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Abstract

Motivated by the recent development in the field of nonlinear filtering, this dissertation presents

a new set of nonlinear fractional and kernel algorithms for the solution of bench mark nonlinear

problems. Fractional methods have the ability to handle the nonlinear problems more efficiently as

compared with the linear methods, because of the fact that the derivative will be taken by a small

time step. A new algorithm modified fractional least mean square algorithm is developed that ba-

sically is an extension of fractional least mean square algorithm. A scaling factor is introduced

that manually adjust the weightage between the least mean square and fractional least mean square

parts of the algorithm according to the nature of the problem. The algorithm is then validated on a

set of bench mark nonlinear problems. Another algorithm is developed in which all adjustable pa-

rameters of the modified fractional least mean square algorithm is made adaptive by using gradient

method accordingly by minimizing the mean square error. A method is also introduced adapt the

order of fractional derivative. Secondly the formulation of the kernel fractional affine projection

algorithm is introduced with the inclusion of Reimann Louisville fractional derivative to Gradi-

ent based stochastic Newton recursive method to minimize the cost function of the kernel affine

projection algorithm. This approach extends the idea of fractional signal processing in reproduc-

ing kernel Hilbert space. The algorithm is then tested on some well known nonlinear problems.

A new identification scheme is established for the Hammerstein nonlinear controlled autoregres-

sive(CAR) system using kernel affine projection algorithm. The proposed scheme is validated in

comparison with Affine projection algorithm. A new square root extended kernel recursive least

squares algorithm is introduced for the unforced dynamical nonlinear state space model. This al-

gorithm utilizes the numerical properties of the matrix computation by the use of an orthonormal

triangularization process that is based on numerically stable givens rotation. It gives a considerable

reduction of time and computational complexity. The algorithm is illustrated by discussing its ap-

plication to stationary, as well as non stationary Mackey Glass series and Lorenz series prediction.
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1 Introduction

1.1 Problem Statement

Fractional and kernel methods have diverse applications in the field of applied science and engi-

neering. Fractional signal processing algorithms are basically nonlinear in nature. A fractional

weight adaptation term is added to the algorithm that is derived by minimizing the cost function

with the fractional derivative. The theory of fractional calculus is as old as that of classical cal-

culus. However most of its applications are found to be in the last three decades. In fact many

scientific areas are currently paying attention to this field, that includes system identification, sig-

nal processing, robotics, traffic system, heuristic algorithms, physics as well as as economy trends.

In fractional signal processing area, fractional least mean square algorithm is developed previously.

The problem arises in this algorithm is that of slow convergence. Divergence phenomena arising

in the presence of noise when dealing with the nonlinear systems. Also the problem arises while

adjusting the step size of the algorithm manually according to the nature of the problem.

On the other hand kernel methods have numerous applications in nonlinear area. kernel methods

have been very much popular in the field of machine learning during the last four to five years.

The basic idea behind kernel methods is to transform the input data into some high dimensional

feature space where linear operation are performed effectively. Kernel methods use kernel func-

tions to transform the input data, these kernel functions are universal approximators, continuous
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and stable. Identification of structured nonlinear systems is still an open issue by using kernel

signal processing algorithms. The problem arises is that of divergence in Kernel methods that are

based on nonlinear state space model. In this regard the major issues that has to be addressed in

this dissertation are given below:

• Unfortunately, the fractional term of the fractional least mean square algorithm must be

problem dependent. we do make sure the algorithm does not diverge. So the careful adjustment is

required between the linear term and fractional term of the algorithm.

• Manually adjusting the step size of the algorithm is a difficult task. By making it adaptive

according to the mean square error reduces the hit and trial effort.

• To find an appropriate way of adjusting the fractional derivative term in the kernel Affine

Projection algorithm.

• The reliability and effectiveness of the kernel methods needs to be investigated in the nonlin-

ear system identification problems.

• To find a suitable square root extended kernel recursive least squares algorithm for the

unforced nonlinear dynamical model to overcome the divergence phenomena.

1.2 Contribution of the thesis

This dissertation presents newly developed fractional and kernel methods for nonlinear systems.

The designed scheme consists of the approximate mathematical modeling of the newly developed

fractional and kernel methods. The detail is provided as follows

1. Development of the new fractional least mean square algorithm for nonlinear and non

stationary time series prediction. A modification in the Fractional Least Mean Square Algorithm

is introduced. We do make sure that the algorithm does not diverge. A parameter β is being intro-
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duced that has to be adjusted for optimal results.

2. Development of the new adaptive step size modified fractional least mean square al-

gorithm. In this algorithm the two step sizes and the order of the fractional derivative is made

adaptive by using the 5tochastic gradient technique and according to the mean square error. The

algorithm is tested on the prediction of stationary as well as non stationary Mackey Glass time

series prediction and also the validated on the X-component of Lorenz series prediction.

3. Development of the kernel Fractional affine projection algorithm. The algorithm is vali-

dated on the bench mark time series prediction problem, nonlinear channel equalization as well as

static function approximation.

4. Application of the kernel Affine projection algorithm to the identification of Hammer-

stein nonlinear controlled autoregressive system.

5. Development of the new square root extended kernel recursive least squares algorithm for

unforced nonlinear dynamical state space model and its application to the prediction of chaotic

Mackey Glass and three dimensional lorenz time series prediction.

1.3 Organization of the Thesis

Chapter 2 summarizes the overview of fractional and kernel methods. It starts with the short survey

on the history of fractional calculus then provides some basic definition for the important relations

and an overview regarding fractional signal processing. It also provides the overview of kernel

methods, some basic definitions along with detail about mercer’s theorem and some kernel func-

tions.
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Chapter 3 provides the detail derivation of the modified fractional least mean square algorithm and

adaptive step size modified fractional least mean square algorithm. It also provides the problem

setting of the Mackey Glass time series prediction, stationary as well as non stationary.

Chapter 4 Provides the detail derivation and formulation of the kernel fractional affine projection

algorithm. It also Provides the Identification algorithm based on kernel Affine projection algorithm

for the Hammerstein nonlinear controlled autoregressive system.

Chapter 5 Provides a new square root extended kernel recursive least squares algorithm based on

nonlinear unforced dynamical model for nonlinear and nonstationary time series prediction is pre-

sented. The mathematical model and detail derivation is also provided for the proposed algorithm.

Chapter 6 summarizes and concludes the dissertation. Some of the future direction and recommen-

dations are also highlighted at the end.
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2 Literature Review

2.1 Introduction to Fractional and kernel methods

In this chapter, an overview about the historical development in the field of fractional and kernel

signal processing is presented. Basic definition of both these methods along with examples are

discussed briefly. Some overview about different kernel functions, the famous kernel trick and

then kernel algorithms along with the previous work is also discussed.

2.2 Fractional Methods, An overview

The birth of fractional calculus takes place almost at the same time as that of classical calculus. In

17th centaury first reference was made to the subjective term of the fractional derivative. Theory

of fractional calculus is published by a variety of books [1, 2, 3] and they also contain the historical

survey of the development in this field. A number of other research articles have been published

related to the different aspects of its history [4, 5, 6]. Based on the books and articles mentioned

above, a short summary about the history of fractional calculus is presented at the beginning of

this thesis. It is controversial about the founder of classical calculus, but is linked with Newton

and Leibniz [7, 8]. However the birth of fractional calculus is purely associated with Leibniz.

Johann Bernoulli and J. Wallis also made correspondence with Leibniz about the topic of non-
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integer order derivatives [9, 10] in 1697 and this work continuous even after the death of Leibniz

in 1716. Leonhard Euler for the first time introduced the generalization of factorials of Gamma

function [11] in 1783. J. L. Lagrange in 1772 contributed in the development of exponent law

for the differential operators of integer order. P.S Laplace has provided the detailed definition of

fractional calculus by providing the representation of fractional derivative by an integral, that can

be written as ∫
y(t)t−xdt (2.1)

S. F. Lacroix generalize the integer order derivative of function y(t) = tm to fractional order. It

can be given as
dn

dtn
tm =

m!

(m− n)!
tm−n,m ≥ n. (2.2)

Euler gamma function is used by Lacroix to formulate the fractional order derivative as

dv

dtv
tm =

Γ(m+ 1)

Γ(m− v + 1)
tm−v,m ≥ v. (2.3)

1
2

order derivative for the function y(t) = t was also provided by Lacroix and is written as

d
1
2

dt
1
2

tm =
Γ(2)

Γ(3
2
)
t
1
2 (2.4)

In 1823 Neils Herik Abel solved a physical application using fractional operation named as tau-

tochrone problem, and he also describes the solution in detail [10]. J. Lioville provided a unique

definition of fractional derivative as a function in the form of an infinite series with limitation to its

convergence and applicability to limited class of functions only. Lioville definition is very helpful

and is used in many applications to geometrical, physical and mechanical problems [11, 12, 13]

G. F. B. Reiman in 1817 gives his definition for fractional derivative as a generalization of Tay-

lor series. In view of Reiman and Lioville’s definition has been developed and is commonly
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known as Reimann-Lioville fractional integer. Number of other definitions for fractional deriva-

tive or integrals has been available in the literature by some renowned scholars and scientists. M.

Riesz [14, 15] developed the integral known as Reisz potential. B. S. Nagy [16] in 1940 developed

the technique to approximate the fractional integral and an inequality for the trigonometric sums

through the technique known as trigonometric polynomials. The modification in Reimann Lioville

fractional integral is done through mellin transform by Erdelyi and Kober [17, 18]. M. Caputo’s

definition provided in 1960 is worth mentioning and used in variety of scientific applications. The

first international conference about the theory of application of fractional calculus is held at New

Heaven. First book on fractional calculus is written by oldham and Spanier in 1974 [19]. The

first issue of the journal solely related on fractional calculus named ”Fractional calculus and Ap-

plied Analytic” was published in 1998. The most popular books in this regard are written by

Miller and Ross, Samko et al. Podlubuy [20], [21], Ben Auraham and Haulin [22], Carpinteri and

Mainardi [23], Ozaktas et al [24], and West at al. [25] etc. In short, fractional calculus covers a

wide range of applications in the field of science and engineering.

2.2.1 Basic Definitions

In this section, some basic concepts and theory about the fractional integrals and derivatives is

given. Gamma function and Reimann Lioville fractional derivative and integrals are used in this

thesis and are discussed briefly.

GAMMA Function

One of the fundamental functions of the fractional calculus is Euler’s Gamma function, which

provides the generalization of the factorial, n! and permits n to take real as well as complex values.
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The definition of the gamma function is given as

Γ(t) =

∫ ∞
0

e−xxt−1dx (2.5)

By limit representation the Gamma function can also be defined as

Γ(t) = lim
n→∞

n!nx

x(x+ 1)...(x+ n)
, Re(x) > 0. (2.6)

The two basic properties of Gamma function is given as

Γ(t+ 1) = tΓ(t) = t(t− 1)! = t! (2.7)

and the second important property is its simple pole at the points x = −n, (n = 0, 1, 2, 3, 4, 5......).

Riemann Liouville Fractional Integral and Derivative

Definition of Riemann-Lioville fractional integral of order ν is given as

Iνf(t) =
1

γ(ν)

∫ t

a

(t− τ)ν−1f(τ)dτ, (2.8)

I0f(t) = f(t) (2.9)

where Iν is the fractional integral of order ν. The fractional derivative of order ν, (ν > 0) is written

as

Dνf(t) = (
d

dt
)n(In−ν)f(t), (2.10)
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where Dν is the fractional derivative of order ν. As an example, let us apply the Reimann Lioville

fractional derivative to power function as

f(t) = (t− a)α

Dν(t− a)α =
γ(1 + α)

γ(α− ν + 1)
(t− a)α−ν , (2.11)

Where a is some constant and α is the arbitrary real number. Similarly another example of expo-

nential function eλtis evaluated as

Dνeλt = t−νE1,1−ν(λ) (2.12)

2.2.2 Fractional Signal Processing approach

In this, a brief summary has been provided on the application of fractional calculus to signal

processing. In recent years, it has been a productive field for research in applied sciences and

engineering. Fractional signal processing approach is used in many well known applications as in

system identification, equalization of nonlinear channel, nonlinear chaotic time series prediction,

control of nonlinear controlled autoregressive systems, Identification of box jenkins system and

many more.

A convex combination of fractional least mean square (FLMS) is presented by Masoud Ger-

auanchizadah [26], which provides an interesting way to improve the performance of adaptive

filters. This approach gives better performance in terms of mean square error as a figure of merit

for dual channel speech enhancement and also an improved speech quality is observed than the

LMS, FLMS, and CCLMS algorithms. Another application of FLMS algorithm is the parameter

estimation of input nonlinear controlled autoregressive(INCAR) system [27]. The authors uses

FLMS algorithm with different adaptive step size parameters for two examples of INCAR model,

and performance is tested and analyzed for different scenarios of signal-to-noise ratios. The opti-
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mization problem is also compared with Volterra LMS and Kernel Least mean square algorithm.

A new approach to fractional signal processing is used in [28] based on fractional domains

to supress nonstationary noise in Active noise cancellation. The achievement is observed at least

twice as compared to the time domain adaptation. A comparative study is made by [29] based

on echo cancellation between LMS and Fractional LMS algorithm. A new multi dimensional step

size is introduced in [30] for practical active noise control systems. An indirect design approach

is established based on step size in relation with disturbance in the signal and with the desired

response of the modeling filter.

Another design scheme is established in on single stage fractional least mean square identification

and two stage fractional least mean square identification algorithm is introduced for the parameter

estimation of CARMA systems. Weight adaptation procedure with different techniques is analyzed

and the performance is validated by taking both low and high signal to noise ratios. The main idea

behind this technique is the decomposition of CARMA model into a system and noise model [31] .

A fractional weight update part is added to the conventional constant modulas algorithm for blind

equalization and output of the linear filter is passed through a nonlinear fractional update term. The

algorithm is applied on flat and frequency selective channels. The algorithm is validated against

the performance metric considered as the mean squared error for a quadratic shift keying [32].

The strength of fractional signal processing is also explored by developing the identification of

Input nonlinear Box Jenkins system. The auxillary model for the fractional LMS algorithm with

three values of fractional order has been developed in order to adapt the variables of INBJ system

for various scenarios based on different step sizes and noise variances [33]. Another study in [34]

also presents the fractional adaptive algorithm for the parameter estimation of Box Jenkin system.

Also to validate the scheme, camparison is also made with volterra and kernel least mean square

algorithm. Identification scheme based on fractional LMS algorithm is developed in [35] for the

parameter estimation of Hammerstein Nonlinear Controlled Autoregressive system with exoge-
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nious noise.

2.3 Kernel Methods, an overview

In this section, the summary is given about the theoretical framework on which the kernel methods

are build. Discussion is also presented about some basic concepts about kernel functions, nonlinear

mapping of the input data into the feature space and theory of reproducing kernel Hilbert space.

2.3.1 Kernels, A basic definition

A kernel is a continuous, symmetric function K : X ×X −→ < operates on the data on the input

space. A kernel is said to be positive definite if any set of input data points {xi}Ni=1 ∈ X, satisfies

the following condition
N∑

i,j=1

βiβjk(xi, xj) ≥ 0,∀βi ∈ R. (2.13)

For a given set of N data points [x1, x2, x3, .......xN ], the N × N matrix K formed with elements

Ki,j = k(xi, x(j)) is called kernel or gram matrix

A kernel matrix is said to be positive definite matrix, if it is constructed using a positive definite

kernel function. A matrix is said to be positive definite matrix, if it satisfies the following condition

N∑
i,j=1

βiβjKi,j ≥ 0,∀βi, βj ∈ R. (2.14)

but subject to the strictly positive kernel function. Types of kernel functions are discussed in section

2.3.8.
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2.3.2 Reproducing kernel Hilbert space

A feature space associated with a positive definite kernel is an inner product in that feature space.

Now let us consider a feature mapping from X into the space of functions H, for a given positive

definite kernel k,

Φ : X→ H

: x→ ϕ(x)

: x→ k(x, .) (2.15)

The kernel function ϕ applied on the input vector x as ϕ(x) assigns the value k(x, x
′
) to input point

x
′ . In order to construct a feature space associated with a nonlinear kernel function ϕ, the image

of ϕ must be turned into a vector space. This vector space is defined by taking linear combination

as.

f(.) =
m∑
i=1

βiϕ(xi)

=
m∑
i=1

βik((xi), .) (2.16)

where xi is chosen according to the length of the specified input data vector. βi are the coefficients

chosen arbitrary and i = 1, 2, 3, .....,m. The interesting property from the above kernel function

satisfies

〈k(x, .), f〉 = f(x) (2.17)
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In particle the kernel k posesses the reproducing property as

〈k(x, .), k(x
′
, .)〉 = f(x) (2.18)

where k(x, x
′
) is the inner product in the associated feature space and is written as

k(x,x
′
) = 〈ϕ(x), ϕ(x

′
)〉 (2.19)

2.3.3 Kernel Trick

The famous kernel trick states that we can transform any linear inner product based algorithm to

an alternative algorithm by replacing the inner product with a nonlinear kernel. This inner product

based kernel algorithm is same as that of original inner product based linear algorithm, but in

the feature space. The beauty of this elegant and simple trick is that, the obtained solution is

the nonlinear function of the input data, and it is achieved by performing a convex optimization

problem implicitly in the feature space. The advantage of moving data to the higher dimensional

feature space in the classification problems is discussed briefly by cover’s theorem.

2.3.4 Cover’s Theorem

When a complex pattern classification task is performed using RBF function [36, 37], the problem

arises by transforming it into a high dimensional space, and again seperating it in the output layer.

The justification is found in Cover’s theorem on the separability of patterns and is stated as A

complex pattern classification problem in a high dimensional space is more likely to be linearly

seperable than in a low dimensional space, provided that the space is not populated densely.
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2.3.5 Mercer’s Theorem

The mercer’s theorem [38] is stated as

the kernel k(x,x
′
) can be expanded as

k(x,x
′
) =

∞∑
i=1

λiϕi(x), ϕi(x
′
) (2.20)

with the positive coefficients λi > 0 for all i.

ϕi(x) are called eigenfunction of the expansion, and λi are the eigenvalues. This is being the fact

that if all the eigenvalues are positive means that the kernel k(x,x
′
) is positive definite. this means

that a complex problem can be solved efficiently for the weight vector w.

2.3.6 Kernel Properties

Kernel function that satisfies the mercer’s theorem are said to be positive definite and their kernel

matrices have no non-negative eigen values. The usage of the positive definite kernel ensures

that the solution of the optimization problem will be unique and convex. However some kernel

functions, which are not strictly positive definite also perform very well in practice. As an example

sigmoid kernel is not positive semi definite, but is used in variety of applications. Sometimes

the kernels which are not conditionally positive definite can possibly outperforms most classical

and well known positive definite kernels in some applications. Kernels can also be classified

as Anisotropic Stationary, Isotropic Stationary, Locally stationary, Separate Non stationary, scale

dependent or scale invariant.

2.3.7 Choosing the appropriate kernel

Choosing the right kernel depends on the problem at hand, and tuning of its parameter is become

a tedious and tricky task. Automatic kernel selection is also possible and is discussed by Howley
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and Mickeal G. Madden in [39]. The choice of a particular kernel can be very easy and a straight-

forward task depending upon the kind of information we want to extract about the data. It also

depends on what we are trying to model.

2.3.8 Common kernel Functions

In this section list of some commonly used kernel functions is presented briefly.

Linear kernel

A simplest kernel function is the linear kernel. It is written as the inner product plus a constant c

as

k(x,x
′
) = xTx

′
+ c (2.21)

By using this kernel function the kernel algorithms are often equivalent to their non kernel coun-

terparts. As an example, kernel principle component analysis with linear kernel function is same

as Principal Component Analysis.

