cD

nozzleis elaborated briefly. Next, the behavior of flow through a CD nozzle is examined' As the

pressure ratio is a key factor in the nozzle flow, so the flow for different pressure ratios with the

corresponding changes in the Mach values is described. The generation of normal shock wave'

,tnder expansion,, and..over expansion" phenomenon are also described briefly [9] in this chapter'

2.2 Governing Equations for Normal Shock Wave

Consider a normal shock wave shown in Fig. 2.1. Assume that flow is steady, one dimensional

and adiabatic with no body forces. The area is assumed to be constant throughout the normal shock

+wavg.Theregioninfrontoftheupstreamshockisauniformflow,andtheregionbehindthe
downstream shock is a different unifonn flow. The velocity, temperature, pressure, density, Mach

number, total pressure, total temperature, total enthalpy, and entropy in front of the shock are

1t1, Tr, Pr, Pt' M1, po,t, Ts,\, hol and s1 respectively' The corresponding q-uantities behind the

shock dta lL2, 72, pz, p2, M2, Po,z, To,z' hs,2 and s2 respectively'

tlipstreani conditions
ui
Pr
11

M1

Pt
Po,r
To,,

ho,r
,S1

Shock wave

- - -,- .*:.-'- ^ -- - - ,
t

I

1
,
I

:

Downstream conditions

llz.

Pz
T2

M2

p>

Po,z

To,z

lro,z

S2

U
Fig. 2.1: Sketch of normal shock wave'
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The continuity, momentum and energy equations (l.l), (1.2) and (1.3) for an inviscid'

compressible flow under the above assumptions are

(2.r)

(2.2)

(2.3)

To the goveming

u2, T2, Pz, Pz, andh2,

unknowns.

p1U1 = p2[2r

- P*P$l = Pz+ PzuS'

u? u3
hr* i= h, +i'

The quantities upstream of the shock wBVe U1, Pr, Pt , etc. are known' We have a System of three

algebraic equations with four unknowns tt2, p2, Pz andh2' If we add the following

thermodyramics relations

h2 = cPT2' Q'4)

pz = pzRTz,' 
(2'5)

system, we have five equations with five unknowns' namely'

Theaboveequationscanexplicitlybesolvedtoobtainthevaluesof

Y

s-

2.3 Special Forms of Energy Equation
The energy equation (2.3) for an inviscid, steady, one dimensional and adiabatic flow is given as

h'.+ = h'+ +'

For a calorically perfect gas, the ratios of total to static temperature; pressure and density are the

function of Mach number M only. Their relations are given as

To Y+7
?=r+ ; krz,

?= ,'. + '1z1Yts-t1'

?= ,r. + tr4211/1Y-t>'

(2.6)

(2.7)

(2.8)
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i

I
,,t From these ratios, the quantities Ts, po, and ps can be calculated from the actual

conditions T, P, and P. ' \

Conrid., the case when flow is exactly sonic i.e. M = L. The static temperature' pressure' and

density, at sonic condition, are denoted by T*, P" and p'. Then the above relations become

7,2
-: 

e

To y+L'

P-=, L 
ly/Q-t).

Po 'Y*t'
P'- 1 f,-1:/(y-r).

Po 'Y *l'

From the definition of Mach number, = :, where a is the speed of sound' Let us introduce a

"characteristic" Mach number M- defined by

V
Irl* = A,

where a* is the speed of sound at sonic condition. ihe relationship behveen the actual Mach

number M andthe characteristic Mach number M* is given as

(2.e)

(2.10)

(2.11)

(2.12)

(y + L)Mtr
(2.13)

NI*, = z+(y-t)M?'

