To5215
Performance Evaluation of different Bluetooth voice
packets on SCO Links.

Abdur Rasheed (04/FET/MSEE/FO5)

Danish Rafiq Khan (05/FET/MSEE/F05)

Supervised by

Assistant Professor Raza Hasan Abedi

CENTRAL -

LI
SLAWABAD,

This dissertation is submitted to 1.1.U in partial fulfillmen
Of the requirement for the degree of

MS Electronic Engineering

Department of Electronics Engineering
Faculty of Engineering and Technology
INTERNATIONAL ISLAMIC UNIVERSITY ISLAMBAD (liUl)
2008

Certificate of Approval

* y
It is certified that we have read the project report submitted by Abdilkasheed [04-
FET/MSEE/F05] and Danish Rafig Khan [05-FET/MSEE/F05]. It is our judgment
that this project is of sufficient standard to warrant its acceptance by the International

Islamic University, Islamabad for Degree of MS Electronics Engineering (MSEE).

Lo

Pl

External Examiner
Dr. Abdul Jalil
Associate Professor
Department of Information & Computer Science,
PIEAS, Islamabad

Internal Exiher

Dr. Tanweer Ahmed Cheema
Assistant Professor

Department of Electronic Engineering
Faculty of Engineering & Technology,
ITU Islamabad

Supervisor|

Raza HasannAbedi

Assistant Professor

Department of Electronic Engineering
Faculty of Engineering & Technology,
ITU Islamabad

DECLARATION

I/W, hereby declare that this software, neither as a whole nor as a part thereof has been copied
out from any source. It is further declare that we have developed this software and the
accompanied report entirely on the basis of our personal effort made under the guidance of our

teachers.

If any part of this report to be copied out or found to be reported, We shall standby the
consequences, no portion of this work presented in this report has been submitted in support of

any application for any other degree or qualification of this or any other university or institute of

learning.

Abdur/ésheed

[04-FET/MSEE/FOS]

Vi

Danish Rafiq Khan
[0S-FET/MSEE/FO0S]

P | TN P PR

In the name of Allah (SWT) the most beneficent, the most merciful

An MS Final Year Project submitted to the
Department of Electronics Engineering
International Islamic University Islamabad
In partial fulfillment of the requiréments
For the award of the degree of

MS in Electronics Engineering

Dedicated To,

Our Parents,

Who always supported us and prayed for our success

Acknowledgement

First of all we would like to take this opportunity to our humble gratitude to Almighty Allah who
enabled us to accomplish this task. Who helped us in every crucial stage and bestowed us the

stamina to achieve our aim.

We are also fortunate to have Assistant Professor Sir Raza Hasan Abedi as our MS. Advisor.
Their ability to ask the right question and attention to detail has never ceased to surprise us. They
were always able to make time for us, even if we just walked into office without any notice. We

would also like to mention their patience, giving us inspiration and hope when we were stuck at
dead-ends.

Special thanks go to our parents and friends for their support throughout our entire academic

carecr.

Danish Rafiq Khan
&
Abdur Rasheed

Project Title:

Undertaken By:

Supervised By:
Date Started:
Date Completed:

Tools Used:

Operating System used:

Project in Brief

Performance Evaluation of different Bluetooth voice packets
on SCO links

Abdur Rasheed [04-FET/MSEE/FOS |
Danish Rafiq Khan [05-FET/MSEE/FO05 |
Assistant professor Raza Hasan Abedi
September 2007

August 2008

OMNeT++, Visual C++, MS Excel, Word

Microsoft Windows XP Professional

ABSTRACT

The performance analysis of different Bluetooth voice packets on Synchronous Connection Oriented

(SCO) links. In this way one packet is sent from one device to another device via Bluetooth on SCO links.

Different graphs and tables are shown here for the best analysis of the Bluetooth voice packets. The delay
is added to voice packets so that to see that how much time it will take to reach at the destination. The

time span of different voice packets are compared with one another for the best analysis on SCO link.

We proposed OMNeT Software to implement this research work. The different techniques are used to
show the best analysis of the Bluetooth voice packets.

In this research the piconet is explained for Bluetooth transmission. This fully wireless scenario can be

achieved because of the master/slave nature of the Bluetooth technology. All devices are peers, identified by
their own unique 48-bit address, and can be assigned as a master either by function or user intervention. A
master can connect up to seven slaves at the same time, forming a piconet. In the piconet one master
(transmitter) and more than one slaves (receiver) up to seven connectable devices, Bluetooth layers and
the protocols are also explained. The simple act of utilizing Bluetooth technology as cable replacement
removes the problem of the actual physical connections. Interference can impact both the quality of an
audio (Synchronous Connection Oriented [SCO]) connection or the throughput of a data (Asynchronous
Connectionless [ACL]) connection. High levels of interference can interrupt communications for long
enough to cause the protocol stack to timeout and abandon the link altogether. Although this is addressed
in the Bluetooth specification with a frequency-hopping scheme which does provide robustness, it is still

a serious consideration for some applications.

The results of different voice packets obtained from the OMNeT software are compared with one another

and hence the best performance is analyzed.

Introduction and OVerviewccceceeetncrcecncrcrnncencesotecncosenncacasences cerennn 2
1.1 Wireless communication ..eceeceseecencecescecences cerecnsees cececssesesrssenes 3
1.2 Bluetooth CONCeEPLSs ...cccovrneecccssnssescscsncenenees crsesssesennisesanconsasanse 3
1.3 OMNet OVETVIEW .cevencessecennee Cetrcesncunceseseensrsesessettecnnstsssaansores 3
Literature Reviewccccoieiiiieiiuceieiiiaitniniiceccnceiiecetecsecececsccncanccsees 5
Bluetooth Overviewc.ceueeeeeeee. consncssctentsessentoansnsasatoncnnanes censecces 7
3.1 Origins Of BIUEtOOtH vusevececnscsersasnsenerncscrsercssssesconnsannases ceessnen 8
32 BIUCLOOth OVEIVIEW «evverrersessessessasssssessasssssessasssssssessssessessans 8
33 Frequency Hopping and Channelscccoveeierescsniececesnsncscncncscscnns 10
34 Bluetooth Data Rates and Data Packets tensesencesacenseratonsesaes 11
3.5 Range/Distance COVETEd ...cevurrererseeerenceerenseennsscsesacssnsocanssoncans 12
3.6 Bluetooth Communication Topology/ Connectivity cvseseecescscssssecensees 13
3.6.1 Piconet ToOpOlOZY vevercrsecesnscssasnsnces esessssssssnsescnsnssssnsanne 13
3.6.2 Connecting Procedures and Modescceecrceererarnsenes Creesenses 13
3.6.3 Inquiry/Discovering Procedurec.ceeeeeecsecscsesesacanscsscsonens 13
3.6.4 Paging/Connecting Procedureceeeeeirsncncccanrseces ceesasane 14
3.6.5 Connected Mode Consecarcessesrsrssnsessnsnsansesessesesannesnses 14
3.6.6 ActivE MOdE ..c..uuvveeensucasscsennsnssesosennasaese cevesesosrcesesneees 14
3.6.7 HoldMode ..ccocreverimriencanenee Ceeesseeserasassesttrsnnssssnsnsnnsens 14

TABLE OF CONTENTS

3.6.8 Sniff Mode ...ceceerreneniinnnennee teeseescetseescatssencststssesnsresesnis 14

3.6.9 Parked Mode vesensenas teseensseenenssasentossetencasssttnsettnasnns 15

3.7 Bluetooth Profiles teeeestsseesasesassentecssestresenntssrassenasnessnrtonetes 15
3.8 Layers of Bluetooth ATChitecttre .eveseeeerscesercesesecessseensesessencaseses 15
3.8.1 Protocol Layers StacK.cceseeseseesesescessessssessesasne vessereessnsaen 17
3.8.2 Service Discovery Protocol (SDP)..cccescesssencsnsencens venseneens . 17
3.8.3 RFCOM Protocol ..eeueencineecesasennens Cresersessastecsiensnrsnsanes 17
3.84 L2CAP (Logical Link Control and Adaptation Protocol).......... 17
3.8.5 Host to Controller Interface (HCI).e.eeverieeseraenss cesesnsesesenens 18
3.8.6 Link Manager Protocol Layer (LMP)...cccverereresesececesecncecone 18
3.8.7 Baseband layer/ Link Controller ecetesesnsenasasnseranasares . 18
3.88 Radio Layer (RF).cerveeeereerrvveeessveecrsnenses vvvossrresssansssaens 19
3.8.9 Bluetooth Controller ceucevereresererearecracncececanecsocenes ceeeeses 19
3.9 Security of Bluetooth and its Security Modes srestsenssiesntestisinsatiit e 19
Introduction to OMNeT Simulatorcc.ceceeeeeerenenees ceeessnrecusncnseseanee . 21
4.1 Whatis OMNETH .cueureirernceicaernsaccssercsecrssscssscsessssssscasssssssess 22
4.1.1 CoOmPODNENLS vevevereeecsieerereresnsscnssensns ceresrsesssasesnsasesnsens 22
4.1.2 Platforms ...c.eecureee O ceeeercrcasasenns 23
4.13 Licensing For OMNet ++ c.ceuvureeiecreceecencnncencaneens veeernenes 23
4.2 Installation of the OMNETH ..cceueinncecensrenneceerecccnsecesssenssrscsecsees 23
43 OMNeT++ Module Structure vueeeeeirereecreceeceenenseccesncrecsececrecssnn 24
44 Simulation Modeling In OMNet ++ccceuneee. ersesereerniinansesns 25
4.4.1 Library Modules Ceettvereracesesesasactitesesnsans ceresesaceces 25

442 Network Moduling .eceesersessecesrorcrcassessnsnserecececesesocesonns 25

443 Network Description (NED).uevevseversesssessssens ceevererereraeaes 26

4.5 USET INTETTACES veuvreerercrreronesnneenssinsssssnesesesssesensconssoctoasancssace 26
451 TKenv..cceeeerenenane teesesseersienisassansesenssnsransnannsas cesereene 26

452 Cmdenv ..c.ccevuueennee Cheressestsesetnseesasanitassetsnsensaanssnsens 28

4.6 NED OVEIVIEW cucevcencencrnrencnacnnnens veesresnes creraserttasencentenennsasanne 28
4.6.1 Reserved WOIdS ccceeeerserveeennsensenes Cheesssessssnrissesesnssssncans 28

4.6.2 IdentifierS .eceecencencencenansenseinncencancenseoneecennes creeerrennene 28

4.6.3 Case SensitiVity.eeeeeecseccesecsessncasancacrercaceecetscececaacecensene 29

4.64 COMMENLS veurerercerneaeceonsseccrsecancesassonscncs ceeseunes ceerences 29

4.6.5 The import Directivecoeeeerses eeescsestsrsrnsestssernsnnnns - 29

4.7 Simple Module definitions ceencens ceescesesecness ceeecesscasernaen 29
47.1 Compound module Definitions creseness crescrseesesesnses 30

4.7.2 Network Definitions «cececeeeereccenees ceeerrene Ceesessecaserensencanes .30

473 Generating NED Files ceecesesercnsncanes SRR |

474 Building the network from C+H- code.ceessrincecncens veresesseresens 31

5 Experimental Analysis and Results........cc.ccceeieeereiererncncannanee cerssorsrsnsons 32
5.1 Experimental Setup.....ccceircesnesenene Cerescrsstatesnssstrsesnassansnstrsesnaenns 32
5.2 Compiling the Simulationccceesuses ceesesancnns ceneneens ceveecessas coecenes . 34
53 Running the SIMulation ...ceceeecececescrcrsecscenes Creesescsantessrresasensarens 35
54 Scenario l ..ceuee.. cereeseeeisnerentenaes veeneeneensees cereeeeneaamens 37
54.1 Delay(0,0) ceceencerencnniencanans ceecenene cessacene ceereee cereeserens 39