Polynomial kernel

Polynomial kernel is typically known as non stationary kernel and is written as

k(x,x
′
) = (αxTx

′
+ c)d (2.22)

where α, c and d are the slope, constant and polynomial degree respectively.
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Gaussian kernel

The Gaussian kernel is an example of radial basis function and is written as

k(x,x
′
) = exp(

−‖x− x
′‖2

2σ2
) (2.23)

or it can be written as

k(x,x
′
) = exp(α‖x− x

′‖2) (2.24)

The adjustable parameter α = 1
2σ2 plays a significant role in the overall performance of the kernel

and σ2 is the variance.

Exponential kernel

It is also a radial basis kernel function, but with only the square of the norm left out as

k(x,x
′
) = exp(

−‖xT − x
′‖

2σ2
) (2.25)

Laplacian kernel

In order to make the kernel function less sensitive for the change in alpha parameters, a laplacian

kernel is introduced. It is defined as

k(x,x
′
) = exp(

−‖x− x
′‖

σ
) (2.26)
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Hyperbolic Tangent kernel

This kernel function typically known as multi layer perceptron or sigmoid kernel. Bipolar sigmoid

function is used as an activation function for artificial neurons

k(x,x
′
) =

N∑
k=1

exp(−α(xk − x′k
)2)d (2.27)

Rational Quadric kernel

This kernel function is used as an alternative, where the Gaussian kernel becomes too expensive

k(x,x
′
) = 1− ‖x− x

′‖2

‖x− x′‖2 + c
(2.28)

Multiquadric kernel

This kernel is non positive definite kernel function.

k(x,x
′
) =

√
‖x− x′‖2 + c2 (2.29)

Inverse Multiquadric kernel

As with the Gaussian function, this kernel also results in a Gram matrix with full rank.

k(x,x
′
) =

1√
‖x− x′‖2 + c2

(2.30)
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Circular kernel

This function is an example of isotropic stationary kernel and is positive definite in

textbfR2.

k(x,x
′
) =

2

π
arccos(−‖x− x

′‖
σ

)− 2

π

‖x− x
′‖

σ

√
1− (

‖x− x′‖
σ

)2 (2.31)

Spherical kernel

This kernel function is positive definite in R3

k(x,x
′
) = 1− 3

2

‖x− x
′‖

σ
+

1

2
(
‖x− x

′‖
σ

)3, If‖x− x
′‖ < σ, zero otherwise. (2.32)

Power kernel

This kernel is scale invariant and typically known as triangular kernel and is conditionally positive

definite

k(x,x
′
) = −(‖x− x

′‖)d (2.33)

log kernel

This kernel is also conditionally positive definite

k(x,x
′
) = − log(‖x− x

′‖d + 1) (2.34)

Bessel kernel

This kernel is well in the theory of function spaces of fractional smoothness

k(x,x
′
) =

Jν+1(σ‖x− x
′‖)

‖x− x′‖−n(ν+1)
(2.35)
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J is the Bessel function of the first kind.

Sequence, cauchy, chi-square, time series, histogram, generalized histogram, wavelet are the

other well known kernel function used in various applications.

2.4 Kernel algorithms

In this section, we provide some brief overview about the family of kernel signal processing algo-

rithms. Some applications of kernel algorithms has also been discussed and analyzed as given in

the previous literature.

2.4.1 Kernel Least Mean Square Algorithm

Kernel least mean square algorithm is developed by weifeng Liu et. all [40]. The main idea

behind this development is to transform the input data into high dimensional feature space by

using mercer’s theorem and perform linear operations in the transformed space. Some of main

discrete steps involve in the development of the algorithms are discussed below.

e(i) = d(i)−wT (i− 1)ϕ(i) (2.36)

Here e(i) is the error, d(i) is the desired response,w is the weight vector and ϕ(i) is the transformed

input. Through iterations the repeated application of the above weight-update equation yields

w(i) = w(i− 1) + ηe(i)ϕ(i) (2.37)

Where η is the step size parameter. If we take w(0)=0, then

w(i) = η
n∑
j=1

e(j)ϕ(j) (2.38)
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The output of the KLMS filter is described as

y = η

i∑
j=1

e(j) < ϕ(j), ϕ(i) >= η

i∑
j=1

e(j)k(x(j),x(i)) (2.39)

It is clear from the equation 2.39, the output of the KLMS algorithm is the sum of all past errors

multiplied by the kernel evaluation of the previously received data. η is the step size parameter for

the KLMS, k is the kernel function using Gaussian distribution.

Algorithm 1 Kernel least mean square algorithm
Initialization:

w(0) = 0

Choose parameter η, kernel width and kernel k
iterate for i = 1, 2, 3, ...... :
Compute the output

y(i) = η
i∑

j=1

e(j)k(x(j),x(i))

Compute the error
e(i) = d(i)−wT (i− 1)ϕ(i)

Normalized Kernel Least Mean Square Algorithm

It is noted that Normalized Least Mean Square Algorithm (NLMS) exhibits better performance

then LMS, by using this fact the normalized version of KLMS is also developed by weifeng Liu

et.al [41] in 2010 and is defined as

w(i) = w(i− 1) +
η

ε+ ‖ϕ(i)‖2
e(i)ϕ(i) (2.40)

And by using the definition, the norm of the feature space is defined as

‖ϕ(i)‖2 = 〈ϕ(i), ϕ(i) = k(x(i),x(i)) (2.41)
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A Quantized kernel least mean square algorithm is developed by Badong Chen et. al [42] in

2012, to improve the performance of the kernel least mean square algorithm by introducing a

simple vector quantization method. The quantization concept already been used in Linear adaptive

filters such as LMS and RLS. The basic idea behind this approach is to reduce the dynamic range

requirement and numerical complexity of the adaptive algorithms, and also to reduce the hardware

complexity in order to meet the demand of real time high speed implementation. The weight vector

and error equation of QKLMS is defined as

w(0) = 0

e(i) = d(i)− w(i− 1)Tϕ(i) (2.42)

w(i) = w(i− 1) + ηe(i)Q[ϕ(i)] (2.43)

Where Q is the quantization operator in feature space. The QKLMS is applied on static function

approximation and lorenz system prediction and the result are shown in terms of mean square error

as the figure of merit by the authors.

In kernel signal processing algorithm, the parameters of the kernel employed is based on statis-

tics of the input to the linear filters. A finite nonlinearity model order is required for practical

implementations. The KLMS filter having Gaussian kernel has two design parameters, one is ker-

nel bandwidth and the other is step size. The steady state and transient behavior of the KLMS

algorithm is discussed by parreira et. al. [43] for nonlinear Gaussian inputs and a finite order

nonlinearity model. A recursive expression is also established for the mean square error and the

mean weight error vector. Kernel Least Mean Square Algorithm built from a weighted sum of

kernel function multiplied with error vector, that evaluated at each incoming data samples. The

computational complexity, memory requirement and the size of the filter increases with time. A

new efficient methodology is used to constrain the growth of RBF network without the significant

degradation in the performance of the filter. In this method, the elimination step is introduced to
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test the Linear dependency of the feature vector corresponding to new input vector with all the

previous feature vectors.The output of the KLMS filter is the weighted sum of the kernel function

evaluated at each incoming data sample. With the increase in time, the size of the filter increases

along with computation and memory requirement. In order to constrain the growth of RBF net-

work, a method is introduced p.p. pokharel et. al. [44], that involves sequential elimination steps

on the GRAM matrix.

A method is introduced by yazdi et. al for the solution of ordinary differential equation. The author

proposes a method in which a trial solution is developed by keeping in view the structure of the

ordinary differential equation. He introduced the term unsupervised KLMS algorithm, because the

error vector is adjusted iteratively in an online fashion. without the training process [45]. Another

scheme is developed by the same author, the only difference is that, the error vector is optimized

via BFGS algorithm. The structure of this method is defined as Here the authors introduces the

general form of the trial solution of the ordinary differential equation [46].

In order to prove the stability of the KLMS algorithm, the fundamental energy conversation rela-

tion has been developed by richard et. al. in the Reproducing kernel Hilbert space. The procedure

is also established for the optimal step size that guarantees fastest convergence and an optimal ker-

nel size for rapid initial convergence [47].

The theoretical value of the steady state excess mean square value is also presented and the work

is solely based on Gaussian kernel function. A fixed budget quantized kernel least mean square

algorithm is presented by zhao et. al [48] to deal with growing support inherently in online kernel

methods. The main idea behind this method is to discard the center of RBF network with the small-

est influence on the overall system, The significance measure can be update recursively at every

step that is very suitable for online operations. The stability of the KLMS algorithm is checked

by calculating the extreme eigenvalues of the kernel matrix, for each set of tuning parameters. A

sufficient and necessary condition for the convergence of the KLMS algorithm has been clearly

established and the discussion is also presented that examines the variation in the stability limit as
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the function of kernel bandwidth, step size and the filter length [47].

In view of handling the complex signals in RKHS, Complex Gaussian KLMS algorithm is bieng

established. An efficient and elegant computations of the gradient has been taken place by the

extension of writinger’s calculus in complex RKHS [49]. Wirtinger’s calculus is used to obtain the

gradient of the cost function of CGKLMS with different kernels are discussed by paul et. al [50].

Active noise control is a method to attenuate the noise signal that are in a low frequency range. The

performance of the Linear Active noise control methods degrades because in a real time systems

nonlinearity exists from noise source to connecting points through electrical and acoustic paths.

KLMS algorithm is used for active noise control (ANC) in to improve the performance. Predic-

tion of two dimensional hand trajectories from recording the surface of cortical to instantaneous

positions of hands is conducted by gunduz et. al. using KLMS algorithm. Because the functional

mapping between activity of cortical to behavior might be nonlinear [51, 52].

A state space model based on baysian filtering is developed by Weiming park. In this work the

KLMS algorithm is extended to integer and binary valued observations and a forgetting factor is

also introduced to improve its tracking capability. This scheme allows systematic development to-

wards the extension of KLMS algorithm by modifying the underlying observation and state space

models [53].

By using extended version of wirtinger’s calculus, a suitable augmented complex KLMS algorithm

is developed by bouboulis et. al. for applications involving non circular data. In order to provide

a practical meaning between the primal and dual space, a novel class of complex valued KLMS is

established, termed as independent complex KLMS algorithm. A general class of CKLMS algo-

rithm is also developed in a widely linear sense that is suitable for both circular and non circular

data. The KLMS filter is approximated to Bayesian filtering and then developed systematically an

underlying observation and measurement models [54] [55].

The proportionate factor is introduced for the normalized KLMS algorithm to increase the tracking

abilities and convergence speed of the algorithm [56]. In order to get a considerable performance
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of the KLMS algorithm, a finite pretuned dictionary model must be established in addition with

step size, kernel function and kernel bandwidth. The dictionary size has the considerable impact

on the overall performance of the KLMS algorithm. The energy conversion relation is extended to

RKHS in [54] , on the basis of the upper bound on the step size for MSE convergence along with

finding the theoretical value of the steady state. Excess MSE and optimal kernel size for fast initial

convergence is also established. To deal with complex signals in RKHS, a technique introduced

in [55], called as complexification. Powerful tool of wirtinger’s calculus is used for this purpose

that has recently been popular in signal processing community. In order to eliminate predict the

nonlinear characteristics of the network traffic, a KLMS based prediction method is proposed. An

experiment is conduct by using the data from the network traffic database. The author uses traffic

data of a week to predict next’s days traffic data. The KLMS gives far better results and the con-

vergence is also consistent in comparison with linear LMS.

The problem of selecting a particular kernel from a pool of predefined kernel function is high-

lighted. A Mixture kernel Least Mean square algorithm [57]with different kernels is proposed.

Gatting method is used to choose the best kernel at each input regime. The authors also proves the

accuracy of the Mixture KLMS algorithm from prediction of short term chaotic lorenz time series

prediction.

Kernel Least mean square algorithm along with Hidden Markov Model(HMM) is used to propose

a new feature extraction method that efficiently handles nonlinearities in signals by Hossein G.

Hafarain [58]. KLMS algorithm is used to extract the features from the signal, whereas on the

other hand HMM is used to model these extracted feature sequence and to differentiate it from

other models.

2.4.2 Kernel Affine Projection Algorithm

In this section we provide a brief introduction of Kernel fractional affine projection algorithm(KFAPA),

Its application found in the literature and some basic concepts and derivation of the algorithm.
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The stochastic newton cost function for the KFAPA algorithm is developed as

J(w) =
1

2

n∑
i=0

(d(i)−wTϕ(i))2 (2.44)

By minimizing the above mentioned cost function with respect to w and by straight forward ma-

nipulation, the stochastic gradient descent becomes

w(i) = w(i− 1) + ηtΦ(i)[d(i)−ΦTw(i− 1)] (2.45)

where Φ(i) is a matrix and ϕ are the corresponding vectors

Φ(i) = ϕ(1), ϕ(2), ϕ(3), .........ϕ(i) (2.46)

and

d(i) = [d(1), d(2), d(3), ........d(i)] (2.47)

And stochastic Newton method becomes

w(i) = w(i− 1) + ηtΦ(i)[Φ(i)TΦ(i) + εI]−1[d(i)−ΦTw(i− 1)] (2.48)

Notice that by using matrix identity

[Φ(i)Φ(i)T + εI]−1Φ(i) = Φ(i)[Φ(i)TΦ(i) + εI]−1 (2.49)

the corresponding weight update equation becomes

w(i) = (1− ηt)w(i− 1) + ηtΦ(i)[Φ(i)TΦ(i) + λI]−1[d(i)−ΦTw(i− 1)] (2.50)
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This algorithm is applied on nonlinear chaotic time series prediction, adaptive noise cancellation

and nonlinear channel equalization [40, 41]. An improvement to the KAPA is introduced in [59]

by using dichotomous coordinate descent(DCD) iterations. The suitable DCD updates were ex-

amined for system identification and forward prediction examples. The considerable reduction in

computational complexity is achieved by suing DCD-KAPA. Online classification problem for the

KAPA is discussed by the adaptive projected subgradient method(APSM). This algorithm is con-

sidered to be as a Generalized Affine Projection Algorithm. Sparcification of the resulting series

kernel series is obtained by using a closed ball constraint on classification norm. By embedding

online memory limitaions and online tracking capabilities, an upper bound on the dimension of

linear subspace is imposed. The imposition is known as projection mappings. The architecture is

also validated by the nonlinear equalization problem. The siliding window KAPA algorithm is in-

troduced in [60] for nonlinear acoustic echo cancellation. A kernel function is also proposed that is

weighted sum of linear kernel along with a Gaussian kernel, that is somehow efficient in handling

acoustic applications. A flexible mechanism is also introduced in order to find the weights in the

kernel by imposing different forgetting factor mechanisms in the sliding window [61].

Robustness against non gaussian impulse response is achieved by introducing the kernalized ver-

sion of Affine projection sign algorithm known as kernel affine projection sign algorithm. The

combination of affine projection sign algorithm and kernel methods helps in improving the perfor-

mance of the filter against impulse interference [62]. A variable step size is also introduced that

is based on errors and inputs. To gain the advantage of low computational complexity. A specific

type of kernel is introduced especially for echo cancellation. A useful regularization mechanism is

introduced by finding the weights in RKHS using different forgetting mechanisms in sliding win-

dow. nonlinear distortion produced by the loudspeaker parallel and cascade sliding window kernel

affine projection algoritm is developed [63].
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2.4.3 Kernel Recursive Least Squares Algorithm

Another important kernel algorithm of the kernel family is the kernel recursive least squares(KRLS)

algorithm [64, 41]. The brief introduction of the KRLS algorithm is defined here along with the

logical steps that are carried out in the development of the algorithm.

The least squares cost function in RKHS is written as

min(w) =
i∑

j=1

|d(j)−wTϕ(j)|2 + λ‖w‖2 (2.51)

After differentiating the above mentioned cost function with respect to weights w the relation is

defined as

w = [λI + Φ(i)Φ(i)T ]−1Φ(i)d(i) (2.52)

By applying the following matrix inversion lemma it is easy to verify that

[λI + Φ(i)Φ(i)T ]−1Φ(i) = Φ(i)[λI + Φ(i)TΦ(i)]−1 (2.53)

by substituting this result in the weight update equation yields

w(i) = Φ(i)[λI + Φ(i)Φ(i)T ]−1d(i) (2.54)

The weights are finally expressed as a linear combination of the input data as

w(i) = Φ(i)a(i) (2.55)

where a(i) are the coefficients and is defined as

a(i) = [λI + Φ(i)Φ(i)T ]−1d(i) (2.56)
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The final update equation of the coefficients is defined in the algorithm 1 as

Algorithm 2 Kernel recursive least squares algorithm
Initialization

Q(1) = λ+ k(x(1),x(1))−1, a(1) = Q(1)d(1)

iterate for i > 1 :

h(i) = [k(x(i),x(1)), ........., k(x(i),x(i− 1))]T

z(i) = Q(i− 1)h(i)

r(i) = λ+ k(x(i),x(i))− z(i)Th(i)

Q(i) =

[
Q(i− 1)r(i) + z(i)z(i)T r(i)−1 −z(i)r(i)−1

−z(i)T r(i)−1 r(i)−1

]
e(i) = d(i)− h(i)Ta(i− 1)

a(i) =

[
a(i− 1)− z(i)r(i)−1e(i)
r(i)−1e(i)

]

w(0) = 0

e(i) = d(i)− w(i− 1)Tϕ(i) (2.57)

w(i) = w(i− 1) + ηe(i)Q[ϕ(i)] (2.58)

Sliding window kernel RLS is developed by Van Vaerenbergh in 2006 for the identification non-

linear Hammerstein and weiner system. The adaptive equation for the Sw-KRLS is written as

w(i) = Φ(i)[λI + Φ(i)TΦ(i)]−1d(i) (2.59)
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Where the most recent k × k inversions is obtained easily by the following identity

 A B

C D


−1

=

 (A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)
−1

 (2.60)

where A = Φ(i − 1)TΦ(i − 1) + λI, B = Φ(i − 1)Tϕ(i), C = ϕ(i)TΦ(i − 1) and D =

ϕ(i)Tϕ(i) + λI . The biggest challenge in the KRLS algorithm is their linear growing structure,

with each new incoming sample, that also result in increasing memory requirement and compu-

tational complexity.A new KRLS algorithm is introduced [65] in order to track time varying and

nonlinear relationships in data. The Bayesian theorem is used to derive the equations of KRLS.

This framework is efficient to handle forgetting in a consistent way and also to perform tracking in

a non stationary environment. This method is numerically stable, online, requires a fixed amount

of memory and computations per time step, provides regularization in a natural manner and pro-

vides confidence interval along each time steps. A sliding window KRLS is another algorithm

introduced [66] under the umbrella of kernel family. A combination of sliding window along with

L2-norm regularization is introduced. The algorithm is also validated on a set of nonlinear prob-

lems including time varying channel identification.

A new enhancement in KRLS has been developed to update the solution of the algorithm. This

is done by the addition of one new data point to the support and one already chosen data point is

discarded, using a suitable and easy to evaluate pruning criterion. A label update procedure is also

introduced that equips the proposed algorithm with tracking capability [67]. This algorithm fo-

cusses on the idea of associative memory biologically inspired by the cerebellum, typically found

in the brains of the animals. This algorithm converges faster than typical CMAC algorithm. Fixed

memory budget KRLS algorithm is introduced that is capable of tracking changes over time and re-

cursive learning a nonlinear mapping. This method combines the strategy of growing and pruning,

prune the least significant data point. Another scheme that is developed is known as label update
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procedure [68]. For implementing low and fixed amount of computational complexity, a anew

algorithm named as KRLS-DCD is developed [69]. This algorithm maintain a constant amount

of computations by fixing the order of the filter and while maintaining the dictionary, fast rate of

convergence is guaranteed.

A KRLS type neuron is introduced that improves the performance of the KRLS algorithm in terms

of convergence, local minima, slow convergence, nonparametric and universal approximation [70].