2.4 calculation of Normal shock wave Properties

The flow properties across a normal shock wave can be obtained from the following useful

relations:

t

.Q'q

Pr_\
hu2

U=7*
Pt

'te

I I f '

M3=
v u? - (Y - 7)12'

(y + 1)M?

z+o-DMl'

(2.14)

(2.1s)

(2,16)

#(u?'- r),
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Z=f,=[,* #wt_rlffi Qt,)

Fromtheaboveresults,notethattheMachnumberMlisthedeterminingparameterforchanges

across a normal shock wave in a calorically perfect gas'

* 
The shock wave occurs in supersonic flows (Mt > t) and never occurs in subsonic flows (Mr <

1).Notethatinequations(2.|6),(2,17),(2.18),and(2.19),M,2l.However,theseequationsare

alsosolvableforMl<1(onmathematicalbasis).Thisissuecanberesolvedwiththehelpof

second law of thermodynamics. Apply the second law to the flow across a normal shock wave'

The relation of the entropy changes across a normal shock wave is given as

sz - sr = 'rh?r- 
n lnU' (2'18)

Using equations (2'16) and(2'17)' we get

t z, w?_rlffi (2re)

sz- sr= cPlnl'* ,*,

-Rrnlr. #(Mi-1)l
Notethattheentropychangesz-SracrosstheshockisafunctionofM1only.Thesecondlaw

of thermodYnamics states that

s2 - s1 2 o. Q'20)

ln the above equation, if Mt - 1' we have

51 = s2' Q'21\

lf Mt > 1, we have

s2 - s1 ) 0' Q'22)

Both the above results obey second law of thermodynamics. lf lth < 1, we have

s2 - s1 ( 0, Q'23)
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Which clearly disobeys the second law. Hence, in nature a normal shock wave occurs only in

supersonic flows (M1 > 1).

The behaviour of the total temperature and pressure across a normal shock wave can be observed

as follow. From equation (2.3) and using h = CpT 
' 
we have

$ u? --,ulCpTt+a=CpTz+-'

BythedefinitionoftotaltemperatuieTg,Wohavefromequation(2,24)that

cer +* ='r'o'

Combining equations (2.24) and (2'25), we get

(2.24)

(2.2s)

.c'

to,! - to,z'
(2.26)

Equation (2.26)states that for a normal shock wave, the total temperature is constant' The equation

(2.26)can be used in equation (2.18) in order to examine the behaviour of the total pressure ps'

We have

Po,z _ r-(sz-sr)/R.
Po,t

(2.27)

Fromequatiort(2.22),theequation(2,27)givestheresultpo,2lPo,twhichstatesthatthetotal

pressure decreases across a nonnal shock wave' The following figures show the variation in the

behaviour of flow properties across a normal shock wave' ' 1

.-\'tJ
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2'M,

Frg.2,ZzThe variation of dOwnsteam Mach number M2 across a nomtal shock wave as a

n .tion ofupsteam Mach nuriiber M; for :5l'4'

Fig. 2.3: The variation of density p across a normal shock wave as a function of upstream Mach

number M1: forY=l'4'

Mt

ofpressurepacrossanormalshockwaveasafunctionofupstreamMach
numbet M;. forY:l'4'

\r
Fig.2.4: The variation
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Fig. 2.5: The variation of static temperature T across a normal shock wave as a function of

upstream Mach number M; for 5l'4'

Mt

Fig.2.6: rhe variation of totar r*iiliirr.r;T$';,Tr;:ii:" wave as a tunction of upstream

It can be observed that as long as the upstream Mach value M1 increases, the downstream values

of Mach number M2 andtotal pressure ps decrease. on the other hand' the values of density p'

static pressure p and temperature T downstream of the normal shock wave increase with the

increase of upstream Mach value M1'

2.SGoverningEqriationsforQuasione.DimerisionalFlow
The quasi one-dimensional flow is defined as the flow in which properties of the flow variables

changes in one direction only by changing the flow area. A schematic of the flow is shown is

shown in Fig. (2,7).Thegoverning equations for quasi one-dimensional flow Il l] obtained from

conservation equations (1.1), (1.2) and (1'3) take the new form

,$
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Continuity:

Momentum:

PrurAr = p2V2A2, (2.2e)

(2.30)

(2.31)

$

prAr * p1u1zA1 + [n'o oo = pzAz + pzu2zAz,
J.a,r

Energy:

It,Z ur2hr+i-h2+i.

