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Preface

Study of boundary layer flows of an incompressible fluid induced by a
continuously stretching sheet maintained at a constant témperature is an active area
of research. This area has wide range of applications in industry. Examples may
include extrusion of polymers, the cooling of metallic plates, the aerodynamic
extrusion of plastic sheets etc. The theoretical analysis of such flows helps in
improving the quality of the final product of such processes. Since the first
investigation of crane [1], several researchers devoted their efforts to analyze the
boundary layer flow and heat transfer over a stretching sheet under various
assumptions [2-10]. Recently Mahapatra and Gupta [11] reported the study of heat
transfer in a steady two-dimensional stagnation-point flow of a viscous
incompressible fluid toward a stretching sheet surface. In their analysis fluids is
considered as hydrodynamic fluid and Joule's heating effects are not taken into
account. The aim of this dissertation is to present a perturbation and numerical
analysis of Magnetohydrodynmic boundary layer flow of a viscous incompressible
fluid over a stretching sheet in the presence of Joule's heating. The layout of the
dissertation is as follows. Chapter 1 presents basic concepts and fundamental
equations. A brief introduction to solutions techniques is also included.

In chapter 2 an analysis is performed for Magnetohydrodynamic boundary layer
flow over a heated stretched plate. Asymptotic solutions for small and large values
of Hartmann are established and compared with the numerical solutions.

Chapter 3 extends the analysis of chapter 2 for a porous stretching sheet. Solutions
are reported using the same methodology as discussed in chapter 2. The suction
and injection on the velocity and temperature fields are illustrated through several
graphs.
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Chapter 1

Basic definitions

In this chapter we begin with some of the basic definitions and equations of fluids mechanics.
The reader is exposed to boundary layer equations for a two dimensional flow along with energy

equation. Later in the text, the techniques used to solve the governing equations are illustrated.

1.1 Flow

In the presence of different forces, a material or substance goes under deformation. In many
cases this deformation is change of position of its particles. If this deformation increases con-

tinuously without limit, then the phenomenon is known as flow.

1.2 Fluid

A fluid is a material/substance that flows under the action of shearing forces.

1.3 Fluid mechanics

Fluid mechanics deals with the study of all fluids under static and dynamic situations. It
is a branch of continuum mechanics which deals with a relationship between forces, motions,
and statical conditions in a continuous material. This study area deals with many diversified
problems such as surface tension, fluid statics, flow in enclose bodies, flow round bodies (solid

or otherwise), flow stability, etc.



1.4 Deformation

The relative change in position or length of the fluid particles is known as deformation (strain).

1.5 Density

The density of a fluid is defined as its amount of mass per unit volume. It is denoted by the

Greek symbol p. Mathematically, it can be written as

(1.1)

©
l
<I3

where m is the mass and V is the volume.

1.6 Pressure

Pressure is defined as the magnitude of force per unit area and it can be written as

p= A (1.2)

where p is pressure, F is the magnitude of normal force and A is the area.
1.7 Viscosity

Viscosity of the fluid is defined as the property of the fluid that tends to resist the movement
of one layer of the fluid over adjacent layer of the fluid. It is denoted by the symbol y and is
defined as

shear stress

— . 1.3
= rate o f shear strain (1.3)

i is also called as dynamic viscosity.
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1.8 Kinematic viscosity

It is defined as the ratio of dynamic viscosity to fluid density. It is denoted by v. Mathematically,

it is defined as

=
v= o (1.4)

1.9 Electrical conductivity

It is a measures of material’s ability to conduct an clectric current. It is denoted by symbol o.

1.10 Magnetic permeability

A measure of the ability of a substance to sustain a magnetic field. Tt is equal to the ratio

between magnetic flux density and magnetic fleld strength. It is denoted by He-

1.11 Thermal conductivity

It is measure of the ability of a substance to conduct heat and it is denoted by symbol .

1.12 Dimensionless numbers

A dimensionless number is the number without any unit associated with it. It is the ratio of
quantitics having same unit. It is usually used to simplify our procedure and various quan-
tities are replaced by a single number saving a lot of time and work. There are a number of

dimensionless numbers but here we mention only those being used in our work.

1.12.1 Hartmann number

Hartmann number is the ratio of electromagnetic force to the viscous force. It was first intro-

duced by Hartmann. It is defined as

M =By, /%€ .
0 e (1.5)




where By is magnetic field and c is a proportionality constant of the velocity of stretching sheet.

1.12.2 Prandtl number

It is the ratio of the product of dynamic viscosity and specific heat to the thermal conductivity.

It is denoted by symbol Pr and its mathematical form is given by
pr= 1% (1.6)

1.12.3 Eckert number

The ratio of the characteristic velocity to the product of the specific heat and temperature
difference between the body and surface is recognized as Eckert number and is denoted by Ec,

ie.