A standard KRLS algorithm is derived in a baysian perspective in pruning and dictionary updat-

ing criteria. A KRLS algorithm and the Kalman filter is combined to predict the current signal.

The state or observation model is constructed in the original state space and the hidden state is

estimated using the kalman filter. The measurement model is learned by the KRLS algorithm in

RKHS [71].

2.4.4 Extended kernel recursive least squares algorithm

The non linear state space model in reproducing kernel hilbert space is developed that results in the

formulation of Extended kernel recursive least squares algorithm(EKRLS) [72, 41]. The nonlinear

model is written as

x(i+ 1) = αx(i) + n(i)

d(i) = ϕ(i)Tx(i) + v(i) (2.61)

This EKRLS algorithm is validated by a set of experiments including time series prediction and

nonlinear regression problems [41].

A general framework is deloped by Wencui et al. for handling the problem of adaptive filtering

of quaternion signals using the quaternion Hilbert space. The HR calculus is also introduced for

reproducing kernel Hilbert space is also introduced for RKHS in liu of finding the gradient of the
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cost function. Simple rules such as chain rule and product rules are also developed in the quater-

nion Hilbert space. Along with that the quaternion signal is developed for the KLMS filter [73].

By using the Brock, Dechert and Scheinkman(BDS) test, it is proved by Haghighat et al. that

the variable bit rate is nonlinear in nature. Video coding consists of three types of frames namely

intra(I frame), predictive (P frame) and bidirectional-predictive frame (B-frame). These frames

are arranged in a periodic pattern called group of pictures. the distance between these frames are

assumed to be unknown. KLMS algorithm is used to predict the variable bit [74].

Online kernel methods are based normally on a single layer neurons, the structure update method

is simply used to decide the number of neurons in the single output layer. An output recurrent

feedback loop is introduced by Song et al. in the single layered output layer. Along with that the

weight convergence analysis is also provided using the Lyapunov stability theory A variable length

kernel sparcification scheme with the stability proof of structure update error is also discussed [75].

In online kernel methods the number of samples are sufficiently large and the final solution is in-

dependent of the kernel size. The issue is how to speed up convergence to the neighbourhood of

the optimum solution that leads towards smaller network size. This issue is resolved by treating

the kernel size as an extra parameter for optimization. This new frame work is developed by Chen

et al for the KLMS algorithm. In this algorithm both the weights and kernel size are updated se-

quentially in order to minimize the mean square error. This algorithm can be incorporated in the

Quantized KLMS. This algorithm is validated on a set of experiments, including static function

approximation and short term chaotic lorenz time series prediction.

Kernel width also plays an important role in the performance of online kernel algorithms. A small

kernel width will leads towards locality of preserved data, while larger kernel width ensure the es-

timation function smooth. Some optimal methods for the selection of kernel width are developed

in the literature that includes target kernel alignment, information theoretic and kernel polariza-

tion. However, a consideration is taken place by taking the kernel width as a free parameter. A

mechanism is developed by Haijin et al. [76] that updates the kernel weights and kernel width
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same at a time. Another scheme is also developed named as dead zone scheme to determine the

learning rate in the presence of external disturbance. A cumulative coherence is also developed to

select the dictionary online. this algorithm is validated on a set of experiments including Duffing

forced- oscillation system, laser generated time series prediction and monthly sunspot time series

prediction [77].

A generic function approximation in a Markov game setup having a worst case design method-

ologies for the nonlinear continuous state space system is developed by Shah et. al. The use of

Support vector machine along with KRLS algorithm is introduced for value function approxima-

tion. The mean square accuracy, absolute error, absolute torque, low computational complexity

and better convergence shows the effectiveness of the algorithm [78].

The kernelized version of Least mean square absolute third algorithm is developed by Zheo et al.

to enhance the convergence speed of the KLMS algorithm. This algorithm is robust against noises

with different probability density functions. Along with that, a variable step size is introduced us-

ing a lorentzian function. The algorithm is validated in terms of prediction of Mackey Glass Time

series prediction with different noise probabilities including uniform, Rayleigh, Rectangular and

Exponential [79].

In online kernel learning algorithms, the problem is the growing structure of the solution size with

each iteration steps. Another problem is the model of the input data in an infinite dimensional

RKHS. A new method is introduced by Bouboulis et al. to map the input data into a finite di-

mensional Euclidean space using the random features of kernel fourier transform. This resulting

algorithm does not require any sparcification scheme to curb the growth of the dictionary size or

resulting kernel network. The advantages achieved by developing this algorithm is that the solution

space is remained fixed and not increases with the iteration steps. Along with that the algorithm

is computationally more efficient than the previous version of KLMS and KRLS algorithms. This

algorithm is validated by a set of experiments including the identification of a simple nonlinear

model followed by a chaotic nonlinear model [80].
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To improve the performance and convergence speed of the KLMS algorithm, a multiple delay

feedback structure is developed by Wang et. al.. A regularized cost function is minimized using

a gradient descent method resulting in a regularized KLMS with multiple delay feedback. Along

with that a spherical radius criterion is developed for sparcification purposes. The algorithm is

validated by a set of experiments including time series prediction and identification of a highly

nonlinear model [81].

In adhoc networks, the input/output measurements obtained sequentially, one per time step is re-

lated by an unknown nonlinear function. To cope with this problem, a diffusion based nonlinear

cost function is minimized. This algorithm is developed by Chouvardas et. al. and named as

diffusion based KLMS algorithm. The theoretical properties of the algorithm is also studied that

employs an excellent behavior and no regret bound under uncertain conditions [82].

A fully pipelined implementation of kernel normalized least mean square algorithm is developed

by Fraser et. al. for the regression. Ensuring that the pipeline does not stall and independent train-

ing tasks are performed for weight optimization to fill L cycles of latency. As compared with the

previous developed techniques for L parallel problems, no dependencies exist within the pipeline.

This is achieved by developing a deep pipelined modules by a recursive part of the KNLMS. Mem-

ory optimization, pipelining, scheduling and mixed-precision processing are combined to achieve

a 575× speed up for parameter optimization [83].

A framework for time adaptive, online, supervised multiregression method is developed in

infinite dimension RKHS. Special cases are considered for a fairly large number of nonlinear mul-

tiregression model. A continuous, convex and non differentiable function is considered as a loss

function that quantify the desired response and output of the system. A sub gradient of the robust

loss function is required in an analytic form [84]. Kernel adaptive filters are used to develop a mea-

surement de noising module for filtering out random data before state estimation [85]. This module

suppress the noises along with random false or malicious data. Online kernel based learning, the
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system is updated when each training sample is obtained, a higher computational speed is required.

To overcome this problem, a sparcification method is introduced based on Hessian matrix of the

loss function to examine the significance of the new training sample. The kernel ridge regression

is introduced to derive the surface as well as atmospheric properties from the hyperspectral in-

frared sounding spectra. The temperature and humidity profiles are considered from atmospheric

sounding interferometer data. The kernel ridge regression outer perform linear regression. Some

discrepencies may occur in the presence of clouds and low emisitivities in the desert areas [86, 87].

A comparative study of six different kernel algorithms were made with three different benchmark

datasets. The comparison is made on the quality of solution as a foundation of memory and time

complexity [88]. An application of KRLS algorithm is presented for the visual servoing of robots.

An image Jacobbian expression is derived for nonlinear mapping between target feature and robot

joint angles [89]. Two new versions of online kernel regression is developed to update the model

accurately. Also avoid the computation load associated with recalculating the whole process every

time the new data points are available. The first approach is by sliding window, that maintains

the size of the kernel matrix under study. The another developed approach is known as so called

”warm” window. It again shrinks the kernel matrix at every entry of the new data [90] A kernel

function selection and optimization based on cost function maximization is developed to handle

the most challenging and open problem in kernel methods and statistical learning theory. The al-

gorithm is also validated on the application of infrared dim and small target detection based on

KRLS [91].

When dealing with a sample flow learning system, an incremental kernel MSE is developed [92] to

acheive better sparcity when there is online learning. Two additional adaptive learning algorithm

has also been developed named as Complete reduction MSE and Partial reduction MSE. A novel

and efficient control strategy based on KLMS algorithm is proposed [93] for the realization to

control a nonlinear aircraft system. A Gaussian kernel is used in KLMS algorithm and Lyapunuv

stability theory is used to control an aircraft manuever having dynamic and nonlinear nature. This
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architecture provide considerable security and accuracy. The technique is validated with an exper-

iment using a nonlinear model of F-18 aircraft.

By the use of coherence criterion method, the reduction in average size of the dictionary is achieved

and also residual error is reduced. In infromation security and network trafic management, the im-

portant tool is the network trafic prediction. This prediction is done with KLMS algorithm [94].

A new mercer kernel named as survival kernel is developed, that is parameter free and simple in

calculation. This survival kernel used in particular KLMS algorithm [95].

A new sparcification method based on Hessian matrix of the specific loss function is applied to

examine the new training sample and dictionary updation accordingly with the important measure.

The correlation matrix of the KLRS is considered to be as the Hessian matirx [96].

The formulation of the KPCA is considered in the euclidean space. A novel KPCA algorithm is

developed [97] that tracks the eigen vectors with kernel in nonlinear space. The transformation

problem of the input data to higher dimensional space is acheived. A new alternative to the kernel

trick is developed that maps the input data to a reduced dimensional kernel space. This is achieved

by the eigenvalue decomposition of the kernel or gram matrix [98]. This alternative to the kernel

trick is named as nonlinear projection trick.

The element of the nonlinear mapping is determined by the newly developed chebychev kernel.

The proposed kernel is validated for both classification and regression tasks [99]. The improve-

ment is made in multiple kernel learning by introducing a soft margin technique. A kernel stack

variable is introduced to each quadratic constraint of MKL, this is connected to single SVM model

using a base kernel [100].

Compressive sensing is the technique to recover the signal that are somehow sparse linearly from

a smaller number of measurements than required. Many image and videos are modeled as the

nonlinear manifold and described as the nonlinear function of some parameter. A new compress

sensing technique based on kernel method is developed for applying manifold models in compres-

sive sensing. It uses dictionary learning in feature space in order to build a healthy model for signal

35



manifold [101].

A kernel signal to noise ratio in the context of feature extraction to general signal processing and

machine learning community is developed. The developed scheme maximizes the signal variance

while minimizing the noise veriance in the feature space(RKHS). This scheme can efficiently work

with non colour noises [102]. The modification in RBF kernel is developed named as Tuned RBF

kernel to overcome the costly learning and classification complexities. With this newly developed

kernel, an algorithm is introduced named as Tuned Radial Basis function-Pruned Probability den-

sity assiciation [103].

A kernel function is developed for time series of exponential decay process. Conventional Gaus-

sian kernel is not appropriate for this class of data. A class of kernel function is developed to study

the generalization ability in the sence of universality [104, 105]..

In kernel mean matching(KMM) algorithm, the existance of many parameters is still an issue to

adjust. A novel method is developed that automatically tunes the parameter of the KMM. The ap-

proach that is used to estimate the parameters of KMM is Normalizaed Mean Square error between

the estimated importance weight and the ratio of the estimated training and test sample densities.

This method is very useful for KMM to handle different types of kernels along with applicability

in real domains [106].

A novel kernel adaptive filtering algorithm with parallel hyperslab projection along affine sub-

spaces is developed by takizawa, that specifically observed data efficiently. The developed algo-

rithm projects the filter into multiple hyperslabs in parallel along the dictionary subspace. The

algorithm is named as adaptive projected subgradient method(APSM) [107].

An ECG derived respiration algorithm based on kernel PCA is developed. KPCA is basically the

kernalized version of PCA, where the nonlinearities in the data is taken into account with nonlinear

mapping of the input data to the higher dimensional feature space. This improvement is also done

by tuning the kernel bandwidth of the RBF Gaussian kernel [108].

The kernalized version of least mean mixed-norm algorithm is developed by miao et al. that is
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helpful in the environment where the system measurement noise shows distribution having linear

combination of short tails and long tails [109]. Kernel particle filter with improved information

mutual feedback is also developed by chang et al. for joint tracking and classification for radar

surveilance system. Doppler spread, delay spectrum and radar measurement is used to estimate the

target state and class respectively [110, 111].

A new online kernel algorithm based on support vector regression(SVR) and Regularized Net-

work(RN) is developed. In offline phase, the SVR algorithm is used to obtain a RKHS model with

a few reduced number of parameters. Then in online phase, the RN algorithm is used to update the

parameters obtained by the SVR technique [112].

An intelligent and effective scheme is developed by Luo et al. in the wireless sensor networks

to support the data sensing and fusion of cyber physical system. This architecture works on the

principle of prediction based fusion and data sensing in order to reduce the data transmission and

maintaining the required number of sensors for coverage in wireless sensor networks. The guaran-

tee of data confidentiality is also provided. This developed architecture is named as Grey Model

KRLS (GM-KRLS). The grey model takes the responsibility of predicting the data of next period

having a smaller number of data items, while KRLS algorithm approximates this predicted value to

its true value with high accuracy. To complete the transmission system, a very successful Blowfish

algorithm in the literature is used for data encoding and decoding during the process of transmis-

sion [113].

An improvement in the quantized kernel least mean square algorithm(QKLMS) and gradient de-

scent method is used to update the coefficients of the filter. This method uses both the new training

data and the prediction error for coefficient adjustment at the closest center in the dictionary. This

method completely utilizes the hidden knowledge in the new training data and also achieves better

accuracy [114].

A reconfigurable Parallel FPGA accelerator is designed by Ren et. al for Kernel affine projec-

tion algorithm. A new and novel sparcification mechanism is introduced to constrain the network
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size. This accelerator allows multiple input data to be processed simultaneously. To accelerate

the execution rate, shift registers are used for input data. coefficients and code book are updated

by shifting the register constantly. Finally the KAPA based accelerator is implemented with eight

data paths on the Xillinx virtex-7 FPGA board. It is observed that it is 404.47 time faster effi-

ciency [115].

A new kernel based multi book tensor partial least squares framework is developed by Ming Hou et

al. for the generalized nonlinear tensor regression. The basic idea behind this work is to incorporate

multi book regression context in the kernel space or RKHS. A general and effective architecture

is also introduced that integrates multibook and single tensor regression scenarios into one general

model having both common and discriminative features. A further enhanced predictive power is

achieved by combining kernel machines with joint tucker decomposition to address the nonlinear

dependencies between tensor blocks and multiple blocks. The author validated the proposed algo-

rithm to multimodal and multiview human motion model estimation problems appears in the field

of computer vision [116].

In product designing time forecast, existing problems are heteroscedastic noise and small samples.

To handle these problems, a new kernel based method involving Gaussian distribution weight in-

troduced by Zhi-Gen Shang and Hong-Sen Yan. The main idea behind this study is to combine

the kernel based regression and Gaussian margin machines to solve the design time forecasting

problems. This is achieved by inheriting the Gaussian distribution over weight vector, having the

most least information distribution that lie in its corresponding confidence interval. Simplified op-

timization problem of Gaussian distribution weights and its solution using the kernel regression

is also given. The set of experiments are performed to validate the architecture including forecast

of designing plastic injection molds, forecasting of data within slump test dataset and yatch Hy-

drodynamics dataset. These datasets are obtained from the University College of London (UCI)

repository [117].

An identification scheme utilizing sparse weighted kernel partial least squares as local models and
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online Gustafson-Kessel clustering algorithm for structure identification is developed by Shafieezadeh

Abadeh and Ahmad Kalhor. This algorithm forms special elliptical clusters without any orientation

that will leads towards more complex structured clusters than the spherical ones. This algorithm

also able to determine the number of clusters over time and also reduce the redundancy of model,

when similar clusters are merged. A new sparcification procedure is also developed that is based on

instant prediction error. This algorithm is validated on a set of experiments including time varying

nonlinear system. Two bench mark real world problems are considered including Mackey Glass

time series and electrical load prediction problem [118].

A single delayed output feedback is used to develop a novel KLMS with single feedback by Ji Zhao

et al.. The past information of the input data is used to accelerate the convergence speed of the

algorithm significantly. As compared to other kernel adaptive filtering algorithm having multiple

feedback, this algorithm is more compact in nature but similar to momentum least mean square al-

gorithm. In order to reduce the growing network size, a convex combination sparcification scheme

is also used [119].

A more general information theoretic criterion is applied to minimum error entropy in RKHS, to

develop a kernel minimum error entropy by Badong Chen and Jose C. principe. The development

of the algorithm is similar to stochastic information gradient algorithm in kernel space. The com-

putational load of this algorithm is similar to KAPA. To restrain the network size, computational

load and memory requirement, a quantized approach is used that leads towards the quantized ker-

nel minimum error entropy. The energy conversation relation for the algorithm is also obtained

and a sufficient condition for the convergence of mean square algorithm is proved. The algorithm

is validated by an experiment of nonlinear system identification [120].

A novel data driven soft sensor method is developed for nonlinear problems of batch processes.

This architecture is achieved by introducing a dual kernel partial least squares algorithm. Dual ker-

nel matrices are established by projecting both output data and input data into two reduced kernel

spaces. Then the data predicted in the kernel space is reversely projected to its original space using
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online prediction. A very complicated series of biochemical reaction known as Escherichia Coli

prediction having characteristics of time variability, nonlinearity and uncertainty is performed by

kernel multiway partial least squares algorithm [121]. The other related work in the kernel methods

are discussed in [122, 123, 118, 124, 125].
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3 Fractional Algorithms with their

applications to nonlinear systems

In this chapter, a modified fractional least mean square algorithm is introduced for nonlinear and

nonstationary time series prediction. A novel method is introduced to adjust the step sizes and the

order of the fractional derivative of MFLMS algorithm on the basis of minimizing the mean square

error. The proposed algorithm is validated with the experiments performed against the prediction

of stationary as well as nonstationary chaotic Mackey glass and short term lorenz time series.

3.0.5 Prediction problem setting

One of the most celebrated problems in signal processing is that of predicting a future value in

nonlinear time series analysis [126]. Consider the time series x(n), x(n − 1), x(n − 2), x(n −

3), ......x(n − M), representing M+1 samples of such a process. In the process of prediction,

samples x(n− 1), x(n− 2), x(n− 3), ......x(n−M) are used to predict the current value of x(n).

First the specified data is chosen for training upon which the filter taps are adjusted and use these

weights to predict the next value of the time series. The taps are adjusted here in this research

work according to the stochastic gradient algorithm (LMS), nonlinear feature mapping technique

(KLMS) and fractional derivative technique (FLMS and MFLMS). The basic architecture of the

predictor of order M will be given in Fig. 1.
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Figure 1: Basic architecture of the predictor
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Least Mean Square Algorithm

Widow and Hopf [127] use stochastic gradient technique to formulate the least mean square algo-

rithm. In order to minimize the empirical risk by using the example sequence [x(i), d(i)] as

J(w) =
1

2

n∑
i=0

(d(i)− wTx(i))2 (3.1)

The gradient of the above mentioned cost function with respect to w is given as

∇wJ = −
n∑
i=1

x(i)(d(i)− wTx(i)) (3.2)

Finally the weights are adjusted according to the method of steepest descent as

w(n) = w(n− 1) + µe(n)x(n) (3.3)

It is customary to initialize the tap weight vector equal to zero.

Kernel Least Mean Square Algorithm

A poor performance can be expected when the difference or the mapping between x and d is highly

nonlinear. A nonlinear mapping is introduced in [41] as ϕ(x(i)), which gives a powerful model

wTϕ(x(i)) than wTx. So by using this model and finding w through stochastic gradient technique

may prove an efficient mechanism towards nonlinear filtering as LMS ensures for linear problems.