55 Scenario 2 ..cceceevecensacennnes cerecrnes Cersererecesecasenennes cereseseseresonmees 40

5.5.1 Delay(50,100) ceestsecassectesesten ceencssaneses csecascece . 43

552 Delay(250,150) wuueurirseseseasessansssssssensessnsssnesenses veerenndT

553 Data rate(1500,200) eeserssncenttesestesatnrestnsanane 51
5.6 Formula Used «.cceeveenencencncennncannes cessesissataeecesenace cerescacaes T |
Conclusion O N sesesessesesersactcesensecnsaronss 53
Bibliographyccceviirenincennnnnes Chresersssesasesensasesesnsesseresessemensasesnsanes 55
ADPENAICES .cceceirenrircrintrraccnstcrsccrsssscrsssasssessasacrsnsassassensesas ceresenses 57
Source Code Ceeeetrercesectatetasesasnstasetatasnensnssesasasensasnrossasnsine Appendix A
Vector Data Generatedccuceeee Cressssanseresasesesnns cececssesasescrsnserens ...Appendix B

Scalar Data Generated...cceeesrececsncestrncersncsesesscsnsseresssseresssresasssnce Appendix C

Figure 3.1:

Figure 3.2:

Figure 3.3:

| Figure 3.4:

Figure 3.5:

Figure 4.1:

Figure 4.2:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.8:

Figure 5.9:

Figure 5.10:

LIST OF FIGURES

Typical Bluetooth Network A Scatter-net..... Ceeesasersssesnrcecrsesensnrnes 10
Bluetooth packetcccceeuieiincniieceiencniiniecececeniicrcrecececenencececceces 12
Bluetooth Operating Rangecccceeeeeenees ecesesasasnnesens veeresrneuenses 13
Protocol StAcK ...c.cceeeiinieirieecrieiiieriercocrcsnsecasssscesesrorsssssncrsssesnos 16
Taxonomy of Bluetooth Security Modesccccceeiusisernrecerciesecncerenen 20
Module StTUCHUTe ...c.cvvierrenceiieiinieniseceaceecensnssecsecaseenss ceesesesnsnnene 24
Tkenv User Interface in Omnet+cccveieeveiseceisesecenees oesssecsnsuenes 27
ST 1 F:1 o 113 g RPN 34
SCENAIO 2 c..vieurrinisnreireceirnsecsrsssiressssecessnsscssnsssssesssnsroresssssenencanas 34
Compiling the sSIMulationccccceeeceieiecniriririscennnecesesnesesesncscessenes 35
Running the simulationc.ciceeiiiiiimiiiiiiniannterecceisisinnnceccscasernocess 36
Running the simulation interfacec.cceececerniriccecececenas vetrteseseseneses 36
End to End delay (devicel & 2 with 0ms delay).....ccccivvcececnerercecarsacnses 37
Simulation duration (with Oms delay)...c.cccceeeeieieiiinieiaceceieiiens cernneees - 38
End to End delay (devicel & 2 with 50,100 ms delay)...... cccceceececasscrcenes 40

Simulation duration (with 50 & 100 ms delay).......ccccceceureruinieininnnnennness 42

Figure 5.11:

Figure 5.12:

Figure 5.13:

Figure 5.14:

End to End delay (devicel & 2 with 250,150 delay)......... cesssrnseressasnes 4

Simulation duration (with 250 & 150 delay)...cccccvvuiecervrernccenencccnnens 46
End to End delay (devicel & 2 with 1500,200 data rate)...........cecenennennne 48
Simulation duration (with 1500 & 200 data rate).......... creersesnssasenvasaces DU

Table 2.1 :

Table 3.1:

Table 3.2 :

Table 3.3 :

Table3.4:

Table3.5:

Table 3.7 :

Table5.1:

Table 5.2 :

Table 5.3 :

Table 5.4 :

Table5.5:

Table 5.6 :

Table 5.7 :

LIST OF TABLES

A summary of comparisons between Bluetooth and IEEE 802.11........ 5
ISM Band allocationsccerecencncnnee Ry 8
Key Characteristics of Bluetooth Technology Descrfptions cessrsnsnsnaens 9
Bluetooth frequency range and channelsc..cccininrciieinrcninrenanen 10
Bluetooth Data Ratesccccceveveeccncrecncesecensncnsasensasecsesnsecs veenee 11
Device Classes of Power Management ceecestatessrrsesentesensarsnnsnasoes 12
Bluetooth Core Protocol Stack ceeesesecasssecnsseseansesasnsensseantases 15
Device 1 and Device 2 delay Oms Cersesecerescasnracarsatcsnsessrsnsas R) |
Delay vs Time ...ccccveeeiiecenncecereonneneeee eseseesssessrsrsrnssrsncsssanensnoee 41
Device 1 and Device 2 delay 50ms,100ms respectively verese 43
Delay vs Time N veteenteteesnnressnssessnssanne 44
Device 1 and Device .2 delay 250ms,150ms respectivelycccceveeneens 47
Delay v TIMe ...cccvvvereiinierinnacneinninsacsonscssoccenees ceereseratassesasasananse 48

Device 1 and Device 2 data rate 1500,200 respectivelycccecensunee eee 51

Chapter 1

Introduction and Overview

1 INTRODUCTION AND OVERVIEW

This research is performance evaluation of Bluetooth voice packets on Synchronous Connection
Oriented (SCO) Links. In this research voice packet has been send from one device to another
via Bluetooth Technology on a SCO links in a piconet environment. The graphical result and
tables are also shown firstly the performance is evaluated in the delay free environment and
secondly the performance is evaluated in the presence of delay environment and then compare
the perfofmance. The delay is also included in the research for the best analysis of the voice
packets transferred from one device to another. In this way to conclude that how delay affects

the performance of one device sending packets to other device in piconet.

In the Bluetooth technologies there are two types of links Asynchronous Connection Less
(ACL) and Synchronous Connection Oriented (SCO). New technologies have emerged that
allow wireless communication. The IEEE 802.11b or Wi-Fi is becoming the choice for the
networking community as it supports features that enable it to perform handovers between
access points and it can effectively become a transparent wireless network expanding the static
wired network. IEEE 802.11b has the maximum data capacity of 11 Mbps as IEEE 802.11a and
its competitor HyperLAN2 have the greater data rates but it is not cost effective in the
customer’s point of view but now technologies that have wireless connectivity, low-power, cost

effectiveness and ad-hoc connectivity between devices are becoming popular like Bluetooth.

As now a days different devices are being introduced having Bluetooth support in today’s world
the wireless network and Bluetooth enabled handheld devices are growing rapidly and networks
continue to increase the problem of interference, delay, noise and distortion in the data when
communicating with each other and operating at the same frequency bands. As
telecommunication industry is growing the hurdles in the communication field motivated

research work in the Bluetooth voice packets performance on the SCO link.

Experiments performed simulation based comparison using the OMNet simulator and evaluated

the performance of voice packets in the presence of delay and interference.

1.1 Wireless Communication

Wireless communication, enable one or more devices to communicate without physical
connections without fequiring network or peripheral cabling. Wireless communication use radio
frequency transmissions, microwave or infrared communication as the means for transmitting
data, where as wired technologies use cables. Wireless technologies range from complex
systems, such as WiFi, WiMAX, cell phones, GPS and satellite television to simple devices such
as wireless headphones, microphones, (IR) devices such as remote controls, some cordless
computer keyboards and mouse, cordless phones and wireless hi-fi stereo headsets. Wireless
communications is a rapidly growing segment of the communications industry, as it provides
high-speed high-quality information exchange between portable devices located anywhere in the

world.

1.2 Bluetooth

Bluetooth is a wireless technology for creating personal networks operating in the 2.4 GHz
unlicensed band, with a range of 10 to 100 meters. Networks are usually called PAN formed ad-
hoc from portable devices such as cellular phones, handhelds like headset and laptops. Bluetooth
offers different benefits to the users like ad-hoc network, file sharing, cable replacement, internet
connectivity, wireless synchronization, multiplayer games, multimedia contents sharing and

much more applications.

1.3 OMNeT Overview

OMNeT++ is basically a collection of software tools and libraries which you

can use to build your own simulation models. The simulation structure provides the following:

1. An OMNeT++ model is build from componets (modules) which communicate by
exchanging messages . Modules can be nested, that is several modules can be
grouped together to form a compound module. When creating the model you need to

map your system into a hierarchy of communicating modules.

2. Define the model structure in the NED language. You can edit NED in a text editor
or in GNED, the graphical editor of OMNeT++.

3. The active components of the model (simple modules) have to be programmed in
C++, using the simulation kernel and class library.

4, It provides a suitable omnetpp.ini to store OMNeT++ configuration and parameters
to your model. A config file can describe several simulation runs with different

parameters.

5. Build the simulation program and run it. Link the code with the OMNeT++
simulation kernel and one of the user interfaces OMNeT-++ provides. There are

command (line batch) and interactive graphical interfaces.

6. Simulation results are written into output vector and output scalar files. You can use
Plove and Scalars to visualize them. For more thorough statistical analysis, you can

use standalone packages such as R, Octave or Matlab, or even spreadsheet.

This report consists of six chapters, 1st chapter is introduction and overview, 2nd chapter
describes the overview of the related work has accomplished in this field. Third Chapter
highlights Bluetooth its architecture, connectivity and protocols. Fourth chapter is an
introduction and overview of OMNeT simulator, its installation and network modeling features.
Chapter 5 revels experimental analysis and simulation results carried out in OMNeT (OMNet++
3.3). In the last chapter an effort is made to conclude findings with respect to the experimental
results that may be helpful to the researchers to improve the performance of Bluetooth device.

Chapter 2
2 LITERATURE REVIEW

In [1] author has discussed in this paper that the Radio is the interface between the on-air
channel medium and the Base band. The Base band layer is responsible for channel coding and
decoding. It digitizes the signals received by the radio for passing up the stack and it formats the
data it receives from the Link Controller for transmission over the channel. The Link Controller
is responsible for establishing and maintaining the links between Bluetooth units. The Link
Manager Protocol (LMP) handles piconet management and link configuration. It also includes

procedures for enforcing link security, such as encryption and authentication procedures.

In [2] author has discussed about the Bluetooth distributed voice access protocol (DVAP). In
DVAP, Bluetooth mobiles collect connectivity information which is provided to the base station
infrastructure. Mobile node migration is then used to reduce blocking when a Bluetooth base
station is carrying a full load of active SCO links. DVAP is intended for use in systems where
deployments generate partial overlapping radio coverage situations. As in standard Bluetooth
access point designs, in DVAP, Bluetooth enabled devices use the standard Bluetooth inquiry

procedures to initially associate with a base station, where it is parked.

In [3] author has discussed the principal difference between the Bluetooth and IEEE 802.11b
standards that the Bluetooth is connection-oriented while 802.11b is connectionless. This implies
that Bluetooth units need to set up connections before they can send any data, while for 802.11b,
units can directly send data to any other unit in range. Table 2.1 shows a summary of the more

detailed comparisons between the two technologies.

Support Bluetooth IEEE 802.11b
) Based on controlling unit ’
Media Access Control Random-access-oriented
(master)

No defined way to discover

. . . unknown devices (may use
Standardized discovery using

Neighbor Discovery broadcasting), but known
the INQUIRY procedure .)
devices can be directly
addressed
Multihop PAN's Involves scatternets - | Straightforward - no piconet

Support Bluetooth 1IEEE 802.11b

interconnected piconets architecture, all nodes are

peers

. Units may receive packets
Uses polling between masters . .
from other units at any time,
Power Consumption and slaves, offers power) .
) so receivers need to be active
saving modes . :
for long periods.

