Knowledge Extraction Framework from
Scripts, Use-cases, Knowledge Maps, Decision
Tables and Decision Trees for Knowledge

| Warehouse

Submitted by

Bilal Ahmed
257-FAS\MSCS\F05

Supervised by
Prof. Dr. Magbool-uddin Shaikh

Department of Computer Science
Faculty of Basic and Applied Sciences
International Islamic University, Islamabad

(2010)

Aceession No-

MS
pobr' 74’

81K

(- Deda mW’”‘B '

IN THE NAME OF

ALMIGHTY ALLAH

THE MOST BENEFICENT
THE MOST MERCIFUL

Final Approval

Department of Computer Science
International Islamic University Islamabad

08 ~-roov ,2010

FINAL APPROVAL

It is certified that we have read the thesis submitted by Mr. Bilal Ahmed Reg. No.
257-FAS/MSCS/FO0S and it is our judgment that this thesis is of sufficient standard to

warrant its acceptance by the International Islamic University, Islamabad for the MS

Degree in Computer Science.

COMMITTEE

External Examiner

Prof. Dr. Jamil Ahmad
IQRA University,
Islamabad.

Internal Examiner

Mr. Asim Munir

Department of Computer Science,
International Islamic University,
Islamabad.

Supervisor

Prof. Dr. Magbool-uddin Shaikh

Computer Science Department

COMSATS Institute of Information Technology
Islamabad. ’

Dissertation

A Dissertation Submitted to the -
. Department of Computer Science,
Faculty of Basic and Applied Sciences,
Ipternational Islamic University, Islamabad, Pakistan,

as a partial fulfillment of the requirements for the award of the degree of

MS in Computer Science

1

Dedication

DEDICATED
T0
MY FAMILY

x
7

Declaration

DECLARATION

I hereby declare that this thesis, neither as a whole nor as a part thereof
has been copied from any source. It is further declared that I have
developed this thesis entirely on the basis of my personal efforts made
under the sincere guidance of my supervisors. No portion of the work
presented in this report has been submitted in support of any application
for any other degree or qualification of this or any other university or

institute of learning.

Bilal Ahmed
257-FAS/MSCS/F05

Acknowledgment

Acknowledgment

First and foremost, I’d like to thank Almighty Allah for choosing me for this work.

Secondly I would like to thank my pappa who is always encouraging and supporting

me to complete my thesis.
Then I would like to thank my supervisor Prof. Dr. Magbool-ud-Din Shaikh.

My special Thanks to my teachers Mr. Imran Saeed and Mr. Asim Munir. They have

respect of as my best teachers but frank as my closest friends.

Abstract

Abstract

This thesis proposes a framework for knowledge extraction and transformation for a
knoWledge warehouse on the same line as the concept of ETL in data warehouse. A
storage structure for knowledge warehouse is also proposed. The ETL framework will
be used to device algorithms for knowledge extraction and transformation from five
types of knowledge documents scripts, use cases, knowledge maps, decision tables
and decision trees. These algorithms extract knowledge from these five types of
knowledge documents and store them in the proposed storage structure of a
- knowledge warehouse. A case study of each algorithm to visualize the working is also

conducted and included in this thesis.

Keywords: Knowledge warehouse, Knowledge ETL, Knowledge Extractions

Algorithm, Warehouse Framework

Yy

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Table of Contents

Introduction

1.1 Motivation and Challenges
1.2 Background

1.3 Research / Problem Domain
1.4 Proposed Approach

1.5 Thesis Outline

* Literature Survey

2.1 Introduction
2.2 Related Research / Technologies
2.3 Limitations

2.4 Summary of Chapter 2

" Requirement Analysis and System Design

3.1 Introduction
3.2 Problem Scenario
3.3 Focus of Research

3.4 Design Requirements

. 3.5 Reference Architecture

3.6 Proposed ETL framework for knowledge warehouse
3.7 Proposed Node structure for knowledge. warehouse
3.8 Summary of Chapter 3

Knowledge Extraction Algorithm for Decision Tree

4.1 Introduction

4.2 Literature Review

4.3 Problem Scenario for Decision tree ETL algorithm
44 Proposed Algorithm for ETL from Decision Trees
4.5 Case Study for proposed ETL Algorithm
Knowledge Extraction Algorithm for Decision Tables

. 5.1 Introduction

5.2 Literature Review
5.3 Problem Scenario for Decision Table ETL Algorithm
5.4 Proposed Algorithm for ETL from Decision Tables

0w I O &N N kWL

W W S B R W W W W W W WNN N N RN DN N = e e
o= NN = N PR R WDN O ULWW WD DN = O O O

vil

Chapter 6

Chapter 7

Chapter 8

Chapter 9

5.5

Case Study for proposed Algorithm

Knowledge Extraction Algorithm for Use Cases

6.1

6.2
6.3
6.4
6.5

- 6.6

6.7

Introduction

Overview of use case documents

Literature Review for use case algorithms
Problem Scenario for use case algorithms
Proposed Algorithm for ETL from Usecases
Case Study for proposed algorithms
Implementation of algorithm

Knowledge Extraction Algorithm for Knowledge Maps

7.1
7.2

.13

7.4
7.5
7.6

Introduction

Literature Review

Problem scenario for knowledge ETL Algorithm
Proposed Algorithm for ETL from knowledge maps
Case Study for proposed algorithm

Implementation of algorithm

Knowledge Extraction Algorithms for Scripts

81

8.2
8.3
8.4

Introduction

Literature Review

Proposed Algorithm for Knowledge ETL from Scripts
Case Study of proposed algorithm

Conclusion and Qutlook

9.1

92

9.3
9.4
9.5

Introduction to the outcome of the thesis
Achievements

Improvements / Enhancements

- Future Work and Recommendations

Summary of the thesis

54
57
58
58
61
63
64
65
68
69
70
70
75
77
78
81
82
83
83
88
89
91
7]
92
94
94
95

viit

Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4:

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figufe 4.6
Figure 5.1

Figure 5.2

Figure 5.3
- Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7

List of Figures

The activities of Business Intelligence
Knowledge Spiral
Knowledge Warehouse Architecture

Knowledge Components shared across three different

~ Applications

Objects and tree for a knowledge base to cross street

Portions of Nemati’s knowledge warehouse architecture
Focused in this research

Reference architecture of decision tree structure
Proposed framework for knowledge ETL
Proposed Class structure for knowledge warehouse

Example of a general decision tree

An example of a binary decision tree

Regions for classification
Decision trees as classification algorithms

A binary Decision tree for Salary Decision

' Decision Tree transformed for Warehouse

Relationship of variable
A decision table on how to spend a Saturday afternoon

In spring

~ Rule probabilities for decision table

Decision table converted into a decision tree
Decision table format

Decision table for case study

. Decision table transformed for warehouse

1%

11

13

16
17

24
25

26

30

33

35

36

36

38

40

43

44
46
46
48
54

55

Figure 5.8
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4

Figure 7.1

Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 8.1

Figure 8.2

Figure 9.1

" Simulation result of Decision table ETL algorithm

Make a call use-case represented as a tree
Use case for making a Phone call

Use case loaded in Warehouse

" Simulation result of Use case ETL algorithm

Casual map of environmental forces and characteristics
Of a technblogy

Knowledge map visualization for a news map
Knowledge source map

Process flow and knowledge flow map

Knowledge map of information sciences

Map of human knowledge

Partial knowledge map loaded in the warehouse
Simulation result of Knowledge Map ETL algdrithm

Restaurant script from Schank & Abelson

56

63

65

77

68

72

73

74

74

76

79

80

81

87

Graphical representation of restaurant script after import in knowledge

warehouse
Knowledge warehouse storage structure in the form of

Directed graph

90

95

Table 5.1
Table 5.2
Table 5.3

List of Tables

Types of decision variables
A Decision table for investment decision

" Rules made from the given decision table

43
45
54

xi

Knowledge Extraction Framework from
Scripts, Use-cases, Knowledge Maps, Decision
Tables and Decision Trees for Knowledge

Warehouse

By

Bilal Ahmed
257-FAS/MSCS/F05

A Thesis Submitted to the Faculty of
COMPUTER SCIENCE
in Partial Fulfillment of the Requirementé of the Degree
MSCS

Fall 2005

International Islamic University
H-10, Islamabad, Pakistan

Chapter 1

1.1 Motivations and Challenges

Decision Support Systems are now increasing their worth in the daily life cycle of
organizations. In the early 1970s, Scott Morton defined Decision Support Systems as
“interactive computer based systems which help decision makers utilize data and
models to solve unstructured problems” [1]. Data warehousing being an integral part
of these systems is flourishing rapidly. Data warehouses rely on data integrated from
various sources to help decision making. Although the main reason of data
warehouses is to get knowledge but currently data warehouses store and process data.
They are a source of knowledge but they do not store or process knowledge directly.
Knowledge management systems are also used for the same purpose of decision
making. Instead of extracting knowledge from data as in the case of a data warehouse,

these systems use knowledge base to provide decision support.

Now a need is being considered for a new generation of decision support systems by
integrating knowledge management, decision support, artificial intelligence and data
Warehousjng [5]. These knowledge-enabled systems will provide the infrastructure for
capturing, cleansing, storing, organizing, leverage and disseminate not only data and

information but knowledge as well[1].

This work tries to enhance the framework of Nemati for knowledge extraction and
transformation for a knowledge warehouse on the same line as the concept of ETL in
data warehouse. Knowledge can be extracted from many sources like scripts, frames,
semantic nets, ECG, X-Ray, film clips, what-if cases, process modeling diagrams,

mathematical models etc.

In this work, a framework for knowledge extraction and transformation for a
knowledge warehouse is proposed. This framework is be used to device algorithms
for knowledge extraction and transformation from five types of knowledge documents

scripts, use cases, knowledge maps, decision tables and decision trees.

1.2 Background

Knowledge is an essential requirement for decision making. Knowledge, enables the
decision makers to answer questions like “what to do?”, “when to do?” and “how to
do?”. Data warehousing is used for providing the basic infrastructure for decision
making by extracting, cleansing and storing huge amount of data. This data provides a
solid factual foundation to analysts and decision makers and empowers them to

succeed in a competitive business environment.

Knowledge management is a series of processes which include knowledge creation,
organization, application and sharing etc. Ultimate goal of knowledge management is
to provide knowledge to the right person at the right time for correct decision making
[31].

Data warehouses are built for the sole purpose of providing knowledge but they do
not have the capability to store or process knowledge directly. Instead of working on
knowledge, they are designed to store and process data. They can be a source of
knowledge but their storage and processing capabilities are limited to work on data
only. Moreover only a fraction of knowledge is available in computers in a form
extractable for a data warehouse. A vast majority of knowledge exists in other forms
which are not suitable for loading in a data warehouse. Such as knowledge in the
minds of employees in the forms of procedures, best practices, business rules, expert
knowledge etc. A huge amount of knowledge required for decision making is in the
form of tacit knowledge. This tacit knowledge may exist in the form of documents,
audio and video libraries. Capabilities of data warehouse are limited and they can not
store or process this form of knowledge. The question arises that if there are ways and
means to store and process knowledge directly, why we don’t use computer’s
capabilities to enhance the design of data warehouses to overcome these problems.

Why not design a superset of data warehouses and enable it to store and process other

types of knowledge.

A new generation of knowledge enabled systems by the name knowledge warehouse

is proposed by Hamid R. Nemati [5] in his article “Knowledge warehouse: an

4

architectural integration of knowledge management, decision support, artificial
intelligence and data warehousing”. The writer has proposed a conceptual
infrastructure to capture, cleans, store and organize knowledge for a knowledge

warehouse.