2
v,
Fe= 0

— — 1.7
Cp(60~0c0) 1)

where vg is the characteristic velocity and 6y — ., represents the temperature difference.

1.12.4 Nusselt number

In heat transfer at a boundary (surface) within a fluid, the Nusselt number is the ratio of
convective to conductive heat transfer across (normal to) the boundary. It is a dimensionless

number.

1.13 Types of flow

1.13.1 Uniform flow

A flow in which the velocities of fluid particles are same at each point.

1.13.2 Non-uniform flow

A flow in which the velocities of fluid particles are different at different point.



1.13.3 Steady flow

It is a flow in which fluid properties do not depend on the time ‘t’. If ¢ is any fluid property

then for steady flow

1.13.4 Unsteady flow

(1.8)

It is a flow in which fluid properties depend on the time ‘t’. Mathematically, for an unsteady

flow

23
=70

1.13.5 Compressible flow

A flow in which the density of the fluid is not constant is calied compressible flow.

1.13.6 Incompressible flow

(1.9)

A flow in which the density of the fluid is constant throughout the flow is called an incompress-

ible flow.

1.14 Classification of fluids

There are two main types of fluids.

1.14.1 Ideal fluid

A non-existent, assumed flnid without either viscosity or compressibility is called an ideal or

perfect fluid . It is the hypothetical form of fluids. However, the fluid with negligible viscosity

may be considered as an ideal fluid.




1.14.2 Real fluid

Real fluids are those in which fluid friction has significant effects on the fluid motion. In other
words, we cannot neglect the viscosity effects on the motion of the fluid. Real fluids are further
classified into two classes on the basis of Newton's law of viscosity. According to this law “shear
stress is directly proportional to the rate of deformation ”. For one dimensional flow, it can be

written as

du
Tys = ud—y. (1.10)

where 7y is the shear stress and du/dy is the rate of deformation. Here u is the z-component

of velocity of fluid and y is the direction normal to the flow.

Newtonian fluid

Newtonian fluid is a fluid whose stress versus strain (deformation) rate curve is linear and passes
through the origin, i.e., Newtonian fluid obeys Newton’s law of viscosity. Water, gasoline and

mercury are some examples of Newtonian fluids.

Non-Newtonian fluid

Fluids in which shear stress is not linearly proportional to the deformation rate are known
as non-Newtonian. A non-Newtonian fluid is a fluid whose flow properties are not described
by a single constant value of viscosity, i.e., it does not obey Newton’s law o f viscosity. For

non-Newtonian fluids

du.,
Tyz = ﬁ(d—y- , n#1 (1.11)
or
du
Ty = 7’(@ : (112)
where




du

n= f‘i(@)n_1

(1.13)

?

1s called the apparent viscosity. Examples of non-Newtonian fluids are toothpaste, ketchup, gel,

shampoo, blood, soaps etc.

1.15 Heat

The total molecular kinetic energy in a system is called the heat of the system. In thermody-
namics, heat is the process of energy transfer from one body or system to another due to the

thermal contact.

1.16 Temperature

The average kinctic energy of the particles in a substance is called the temperature of the

substance.

1.17 Specific heat

It is amount of heat required to raise the temperature of one gram of a substance to 19C. The
relationship between amount of heat transferred, specific heat and change in temperature is

defined as

_ @
Cp=——. (1.14)

where () is heat transferred, m is mass and AT is change in temperature.

1.18 Heat transfer mechanism

1.18.1 Conduction

Conduction is the transfer of energy through matter from particle to particle. It is the transfer

and distribution of heat energy from atom to atom within a substance. For example, a spoon in

10




a cup of hot tea becomes warmer because the heat from the tea is conducted along the spoon.

This phenomenon occurs usually in solids but it can b= happen in fluids.

1.18.2 Convection

Convection is the transfer of heat by the actual movement of the warmed matter. Heat leaves
the hot cup of tea as the currents of steam and air rise. Convection usually occurs in liquids

and gases.

1.18.3 Radiation

Radiation is the transfer of heat from one object to another by means of electromagnetic waves.
Radiative heat transfer does not require that objects be in contact or that a fluid flow between
those objects. Radiative heat transfer occurs in the void of space (that’s how the sun warms

1.19 Skin friction

When a fluid moves across a surface, a certain amount of friction called skin friction occurs

between the fluid and the surface which tends to slow down the motion of fluid.

1.20 Joule’s heating
!

Joule heating, also known as ohmic heating and resistive heating, is the process by which the
passage of an electric current through a conductor releases heat. It was first studied by James
Prescott Joule in 1841. Joule immersed a length of wire in a fixed mass of water and measured
the temperature rise due to a known current flowing through the wire for a 30 minute period.
By varying the current and the length of the wire he deduced that the heat produced was

proportional to the square of the current multiplied by the electrical resistance of the wire.