For a calorically perfect gas, we have from equations Q.$ and(2.5)

t

P, -- P2Kl2,
i

h2 = CpT2.

*2

ra2

T2

Pz

Cortrolsur&ae S

Frg,2.7z Quasi-one-dimensional flow in a control volume 7'

2.5.1 Differential Form

The differential form of the governing equations of quasi one-dimensional flow are given as

Continuity: i

d(PnA) = Q, (2.32\

A7
14
fa

"l

;'

cootrolvolumcv n i

Momentum:
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dp : -pu du, (2.33)

Energy:

dh *udu=0. (2.34)

Equation (2.33) is known as Euler's equation.

2,5.2 Area-velocitY Relation

The relation which relates the nozzle area to the flow velocity obtained from the differential form

of the equations of quasi one-dimensional flow is given as

T=r*'-')+
(2.3s)

'$

The equation (2.35) is used to construct the of flow passage required for anozzle in subsonic and

supersonic flow.

2.6 The Nozzle
Nozzle is a device such as pipe or duct designed to conffol the flow rate of a fluid' There exist

various forms of atozzlelike converg entnozzle divergent nozzle or convergent-divergentnozzle

(CD nozzle).

2,6.1 Convergent Nozzle

Convergent nozzle is a nozzle that has wide diameter from entrance as compared to the exit

diameter. It is used to accelerate a subsonic flow as well as to decelerate a Supersonic flow'

---rt

-tL

Fig. 2.8: Shape of convergent nozzle :
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2.6.2 Divergent Nozzle

A divergent nozzle is a type of nozzle that has small diameter from entrance as compared to the

exit diameter. It is used to decelefate a subsonic flow as well as to accelerate a supersonic flow.

e

2.6.3

Fig. 2.9: Shape of the divergentnozzle

Convergent-Divergent Nozzle

A convergent-divergen t rlozzle [1 l] is a device used to increase the velocity of a fluid flow as its

pressure is reduced in order to produce thrust. It is shown inFigz.lz. ' , :'.:

2.6.4 Construction of CD Nozzle 
r"

The shape of anozzleis an important factor in the flow rate phenomena. The area-velocity relation

describes about the formation of a CD nozzle. The relation is given as

(M2 * 1)+,dA

A

(2.36)

--s
€t

This relation gives the following infonnation:

L For a subsonic flow, i.e. o < M < l. , the n.n.s of the relation becomes negative' Note

that if velocity increases, the area decreases. Similarly, if velocity decreases, the area

increases. The conclusion is that for a subsonib flow, we must have a convergent nozzle in

order to increase the velocity whereas a divergent nozzle is needed to decrease the velocity'

These results are described in Fig. 2.10'

2. For a supersonic flow, i.e. M ) 1, the R.H'S of the relation becomes positive' Note that

if velocity increases, the area increases and if velocity decreases the area also decreases'

Hence, for supersonic flow, a divergent nozzle,is needed to increase the velocity and a
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convergent nozzle iS needed to decrease the velocity'

2.11.

3. For the sonic flow, i.e. M = 1 we have

dA -- 0, (2.37)

This shows the area location where the Mach number is unity' At this value' th6 flow area is

either minimum or maximum. Physically, it corresponds to the minimum flow area'

u..dbcreairing

-

These results are described in Fig'

ta

$
Fig. 2.10: The results for the case 0 < M < l'

Fig. 2.1L: The results for the case M ) 1'

From the above discussion, one may conclude that for a flow to expand it from subsonic speed to

supersonic speed, it must first accelerate sub-sonically through a convergent nozzle' As soon as

the flow approaches the sonic speed, it must be accelerated through a divergent nozzle in order to

\_tU u.rcreas:!-

,'

/

/
_/

uincreasin8 ! M>l
.-\-.

\

N
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Throat area

Fig.2.l2z Shape of a convergent-divergent nozzle'

achieve the supersonic flow. Hence, a nozzle designed to achieve supersonic flow at its exit is a

"convergent-divergent rrozzle" as shown in Fig. 2.12' The minimum area that divides the

convergent and divergent portion of the nozzle is named as throat area.