Using the example sequence[ϕ(i), d(i)], evaluate the algorithm

e(i) = d(i)−w(i− 1)Tϕ(i) (3.4)
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w(i) = w(i− 1) + µe(i)ϕ(i)

w(i) = w(i− 2) + µe(i− 1)ϕ(i− 1) + µe(i)ϕ(i)

w(i) = w(i− 3) + µe(i− 2)ϕ(i− 2) + µe(i− 1)ϕ(i− 1) + µe(i)ϕ(i)

= w(0) + µ

n∑
j=1

e(j)ϕ(j) (3.5)

If we take w(0) = 0, then

w(i) = µ
n∑
j=1

e(j)ϕ(j) (3.6)

The repeated application of the weight update equation yields

y = µ
n∑
j=1

e(j)k(x(j),x(i)) (3.7)

There is an inability to work directly with the filter weights in the feature space (RKHS). So we take

a difference between the output of the network and desired signal as coefficient of the filter [41].

They are adjusted instead of weight vector for KLMS in order to predict the next value of the time

series.

3.1 Fractional Least Mean Square Algorithm

A nonlinear and fractional adaptive algorithm has been introduced [128] for identification of the

autoregressive (AR) systems. Since its formulation, it has been immensely utilized in various fields

effectively, such as, echo cancellation, dual channel speech enhancement [129] and performance

analysis of the Bessel beamformer [130]. Before discussing the algorithm, we hereby present

some basic concepts about the fractional derivative. The idea stems from the Riemann Liouville
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fractional integral and derivative method. The definition of the method is given as

Ivf(t) =
1

Γ(α)

∫ t

0

(t− ν)ν−1f(τ)dτ (3.8)

where Iν is the fractional integral of order ν. Accordingly the fractional derivative is given as

(Dνf)(t) = (
d

dt
)n(In−νf)(t)

(Dνf)(t) =
1

Γ(α)
(
d

dt
)n
∫ t

0

(t− τ)n−ν−1f(τ)dτ (3.9)

Dν is defined as the fractional derivative and n is an integer. In order to add little more detail we

present Reimann Lioville fractional derivative applied to power function given as follows. The ν

derivative of f(t) = (t− a)α is,

Dν(t− a)α =
Γ (1 + α)

Γ(1 + α + ν)
(t− a)α−ν (3.10)

where a and α are real constants.

3.1.1 Derivation of FLMS Algorithm

First start with the standard LMS FIR filter [126, 131]. The error is minimized according to the

cost function given as

J(n) =
1

2
E[|e(n)|2] (3.11)

The adaptive weight mechanism of LMS filter having only the first derivative is given as

wk(n+ 1) = wk(n)− µ(
∂J(n)

∂wk
) (3.12)
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We use fractional derivative in addition to the first derivative to Eq. 12.

wk(n+ 1) = wk(n)− µ(
∂J(n)

∂wk
)− µ2(

∂

∂wk
)νJ(n) (3.13)

Equating 13, we get

((
∂J(n)

∂wk
) = −e(n)x(n− k) (3.14)

(
∂

∂wk
)νJ(n) = −e(n)x(n− k)Dνwk(n)

(
∂

∂wk
)νJ(n) = −e(n)x(n− k)[

1

Γ(2− ν)
w1−ν
k (n)] (3.15)

By substituting 3.14 and 3.15 into 3.13, we have a method for the weight adaptation of kth element

for FLMS as

wk(n) = wk(n− 1) + µ1e(n)x(n− k) + µ2e(n)x(n− k)
w1−ν
k (n)

Γ(2− ν)
(3.16)

where ν is a real number between 0 and 1. To pace up the computation for equations of nonlinear

nature in cyclic single step iteration, assume that w1−ν
k (n) ∼= w1−ν

k (n− 1), then 3.16 becomes

wk(n) = wk(n− 1) + µ1e(n)x(n− k) + µ2e(n)x(n− k)
w1−ν
k (n− 1)

Γ (2− ν)
(3.17)

3.1.2 Proposed Modified FLMS Algorithm

Here we introduced a mechanism to avoid the computation of Gamma function, probably, one of

the most fundamental function of the fractional calculus. By absorbing this function in µf and

introducing the adjustable gain parameter β, reformulate 3.17 as follows

wk(n) = wk(n− 1) + βµe(n)x(n− k) + (1− β)µfe(n)x(n− k)w1−ν
k (n) (3.18)
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where 0 < β < 1, is adjusted manually. µ and µf are the step size fractional parameters, respec-

tively, with their values adjusted between 0 and 1. We do make sure that the algorithm does not

diverge. β has to be adjusted for optimal results. Obviously if β is taken as 0.9, we are giving

dominance to LMS. But if β < 0.5, we are giving preference to FLMS. Furthermore it is also

possible that β may be adapted accordingly with the number of iterations.

3.2 Simulation Results

In this section we present some simulation results of time series prediction using LMS, KLMS,

FLMS and MFLMS predictors. To evaluate the performance of these filters, Chaotic Mackey-

Glass time series is generated by the following delay differential equation as

dx(t)

dt
= −bx(t) +

ax(t− τ)

1 + x10(t− τ)
(3.19)

With b=0.1,a=0.2 and τ = 20, initial conditions x(t − τ) = 0 for 0 ≤ t ≤ τ . So we have a series

x(k) for k=1,2,3,..............,3000, obtained by Eq. 3.19. It is achieved by sampling the continuous

curve x(t) with the interval of 1 second. The time embedding length or the order of the filter M is

10 for all the experiments, and a segment of 700 samples is used for training, while another 200

is used for testing. Different cases are discussed here for the analysis of the Mackey-Glass time

series prediction. The time series generated is shown in fig. 2.

3.2.1 Case I: Simulation for Stationary Series

The performance of the proposed MFLMS algorithm is tested on the stationary series. Data sam-

ples of points 900-1600 are used for the training of the filters and sample points 1600-1801 are

used as the test or validation set. The weights are adjusted in 50 epochs for this experiments. These

weights are then used to validate the test data. The parameters are adjusted as LMS (µ = 0.15),
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Figure 2: Mackey-Glass time Series
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Figure 3: Prediction analysis of Stationary Series without noise

KLMS (η = 0.1 and Gaussian kernel with a width of 0.1), FLMS (µ = 0.019, µf = 0.03 and

ν = 0.0972) and MFLMS (µ = 0.08, µf = 0.03, ν = 0.0972 and β = 0.48) for achieving the most

optimal results. The results in Fig. 3 show the predictive performance of LMS, KLMS, FLMS,

and proposed MFLMS. The superiority of the proposed method is clearly observed and to validate

this, the learning curves of these performances are compared in terms of the mean square error

displayed in Fig. 4.

3.2.2 Case II: Simulation for Stationary Series with different noise levels

Experiments are performed with a segment of 500 samples used for training and another 200

for testing. All the stationary time series data is corrupted by Gaussian noise with zero mean

and different noise variances to further validate the MFLMS algorithm. Throughout this set of

simulation the values of µ, µf , ν andβ are used same as in case I. Gaussian kernel with a width of

0.1 is used for KLMS predictor. 100 independent Monte Carlo simulations are run with different

noise variances σ2
n to further validate the MFLMS applicability. The results are summarized in
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Figure 4: Learning curves of stationary series for LMS, KLMS, FLMS and MFLMS

table 1, which show that MFLMS is the best performer, specifically in terms of low noise variances.

Results are displayed using the form mean±standard deviation. As it is easily observed in Table 1,

the MFLMS algorithm performs effectively and consistently on both the training and test data.

Table 1: Performance Comparison with Different Noise Levels
Algorithm LMS KLMS FLMS MFLMS
Traning MSE(σ = 0.005) 0.00250±3.85e-005 0.00454±9.26e-005 0.001827±2.93e-005 0.00156±1.28e-005
TestingMSE(σ = 0.005) 0.00243±0.4.219e-005 0.04927±0.0001069 0.0017738±3.28e-005. 0.001538±1.927e-005

TraningMSE(σ = 0.02) 0.00303±0.000149 0.005175±0.000358 0.002399±0.000121 0.0021152±6.50e-005
TestingMSE(σ = 0.02) 0.002970±0.00170 0.005556±0.0004324 0.002356±0.000131 0.0020892±9.49e-005

TraningMSE(σ = 0.04) 0.004640±0.000297 0.00680±0.000716 0.004117±0.000251 0.0038219±0.0001680
TestingMSE(σ = 0.04) 0.0046379±0.0003128 0.007162±0.0007767 0.004117±0.000282 0.003822±0.0002391

TraningMSE(σ = 0.1) 0.015863±0.0009678 0.01832±0.0015963 0.015628±0.0009414 0.015301±0.00086739
TestingMSE(σ = 0.1) 0.016166±0.001296 0.019066±0.0024241 0.015929±0.0012814 0.0155606±0.0013143

TraningMSE(σ = 0.5) 0.42356±0.1011 0.20001±0.010242 0.42533±0.1115 0.3209±0.030332
TestingMSE(σ = 0.5) 0.41752±0.12074 0.29218±0.028178 0.41918±0.12231 0.32013±0.047689
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Figure 5: Modified Time Series

3.2.3 Case III: Simulation for Nonstationary Series

To examine the behavior of predictors for nonstationary series, we used a modified time series with

sinusoid [132]. This new series is generated by adding a sinusoid (y = 0.3 sin(2πft), f = 1/3000

and t is a continuous curve between 1 : 3000) with an amplitude 0.3 and a frequency of 3000

samples per seconds to 3.24. The modified time series is displayed in Fig. 5, with clear indication

of training and testing samples. Training data is taken from the samples 900-1600 as shown in

Fig. 5, testing is done on the samples 1600-1800. After adjusting the best possible values of the

filter parameters, the predictors are then trained with the aim to efficiently handle the time varying

mean of the test data. The filter parameters are chosen as LMS (µ = 0.04), KLMS (η = 0.2 and

Gaussian kernel with a width of 0.1), FLMS (µ = 0.4, µf = 0.03 and ν = 0.0972 and MFLMS

(µ = 0.01, µf = 0.03, ν = 0.0972 and β = 0.35 accordingly. The results displayed in Fig. 6 show

the predictive performance of the algorithms. The authentication towards performance is observed

in Fig. 7, which displays the learning curves of the mean square error performance comparison for

LMS, KLMS, FLMS, and MFLMS.

51



1600 1650 1700 1750 1800 1850
0

0.2

0.4

0.6

0.8

1

1.2

1.4

no. of iterations (samples)

pr
ed

ic
tio

n 
an

al
ys

is

 

 

Time Series data
LMS
KLMS
FLMS
MFLMS

Figure 6: Prediction Analysis of modified Time Series
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Figure 7: Learning curves of Nonstationary Series
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Table 2: Performance Comparison of Modified Series with Different Noise Levels
Algorithm LMS KLMS FLMS MFLMS
TraningMSE(σ = 0.005) 0.0075878±0.00018345 0.0042825±6.8525e-005 0.0095947±0.0002324 0.0096714±0.000123
TestingMSE(σ = 0.005) 0.003413±6.7908e-005 0.039595±0.00022386 0.004302±8.8553e-005. 0.004523±5.32e-005

TraningMSE(σ = 0.02) 0.0082071±0.00078202 0.0048971±0.00028805 0.01018±0.0010086 0.010158±0.00055381
TestingMSE(σ = 0.02) 0.0039908±0.00029233 0.040221±0.0010017 0.0048459±0.000381 0.0050118±0.0002199

TraningMSE(σ = 0.04) 0.010862±0.0016886 0.0066764±0.00070018 0.012715±0.0020468 0.012111±0.0010296
TestingMSE(σ = 0.04) 0.0060947±0.0006786 0.042194±0.0023461 0.0068924±0.000811 0.0067999±0.00049113

TraningMSE(σ = 0.1) 0.027542±0.0059527 0.017685±0.0017916 0.029103±0.0065121 0.026047±0.0033939
TestingMSE(σ = 0.1) 0.019771±0.0025419 0.05688±0.005641 0.020757±0.002782 0.019248±0.0017778

TraningMSE(σ = 0.5) 0.4559±0.11013 0.21233±0.015882 0.45755±0.11098 0.37931±0.058416
TestingMSE(σ = 0.5) 0.40591±0.082598 0.34762±0.03449 0.40716±0.083371 0.34391±0.049129

3.2.4 Case IV: Simulation for Nonstationary Series with different noise lev-

els

In table II, we summarize the algorithm behavior towards nonstationary series prediction, setting

different noise levels parameters and testing each case on 100 Monte Carlo simulations. The

performance of the proposed MFLMS attains the achievable performance. In this experiment, all

the filter parameters are alloted as given in case III.The results are summarized in table II after 100

Monte Carlo simulations using the form mean±standard deviation. The results are displayed with

different noise variances σ2
n to further validate the MFLMS applicability towards nonstationary

series prediction.

3.3 Adaptive Step Size Modified Fractional Least Mean Square

Algorithm

A mechanism is introduced here in this section of the dissertation to sidestep the computation of

Gamma function, probably, one of the most major function of the fractional calculus. By gripping

this function in the term µf and presenting the adjustable gain parameter β, reformulate 3.17 and
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is written as

wk(n) = wk(n− 1) + βµe(n)x(n− k) + (1− β)µfe(n)x(n− k)w1−f
k (n) (3.20)

where 0 < β < 1, to be adjusted manually. We do make sure that the algorithm does not diverge.

β has to be adjusted for optimal results. Obviously if β is taken as 0.9, we are giving dominance

to LMS. But if β < 0.5, we are giving preference to FLMS.

3.3.1 Proposed Adaptive Step Size Modified Fractional Least Mean Square

Algorithm

The variable step size algorithm is introduced here to eliminate the ”guesswork” exists in the se-

lection of step size parameters. In order to speed up the performance and convergence of modified

FLMS algorithm, the step size parameters µ, µf and f is made adaptive by using the gradient based

approach. Let us consider the goal of reducing the squared estimation error at each instant of time

by adapting these parameters.

Adaptation of parameter µ

. First we consider the goal to adapt the step size µ in (3.20) in order to reduce the squared

estimation error at each instant of time as

µ(n+ 1) = µ(n)− α

2
∇̂µ(n) = µ(n)− α

2
[
∂e(n)

∂µ(n)
e∗(n) +

∂e∗(n)

∂µ(n)
e(n)] (3.21)

Here we consider the real case only and α is a small positive constant.

∂e(n)

∂µ(n)
=

∂

∂µ(n)
[d(n)−wT (n)x(n)] = −∂wT (n)

∂µ(n)
x(n) = −ΨT (n)x(n) (3.22)
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putting the value of (23) in (22) we have

µ(n+ 1) = µ(n)− α

2
[−2e(n)

∂e(n)

∂µ(n)
] = µ(n) + αe(n)ΨT (n)x(n). (3.23)

Now we formulate the vector Ψ(n), denotes the weight vector with respect to step size parameter

µ according to (3.20) as

∂wk(n+ 1)

∂µ(n)
=

∂wk(n)

∂µ(n)
+ βe(n)x(n− k) + βµ(n)x(n− k)

∂e(n)

∂µ(n)

+ (1− β)µf (n)
∂e(n)

∂µ(n)
x(n− k)w1−f

k (n)

+ (1− β)µf (n)e(n)x(n− k)
∂w1−f

k (n)

∂µ(n)
(3.24)

And then

Ψk(n+ 1) = Ψk(n) + βe(n)x(n− k) + βµ(n)x(n− k)(ΨT (n)x(n))

+ (1− β)µf (n)(ΨT (n)x(n))x(n− k)w1−f
k (n)

+ (1− β)µf (n)e(n)x(n− k)(1− f)w−fk (n)Ψk(n) (3.25)

In order to find an estimate of the particular value of the parameter µ, that minimizes the cost

function (3.36). we follow the process of adaptation in (3.20) to (3.25)

Adaptation of parameter µf

. Now we consider the goal to adapt the fractional step size parameter µf . The procedure is as

follows.

µf (n+ 1) = µf (n)− αf
2
∇̂µf (n) = µf (n)− αf

2
[−2e(n)

∂e(n)

∂µf (n)
] (3.26)
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Where αf is a small positive constant.

∂e(n)

∂µf (n)
= −∂wT (n)

∂µf (n)
x(n) = −ΨT

f (n)x(n) (3.27)

And

µf (n+ 1) = µf (n) + αfe(n)(ΨT
f (n)x(n)) (3.28)

Formulate Ψ(n) according to (3.20) as

∂wk(n+ 1)

∂µf (n)
=

∂wk(n)

∂µf (n)
+ βµ(n)

∂e(n)

∂µf (n)
x(n− k) + (1− β)e(n)x(n− k)w1−f

k (n)

+ (1− β)µf (n)
∂e(n)

∂µ(n)
x(n− k)w1−f

k (n)

+ (1− β)µf (n)e(n)x(n− k)
∂w1−f

k (n)

∂µf (n)
(3.29)

Ψk,f (n+ 1) = Ψk,f (n) + βµ(n)(ΨT (n)x(n)) + (1− β)e(n)x(n− k)w1−f
k (n)

− (1− β)µf (n)(ΨT (n)x(n))x(n− k)w1−f
k (n)

+ (1− β)µf (n)e(n)x(n− k)(1− f)w−fk (n)Ψk,f (n) (3.30)

Adaptation of parameter f (the order of fractional derivative)

. The proposed method for adapting the order of fractional derivative by using the gradient descent

approach is given as

f(n+ 1) = f(n)− αfr
2
∇̂f (n) = f(n) + αfre(n)

∂e(n)

∂f(n)
(3.31)
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Where αfr is a small positive constant

∂e(n)

∂f(n)
= −∂wT (n)

∂f(n)
x(n) = −ΦT

f (n)x(n) (3.32)

And now formulate the adaptation rule for f as

f(n+ 1) = f(n) + αfre(n)(ΦT
f (n)x(n)) (3.33)

Differentiating (3.20) with respect to f(n), we get

Φk,f (n+ 1) = Φk,f (n)− βµ(n)(ΦT (n)x(n)) + (1− β)e(n)x(n− k)w1−f
k (n)

− (1− β)µf (n)(ΦT (n)x(n))x(n− k)w1−f
k (n)

+ (1− β)µf (n)e(n)x(n− k)(−w1−f
k (n) lnwk(n)) (3.34)

The order of the fractional derivative is adjusted adaptively through the method described in (3.31)

to (3.34)

3.4 Prediction problem setting

One of the most celebrated problems in signal processing is that of predicting a future value in

nonlinear time series analysis. Prediction involves the method of taking advantage of time series

history to estimate the future values in the series. A time series can be defined as a sequence of

vectors or scalers depending upon time.

Let us consider a time series T.S. = {x(n0), x(n1), x(n2), ......, x(nk−1), x(nk), x(nk+1), x(nk+2), ......}

To predict the future value at a certain time, a tapped delay line is created through a process called

embedding. The output is a matrix containing a tapped delay line shifted by one time sample in its

57



each column and will be written as



x(nk) x(nk+1) ... x(nk+N−1)

x(nk−1) x(nk) ... x(nk+N−2)

x(nk−2) x(nk−1) ... x(nk+N−3)

... ... ... ...

x(nk−M−1) x(nk−M) ... x(nk+N−M)


(3.35)

The number of columns represents the input patterns that the predictor used for training or testing.

M is the number of events in the past or the order of the filter. Now let us consider the first input

pattern, which contain M events. This vector is then delivered to the predictor for estimating the

future value using the weight vector. This weight vector is updated using a law based on the

function of mean square error. I-e

e = |x(nk+1 − x̂(nk+1))|2 (3.36)

The above mentioned cost function (3.36) is used to adapt the parameter of LMS, MFLMS and

AMFLMS. The formulation of KLMS is little bit different, it uses error vector obtained during

training to test the validation set or desired data samples. The architecture of the predictor is given

in Fig. 8.

3.5 Experimental Results

We proceed here in this section to demonstrate the performance of the proposed algorithm in the

paper. First we evaluate the algorithm by considering the example of Mackey glass series under

stationary as well as nonstationary situation and also with different noise levels. Next Lorenz time

series is considered, only the performance is evaluated on X component of the series. We mainly
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Figure 8: Architecture of the predictor

focus on the comparison of different algorithms with gradient based approach.