QxI’R (1.15)

11




This relationship is known as Joule’s First Law. The SI unit of energy was subsequently named
the joule and given the symbol J. The commonly known unit of power, the watt, is equivalent

to one joule per second.

1.20.1 Joule’s heating effect

When a potential difference is applied across the ends of a conductor, the free electrons are
accelerated and acquire kinetic energy. As the electrons move through, they collide with the
positive ions and atoms of the conductor and transfer their kinetic energy to them. Between
two collisions, the electrons again pick up kinetic energy from the electric field. As a result, the
kinetic energy of vibration of these lattice ions or atoms increases. This increases the thermal
energy of the lattice, which means that the temperature of the conductor increases. Since
the source of emf (e.g., a battery) is maintaining current in the conductor, the electric energy

supplied by the battery is converted into heat in the conductor.

1.21 Boundary layer concept in the study of fluid flow

When fluids flow over surfaces, the molecules near the surface are brought to rest due to the
viscosity of the fluid. The adjacent layers also slow down, but to a lower and lower extent. This
slowing down is found limited to a thin layer near the surface. The fluid beyond this layer is
not affected by the presence of the surface. The fluid layer near the surface in which there is a
general slowing down is defined as boundary layer. The velocity of flow in this layer increases

from zero at the surface to free stream velocity at the edge of the boundary layer.

1.22 Boundary layer equations

The discovery of the boundary layer equations can be considered as one of the more important
advances in the fluids mechanics. The use of an order of magnitude analysis results in the
simplified form of governing Navier-Strokes equations of viscous flow within the boundary layer.
Indeed , the partial differential equations become parabolic. This greatly enhances the solution

procedure for the equations. The flow is divided into inviscid portion (which is easy to solve

12




by a number of approaches) and the boundary layer (which is governed by an easy partial
differential equation). Navier-Strokes equations for an incompressible two-dimensional flow are
du Ju  10p 0%u

uz— +v

6 ay ;a—x‘ + I/(a—wi + a—yz), (1'16)

v v 10p v %
. il 1.17
“3x+”ay p3y+y(ax2+3y2)’ (1.17)

and continuity equation is given by

du v
—+—=0 1.18
oz Oy (1.18)
In above expressions = and y are the horizontal and vertical coordinates and u, v are the velocity
components parallel to z and y axes. A wall is considered at y = 0. The non-dimensional

quantities are defined as

T
L:

«_ Y . uw , vl _ p
== w=—, vt=_ pr= B 1.1
T /A 75 A 77 (119)

*
I =

Here L indicates the horizontal length scale and §; the boundary layer thickness. Equations

(1.15) to (1.17) in non-dimensional variables are

gz H*g;)i =G )2 UVL 3;2 + UL(o )Qayﬂ’ (1.21)
gz—i + g—:: =0, (1.22)

in which the Reynold number is written as
R= % A (1.23)

Inside the boundary layer the inertial and viscous forces are of the same and hence

13




= TS

v L o
TG0 = o),
or
61 =O(R™V2L).
Dropping asterisks and utilizing above equations one obtains

ou du  Op 18%u
U +v - ,

oz ' '8y 0z RO T 5

1, Ov 3p 1 0% &%

o a) o TG ay2)’

du  Ov

$+—a§=0

For R — oo we have

@_{_ Ju ap ?u
Oz 6y 8y2’

_Op

By =0

du  Ov

et "

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

In which Eq. (1.29) shows that pressure is constant across the boundary layer. In dimensional

form, Egs. (1.28) to (1.30) becomes

u@_}_va_u_ l(?p e Pu
dx By pdz 9y’

14

(1.32)

(1.33)




Ou  Ov

I 1.34
oz + Jy (1.34)
The set of equations given by (1.31)-(1.33) are known as boundary layer equations for a two

dimensional incompressible flow.

1.23 Law of conservation of energy

The law of conservation of energy states that energy may neither be created nor destroyed.
Therefore, the sum of all the energies in the system is a constant. The laws of conservation of

energy which is also called the energy equation is described as
D6
—=T-L-V. 1.35
P L qQ, ( _)

in which

L=VV. (1.36)

1.24 Solution techniques

1.24.1 Perturbation method

The governing equations of physical, biological and economic models often involve features
which make it impossible to obtain their exact solutions. Examples of such features are:

o The occurrence of a complicated algebraic equation

© The occurrence of a complicated integral

o Varying coefficients in a differential equation

o An awkwardly shaped boundary

o A nonlinear term in a differential equation

When a large or small parameter occurs in a mathematical model there are various methods
of constructing perturbation expansions for the solution of the governing equations. Often
the terms in the perturbation expansions are governed by simpler equations for which exact

techniques are available. Even if exact solutions cannot be obtained, the numerical methods

15




used to solve the perturbation equations approximately are often easier to construct than the

numerical methods for the original governing equations.