Table 2.1 : A summary of comparisons between Bluetooth and IEEE 802.11

In [4] author has discussed the Bluetooth SCO link as a standard communication link for high
quality real time voice data. In case, if the high quality is not required SCO link can be replaced
by ACL link. Although ACL shows a slight delay as compared to the HV2 packet type, but
perform better in case of HV3 packet. Another observation shows that the transmission of voice
over IP (TCP) connection when it is in communication with a slave of piconet, ACL
outperforms than that of HV2 and HV3 packets of the SCO link.

In [5] author referred to as the emergence of several radio technologies, such as Bluetooth and
IEEE 802.11, operating in the 2.4 GHz unlicensed ISM frequency band, may lead to signal _
interference and result in significant performance degradation when devices are collocated in the
same environment using a slower hop rate for Bluetooth (i.e. longer packet sizes) may cause less
interference to WLAN. Second, Bluetooth voice represents the worst type of interference for
WLAN. In addition, the WLAN performance seems to degrade as the Bluetooth offered load is
increased. Finally, the use of error correcting block codes in the Bluetooth payload does not

improve performance. The errors caused by interference are often too many to correct.

In [6] author has discussed the soft-blocking problem in the Bluetooth system increases as the
number of slaves and piconets increases. To determine the soft-blocking problem, measure the
throughput as the function of data rate, number of transition channels and number of access
point that is slaves. The throughput performance severely degraded as the number of access

points increases.

Chapter 3

Bluetooth Overview

3.1 Origins of Bluetooth

Bluetooth began as an open standard project in 1994 by Ericsson in Sweden. It was originally
named multi-communicator (MC) link the goal was to develop a wireless communication
standard that would support short-range voice and data trénsfers between multiple devices. Four
years later, in 1998, four other companies, IBM, Intel, Nokia, and Toshiba, joined with Ericsson
to form a special interest group (SIG) SIG which serves as the governing body of specification
renamed the standard to Bluetooth. Today, the group consists of nine companies 3Com, Lucent
Technologies, Microsoft, Motorola, IBM, Intel, Nokia, Toshiba and of course Ericsson there are
also hundreds of associate and adopter member companies in the telecommunication and
computing industries. The Bluetooth SIG manages on going technical working group for short-
range wireless specification for connecting mobile devices Bluetooth provides connectivity
among devices like Computers, wireless headsets, printers, personal digital assistants (PDAs),
mobile phones, cordless phones, pagers, cameras, PC cards, fax machines, MP3, MP4 players

and laptops.

3.2 Bluetooth Overview

Bluetooth is an open standard for short-range digital radio. It provides low-cost, low-power, and
low-profile technology that offer fast and reliable transmission for both voice and data
communications creating small wireless networks on an ad hoc basis. The goal of Bluetooth is to
connect different devices (PDAs, cell phones, printers, faxes, etc.) together wirelessly in a small

environment such as an office or home and forming a PAN on a temporary and random basis.

Country Frequency Band (MHz) Number Of Channels
United States 2,400-2,483.5 79
Europe 2,400-2,483.5 79
Spain 2,4445-2 475 23
France 2,446.5-2,483.5 23
Japan 2,471-2,497 23

Table 3.1 ISM Band allocations

Bluetooth operates in the ISM (industrial, scientific, medical applications) band which is
unlicensed band with different frequency and number of channel allocation as shown in Table
3.1. In Bluetooth network eight devices can be connected with each other where one device will

be master and rest of the seven will be acting as slaves forming a "piconet". Any slave device in

a piconet can act as a master in other piconet forming a network called scatter-net as depiciated
in Figure 3.1. Master can assign active member address (3 bit), parked member address (8 bit)
and access request address (8 bit) to any slaves participating in the piconet and also able to
change the mode from active to sniff, hold and park at any time during the communication.
Master can be identified by 48 bit address as each device has its own unique address. Master is
managing and controlling the whole piconet network communication like channel, frequency

hopping and power level. Table 3.2 shows some characteristics of Bluetooth technology.

Characteristics Description

Physical Layer Frequency Hoping Spread Spectrum (FHSS)

Frequency Band 2.4—2.4835 GHz (ISM band)

Hop Frequency 1,600 hops/sec

Data rate 1 Mbps (raw).Higher bit rates are anticipated.

Data and Network Security Three modes of security (none, link- level, and service level)

Operating Range About 10 meters can be extended to 100 meters.

Throughput Up to approximately 720 kbps.

Positive Aspects No wire and cables for many interfaces. Ability to penetrate walls and other
obstacles. Costs are decreasing and Low power and minimal hardware

Negative Aspects Possibility for interference with other ISM band technologies. Relatively low
data rates. Signals leak outside desired boundaries

Table 3.2 Key Characteristics of Bluetooth Technology Descriptions

Bluetooth provides two different types of physical links:

Asynchronous connectionless links (ACLs) are most often used for data communication
and is point to multipoint link between master and all slaves participating on the piconet. Packet
retransmission corrects error packets. Master can establish ACL link on a per slot basis to any

slave.

Synchronous connection-oriented (SCO) links create a circuit-switched, scheduled, point-to-
point link between a master and a slave with no packet retransmission. The connection is mainly
used for transmission of time bound data like voice. Master maintains SCO link by using

reserved time slots for transmission at regular interval.

In summary, Bluetooth provides a better solution for cable replacement in terms of short range,

low power consumption, low transmission rate, minimal hardware and low cost.

DR Lo —

o - MM%”"M
Piconet 1 T mem«mww\)

”x Master of
Piconet 2

Slave

Slave

Figure 3.1 Typical Bluetooth Network a Scatter-net

3.3 Frequency Hopping and Channels

The radio unit of Bluetooth device operates in 2.4 GHz band. Bluetooth utilizes a frequency-
hopping spread-spectrum (FHSS) technique of transmission by using 79 different radio
frequency channels and by rapidly switching to another frequency about 1,600 hops per second
to limit and minimize the interference problem as multiple devices can transmit and operate at
the same range of frequency because of ISM band. Bluetooth uses 625 microsecond single
channel transmission by jumping to another new channel after 625 microseconds this process

continues by getting the random frequencies.

Frequency Channels

2.400-2.4835 GHz F=2402+k,k=0,...,78 MHz

Table 3.3 Bluetooth frequency range and channels

Hopping algorithm of Bluetooth uses 79 frequencies as we can see in Table 3.3. Hopping

sequence will be known to master and slaves during the establishment of connection.

10

3.4 Bluetooth Data Rates and Data Packets

Theoretically data rate of Bluetooth devices is 1 Mbps but actual data rate it achieves due to
overhead is 723.2 Kbps for DH5 packet as shown in Table 3.4. The transmission of packets
covers single, three or five time slots. Packet type of DH1, HV1, HV2, HV3, DV AND AUXI
are single slot packets. DM3, DH3 are three slots packets. DM5, DHS are five slots packets and
NULL, POLL, FHS and DM1 are control packets. Data medium (DM), Data high (DH) and high
quality voice (HV) are packet types in Bluetooth. Types of DM packets are DM1, DM3 and
DMS. Types of DH packets are DH1, DH3 and DHS. Types of HV packets are HV1, HV2, HV3
AND DV. Data high (DH) rate achieves higher data rates by using less error correction in the
packets. Data medium (DM) rate achieves a lower bit error rate probability by using more error
correction (16 bit CRC) in the packets. HV1 packets carries 80 bits, HV2 carries 160 bits, HV3
carries 240 bits and DV is a combined data (150 bits) and voice (80 bits) packet.

The Bluetooth packet contains a 72-bit access code, a 54-bit header, and a 0 to 2,745-bit
payload. The access code is subdivided into a 4-bit preamble, a 64-bit synchronization word, and
a 4-bit trailer. Header is subdivided into a 3 bit AM_ADDR, 4 bit TYPE, 1 bit flow control, 1 bit
argn, 1 bit seqn and 8 bit HEC.

Table 3.4 Bluetooth Data Rates

Packet Type Payload bits | Max Symmetric | Forward Reverse
Data Rate | Asymmetric Data | Symmetric Data
(Kbps) Rate (Kbps) Rate (Kbps)

DMI1 17 108.8 108.8 108.8

DHI1 27 172.8 172.8 172.8

DM3 121 258.1 387.2 544

DH3 183 390.4 585.6 86.4

DMS 224 286.7 477.8 36.3

DHS 339 433.9 723.2 57.6

11

LSB MSB
72 bit access word 54 bit header 2,745 bit payload
‘;] \\ Se.el ~———
4 bit 64 bit | 4 bit 3 bit 4bit |1bit 1 bit 1 bit 8 bit
preamble | sync | trailer AM_ADRR | TYPE [Flow | Argn | Seqn [HEC
#” ~
34 bit 24 bit 6 bit
BCH LAP | BRKR

3.5 Range/ Distance

Bluetooth supports three types of classes class 1, class 2 and class 3 with different capabilities.
Class 1 device with operating range of up to 100 meters and power level 100 mW. Class 2
devices with operating range of up to 10 meters and power level 2.5 mW. Class 3 devices with

operating range from 0.1 to 10 meter and power level 1ImW. The three types of classes are

summarized in Table 3.5.

Figure 3.2 Bluetooth Packet

Covered

Table 3.5 Device Classes of Power Management

Type Power Power Level Operating Range

Class 1 Devices High 100 mW (20 dBm) Up to 100 meters
(300 feet)

Class 2 Devices Medium 2.5mW (4 dBm) Up to 10 meters (30
feet)

Class 3 Devices Low 1 mW (0 dBm) 0.1-- 10 meters (less
than 30 feet)

12

Class 1
100 meter

Class 2

Class 3 10 meter

0.1-10 meter _

Figure 3.3 Bluetooth Operating Range

3.6 Bluetooth Communication Topology/ Connectivity

3.6.1 Piconet Topology

In piconet two or more devices connected with each other, and synchronized to master's clock
forming a piconet. One device participating in one piconet can be connected with the other
piconet forming a scatternet. So a slave in one piconet can be a master or slave in other piconet.

Each piconet has different physical channel, piconet clock and hopping sequence.

3.6.2 Connecting Procedures and Modes

The main goal of Bluetooth enabled device is to be connected to other Bluetooth enabled devices
(in a piconet) and exchanging data with the other device. Inquiry/discovering and
paging/connecting are connecting procedures in a piconet and there are number of modes which

a device can be switched during the communication.

3.6.3 Inquiry/Discovering Procedure

It enables a device to discover which devices are in range and determine the address and clocks
for the devices. Inquiry procedure involves a source (inquiring device) sending out inquiry
packets and then receiving the inquiry reply. The destination (discoverable devices) that receives
the inquiry packets will be in the inquiry scan state to receive the inquiry packets. The
destination will then enter the inquiry response state and send an inquiry reply to the source.

After this procedure of inquiring/discovering has completed a connection can be established

13

using paging/connecting procedure describes on the next section. The inquiry / discovering

procedure is asymmetrical.

3.6.4 Paging/Connecting Procedure

A unit that establishes a connection will carry out a page procedure and will automatically
become master of the connection. A device i.e source pages another device i.e destination. The
destination receives the page and sends a reply to the source device. The source sends an FHS
packet to the destination. The destination sends its second reply to the source device and then
both the devices then switch to the source channel parameters. The connection state starts with a
POLL packet sent by the master to verify that slaves has switched to master timing and channel
frequency hope. Paging / connecting procedure asymmetrical. One device is in paging state

while the other is in connectable state.