2,7 FIow through Convergent-Divergent Nozzle

Consider a convergent-divergent nozzle as shoin in Fig. 2. I 3. The pinched area of the nozzle is

known as throat. At this location, the flow must be sonic' The Mach number' velocity and area

associated to this location are denoted by l4* ,u* and A', respectively' The Mach number, velocity

and area associated to any other location are denote dby M, u and A, respectively'

Pe

Te

Me

Ae

Fig.2.13: Flow through aCD nozzle'

The area-velocity relation for a convergent-divergenttozzle is given below

(2.38)

"\
\o
\

\

\
K

?o

To

(*)' = #l*('*|'')li+
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The relation shows that for a given area ratio O / O-, 
there exists two values of Mach number M'

One for subsonic flow and other for supersonic flow'

The inlet temperature and pressure are denoted by Te and po' The corresponding values of

temperature and pressure at the exit of nozzle are denoted by I, and p"whereas the Mach number

at the exit is denoted as M".The flow through a CD nozzle depends on the exit to inlet pressure

raioPef ,o.If the pressure ratio P"lroirunity, i.e.p, = po, there would be no flow through the

nozzle.The flow through the nozzleexists only when the exit pressure is small as compared to the

inlet pressure, i.e. pe 1 po.For a small pressure ratio, say ';: O.Ol,there exists a very low speed

flow through the nozzle. The Mach number increases slightly in the convergent portion of the

nozzleand reaches to its maximum value at throat. Since flow speed is low and the sonic condition

is not achieved, it would be some subsonic value. Hence, it decreases to a minimum Mach value

while passing through the divergent portion of the nozzle. The minimum value of Mach number

at,the nozzle exit is denoted by M",rand the corresponding value of the Pressure at the nozzle exit

is denoted by pr,r.This phenomena is shown in Fig' 2'14(a,b)'

Let us further reduce the pressure ratio P e 
f ,o, as a result the flow moves 

.a 
bit flster than the first

case through the convergent portion of the nozzle and reaches to its maximum Mach value' But

the sonic condition is not achieved at the throat. The flow is subsonic at the throat and downstream

of the throat, it passes through the divergent portion of the nozzle and attain the Mach value M",2at

the exit with the corresponding exit pressure pr,2. This phenomena is shown in Fig' 2'14(a'b)'

The further reduction in pressure tatio Pef 
,ohelps to move the flow mQ{! faster than first two

cases through the convergent section and will attain the sonic conditions at the throat, i'e' M = 7'

Downstream of the throat, the Mach value at the exit becomes M",3 with the corresponding exit

pressure pr,3. This phenomena is shown in Fig' 2'14(a,b\'

iE

I

I
I

;
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Fig. 2.14(a): Variation of pressure through CD nozzle'

I{,J

ll r,z

M,,,

Fig. 2'1a@): Variation of Mach number through CD nozzle'

one may note that increase in pressure ratio causes to increase the flow velocity' once' the sonic

conditions are achieved at the nozzle throat, the fuither reduction of the exit pressure p"below pt'3

will not change these conditions. Hence, the flow rate remains constant as the exit pressure p' is

reducedbelowPr,s.Theconditionwhentheflowbecomessonicatthethroatandflowrateremains

unchanged no matter how low the exit pressure p, is reduced, known as "chocked flow"'

The reduction of the exit plessure p, below pr,3 does not change the flow properties in the

convergent section of the nozzle but a lot happens in the divergent section of the nozzle' As p' (

p",3,theflow becomes supersonic in the divergent section 'If the exit pressure p' is reduced still

further, the flow rapidly changes from supersonic to subsonic which is followed by a rapid change

in pressure. A shock wave nonnal to the flow direction appears in the divergent section of the

3l I P rt g e
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Fig.2.15(c): Abrupt change in Mach number due the formation of normal shock.

As the exit pressure p, is further reduced below pr,a, location of the shock wave moves toward the

noz,zleexit and at a certain value of the pressure pr,s, the shock is located exactly at the exit with

the corresponding Mach value M",5. This phenomena is shown in Fig. 2.16(a,b,c).