1.24.2 Runge-Kutta method

There arc many different methods for solving initial value problems relating to ordinary dif-
ferential equations numerically. Amongst these Runge-Kutta method of order four is preferred
because of its higher order accuracy i.c. of O(4.)

The gencral equation of second order initial value problem can be written as

d® dy
m - f(x1y7£)7 (137)

subject to the initial conditions

y(zo) = vo. j—z(mo) =a. (1.38)

In order to solve the problem, we need to convert second order initial value problem to the

system of first order initial value problems by defining

dy
D= v, ), (1.39)
and
dz
o = 9@ Y, 2), (1.40)
with initial conditions
y(zo) =yo. 2(z0) = 0. (1.41)

Now the Runge-Kutta method of order 4 for the above system of first order differential Eqgs.
(1.39) and (1.40) is defined as

1
Yn+l = Yn + E(k'l + 2ky + 2k3 + ka), (1.42)

16




and

1
Zn+l = Zp + E(ll + 2l + 23+ 1y).

where

kl = h‘f(xn' yn: zn): ll = hg(mn: yn.- zn):

h kx h B h ky I
kQ:hf($n+§: yn+_2_: zn+§): ZQ—hg(-Tn‘l‘§a yn+*'2_a ~n+§):

h ko Iy B h k2 Iy
k3_h’f(xn+§, yn+7; ZTL+§)7 l3’"'h‘g(xn+ 57 yn+§= Zn + 97
ka = hf(zn +h, yn + ks, 2, +13), la=hg(zn+h, yn+ k3, 2, +13).

where £ is uniform step size defined as

Tn — 29

h = .

and n is number of steps.

1.24.3 Shooting method

(1.43)

(1.44)

(1.45)

(1.46)

(1.47)

(1.48)

Shooting method is iterative technique which is very popular for the two points boundary value

problems. In this method, the boundary value problem of higher order is reduced to the system

of first order initial value problems by letting the missing condition. Then the goal is to find

the solution of initial value problem instead of given boundary value problem directly. For this

purpose, any scheme for the solution of initial value problem can be used. Runge-Kutta method

of order 4 is often used for this purpose. For Llustration, lets consider a second order boundary

17




value problem

with boundary value problem

y(0) =0, y(L) = A, (1.50)

where f is a arbitrary function and data is prescribed at z = 0 and = = L. The same differential

equation describes an initial value problem if data is prescribed as

y(0) =0, ¥ (0)=s. (1.51)

To solve the boundary value problem we reduce it into a system of two first order differential

equations as

dy  du
E = U, d_.’L' - f(mvysu)r (152)
and initial conditions are
y(0) =0, ¥ (0) =u(0) =s, (1.53)

where ‘s’ the missing initial condition which will be assigned an initial value. The problem is
to find s such that solution of equation (1.49) subject to the initial conditions (1.51) satisfies
the boundary conditions (1.50). In other words, if the solutions of the initial value problem are

denoted by y(z, s) and u(z, s), one searches for the value of s such that

Y(L,s) — A= 0= ¢(s). (1.54)

To find the appropriate value of s which satisfy (1.53) one can used Newton’s method.

For Newton’s method, the iteration formula for s is given by

(nt1) _ (n} _ ¢(s(n))
s s “dgb(s("J)/ds’ (1.55)

18



or

(n) _ A
(nt1) _ () YL 8 ) 156
s s —“_By(L, S9)/8s (1.56)
To find the derivatives of y with respect to s equations (1.51) and (1.52) are differentiated with

respect to s, we get

dy _, dU_9f, of

dr 7 dzr By +%U’ (1.57)
where
Oy _ Ou
Y=o U=5, (1.58)
and initial conditions becomes
Y(0)=0, U@0)=1. (1.59)

19



Chapter 2

Magnetohydrodynamic boundary
layer flow over a heated stretched

plate

This chapter presents an analysis of magnetohydrodynamic (MHD) boundary layer flow of a
viscous incompressible fluid over a heated plate which is continuously stretched in its own
plane. The Joule’s heating term is incorporated in the energy equation to take care of heat
generation due to electric current. The equations governing the flow are reduced to a set of
ordinary differential equations using a similarity transformation. An asymptotic solution of the
equations for small and large values of Hartmann number is established and compared with
the exact numerical solution. Several graphs are plotted in order to illustrate the effects of

emerging parameters on the velocity and temperature ficlds.