Knowledge is available in a vast variety of forms. It may be tacit or explicit
knowledge. A knowledge warehouse needs to store any type and form of knowledge.
Even kneading the dough for bread is a form of knowledge; an ECG has knowledge in
it. Decision tables and decision trees for diagnosis of a health problem or
troubleshooting a vehicle engihe also have knowledge. Even videos, sounds, user
manuals etc have knowledge in them. Designing a storage structure to store and

process any type of knowledge is a key issue for a knowledge warehouse.

Some work on a conceptual level for implementing a knowledge ware house is done
by Hamid R. Nemati. He has proposed a theoretical framework of the knowledge
warehouse. Anthony Dymond has suggested that the data warehouse model of
Extract, Transform, Load (ETL) has a parallel in knowlédge warehouse. As data is
extracted, transformed and loaded in a data warehouse, a knowledge warehouse can
be developed on the same principles by applying ETL on knowledge. Both nemati and
Dymond have proposed in [5] and [2] respectively that an object oriented decision

tree is a good storage mechanism for a knowledge warehouse.

This work proposes an object structure for storage and processing of knowledge in a
knowledge warehouse. It also designs a framework for knowledge ETL operations as
conceptualized by Dymond. Furthermore as knowledge is available in many different
forms and transformation algorithms are required to load them in the proper form in a
knowledge warehouse, five ETL algorithms is vproposed, one each for five knowledge

documents in my problem domain.

1.3 Research /Problem Domain

The problem addressed in this research thesis is to design a framework for Extraction

and Transformation of knowledge to be accumulated in a knowledge warehouse.

5

Algorithms for extraction and transformation of knowledge from five types of
knowledge documents scripts, use cases, knowledge maps, decision tables and

decision trees are also proposed.
14 Proposed Approach

This research work is divided into two parts. First task is to propose a framework for
knowledge ETL. It serves as a guideline structure for knowledge extraction and
transformation from different sources to be accumulated in a composite repository in
the form of useful knowledge. The second part of the thesis is the development of
knowledge extraction algorithms for five knowledge documents i.e. Decision Trees,

Decision tables, use cases, knowledge maps and scripts.

The base paper and other recent research articles surveyed, propose that an object
oriented decision trees is better storage structure for a knowledge warehouse [5]. This
work is carried out according to the guidelines set in the base papers but during the
research work it was revealed that decision trees are not the best structure for this

purpose. A better approach is mentioned in the future work section of this thesis.

1.5 Thesis Outline

This thesis consists of 6 major sections. First section covers the ETL framework of a
knowledge warehouse. Remaining 5 sections consist of proposing ETL algorithms
from 5 types of knowledge documents namely Decision Trees, Decision Tables,

Knowledge maps, Use Cases and Scripts.

Each section consists of its own introduction and literature survey. Hence contribution

of this article on the topic is also spread across the whole thesis.

Chapter 2 |

2.1 Introduction

Decision Support Systems (DSS) are the systems intended to support
managerial decision makers in semi structured decisions. The process of
decision making is very complex and lots of work has been done to enable

computers to assist in decision support.

All DSS use data, information and/or knowledge. These terms are mostly used
interchangeably but factually they are different [1]. Here is a small definition

of these terms for review

Data: Data items about things, events, activities and transactions are recorded
classified and stored but they are not organized in the proper fashion to convey
any specific meaning. Data items can be numeric, alphanumeric, figures,
sounds and images [1]. Data is something that we attempt to gather and
measure for example age, size or amount [10]. Data by themselves explain

very little and it needs to be explained in the form of information.

Information: Information is data that have been organized so that they have
meanings for the recipient. They confirm something the recipient knows, or
may have surprise value by revealing something not known. We need to
process data items so that the results are meaningful for an intended action or

decision [1].

Knowledge: Knowledge consists of data items and/or information
organization and processed to convey understanding, experience, accumulated

learning and expertise which are applied to a current problem or activity [1].

In summary processed data is called information and processed information is
called knowledge. This is the basic idea behind a data warehouse to produce
knowledge. These warehouses capture store and process data to produce
knowledge for decision making. A data warehouse provides an infrastructure
that enables companies to extract, cleanse and store vast amount to corporate

data from operation systems for efficient and accurate responses to user

8

queries [5]. This activity of business intelligence is depicted in [1, p130] as the

following figure
Data R Data Decision
Sources | Warehouse Support Results

Data
Mining

Visualization Visualization

Figure 2.1: The Activities of Business
Intelligence [1, p-130]

So the end product of all this activity is get knowledge. Companies spend time
and money to capture important data and information about the market and
their competitors and then process it to gain knowledge. Data warehouses have
béen an integral part of these decision support systems. Techniques like data
mining are used to process the data to answer unstructured queries. But data
warehousing and data mining are mid-game activities used to produce
knowledge. End product is to apply the gained knowledge on company’s

business activity to produce some tangible results [2].

In real world only a fraction of knowledge required for business decision
making can be stored in a data warechouse. A vast majority of knowledge is
available in many other forms such as videos, sounds or documents. A large
amount of knowledge exists in the minds of employees in the form of business

rules, best practices etc.

Different types (tacit and explicit) and different forms (e.g. text streams,
binary large objects, production rules, mathematical models, what-if cases) of
knowledge need to be processed to develop an effective knowledge warehouse
[5]. The knowledge warehouse also contains meta knowledge which can later

be used to produce new knowledge throughout the organization.

Knowledge Management:
Knowledge management is defined by Nemati as “knowledge management is

the practice of adding actionable value to information by capturing tacit
knowledge and converting it to explicit knowledge; by filtering, storing, and
retrieving and dissemination of explicit knowledge; and by creating and

testing new knowledge” [5].

Technologies like DSS, computer sciences and Artificial intelligence can all
be used in knowledge management. These technologies can store knowledge,
process and enhance knowledge, can improve ‘knowledge sharing in the

organization, and can convert tacit knowledge to explicit knowledge.

A four step process termed as “The Knowledge Spiral” for creation of new
knowledge for knowledge management is given in the picture below. This
knowledge spiral and all its phases are discussed in detail by Nemati in [5] and
are very useful for understanding the knowledge management process. It
shows not only the phases of knowledge transformation but also discusses
different techniques useful at any stage and different data types which can be
used to store knowledge at each stage in the knowledge spiral.

The four main processes identified are Externalization, Socialization,

Internalization and Combination

10

Data | Data Types

“Tesit sireams . _—_:‘Extemahzahnn Combination *Text streams
*Math’l models : : *Matrices (ANN)
sHierarchy of Model cases. - *Model Cases
: . *Equations
*Frames KE Tacit to: Explicit to - .Eq .
- sModel bldg © explicil new knowledge *ANN rmes
oWhat-iF case ! CoRversion *GMDH
‘specifications *CBR N
*GSS Brain *Anslogical Rensoning
*Storming .
*Kinematic
Aualysia * Argument Genoration
Tacit 1o tacit Explicitiew ~ / *Changsto Menial Modcls
. knowledge- to tacit “Insights.
*Film clips shating knowledge SES explanations
*Kinematics conversion *Kinematic Analysls
*Virtual *Similators
*Text streams
_ > A *Graphs
*BLOBS Internalization | ‘BLOBS
*Virtual Reality

Figure 2.2: Knowledge Spiral [5]
The knowledge spiral consists of 4 steps.

Socialization: This is the process of sharing tacit knowledge in any form like
technical skills, experiences [5]. For example a craftsman learns the art from
its master. The knowledge in this case is transferred from one mind to the

other without being codified in any form.

When discussing in the context of computer sciences, we can share tacit
howledge by creating digitized films or animations of the process and make it
available for searching. This knowledge can be better used by adding
commentary of knowledge workers who have the tacit knowledge about the
process. Facilities like slow motion and zooming can be provided to share the

knowledge in the proper way.
Externalization: This is the process of converting tacit knowledge to explicit

knowledge. It is also called articulation [5]. The knowledge is codified into

some useful form which can be processed by the computer.

11

Although this process seems confusing as tacit knowledge by definition is the
knowledge which cannot be stored in a form to be processed by the computer.

But techniques and guidance are available in literature for this process.

Different techniques are employed to obtain knowledge from knowledge
workers in verbal or animation or any other form and then interpreting that

knowledge to infer the underlying knowledge and reasoning process.

Combination: Combination or integration is the process of combining
different types of knowledge stored in process-able form to generate new
knowledge. New patterns and relations are discovered from existing

knowledge.

The knowledge converted to computer readable form in the externalization
process can now be process and analyzed in the context of already available

knowledge to create new explicit knowledge.

Internalization : Internalization is the process of testing and validating the
newly discovered knowledge in the proper context hence generating new tacit
knowledge [5].

Computers can be very useful at this stage as they can provide valuable aid for

the knowledge workers to learn.

Goals of making a knowledge Warehouse: The main goal of a knowledge
warehouse is to provide an intelligent analysis platform to the decision makers
that can be helpful in all stages of knowledge management[1]. A knowledge
warehouse must be able to store, retrieve and process knowledge in many

forms. It must also be able to perform analysis tasks to generate new
knowledge.

12

Knowledge warehouse architecture of Nemati:
An architecture of the knowledge warehouse to perform all these tasks of

knowledge management is proposed by H.R. Nemati in [5]. His architecture

given in the figure consists of 6 main modules

A S o

Knowledge
Workers

| |

Pata and

Two feedback loops

Feedback

Knowledge
Bxtraction/
Acquisition

h

Loop

Data and

Knowledge

Transformation
& Loading

Knowledge acquisition module:

Knowledge storage module
Analysis workbench

Communication manager

Knowledge extraction, transformation and loading module

Data Extraction

I

Kuowledge Knowledge

Warehouse
(storage)

Analysis
Workbench

A

» Communication

Manager/User
Interface

\ Fecdback Loop of New, Explicit Vﬂgﬁg“

Knowledge Validated

Figure 2.3: Knowledge warehouse architecture by Nemati [5]

Development and implementation of Nemati’s Architecture:

End

User
i

According to Nemati, the development and implementation of above proposed

architecture will be very time consuming for organizations and may not be

feasible for many organizations [5]. It may become a project for many months

costing millions of dollars. Nemati has given references to many researches in

13

which the key issues for the development and implementation of a knowledge

warehouse are mentioned. Some of these factors are :

1. Requires a lot of time for implementation

2. Cost of development may become out of budget for many
organizations

Support from top executives

Users involvement and participation

Well-defined business objective and goals

Resources adequacy issues.

Organization and political issues within the organization

Technological issues

Y @ 30 AW

Process management issues
10. Plans and communication issues
- 11. Values and ethics issues

12. External to organization issues

All these issues may determine the success of a DSS implementation and these also
apply for a knowledge warehouse. However in case of knowledge warehouse, some
more factors come into play. As the main focus of knowledge warehouse is to tap the
intellectual capital of the organization and tacit knowledge in the minds of knowledge

workers the following factors also become important

1. The technical knowledge management infrastructure
2. Building a culture in the organization for sharing the knowledge
3. Facilitation of knowledge oriented connections, coordination and

communication.

Nemati has given a list of activities for the successful development of knowledge

warehouse architecture in an organization.

14

1. Designing and implementing the techniques to identify and record both
knowledge and ignorance. Designing the processes to share, use and protect
the knowledge.

2. Cfeating a knowledge sharing environment in the organization and
encouraging employees to share their knowledge. -

3. Articulating and communicating the purpose and nature of knowledge
management and connecting it to the strategies and operational initiatives of

the organization [5].