Fig.2.f6(a): Movement of shock wave with the reduction of exit pressure.

v
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Fig. 2.36(b): Abrupt change in pressure due to flow through normal shock wav'e'

Fig. 2.16(c): Abrupt change in Mach number due to flow through normal shock wave'

When the atmospheric pressure also known as back pressure ps is higher thanp",5,i'"' pu ) Pr,s'

oblique shock waves occur attached to the tip of the nozzle in order to adjust the pressure with the

back pressure. This situation is known as over expansion and is shown in Fig' 2'17' When the back

pressure p6 is reduced such that it becomes equal to the exit pressure sa! Pe,s, i'e'pu = Pe,B, tto

wave is formed and the flow will be uniformly supersonic in the divergent section of the nozzle.

This pressure is known as the design pressure and is shown in Fig.2.18. If the back pressure is

reduced to the design pressure the flow must expand in order to adjust the back pressure pp. The

expansion waves occur attached to the exit. This situation is known as under expansion and is

shown in Fig. 2.19.
.F
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Fig. 2.17: Formation of oblique shock waves atnozzle exit when PP ) P",s'

Fig.2.18: Situation of nozzle flow at design pressure, i'e'pa = Pe,s'

Fig. 2.19: Formatiol of expansion waves atnozzle exit when Ps 1Pr,s'

2.7.1 Under ExPansion

under expansion is a phenomena [9] that occurs when the back pressure pB is lower than the design

pressure. Such kinds of phenomena occur in propulsive devices subh as rbcket engines or jet

e

t*fiansionfan
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engines when these devices are operated at'high altitudes. As the atmospheric pressure (back

pressure) is very low at high altitudes, therefore high pressure ratio (which requires high area ratio)

is required in order to get very low pressure ratio at the exit of the nozile which is piactically

impossible due to structural and aerodynamic limitations. When the jet engine is operated at such

a low atmospheric pressure region where the design pressure is higher than the back pressure,

expansion takes place outside the nozzle exit to the atmospheric region. Same situation arises when

a rocket engine is operated in space where the atmospheric pressure is zero' The under expansion

process outside the nozzle is shown in Fig' 2' I 9'

2.7.2 Over ExPansion

over expansion phenomena [9] occurs when the atmospheric pressure pB is higher than the design

pressure. such situation arises when a high altitude jet or rocket engine rlozzle is operated at low

altitudes or at sea level. In such situation, there occurs an obliqrie shock wave attached to the exit

of nozzle. Since the back pressure is higher than the design pressure' the flow has to get

compressed to the back pressure ps. The oblique shock wave helps to compress the exit flow and

increases its pressure to the required back pressure p3' The over expansion process is shown in

Fig.Z.ll. ;'

Discussion

As discussed before, the flow properties experience abrupt changes across the normal

shock wave. Here, the changes in these properties are exdmined with the help of graphs'

It is observed that density p, pressure p and temperature T increase whereas Mach

number lvl2 andtotal pressure po decrease acros'S the shock wave' The total temperature

Ts remains constant due to the isentropic condition. It is also examined that a normal

shock wave can only occur in the supersonic flow with the help of second law of

thermodynamic.

It is observed that how a CD nozzle is formed by using arEa velocity relation. The

physical aspects of the generation of normal shock wave are examined and also

observed that it changes its location when the pressure ratio is decreased' It is also

observed that under expansion process occurs at high altitudes whereas over expansion

process occurs at low altitudes.

ri'
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Chapter 3

Quasi One Dimensional Flow Through CD Nozzle

Thb shock wave phenomena may arise in nozzle flows or over wedge or blunt body flows as

mentioned before. Different types of shock waves may occur in nature but the topic of our

concentration is the normal shock wave. The normal shock wave phenomena may occur inside a

CD nozzle used in turbine engines, ramjets and scramjets which generate thrust. A Swedish

inventor Gustaf de Laval (1888) was the first who developed aCD nozzle [11] and used it in a

steam turbine. The nozzle flow phenomena [0] solved in this chapter is a very important and

interesting problem in aerodynamics. It has established in chapter 2 that the generation as well as

the location of a normal shock wave depends strongly on the pressure ratio. In this chapter, the

location of normal shock wave will be determined for the given conditions. The changes in flow

properties will also be examined. A finite-difference MacCormack's scheme is used to simulate

this flow problem.