2.1 Formulation of the problem

Let us consider the two-dimensional steady boundary layer flow of a viscous incompressible
electrically conducting fluid over a flat sheet such that the sheet is stretched in its own plane with
velocity proportional to the distance from the origin. The flow is in presence of an externally
applied magnetic field of strength By normal to the flow. The stretching surface has uniform

temperature 7y, and a linear velocity u,, while the velocity of the flow external to the boundary

20



= e

layer is ue(z), which is assumed to be zero here. The governing equations for the flow problem

under considerations are:

Ou  Ou

i T 2.1

du du due u a'eBg(ue —u)

g I =y —t - =T Y 2.2

Yoz +v6y etz +U5y2 + p ’ (22)
6T 6T 82T 3u 2 2 9

Ay oL Oy, 22 2.3

The boundary conditions are:

y=0: u=uy,=czx, v=0; T =T, (2.4a)

y=o00: u=1u(z)=0; T = T. (2.4b)
where ¢ is a proportionality constant of the velocity of stretching sheet and T is the temper-
ature of the ambient fluid.
2.2 Analysis

The continuity equation (2.1) is identically satisfied by stream function (z, y), defined as

0 =W (2.5)

U= —

ay s U= — %
For the solution of the momentum and energy equation (2.2) and (2.3} respectively, the following

dimensionless variables are defined:

n= y\/g (2.7)
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R

=l

T - Too

o(n) = ——o2 (2.8)
(m) T T
Substituting (2.6) - (2.8) into Egs. (2.2) and (2.3) we obtain
flll + ffll N fl2 _ M2fl — 0’ (29)
-;-9" + f@ + Ecf™ + M?Ecf? = 0. (2.10)
r

The corresponding boundary conditions in non-dimensional form are:
n=0: f=0, f/f=1, §=1, (2.11a)
n=oc0: /=0, 6=0. (2.11b)

where, M = By+/0./pc is the Hartmann number, Pr = pCp/k is the Prandtl number, Fc =
u2,/Cp(Ty — Teo) is the Eckert number and prime denotes differentiation with respect to 7.
In the next to come we present the solution of Egs. (2.9) and (2.10) subject to the boundary
conditions (2.11). We first present the solution for small values of Hartmann number. For this

we write

Fn) =Y (MP) fi(m), (2.12)
i=0

6(n) = Y (M?Y9;(n). (2.13)
J=0

Substituting Eqs. (2.12) and (2.13) and its derivatives into Eqs. (2.9) and (2.10) and then
equating the coefficients of like powers of M?, we get the following set of equations and boundary

conditions.

fo' + fofs — f¢ =0, (2.14)

22



84 + Pr foby = — Pr Ecf§?, (2.15)

Ut foft = 2 f+ fof = F (2.16)

8] + Pr fof, = — Pr f18y — Pr Ec(2f§ f1 + f2), (2.17)

'+ fofs = 2ff3 + i fa = —Lfl + F 4 1, (2.18)

{4 Prfody = —Pr 110 — Pr folly ~ PrECRLA 1 A4 20f). (219)
n=0: fi=0, fo=1, fi=0,60=1, 6; =0; (2.20a)
n=o0: fi=0; 8;=0; i>0, j>0. (2.20b)

The set of Egs. (2.14)-(2.19) along with boundary conditions (2.20) are solved numerically
using shooting method combined with fourth-order Runge-Kutta method.
To obtain an asymptotic solution for large values of M, we first define new functions F(z)

and ¢(z) through the following transformations

F(z) =M f(n), (2.21)
6(=) = 0(n). (2.22)

where
z = Mn. (2.23)
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Substitution of (2.21) - (2.23) into Eqgs. (2.9) and (2.10) yield
F" — F' + &(FF" — (F'y}) =0, (2.24.)
I, "2 72 2 gt <
P—¢ + Ec(F" + F*)+ cF¢ =0, (2.25)
r
The boundary conditions (2.11) takes the following form:
2=0; F=0, F'=1; ¢=1, (2.26a)

z=o00; F'=0; ¢=0. (2.26b)

where ¢ = 1/M is a small parameter.

Now we expand F'(z) and ¢(z) in ascending powers of € as

F(z)= ) ()" Fu(2), (2.27)
m=0

$(2) = Y _()"¢n(2). (2.28)
n=0

Substitute Eqgs. (2.27) and (2.28) and its derivatives in Eqgs. (2.24) and (2.25) and then equate

the coefficients of like powers of 2. Thus we get the following set of equations.

FY —Fy=0, (2.29)

¢4 = — Pr BEc(F? + F%), (2.30)

F' - F{ = F - RyFY, (2.31)

¢ = — PrFo¢y — Pr Ec(2Fy F{' + 2F{FY), (2.32)
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FY' — Fy = 2F}F| — FyF!' — F}Fy,

¢3 = — Pr(Fod + ¢oF1) — PrEc(F{® + F{* + 2F) Fy + 2Ry Fy),

Similarly the boundary conditions at different order become

2=0: Fi=0, Fy=1 Fj=0; ¢g=1, ¢; =0;

z=o00: F{ =0; ¢, =0, 120, 7>0.