Micheal Yacci proposed another use of knowledge warehouse in the context of
reusing knowledge components. The fact highlighted in his research is that most
of the knowledge components are developed for a particular purpose and
knowledge is hardcoded in the material by trainers, performance support,
documentation groups etc. this makes the knowledge non-reusable[10]. Such non-
reusable softwares are termed as “brittlewares”[10] . It is suggested that such

material must be revised in an organization to keep it up to date.

In his research, Yacci has proposed that a knowledge warehouse can be a solution
to this problem and can enhance re-usability of knowledge documents. He defined
knowledge warehouse as an information repository in which knowledge
components are cataloged and stored for reuse [10]. Such a warehouse can
provide different views of the same knowledge. He suggests that this warehouse
can be used for ad-hoc queries such as electronic performance support systems,
intelligent help, or reference material [10]. He has proposed an abstract structure
of the knowledge warehouse reproduced in the figure below:

15

System A

OnlineTraining

Online
Help System

EPSS

(G
i { Prescription ’

Figure 2.4: knowledge components shared across three different applications [10,p4]

He proposed that knowledge can be stored in the form of “Knowledge
Components (KCs)” to be stored at different physical locations. System A and
System B in the figure show different physical storage locations. Different users
can use different knowledge components in different views. Three users are using
three different applications giving those views of the required knowledge

components.

2.2 Related Research/Technologies

As a major portion of this thesis is the knowledge extraction algorithms, hence the

related part to this thesis is the storage mechanism of a knowledge warehouse.

Nearly all the literature surveyed during the study was of the view that the storage
mechanism of a knowledge warehouse needs to be an object oriented knowledge

base. .

16

Storage module is a primary component of a knowledge warehouse. This
knowledge base will be able to handle a wide variety of knowledge objects like
data streams, relations, movie clips, animations, sounds etc. meta knowledge

handling capability is also very impbﬁant.
Main .advantages of storing the knowledge in object form are

1. Meta knowledge can be stored with the knowledge. Knowledge source
information, its analysis techniques can be stored together in an object providing
encapsulation.

2. Executable routines for processing the knowledge can also be stored in the
same object. _

3. Object oriented concepts like inheritance, polymorphism, method overloading
etc can be used to efficiently store and process the knowledge in the form of

super-class and sub-class relationship.

Anthony Dymond goes one step ahead by proposing that an object oriented
decision tree is the best form to store knowledge in a knowledge warehouse. He
described a small example of a decision to cross the street in the form of an

object oriented decision tree. The objects and tree as proposed is given in the

picture below.
CroasBtreetlK
croasBtreatOK
isCrosaStreectOK() .
I 1
ChockLef tORK. ‘ ChaeckRightOX

checkLe ftOK | checkRightOK
isCheckleftOK () isCheckRightCK(}

Figure 2.5: Objects and tree for a knowledge base to cross the street [2]

17

He proposed that the methods will be activated by the way of tree search algorithms
these algorithms are procedures to traverse the branches of tree [2]. The code for

CrossStreeOK object will be implemented as

If CheckLeftOK = ‘True’ and CheckRightOK ="True’ then
CrossStreetOK = ‘True’
End if

An algorithm touches the nodes and runs the methods as the “focus of attention” of
the algorithm. For example, a depth first search algorithm will start at the root node

and traverse the tree in the following order.

CrossStreetOK
CheckLeftOK

CrossStreetOK
CheckRightOK
CrossStreetOK

Al S

According to Dymond, this type of tree search supports a control structure. Assume
that when the search reaches the node CheckLeftOK and it finds
CheckLeftOK.CheckLeftOK = ‘False’. This result is passed to CrossStreetOK
function, where CrossStreetOK.CrossStreetOK can now be set to False. The search
process can be stopped here as it is no longer necessary to check CheckRightOK. This
type of executable code that will set the value of decision variable can be a nice way

to implement this decision making [2].

Executabie code can also be very useful for performing some other tasks like taking
an input from user at any stage of decision making. This -technique has been used in
this work during implementation of algorithms. This approach of using a decision

variable and a decision function is found very helpful in this research.

18

2.3 Limitations

Knowledge warehouse is still a theoretical concept. The work done is in great detail
but it is far from implementation. Nemati has proposed architecture for knowledge
management and his work can be considered a milestone in the history of decision
support systems but all his work is theoretical. Only an outline is proposed for the
new concept which can be explored in further detail. In his paper he admits that
developing even a prototype for the proposed knowledge warehouse is beyond the

scope of his paper.

Dymond has proposed that knowledge warehouse has a parallel in ETL just like a data
warehouse. He has also proposed the knowledge storage structure for the warehouse

implementation. His work is on a very basic level and needs to be refined and
explored further.

2.4 Summary of Chapter 2

Knowledge is a key asset for organization growth. Companies are investing on data
warehouses as Decision support systems to provide them with the necessary

knowledge about market and their competitors.

Data warehouses have a built in limitation as they only étore and process only data.
The expected output of such decision support systems is knowledge but they do not
process or store knowledge directly. Moreover most of the knowledge of an
organization is in the minds of its employees in the form of tacit knowledge. This
knowledge is never documented or shared in an organization and hence can never be

processed to generate more knowledge.

A new dimension of decision support systems is proposed by H.R. Nemati to enable
DSS to store and process knowledge to form a knowledge warehouse. This type of
warehouse can store any type of knowledge and share it within and outside of the

organization.

19

Dymond has proposed that an ETL operation has a parallel for knowledge warehouse

on the same grounds as a data warchouse.
All the research work is on abstract level and needs to be further explored to make

this field a reality in the years to come. Knowledge warehousing has the potential to

become a new trend is the field of decision support systems.

20

21

3.1 Introduction

The problem domain for this research falls in the category of decision support
systems. An emerging concept in the field of decision support systems is knowledge
warehousing which is considered to be the next step after data warehousing for

decision support systems.

Some conceptual level work has been done to explore utilization of this field in
decision support systems. Nemati has given a detail conceptual model of knowledge
warehousing in his article [5]). The work done is very detailed and it explores the
various concepts of a knowledge warehouse but still it is a conceptual level work and

the field needs to be explored further in detail to make this concept a reality.

3.2 Problem Scenarios

Although the foundation of knowledge warehouse is put firmly in place by the
research work of Nemati but all the concepts are in abstract form. To collect and store
knowledge from different sources to create a giant warehouse containing entire
knowledge of the organization is a tedious task. An extract transform and load
mechanism is required to collect knowledge from different sources available in

different forms to load it is a consistent form in the warehouse.

A frame for knowledge ETL from knowledge sources on the same grounds as a data
warehouse is required to serve as a guideline for importing knowledge into the

warehouse.

Furthermore, knowledge extraction and transformation algorithms are required for
this ETL operation. Knowledge is available in many different sources in an
organization ranging from audio speeches, video documentaries, ECG, semantic nets,

frames, use-cases and a lot more.

An algorithm is required for each and every knowledge source to import the data into
the warehouse. These algorithms will serve as the guideline for knowledge ETL

operations.

22

33 Focus of Research

This research explores the area of ETL for a knowledge warehouse on the same
grounds as ETL for a data warehouse. A conceptual level framework for knowledge

ETL operations is proposed.

Furthermore physical storage structure of a knowledge warehouse is also proposed.
This structure enhances the knowledge class structure of Dymond and includes
attributes for better navigation of the knowledge tree.

Furthermore knowledge extraction from 5 types of knowledge documents i.e.
Decision Trees, Decision Tables, Use cases, Knowledge maps and scripts will be

discussed in detail and knowledge extraction algorithms for loading knowledge

extracted from these sources into a knowledge warehouse will be proposed.
3.4 Design Requirements

The framework is required to meet the following requirements to serve its purposes

° It must cover all the areas of ETL operations. Knowledge ETL is different
from data ETL.

° It must be able to cater for both types of Knowledge Tacit and explicit.

. It must also cover meta-information required about each knowledge source

for the transformation of knowledge properly.

3.5 Reference Architecture

This is first effort to device a framework for knowledge ETL. It takes reference of
the knowledge warehouse architecture given by nemati in [5]. The architecture given

by nemati in [5] is shown in the figure below and the portion of this architecture
covered in this thesis is highlighted.

23

Knowledge » Communication

. Knowledge >
g Warehouse | . / Analysis Manager/User
- { {(storage) . —~1 Wotkbench je—1| Interface

- Béedback Loop of New, Explicit

Knowledge Validated

TPS

Validation
Module

End

User
‘_—.

Figure 3.1: Portion of the Nemati KW architecture [S] focused in this research

Only the part related to knowledge extraction, its transformation and loading is

covered in this thesis. The feedback loops of the architecture relevant to generating

new knowledge and storing it in the warehouse are not included.

A node structure for the knowledge warehouse decision tree node is also proposed in

this thesis. This work is based on the Dymond structure of knowledge decision tree

given in [2]. The structure presented by Dymond is a primitive level structure

proposing the use of a decision variable and a decision function. This structure

provides a very good baseline as it uses object oriented approach. A proper class

structure is used to achieve to take advantage of object oriented design such as

encapsulations, inheritance etc.

The structure is shown in the figure below with a brief description of its components.

24

Decision Variable

Class Name
Decision Function
CrosaStroatlik
Relationship crosgBtreetOX
between nodes isCroasStreetOK{)
[i
CheckLeftOK ChackRightOK
checkLe ftOK ‘ checkRightOK
iaCheckLeftOK() isCheckRightOK()

Figure 3.2: reference architecture of Decision tree structure [2]

This reference structure is enhanced by adding fields for traversals and storing tacit

knowledge in the same node.

3.6 Proposed ETL Framework for knowledge warehouse

Based on the knowledge warehouse architecture of Nemati, a framework knowledge

ETL operation is proposed in this thesis. This framework is designed to cater for all

the requirements that may come across in the knowledge ETL operations. It can

handle both tacit and explicit types of knowledge.

The ETL framework proposed for knowledge extraction and transformation is given

in the figure below.

25

YoI1ym 30.n0s aZpaymowy Inogo UoDULIOfu]

. Knowledge Sources
Externalization |,
Module Tacit Explicit
A
Tacit e
Input from Knowledge Knowledge Knowledg
knowledge Sources Sources
workers to 7
convert tacit
knowledge to
explicit
knowledge Explicit Knowledge
) A
Knowledge -
9 Extraction Module
Warkers
Extraction Source
. - . . L3
58 Logic < information S
I8 g
FEx
59 £
? o) ~
«’§' g-%- Extracted Knowledge T
$&s s
LEE - .
§"§ v Transformation Module °§
. . 2
» | Consistency Transformation]
. PR . 3
Checking < Logic
Module
A
\ Transformed Knowledge
Information about any '
knowledge already in the Loader
warehouse. There is nofieed
to load this knowledgt again
"Executable code to load knowledge
Knowledge
Warehouse

Knowledae

Figure 3.3: Proposed framework for knowledge ETL
A detailed description of each of the above components is given below.

Knowledge Workers: All the organizations employ some workers due to their
knowledge in a subject matter. These workers are the intellectual asset of the

organization. Workers who have mastered a certain skill for example lawyers,

26

computer experts, scientists, banking experts can be called knowledge workers. This

is the academically trained workforce of an organization.

This term was invented by Peter Druker in 1959 for a worker who works with

information or the worker who develops the use of knowledge in the organization

[6].

These workers have the necessary knowledge in their minds which must be put in a
documented shape in a knowledge warehouse. A knowledge warehouse must be able
to organize the knowledge from these knowledge workers and share them inside the

organization.

Knowledge Sources: Knowledge warehouse is all about collection of knowledge.

Just like data is captured from many sources for a data warehouse, knowledge is
collected from different sources for a knowledge warehouse. These knowledge

sources can be in any form tacit or explicit.