3.2 The Setup
Consider aCD nozzle whose area is defined by the following relation

A'=L*2.2(x' -1.5)' (3.1)

The area 41 describes the location of the shock wave and A' is the throat area. The nozzle area is

shown in the following Fig. 3.1. ' '

e lirmalsha;:lszn

lv{<1

$

$i

Fig. 3.1: Area of the convergent-divergent nozzle.
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The continuity, momentum and energy equations for quasi-one-dimensional flow are given below

.$'

The above governing equations can be written in dimensionless from with the help of the following

dimensionless parameters.

r =;, e = 
e;, v =L, P :P;,, = +, * =1, A =#,' = {u (3's)

where

as= Jm,
RT"

€s=CyTs=fi.

(3.2)

(3.3)

(3.4)

$
By using these dimensionless parameters, the governing equations take the new form

a@il *0(PAV) - o.At 0x

a@AV) *a4evz 
+iPel 

-L -aA
ot 'T=i'=*'

aw(h+?v')et *ale(h+?v')ve+ 
eve) 

- o,tu -+-x

(3.6)

(3.7)

(3.8)

,s

The equations (3,6), (3.7) and (3.8) are the dimensionless forms of the continuity' momentum

and energy equations for quasi-one-dimensional flow. These equations can be expressed in a

generic form. let us define the elements of the solution vector by E, the flux vector by F and the

source term bY/ as follows:

(3.e)

(3. I 0)
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u

_ / e zvr\1,Es=P(r-1+, /
\ - pAV,

F, = pAVz *!ro,
v

Fs= P(A*?u')vA+PVA'

laAt - -D-t2_ y, 0X

Note that,/1 and J3 are zero.Using these elements, the system (3.6), (3.7) and (3'8) takes the form

(3. l6)

(3.17)

(3. l 8)

It should be remembered that the above equations will result in the form of solution vectors Er Ez

and E3 . In order to obtain the results in the form of the primitive variable s (p,v ,T , P), etc' we are

to decode the elements E1, E2 and E3 as follows

(3.11)

(3.12)

(3. l i)

(3.14)

(3. l s)

(3. l e)

(3.20)

(3.21)

(3.22)

0h lFt
a; = -E'

lEr. 1Fz . .-- = --- -t lz,dt ox

lEz lFs

-:At 0x'

G'

.\f,

Etp=T'

v =?,E1

tE" v ^l
e =r = (y - r) [4 -rr"],

p=pT,

where

e' C,,T'

'= %=4;:T'
Hence, after obtaining all E's, the primitive variables can be obtained.
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Ft = Ez'

Substituting equations (3.19), (3'20) and (3.22) for F2, we have

rt?H

Fz=ff*+(',-r;)

.ForthefluxtermF3,substituting(3'19),(3'20)'(3'21)and(3'22)resultin

,^ Ez[" v(Y - L) El
l-z=T Er- y 4

Similarly, the source term J2 t'akes the new form

The flux terms F1, F2 andF3 can be expressed in terms of the dependent variables Er' Ez and E3'

respectively. Substituting equations (3.19) and (3'20) in (3'12) for F1' we get

(3.23)

(3.24)

(3.2s)

(3.26)

,st

,,=?(,,-"nry
3.2.1 Boundary Conditions

Att|reinflowboundary,twodependentflow-fieldvariablesareheldfixedandoneothervariable

is allowed to float, i.e. density p andtemperature T are held fixed at the inflow boundary and

velocity V is allowed to float. Note that by holding density p fixed at point 1' E1 is also fixed' The

value of E2 is linearly extrapolated at grid point I' from the known value at grid points 2 and 3

respectivelY,i.e'

E2e=t)=ZE26=2)-E2Q=t)' ' I (3'27)

The floating value of 7 is calculated from equation(3'27)' Since 7 is floating at the inflow

boundary, so is E3.