It is noted that following exact expressions for Fy, Fj and F» exist

Fo(z) = e7*(-1 4 &%),

e (—14+¢* —2)
9 b

&~

Fi(z) = -

e~ * (=3 +3e” — 3y — 2?)

Fy(z) = 3

(2.33)

(2.34)

(2.35a)

(2.35b)

(2.36)

(2.37)

(2.38)

Therefor the exact expression for F(z) for large values of M up to second order become

F(z) = Fo(z) + E€FR(z) + €F3(2)...

(2.39)

It is further noted from Egs. (2.29)-(2.35) that an asymptotic solution for ¢(z) does not exist.

A numerical solution of the governing Egs. (2.9)-(2.11) is also obtained using shooting

method with Runge-Kutta algorithm.
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2.3 Results and discussion

In this section our intention is to present a parametric study in order to illustrate the effects of
Hartmann number M, Prandtl number Pr and Eckert number Ec on velocity and temperature
distributions. The perturbation solution for small and large values of M is also compared with
exact numerical solution. Moreover, the values of skin friction f”(0) and Nusselt number —#'(0)
are also tabulated in the end.

We start with Figs. 2.1-2.3. Fig. 2.1 shows comparison of numerical solution and perturba-
tion solution (2.12) for velocity distribution f(n). It shows that the perturbation solution and
numerical solution for fixed values of Ec and Pr exactly match for small values of M. In Fig.
2.2 the temperature field 6(7) obtained via Eq. (2.13) and numerical solution is plotted against
n for M = 0.01. Here again Pr and Ec are assumed fixed. Again this figure shows a perfect
match between both the solutions. Fig. 2.3 present the comparison of asymptotic solution
for large values of M and numerical solution for f(n). Here again a perfect match between
both the solution is observed. The asymptotic solution for #(n) does not exist and therefore its
comparison with the numerical solution is not shown.

Fig. 2.4 is prepared to see the variation of velocity distribution f(n) for different values
of M. The figure reveals that velocity decreases with an increase in M. The thickness of the
boundary layer also decreases for large values of M. However, the temperature 8(7) and thermal
boundary layer thickness increase by increasing M. This fact is evident from Fig. 2.5.

The effect of Prandtl number Pr and Eckert number Ec on temperature field #(z) are
llustrated through Figs. 2.6 and 2.7. These figures depict that #(7) decreases/increases by
increasing Pr /Ec

The values of the skin friction coefficient f”(0) anu local Nusselt —#'(0) are also obtained
for fixed values of Pr and Ec. The values of the skin friction coefficient f”(0) are obtained
using perturbation solution for small and large values of M and direct numerical solution. The
values of Local Nusselt number —6'(0) are obtained using perturbation solution for small values
of M and direct numerical solution.

These values of f”(0) and —#'(0) are presented in Tables 2.1 and 2.2. From these tables
onc can see that f(0) and —'(0) obtained by perturbation solution are in good agreement

with the numerical solution.
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Fig. 2.1: Perturbation solution (dotted line) and
numerical solution (solid line) for f/(n) with M = 0.01,
Ec=0.2and Pr=0.17.
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Fig. 2.2: Perturbation solution (dotted line) and
numerical solution (solid line) for #(x) with M = 0.01
Ec=0.2 and Pr=0.7.
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Fig. 2.3: Perturbation solution (dotted line) and
numerical solution (solid line) for f/(n) with M =5,
Ec=0.2and Pr=0.7.
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Fig. 2.4: Velocity distribution f/(n) against 7 for
various of M with Fc = 0.2 and Pr =0.7.
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Fig. 2.5: Temperature distribution 8(n) against 5 for
various of M with Fe=0.2 and Pr = 0.7.
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Fig. 2.6: Temperature distibution 8(n) against 7 for
various of Ec with M = 0.5 and Pr = 7.0.
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Fig. 2.7: Temperature distibution #(n) against 5 for
various of Pr with M = 0.5 and Fc=0.2.

30




4

Table 2.1: Values of f/(0) when Pr =7 and Ec=0.2.

Numerical sol. Small M

M Large M
0 -1.0014 -1.0014
0.1 -1.0063 -1.0063
0.2 -1.0210 -1.0210
0.3 -1.0449 -1.0449
0.4 -1.0777 -1.0776
0.5 -1.1185 -1.1179
1 -1.1442
2 -2.2370
4 -4.1231
10 -10.0499 -10.0375
100 -100.005 -100.004
1000 -1000.00 -1000.00
10000 -10000.00 -10000.00
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Table 2.2: Values of —#(0) when Pr =7 and Ec = 0.2.