Externalization Module: Externalization is the process of converting tacit
knowledge to explicit knowledge. As tacit knowledge by definition is not in a form
to be processed by computers, there is a need to externalize this knowledge into a

form so that it can be stored in the knowledge warehouse.

All the knowledge in tacit form, either from any tacit knowledge source or described
by a knowledge worker must go through the externalization phase to make it

compatible with a form process able and searchable by the computer.

For example, a vast variety of knowledge can be collected in the form of videos. But
videos are not searchable or process able by computers to extract knowledge from
them. We may forward this video to a knowledge worker to add searchable
commentary to it. The knowledge worker may add searchable keyword to the video
so that it can be searched later. Knowledge workers can even categorize these videos

by author, language etc.

27

Extraction module: This is the module responsible for extracting knowledge from
different sources so that it can be processed for loading into the warehousing.
Knowledge in different sources can be poorly structured and needs to be put into
propef shape before running the transformation procedure. Some meta knowledge

about source and format of knowledge may also be incorporated at this stage.

As knowledge is stored in complex forms and not simply in relational tables, hence
extraction of knowledge is much more complex than extraction of data. For this
reason the extraction module will need two sub-components for proper extraction i.e.

source information and extraction logic module.

A knowledge document can have many types of knowledge which needs to tackled

differently and stored at different places in the warehouse.

Source Information: This module will have all the knowledge about the knowledge
source. It will provide information about which knowledge is stored where in the
source and what its type is. For example knowledge available on a news website may
contain images and textual data available at many placés in the web page. All that
needs to be extracted and put in proper shape so that it can be linked later to retrieve

knowledge later.

Warehouse manager has to provide the knowledge extraction logic to the system as
how to extract specific knowledge from the source. it needs to make sure that the
knowledge extracted is semantically and contextually correct. Extraction module will

have this extraction logic provided by the knowledge managers for each source.

Transfo.rmation Module: This module will transform the extracted knowledge and
_re-structure it according to the storage structure of the knowledge warehouse. As the
knowledge warehouse will store the objects in object oriented form hence there is a

need to transform the information retrieved in to object oriented form. This will

require creating objects, writing executable routines, storing Meta knowledge in the
proper form, coding analysis routines etc. this module will have the “consistency

checking module” and “transformation logic module” as its sub-modules.

28

T F3S

As warehouses retrieve information periodically from the same source there is a need
for “Consistency Checking module” to ensure that the knowledge from same source
are linked together and the nodes are created in proper relationship to each other.
This module will take input from meta-knowledge where information about sources
is available in the proper form. Sometimes there might be a need to store the

retrieved information in an existing node of the warehouse.

Transformation logic module will have all the source specific logic to transform
the knowledge retrieved in to the warehouse storage structure. This logic will be

provided for each source by the warehouse manager.

Loader: This module will physically load the knowledge and meta knowledge into
the warehouse. This module will physically create the objects, link them in an object-
oriented hierarchy, create persistent storage variables and write the executable code

for each object.

3.7 Proposed Node Structure of a Knowledge warehouse

Physical storage of the knowledge is the key factor in the implementation of a
knowledge warehouse and it was a basic requirement for developing algorithms for

knowledge transformation.

None of literature surveyed proposed a node structure for the warehouse.
Researchers have proposed that it needs to be in the form of an object oriented tree
but the node structure was not provided anywhere. This work also proposes a
knowledge tree node structure for the knowledge warehouse. the proposed node
structure is shown in the figure below:

29

Class KWNode

Decision Attribute

Node Type

Blob object

Text Description

Array of Affirmative Child Node
Pointer to Negative Child Node
Pointer to Parent Node

Relation with parent

Decision Function

Analysis function

Figure 3.4: Proposed Class structure for knowledge warehouse

A brief déscription of these attributes is as follows.

Decision Attribute: This variable will be used to return the status of decision
function. In most of the cases it will be a Boolean value. This variable will be set in
the decision function or analysis function to communicate the result of function. In

section 2.2 the use of this variable can be seen as example.

Decision Function: Every node needs an executable code to perform the decision
functionality and then set the decision attribute accordingly to return the result.

CheckRightOk and CheckLeftOk are examples of decision function given n section
2.2,

Analysis function: To improve storage efficiency we can also store the analysis
functions in the same class. Keeping the storage structure object oriented can also be

very helpful. Mostly the analysis tasks on the inherited classes will vary slightly from

30

that of the base class. This can make analysis code very well managed and storage
efficient. Furthermore method overloading and polymorphism can also be very
helpful.

Node Type: All the knowledge from any source will be stored in this same node
structure. This node may contain text data, numerical data, video clips, audio clips etc.
we can use this variable to get information about the type of data stored in the node.
Source of knowledge is deliberately missed here as it will be stored in meta

knowledge.

Blob Object: A blob type variable to store any blob field. For example images,

videos, audios etc.

Text Description: This field will be used for tacit knowledge such as videos and
audios. As it is difficult for computers to search tacit knowledge blob field, hence a
text commentary by some knowledge worker in searchable form can be stored with

each blob. This may include the keywords for knowledge searching.

Array of Affirmative child node: For majority of the cases, it will be a binary tree
hence every node will have 2 nodes. This field will have a pointer to the child node to
follow when decision attribute has the value “True”. It is an array just to

accommodate decision trees that are not binary decision trees.

Pointer to negative child node: This field will have a pointer to the child node to

follow when decision attribute has the value “False”.

Pointer to parent node: This field will have a pointer to the parent node. each node

will have a pointer to the parent node. For the root node it will be NULL.
Relation with parent: This field will save the value that this node is affirmative child

node of the parent node or negative child node. It can be very helpful while

backtracking for a decision making or some analysis requirements.

31

3.8 Summary of Chapter 3 (Requirement Analysis and System
Design)

This chapter focuses on the knowledge ETL framework and the decision tree node
structure proposed in this thesis. The work done in this thesis does not end here and
five knowledge extraction algorithms will be proposed in the next 5 chapters, one for

each type of knowledge document.

32

33

4.1 Introduction

A decision tree can be regarded as a deterministic algorithm for deciding which
variable to test next based on the previously tested variables and the results of their

evaluation, until the function’s value can be determined [5].

Decision trees are sequential evaluation procedures and are often used for system
analysis and decision theory [1]. Just like other sequential operational procedures,
decision trees have widespread applications in database, decision table programming,
concrete complexity theory, switching theory, pattern recognition and taxonomy [5].
Nodes in a decision trees represent goals and links represént decision [1]. Value of a
variable is determined at each node and the next node is decided accordingly. Next

node may evaluate the value or output the value.
4.2 Literature Review

Definitions of Decision trees:

Definition 1: Decision trees are rooted, ordered, vertex-labeled trees where each node

has either m; children for some i, 1 <i <n, or none (leaf) [5].

Moret’s Definition : Let f(x, X2,, X,) be a function of discrete variables. If f is
constant or null, then the decision tree for f is composed of a single leaf labeled by the
constant value or by the null symbol. Otherwise, for each x;, 1 <i <n, such that at
least two restrictions, say flyi=1 and flxi=12, are not null, f has one or more decision
trees composed of a root labeled x;, and m; subtrees, which are decision trees

corresponding to the restrictions flxi= , .. . , flxi=mi-1 , in that order. [5].

34

Examples of uses of a Decision Tree

An example of a decision from [1] to diagnose a car starting problem is given in the

figure below.
_ Yes ‘ No

Sorry , Only Do
nonstarting

No

Fill gas tank

Yes

Headlights

work?
¥
. Starter motor
Is fu_el Prob.ler.n with problem Flat Battery
reaching timing
carburetor?

No Headlights

Yes work?
Blockage in fuel
line No
A 4
Carburetor
problem \
Starter motor Flat Battery

problem

Figure 4.2 : An example of a binary decision tree [1]

Each node in the tree is for a decision. For example the root node is a question that
will have a Boolean answer either in the form of “Yes” or “No”. Each node has two
branches, one for each of the possible answer. Each branch of a decision tree will

either lead to a new question or a leaf node which tells the diagnoses result.

35

It is clear from the example that decision trees contain knowledge in them. They are

made by knowledge workers to help in decision making.

Decision trees can also be used for region
classification. An example of decision tree usage
for region classification from [32] is given

below.

Consider the regions A and B in the figure 5.3.
. . . Fiqure 4.3: Regions for Classification _
Imagine these regions are placed in an [x, y] plane. Many algorithms can be found in
literature to classify the regions in [x, y] planes. Input of our algorithm in x and y
coordinates of a point, the algorithm is required to tell the region in which the point

lies.

Decision trees can be used as classification algorithms for such problems. The

decision tree to solve this region classification problem given in [32] is given below.

Figure 4.4: Decision trees as classification algorithms [32]

4.3 Problem Scenario for the Decision Tree ETL Algorithm:

As discussed in the previous chapters, knowledge needs to be extracted and
transformed from knowledge documents before storing it in a knowledge warehouse.
Decision trees have widespread applications and have been used to document

sequential evaluation procedures.

36

We can extract knowledge from decision trees and transform and store them in a

knowledge warehouse to use it for decision making.

For this research the storage structure of the knowledge warehouse is object oriented
decision trees. The structure of the object and other details about storage has been

discussed in the previous chapters.

The transformation algorithm for storing knowledge is proposed below. This
algorithm will take input a decision tree and make necessary transformations to store
the knowledge in a knowledge warehouse in accordance with the storage structure

proposedAearlier in this thesis.

4.4 The Proposed Algorithm for Knowledge extraction from

Decision Trees:

\\Comment: this function will be called for the root node of input tree and it will use

recursion to formulate the complete tree

CreateNode(Node InputNode, Is_Root Boolean, Affirmative Boolean)

{
If Node is NULL then Return

n =new KWNode
n.nodetype = “Decision”

n.createDecisionFuntion(Node.decisionText, By Ref n.DecisionAttribute)

ifIs_Root then
n.parentNode = NULL
RelationWithParent = NULL

37

else
n.parentNode = Node.ParentNode
RelationWithParent = Affirmative

End if

n.AffirmativeChildNode = CreateNode(affirmitiveNode,False,True)

n.NegitiveChildNode = CreateNode(NegitiveNode,False,False)

4.5 Case Study for the Proposed Decision Tree ETL
Algorithm

A case study approach is used in this section to validate and test the proposed
algorithm. This will take a sample decision tree to apply the proposed algorithm and
will graphically represent the output which is in the form of proposed physical storage
structure of the knoWledge warehouse. It will not only validate the algorithm but will
represent the final output of the knowledge warehouse storage structure proposed in
this thesis

Consider the binary decision tree in the figure below for making a decision of salary

calculations of salaried and hourly workers

i
Pay hourly wage;
Absence report
L e

oS

Legend: : Pay hourly wage

1) Salaried? i :
-2) Hours worked < 40? |
-8) Hours worked =407 § " Pay overtime wage

oo
Pay hourly wage;

Figure 4.5: A binary Decision tree for Salary Decision [33]

38

The proposed algorithm for performing ETL operation on decision trees will be
applied on the decision tree given in the above figure. Application of the algorithm
will transform the decision tree into the proposed knowledge warehouse storage
structure.

A decision for salaried workers is made at first node. Base salary is paid to the
salaried workers. If the worker is not a salaried worker, then an hourly rate applies

which is decided in the preceding nodes.

At second node a decision is made that the hours worked by the worker are less than
40 hours. An affirmative answer shows that the worker has been absent from duty.
Hence an hourly rate is applied and absent hours are accounted for. A negative answer
at node 2 leads to node 3 which checks that has the worker worked for 40 hours? An
affirmative answer to this question leads to a plain hourly rate. A negative answer
implies that the worker has worked for more than 40 hours and a decision is made to

pay not only the hourly wage but overtime as well.