3.6.5 Connected Mode

When the devices are physically connected to each other in a piconet master can change the
connected mode from active to sniff, hold or parked mode of any device within that piconet.

Different types of modes are described below.

3.6.6 Active Mode
In this mode Bluetooth unit actively participates on the channel. Master schedules the

transmission based on the traffic demands and active slave listen in the master to slave slots for

packet transmission.

3.6.7 Hold Mode

In this mode Master device can put slave device into hold mode where a internal timer is
running. Data transfer restarts instantly when device transition out of hold mode . Hold mode is
used when connecting several piconets. Hold mode is not a general device mode but applies to
unreserved slots on the physical link. In this mode, slots reserved for operation of the
synchronous link type SCO becomes active but all asynchronous links are inactive.

3.6.8 Sniff Mode
Devices synchronized to a piconet can enter power saﬁng modes in which device activity is
lowered. In sniff mode a slave listens to the piconet at reduced rate, thus reducing its duty cycle.

Sniff mode is not a general device mode but applies to the default ACL logical transports. When

14

in this mode, the availability of these logical transports is modified by defining a duty cycle
consisting of periods of presence and absence. Devices that have their default ACL logical
transports in sniff mode may use the absent periods to engage in activity on another physical

channel, or to enter reduced power mode.

3.6.9 Parked Mode A

In this mode device is still synchronized to the piconet but does not participate in the traffic.
Parked devices have given up their MAC (AM_ADDR) address and occasional listen to the
traffic of the master to resynchronize and check on broadcast messages. A slave device may
remain connected to a piconet but have its physical link in the parked state. In this state the
device cannot support any logical links to the master. When the slave is in parked mode the

communication between the master and slave becomes inactive in the physical link.

3.7 Bluetooth Profiles

A Bluetooth enabled device participating in Bluetooth network has its own profile depending on
the application. For example a headset connected with the mobile phone ﬁsing the headset
profile enabling the communication between mobile phone and headset. Profiles are set of
communication methods through which one device communicate with the other. The profiles
can be Advanced Audio Distribution Profile (A2DP), Basic Imaging Profile (BIP), File Transfer
Profile (FTP), Hands-Free Profile (HFP), Synchronization Profile (SYNC), Basic Printing
Profile (BPP) etc.

3.8 Layers of Bluetooth Architecture

The lowest Bluetooth core protocol layers are

L2CAP layer Responsible for managing the ordering of submission of

PDU fragments to the baseband and scheduling

Link Manager Protocol layer Responsible for all aspects of a Bluetooth connection, such

as power control, roles, encryption etc.

Link Controller layer Responsible for the encoding and decoding of Bluetooth
packets from the data payload and parameters related to the
physical channel, logical transport and logical link

Radio layer Responsible for the actual transmitting and receiving of

packets of information on the physical channel

Table 3.6 Bluetooth Core Protocol Stack

15

B B

b — S

dats control

data control . ‘

Device
Control
Services

L2CAP
Resource

Manager

Device
Manager

Bascband.
- layer

Figure 3.5 Protocol Stack

16

- C-Panel &Control services

L2CAP

LMP

Protocol signaling agme———

e -
U-Panel &Data Traffic s

1.C

3.8.1 Protocol Layers Stack

Protocol layers stack of Bluetooth covers the four lowest layers (ra/‘-o layer Link controller
layer/Baseband layer, Link manager protocol layer, logical link contx\,. and adaptation protocol
(L2CAP) layer) with host controller interface (HCI) as an intermediate layer and RFCOM,

service discovery protocol (SDP) as higher layer protocol.

3.8.2 Service Discovery Protocol (SDP)

It provides application to discover which services are provided by or available through Bluetooth
devices. SDP focus on discovering services available from or through Bluetooth devices. It also
allows applications to determine the characteristics of those available services. SDP uses a
request /response model where each communication consists of one request protocol data unit
(PDU) and one response PDU. SDP services stores the information related to service record,
service attribute and service class. Service discovery methods are searching for services and

browsing for the services.

3.83 RFCOM Protocol

RFCOM protocol provides emulation of RS232 serial port over the L2CAP protocol layer.
RFCOMM protocol supports up to 60 simultaneous connections between two Bluetooth devices.
A two devices type exists in RFCOM Type 1 devices (these are communication end point
devices e.g printers, scanners, computers, laptop) and Type 2 devices (these are the devices that

are part of communication e.g modem).

3.84 L2CAP (Logical Link Control and Adaptation Protocol)

L2CAP supports higher level protocol multiplexing, packet segmentation and reassembly,
conveying quality of service information. It provides connection oriented and connectionless
data services to upper layers protocols. LZCAP layer works with the Channel manager (The
channel manager is responsible for creating, managing, and destroying L2CAP channels for the
transport of service protocols and application data streams) and L2CAP resource manager (The
L2CAP resource manager block is responsible for managing the ordering of submission of PDU

fragments to the baseband) to perform the different functions.

17

3.8.5 Host to Controller Interface (HCI)

HCI provides a command interface to the Baseband link controller and Link Manager and access
to the hardware status and control registers. An HCI link command provides Host with the
ability to control the Link layer connections to other Bluetooth deﬁces. HCI provides commands
for accessing Bluetooth hardware capabilities. HCI supports the Link controller, Link policy,
Host controller, baseband commands, and status information parameters. HCI commands and
events are the generic events, controller information, controller configuration, device setup,
device discovery, connection setup, connection state, remote information, piconet structure,

QOS, physical links, Link information and testing,

3.8.6 Link Manager Protocol Layer (LMP)

LMP works with Link Manager for link setup and control. Link manager carries out link setup,
authentication, link configuration, link release and other protocols services. It discovers other
remote Link manager's and communicates them via LMP. LMP consists of a number of PDU
which are sent from one device to another determined by AM_ADDR in the packet header. LMP
PDU's are used for general response, authentication, paging, inquiry, change link key, change
current link key, encryption, LMP version, switch of master slave role, hold mode, sniff mode,
park mode, power control, quality of service, SCO link, pairing connection establishment and

release.

3.8.7 Baseband layer/ Link Controller

It describes the specification of link controller (LC) which caries out the baseband protocol and
low level link routines. It manages physical channels and link apart from other services like error
correction, hop selection and Bluetooth security. Baseband protocol is implemented as a Link
Controller which works with Link manager for carrying out link level routines like connection
and power control. It also manages asynchronous and synchronous links, handles packets and
does paging and inquiry to access and inquire Bluetooth devices in the area. The link controller
is responsible for the encoding and decoding of Bluetooth packets from the data payload and
parameters related to the i)hysical channel, logical transport and logical link. Link controller
works with the Device Manger (which controls the general behavior of the Bluetooth enabled
device, managing the device local name, any stored link keys, and other functionality) and

Baseband resource manager (which is responsible for all access to the radio medium).

18

3.8.8 Radio Layer (RF)

The RF block is responsible for transmitting and receiving packets of information on the
physical channel. A control path between the baseband and the RF block allows the baseband
block to control the timing and frequency carrier of the RF block. The RF block transforms a
stream of data to and from the physical channel and the baseband into required formats.

3.8.9 Bluetooth Controller

The lowest three layers are grouped into a subsystem known as the Bluetooth controller. This
provides interface between the Bluetooth controller and the other layers including the L2CAP,
service layers and higher layers (RFCOMM and SDP) as discussed previously.

3.9 Security of Bluetooth and its Security Modes
In Bluetooth there are three security services which are as follow:
-Services that require authorization and authentication.

-Services that require authentication only.

- Services that are open to all devices.

Bluetooth supports three security modes but one mode can be active for a device participating in

the piconet. The three modes are the following:

e Security Mode 1 Nonsecure mode

e Security Mode 2 Service-level enforced security mode

e Security Mode 3 - Link-level enforced security mo;le
Security Mode 1 is a non secure mode in which devices will not initiate any security procedures
like authentication, encryption, authorization and confidentially. Security mode 1 is used by

those applications in which security is not necessary e.g exchanging things to do, notes and

business cards etc.

19

Security Mode 2 provides the service level security, in which security procedures are initiated
after channel establishment. In this mode a centralized security manger is managing and

controlling policies for accessing and restricting different services to the devices.
Security Mode 3 provides link level security in this mode security procedures are initiated before
the channel establishment. In this mode a secret link key generated through pairing procedure is

shared between the two devices.

The Bluetooth modes are depicted in Figure 3.6.

Security Modes

[L |

Security Mode 1 Security Mode 2 Security Mode 3
No security Service Level Security Link Level Security
- Insecure - - Flexible / Policy-based - . - Fixed -

Figure 3.6 Taxonomy of Bluetooth Security Modes

20

e it eclipnien. |

Chapter 4

Introduction to OMNeT Simulator

21

4.1 What is OMNeT+H+

OMNeT++ is a discrete event simulation environment. Its primary application area is the
simulation of communication networks, but because of its generic and flexible architecture, is
successfully used in other areas like the simulation of complex IT systems, queueing networks or

hardware architectures as well.

OMNeT++ provides component architecture for models. Components (modules) are
programmed in C++, then assembled into larger components and models using a high-level
language (NED). Reusability of models comes for free. OMNeT++ has extensive GUI support,
and due to its modular architecture, the simulation kernel (and models) can be embedded easily

into your applications.

Although OMNeT+ is not a network simulator itself, it is currently gaining widespread
popularity as a network simulation platform in the scientific community as well as in industrial

settings, and building up a large user community.

OMNeT++ has its distant roots iﬁ OMNEeT, a simulator written in Object Pascal by Dr. Gyodrgy
Pongor. The simulator can be used for:

o Traffic modeling of telecommunication networks

e Protocol modeling

e Modeling queueing networks

® Modeling multiprocessors and other distributed hardware systems

* Validating hardware architectures

e Evaluating performance aspects of complex software systems

* Modeling any other system where the discrete event approach is suitable.

4.1.1 Components

¢ simulation kernel library
o compiler for the NED topology description language (nedc)
¢ graphical network editor for NED files (GNED)

e GUI for simulation execution, links into simulation executable (Tkenv)

22

e command-line user interface for simulation execution (Cmdenv)

e graphical output vector plotting tool (Plove)

e graphical output scalars visualization tool (Scalars)

e model documentation tool (opp_neddoc)

e utilities (random number seed generation tool, makefile creation tool, etc.)

e documentation, sample simulations, etc.

4.1.2 Platforms

OMNeT-+ works well on multiple platforms. It was first developed on Linux. Omnet++ runs on
most Unix systems and Windows platforms (works best on NT4.0, W2K or XP).

The best platforms used are:

e Solaris, Linux (or other Unix-like systems) with GNU tools
e Win32 and cygwin32 (Win32 port of gcc)
e Win32 and Microsoft Visual C++

4.1.3 Licensing For OMNet ++

OMNeT+ is free for any non-profit use. The author must be contacted if it is used in a

commercial project. The GNU General Public License can be chosen on Omnet+.

4.2 Installation of the OMNeT++

Prerequisites

o Windows XP, Windows 2000, NT4.0 or other NT-derivative. OMNeT++ is not
supported by WIN95/98/ME, because it uses the Win32 Fiber API which is only
available on NT systems. Moreover, the make files and some batch (.cmd) files use
syntax which is not supported by the old command.com. ‘

e Microsoft Visual Studio 6.0, with at least Service Pack 1 installed. Recommend is
Service Pack 5. First install Visual C++ 6.0 and then install OMNeT++.

e 40MB free space on your hard disk. To compile from source, it requires about 20MB

more.