Ez= Et(h*Ln').
(3.28)

At the out flow boundary which is also subsonic, all the flow-field variables are allowed to float

instead of the exit pressure P, which must be specified' The values of E1 and E2 at the outflow

boundary are calculated by linear extrapolation from their adjacent points'
,s
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(Er)ru = Z(Et) u -t - (Et) x -z'

(Er),v = Z(Ez) rt't' - (E) x-z'

The value of v atthe outflow boundary is obtained from equation (3'20)

tr -(E)n" - (Er)r'

The value of E3 at the outflow boundary is obtained by using yry and the specified value of the

pressure Ply in the waY

(Er)rv = *PNA 
+l{Dru*.

(3.32)

3.2.2 Initial Conditions

Since the dependent variables Et, Ezand E3 are in the form of prirnitive variables p'P'T' etc'

Therefore, initial conditions at time t = 0 are needed to form the values of Ev E2 and E3'

) o=x(0.5,
(3.33)

(3.34)

(3.3s)

(3.36)

The initial conditions for pressure P at time t = 0 can be obtained from the equation of state

P=pT. (3.37)

Note that E, = pAV is physically the local mass flow and is assumed constant 0'59 for the sake

of initial condition' The value of V is calculated as

p = t.o-0.366(x - o.s)) 
0.5 < x < 1.5,

T =l.O-0.L67(x -0.5))

p = 0.634 - o1oz(x- 1.5) ] r.s 1 x 32.L,
T = 0.833 - 0.4908(x - 1'5))

p =o.Slsz+0.10228(x-2.L) ] z.r < x S 3.0.

T = 0.93968 + o0.0622(x - 2'1))

P=1.0
T=1.0

(3.2e)

(3.30)

(3.3 I )

(3.38)E, 0.59
ll -:=-.'pAPA

Finally, the initial conditions for 81, E2 and E3 atecalculated by using equations (3'33) to (3'38)'
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3,2,3 Calculation of Time Step

As the governing equations (3.5), (3.7) and (3.8) for unsteady, quasi-one dimensional flow are

hyperbolic partial differential equations. Therefore, for an explicit finite-difference solution of

such equations, the stability criterion for time step calculation At is specified by the CFL criterion'

The stability criterion for hyperbolic system of equations is given as

Ax

^t 
-- c;fr,

where c is the courant number, Ax is the step size, a is the speed of sound andv is the velocity'

For the stabilitY of solution, C 3 L'

Equation (3.39) states that At must be less than or equal to the time it takes a sound wave to move

fromonegridpointtothenext.SinceaandTarevariables,thereforeforthefixedAxthevalues

of At at different grids would be different'

(3.3e)

(3.40)

(3.41)

(3.42)

Lx
(atlf = cTgu

Lx(At)i*r=CA* ' ::

Since the values of At are different at different grids points, therefore the value of At would be the

minimum of all calculated values of At over the grids' i'e'

At = min(A tf, atl, ...Atl,...ati,)'

3.3 Numerical Scheme

The MacCormack,s scheme [7], a second order finite-difference scheme, is used for the solution

of the problem. It is based on the predictor and corrector steps' The description of the scheme for

the system of equations (3'16), (3'17) and (3'18) is given as follow'

3.3.1 Predictor SteP

In the predictor step, the values of the solution vectors E's are predicted for the next time step t *

At by the following manner:
(3.43)

@)r+ar = (8,)f + 1ff1i.tt,
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where

The flux terms F's used in this step are obtained from equations (3.23), (3.24) and (3'25),

respectively.