39

Node Tvne: Decision

Decision Function: The
worker is salaried?

Negative
Child Node

Affirmative
Child Node

A

Node Tvne: Decision

Decision Function: Hours
worked <40?

Negative
Child Node

Affirmative
Child Node

\ 4

Node Tvne: Action

Decision Function:
Calculate Salary as basic
pav salarv

Negative Affirmative
Child: nuLL | Child: NULL

y

Node Tvne: Decision

Decision Function: Hours
worked =407

Negative Affirmative
Child Node | Child Node

Node Tvne: Action

Decision Function:
Calculate Hourly Wage on
the basis of Absents

Negative Affirmative
Child: NULL Child: NuLL

A

Node Tvne: Action

Decision Function:
Calculate Hourly Wage
and overtime

Negative
Child: NULL

Affirmative
Child: NuLL

Node Tvne: Action

Decision Function:
Calculate Hourly Wage

Negative Affirmative
Child: NuULL Child: NuLL

Figure 4.6: Decision Tree Transformed for knowledge Warehouse

CHAPTER S

~ Algorithm for D

4]

action
)ecision Tables

5.1 Introduction

A decision table is a simple way to organize knowledge for decision making. A
decision table is organized in the form of a table consisting of rows and columns. The
table has 2 parts. One is the list of all attributes that contribute in the decision making
process and second is a list of all possible values for each attribute. Then a list of
conclusions is developed. Finally different configurations of attributes are developed

to match each conclusion [1].
5.2 Literature Review

Decision tables are used as a tool for organizing information for decision making. It
can be viewed as a matrix in which upper rows specify sets of conditions and lower

rows specifies the actions when some conditions are satisfied [36].

Moret in his article [36] said that each column of a decision table can be viewed as a
rule which has the “if” condition and then the action to take when the condition is
satisfied. Each column of the table represents a rule. If two overlapping rules specify
different actions, they are called “inconsistent” and the table is called “ambiguous”. If

they specify identical actions, they are called “redundant”.

Decision tables, like other quantitative models have three basic components. These

are decision variables, uncontrollable variables and result variables.
Result Variables: These variables are the output of decision making. They represent
the performance of decision making process. These are also called “dependent

variables”.

Decision Variables: Are the alternative available actions. A knowledge worker

calculates the values of all these variables for each alternative.

Uncontrollable variables: There are some variables which are not in control of the

decision maker but they affect the decision variables. When values of these variables

42

are fixed, they are called parameters and when they can vary, they are called

variables.

Relationship of these variables is shown in [1, pg46] as follows

Uncontrollable

variahles
Decision Mathematical . Result
variables Relationshins variahles

Figure 5.1: Relationships of variable [1, pg.46])

Turban has explored these types of variable giving their examples and area where
they are used. It is formulated in the form of a table at page 46 of [1]. The table is

reproduced as under

Financial Investment alternatives Total profit.
Investment and amounts. Risk Prime rate
How long to invest. Rate of return Competition
When to invest Eamings per share Liquidity
level
Marketing Advertising budget Market share _ Customer’s
Where to advertise Customer satisfaction income
Competitors’
action
Manufacturing | What and how much to Total cost. Machine capacity
produce Quality level. technology.
Inventory levels Employee satisfaction Material prices
Compensation programs
Accounting Use of computers. Data processing cost. Computer
Audit schedule Error rate technology.
Tax rates.
Legal
requirements
Transportation | Shipment schedule. Total transport cost. Delivery distance.
Use of smart cards Payments float time. regulations
Customer satisfaction
services Staffing level Customer satisfaction Demand for
services

Table 5.1: Types of Decision Variables [1, p40]

43

Use Examples of Decision Tables

Example 1: Here is an example of decision table from [5] to take the decision of how

to spend a Saturday afternoon in a spring.

J

Raining? Yes No No [Condition]
Wind condition Breezy Calm Wind Rowe
y
Clean basement X X _
Spade garden X { Action]
Fl_‘l klte With chn- x R
dren J

Figure 5.2: a decision table on how to spend a Saturday afternoon in spring [5]

Top two rows in the table are condition rows one for each condition. First variable is a
binary variable having values of “Yes” and “No” only while the second variable has
three possible values of “Breezy”, “Calm” or “Windy”.

Bottom three rows are the action rows showing different available alternatives. As
already discussed that according to Moret each column of the decision table can be
viewed as a Rule. Hence this table has four rules. Labels of each action row are the
available action which can be taken. In each column, if an action can be taken under

the variable values specified in the column headers, the cell at the intersection of row

and column is marked as “X”.
The four rules for the four columns of the table can be described as:
if it is raining then clean the basement

if it is not raining and wind conditions are breezy, then fly kite with children

if it is not raining and wind conditions are calm, then spade the garden

Ll O

if it is windy then clean the basement

44

Example 2: Consider the example of an investment company given in [1] at page
179. The company uses a decision table for decision making and has three options for
its investment. It can invest in bonds, stocks or certificates of deposits. The goal of
decision making is to earn maximum profit. The list of attributes in this case is solid
growth, stagnation and inflation. Values of these attributes are calculated by experts

for each of the three alternatives.

The decision table given by Turban in [1] is given below

Table 5.2: A decision table for investment [1]

State of Nature (Uncontrollable Variables)

Alternatives | Solid Growth (%) | Stagnation (%) Inflation (%)
Bonds 12.0 6.0 3.0
Stocks 15.0 3.0 -2.0
CDs 6.5 6.5 6.5

According to turban, this decision making process can be viewed as a two-person
game. The investor makes the first move by selecting an alternative and then the state

of nature makes the other move by the payoff as given in the decision table.

The decision table has decision variable, uncontrollable variables and result variables.
Decision variables in this case are different alternatives; uncontrollable variables are

stagnation and inflation. These are dependent on the state of economy.

This decision table can work very well if economy conditions are predictable and
certain. But normally they are not, so we must consider two cases of uncertainty and
risk as well. We do not know the probabilities of each state of nature for uncertainty

but we can assume them for risk.

Algorithms for Converting Decision tables to Decision Trees:

The goal of this research work was to extract knowledge from decision tables and
store them in a knowledge warehouse that will be in the form of a decision tree. For
this purpose several algorithms for conversion of a decision table into a decision were

studied. Following is a critical review of these algorithms.

45

LK Sethi and B. Chatterjee Algorithm:

An algorithm for conversion of decision tables to efficient sequential testing
procedures was proposed by LK Sethi and B. Chatterjee in {32]. The scenario
discussed is a sequential testing procedure for checking which rule from a decision
table to apply in a particular scenario. According to [32] this can usually be found in
the form of a minimum-path-length tree. So they developed an algorithm for
converting decision tables into efficient decision trees. As the goal of the tree is to
find the rule to apply with the minimum cost, the terminal nodes of the output tree

will be the rules of input decision table.

Consider the input decision tree example from [32] in the figure below. To find the
efficient algorithm, the probability of rules applicability is calculated as shown in top

row of the table. Then testing cost against each condition is calculated as shown in the

last column of the table.
Raule
probabilities Testing
- 0.50 0.20 0.30 Jeost
X3 N) 4 — 4
Xg N Y Y 8
X3 N Y N 12

Actions — ' Ai As As '

Figure 5.3: Rules Probability for decision table [32]

The output decision tree of algorithm given in [32] is shown in the figure below.

A, Ay A, A
Figure 5.4: Decision table converted into a decision tree [32]

46

Notice that the actions are the terminal nodes of the tree and the conditions with most
probability is evaluated first. The algorithm for making such decision tree is given
below. |
The algorithm has the following assumptions:

1. Conditions of the decision table can be tested in any sequence
Each condition testing result in either Y or N.
The cost for testing each condition is specified.

rule probability is either known or can be calculated

Al

the decision table is not ambiguous

The algorithm is given as under

Step 1: select the first condition of the decision table as a possible candidate for the
root node and construct two sub-tables for each Y and N conditions.

Step 2: try to merge the rules which result in the same action set in the two sub-tables.
Step 3: calculate the estimated cost for each of the two subtables

Step 4: calculate the estimated cost of the complete tree keeping the chosen node
condition as root node

Step 5: repeat the same steps for all conditions to select a condition / with the
minimum cost |

Step 6: keep the condition xi at the root node and make the Y and N subtables. Repeat

above steps on each subtables until the tree is complete.
S. Ganpathy and V. Rajaraman Algorithm:

This algorithm was developed for coding a decision table into a computer program. A
decision tree is a good option to code as a program so the program converts the
decision table into a decision tree. The algorithm is also suited for converting decision

tables to flowcharts.

Just like the previous algorithm, each node of a tree is a condition having two possible
paths for Y and N. all the terminal nodes are the actions to perform while all condition
nodes test a condition based on the tree logic.

Some definitions are given and explained with the help of following picture

47

RI R R R4 RS
cl Y —- Y N N
2 Y 4 N - N
3 — N — Y N
Al X X - - s
A2 - -~ X - -
A3 D ¢ X

Figure 5.5: Decision table format [19]

In the table above, C1, C2 and C3 are conditions, A1, A2 and A3 are possible actions
whereas R1, R2, R3, R4 and RS are the rules.

Elementary Rules: Each element of a decision table can have one of Y, N or a —
(dash) entry. A rule which has p dash entries can be expanded into 2° rules without —
entry. A rules having only Y and N entries and no — entry is called an elementary rule.

A decision table with n conditions will have 2" elementary rules.
Action Set: All the rules which lead to identical actions make action set

Overlapping Rules: Two rules are called overlapping if they have one or more

common elementary rules.
Disjoint Rules: If two rules do not overlap then they are called disjoint

Ambiguous Rules: If two rules from different action sets overlap then the decision

table is ambiguous.

Redundant Condition: The elementary rules within an action set may be combined
using Boolean algebra. However there is no unique way to combine elementary rules
to arrive the set of rules. If elementary rules in a decision table can be combined to

yield all dash entries for a condition row then that condition is redundant.

Totally relevant condition: if elementary rules in an action set cannot be combined
to yield a dash entry for a condition, then that condition is relevant for that action set.
In the same research [19] some statements for conversion of decision table to trees are

made. These conditions are given below

48

1. If a set of conditions is totally relevant, then any of these conditions could be tested
first. The sequencing among a set of totally relevant conditions does not affect the

optimality of the tree.
2. A redundant condition should not be tested.

3. The above statements would also apply to any subtable obtained during the

development of an optimal tree.

4. If there exists a rule(s) in an action set such that it does not combine with any other
rule in that set to yield a dash entry for any condition, then that rule could be
considered to constitute a separate action set(s) without affecting the optimality of the

resulting tree. In other words the same tree will be optimal for both tables.
5. Yes and No entries should be treated symmetrically.
6. The Else Rule should be treated just like any other action set.

Assumption for the Ganapathy and Rajaraman Algorithm:

Following assumptions were made by Ganapathy and Rajaraman for their algorithm

The condition in a decision table can be tested in any order
The outcome of every condition is either Y, N or — (dash)

The time for testing each condition is known

i o

The probability of occurrence of each elementary rule is known or can
be calculated |

5. The decision table is not ambiguous

Ganapathy and Rajaraman Algorithm:

The algorithm proposed by Ganapathy and Rajaraman in [19] for conversion of

decision table into a decision tree is given below

49

Step 1: Expand all the rules into elementary rules

Step 2: Use combining techniques on elementary rules for all the conditions
separately to maximize the number of — entries for each condition. This step will give
a decision table for each condition

Step 3: For each decision table, calculate sum of probabilities of Y p; and sum of
probabilities of N py for all the conditions. If there is a condition where po+p1=1 then
go to step 7, else go to next step.