23

4.3 OMNeT++ Module Structure

e Overall structure of modules with connections plus simulation kernel

» Module B <
|
Module A < :

1

+ Module C <
T 1
1 1
| [T
1 i 1
| i |
1 1 1
R ¥

Simulation Kernel

Figure 4.1 Module structure

Modules

e Modules exchange messages like arrival of a message at a module is an

event.
¢ As OMNeT++ is object-oriented, all modules are instances of certain classes,
representing “module types”.

e These classes must be derived from a specific class, cSimpleModule, an abstract class

which provides basic functionality for a module.

Module example

// === in mymodule.h:

#include “omnetpp.h”

class MyModule: public cSimpleModule
(.

// a macro that calls / creates constructors

24

// and sets up inheritance relationships:
Module_Class_Members (MyModule, cSimpleModule, 0)
// user-specified functionality follows:

in mymodule.cc:
// announce this class as a module to OMNeT:
Define_Module (MyModule);

4.4 Simulation Modeling In OMNet ++

The following are types of modeling that can be used:

¢ communication protocols

¢ computer networks and traffic modeling
¢ multi-processor and distributed systems
e administrative systems

e And any other system where the discrete events approach is suitable.

4.4.1 Library Modules
Object libraries can be made using simple modules. The best simple modules to be used for

library modules are the ones that implement:

o Physical/Data-link protocols: Ethernet, Token Ring, FDDI, LAPB etc.

¢ Higher layer protocols: IP, TCP, X.25 L2/L3, etc.

¢ Network application types: E-mail, NFS, X, audio etc.

¢ Basic elements: message generator, sink, concentrator/simple hub, queue etc.

e Modules that implement routing algorithms in a multiprocessor or network
44.2 Network Moduling

A model network consists of “nodes” connected by “links. The nodes representing blocks,
entities, modules, etc, while the link representing channels, connections, etc. The structure of

how fixed elements (i.e nodes) in a network are interconnected together is called topology. -

Omnet++ uses NED language, thus allowing for a more user friendly and accessible
environment for creation and editing. It can be created with any text-processing tool (perl, awk,
etc).

25

4.4.3 Network Description (NED)

NED language describes the modular description of networks. The network description consists
of a number of component descriptions such as channels, simple and compound module types,
parameters and gates etc and can be used in various network descriptions. Thus, it is possible for

the user to customize his or her personal library of network descriptions.

A NED description can contain the following components, in arbitrary number or order:
s import statements

o channel definitions

o simple and compound module declarations

e system module declarations

45 USER INTERFACES
The OMNet++ provides two types of user interfaces which are:
o Tkenv: Tk-based graphical, windowing user interface (X-Window, Win95, WinNT

etc...)

e Cmdenv: command-line user interface for batch execution

Simulation is tested and debugged under Tkenv, while the Cmdenv is used for actual simulation

experiments since it supports batch execution.
4.5.1 Tkenv

Tkenv is a portable graphical user interface. It has support of tracing, debugging, and simulation
execution and has the ability to provide simulation information at any point during the
execution. This feature makes Tkenv a good GUI interface for the simulations. A snapshot of a
Tkenv interface is shown in figure 4.2.

26

Figure 4.2 Example of a Tkenv User Interface in Omnet++.

Important feaures in Tkenv:

o Separate window for each module's text output

o Scheduled messages can be watched in a window as simulation progresses

o Event-by-event execution

o Execution animation

o Labeled breakpoints

e Inspector windows to examine and alter objects and variables in the model

o Qraphical display of simulation results during execution. Results can be displayed as
histograms or time-series diagrams.

o Simulation can be restarted

o Snapshots (detailed report about the model: objects, variables etc.)

It is recommended for testing and debugging when used with gdb or xxgdb. Tkenv provides a
good environment for experimenting with the model during executions and verification of the
correct operation during the simulation program and also able to display simulation results

during execution.

27

4.5.2 Cmdenv
Cmdenv is designed primarily for batch execution. It is a portable and small command line
interface that provides fast compilation and runs on all platforms. Cmdenv simply executes all

simulation runs that are described in the configuration file.

4.6 NED Overview |
The topology of a model is specified using the NED language. The NED language supports the

modular description of a network that may consist of a number of component descriptions
(channels, simple/compound module types). The channelé, simple modules and compound

modules of one network description can be reused in another network description.

Files containing network descriptions have a .ned suffix. NED files can be loaded dynamically
into simulation programs, or translated into C++ by the NED compiler and linked into the

simulation executable.

4.6.1 Reserved words /
The reserved words of the NED language are:

Import channel endchannel simple endsimple
Module endmodule error delay datarate
const parameters gates submodules connections
gatesizes if for do ~ endfor
network endnetwork nocheck ref ancestor
true false like input numeric
string bool char xml ~ xmldoc

4.6.2 Identifiers

Identifiers are the names of modules, channels, networks, submodules, parameters, gates,
channel attributes and functions. Identifiers must be composed of letters of the English alphabet
(a-z, A-Z), numbers (0-9) and the underscore “ . Identifiers may only begin with a letter or the
underscore. If you want to begin an identifier with a digit, prefix the name you’d like to have

with an underscore, e.g. _3Com.

28

Ty S2/3

4.6.3 Case sensitivity
In OMNet all identifiers and the network description are case sensitive. For example, TCP and

Tep are two different names.

4.64 Comments
Comments in NED file is just like C++ comments that begin with a double slash *//°, and last
until the end of the line. Comments are ignored by the NED compiler.

4.6.5 The import directive

The import directive is used to import declarations from another network description file. When
a file is imported, only the declaratiori information is used. Also, importing a .ned file does not
cause that file to be compiled with the NED compiler when the parent file is NED compiled,

i.e., one must compile and link all network description files not only the top-level ones.
Example:

import "ethernet"; // imports ethernet.ned

4.7 Simple module definitions

Simple modules are the basic building blocks for other (compound) modules. Simple module
types are identified by names. By convention, module names begin with upper-case letters. A
simple module is defined by deélaring its parameters and gates. Simple modules are declared

with the following syntax:

simple SimpleModuleName
parameters:
/...
gates:
/...

endsimple

29

4.7.1 Compound Module Definitions

Compound modules are modules composed of one or more submodules. Any module type
(simple or compound module) can be used as a submodule. Like simple modules, compound
modules can also have gates and parameters, and they can be used wherever simple modules can
be used.

A compound module definition looks similar to a simple module definition: it has gates and

parameters sections. There are two additional sections, submodules and connections.

The syntax for compound modules is the following:
module CompoundModule

parameters:

/...

gates:

/...

submodules:

/...

connections:

/...

endmodule

4.7.2 Network definitions

Module types can be defined as module declarations (compound and simple module
declarations) for simulation model a network definition is necessary that declares a simulation
model as an instance of module type. There can be several network definitions in your NED

files. Simulation will be able to run any of those NED files.

The syntax of a network definition is similar to that of a submodule declaration:
network wirelessLAN: WirelessLAN

parameters:

numUsers=10,

httpTraffic=true,

30

fipTraffic—true,
distanceFromHub=truncnormal(100,60);
endnetwork

In large networks, you have two possibilities for generating NED files:
1. Generating NED files from data files
2. Building the network from C++ code

The two solutions have different advantages and disadvantages. The first is more useful in the
model development phase, while the second one is better for writing larger scale, more

productized simulation programs.

4.7.3 Generating NED files

Awk or Perl are good text processing tools that can read textual data file and then generate NED
files and it can also be easily modified. The NED files can either be translated by ned tool in to
C++ and compiled in, or loaded dynamically. It also provides database support.

4.7.4 Building the network from C++ code

Another alternative is to write C++ code which becomes part of the simulation executable. The
code would read the topology data from data files or a database, and build the network directly,
using dynamic module creation. The code which you need to write would be similar to the

* n.cc files output by nedtool.

Since writing such code is more complex than letting perl generate NED files, this method is
recommended when the simulation program has to be somewhat more productized, for example
when OMNeT++ and the simulation model is embedded into a larger program, e.g. a network
design tool.

31

Chapter 5

Experimental Analysis And Simulation
Results

32

Experiments are performed in OMNeT simulator 3.3. OMNeT simulator covers a large number of
application, protocols, network elements and with different traffic model. Its primary application
area is the simulation of communication networks, but because of its generic and flexible
architecture, is successfully used in other areas like the simulation of complex IT systems,
queueing networks or hardware architectures as well. OMNeT++ provides component
architecture for models. Components (modules) are programmed in C++, then assembled into
larger components and models using a high-level language (NED). Reusability of models comes
for free. OMNeT++ has extensive GUI support, and ‘due to its modular architecture, the
simulation kernel (and models) can be embedded easily into your applications.

OMNeT++ uses NED and CPP source files for compilation of the simulation

5.1 Experimental Setup
Network Scenarios
In exploring the performance of voice packets on Bluetooth SCO link, the behaviors in
the two scenarios are studied.
e Device 1(master) to Device 2 (Slave) [piconet without delay]

e Device 1(master) to Device 2 (Slave) [piconet in presence of delay]

In our simulation model two mobiles are connected with each other in piconet (one is
master and the other is slave) of link bandwidth 1Mbps with packet type HV3, link type
SCO, protocol L2CAP, LC, LM, RF and security mode 1 with profile general audio /
video. Where devicel is acting as master and device2 is acting as slave in the piconet.
Device? is identified by AM_ADDR which is 3 bit address. Both the devices are using
0111 type code for packet in SCO link.

(a) Scenario 1:

In the first scenario M1 mobile is acting as sender (master) and M2 mobile as receiver
(slave) in environment without delay i.e Oms delay with 100 bits BER and data rate
1500 bps.

33

Bluetooth Link / Connectivity

—x

MI(Device 1) Figure 5.1 Scenario 1 M2 (Device 2)

(b) Scenario 2:

In the second scenaric M1 mobile is acting as sender (master) and M2 mobile as receiver
(slave) in the presence of delay i.e 50, 100, 150, 250 ms delay with 100 bits BER and
data rate 1500 bps.

Bluetooth Link / Connectivity

R —

MI(Device 1) Figure 5.2 Scenario 2 M2 (Device 2)

5.2 Compiling the Simulation

First open the command prompt then go to the OMNeT++ directory. Now open the project
directory. Then type the following command for compiling the simulation.

> opp_nmake make —f
It will use .NED nd .CPP source files after that type the command
> nmake —f makefile.vc
Then during compilation this command will create some necessary files for the simulation. It

will use the following files envir.lib , tkenv.lib , tcl84.lib, tk84.1ib, sim_std.lib, nedxml.lib,
libxle.liB, iconv.lib, wsock32.lib. '

34

After that it will create the following files makefile.vc, BT_network_n.cpp, BT_network_n.obj,

BT _device.obj and bluetoth .exe for running simulation.

S e

Figure 5.3 Compiling the simulation

5.3 Running the Simulation

Firstly go to the project directory and execute bluetoth.exe by double clicking on that exe file. It
will show an interface with the TK environment (TKenv) as shown in figure 5.4 and the device
simulation interface as shown is figure 5.5.By clicking on the run simulation button simulation
can be run.

After the completion of simulation it will create two file one is vector and the other is scalar in

which all the data is recorded / stored.

35

-
:

= =
S
S

lation

1mu

e

L

ing the s

.4 Runn

5

F

Townith
igure

T

[

SR

e

o
s

st b

,,é;;;

o

i

o

¥,
o

N
o
G

i

G

Figure 5.5 Running the simulation interface
36

5.4 Scenariol

Vector Graph device 1 and device 2 (with Oms delay)

0.1

0.05

Delay
(=]
|

-0.05

01—

-.-End-h—EndDelay mBT_Ndworkde\nae‘l [wmefppvec]
~@- Endt5-End Delay in BT_Network device2 (omneipp.vec)

0.1

-0.05 0 0.05 ' 0.1

Figure 5.6 End to End delay (devicel & 2 with Oms delay)

The above figure shows the end to end delay of device 1 and 2 in the form of vector

graph.