3.5.1 Mackey Glass Time series

The experimental results of prediction using LMS, KLMS, MFLMS and AMFLMS predictors are

discussed. To counter the performance of the proposed filter, Chaotic Mackey-Glass time series is

generated by the following delay differential equation (3.37) as

dx(t)

dt
= −bx(t) +

ax(t− τ)

1 + x10(t− τ)
(3.37)

With b=0.1,a=0.2 and τ = 20, initial conditions x(t − τ) = 0 for 0 ≤ t ≤ τ . So we have a series

x(k) for k=1,2,3,..............,3000, obtained by 3.24. It is achieved by sampling the continuous curve

x(t) with the interval of 1 second. The time embedding length or the order of the filter M is 10 for

all the experiments, and a segment of 700 samples is used for training, while next 200 is used for

testing. Three cases are debated here for the inspection of the Mackey-Glass time series prediction.

The generated time series is shown in Fig. 9.
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Figure 9: Mackey-Glass time Series
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Figure 10: Prediction analysis of Stationary time series

Case I: Simulation for Stationary Series

The experiment is performed to test the proposed AMFLMS algorithm on the stationary series.

Sample points 1100-1600 are used for training and also to adjust the weights of the filter. These

weights are then used to validate the test samples 1600-1800. The parameters of the filters are

adjusted as: LMS (µ = 0.015), KLMS(η = 0.2) and Gaussian kernel with a width of 0.1 is

used, MFLMS(µ = 0.08, µf = 0.03, f = 0.0972andβ = 0.48) and AMFLMS (β = 0.48).

The predictive performance of LMS, KLMS, MFLMS and the proposed AMFLMS is depicted in

fig.10, and to validate the superiority, learning curves of of MSE are plotted in Fig. 11. The mean

behavior of the step size parameter µ and µf is depicted in Fig. 12 for the stationary series during

training. One can easily observe that value of both these parameters goes up very fast initially and

then settled. This behavior clearly explains fast convergence. In Fig. 13, the value of the fractional

order derivative is also plotted. In Fig. 13 the value of ν is plotted with the whole iteration. This

figure clearly mentions the variation in the value of ν has been remained fixed after 100 iterations

of time.
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Figure 11: Learning curves of stationary time series
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Figure 12: Behavior of the step size parameters during training
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Figure 13: Fractional order derivative during training in stationary environment

Case II: Simulation with Stationary Series having different noise levels

All the stationary of time series data is corrupted by Gaussian noise with zero mean and different

noise variances σ2
n to further validate the proposed algorithm. The values of the step size pa-

rameters are adjusted accordingly as in case 1. In this experiment 200 independent monte carlo

simulations are to test the proposed algorithm, and the results are displayed using the form ( mean

± standard deviation) in Table 1.

Table 3: Performance Comparison of Stationary Series with Different Noise Levels
Algorithm LMS KLMS MFLMS AMFLMS
Traning MSE(σ = 0.005) 0.0024785±1.7523-005 0.004514±6.1332e-018 0.001795±2.1904e-018 0.001625±1.7523e-018
TestingMSE(σ = 0.005) 0.0024785±4.5714e-019 0.0049036±6.1332e-18 0.001795±2.1904e-018. 0.064462±2.8037e-017

TraningMSE(σ = 0.02) 0.0024785±-4.571e-19 0.06970±1.4101e-17 0.02247±-3.657e-018 0.0017952±2.2857e-019
TestingMSE(σ = 0.02) 0.0024075±4.571e-19 0.074906±1.4628e-17 0.03756±3.868e-18 0.067227±1.48932e-019

TraningMSE(σ = 0.04) 0.0046267±0.00028867 0.009670±0.0005167 0.002137±0.000398 0.0038219±0.0001680
TestingMSE(σ = 0.04) 0.0046379±0.0003128 0.007162±0.0007767 0.004117±0.000282 0.003822±0.0002391

TraningMSE(σ = 0.1) 0.015863±0.0009315 0.018072±0.0019643 0.015315±0.00091788 0.012115±0.000808
TestingMSE(σ = 0.1) 0.016209±0.0014763 0.018942±0.0021438 0.073852±0.00484 0.01213±0.0013113

TraningMSE(σ = 0.5) 0.47252±0.24589 0.20107±0.01235 0.3209±0.058172 0.4908±0.34772
TestingMSE(σ = 0.5) 0.4487±0.18748 0.29321±0.032418 0.34689±0.090635 0.46899±0.09916
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Figure 14: Learning curves of Time Series with noise level 0.1

It is clear from the Table. 1, that the proposed AMFLMS algorithm gives best results in low

noise levels but its performance is slightly degraded in the presence of high noise levels, as men-

tioned in the table for noise level σ2
n = 0.5. Noise σ2

n = 0.1 is added to the stationary series and

MSE is plotted in fig.14. The performance of AMFLMS is still better.

Case III: Experiment with Nonstationary Series

In order to examine the behavior and to further validate the performance of the proposed algorithm,

experiments are performed on the nonstationary time series [132] data. We generate a modifies

series by adding a sinusoid (y = 0.3 sin(2πft), f = 1/3000 and t is a continuous curve 1 : 3000)

with an amplitude of 0.3 and a frequency of 3000 samples per second to stationary Mackey Glass

time series as shown in Fig. 15 with the indication of training and testing samples. Next we

perform the experiment to test the proposed algorithm on nonstationary series with time varying

mean. Training data is taken from the samples 1100-1600. After adjusting the parameters of the

filters, the predictors are then given the test data of sample points 1600-1800, and the predictive

performance of these are shown in Fig.16. The filter parameters are selected are as: LMS (µ =
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Figure 15: Modified Time Series

0.02), KLMS (η = 0.2 and Gaussian kernel with a width of 0.1), MFLMS (µ = 0.01, µf =

0.03, f = 0.0972, β = 0.45) and AFLMS β = 0.45. The performance comparison of the proposed

algorithm with LMS, KLMS and MFLMS is detailed in terms of mean square error in Fig. 17. The

result shows the superiority of the proposed AMFLMS filter.

In order to further validate the performance of the proposed algorithm, the experiment is per-

formed with less number of training samples for modified non stationary series. 200 samples(1600-

1800) are taken to train the algorithms, while another 300 sample poins(1600-1900) are are used

as a test or validation set for LMS, KLMS, MFLMS amd AMFLMS. The results are displayed

in terms of mean square error(MSE) in Fig. 19. and it depicts that the performance of the pro-

posed AMFLMS algorithm is better in comparison with others. The behavior of the three proposed

adaptive parameters µ, µf and f are displayed in Fig. 18 during training.

Case IV: Simulation for Nonstationary Series with different noise levels

In table II, we summarize the behavior of the filters towards nonstationary time series prediction

with different noise variances σ2
n. After 200 independent runs of Monte Carlo simulations, the

65



1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

no. of samples

 

 

Time series data
LMS
KLMS
MFLMS
AMFLMS

Figure 16: Prediction Analysis of modified Time Series
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Figure 17: Learning curves of Nonstationary Series
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Figure 18: Behavior of three adjustable parameters during training of nonstationary series
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Figure 19: Learning curves of modified series with different training and test samples
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results are displayed using the form ( mean ± standard deviation). The results shows that the

proposed algorithm achieves better performance in terms of low as well as high noise levels.

Table 4: Performance Comparison of Nonstationary Series with Different Noise Levels
Algorithm LMS KLMS MFLMS AMFLMS
TraningMSE(σ = 0.005) 0.0024999±-2.9452e-005 0.004534±6.0666e-005 0.001818±2.3034e-005 0.001646±9.033e-006
TestingMSE(σ = 0.005) 0.002487±3.5334e-005 0.0049278±6.8589e-005 0.067229±0.00021486. 0.064473±0.0001984

TraningMSE(σ = 0.02) 0.0030239±0.00013662 0.005153±0.00038711 0.0023982±0.000117 0.0022105±5.4614e-005
TestingMSE(σ = 0.02) 0.002944±0.00017584 0.0055061±0.00040318 0.067354±0.0010987 0.064812±0.00095545

TraningMSE(σ = 0.04) 0.0046267±0.00028867 0.0070108±0.0007506 0.0041104±0.000254 0.0039353±0.00019148
TestingMSE(σ = 0.04) 0.0045764±0.00033865 0.0073131±0.00084083 0.0067554±0.002234 0.065667±0.00019555

TraningMSE(σ = 0.1) 0.015673±0.0009315 0.018072±0.0019643 0.015461±0.0009336 0.015315±0.0009178
TestingMSE(σ = 0.1) 0.016209±0.0014763 0.018942±0.0021438 0.073457±0.0057177 0.073852±0.00484

TraningMSE(σ = 0.5) 0.47252±0.24589 0.20107±0.01235 0.47498±0.24988 0.329±0.058172
TestingMSE(σ = 0.5) 0.4487±0.18748 0.29321±0.032418 0.49428±0.25345 0.34689±0.090365
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Figure 20: Learning curves of modified series with noise 0.15

Noise with variance of σ2
n = 0.15 is added to the modified time series and the performance of

LMS, KLMS, MFLMS and AMFLMS is observed in terms of MSE as the figure of merit in Fig.

20.
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3.5.2 Lorenz Time Series

The Lorenz time series represents a dynamical system with chaotic flow, also prominent for its

unique butterfly shape. The Lorenz system is nonlinear, three dimensional and deterministic and

described by the following set of differential equations.

dx

dt
= σ(y(t)− x(t))

dy

dt
= −x(t)z(t) + γx(t)− y(t)

dz

dt
= x(t)y(t)− βz(t) (3.38)

The values of the unknown parameters upon which the Lorenz system exhibits chaotic behavior are

set as σ = 10, γ = 28 and β = 8
3
. Consider the initial values as x(0) = 1, y(0) = 1, z(0) = 1, and

a sampling period of 0.01 second is fixed to obtain the sample data using first order approximation

method. State trajectory of the Lorenz system is depicted in Fig. 21.
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Figure 21: State trajectory of the lorenz system

Then another experiment is performed with training sample points 1100-1600 and test sample
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Figure 22: Prediction analysis of X component of Lorenz time series during training

points 1600-2000 to evaluate the performance of the filters as depicted in Fig. 22. To further

validate the performance of the proposed algorithm, mean square error is plotted in Fig. 23.

3.6 Conclusion

Modified and Adaptive step size modified fractional LMS algorithm employing a time varying step

size parameters in the weight adaptation equation is introduced. These parameters are adjusted

according to the square of a time averaged error through gradient based technique. As a result,

the proposed algorithm can effectively handle the prediction of chaotic series. One application

of predicting a chaotic Mackey Glass and another of lorenz series is presented, which illustrate

that our proposed algorithm achieves better performance in terms of mean square error(MSE). The

performance of the proposed algorithm is also tested and analyzed for both the stationary as well

as non stationary time series and also with different noise levels in comparison with that of LMS,

KLMS and MFLMS. This new algorithm (AMFLMS) hopefully is another contribution in the field

of nonlinear fractional signal processing.
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Figure 23: Learning curves for x-component of Lorenz Series
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4 Kernel Fractional and Kernel Affine

Projection Algorithms with their

applications to nonlinear systems

The main aim of this chapter is to develop a Kernel Fractional Affine Projection algorithm (KFAPA).

A method is introduced to adjust the Reimann-luiville fractional derivative term in the kernel affine

projection algorithm. The proposed algorithm is then applied on the prediction of only the X-

component of the three dimensional chaotic lorenz time series, nonlinear channel equalization,

forecasting of carbon dioxide concentration in the atmosphere and static function approximation.

Along with that a new Identification scheme is presented for the Hammerstein nonlinear controlled

autoregressive system using kernel affine projection algorithm. This identification scheme is vali-

dated on a set of experiments with different noise variances.

4.1 Kernel Fractional Affine Projection Algorithm

In this section of the dissertation, the main aim is to develop a Kernel Fractional Affine Projection

algorithm (KFAPA). A method is introduced to adjust the Reimann-luiville fractional derivative
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in the weight adaptation equation of the kernel Affine Projection Algorithm. To formulate the

KFAPA, we introduce a cost function that includes a fractional term, this cost function is mini-

mized according to the mean square algorithm using gradient based smoothed nonlinear recursive

method. The proposed algorithm is then validated on a set of experiments including prediction

of only the X-component of the three dimensional, deterministic and chaotic lorenz time series,

nonlinear channel equalization, prediction of carbondioxide concentration in the atmosphere and

static function approximation.

4.1.1 Affine Projection Algorithm

Affine projection algorithm [133] uses smoothed newton’s recursion to formulate the algorithm. In

order to minimize the cost function, we hereby uses the following example sequence [x(i),d(i)] as

J(w) =
1

2

n∑
i=0

(d(i)−wTx(i))2 (4.1)

The gradient with respect to weigh vector w is

∇wJ = −
n∑
i=1

x(i)(d(i)−wTx(i)) (4.2)

The weights are adjusted according to stochastic Newton method as

w(i) = w(i− 1)− ηt(∇2
wJ)−1∇wJ (4.3)

Tap weight vector customary be initialized to zero. ηt is the small positive stepsize. Here we

perform a line search along the gradient descent direction to compute the weight vector. The
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corresponding steepest descent and newton’s recursion becomes

w(i) = w(i− 1) + ηtx(i)[xT (i)x(i) + εI]−1[d(i)− x(i)Tw(i− 1)] (4.4)

ε is the small positive constant, which prevents division by zero errors. To smoothen the Newton’s

recursion and to increase the convergence speed we proceed as

w(i) = w(i− 1) + ηt[x(i)xT (i) + εI]−1x(i)[d(i)− x(i)Tw(i− 1)] (4.5)

w(i) = w(i− 1) + ηt[x(i)xT (i) + εI]−1[x(i)d(i)− x(i)x(i)Tw(i− 1)] (4.6)

w(i) = w(i− 1) + ηt[Ru + εI]−1[rdu − [Ru + εI]w(i− 1)] (4.7)

Where the matrix R is strictly positive definite and invertible.

4.1.2 Kernel Affine Projection Algorithm

Poor performance is examined, when the difference of mapping between x and d is highly non-

linear. A nonlinear mapping is introduced in [40] as ϕ(x(i)), which gives a powerful model

wTϕ(x(i)) than wTx. So by using this model and finding w through stochastic newton method

may prove an efficient mechanism towards nonlinear filtering as APA ensures for linear problems.

Using the sequence[ϕ(i), d(i)] to parameter weight vector w as

J(w) =
1

2

n∑
i=0

(d(i)−wTϕ(i))2 (4.8)

By minimizing the cost function (4.8), the stochastic gradient descent becomes

w(i) = w(i− 1) + ηtΦ(i)[d(i)−ΦTw(i− 1)] (4.9)
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And stochastic Newton method becomes

w(i) = w(i− 1) + ηt[Φ(i)Φ(i)T + εI]−1Φ(i)[d(i)−ΦTw(i− 1)] (4.10)

Notice that by using searl’s matrix identity

[Φ(i)Φ(i)T + εI]−1Φ(i) = Φ(i)[Φ(i)TΦ(i) + εI]−1 (4.11)

so the corresponding weight update equation becomes

w(i) = w(i− 1) + ηtΦ(i)[Φ(i)TΦ(i) + λI]−1[d(i)−ΦTw(i− 1)] (4.12)

Therefore KAPA only needs a K ×K matrix inversion which can be computed easily by sliding

window trick.

4.1.3 Proposed kernel Fractional Affine Projection Algorithm

Here we introduced a mechanism to update the weights of kernel affine projection algorithm with

the inclusion of fractional derivative term.

w(i) = w(i− 1)− ηt(∇2
wJ)−1∇wJ −∇ν

wJ (4.13)

and the cost function with fractional derivative is written as

(
∂

∂w(i)
)νJ = −e(i)ϕ(i)Dνw(i)

(
∂

∂w(i)
)νJ = −e(i)ϕ(i)[

1

Γ(2− ν)
w1−ν(i)] (4.14)
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It is more appropriate to use the previous value of weight vector w, that is w(i-1). The weight

update equation of the kernel fractional affine projection algorithm is

w(i) = w(i− 1) + ηtΦ(i)[Φ(i)TΦ(i) + λI]−1[d(i)−ΦTw(i− 1)] + µt(e(i)Tϕ(i))
w1−ν(i− 1)

Γ(2− ν)

(4.15)

Where ηt and µt are the small positive step size, typically lie between 0 and 1. In practice, we do

not have access to the transformed weights w in the feature space, so the updated weights have to

be evaluated through expansion coefficients as

w(i) =
i∑

j=1

aj(i)ϕ(j),∀i > 0. (4.16)

Now to evaluate the aj(i), setting the initial guess w(0) = 0, and adopted procedure as

toremovenumbering(beforeeachequation)w(0) = 0

w(0) = ηd(1)ϕ(1) = a1(1)ϕ(1)

... =
...

w(i− 1) =
i−1∑
j=1

aj(i− 1)ϕ(j)

similarly the K ×Kinversion in (4.17) is evaluated by the following searl’s identity

 A B

C D


−1

=

 (A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)
−1

 (4.17)
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where A = Φ(i − 1)TΦ(i − 1) + εI, B = Φ(i)Tϕ(i), C = ϕ(i)TΦ(i) and D = ϕ(i)Tϕ(i) + ε

And the fractional part of (17) is efficiently evaluated as

toremovenumbering(beforeeachequation)(e(i)Tϕ(i))w1−ν(i) = (e(i)Tϕ(i))(
i∑

j=1

aj(i)ϕ(j))1−ν

ν is the order of fractional derivative and the term (e(i)Tϕ(i))w1−ν(i) in 4.18 is evaluated using

Eq. 20.

4.1.4 Experimental Results

This section presents experimental results to reveals the performance of the proposed algorithm.

The performance of KFAPA is validated by the prediction of X-component of Lorenz time series,

equalization of nonlinear channel, CO2 concentration in atmosphere and static function approxi-

mation is presented.

4.1.5 Time series Prediction

A demanding problem in signal processing is that of predicting a future value in the chaotic time

series. The prediction method takes time series history to estimate the future value. A time series

is being defined as a sequence of vectors or scalers depends upon time.

Let us consider a time series T.S. = {u(n0), u(n1), u(n2), ......, u(nk−1), u(nk), u(nk+1), u(nk+2), ......}

To predict future value at a certain time, through the process known as embedding, a delay line is

formed. The output contains a tapped delay line and then form a matrix shifted by one time sample
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in each column and is written as



u(nk) u(nk+1) ... u(nk+N−1)

u(nk−1) u(nk) ... u(nk+N−2)

u(nk−2) u(nk−1) ... u(nk+N−3)

... ... ... ...

u(nk−M−1) u(nk−M) ... u(nk+N−M)


(4.18)

Columns in the matrix represents the pattern of the input for training or testing. M is known as the

order of the filter. The first input pattern is delivered to predictor for estimating the future value by

using the weight vector. This weight vector is then updated using a law based on the function of

mean square error as given below.

e = |u(nk+1)− û(nk+1)|2 (4.19)

The above mentioned cost function 4.19 is used to adapt the parameters of the predictors.

Figure 24: Architecture of the predictor
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Lorenz Time Series

Lorenz time series exhibits chaotic flow. Lorenz system is three dimensional, nonlinear, and deter-

ministic, expressed as the following nonlinear partial differential equations.

toremovenumbering(beforeeachequation)
dx

dt
= σ(y(t)− x(t))

dy

dt
= −x(t)z(t) + γx(t)− y(t)

dz

dt
= x(t)y(t)− Bz(t) (4.20)

Parameters of the Lorenz system on which its behavior becomes chaotic are σ = 10, γ = 28

and B = 8
3
. Set the initial values as x(0) = 1, y(0) = 1, z(0) = 1, a sampling period is taken

0.01 second, also it is fixed to obtain the sample data using first order approximation method. The

three dimensional state trajectory of the Lorenz system is shown in Fig. 25. The next experiment
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Figure 25: State trajectory of the lorenz system

is performed with training sample points 500-1000 of the X-component of the lorenz series, and

test sample points 1000-1200 to evaluate the performance of the proposed algorithm. The time
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embedding length or the order of the filter M is 5 for this experiment. To validate the performance

of the proposed algorithm, learning curves in terms of mean square error (MSE) is plotted in Fig.