Step 4: Calculate the following values for each condition in the tables obtained in step
2.

Py =p/(P1 +Py);

pn="Po/ (P1 + Po);

H(k) = (--py logz py+ px Iogz pn),
I(k) = (p1 + po)H(k),

L(k) = H(k) -- I(k), and
I(K)/T(K).

Find the condition which gives maximum value of [1(k)/T(k)] as the condition to be
tested. If more than one conditions give the same value of [I(k)/T(k)], then pick the
condition with minimum L(k). if all have same value of L(k), then pick condition with

minimum T(k).

Step 5: use the selected condition as the current node and split the decision table into
the Y and N halves.

Step 6: there is no need to test any further if all the entries are — entries. If there is one
condition in the subtable the test that condition and if there are more than one

conditions in the subtable, go to step 2.

Step 7: pick all condition with pg + p; = 1 and make the tree.

50

5.3 Problem Scenario for Decision Tables ETL Algorithm

As discussed in the previous chapters, knowledge needs to be extracted and
transformed from knowledge documents before storing it in a knowledge warehouse.
Decision tables have widespread applications and have been used to document

organization knowledge in an easily manageable form.

There is a need to device an algorithm to extract knowledge from decision tables and
transform it in a format compatible with knowledge warehouse storage structure. For
this research the storage structure of the knowledge warehouse is object oriented
decision trees. The structure of the object and other details about storage has been

discussed in the previous chapters.

An algorithm is proposed below for transformation of 'knowledge extracted from
decision table into the proposed knowledge warehouse structure. This algorithm will
take input a decision table and make necessary transformations to store the knowledge

in a knowledge warehouse in accordance with the storage structure proposed earlier in
this thesis.

5.4 The Proposed Algorithm for knowledge ETL from

Decision Tables

Assumptions:

Following assumptions are made for this algorithm:

1. The conditions in the decision table can be tested in any order
2. “The result of testing a condition is either Y, N or —

3. The decision table is not ambiguous

Proposed Algorithm

// Comment: make rules

51

For each column in the decision table

For each condition in the Decision Table

If rule needs this condition satisfied
Mark entry as “Y”

If rule needs this condition Not satisfied
Mark entry as “N”

If this condition has no effect on rule

Mark entry as “—*

Next condition

Next column

// Comment: Select Condition for Root Node
//Comment: if one condition is found at any Node of the forest, select that condition
for root node

If more than one such nodes exist, select the node at highest level
Variable SelectedRootNodelD =NULL
For each condition in decision table
If condition exists at any root KWNode of the forest

If SelectedRootNodelD is NULL OR
KWNode. Level > SelectedRootNodeID.Level

SelectedRootNodeID = KWNode
End if
End if

Next condition

52

//Comment: If a node is not found in the warehouse, select a condition for root node

and create node for it
If SelectedRootNodeID is NULL
Select the condition with maximum — entries for root node
Write code for testing condition in decision function
Sét node variables
SelectedRootNodelD = newly created node
End if
//Comment: create rest of the tree
For all rules in the decision table sorted by maximum - entries
For all conditions in the rule
Parse the tree according to affirmative and ﬁegative child nodes
If there is no node for this condition
Create the node and set its parent accordingly

Write code for decision function
End if

Next condition

Next rule

53

5.5 Case Study for Decision Tables ETL Algorithm

Consider the decision table given below as a case study for this algorithm.

Rainmg? Yes No No
Wind condition Breezy Calm Wind
y
Clean basement X X
Spade garden X
Fly late with chil- X
dren

Figure 5.6 : decision table for case study [1]

The first step of the algorithm makes rules from the given decision table. It will mark
the appropriate entry with “Y”, “N” or “-“ depending on the contribution of that
condition in a specific rule. A “Y” entry will depict that this condition must be
specified to apply the rule. A “N” entry will depict that this specific condition must
not be satisfied to apply this rule and a “-* entry will depict that this condition has no
effect on the rule. When applied to the decision table given in figure 6.6, the rules

made are shown in form of a table below

Table 5.3: Rules Made from the given decision table

amln : Y N
Breezy Wind - N Y N
Calm Wind - Y N N
Windy - N N Y

In the next step of the algorithm, Rulel will be selected for root node as it contains
maximum “~* entries. After that the nodes with maximum number of “— entries will
be selected for next nodes of the decision tree. Actions will become leaf nodes of the

tree and decision functions for these leave nodes will perform the action specified.

54

The final outcome which is in the proposed storage structure after applying step 3 of

the proposed ETL algorithm is given in figure below.

Node Tvne: Decision

Decision Function: Is it

~ Raining?
Negative Affirmative
Child Node | Child Node

Node Tvne: Decision

Decision Function: Is it

Windy?
Negative Affirmative
Child Node | Child Node

Nade Tvne: Action

Decision Function: Clean
Basement

Negative Affirmative
Child: NuLL Child: NULL

Node Tvne: Decision

Decision Function: Is it

Breezy?
Negative Affirmative
Child Node | Child Node

Node Tvne: Action

Decision Function: Clean
Basement

Negative Affirmative
Child: NuLL Child: NULL

y.

Noade Tvne: Action

Decision Function: Spade

Garden
Negative Affirmative
Child: NuLL Child: NuLL

Node Tvne: Action

Decision Function: Fly kite
with children

Negative Affirmative
Child: NULL Child: nuLL

Figure 5.7: Decision table transformed for knowledge warchouse

55

5.6 Implementation of Algorithm

hown in the

1S S

ion

t

ing sec

Its of the case study presented in preced

10N resu

Simulat

figure below

Pecision Table ETL

Preparing Rules
 sulnlsialaislalaleiuinislvinisiuinivids

Ruig 1 :¥---
Ruled:-NNY

Select Root Node
Node containing Maximum - entries

Number of - Enfries in aach Rule

Rule 1:3’

Order of Procassing Fules
1423 .
Rule 1 sslected as Root Node

table ETL Algorithm

1S10Nn

ult of Dec

ion res

Simulat

Figure 5.8

56

CHAPTER 6

57

6.1 Introduction

Use cases are used to document the scenarios of system usage. They are developed in
the system requirement analysis phase of software engineering to describe the system

usage.

Use cases describe how the system will behave in response to an event from outside

the system. They describe the system from the user’s point of view.

6.2 Overview of Use Case Documents

Overview:

Use cases describe the interaction between an actor and the system in a sequence of
steps. Use case development starts with identification of Actors. Any people or
devices that play a role in the system are called Actors. It can be any external object
which interacts with the system. Mostly an actor is considered a synonym of user
where as'a user can play number of roles when interacting with the system. Other

devices which interact with the system may also be an actor.

UML standard for use case diagrams are used to represent a use case in a standard
graphical representation. Use cases are normally written in plain language so that

non-technical users can give an input in the development phase.

Following are the suggested questions that should be answered by a use case diagram
[22].

o ' What are the main tasks or functions that are performed by the actor?

° What system information will the actor acquire, produce or change?

e Will the actor have to inform the system about the changes in the external
environment?

e What information does the actor desire from the system?

e Does the actor wish to be informed about unexpected changes?

58

History of Use Cases:

The first modeling technique for use cases was formulated by Ivar Jacobson, in
1986[23]. He later contributed on UML as well. Later use case modeling was
improved by Kurt Bittner, Alistair Cockburn, Gunner Overgaard and Geri

Scheneider.

Use cases were popular in requirement gathering for software engineering by the
1990s. They were mostly popular in object oriented systems but were also very

useful in other non-object oriented systems.

Types of Use Cases:

Business Use Cases: Are used to describe a process for providing a service to a
business actor. It is normally written in non-technical language [23]. Examples of

business use cases include manual payment processing, manage corporate real estate.

System Use Cases: Are used to describe system functionality to specify to functions
and services given to the user by the system. For example create voucher is a system

use case [23].
Use case Format:

There is no standard template for documenting use cases. Some times use cases
include more or less details depending on the type of application and some times
they may contain industry specific sections [23]. Sections of a typical use case and

their brief descriptions are given below.

Use case name: This is a unique identifier given to each use case. It is normally in

the verb-noun form for example “Borrow Books”, “Withdraw Cash” etc [23].

Normally it is chosen in a way that it describes completely what the use case is

about.

59

Version: Use cases mature during the different phases of software development life
cycle. A version tells the reader at which stage of SDLC, this use case was

developed. Older versions are also kept and used for reference.

Goal: This section tells the actual goal which is intended to reach by the user in this
use case. Every use case must have a goal which is the final outcome the use case is

intended to provide.

Summary: This section contains a few line summary of what the use case is about
and what it intends to achieve. It facilitates the reader to get the essence of use case
without reading complete use case.

Actors: This section documents the actors participating in the use case.

Preconditions: This section has the conditions which must be met before the use
case is triggered. The system needs to be in a specific state to initiate a use case. This

state is described in the preconditions section.

Triggers: This section describes the events that initiate the use case. This event can

be internal, external or temporal [23].

Basic Course of Events: This is the main section of a use case and is documented as

a set of steps taken by the system or actor. It is also called “basic flow”, “happy
flow” or “happy path”.

Alternative paths: There may be some variations in the normal path of the basic
course of events. These are termed as secondary paths or alternative scenarios.
Whenever a test condition arrives in the use case events, there will be an alternative

path to handle that scenario.

Post conditions: This section contains the state of the system after the use case is

complete. These conditions are guaranteed to be true at the end of use case.

60

Business Rules: This section describes the normal working scenarios of the

organization specific to the use case.

Notes: This section contains any information author want to document and it does

not fall into any other section.

Author and Date: It is necessary to document the author of the use case so that he
can be consulted during any phase of use case implementation. Dates are also very

important as there are normally many versions of a use case during its life cycle.

6.3 Literature Review for knowledge extraction algorithm

from a use case:

The goal of this research is to extract knowledge from use cases and transform and
load them into a form that can be processed by machine. During the literature review
emphasis was on looking for existing algorithms to extract data from use cases and
store them in knowledge form. The two most relevant research works are discussed

below.
Converting Use Cases to System Sequence Diagrams:

An algorithm is proposed in [20] for using use-cése models for reliability
assessment. Reliability of a system is defined as the probability for a failure free
operation of the system for a specified time with a set of operating conditions[20].
Manual approaches for reliability assessment were completely dependent of the
analysts and knowledge workers and hence were not accurate. They had their
drawbacks specially when dealing with unfamiliar systems or very large complex

systems.

The proposed algorithm discussed in [20] has three basic steps

1. Convert use case into an SSD (System Sequence Diagram)

2. Convert SSD into a UCG (Use Case Graph)

61

3. Determine the reliability metric

This research is about extracting knowledge from use case documents so only the

step 1 of the research is relevant to this research.
The algorithm given in [20] is given below

a. For each step specifying a user input Ul , add a message MU from user to system
in SSD and name the message MU same as the input UI .

b. For each step describing a system response SR, add a message MS in SSD from
system to user, and name the message MS same as the system response SR.
For all steps describing system action, no message is included in SSD.

d. Preserve sequence of user input Ul and system response SR in SSD same as in the

scenario description.