The end to end delay of both the devices is zero against the different time span it is not

possible in the real world but for the comparison with other scenario the test has been

performed. Time is taken on x- axis and the delay is on y- axis .In this graph the values

of delay is zero for both the devices (device 1 and device 2). The values for Bit Error

37

Rate (BER) are taken 100 bits and the data rate is 1500 bps for both the devices. Now
see the performance that is maximum here in this case. The performance depends on the
delay if the delay is minimum then maximum performance will be achieved. Here in this

case the performances of both the devices are equal because both the devices have the

same mean, standard deviation and variance.

Scalar Graph (with Oms delay)

scalar
5 = _ -.F-BT . d;v'i:e " '-'Ei-lii'i:'-El';' 4 Doy Sﬂlﬂ
-.- BT _Nebwork device? - End-to-End Defay:.mean :
| - BT_Network 'd;;;;:Eﬁﬁéﬁiﬁ?ﬁ;mﬁ&
4 . =l BTNk device? - End £d Delay:.min
~#8- BT _Nework device? - End-o-End Deiay: mex
. b BT Nelwork device? - Simuaion durgion 1
- BT _Network device2 - End-o-Ed Detey: samplel
37 -‘—BT_Nm«kdamezEnﬁ-h-EndDehymm
g . "’" BT_Nebwork. “"‘“2 - Encio-End Delay: """"’ y
= + BT_Nebwork . d:\ncez . Eud-in-Eﬁd Delay:min
2] =BT Nework mcez.-.m.afawm;.m L
.
0—)
[T T - T | T I T]
04 005 0 0.05 04
Values

Figure 5.8 Simulation duration (with Oms delay)

The above figure shows the simulation duration of device 1 and device 2 in the form of
scalar graph. In this graph the values (mean and standard deviation) are taken at X-axis
and the time is taken on Y-axis. In this graph value of mean and variance is zero at every

simulation time. This shows that at the minimum delay the values of the mean and

38

standard deviation is zero or minimum. The delay can be minimized by the minimum
interference of other devices.

The above graph shows the standard deviation but rest of the values i.e mean variance,
minimum, maximum and samples are not shown because all have the same values. In
real world Oms delay is not possible but for the comparison and evaluation purpose this

test has been performed to compare the results with the other scenario.

54.1 Delay (0, 0)

Table 5.1 shows that In the first scenario Device 1 have Oms delay with BER 100 bits
and data rate of 1500 bps the mean , standard deviation and variance is 0. Device 2 has
also Oms delay with BER 100 bits and data rate of 1500 bps the mean, standard
deviation and variance is 0. For both the devices the mean, standard deviation and

variance is same i.e equal to zero, that shows the equal and best performance.

Device Delay BER Data rate | Mean Std Dev | Variance
(ms) (bits) (bps) '

Devicel |0 100 1500 0 0 0

Device2 |0 100 1500 0 0 0

Table 5.1 Device 1 and Device 2 delay Oms

39

T

5.5 Scenario 2

Vector Graph device 1 and 2 (with delay 50ms, 100ms)

< End0-End Dol ork device! (omnetpp vec)

Tima

Figure 5.9 End to End delay (devicel & 2 with 50,100ms delays)

The above figure shows the end to end delay of device 1 and device 2 in the form of
vector graph. In this graph the delay of device 1 is 50ms and the delay of device 2 is
100ms. The Bit Error Rate (BER) of both the devices is 100 bits and the Data Rate is
also same of the both the devices that is 1500 bps. The result obtained from this data

differs from one another due to change in delay of both the devices.

40

The graph shows the delay verses time. The following results are obtained from the

above graph.

Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.15 9.06 0.05 2.35
0.3 2.7 0.20 13.40
0.45 16.2 0.35 7.35.
0.60 7.2 0.5 35.0
0.75 29.25 0.65 42.25
0.90 333 0.30 36.80
1.05 9.45 0.95 73.15
1.20 56.4 1.1 75.9
1.35 39.15 1.25 11.25

Table 5.2 Delay vs Time ’

The above Table shows the different values of delay with respect to time. In this table
different delays are observed at time span 0.15 the delay is 9.6ms and at 0.3 time span
the delay is 2.7ms in this way all the delays are shown in the above table with respect to
time. Here the time span is 0.15 it means that the delay is recorded after at every 0.15ms.
In this table we see a great variation in delay. The variation in delay and zig zag curve as

shown in the graph will be due to the change in frequency channels.

41

Scalar Graph (with delay 50ms,100ms)

Device Comparison

M BT Nebwark device - Smulaion
BT Newor device - EnEnd
W BT _Nebwork device! - End-n-End

‘0_1

omnetpp.sca #0 (at line 1)—1

Figure 5.10 Simulation duration (with 50 & 100ms delay)

The above figure shows the simulation duration of device 1 and device 2 in the form of
scalar graph. This graph shows the comparison of device 1 and device 2. In this
comparison mean, standard deviation and variance of device 1 is compared with the
device 2 by applying the delay. The delay of device 1 is 50ms and delay of device 2 is
100ms. The Bit error rate and data rates are constant in this comparison. The mean and
standard deviation of device 1 are 22.5833 and 17.9968 respectively. Similarly the delay
of device 2 is 100ms, bit error rate and data rate are constant. The mean and standard
deviation of device 2 are 37.405 and 26.2105 respectively. While comparing the mean
and standard deviation of device 1 and device 2 we see that the mean and standard

deviation depends upon the value of delay the less value of delay causes decrease in

42

mean and standard deviation. In the above graph the mean and standard deviation of

device 1 is less than the value of mean and standard deviation of device 2.

5.5.1

Delay (50,100)

Table 5.3 shows that the Device 1 has 50ms delay with BER 100 bits and data rate of
1500 bps the mean, standard deviation and variance is 22.5833, 17.9968 and 8.9984
respectively. .Device 2 have 100ms delay with BER 100 bits and data rate of 1500 bits
the mean, standard deviation and variance is 37.405, 26.2105 and 13.10525 respectively

.As device 1 have mean, standard deviation and variance is less than the device 2 so the

device 1 is showing the better performance as compared to device 2 in the presence of

delay introduced in both the devices.

Device Delay BER Data rate | Mean Std Dev Variance
(ms) (bits) (bits)

Devicel | 50 100 1500 22.5833 17.9968 8.9984

Device2 | 100 100 1500 37.405 26.2105 13.10525

Table 5.3 Device 1 and Device 2 delay 50ms,100ms respectively

43

Vector Graph device 1 and 2 (with delay 250ms, 150ms)

20—

10

- Erd--End Delay in BT_Nebaork de\nce1 (omnetpp
<@~ Eni-o-Erd Defay in BT_Network device?

Bipp vec)

f
2

l

i T

4

Figure 5.11 End to End delay (devicel & 2 with 250,150 delay)

The above figure shows the end to end delay of device 1 and device 2 in the form of

vector graph.

The graph shows the delay verses time. The following results are obtained from the

above graph.
Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.4 25.6 0.25 11.75
0.8 7.8 0.65 43.55
1.2 43.2 1.05 22.05
1.6 19.2 1.45 101.5
2.0 78 1.85 120.25

Device 1 Device 2
Time Delay (ms) Time Delay (ms)
2.4 88.8 2.25 1035
2.8 25.2 2.65 204.05
3.2 150.4 3.05 210.45
3.6 104.4 6.45 169.25
4.0 156 3.85 73.15
44 250.8 4.25 276.25
4.8 355.2 4.65 148.8
5.2 390 5.05 116.15
5.6 190.4 5.45 299.15
Table 5.4 Delay vs Time

The above Table shows the different values of delay with respect to time. In this table
different delays are observed at time span 0.4 the delay is 25.6ms and at 0.8 time span
the delay is 7.8ms in this way all the delays are shown in the above table with respect to
time. Here the time span is 0.4ms it means that the delay is recorded after at every

0.4ms. In this table we see a great variation in delay. The variation in delay is due to

change in frequency channel as shown in graph.

45

Scalar Graph (with delay 250ms, 150ms)

Devices Comparison

B omnetpp scakd (at line 1) - Simulation duration

. JI__omnelop.sca# (atline 1] - Ens-o-Erid Delay. samples.
I omneipp scadl (at ine 1) - End-ko-End Delay:.mean

- --omneipp.3ca¥0 {at ine 1) - End-io-End Delagec
M omneigp scakd (at line 1) - End-o-End Del

~-omnelpp-scal {at fne 1] End-o:End D

BT_Network device2 J

BT_Network.device1

Figure 5.12 Simulation duration (with 250 & 150ms delay)

The above figure shows the simulation duration of device 1 and device 2 in the form of
scalar graph

This graph shows the comparison of device 1 and device 2 in this comparison mean and
standard deviation of device 1 is compared with the device 2 by applying the delay. The
delay of device 1 is 250ms and delay of device 2 is 150ms. The Bit error rate and data
rates are constant in this comparison. The mean and standard deviation of device 1 are
i 134.6 and 123.7807 respectively. Similarly the delay of device 2 is 150ms with bit error

rate and data rate are constant. The mean and standard deviation of device 2 are

46

126.6833 and 92.1629 respectively. While comparing the mean and standard deviation
of device 1 and device 2 we see that the mean and standard deviation depends upon the
value of delay, the less value of delay causes decrease in mean and standard deviation.
In this case the mean and standard deviation of device 2 is less than the value of mean
and standard deviation of device 2 showing the better performance of device 2 as

compared with device 1.

5.5.2 Delay (250,150)

Table 5.5 shows that the Device 1 has 250ms delay with BER 100 bits and data rate of
1500 bps the mean, standard deviation and val'iance is 134.6, 123.7807 and 61.89035
respectively. Device 2 have 150ms delay with BER 100 bits and data rate of 1500 bits
the mean, standard deviation and variance is 126.6833, 92.1629 and 46.08145
~ respectively. In this case we have reduced the delay of device 2 as it has the mean,
standard deviation and variance is less than the device 1 so the device 2 is showing the
better performance as compared to device 1 in the presence of delay introduced in both

the devices and as the variance of device 2 is better than the device 1 showing the better

performance between the two.

Device Delay BER Data rate | Mean Std Dev Variance
(ms) (bits) (bits) ‘

Device 1 | 250 100 1500 134.6 123.7807 | 61.89035

Device 2 | 150 100 1500 126.6833 | 92.1629 46.08145

Table 5.5 Device 1 and Device 2 delay 250ms,150ms respectively

47

Vector Graph with different data rate

nBhd Delay in BT_Nebwork device? (ormetpp.ve)
~@- Epdo-Ehd Delay in BT Network device2 (omnetpp.vec)

Delay

Time

Figure 5.13 End to End delay (devicel & 2 with 1500,200 data rate)

The above figure shows the end to end delay of device 1 and device 2 in the form of

vector graph.