26.
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Table 5: Performance Comparison of LMS, APA, KAPA and KFAPA for X-Component of lorenz
series prediction with Different Noise Levels

Algorithm LMS APA KAPA KFAPA
Traning MSE(σ = 0.05) 0.02250±1.75e-005 0.01454±5.26e-004 0.041827±1.93e-065 0.02156±1.39e-005
TestingMSE(σ = 0.05) 0.01583±0.22e-005 0.07820±0.00306 0.017738±2.28e-003. 0.091538±1.367e-004

TraningMSE(σ = 0.02) 0.01903±0.003149 0.025175±0.000198 0.001399±0.000189 0.0020052±6.50e-005
TestingMSE(σ = 0.02) 0.002970±0.00170 0.005556±0.0004324 0.001356±0.000131 0.0027892±9.49e-004

TraningMSE(σ = 0.04) 0.004349±0.0003927 0.00680±0.0007169 0.004117±0.000251 0.0048219±0.0001680
TestingMSE(σ = 0.04) 0.0049979±0.0004128 0.007162±0.0009767 0.005117±0.000382 0.005822±0.0003391

TraningMSE(σ = 0.1) 0.015863±0.0009678 0.010932±0.0025963 0.026628±0.00094904 0.045301±0.00086739
TestingMSE(σ = 0.1) 0.016166±0.007296 0.019066±0.0044241 0.035729±0.00128194 0.0555606±0.0023143

TraningMSE(σ = 0.5) 0.42356±0.10011 0.50001±0.010242 0.82530±0.2115 0.4209±0.030332
TestingMSE(σ = 0.5) 0.51752±0.22074 0.69218±0.028178 0.91918±0.32231 0.52013±0.047689
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Figure 26: MSE curves for x-component of Lorenz Series

The X-component of the Lorenz time series is corrupted with white noise having different

variances, the algorithms including the proposed one is tested and the results are displayed in

the tabular form. Mean square error is observed after 1000 Monte Carlo simulations and also

with different noise variances added to the X-component of the lorenz series is listed in Table 5.

Throughout this experiment Gaussian kernel is used and the kernel width is set as 0.1.
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Figure 27: Architecture of nonlinear channel

Nonlinear channel equalization

Nonlinear channel model considered here in this experiment as a test bench, consists of serial con-

nection of linear filter and a memoryless nonlinearity. This type is commonly used to model digital

communication channels and digital magnetic recording channels. A binary signal

[b(1), b(2), b(3), ........., b(k)]is fed into a nonlinear channel, while adding static nonlinearity and

additive white Gaussian noise the signal will be observed as [r(1), r(2), r(3), ........., r(k)]. The

channel model is defined ash(i) = b(i) + 0.5b(i− 1) and output is r(i) = h(i)− 0.9h(i)2 + n(i).

The nonlinear channel model is shown in Fig. 27. Where n(i) is the additive white Gaussian noise

having variance of 0.01. We aim here in this experiment to reproduce the original signal with low

error rate. The time embedding length or the order of the filter is 5. 5000 symbols are used to train

the coefficients of the nonlinear channel and the mean square error during training is displayed in

the Fig. 28. Table 6, shows the comparison of APA, KAPA and the proposed KFAPA for non-

Table 6: Performance Comparison of APA, KAPA and KFAPA in nonlinear channel equalization
Algorithm MSE (dB)
APA 0.6 ± 0.2
KAPA 0.55± 0.05
KFAPA 0.4 ± 0.1

linear channel equalization after 1000 montecarlo simulations. The performance of the proposed

algorithm is also tested by inserting an abrupt change at iteration 500. It can be easily observed

from Fig. 29, that the proposed algorithm is able to recover efficiently in comparison with its

counterparts and the improvement of 0.1 dB is acheived.
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Figure 28: Learning curve of nonlinear channel equalization

4.1.6 Atmospheric Carbon dioxide concentration forecasting

In this experiment, the data consists of monthly average CO2 concentrations(in parts per million

by volume ppmv) in atmosphere collected at Mauna Loa observatory Hawai, between 1958 and

2008, with 600 total observations. the first 400 points are used for training while the other 200

for testing. The kernel function handles long term rising, seasonal effect, periodicity and some

irregularities. The kernel function is

k(x,x
′
) = k1(x,x

′
) + k2(x,x

′
) + k3(x,x

′
) + k1(x,x

′
) (4.21)

k1(x,x
′
) is used to model the rising trends and is defined as

k1(x,x
′
) = a21exp(−

(x− x
′
)2

2a22
) (4.22)
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Figure 29: MSE curves for KFAPA of nonlinear channel equalization with an abrupt change at
iteration 500

a1 is the amplitude and a2 is the kernel width. A seasonal effect is modeled through periodic

kernel with a time period of 1 year. A gaussian kernel is used to put decay away from the exact

periodicity.

k2(x,x
′
) = a23exp(−

(x− x
′
)2

2a42
− sin2 π((x− x

′
))

a25
) (4.23)

a3, a4anda5 are magnitude, smoothing factor and the periodic component. To handle the irregular-

ities in the observed data set k3(x,x
′
) is defined as

k3(x,x
′
) = a26(1 +

(x− x
′
)2

2a28a
2
7

)−a
2
8 (4.24)

a6 is magnitude, a7 and a8 are the smoothing factor and shape parameter respectively. To model

the noise component k(x,x
′
) is defined as

k4(x,x
′
) = a29(

(x− x
′
)2

2a210
+ a211δ(x− x

′
) (4.25)
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Table 7: kernel function parameter values
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
66 0.075 0.40 0.0576 1.0878 0.6600 0.4167 0.78 0.18 3.7509 0.1900

a9 and a10 is magnitude and smoothing factor of the coloured noise. a11 is the magnitude of white

noise. The values of these kernel function parameters are listed in Table 7. The Co2 concentration

in atmosphere is modeled as a function of time and as shown in Fig. 30. The prediction of carbon
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Figure 30: Carbon dioxide concentration trend from year 1958 to 2008

dioxide concentration using the proposed kernel fractional affine projection algorithm is depicted

in Fig. 31, while the prediction error in terms of mean square is plotted in Fig. 32.

4.1.7 Static function approximation

This example explains the static function approximation, where the desired output data is generated

by Eq. (4.26).

d(i) = cos(ω(x(i)− τ) + v(i) (4.26)
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Figure 31: Forecasting prediction result of KFAPA for carbondioxide concentration

where τ ≥ 0, input x(i) is uniformly distributed over [τ, τ + 2], and [v(i)] is a zero mean Gaussian

noise with variance σ2
v . In this experiment N=2000 samples are generated with σ2

v = 0.01, ω = 2

and τ = 1.0. 500 samples are used for training and another 200 is used for testing. The test pattern

is shown in Fig. 33.
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Figure 32: Testing Mean Square Error for KFAPA of carbondioxide concentration

1600 1620 1640 1660 1680 1700 1720 1740 1760 1780 1800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Samples

A
m

pl
itu

de

Figure 33: Test samples

88



4.2 Identification of Hamerstein Nonlinear controlled Auto-regressive

systems using kernel affine projection algorithm

Identification of linear and nonlinear systems through parameter estimation has gained consider-

able importance in control engineering and signal processing. Hammerstein systems are a class

of nonlinear models consist of linear time invariant block followed by the static nonlinear blocks.

These models are very much in common and are widely used in the industry, e.g., valve saturation,

signal analysis, nonlinearities arrises in the chemical processes, deadzone nonlinearities, actuator

saturation [134, 135, 136, 137, 138] etc. For Hammerstein nonlinear CAR models research com-

munity has shown great interest in developing the new methods for the identification of these mod-

els, including gradient based identification method [139], parameter estimation using recursive

method [140] for Hammerstein CAR system, Hirarical identification schemes [141, 142, 143],

multi innovation method [144, 145, 146] etc. Feng Deng and chen [147] developed an itera-

tive least squares and recursive least squares based identification method for the identification for

ARMA/CARMA model. The idea he introduces is to replace the unmeasurable noise term by their

estimates and compute those by parameter estimation and also prove its convergence. Half substi-

tution method was also introduced by Voros [148].

Recently a new scheme is developed for parameter estimation method for the CARMA systems

using single and two stage fractional least mean square algorithm. He splits the information vector

into two parts and proved that the parameters are estimated efficiently [31].

A lot of other work has been performed on the parametric model identification of the Hammer-

stein system. Some of them assume the nonlinearity as a two- segment peicewise or a multiple

segment piecewise linear function. Some assume hard nonlinearities or a discontinuous function.

The Hammerstein parametric identification problem can also be efficiently deal with the iterative

identification methods[16], Generally it is assumed that the nonlinearity ū = f(u) is basically a

polynomial of known order at the input and is expressed as the sum of unknown coefficients cj and
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the sum of nonlinear basis functions of known basis f = (f1, f2, f3), ......, fnc . Here in this thesis,

we also follow this method. Other existing methods for parametric identification of Hammerstein

system includes the subspace method, the over parameterization method, the iterative least squares

method, blind identification method, the iterative identification method and so on etc.

In this section of the thesis, we developed kernel affine projection based identification algorithm

for the parameter estimation of the hammerstein nonlinear controlled auto regressive system. This

approach handles efficiently the nonlinearities arising in the information vector due to some known

nonlinear basis function. Comparison with other adaptive strategies has also been made with the

proposed identification scheme. The results are presented in terms of parameter error and also with

the mean square error based on these estimated parameter. The other adaptive strategies include

Least mean square algorithm, Kernel least mean square algorithm, Modified fractional least mean

square algorithm and affine projection algorithm.

4.2.1 System description and Estimation algorithm

Let us introduce some brief description about the system model. The governing equation for

nonlinear Hammerstein system described by a CAR model is

A(z)y(t) = B(z)ū(t) + ν(t) (4.27)

Input ū(t) is the output of the nonlinear block and is assumed to be a nonlinear function with known

basisf1, f2, f3, .......fm of the system input u(t). The output of the nonlinear block is described as

ū(t) = f(u(t)) =
m∑
i=1

cifi(u(t)) (4.28)

90



y(t) is the system output, ν(t) is the stochastic white noise. A(z), B(z) are the n degree polynomial

in z−1 which is unit backward shift operator z−1y(t) = y(t− 1) with

A(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 + ......+ anz

−n (4.29)

B(z) = b1z
−1 + b2z

−2 + b3z
−3 + ......+ bnz

−n (4.30)

The above mentioned model (4.29) represents the nonlinear CAR model. The objective here in this

thesis is to identify the model by estimating the unknown parameters ai, bi, ci using the available

input and outputu(t), y(t). From 4.27,4.28 we have

A(z)y(t) = B(z)f(u(t)) + ν(t) (4.31)

and is easy to get

y(t) = −
n∑
i=1

aiy(t− i) +
n∑
i=1

biū(t− i) + ν(t)

= −
n∑
i=1

aiy(t− i) +
n∑
i=1

bi

m∑
j=1

cjfj(u(t− i)) + ν(t)

= −
n∑
i=1

aiy(t− i) +
n∑
i=1

m∑
j=1

cjbifj(u(t− i)) + ν(t)

= −
n∑
i=1

aiy(t− i) +
n∑
i=1

[c1bif1(u(t− i))

+ c2bif2(u(t− i)) + ......+ cmbifm(u(t− i))] + ν(t)

= −
n∑
i=1

aiy(t− i) + c1b1f1(u(t− 1)) + c1b2f1(u(t− 2))......+ c1bnf1(u(t− n))

+ c2b1f2(u(t− 1)) + c2b2f2(u(t− 2)) + ......+ c2bnf2(u(t− n))

+ c3b1f3(u(t− 1)) + c3b2f3(u(t− 2)) + ......+ c3bnf3(u(t− n)) + .........+ cmb1fm(u(t− 1))

+ cmb2fm(u(t− 2)) + ......+ cmbnfm(u(t− n)) + ν(t) (4.32)
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define the parameter vector θ and information vector ϕ(t) as

θ =



a

c1b

c2b

...

...

cmb


, ϕ(t) =



ψ0(t)

ψ1(t)

ψ2(t)

...

...

ψm(t)


(4.33)

The parameter vector is defined as

a =



a1

a2

a3
...
...

an


, b =



b1

b2

b3
...
...

bn


(4.34)

ψ0 =



−y(t− 1)

−y(t− 2)

−y(t− 3)

...

...

−y(t− n)


, ψj =



fj(u(t− 1))

fj(u(t− 2))

fj(u(t− 3))

...

...

fj(u(t− n))


, j = 1,2,3, ....,m (4.35)

Then we have

y(t) = ϕT(t)θ + ν(t) (4.36)
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we make the following assumption on the noise sequence ν(t)

E[ν(t)] = 0

E[ν2(t)] = σ2
v

4.2.2 Design methodology

In this section, a brief introduction of the stochastic gradient based iterative Linear and fractional

algorithm is presented as well as proposed iterative kernel affine projection algorithm is given for

the identification of nonlinear CARMA system.

Least Mean Square Identification Algorithm

The Least Mean Square(LMS) algorithm developed by widrow and Hopf [127] is used in many

areas of signal processing applications including beamforming, channel equalization, Adaptive

control, machine learning, system identification etc. By taking y(t) = ϕ(t)θT + v(t) as the ref-

erence signal and y(t) = θ̂Tϕ(t) as the estimated output of the algorithm. The cost function is

minimized for the parameter identification of the CARMA system as

J(θ̂) =
1

2
‖y(t)− θ̂)iϕ(t)‖2 (4.37)

∆J(θ̂) = e(t)
d

dθ̂
e(t)

= −e(t)ϕ(t) (4.38)
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The Iterative weight updating formula for the LMS based identification of HNCAR method is

given as

θ̂(t+ 1) = θ̂(t)− µe(t)∆J(θ̂)

θ̂(t+ 1) = θ̂(t) + e(t)ϕ(t) (4.39)

Affine Projection Identification Algorithm

The Affine Projection Algorithm uses Newton’s smoothed recursion to further enhance the perfor-

mance of the Gradient based LMS algorithm[131]. The weight updation equation for the Affine

projection Algorithm is

w(t+ 1) = w(t) + (∇2
wJ(w))−1∇J(w) (4.40)

The final relation becomes

w(t) = w(t− 1) + η[x(t)xT (t) + εI]x(t)e(t)

w(t) = w(t− 1) + η[Rx + εI]x(t)e(t) (4.41)

Accordingly on a similar basis, the parameter estimation for the identification of CAR model is

developed as

θ̂(t) = θ̂(t− 1) + η[Rϕ(t) + εI]−1ϕ(t)e(t) (4.42)

Here in 4.42Rϕ(t) is the information correlation matrix and η is the step size parameter.
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4.2.3 Kernel Affine Projection Identification Algorithm for identificaton of

nonlinear systems

A poor performance can be expected when the difference or the mapping between x and d is

highly nonlinear. A nonlinear mapping is introduced in as ϕ(x(t)), which gives a powerful model

wTϕ(x(t)) than wTx. So by using this model and finding w through stochastic newton method

may prove an efficient mechanism towards nonlinear filtering as APA ensures for linear problems.

Using the example sequence [ϕ(i), y(t)] to estimate the parameter vector θ as

J(θ̂) =
1

2
‖(y(t)− θ̂)Tϕ(t))‖2 (4.43)

By minimizing the above mentioned cost function (4.43) with respect to θ̂ and by straight forward

manipulation, the stochastic gradient descent becomes

θ̂(t) = θ̄(t− 1) + ηtΦ(t)[y(t)−ΦT θ̂(t− 1)] (4.44)

Where ηt is the small positive constant and the stochastic Newton method becomes

θ̂(t) = θ̂(t− 1) + ηt[Φ(t)Φ(t)T + εI]−1Φ(t)[y(t)−ΦT θ̂(t− 1)] (4.45)

ε is the smoothing factor.

[Φ(t)Φ(t)T + εI]−1Φ(t) = Φ(t)[Φ(t)TΦ(t) + εI]−1 (4.46)

so the corresponding parameter update equation for the estimation of CAR system becomes

θ̂(t) = θ̂(t− 1) + ηtΦ(t)[Φ(t)TΦ(t) + λI]−1[y(t)−ΦT θ̂(t− 1)] (4.47)
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Therefore KAPA only needs a K ×K matrix inversion which can be easily computed by slid-

ing window trick. K mainly depends the nature of the problem on which the parameter of the

CAR model is estimated. Φ(t) is the transformed information matrix. To initialize the kernel

Affine projection identification algorithm, we take θ̂(0) = 0 or by using some small real value

θ̂(0) = 10−61n0 with 1n0 is being an n0-dimensional column vector having values of the element

1.

Computational Steps

1. Input and output data[u(i),y(i)] is collected and form y(i) and ϕ(t).

2. Initialize the weight vector θ̂(0) = 10−61n0 .

3. Compute the estimate θ̂(i).

4. Compare the current parameter vector θ̂(t) with θ̂(t− 1), for some preset small value ε or some

preset number of cycles are fixed, i-e, if it is satisfied then terminate the procedure and obtain the

current θ̂(t), otherwise increment by 1 and estimate it again.

Now let us assume that θ̂k is the k-th element of θ. Assuming that c1 = 1, a(t) = [â1(t), â2(t),

â3(t), ......, ân(t)]T and b(t) = [b̂1(t), b̂2(t), b̂3(t), ......, b̂n(t)]T , a and b can be read from first and

second n entries of θ̂. The estimate ĉj(t) of cj, j = 2, 3, 4, .......,m may be computed as

ĉj(t) = θ̂jn+l, j = 2, 3, 4, 5, .....,m, l = 1, 2, 3, 4, ...., n (4.48)

It is evident from the above equation that for each cj , there exists n estimates ĉj(t) for l =

1, 2, 3, 4, ......, n. Alternative way is to take their average as the estimate of cj as (4.49).

ĉj(t) =
1

n

n∑
l=1

θ̂jn+l(t)

b̂l(t)
, j = 2, 3, 4, 5, .....,m (4.49)
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4.3 Experimental Results

In this section, we present the results of simulations of two examples of hammerstein nonlinear

CAR model by using proposed kernel affine projection adaptive identification algorithm. consider

the following example

A(z)y(t) = B(z)ū(t) + ν(t)

A(z) = 1 + a1z
−1 + a2z

−2 = 1− 1.35z−1 − 0.75z−2

B(z) = b1z
−1 + b2z

−2 = z−1 + 1.68z−2

ū(t) = f(u(t)) = c1u(t) + c2u
2(t) + c3u

3(t)

= u(t) + 0.50u2(t) + 0.20u3(t)

θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]
T

θ = [a1, a2, c1b1, c1b2, c2b1, c2b2, c3b1, c3b2]
T

θ = [1.35,−0.75, 1, 0.50, 0.20, 1.68, 0.84, 0.336]T (4.50)

The input u(t) is taken as the persistent excitation signal sequence with zero mean and unit vari-

ance σ2
u. The sequence is generated using a periodic signal switches between ±0.5 with a period

of 2π and the noise ν(t) is taken as a white noise with a constant variance σ2
v .

u(t) =
t∑

j=1

ajcos(2π f t+ φj) (4.51)

The parameter estimation errors δ := ‖θ̂ − θ‖/‖θ‖ versus t are shown in Figure 34 without noise,

While Figure 35 shows the Output mean square error of the actual CAR system described above

by using the estimated parameters without noise. Figure 36, is the enhancement of Figure 35. The

output error at different iterations of time without noise is reported in Table 8. The results in

Fig. 34, describes the parameter estimation error δ against t number of iterations without noise.