This algorithm exploits the fact that use cases and sequence diagram show
interaction between the system and user. Steps performed by the system and actor to
complete a use case scenario are listed in a scenario in use case models and the same
is done in a sequence diagram where actions performed by the system and external

interactions with the system.
Converting use cases to state diagrams

A technique is presented in [21] to automate the synthesis of state diagram from a use
case. This approach takes usecase as input and converts it into a sequence diagram. As
an intermediate step the usecase is converted into a tree representation. The tree
representation in this case is not a decision tree and discussed the tree as a sequence of
messages passed between actors of a system which makes the modes as states for
further conversion into a state diagram. Here the portion of representing a use case in

tree form will discussed as it is the part relevant to this research.

A use case is a set of possible scenarios. It is hard to automate such form of use case
hence it is converted into a tree representation. The tree representation of a “Make a

call” use case as discussed in [21] is given in the figure below.

62

(A,S.PickUp)
(S,A.DialTone)
{4,5.Dial_B)
(S.5.StatusB) | \(S.5.StatusB)

(S,A.BusyTone)
(4,S.HangUp)

(S,B.Ring)
(B.S.Pickup)
(S,A.Talk)

(B,S.HangUp) /' \(4,5.HangUp)
(S,A.BusyTone) S,B.BusyTone)
(4,S.HangUp) (B,S.HangUp)

Figure 6.1: Make a call use case represented as a tree [21]

This figure shows tree representation of use case “Make a call” for a basic telephone
system. Each node of this tree represents a message in the form (O;, O;, m) where

message m is sent from object O; to O;,

Using this technique a use case can be represented in a tree form in which each
possible scenario is a path from root to leaf. Author has discussed in [21] that a

sequence diagram can be made for each of these paths.

6.4 Problem Scenario for knowledge ETL from Use Cases:

Output of this research is to device an algorithm to extract knowledge from usecase
documents and store it in the form of a decision tree so that it can be used for

automated decision making.

Different algorithms were studied to store the usecase in a form which is computer
readable but none of them were suitable in a knowledge warehouse perspective. We

have already devised a structure for a knowledge warehouse node which can

63

accommodate executable code and can also store other information required or
decision making. The algorithm designed to load a use case document in this

knowledge warehouse decision tree structure is given below.

6.5 Proposed Algorithm for Knowledge ETL from Use

Cases

Store information like system, use-case ID, usecase name, actors, priority,

stakeholders, goals, relationships, input, output, test cases etc in meta knowledge

Create a root node

Write function of this root node to test precondition

Create a node for failed state
Write code in failed state function to return the status
Set failed node as negative child of root node

For its affirmative child create the rest of tree

For all steps in the scenarios grouped by steps performed by same actor
If group of steps is performed by actor then
Create node for this step and write the code to take input from actor as given

in the steps. Set the negative child node to failed state

Else if group of steps is performed by system then
Create node and write function to perform the task. Set the negative child node to
Failed State

End if

If an alternate and exception flow is available for this step

Create a negative node to accommodate this alternate flow

For all substeps in alternate flows

Create node and write function for substep

64

If action = “RESUME” then
Set child node to the next affirmative node
Else if action = “FAIL” then
Set child node to fail state
End if
End for sub steps
End for all steps

If post conditions exist then

Create a node for post conditions as affirmative child and write function. Set
affirmative child node to accept state

End if

6.6 Case Study for Proposed Use Case ETL Algorithms

Consider the following use case for making a telephone call. In this section it will be

treated as a case study for algorithm validation purpose

Make a Phone Gall
Primary Actors: Calier~ferson making the call
Called-Person recelving the calf
Supporting Actors: Switching Network—Equipment handling calls between telephones
Level: User Goal
Praconditions: Calier’s and Called's phones are on-haok.
Success Guarantee: Switching Network has broken down Gall, and all components
are in the same state they were before call,
Maln Course:
The use case begins when Caller takes phone “off-hook.*
Switching Network sends dial tona.
Caller dials call.
Switching Network transiates dighs.
Switching Network connects call to Catled's phone,
Switching Network sends ring signal to Called's phone and to Caller's receiver
{so that they can hear it ringing).
Called answers phone and talks to Caller,
Called and Caller hang up.

Tha Switching Network breaks down the connection, Logs Billing Information,
and the Use case terminates.

Ll S o o

v EN

Figure 6.2: Use case for making a Phone call [34]

This is a simple use case for making a telephone call. The 2 persons on a telephone
conversation are the primary actors and the switching network is working as a

supporting actor.

65

Noade Tvne: Decision

Decision Function: Check
that the Caller's and
Called’s phones are on-

Affirmative Negative
Child Node | Child Node

The subject usecase when loaded in the knowledge warehouse according to the

proposed algorithm can be graphically represented as follows.

Node Tvne: Fail State

A

Node Tvne: Action

Decision Function: Off-
hook the Caller's Phone
after takina inout from

Affirmative
Child Node

Negative
Child Node

) 4

Decision Function: Report
the user with the error
message describing why
the precondition is not

satisfied
Negative Affirmative
Child: NnuLL | Child: NuLL

Node Tvoe: Fail State

A

Node Tvne: Action

Decision Function: Send

the Dial Tone
Affirmative Negative
Child Node | Child Node

A 4

Decision Function: Report
the user with the error
message describing why
the phone cannot be off-

hooked
Negative Affirmative
Child: NuLL Child: NuLL

Node Tvne: Failed State

l

Node Tvne: Action

Decision Function: take
input from the user for
the number to dial

Affirmative
Child Node

Negative
Child Node

A 4

Decision Function: Report
Error to the user with
specific reason

Affirmative
Child: NuLL

Negative
Child: NuLL

Node Tvoe: Failed State

66

Decision Function: Report
Error to the user with
_specific reason

Affirmative
Child: NuLL

Negative
Child: NULL

(i)

Node Tvne: Action

Decision Function: switching
network translates digits,
connects to called’s phone and
send ring singles to caller's and
called’s phone

Affirmative
Child Node

Negative
Child Node

Node Tvne: Failed State

Decision Function: Report
Error to the user with
specific reason

Node Tvne: Action

Decision Function: take input
from called to answer the
phone and talk to the caller

Affirmative
Child Node

Negative
Child Node

A 4

Negative
Child: NULL

Affirmative
Child: NuLL

Node Tvne: Failed State

A

Node Tvne: Action

Decision Function: take hang-
up information from called’s

- and caller's phone

Affirmative
Child Node

Negative
Child Node

Decision Function; Report
Error to the user with
specific reason

Negative
Child: NULL

Affirmative
Child: NULL

Node Tvne: Failed State

Node Tvne: Action

Decision Function: switching
network break connection and
loa billina information

Affirmative
Child Node

Negative
Child Node

Decision Function: Report
Error to the user with
soecific reason

Affirmative
Child: NuLL

Negative
Child: NuLL

Node Tvne: Failed State

A

Node Tvne: Decision

Decision Function: check the
call in broken and components

are in before call state

Decision Function: Report
Error to the user with
soecific reason

Negative
Child: nuLL

Affirmative
Child: NuLL

Node Tvne: Failed State

Decision Function: Report

Affirmative Negative »{ Error to the user with
Child Node Child Node specific reason
L Negative Affirmative
Node Tvne: Accent State Child: nuLL Child: NuLL

Decision Function; Report

Successful completion Figure 6.3: User case taken as case study

loaded in the knowledge Warehouse
Affirmative

Child: NULL

Negative
Child: NuLL

67

6.7 Implementation of Algorithm

Simulation results of the case study presented in preceding section is shown in the

figure below

i Sviutig Nstowh

‘cuipmert Fanding call: batwesn telephone

pegiive chitd node

1 Locpingthiowgh rain course cf events

Serd daltone

Ol val

trendale digts

conrect b caleds phors

wark | senddinging signal 10 Saler and callads...

| Node srestec for evantid 1 v bs FAIL stale rode

Node reaiac for eventid 1 ailh te FAIL state node

Actor tharged, Close this node

Node reatec fa eventid 2 sih te FAIL state node

Aotor ahariged, Closo thie nodo
iﬁinwirﬂkrgg

Actor changed, Closs this node
;iiilu‘.?mk_ sdatn e

guiainwiawg._.g:ﬂr
gﬁi??i

oﬁﬂsiggo‘ng_o_ﬂszwu

0 Checc caler ard saled tng tene

w.,.m.m,.z_imiaa_aa&
nw,...\m.w. (¥ oF-hok caler phone
,mmu INIF Steta fer Evard id 1
n%u {¥1Send ciaitcne
mmm INIFa State for Even 2
8 %m 163t wamberto dis

m% [N FelState for Evendic 3

m....%_w 3%3!&.\.3&.35

e ¥4 N; FolStats focEvercic 4

Figure 6.4: Simulation result of Use case ETL Algorithm

68

CHAPTER 7

69

7.1 Introduction

Knowledge maps are important knowledge documents and organization use it for
knowledge management purposes. It is a subdivision of knowledge management and
falls in the category of mapping sciences[29]. Use of computer sciences has made
this knowledge management tool more powerful. It is also very good for knowledge
generation as many authors agree that more and more relations are discovered in the

knowledge is formulated in the form of a map[29].

Goal of this work is to extract knowledge from a knowledge map for loading into a
knowledge warehouse. The knowledge warehouse storage structure for this research
is in the form of an object oriented decision tree. The knowledge map technique will
be discussed in the perspective of knowledge stored in the map and on converting it

to a decision tree.
7.2 Literature Review for Knowledge Maps:

Definition:
Knowledge map is defined as visual representation that established a landscape, or
domain, names the most important entities that exist within that domain and

simultaneously places them within two or more relationships.[29].

Knowledge maps in defined in [26] as a union of three object. K = U {S, G, T}

where

1. S stands for support and represents a domain of plane or space. This plane
can be in the form of any geometric shape. It can be in 2-D or 3-D. its
boundaries may be marked or unmarked.

2. Graphics G is a part of mathematical theory of graphs which deals with the
properties of shape and their geometrical formations.

3. T stands for Text and represents the text chains or alphanumeric characters

attached to graphics G.

70

Where S is for Support and describes the domain of plane or space, G is for Graphics
and represents the set of plane r geometrical objects and T is for Text and describes a

set of alphanumeric signs.

Advantages of knowledge map

Knowledge map is an effective knowledge management tool due to the following

reasons [31]

1. It is not a knowledge set but a guide. It is not the knowledge but tells the
origin of knowledge.

2. As it only stores the information about source of knowledge so it is a
powerful tool for tacit knowledge in some person’s memory.

3. It can not only point to the sources of tacit knowledge but also relations

between knowledge sources.

Knowledge mapping includes identifying, collecting, reviewing, validating, storing
and sharing knowledge and information. Just like a geographical map it guides user
to help him locate required knowledge which can be in tacit or explicit form [29].

Knowledge map is mainly provides the assistance to easily and effectively locate

knowledge.

Types of Knowledge maps

1. Hierarchical or Radial Structure Maps, Concept Maps and Mind Maps

These maps organize knowledge in network or hierarchies of concepts just like the
functioning of human brain. They provide a model for hierarchical structure from top
level to bottom. The mapping process starts with a central concept in the middle and

grows towards more specific topics.[29]

2. Casual maps

This type of knowledge map is also known as concept map, mind maps or manual
knowledge maps.[28] This is a technique in which strategic thinking and acting are
connected to make sense of complex problems [29]. These maps are in the form of

graphs in which nodes represent the concepts that are linked through edges.
| 71

These maps try to codify the cause and effect knowledge[29] which is very helpful in
business decisions just like something happens after some other thing has
happened.[29]

An example of casual map of environmental forces and characteristics of technology

taken from [29] is given below

Yechnology characteristics

Figure 7.1: causal map of environmental forces and characteristics of a technology [29]

As a use case example taken from [28], consider a research conducted for automatic
generation of a hierarchical knowledge map based on online Chinese news
specifically for finance and health news. This map can highlight the current major
news topics and relationships between them by showing concepts as blocks and

connecting these blocks with lines to show a relationship between concepts. .