M  Numerical sol. Small M

0 1.45524 1.45524
0.1 1.4469 1.4469
0.2 1.4221 1.4221

- 03 1.3815 1.3816
0.4 1.3261 1.3264
0.5 1.2571 1.2581
0.6 1.1760
0.8 0.9828

1 0.7569

2 -0.6389

4 -3.7883

6 -6.7351

8 -9.4010
10 -12.0717
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Chapter 3

An analysis of
magnetohydrodynamic boundary
layer flow and heat transfer over a

porous stretching sheet

The aim of this chapter is to extend the analysis performed in chapter 2 for a porous stretching
plate. The solution of the governing problem is presented using perturbation and numerical
techniques. A comparison of perturbation solution and numerical solution is made. Finally
the effects of suction and injection on velocity and temperature fields are illustrated through

graphs.

3.1 Problem description

The geometry and the underlying assumptions for the flow under consideration are almost same
as described in chapter 2 except that the stretching sheet here is assumed to be porous so that
suction or injection is possible.

We start with the same governing equations as used in chapter 2 i.e., Egs. (2.1)-(2.3). The

second boundary condition of (2.4a) is modified to take into account suction and injection at
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the plate surface i.e.,

y=0: v=-V, (3.1)

Where V5 > 0 corresponds to suction and V5 < 0 represents injection. Rest of boundary

conditions remains unaltered.

3.2 Solution of the problem

The transformed problem after using the stream function and dimensionless parameters defined
through Eqs. (2.5)-(2.8) remain the same as described in Egs. (2.9)-(2.11) except that the first

boundary condition of (2.11a) take the following form

Where v = vg/+/cv is the dimensionless suction/injection parameter. Therefore, the governing

equations and boundary conditions for the flow under consideration read

"= 7 - M =0, (3.3)
I—f;a" +f6 + Ecf” + M2Ecf? =, (3.4)
n=0: f=v f=L6=1, (3.5a)
n=o0: f'=0; =0 (3.5b)

In the coming part of the chapter we explain the solution methodology for the problem consisting
of Egs. (3.3)-(3.5) without referring back to chapter 2 and making the reader inconvenient.

To obtain the perturbation solution for small values of M we write
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o0

Fm) =Y (MY fi(m), (3.6)
=0

6(n) =D _(M2)6;(n). (3.7)
7=0

Substitution of above expansions in (3.3)-(3.5) leads to following equations at zeroth order, first

order and second order respectively

fo'+ fofy = 1§ =0, (3.8)

0y + Pr foby = — Pr Ecf}?, (3.9)

1+ fofl = 2f6f1 + fo f1 = fo (3.10)

61 + Pr fo#y = — Pr f16y — Pr Ec(2fg f1 + f¢), (3.11)

“ B+ fofs = 2fsfy+ fofa= —Fufy + F + £, (312)
i+ Pr fofly = — Pr f16) — Pr fof — PrEc(2fL £ + fI” + 2f4£)), (3.13)

Similarly boundary condition at various order become

n=0: fi=5 fo=1, fi=0;6=1, 6;=0; (3.14a)

n=o0: fl=0; 6;=0; i>0, 7>0. (3.14b)

The solution of equations at various order is obtained by shooting method with Runge-Kutta

algorithm.
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In order to obtain solution for large value of M, we first define the new function

F(z)= Mf(n), (3.15)
¢(z) = 0(n), (3.16)

where
z= Mn. (3.17)

Egs. (3.3)-(3.5) in terms of new functions become

F" — F' + &(FF" — (F))%) =0, (3.18)
1
5o+ Ec(F” + F?) + &F¢ =0, (3.19)
z=0; F:%, F=1¢=1, (3.20a)
z2=o0c; F'=0;, ¢ =0. (3.20b)

where e = 1/M. For convenience we put v = € = 1/M and thus (3.20a) and (3.20b) become

2=0; F=1, F'=1; ¢ =1, (3.21a)

z=o00; F/'=0; ¢=0. (3.21b)

Now expanding F(z) and ¢(z) in powers of ¢ as

F(2) =) ()" Fml(2), (3.22)
m=0
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B(z) = > _(€)'¢n(2),

n=0

(3.23)

and inserting them in Egs. (3.18), (3.19) and (3.21) yield following equations and boundary

conditions.

R _F, =0,

¢ = — PrEc(Fg® + Fy’),

F" — F] = F§* - RyFy,

¢ = — Pr Fodh — Pr Ec(2FYFY' + 2F4FY),

Ff' - Fy = 2RyF} — RFY - F{

¢y = — Pr(Fod) + ¢hF1) — Pr Ec(F}? + FJ? + 2F}FY + 2F}F}).