97



0 500 1000 1500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

t

δ

 

 

LMS
MFLMS
KLMS
APA
KAPA

Figure 34: The parameter estimation error δ versus t

The step size parameters used in this experiment for adaptive online identification algorithms are

taken as 0.01 for LMS, β = 0.5, µ = 0.0005, µf = 0.003 and f = 0.392 for MFLMS, 0.3

for KLMS, η = 0.24 and ε = 0.01 for APA and etat = 0.003andε = 0.1 for Kernel affine

projection identification algorithm. Based on these estimated parameters, the output error of the

Hammerstein nonlinear CAR model in terms of mean square as shown in Fig. 35. Fig. 36 is the

enhancement of Fig. 36 . In Table 8, the percentage error of the estimated parameters is displayed

at different iterations of time t.
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Figure 35: MSE of CAR model using estimated weights versus t
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Figure 36: (Enhanced Figure 2)MSE of CAR model using estimated weights versus t
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Table 8: Parameter Estimates θ without noise
t Algorithm θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ

LMS 1.881765 -1.045425 1.3939 0.69695 0.27878 2.341752 1.170876 4683504 39.39
MFLMS 1.86678 -1.0371 1.3828 0.6914 0.27656 2.323104 1.161552 0.4646208 38.28

250 KLMS 1.866645 -1.037025 1.3827 0.69135 0.27654 2.322936 1.161468 0.4645872 38.27
APA 1.8819 -1.0455 1.394 0.697 0.2788 2.34192 1.17096 0.468384 39.4
KAPA 1.83762 -1.0209 1.3612 0.6806 0.27224 2.286816 1.143408 0.4573632 36.12

LMS 1.718955 -0.954975 1.2733 0.63665 0.25466 2.139144 1.069572 0.4278288 27.33
MLMS 1.703025 -0.946125 1.2615 0.63075 0.2523 2.11932 1.05966 0.423864 26.15

500 KLMS 1.71153 -0.95085 1.2678 0.6339 0.25356 2.129904 1.064952 0.4259808 26.78
APA 1.730295 -0.961275 1.2817 0.64085 0.25634 2.153256 1.076628 0.4306512 28.17
KAPA 1.688715 -0.938175 1.2509 0.62545 0.25018 2.101512 1.050756 0.4203024 25.09

LMS 1.565865 -0.869925 1.1599 0.57995 0.23198 1.948632 0.974316 0.3897264 15.99
MFLMS 1.569375 -0.871875 1.1625 0.58125 0.2325 1.953 0.9765 0.3906 16.25

1000 KLMS 1.58679 -0.88155 1.1754 0.5877 0.23508 1.974672 0.987336 0.3949344 17.54
APA 1.592325 -0.884625 1.1795 0.58975 0.2359 1.98156 0.99078 0.396312 17.95
KAPA 1.56762 -0.8709 1.1612 0.5806 0.23224 1.950816 0.975408 0.3901632 16.12

LMS 1.487025 -0.826125 1.1015 0.55075 0.2203 1.85052 0.92526 0.370104 10.15
MFLMS 1.475955 -0.819975 1.0933 0.54665 0.21866 1.836744 0.918372 0.3673488 9.33

1250 KLMS 1.472445 -0.818025 1.0907 0.54535 0.21814 1.832376 0.916188 0.3664752 9.07
APA 1.508895 -0.838275 1.1177 0.55885 0.22354 1.877736 0.938868 0.3755472 11.77
KAPA 1.460025 -0.811125 1.0815 0.54075 0.2163 1.81692 0.90846 0.363384 8.15

LMS 1.43424 -0.7968 1.0624 0.5312 0.21248 1.784832 0.892416 0.3569664 6.24
MFLMS 1.42776 -0.7932 1.0576 0.5288 0.21152 1.776768 0.888384 0.3553536 5.76

1500 KLMS 1.44423 -0.80235 1.0698 0.5349 0.21396 1.797264 0.898632 0.3594528 6.98
APA 1.41507 -0.78615 1.0482 0.5241 0.20964 1.760976 0.880488 0.3521952 4.82
KAPA 1.364715 -0.758175 1.0109 0.50545 0.20218 1.698312 0.849156 0.3396624 1.09

True values 1.35 -0.75 1.00 0.50 0.20 1.68 0.84 0.336
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Figure 37: The parameter estimation error δ versus t with noise variance σ2
v = 0.50
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Table 9: Parameter Estimates θ̂ with noise variance σ2
v = 0.502

t Algorithm θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ(percentageerror)
LMS 1.897155 -1.053975 1.4053 0.70265 0.28106 2.360904 1.180452 0.4721808 40.53
MFLMS 1.877175 -1.042875 1.3905 0.69525 0.2781 2.33604 1.16802 0.467208 39.05

500 KLMS 1.86435 -1.03575 1.381 0.6905 0.2762 2.32008 1.16004 0.464016 38.1
APA 1.87866 -1.0437 1.3916 0.6958 0.27832 2.337888 1.168944 0.4675776 39.16
KAPA 1.84815 -1.02675 1.369 0.6845 0.2738 2.29992 1.14996 0.459984 36.9

LMS 1.75203 -0.97335 1.2978 0.6489 0.25956 2.180304 1.090152 0.4360608 29.78
MLMS 1.7442 -0.969 1.292 0.646 0.2584 2.17056 1.08528 0.434112 29.2

1000 KLMS 1.757565 -0.976425 1.3019 0.65095 0.26038 2.187192 1.093596 0.4374384 30.19
APA 1.769715 -0.983175 1.3109 0.65545 0.26218 2.202312 1.101156 0.4404624 31.09
KAPA 1.716525 -0.953625 1.2715 0.63575 0.2543 2.13612 1.06806 0.427224 27.15

LMS 1.599075 -0.888375 1.1845 0.59225 0.2369 1.98996 0.99498 0.397992 18.45
MFLMS 1.580715 -0.878175 1.1709 0.58545 0.23418 1.967112 0.983556 0.3934224 17.09

1500 KLMS 1.5795 -0.8775 1.17 0.585 0.234 1.9656 0.9828 0.39312 17.89
APA 1.59435 -0.88575 1.181 0.5905 0.2362 1.98408 0.99204 0.396816 18.1
KAPA 1.57383 -0.87435 1.1658 0.5829 0.23316 1.958544 0.979272 0.3917088 16.58

LMS 1.513215 -0.840675 1.1209 0.56045 0.22418 1.883112 0.941556 0.3766224 12.09
MFLMS 1.50039 -0.83355 1.1114 0.5557 0.22228 1.867152 0.933576 0.3734304 11.14

2000 KLMS 1.49526 -0.8307 1.1076 0.5538 0.22152 1.860768 0.930384 0.3721536 10.76
APA 1.48473 -0.82485 1.0998 0.5499 0.21996 1.847664 0.923832 0.3695328 9.98
KAPA 1.451925 -0.806625 1.0755 0.53775 0.2151 1.80684 0.90342 0.361368 7.55

LMS 1.41939 -0.78855 1.0514 0.5257 0.21028 1.766352 0.883176 0.3532704 5.14
MFLMS 1.405755 -0.780975 1.0413 0.52065 0.20826 1.749384 0.874692 0.3498768 4.13

2500 KLMS 1.41426 -0.7857 1.0476 0.5238 0.20952 1.759968 0.879984 0.3519936 4.76
APA 1.43073 -0.79485 1.0598 0.5299 0.21196 1.780464 0.890232 0.3560928 5.98
KAPA 1.405215 -0.780675 1.0409 0.52045 0.20818 1.748712 0.874356 0.3497424 4.09

LMS 1.40265 -0.77925 1.039 0.5195 0.2078 1.74552 0.87276 0.349104 3.9
MFLMS 1.38726 -0.7707 1.0276 0.5138 0.20552 1.726368 0.863184 0.3452736 2.76

3000 KLMS 1.376865 -0.764925 1.0199 0.50995 0.20398 1.713432 0.856716 0.3426864 1.99
APA 1.37376 -0.7632 1.0176 0.5088 0.20352 1.709568 0.854784 0.3419136 1.76
KAPA 1.3634865 -0.7574925 1.00999 0.504995 0.201998 1.6967832 0.8483916 0.33935664 0.999

True values 1.35 -0.75 1.00 0.50 0.20 1.68 0.84 0.336

In figure 37, parameter estimation error is displayed with noise variance σ2
v = 0.50. The

step size parameters used in the proposed algorithm are 0.4 for LMS, β = 0.5, µ = 0.2, µf =

0.3 and f = 0.392 for MFLMS, 0.2 for KLMS, η = 0.02 and ε = 0.1 for APA and

etat = 0.9 and ε = 0.1 for Kernel affine projection identification algorithm. In Table 9, the

percentage error values in tabular form at different iteration time t with noise variance σ2
v = 0.52

is dispalyed.
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4.3.1 Example 2

In the next example we take here another nonlinear CAR model. The numerical simulation has

been carried out in the similar pattern as in the previous example.

A(z)y(t) = B(z)ū(t) + ν(t)

A(z) = 1 + a1z
−1 + a2z

−2 = 1− 1.60z−2 + 0.80z−3

B(z) = b1z
−1 + b2z

−2 = z−1 + 0.65z−2

ū(t) = f(u(t)) = c1u(t) + c2u
2(t) + c3u

3(t)

= u(t) + 0.50u2(t) + 0.25u3(t)

θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8]
T

θ = [a1, a2, c1b1, c1b2, c2b1, c2b2, c3b1, c3b2]
T

θ = [−1.60, 0.80, 1.00, 0.65, 0.50, 0.325, 0.250, 0.1625]T (4.52)

The proposed KAPA identification method is used to identify the parameters for the nonlinear

Hammerstein CAR model in comparison with the MFLMS, LMS, KLMS, APA identification

schemes using sufficiently large number of iterations, i-e, t = 3000 in Example 2. In Fig. 38,

the parameter estimation error is shown with noise variance σ2
v = 0.202. The step size parameters

used in this experiment for the adaptive identification algorithms are as 0.3 for LMS, β = 0.5, µ =

0.5, µf = 0.09 and f = 0.392 for MFLMS, 0.7 for KLMS, η = 0.08 and ε = 0.03 for APA

and ηt = 0.6 and ε = 0.1 for Kernel affine projection identification algorithm. In Table 10, the

percentage error is displayed of the estimated parameters at various iterations of time t with noise

varianceσ2
v = 0.202.

103



0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

t

δ

 

 

LMS
MFLMS
KLMS
APA
KAPA

Figure 38: The parameter estimation error δ versus t with noise variance σ2
v = 0.20
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Figure 39: MSE of CAR model using estimated weights versus t with noise variance σ2
v = 0.20
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Table 10: Parameter Estimates θ̂ of CAR model in Example 2 with noise variance σ2
v = 0.202

t Algorithm θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ(percentageerror)
LMS -2.24416 1.12208 1.4026 0.91169 0.7013 0.455845 0.35065 0.2279225 40.26
MFLMS -2.22256 1.11128 1.3891 0.902915 0.69455 0.4514575 0.347275 0.22572875 38.91

500 KLMS -2.19728 1.09864 1.3733 0.892645 0.68665 0.4463225 0.343325 0.22316125 37.33
APA -2.2064 1.1032 1.379 0.89635 0.6895 0.448175 0.34475 0.2240875 37.9
KAPA -2.14576 1.07288 1.3411 0.871715 0.67055 0.4358575 0.335275 0.21792875 34.11

LMS -2.07296 1.03648 1.2956 0.84214 0.6478 0.42107 0.3239 0.210535 29.56
MLMS -2.06768 1.03384 1.2923 0.839995 0.64615 0.4199975 0.323075 0.20999875 29.23

1000 KLMS -2.09216 1.04608 1.3076 0.84994 0.6538 0.42497 0.3269 0.212485 30.76
APA -2.0992 1.0496 1.312 0.8528 0.656 0.4264 0.328 0.2132 31.2
KAPA -2.01856 1.00928 1.2616 0.82004 0.6308 0.41002 0.3154 0.20501 26.16

LMS -1.84864 0.92432 1.1554 0.75101 0.5777 0.375505 0.28885 0.1877525 15.54
MFLMS -1.83616 0.91808 1.1476 0.74594 0.5738 0.37297 0.2869 0.186485 14.76

1500 KLMS -1.83648 0.91824 1.1478 0.74607 0.5739 0.373035 0.28695 0.1865175 14.78
APA -1.8544 0.9272 1.159 0.75335 0.5795 0.376675 0.28975 0.1883375 15.9
KAPA -1.80624 0.90312 1.1289 0.733785 0.56445 0.3668925 0.282225 0.18344625 12.89

LMS -1.76688 0.88344 1.1043 0.717795 0.55215 0.3588975 0.276075 0.17944875 10.43
MFLMS -1.76 0.88 1.1 0.715 0.55 0.3575 0.275 0.17875 10

2000 KLMS -1.75088 0.87544 1.0943 0.711295 0.54715 0.3556475 0.273575 0.17782375 9.43
APA -1.75968 0.87984 1.0998 0.71487 0.5499 0.357435 0.27495 0.1787175 9.98
KAPA -1.7312 0.8656 1.082 0.7033 0.541 0.35165 0.2705 0.175825 8.2

LMS -1.69776 0.84888 1.0611 0.689715 0.53055 0.3448575 0.265275 0.17242875 6.11
MFLMS -1.69568 0.84784 1.0598 0.68887 0.5299 0.344435 0.26495 0.1722175 5.98

2500 KLMS -1.6832 0.8416 1.052 0.6838 0.526 0.3419 0.263 0.17095 5.2
APA -1.70688 0.85344 1.0668 0.69342 0.5334 0.34671 0.2667 0.173355 6.68
KAPA -1.6784 0.8392 1.049 0.68185 0.5245 0.340925 0.26225 0.1704625 4.9

LMS -1.6656 0.8328 1.041 0.67665 0.5205 0.338325 0.26025 0.1691625 4.1
MFLMS -1.67984 0.83992 1.0499 0.682435 0.52495 0.3412175 0.262475 0.17060875 4.99

3000 KLMS -1.664 0.832 1.04 0.676 0.52 0.338 0.26 0.169 4
APA -1.6824 0.8412 1.0515 0.683475 0.52575 0.3417375 0.262875 0.17086875 5.15
KAPA -1.61616 0.80808 1.0101 0.656565 0.50505 0.3282825 0.252525 0.16414125 1.01

True values -1.60 0.80 1.00 0.65 0.50 0.325 0.250 0.1625
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Another experiment is performed with noise variance σ2
v = 0.502 same as in Example 2, and the

results are displayed in Fig. 40 and Figure 8. The stepsize parameters are adjusted as 0.07 for LMS,

β = 0.5, µ = 0.9, µf = 0.9 and f = 0.392 for MFLMS, 0.5 for KLMS, η = 0.4 and ε = 0.01

for APA and ηt = 0.9 and ε = 0.1 for Kernel affine projection identification algorithm. In table

11, the percentage error at different iterations of time t is presented for noise variance σ2
v = 0.502.
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Figure 40: The parameter estimation error δ versus t with noise variance for example 2 σ2
v = 0.50

4.4 Conclusion

In this chapter, a new kernel fractional affine projection algorithm is presented. Affine projection

and kernel affine projection algorithms has also been discussed. One application of predicting a

chaotic . three dimensional lorenz system is presented, that demonstrates the performance of the

proposed algorithm in comparison with LMS, APA, KAPA and in terms of mean square error as a

figure of merit. Proposed algorithm is also tested on nonlinear channel equalization, Atmospheric

Carbon dioxide forecasting and static function approximation. Parametric identification of Ham-

merstein Nonlinear CAR systems through kernel affine projection algorithm is another contribution
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Table 11: Parameter Estimates θ̂ with noise variance σ2
v = 0.502 for example 2

t Algorithm θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 δ
LMS -0.94928 0.47464 0.5933 0.385645 0.29665 0.1928225 0.148325 0.09641125 40.67

MFLMS -0.97632 0.48816 0.6102 0.39663 0.3051 0.198315 0.15255 0.0991575 38.98
500 KLMS -0.9816 0.4908 0.6135 0.398775 0.30675 0.1993875 0.153375 0.09969375 38.65

APA -1.00656 0.50328 0.6291 0.408915 0.31455 0.2044575 0.157275 0.10222875 37.09
KAPA -1.00832 0.50416 0.6302 0.40963 0.3151 0.204815 0.15755 0.1024075 36.98

LMS -1.1664 0.5832 0.729 0.47385 0.3645 0.236925 0.18225 0.1184625 27.1
MFLMS -1.15232 0.57616 0.7202 0.46813 0.3601 0.234065 0.18005 0.1170325 27.98

1000 KLMS -1.17344 0.58672 0.7334 0.47671 0.3667 0.238355 0.18335 0.1191775 26.66
APA -1.18608 0.59304 0.7413 0.481845 0.37065 0.2409225 0.185325 0.12046125 25.87
KAPA -1.21072 0.60536 0.7567 0.491855 0.37835 0.2459275 0.189175 0.12296375 24.33

LMS -1.35856 0.67928 0.8491 0.551915 0.42455 0.2759575 0.212275 0.13797875 15.09
MFLMS -1.36176 0.68088 0.8511 0.553215 0.42555 0.2766075 0.212775 0.13830375 14.89

1500 KLMS -1.36368 0.68184 0.8523 0.553995 0.42615 0.2769975 0.213075 0.13849875 14.77
APA -1.35696 0.67848 0.8481 0.551265 0.42405 0.2756325 0.212025 0.13781625 15.19
KAPA -1.39152 0.69576 0.8697 0.565305 0.43485 0.2826525 0.217425 0.14132625 13.03

LMS -1.4384 0.7192 0.899 0.58435 0.4495 0.292175 0.22475 0.1460875 10.1
MFLMS -1.42128 0.71064 0.8883 0.577395 0.44415 0.2886975 0.222075 0.14434875 11.17

2000 KLMS -1.41184 0.70592 0.8824 0.57356 0.4412 0.28678 0.2206 0.14339 11.76
APA -1.40832 0.70416 0.8802 0.57213 0.4401 0.286065 0.22005 0.1430325 11.98
KAPA -1.432 0.716 0.895 0.58175 0.4475 0.290875 0.22375 0.1454375 10.5

LMS -1.50416 0.75208 0.9401 0.611065 0.47005 0.3055325 0.235025 0.15276625 5.99
MFLMS -1.50928 0.75464 0.9433 0.613145 0.47165 0.3065725 0.235825 0.15328625 5.67‘

2500 KLMS -1.49712 0.74856 0.9357 0.608205 0.46785 0.3041025 0.233925 0.15205125 6.43
APA -1.48592 0.74296 0.9287 0.603655 0.46435 0.3018275 0.232175 0.15091375 7.13
KAPA -1.51712 0.75856 0.9482 0.61633 0.4741 0.308165 0.23705 0.1540825 5.18

LMS -1.53632 0.76816 0.9602 0.62413 0.4801 0.312065 0.24005 0.1560325 3.98
MFLMS -1.55216 0.77608 0.9701 0.630565 0.48505 0.3152825 0.242525 0.15764125 2.99

3000 KLMS -1.54496 0.77248 0.9656 0.62764 0.4828 0.31382 0.2414 0.15691 3.44
APA -1.54896 0.77448 0.9681 0.629265 0.48405 0.3146325 0.242025 0.15731625 3.19
KAPA -1.58288 0.79144 0.9893 0.643045 0.49465 0.3215225 0.247325 0.16076125 1.07

True values -1.60 0.80 1.00 0.65 0.50 0.325 0.250 0.1625

that is presented in the current chapter. The experimental analysis of the proposed algorithm can

give the consistent parameter estimates. Also the proposed method is validated in comparison with

LMS, FLMS, MFLMS and Affine Projection algorithms. Future guidelines leads towards the new

identification algorithms using kernel methods.
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5 A Square Root Extended Kernel

Recursive Least Squares Algorithm

5.1 Problem Statement

The problem in applying the EKRLS algorithm is that of numerical instability (divergence) that

can arise due to the way in which Ricatti equation is formulated. To encounter this divergence

problem, we introduce a new square root variant of EKRLS. The positive definite character of the

state error correlation matrix of EKRLS is preserved by using the square root of the correlation

matrix for updating and using the fact that any square matrix and its hermitian transpose is always

positive definite. The respective SREKRLS algorithm uses Givens rotation for updating process.