The graph shows the delay verses time. The following results are obtained from the

above graph.
Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.015 0.96 0.01 0.47
0.03 0.27 0.025 1.675
0.045 1.62 0.04 0.84
0.06 0.72 0.055 3.85
0.075 2.925 0.07 4.55

48

Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.09 33 0.085 3.91
0.105 0.945 10.1 7.7
0.120 5.64 0.115 7.935
0.135 3.915 0.3 6.37
0.15 5.85 0.145 2.755
0.16 9.405 0.15 10.4
0.18 13.32 0.16 5.6
0.195 14.625 0.175 4.37
0.21 7.14 0.19 11.275
0.225 11.925 0.25 0
0.240 4.08 0.22 8.93
0.255 10.71 0.235 1
0.270 0.27 0.25 8.215
0.285 9.975 0.265 11.48

Table 5.6 Delay vs Time

The above Table shows the different values of delay with respect to time. In this table
different delays are observed at time span 0.015 the delay is 0.96ms and at 0.03 time
span the delay is 0.27ms in this way all the delays are shown in the above table with
respect to time. Here the delay is recorded after at different time span. In this table we
see a great variation in delay. From the above table it shows that if we change the data
rate as device | have 1500 bits and device 2 has 200 bits data rate we can see the
performance that device 2 has better performance as compared to device 1 if we have

less data rate then the performance will be better as losses are less. So data rate also

effects the performance.

49

Scalar Graph with different data rate

Devices Comparison

—— 0 3 i 1) - Sivalln drion™
{atline 1] - End-f0-End Delay: samples
40 (e 1] - End-o-End Delay: mean
......................... (atfine 1) - End-to-End Delay. ghidev,

{atline 1] - End-i0-End Del
[(atline. 1] - End4n-End De

BT _Network.device2 —

BT_Network.device1

Figure 5.14 Simulation duration (with 1500 & 200 data rate)

The above figure shows the simulation duration of device 1 and device 2 in the form of

scalar graph.

This graph shows the comparison of device 1 and device 2 in this comparison mean and
standard deviation of device 1 is compared with the device 2 by applying the different
data rate. The Bit error rate is constant in this comparison. The mean and standard
deviation of device 1 are 7.5526 and 6.2875 respectively. Similarly the device 2 with bit
error rate is constant but data rate is 200 bits. The mean and standard deviation of device
2 are 6.833 and 4.8449 respectively. While comparing the mean and standard deviation

of device 1 and device 2 we see that in this case the mean and standard deviation

50

depends upon the data rate, the less value of data rate causes decrease in mean and
standard deviation. In this case the mean and standard deviation of device 2 is less than
the value of mean and standard deviation of device 1 showing the better performance of

device 2 as compared with device 1 with the different data rates.

5.5.3 Data rate (1500, 200)

Table 5.7 shows that the Device 1 has 50ms delay with BER 100 bits and data rate of
1500 bps the mean, standard deviation and variance is 7.5526, 6.2875 and 3.1437
respectively. Device 2 have 50ms delay with BER 100 bits and data rate of 200 bits the
mean, standard deviation and variance is 6.833, 4.8449 and 2.4224 respectively. In this
case both the devices have the same delay but device 2 as it has mean and standard
deviation is less than the device 1 so the device 2 is showing the better performance as
compared to device 1 in the presence of same delay and the same BER but with different

data rates. Hence data rate will affect the performance.

Device Delay BER Data rate | Mean Std Dev Variance
(ms) (bits) (bits)

Device 1 | 50 | 100 1500 7.5526 6.2875 3.1437

Device2 | 50 100 200 6.833 4.8449 24224

Table 5.7 Device 1 and Device 2 data rate 1500,200 respectively

5.6 Formula Used

‘We have used the built in statistics function of OMNeT++ to calculate the mean and standard

deviation and variance.

End to End delay
The formula used to calculate end to end delay is

eed = simulation Time() — message creation Time();

51

Chapter 6

CONCLUSION

52

CONCLUSION

After the experiments of both the scenarios we have come to the conclusion by
evaluating the performance of the voice packets on the SCO link that in first scenario in
the absence of delay and interference the voice packets and performance will not be
effected as with different time interval between the sender and receiver but in the second
scenario as in the presence of delay the voice packets will be effected when delay is
added in the environment, the difference between the mean , standard deviation and

variance is recorded between the sender and the receiver.

In the second scenario we have less performance due to delay and overcrowded
environment between the sender and receiver, as the delay is less the better the
performance will be keeping the BER and data rate same. But the performance with

different data rates with the same delay and BER will also reduce the performance

Overall performance in the presence of delay and interference like (in the presence of
wireless LAN setup , Microwave oven and other devices operating at the same

frequencies) may drop the Voice packets and reduced the performance.

As we see in the results that data rate also effects the performance in the. presence of
delay if lesser is the data rate the better the performance will be in the presence of delay.
As interference causing the delay effects the radio layer which is responsible for the
transmitting and receiving of packets on the physical channel. Logical link layer

including (logical link, transport layer) controls the packets i.e encoding and decoding

53

~pr

and remove the errors in the packet. To minimize interference from other devices
Frequency-hopping spread spectrum (FHSS), short data packets as we have tested in our

simulation and adaptive power control is used by the bluetooth device.

The delay can be caused due to the devices that operate in the same band, due to WLAN,
thunderstorm, cordless phone and microwave ovens. Physical test has been performed to
check what effect delay can cause during the communication. Two Bluetooth enabled
mobile devices are used with java support in which super Bluetooth hack software is
installed to test the communication between the devices. In the presence of microwave
oven voice call has been established between the two mobile phones. Voice is
interrupted due to delay caused by the frequency of microwave oven but as the device is
moved away from the microwave oven the communication becomes stable.

So at the end we conclude on basis of our results that delay can effect the performance.

54

[1]

(2]

3]

(4]

(51

[6]

(7
[8]
[9]
[10]

[11]

[12]

BIBLIOGRAPHY

Bluetooth: ATechnical Overview, ACM Students Magazine, http://portal.acm.org.”

Yun Wu, “SCO link sharing in Bluetooth voice access networks”, in journal of Parallel

and distributing computing.

Johansson, P., Kapoor, R., Kazantzidiz, M. and Gerla, M. “Personal Area Networks:
Bluetooth or IEEE 802.11” International Journal of Wireless Information Networks,
Vol. 9.

R. Kapoor, C. Jyh-Ling, Y.Z. Lee and M. Gerla, “Bluetooth: carrying voice over ACL
links,” in the proceedings of 4th International Workshop on Mobile and Wireless

Communications Network .

N. GOLMIE#*, R.E. VAN DYCK, “Interference Evaluation of Bluetooth and IEEE
802.11b systems” ,in IEEE 802.11,Wireless Networks.

Leong Wai Yie, J.Homer, “Determining soft blocking in Bluetooth network,” IEEE
International Conference on Industrial Technology, EEE ICIT '02.

J. Bray and C. F. Sturman,” Bluetooth - Connect Without Cables”, Prentice Hall.
J. C. Haartsen, "The Bluetooth Radio System," IEEE Personal Communications.
R. Schneiderman, "Bluetooth's Slow Down," IEEE Spectrum.

Syngress - Bluetooth Application Developers Guide.

http://bluetooth.com/Bluetooth/Learn/Works/Core System_Architecture.htm
"Architecture of Bluetooth™.

Andras Varga "OMNET-+ User Manual” http://whale.hit.bme.huw/omnetpp/

55

[13] Holger Karl "OMNET++ A Tool For Simulation Programming" http:/www.tkn.tu-
berlin.de/curricula/ss07/praxis_sim/SimPraxis-Omnet.pdf

56

APPENDICES

57

APPENDIX A
Source Code

BT _Device cpp source code

#include <stdio.h>
#include <string.h>
#include <omnetpp.h>

/**
* Derive the BT Device class from cSimpleModule. In the Bluetooth network,
* both the “devicel’ and "device2' modules are BT Device objects, created by
OMNeT++
* at the beginning of the simulation.
*/
class BT Device : public cSimpleModule
{
private: .
int counter;
cOutVector endToEndDelayVec;
cStdDev eedStats;

protected:
// The following redefined virtual function holds the algorithm.
virtual void initialize();
virtual void handleMessage(cMessage *msg);
virtual void finish();
I

// The module class needs to be registered with OMNeT++
Define Module(BT Device);

void BT Device::initialize()

{

endToEndDelayVec.setName("End-to-End Delay");
eedStats.setName("End-to-End Delay:");

counter=1;
WATCH(counter);

if (strcmp("devicel", name()) == 0)
// create and send first message on gate "out". "tictocMsg" is an

// arbitrary string which will be the name of the message object.
cMessage *msg = new cMessage(" Voice Packet");

58

send(msg, "out");

}

void BT_Device::handléMessage(cMessage *msg)
{

simtime t eed = simTime() - msg->creationTime();

eed=eed* intrand(6);
endToEndDelayVec.record(eed);
eedStats.collect(eed);

counter ++;
if (counter==20)
{

// If counter is Twenty, delete messages. If you run the model,
you'll

// find that the simulation will stop at this point with the message

// "no more events".

ev << name() << "'s counter reached at Maximum Limit so now
Deleting message\n";

delete msg;
}
else
{
if (stremp("devicel", name()) = 0)
bubble("Going to Device 2!");
else
bubble("Going to Device 1!");
ev << name() << "'s counter is " << counter << ", sending back
message\n";
send(msg, "out");
}
}
void BT Device::finish()
{
recordScalar("Simulation duration", simTime());
eedStats.recordScalar();
}

59

BT_Nctwork NED file Source Code

module BT net
submodules:
devicel: BT Device;
display: "i=device/palm2,#808000;p=173,160";
device2: BT Device;
display: "i=device/cellphone, #80ff80;p=371,80";
connections:
devicel.out --> delay 10ms --> device2.in;
devicel.in <-- delay 10ms error 0 datarate 1024 <-- device2.out;
display: "b=478,312";
endmodule

BT _Network n.cpp Source Code

#include <math.h>
#include "omnetpp.h"

// NEDC version check

#define NEDC_VERSION 0x0303

#f (NEDC_VERSION!=OMNETPP_VERSION)

error Version mismatch! Probably this file was generated by an earlier version of
nedc: 'make clean' should help.

#endif

// Disable warnings about unused variables. For MSVC and BC only:
/ GCC has no way to turn on its -Wunused option in a source file :(
#ifdef MSC_VER

pragma warning(disable:4101)

#endif

#ifdef _ BORLANDC __

pragma warn -waus

pragma warn -wuse

#endif

static cModuleType * getModuleType(const char *modname)

{
cModuleType *modtype = findModuleType(modname);

if (modtype)
throw new cRuntimeError("Module type definition %s not found (Define_Module()
missing from C++ code?)", modname);
return modtype;

}

static void _checkModuleVectorSize(int vectorsize, const char *mod)

60

{
if (vectorsize<0)
throw new cRuntimeError("Negative module vector size %s[%d]", mod,
vectorsize);

}

static void _readModuleParameters(cModule *mod)
{
int n = mod->params();
for (int k=0; k<n; k++)
if (mod->par(k).isInput())
mod->par(k).read();
}

static int _checkModuleIndex(int index, int vectorsize, const char *modname)
{
if (index<0 || index>=vectorsize) v
throw new cRuntimeError("Submodule index %s[%d] out of range, sizeof(%es) is
%4d", modname, index, modname, vectorsize);
return index; '
}

static cGate * _checkGate(cModule *mod, const char *gatename)
{ _
cGate *g = mod->gate(gatename);
if ('g)

throw new cRuntimeError("%s has no gate named %s",mod->fullPath().c_str(),
gatename);

returmn g;
}

static cGate *_checkGate(cModule *mod, const char *gatename, int gateindex)

{
cGate *g = mod->gate(gatename, gateindex);
if (g)
throw new cRuntimeError("%s has no gate %s[%d]",mod->fullPath().c_str(),
gatename, gateindex);
return g;
}

static cGate *_getFirstUnusedParentModGate(cModule *mod, const char *gatename)
{ _
int baseld = mod->findGate(gatename);
if (baseld<0)
throw new cRuntimeError("%s has no %s[] gate",mod->fullPath().c_str(),
gatename); '
int n = mod->gate(baseld)->size();