2=0: Fo=1, F;=0, F{=1, Fj=0; ¢g=1. ¢; =0,

z=oo:F,-’:0;¢j=0 i>0, j>0.

Solving the above equation yield the following values of Fo(z), Fi(z) and F>(z)

Fo(z) = e *(—1 + 2¢%).

Fiz)y=e*(—1+e* —2).
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(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.302)

(3.30b)

(3.31)

(3.32)



e *(—2+2e* — 22 — 2%)
5 .

Fy(z) = (3.33)

and hence

e *(—2 4 2e* — 2z — 2?)
2

F(z)=e7*(—1+2€) + ez[e“z(—l +ée* —2)| + 64[ ! (3.34)

The temperature field however is singular for large values of M which is evident from (3.25),
(3.27) and (3.29). A numerical solution of the consisting of Egs. (3.3)-(3.5) valid for all values

of M is also obtained using shooting method and compared with the approximate solution.

3.3 Results and discussion

In this section we give a comparison of numerical solution and approximate solution for non
zero values of suction/injection parameter . We further illustrate effects of various parameters
of interest on velocity and temperature fields through graphs. In the end we tabulate the values
of skin friction and local Nusselt number for different values of v and M.

Fig. 3.1-3.3 shows that approximate solution for f(n) and 6(7n) is in excellent agreement
with the numerical solution and thus approximate solution can be used with a full confidence.
Fig. 3.4 presents the variation of f(n) for different values of . It is noted from this figure
that suction reduces the velocity and boundary layer thickness. However, injection has effects
opposite to that of suction on velocity boundary layer thickness. The variation of 8(n) for
various values of v can be seen through Fig. 3.5. It is obsctved that the effects of v on 6(n)
and f(n) are similar.

The values of skin friction f7(0) and local Nusselt number —8(n} are tabulated for various
values v and M in Tables 3.1-3.4. These tables on one hand demonstrate the validity of
approximate solution and on the other hand give information about behavior of skin friction
and local Nusselt number. One can see from these tables that magnitude of skin friction and

local Nusselt number increases for large values of .
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Fig. 3.1: Perturbation solution (dotted line) and
numerical solution (solid line) for f'(n) with M = 0.01,
Ec=0.2, Pr=0.7 and 70.1
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Fig. 3.2: Perturbation solution (dotted line) and
numerical solution (solid line) for () with M = 0.01
Ec=0.2, Pr=0.7 and v =0.1.
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Fig. 3.3: Perturbation solution (dotted line) and
numerical solution (solid line) for f(n) with M =5,

Ec=02 Pr=0.7and y=0.1
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Fig. 3.4: Velocity distribution against 5 for different
with E¢c=0.2, Pr=0.7and M = 0.5
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Fig. 3.5: Temperature distribution against # for
different v with Ec=0.2, Pr =0.7 and M =0.5
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Table 3.1:  Values of f”(0) when Pr =7, Fc=0.2.

Large M

M ¥ Numerical sol. Small M
0 0.1 -1.0525 -1.0525
0.1 0.1 -1.0574 -1.0574
0.2 0.1 -1.0721 -1.721
0.3 0.1 -1.0961 -1.0961
04 0.1 -1.1288 -1.1287
0.5 0.1 -1.1696 -1.1690
1 0.1 -1.4651
2 0.1 -2.2866
4 0.1 -4.1734
10 0.1 -10.1 -10.1
100 0.01 100.01 -100.01
1000 0.001 -1000.00 -1000.00
10000 0.0001 -10000.00 -10000.00
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Table 3.2: Values of —#'(0) when Pr =7, Ec=0.2 and v = 0.1.

M Numerical sol. Small M

0 1.8777 1.8777
0.1 1.8693 1.8693
0.2 1.8443 1.8443
0.3 1.8035 1.8035
0.4 1.7478 1.7481
0.5 1.6785 1.6796
0.6 1.5972
0.8 1.4039

1 1.1785

2 -0.2014

4 -3.3008

6 -6.3051

8 -9.1235
10 -11.7786
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Table 3.3: Values of f”(0) and 6'(0) when Pr =7, Ec = 0.2 and M = 0.9 for different ~.

Yy f0) -6(0)
-0.5 -1.1193 -0.3513
-0.4 -1.1612 -0.2435
-0.3 -1.2047 -0.0652
-0.2 -1.2500 0.1839
-0.1 -1.2972  0.4989
0.0 -1.3463 0.8715
0.1 -1.3972 1.2929
0.2 -1.4499 1.7545
0.3 -1.5045 2.2488
04 -1.5609 2.7694
0.5 -1.6191 3.3112
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