Thus it gives considerable improvement in numerical accuracy, time and computational complex-

ity as compared to EKRLS. Moreover, it is suitable for parallel implementation. A prearray of

numbers has to be triangularized by a rotation or sequence of rotation in order to yield another

set of numbers (post array). The quantities needed for the next prearray can then be read off from

the current entries of the prearray, and the same procedure is repeated. The effectiveness of the

proposed algorithm is tested on the prediction of nonlinear Mackey glass time series prediction for

stationary, as well as, nonstationary case. Moreover, we have used the algorithm for prediction of

x-component of the three dimension Lorenz series. The performance of the proposed algorithm is
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A Square Root Extended Kernel Recursive Least Squares Algorithm

compared with that of EKRLS algorithm.

5.2 Extended Recursive Least Squares Algorithm (ERLS).

A more general linear state space model for sequential estimation containing process equation and

measurement equation is given below

x(i) = Ax(i+ 1) + n(i)

d(i) = u(i)Tx(i) + ν(i)

Here A is the state transition matrix, n(i) is the state noise, and v(i) is the observation or pro-

cess noise. Both the noises are white and Gaussian distributed. The Extended RLS algorithm is

summarized as follows

Algorithm 3 Extended Recursive Least squares algorithm
For i=1,2,3,4..... compute
Step 1: Input parameters of the Algorithm

Require: Input data matrix :U = [u(1),u(2), . . . . . . . . . ,u(k)]
Require: Desired data vector :d(i) = [d(1), d(2), . . . . . . . . . , d(i)]
q1 is the covariance of process noise
q2 is the covariance of measurement noise
Prescribed Parameters:
Forgetting Factor=β
Initialize
w(0) = 0
P(0) = λI,A = αI
Compute for i ≥ 1

e(i) = d(i)− u(i)Tw(i− 1)
k(i) = AP(i− 1)u(i)/r(i)
r(i) = q2 + u(i)TP(i− 1)u(i)
w(i) = Aw(i− 1) + k(i)e(i)
P(i) = AP(i− 1)AT − k(i)kT (i)r(i) + q1I
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5.3 Extended Kernel Recursive Least Squares Algorithm

Starting from the special unforced dynamical nonlinear state space model (5.1),

x(i) = xx(i+ 1) ProcessEquation

d(i) = ϕ(i)Tx(i) + ν(i) MeasurementEquation (5.1)

Here the measurement noise is white with zero mean. There is no process noise and so it is

unforced dynamical model. By keeping in view the above model, the recursive equations of the

EKRLS will be written as

r(i) = βi + ϕ(i)TP(i− 1)ϕ(i)

k(i) = AP(i− 1)ϕ(i)/r(i)

(i) = d(i)− ϕ(i)Tw(i− 1)

w(i) = Aw(i− 1) + k(i)e(i)

P(i) = A[P(i− 1)−P(i− 1)ϕ(i)ϕ(i)TP(i− 1)/r(i)] (5.2)

5.4 Proposed Square Root Extended kernel Recursive Least

squares algorithm

We are talking the same unforced dynamical model as taken for EKRLS. The important terms are

arranged in the matrix form which includes the following terms as

1. A scaler term βi + ϕ(i)TP(i− 1)ϕ(i)

2. A vector term of length 1× n ϕ(i)TP(i− 1)A

3. A vector term of length n× 1 AP(i− 1)ϕ(i)
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4. A matrix of dimension n× n AP(i− 1)A

These four terms contain the complete information of the Ricatti difference equation 5.3, we may

arrange these terms in the matrix form by keeping in view the dimensionality of each of these

terms, which in the combined form will be written as

[
H(i)

]
=

 βi + ϕ(i)TP(i− 1)ϕ(i) ϕ(i)TP(i− 1)A

AP(i− 1)ϕ(i) AP(i− 1)A

 (5.3)

Its factored form yields

 βi/2 ϕ(i)TP1/2(i− 1)

0 AP1/2(i− 1)


 βi/2 0T

PT/2(i− 1)ϕ(i) PT/2(i− 1)AT

 (5.4)

H(i) = H1/2(i)HT/2(i) (5.5)

The right side of 5.5 is interpreted as the product of a matrix with its transposed form. Using

matrix factorization Lemma, which states for real case that given two N by M matrices A and B

with dimension N ≤ M, AAH = BBH if and only if their exists an orthogonal matrix Θ such

that B = AΘ. In our case, A = H1/2(i). Thus we get

 βi/2 ϕ(i)TP1/2(i− 1)

0 AP1/2(i− 1)

Θ =

 b11(i) 0T

b21(i) B21(i)

 (5.6)

The scalar b11(i), the vector term b21(i) and the matrix B22(i) constitute the nonzero block ele-

ments of the matrix, say B, that forms as the result of operation by orthogonal rotation matrix θ(i).

To evaluate the unknown elements in 5.6, we proceed in a way by squaring both sides of the above
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equation.

 βi/2 ϕ(i)TP1/2(i− 1)

0 AP1/2(i− 1)

 βi/2 0T

PT/2(i− 1)ϕ(i) PT/2(i− 1)AT

  b11(i) 0T

b21(i) B22(i)

 b11(i) 0Tb21(i)T

0 B22(i)T

 (5.7)

By recognizing the fact that θ(i) is an orthogonal matrix and therefore its product θ(i)θ(i)T equals

unity. And the rest of the terms will be formulated as follows

|b11(i)|2 = βi/2βi/2 + ϕ(i)TP1/2(i− 1)PT/2(i− 1)ϕ(i)

|b11(i)|2 = r(i) (5.8)

b21b11(i) = Ap1/2(i− 1)ϕ(i) (5.9)

B22B22(i)
T = Ap(i− 1)AT − b21b

T
21

B22B22(i)
T = Ap(i− 1)AT

− (Ap1/2(i− 1)ϕ(i)ϕ(i)T/2(i− 1)AT )/r1/2(i)r1/2(i) (5.10)

By satisfying the above equations

b11(i)
T = r(i)1/2 (5.11)

b21(i) = k(i)r(i)1/2 (5.12)

B22(i) = p1/2(i) (5.13)

The term r(i)1/2 is the variance with a power half. The second equation gives the gain along

with the variance term. The third and the last term gives the Chollesky factor of the state error
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correlation matrix. βi/2 ϕ(i)TP1/2(i− 1)

0 AP1/2(i− 1)

Θθ =

 r(i)1/2 0T

k(i)r(i)1/2 P1/2(i)

 (5.14)

The elements β1/2 and 0 in the prearray induces the creation of two variables: the variance r(i) and

the gain k(i). These two variables are obtained simply by squaring and dividing r1/2(i), respec-

tively. The set of equations (5.6) through (5.14) give the explicit representation of the SREKRLS.

The true form of the rotation matrix Θ is like an identity matrix except for four points, where the

pair of columns k and l will intersect with the pair of rows k and l, with diagonal points as cosines

and off diagonal as sine and minus sign.

l∏
k=0

Θ(kl) (5.15)

Detailed summary of the algorithm is given in Algorithm 4, expresses the computation from pre-

array to pasture

5.5 Simulations and Results

In this section we present experimental results of prediction of Mackey glass time series and x-

component of the three dimension Lorenz series prediction using the proposed square root Ex-

tended kernel recursive least squares algorithm.

5.5.1 Mackey Glass Time series prediction.

In this experiment we consider stationary series and secondly a nonstationary time series for the

prediction of Mackey Glass time series prediction.The Mackey glass time series is generated by
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Algorithm 4 Square Root Extended Kernel Recursive Least Squares (SREKRLS) Algorithm (un-
forced dynamical model).

For k=1,2,3,4..... compute
Step 1: Input parameters of the Algorithm

Require: Input data matrix :Φ = [ϕ(1), ϕ(2), . . . . . . . . . , ϕ(k)]
Require: Desired data vector :d(k) = [d(1), d(2), . . . . . . . . . , d(k)]

Prescribed Parameters:
Forgetting Factor=β
Initialize
w(0) = 0
P(0) = λI,A = αI
Step 2: Obtaining Θθ(k) for updating[

βi/2 ϕ(i)TP1/2(i− 1)
0 AP1/2(i− 1)

]
Θ =

[
b11(i) 0T

b21(i) B21(i)

]
Step 3: Obtaining w(i), e(i)andk(i)

e(i) = d(i)− ϕ(i)Tw(i− 1)
k(i) = (k(i)r(i)1/2)r(i)1/2

w(i) = Aw(i− 1) + k(i)e(i)

the following delay differential equation.

dx(t)

dt
= −bx(t) +

ax(t− τ)

1 + x10(t− τ)
(5.15)

With b=0.1,a=0.2 and τ = 20, initial conditions x(t − τ) = 0 for 0 ≤ t ≤ τ . So we have a series

x(t) for t=1,2,3,..............,5000, obtained by the above equation. It is achieved by sampling the

continuous curve x(t) with the interval of 1 second. The cost function for the time series prediction

is given as

e =‖ ydes − yobt ‖2 (5.16)

Here ydes = wTxtr, w and xtr are the trained weights and the training samples respectively.

yobt = wTxte, w are the trained weights and xte are the testing samples.
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Figure 41: MSE curve of EKRLS and SREKRLS for stationary Mackey Glass Time series Predic-
tion with noise variance 0.09.

Stationary series prediction.

The order of the filter is taken as 10 in this experiment, I-e. x(t) = [x(t − 10), x(t − 9), x(t −

8), , x(t − 1)]Tprevious 10 sample points are consider as the input to predict the present one x(t).

3000 sample points are used for training while the next 250 samples are used for testing the pro-

posed algorithm along with EKRLS algorithm. The proposed algorithms performance is examined

while training on the stationary series with sample points 1501-4500 and another sample points

4600-4850 is used for testing purpose. The weights are adjusted during training and then these

trained weights are used for testing, the learning curves in terms of mean square error are generated

to validate the proposed algorithm. In order to further validate the performance of the proposed

algorithm noise is added to the time series with different variances. 500 Monte Carlo simulations

are run to adjust the weights of the algorithm and then these weights are used to predict the test

samples. The additive noise with zero mean having a variance of 0.09 is added to the series and

the results are displayed in Fig. 41. The parameters of the algorithms used are adjusted as EKRLS

A = αI, ε = 0.01,P(0) = λIwithAλ = 1/ε, β = 0.01795, α = 0.3 and Gaussian kernel with
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Figure 42: MSE curve of EKRLS and SREKRLS for stationary Mackey Glass Time series Predic-
tion with noise variance 0.07.

a width of 0.2, and the proposed SREKRLS A = αI, ε = 0.01,P(0) = λIwithλ = 1/ε, β =

0.01795, α = 0.3and Gaussian kernel with a width of 0.3.

The AWGN noise with a variance of 0.07 is added to the original series and the prediction

performance of the proposed algorithm is improved by 0.01 dB as shown in Fig. 42.

In order to further validate the performance of the proposed algorithm, the noise variance is in-

creased to 0.2 and results are shown in Fig. 43, improvement of 0.07 is dB is observed from the

EKRLS algorithm. The results shows that the proposed algorithm is more robust against noise.

The results shown in Fig. 43 and Fig. 44 also shows the improvement of 0.04 and 0.05 dB with

the noise noise variance of 0.2 and 0.1 respectively.
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Figure 43: MSE curve of EKRLS and SREKRLS for stationary Mackey Glass Time series Predic-
tion with noise variance 0.2.
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Figure 44: MSE curve of EKRLS and SREKRLS for stationary Mackey Glass Time series Predic-
tion with noise variance 0.1.
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Figure 45: MSE curve of EKRLS and SREKRLS for nonstationary Mackey Glass Time series
Prediction with noise variance 0.09.

NonStationary Time Series Prediction.

To further examine and validate the behavior of the proposed algorithm with EKRLS, A nonstation-

ary series is generated by adding a sinusoid (y = 0.3 sin(2ft), f = 1/5000) having an amplitude

of 0.3 with a frequency of 5000 samples per second is added to the original mackey glass time

series. All the parameters and samples are taken same as in part a (Stationary series).

In order to validate the performance of the proposed algorithm noise is added with different vari-

ance to the nonstationary time series and the results are displayed in Fig. 45, Fig. 46, Fig. 47 and

fig. 48 respectively. In 45, the performance of the proposed SRExKRLS algorithm is validated

for the prediction nonstationary time series in comparison with Extended kernel recursive least

squares algorithm. The AWGN noise with a variance of 0.09 is also added to the nonstationary

series.

The results of MSE is shown in 46 for the nonstationary time series prediction. The improvement

of 0.25dB is also observed. The result is obtained with the addition of AWGN noise having a
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Figure 46: MSE curve of EKRLS and SREKRLS for nonstationary Mackey Glass Time series
Prediction with noise variance 0.07.

variance of 0.07.

In 47 the results are further shown with the increase in the noise variance. The obtained results

clearly observed that the performance of ExKRLS is still better.

The result in 48 shows the comparison of EKRLS and SREKRLS for the nonstationary time series

prediction with the addition of noise having variance of 0.1.

5.5.2 Lorenz Time Series Prediction.

Lorenz series is a three dimensional, nonlinear and deterministic equation, it is expressed as the

set of following partial differential equations

dx

dt
= σ(y(t)− x(t))

dy

dt
= −x(t)z(t) + γx(t)− y(t)

dz

dt
= x(t)y(t)−Bz(t) (5.17)
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Figure 47: MSE curve of EKRLS and SREKRLS for nonstationary Mackey Glass Time series
Prediction with noise variance 0.2.
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Figure 48: MSE curve of EKRLS and SREKRLS for nonstationary Mackey Glass Time series
Prediction with noise variance 0.1.
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Figure 49: MSE curve of EKRLS and SREKRLS for X-component of Lorenz Time series Predic-
tion without noise.

The Lorenz chaotic behavior on the parameters, σ = 10, γ = 28 and B = 8
3
. By using first

order approximation method with a sampling period of 0.001 seconds and the initial values are set

as x(0)=1, y(0)=1, z(0)=1. This forms a three dimension Lorenz Series. Here we consider only

the x-component of the Lorenz series and generate a train set of 5000 samples I-e, 1500-4500 for

training the proposed algorithm and its counterpart while the next 300 symbols are used as the

test set. The learning curves in terms of mean square error is observed and displayed in Figure

49 without noise. The order of the filter is chosen as 3, I-e previous 3 samples are used to predict

the current one. The parameters of the algorithms used are adjusted as EKRLS A = αI, ε =

0.01,P(0) = λIwithAλ = 1/ε, β = 0.01795, α = 0.3 and Gaussian kernel with a width of 0.2,

and the proposed SREKRLS A = αI, ε = 0.01,P(0) = λIwithλ = 1/ε, β = 0.01795, α = 0.3

with Gaussian kernel having a width of 0.4.

In Fig. 49, the performance of the proposed algorithm is tested without the addition of noise
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Figure 50: MSE curve of EKRLS and SREKRLS for X-component of Lorenz Time series Predic-
tion with noise variance 0.09.

and the improvement of 0.02 dB is observed from EKRLS algorithm. The noise is further added

to the x-component of the Lorenz series with a variance of 0.09 and the result is displayed in Fig.

50.

Fig. 50 and Fig. 51 shows the results of the performance of the proposed algorithm in the presence

of noise that is added to series generated to the x-component of the Lorenz series having noise

variances of 0.09 and 0.9 respectively.
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Figure 51: MSE curve of EKRLS and SREKRLS for X-component of Lorenz Time series Predic-
tion with noise variance 0.9.

5.6 Conclusion

In this chapter of the dissertation, a new square root extended kernel recursive least square al-

gorithm is proposed. Extended kernel recursive least square algorithm is also discussed. One

application of prediction of stationary as well as nonstationary Mackey Glass time series is pre-

sented and also along with different noise levels. The learning curves in term of mean square error

are observed, that demonstrates the proposed algorithm achieve better prediction performance, in

comparison with EKRLS. Another experiments for the prediction of x-component of Lorenz time

series is performed to further test the validity of the proposed algorithm. This new formulation

(SREKRLS) hopefully gives a new era towards nonlinear systolic arrays that are useful in making

VLSI applications using nonlinear input data.
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6 Conclusion and Future Work

In this section of the dissertation, the conclusion is presented on the basis of previous chapters.

A successful design methodology and mathematical model for the development of modified frac-

tional least mean square algorithm has been given using the strength of fractional signal processing.

The algorithm has been made problem dependent. If there is no uncertain change in the nature of

the problem, the dominance will be given to the LMS, while in the other case the dominance will

be given to the Fractional LMS. Prediction problem setting for the nonlinear and non stationary

time series is also presented. The weights are trained and then test for the prediction problem. Also

the comparison is made with different noise variances and the results are shown in tabular form

also.

Next the second modification is taken place by making adaptive the step sizes and the order of the

fractional derivative. Stochastic gradient method has been discussed thoroughly. The proposed

algorithm is tested for the stationary as well as non stationary Mackey Glass time series prediction.

In addition the proposed algorithm is again tested on the prediction of only the x-component of the

time series. The figure of merit is the Mean Square Error(MSE). The considerable improvement

has been shown in comparison with its competitor algorithms.

A new kernel fractional affine projection algorithm is discussed in this disertation. Affine projec-

tion and kernel affine projection algorithms has also been discussed in accordance with the detail

mathematical derivation. One application of predicting a chaotic three dimensional lorenz system

is presented, that demonstrates the performance of the proposed algorithm in comparison with
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Conclusion and Future Work

LMS, APA, KAPA and in terms of mean square error as a figure of merit. Proposed algorithm is

also tested on nonlinear channel equalization. This new formulation is another contribution in the

field of nonlinear signal processing.

Parametric identification of Hammerstein Nonlinear Controlled Autoregressive systems through

kernel affine projection algorithm is also developed. The experimental analysis of the proposed

algorithm can give the consistent parameter estimates and better MSE results. Also the proposed

method is validated in comparison with LMS, FLMS, MFLMS and Affine Projection algorithms.

A new square root extended kernel recursive least square algorithm is another development in the

dissertation. Extended kernel recursive least square algorithm is also discussed. One application

of prediction of stationary as well as nonstationary Mackey Glass time series is presented and also

along with different noise levels. The learning curves in term of mean square error are observed,

that demonstrates the proposed algorithm achieve better prediction performance, in comparison

with EKRLS. Another experiments for the prediction of x-component of Lorenz time series is per-

formed to further test the validity of the proposed algorithm.

6.1 Direction of Future Work

• One can look for other nonlinear application for Fractional Methods. Also different other

fractional algorithm will be developed accordingly. Real time application can also be solved using

the fractional methods.

• The automatic tuning of the parameter introduced in the Modified fractional least mean

square algorithm can be made adaptive according to the nature of the problem. Also different non-

linear applications can tested in this regard.
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• Different kernel function can be used in the kernel methods to further test the validity of

the kernel algorithms. Fractional terms can also be added to the kernel algorithms.

• Kernel domain can be used to obtain the numerical solution of nonlinear Partial differential

equations and other types of different highly nonlinear differential equations.

• The Extended kernel recursive least squares algorithm can be enhanced for nonlinear state

space model having a state transition matrix. The application of the proposed filter can also be

enhanced to tracking applications.

• Identification of different Auto regressive moving average model can be done using differ-

ent kernel signal processing algorithms.
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