61

for (int i=0; i<n; i++)
if ('mod->gate(baseld+i)->isConnectedInside())
return mod->gate(baseld+i);
throw new cRuntimeError("%s[] gates are all connected, no gate left for “++'
operator",mod->fullPath().c_str(), gatename);
}

static cGate *_getFirstUnusedSubmodGate(cModule *mod, const char *gatename)
{
int baseld = mod->findGate(gatename);
if (baseld<0)
throw new cRuntimeError("%s has no %s[] gate",mod->fullPath().c_str(),
gatename);
int n = mod->gate(baseld)->size();
for (int i=0; i<n; i++)
if ('mod->gate(baseld+i)->isConnectedOutside())
return mod->gate(baseld+i);
int newBaseld = mod->setGateSize(gatename,n+1);
return mod->gate(newBaseld+n);
}

static cFunctionType * getFunction(const char *funcname, int argcount)
{

cFunctionType *functype = findFunction(funcname,argcount);

if ('functype) .

throw new cRuntimeError("Function %s with %d args not found", funcname,

argcount);

return functype;
}

static cChannel * _createChannel(const char *channeltypename)
{
cChannelType *channeltype = findChannel Type(channeltypename);
if ('channeltype)
throw new cRuntimeError("Channel type %s not found", channeltypename);
cChannel *channel = channeltype->create("channel”);
return channel; '

}

static cChannel * createNonTypedBasicChannel(double delay, double error, double
datarate)
{

cBasicChannel *channel = new cBasicChannel("channel");

if (delay!=0) channel->setDelay(delay);

if (error!=0) channel->setError(error);

if (datarate!=0) channel->setDatarate(datarate);

return channel,;

62

}

static cXMLElement * getXMLDocument(const char *fname, const char
*pathexpr=NULL)

cXMLElement *node = ev.getXMLDocument(fname, pathexpr);
if (Inode)
throw new cRuntimeError(!pathexpr ? "xmldoc(\"%s\"): element not found" :
"xmldoc(\"%s\", \"%s\"): element not found",fname,pathexpr);
return node;

}

ModuleInterface(BT Device)
// gates:
Gate(in, GateDir_Input)
Gate(out, GateDir_Output)
EndInterface

Register Modulelnterface(BT_ Device)

//// Sample code:

// class BT_Device : public cSimpleModule

/R4

/" Module Class Members(BT Device,cSimpleModule,16384)
/I virtual void activity();

/I /I Add you own member functions here!

UBE

/

// Define_Module(BT Device);

/

// void BT Device::activity()

/R

/" /I Put code for simple module activity here!
'}

/

ModuleInterface(BT net)
EndInterface

Register Modulelnterface(BT net);

class BT net : public cCompoundModule

{
public:

BT net() : cCompoundModule() {}
protected:
virtual void doBuildInside();

63

}s
Define Module(BT _net);

void BT net::doBuildInside()

{
cModule *mod = this;

// temporary variables:
cPar tmpval,
const char *modtypename;

mod->setBackgroundDisplayString(""b=478,312");

// submodules:
cModuleType *modtype = NULL;
int submodindex;

//

// submodule 'devicel":

//

int devicel size=1;

modtype = _getModuleType("BT Device");

cModule *devicel p = modtype->create("devicel", mod);

{

cContextSwitcher _ ctx(devicel p); // do the rest in this module's context

_readModuleParameters(devicel_p);
devicel p->setDisplayString("i=device/palm2,#808000;p=173,160");
}

"

// submodule 'device2":

/

int device2_size = 1;

modtype = _getModuleType("BT_Device");

cModule *device2 p = modtype->create("device2", mod);
{

cContextSwitcher _ ctx(device2 p); // do the rest in this module's context

_readModuleParameters(device2 p);
device2 p->setDisplayString("i=device/cellphone,#80ff80;p=371,80");
}

// connections:
/
cGate *srcgate, *destgate;

64

cChannel *channel,;

cPar *par;

// connection

srcgate = _checkGate(devicel p, "out");

destgate = checkGate(device2 p, "in");

channel = createNonTypedBasicChannel(0.05, 100, 500000);
srcgate->connectTo(destgate,channel);

// connection

srcgate = _checkGate(device2 p, "out");

destgate = checkGate(devicel _p, "in");

channel = _createNonTypedBasicChannel(0.05, 100, 200000);
srcgate->connectTo(destgate,channel);

// check all gates are connected:
mod->checkInternal Connections();

//
// this level is done -- recursively build submodules too
//
devicel_p->buildInside();
device2 p->buildInside();
}

class BT_Network : public cNetworkType
{
public:
BT_Network(const char *name) : cNetworkType(name) {}
BT _Network(const BT Network& n) : cNetworkType(n.name()) {operator=(n);}
virtual void setupNetwork();

}’

Define Network(BT Network);

void BT Network::setupNetwork()

{
// temporary variables:

cPar tmpval;
const char *modtypename;

cModuleType *modtype;
BT_Network _p->buildInside(); }

65

APPENDIX B

Vector Data Generated

Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.15 9.06 0.05 2.35
0.3 2.7 0.20 13.40
0.45 16.2 0.35 7.35
0.60 7.2 0.5 35.0
0.75 29.25 0.65 4225
0.90 33.3 0.30 36.80
1.05 9.45 0.95 73.15
1.20 56.4 1.1 75.9
1.35 39.15 1.25 11.25
Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.4 25.6 0.25 11.75
0.8 7.8 0.65 43.55
1.2 43.2 1.05 22.05
1.6 19.2 1.45 101.5
2.0 78 1.85 120.25
2.4 88.8 2.25 1035
2.8 25.2 2.65 204.05
32 150.4 3.05 210.45
3.6 104.4 6.45 169.25
4.0 156 3.85 73.15
4.4 250.8 4.25 276.25
4.8 355.2 4.65 148.8
5.2 390 5.05 116.15
5.6 190.4 5.45 299.15

Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.015 0.96 0.01 : 0.47
0.03 0.27 0.025 1.675
0.045 1.62 0.04 0.84
0.06 0.72 0.055 3.85
0.075 2.925 0.07 4.55
0.09 33 0.085 3.91
0.105 0.945 0.1 7.7
0.120 5.64 0.115 7.935
0.135 3.915 0.3 6.37

66

Device 1 Device 2
Time Delay (ms) Time Delay (ms)
0.15 5.85 0.145 2.755
0.16 9.405 0.15 10.4
0.18 13.32 0.16 5.6
0.195 14.625 0.175 437
0.21 7.14 0.19 11.275
0.225 11.925 0.25 0
0.240 4.08 0.22 8.93
0.255 10.71 0.235 1
0.270 0.27 '0.25 8.215
0.285 9.975 0.265 11.48

67

APPENDIX C

Scalar Data Generated

Directory File Run# Module Name Value

C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT Network.devicel Simulation duration 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT_Network.devicel End-to-End Delay:.samples 4.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT_Network.devicel End-to-End Delay:.mean 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT Network.devicel End-to-End Delay:.stddev 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT_Network.devicel End-to-End Delay:.min 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT _Network.devicel End-to-End Delay:.max 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT _Network.device2 Simulation duration 0.0
C:/OMNeT-++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT Network.device2 End-to-End Delay:.samples 5.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT Network.device2 End-to-End Delay:.mean 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT Network.device2 End-to-End Delay:.stddev 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT Network.device2 End-to-End Delay:.min 0.0
C:/OMNeT++/BlueTooth/results/r-no-delay/ omnetpp.sca 0 (at

BT _Network.device2 End-to-End Delay:.max 0.0
Directory File Run# Module Name Value
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at

BT _Network.devicel Simulation duration 1.4
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at

BT_Network.devicel End-to-End Delay:.samples 10.0 '
C./OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at

BT _Network.devicel End-to-End Delay:.mean 22.5833333333
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at

BT _Network.devicel End-to-End Delay:.stddev ~ 17.9968920928
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at

BT Network.devicel End-to-End Delay:.min 2.7
C:./OMNeT++/BlueTooth/results/r-d-50-100/ - omnetpp.sca 0 (at

BT _Network.devicel End-to-End Delay:.max 56.4

68

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

D
)
1)
)
1))
1))
1)
)
1))
)
Y
)

)
1y
)
)
)
)

C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at
BT_Network.device2 Simulation duration 1.4

C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at
BT Network.device2 End-to-End Delay:.samples 10.0
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at
BT_Network.device2 End-to-End Delay:.mean 37.405
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at
BT Network.device2 End-to-End Delay:.stddev ~ 26.2105200466
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at
BT Network.device2 End-to-End Delay:.min 235 _
C:/OMNeT++/BlueTooth/results/r-d-50-100/ omnetpp.sca 0 (at

BT _Network.device2 End-to-End Delay:.max 75.9

Directory File Run# Module Name Value
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.devicel Simulation duration 5.85
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT_Network.devicel End-to-End Delay:.samples 15.0
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.devicel End-to-End Delay:.mean 134.6
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT_Network.devicel End-to-End Delay:.stddev ~ 123.780724236
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.devicel End-to-End Delay:.min 72
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT _Network.devicel End-to-End Delay:.max 390.0 :
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.device2 Simulation duration 5.85
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.device2 End-to-End Delay:.samples 15.0
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.device2 End-to-End Delay:.mean 126.683333333
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT_Network.device2 End-to-End Delay:.stddev ~ 92.1629935546
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT _Network.device2 End-to-End Delay:.min 0.0
C:/OMNeT++/BlueTooth/results/r-d-250-150/ omnetpp.sca 0 (at
BT Network.device2 End-to-End Delay:.max 299.75

Directory File Run# Module Name Value

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

line

C:/OMNeT++/BlueTooth/ omnetpp.sca O (atline 1) BT_Network.devicel

Simulation duration 0.39

1)
1)
1)
1)
1)
1)

1)
1)
1)
1)
1)
1)
1) .
1)
1)
1)
1)
1)

C:/OMNeT++/BlueTooth/ omnetpp.sca O (atline 1) BT_Network.devicel End-

to-End Delay:.samples 20.0

C:/OMNeT++/BlueTooth/ omnetpp.sca O (atline 1) BT_Network.devicel End-

to-End Delay:.mean 7.55263157895

69

C/OMNeT+/Bluc Tootty omuetpp.

to-Fnd Delay..stddev 628752631283
C./OMNeT++/BlueTooth/

{ufd Ol 036

(1Mot

to-End Delay:.max 19.5
C:/OMNeT-++/BlueTooth/
Simulation duration
C:/OMNeT-++/BlueTooth/
to-End Delay:.samples
C:/OMNeT++/BlueTooth/
to-End Delay:.mean 6.833
C:/OMNeT++/BlueTooth/

562 0f(atlineI) BT Network.devicel Eng-

omnetpp.sca 0 (atline1) BT Network.devicel End-

omnefpp.sca 0 (at fine 1) BT_Neﬁvor](.deVicel Eﬂd

omnetpp.sca
0.39
omnetpp.sca
20.0
omnetpp.sca

omnetpp.sca

to-End Delay:.stddev 4.84490410529

C:/OMNeT++/BlueTooth/
to-End Delay:.min 0.0
C./OMNeT++/BlueTooth/
to-End Delay:. max 15.17

omnetpp.sca

omnetpp.sca

0 (at line 1)
0 (at line 1)
0 (at line 1)
0 (at line 1)
0 (at line 1)

0 (at line 1)

BT Network.device2

BT Network.device2 End-
BT Network.device2 End-
BT Network.device2 End-
BT _Network.device2 End-

BT _Network.device2 End-