3.3.2 Corrector SteP

In the corrector step, the predicted values are corrected for the time step t + At by the following

way:

@r1r*at = @z)L + ffr>i. tt,

@)e+at = (Es)f + (L;',. tt,

.o1r-, (Fr)f*, - (Fr)i
\At)i- Ax '

.o1z-, G)ti*r- (F)l , ,
' : - | )2,'at" Lx

.oEz-, (Frx*, - (Frx
t at" ax

,?Etrt+tt -'at"
(E)i+at + (E)ilft

Ax

(r,)i+^t + (Diltt
Lx

(3.44)

(3.4s)

(3.46)

(3.47)

(3.48)

(3.4e)

(3.s0)

(3.s I )

respectively.

(3.s2)

(3.s3)

S+

3
rsl

Vil,t+^t -\ at)i

p,;t++tt 
=

7,-Tr+AtUili '

(Se+at +GJilf'
T,

where the values of F; are calculated from equations (3.23),(3.24) and (3'25),

Then the average values ofthe dependent variables are obtained as

,?)*,=:l(*)',*-ffi.*'f,

(?) *, = ;l(*)', *ff1i. o' 

l'
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Finally, the final values of the dependent variables Er, Ez and E3 at the next time step t * At are

calculated as

(T'),", = ;lP), . H,,.^' l

(Er)i*o' = (Er)f + 7ff1ou"tt,

(Er)i* o' = (Ez)ti + 1ff1 ou"tt,

(Er)f*o' = (ErX + tff),,"tt.

The above equations (3.5s), (3.s6) and (3.57) can be used to calculate the values of the primitive

variables p,P,T and v from equations (3.L9), (3.20), (3.21) and'(3.22). The value of Mach

number tr4 canbe obtained by the following equation:

V
M =:.tlf

(3.s4)

(3.ss)

(3.s6)

(3.s7)

(3.s8)

(3.se)

(3.60)

(3.61)

e

f,
3.4 ArtificialViscositY
Artificial viscosity is introduced in order to remove oscillations occurred in the solution [10]' The

implementation of the artificial viscosity is described by the following way' The expression for

artificial viscositY is :

As before, the predicted values of the dependent variables are obtained as

(r)i*o' - (E)'i + f\;',tt,

with the addition of the artificial viscosity, the predicted values are obtained as

$ (E)i*A, : (E,)f + fffrfidt+ (s,)f,
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(k)'r*o' = (Er)'i * fb;iot+ (sz)i,

(rr;r*at = (Es)i + 1fr1ix+ (ss)f,

where the values of .s's are calculated from equation (58) with their resliective values E' s'

Similarly, the corrected values of the dependent variables are calculated as

(3.62)

(3.63)

(3.64)

(3.6s)

(3.66)

(3.67)

F.{

(E)t*o' = (E)i + tff),,,t .

But with the addition of artificial viscosity, the corrected values of the dependent variables are

calculated as

(Er)i*o' = (Er)f + (gLa),""At + (SJt,

(Er)'i*o' = (Ez)i * (*) *,At + 6Ji,

(Er)f*o' = (E:)i * (*)",,4t + 6Ji,

where

rs\r+ar - 
c,ljlJiif' - zcF)f-^' + !4flf'l\-.,r Cflffi

;ir+At
(3.68)

- zGX*o'+ fDilf'1.

3.5 Results and Discussion
l. The following numerical results are obtained with 31 grid points that can be increased in

order to obtain the precise location of shock wate. The grid points are not increased

because increment in grid points gives slight changes in the solution which are acceptable'

Therefore, solution is grid independent'

z, It is seen that artificial viscosity is added with adjustable constant 0'1 in order to avoid

oscillations in the solution. Also, a courant number of 0.5 is employed for the obtained

,\ results shown in figures 3.2 and3.3. Notice that shock wave is located at point x = 2'L

\{,
and across this location, the Mach value M decreases suddenly whereas pressure p
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increases. The results of velocity 7 and density p are not shown because of the similar

behavior of velocity y with Mach number M as well as of density p with pressure p.

Fig. 3.2: Numerical results of shock capturing for the pressure distribution across nozzle with

artificial viscositY Cx = 0'L'

Fig. 3.3: Numerical results of shock capturing for thelvlach number distribution across nozzle

with artificial viscosiry?x = 0'1'
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