72

Figure 7.2: knowledge map visualization for a news map [28]

3. Knowledge source maps
Knowledge source maps focus on expertise in the organization. They guide to
locate experts of a specific domain. An example of knowledge source map is given

below.

73

Graphis z’m’matmn

DOSIQN .o e
v < TR LS P m—-—;«m«x»&— . .
f:‘.”;‘:"‘w"."*‘? Py

,
M . S
(8] ot
it a Y o e s . b 0
$ £

My

“'.:f:}a‘a.»www\ .. Qgﬁign ‘
| Weetm ,
PR .
< "U]l"ct) N

Management

Figu;é 7‘.1‘3: Knowledge source map [29]

4. Knowledge flow maps

These maps show the step by step process of domg somethmg in phases. An
example is given in the ﬁgure below [29]

FigmuMPmuuﬂwndhcﬂe@eﬂowmp
Figure 7.4: process flow and knowledge flow map [29]

74

5. Subject Hierarchy Maps

This knowledge map contains an alphabetical list of topics organized in groups and
subgroups to form a hierarchy. This map misses a graphical representation but it is an
effective way for classification of information. Telephone directories and yellow

pages are examples of this type of knowledge map [28].

These are just some examples of knowledge maps but as we go deep in knowledge
maps and study knowledge maps developed for different uses it reveals that
knowledge maps can be of many other forms. Lets discuss some use cases to discover

more about knowledge maps implementations.

7.3 Problem Scenario for Knowledge ETL Algorithm from
Knowledge Maps

The goal of this research is to device an algorithm to extract knowledge from a
knowledge map and load it in a knowledge warehouse. As discussed earlier
knowledge maps can be of many different types. All have different data and represent
knowledge differently.

The knowledge map format followed for this research is given by Chain Zins in [24].
He proposed a knowledge map for information sciences in which all the fields of
information sciences were categorized with examples in a knowledge map. The map

presented by him is given in the figure below.

75 -

Domain [u:::cu(m

Seb-Catiegocis
(2% divison)

SubCrlepories 7 Exsenpies & Exglmsbcs™®

{3 divisioa}

1. Foundations

BpAMOI-LP W
ABUSLICPPY .00 Wpapmory

Theoty

A. Conceplivns
B. Disciplines (e. * Asthiopology te. 3. *culiers”), Aria

"raodia”, "essige®), Compuler soiennt (v.:. "oompuler
Innguage”), B;nmm(a g.. Tafonuagon emmlcs’ %
[Education (o8-, "lcoming”), Bogineeriag (2.
“iaformation tocknelogy™), Hisety (o . "prlmy
sowoe”, “econdary sourcos”, "iertinry sowroe”), Law (e.p:
"ute Nectual property®, “copyright™, Linguistios (e.g..
“loaguage"s, Philoscphy (Episieology (a.p-

Ebhics {e.g.. "isformation ethios®,

"knowladge”), ;

"professional ethics*), Politisl Soienca 3.

" ") Przchology (e.g.. "cognition™), Resech
Mabhwdolgy (o5 “oval watios”, “resaarch”, “reseach
moth adology "), Semlatics(e.2, *sixa™, Soclology (*0.8,
"society”)

C. Thearies

Thearyof S

A. Theoretieal
B, Esnplrical
1. Qun titstive

Rosaareh
Mathodology

1 tative
ﬁﬂ%ﬁlﬁm sxd 1o profinsional minhg;
theomuticsl tmladpud proctical knowlkdge.

US Edwcation.

Historical of e ficld

Tstory of 3

1 Resources

quality i aformation {resounces), information (resoawces)
bty

%lry resources (.e., the human orl giamors),
warordory resurces, berkioy resources

nfonvation Quality]
Informetion

Sysienss

g 3 Knowledpe
Workers

. FervonaBiy Tralis
B Thearetical knewledge

Types

Taxeacanies of poofessional. workes by flekds of
axpertise (o.g.. madical infamatics), and orgeni zatkonal
soetor (@.9. librarions, archivi

4. Contents

L. Applied knex edge and practice |

Information
Ethics
LIS Bdecation

Conbent winted issues (e.g., What isa
Taxonaies of siructwras (.8, knowladge maps, subject
elaxsificatiows schomes, thesami), chasification systenm
8. LCC, DDC, UDC, CC, BC), sabjoets (1o,

Archeology, blology. Compuer Science) andthe ¥ke.

5. Applieations:

Issuos relted to the development of apptcation orested
Sysiems

Taxoeamy of applications (e g., (afrmation) sarching,
shopping. secinlizatlon and socializing).

&. Operations

Issues relsted to the various operations and processes
involved is mediating ks keowledie.

T iy -of oas and p documen s tion.
Iqwmnllol. orcmluhn. M dlnninlhn.
plbicihm.

E & Processes
: H

7. Texhnalozies

™ o
ehectronic-basad technologias (#.8., comprater-based
infrmation sysweras. Jutenel), papor-based and printing-
basad t2 chizologles (01g., bodks), communicn lon-based
tachnologlas andmedla (g, cellular phones, MP3).

sfipapuouy paseq-pafqng

8. Envlronmenis

Social issues (a5, Infrmation palicy, informution
sooorsiblliy), incl uding ethaie v d culiural lssucs,
profersional kxsses wlsedtothe sattings. a1 wallzn lega)
Issue s {e.g.. Intellectual property; privacy’); oed ethical.
ixsues (@.k., privacy vs. publieistetosts).

AL Eihudc & Cnltural envirosments
B, Settings (3.5, Education, Haalth)

(Spmony o mkmmmuxudn Sogrpeuaq ‘v) rowouAgI pa oKk g 0o-Bpapmomy

LR P sy,
naw

9. Organizations

Information
Bikics
Socisl Infrnutics

Issues reluted o ihe weganizational seitings (o.g..
managing knowladge in tusiness organizationsy

A, Ovgmaizational Type:
1. Gevernomanad Sectar
2. Palilic vector
3, Privaie sector

B Fanctions! fype
L Munory sspanizations
2. Informatien services

10. Users

User welited isswes (0.g., user inforvea tiow sewds, user

Trpes

behavior, user search dinbgsion)

A Individugls

B. Groups awl Commanitie
1. Gender-baved
2 A
3. Caliwre X ethi

4. Newd & knterest haned (2.3, division by profession)

‘Usar Stwudies
Bohavior

% The words in bold arc categores. ** The other s are exemplasy terms (entrics).

Figure 7.5: Knowledge map of information science [24]

76

7.4 Proposed Algorithm for knowledge ETL from
Knowledge Maps

Given below is the algorithm proposed for knowledge ETL operations from
Knowledge Maps. This algorithm will transform the in Knowledge map into the
proposed storage structure for loading into the knowledge warehouse.

A knowledge map can be in many different forms as discussed in the literature
review section. This algorithm is only for the Chaim Zins format of hierarchical

knowledge maps.

Proposed Algorithm
Create Root node in the forest for this knowledge map
Write decision function to check /Return the type of knowledge map stored in
the tree.
For all categories at top most level
Create Node (Category Text, Root Node)

Next category

//Comment: this function Create Node will take the category and its parent
node and will be called recursively for all the sub-categories to form a
tree. Recursion is used as the number of levels is unknown

Create Node (Category, Parent Node)

Create a child node
Set parent of this child node to Parent Node
If it is a category node
Set node type to “Category”
Wﬁte decision function to return the category details

For all subcategories in this category

77

Create Node (Subcategory, Child Node)
Next sub category
Else
Set node type to “Description”
Write decision function to return the node description

End if

End function
Limitations of the proposed algorithm

e There are many formats for a knowledge map but this algorithm is for Chaim
Zins format of knowledge maps which describes fields in the form of
hierarchy of categories and sub-categories.

e There will be a separate tree in the forest for each knowledge map

e The decision tree for knowledge maps will not be a binary tree

7.5 Case study of proposed knowledge ETL algorithm for

Knowledge Maps
Another knowledge map developed by Chaim Zins is chosen for case study of this

algorithm. The map is about human knowledge and it categorizes different areas of

human knowledge in a hierarchical form.

Title of this knowledge map is “10 Pillars of Knowledge” and it is a systematic map
of human knowledge [35]. In this map the structure of knowledge and the meaningful
relations among the main fields of human knowledge are shown in the form of a chart.
According to this map, human knowledge is composed of the following 10 pillars, 1)
Foundations, 2) Supernatural, 3) Matter and Energy, 4) Space and earth, 5) non-
human organisms, 6) Body and Mind, 7) Society, 8) Thought and Art, 9) Technology,
10) History. The knowledge map is given in the figure below

78

5 Errpwn OF KNOWLEDGE

MAP OF HUMAN KNOWLIDGE

LORQUNTIRTIONS SUPERMATUPAL MATTER & ENTLRGY SPACE & EARTY

et . , ;
” n»f.-..«a.& onr SLIRFRIGATLIFAL Dl TVEXS L

fras e s 1 e e

b g s e e A

el R i bt baioorelon B lysideripinid
pisb By Rl St asbotani s Ty i
e NI ITE

Bt g5 Beyrirusaons - Cotists W - Xrbuner 8 pabo,
geep AP Sl g A

BODY L MIND SO THOUSGHT A ART

1. T hwren
e vmrymd ot o
Uit
2.3cctery enizme
1 9marst

T Healih A Rdlang
et wttad

3. Haak S Woitimimy
Piesiie b
ey
o
s s
potnin
Clomiiricy
&=
e
Dncapwind T
ke aiand
Aon
i
puseinn
fnetondy
e Scrmpein ok o Wk e
Pluincirias
oot

oy

Mt o
. Socta Grvape

Awader
ane Rrtoe

HUBEANS

e Thbw) | Edemai e boei (e L T a0 ey st @ sl o 4 L o

vt EE R B T o s gt il £t o Pr!:!.:
ilis.r!.iutlslw'.i SpWptestet

o i by i b e K 2o N g M
PEm X o Eie om0 Mo Barmeh K £ n e . 6 Sy ek dwwh A BTN AT M

"
&
[]
o0
=]
2
3
g
m
v
Yt
(=}
g
p
~
[2]
&
o

Node Tvoe: Root

Node Tvoe: Failed State

Umn_m_o: ."csneo:. vm;o:: n:mnr that the _Soimaum 3%

required is map of human knowledge by the name "10 Pillars o* :n.ma to parse this tree -
Yomrednda ol e d tar caleam f b cat e BhL dial ol femad b Ll B N
. Zmnm».sm Affirmative
9_5 zc_._. < Child: NULL -

v

v

#u 3

Node Tvpe: Cateaorv

Node Tvoe: Cateaory..

'Node Tvpe: Cateaorv

Decision Function: Check and retumn that
the field lies in the category of “Humans”

Decision Function: Check and return that
the field lies in the category of "Universe”

o

" Decision Function: Check and retum that

_ the field lies in the category of

; v
" v v
' - P
m Node Tvoe: Cateaorv Node Tvoe: Cateaorv..
L] n = B
« Decision Function: Check and return that Decision Function: Check and retum that -
the field lies in the category of “Matter and the field lies in the 8»3,02 of .mmwnﬂm‘mwn.,

v

S DL T

v

Node Tvoe: Cateaorv

zomm Tvoe: nm*moa?

Decision Function: Check and retumn that
the field fies in the category of “Theory”

Decision _n::nao:. Q_mnr mzm retumn 3&
the field lies i 5 the S»mmoQ of _ussen_ﬂ

)

v

A

A

?arﬁal Khowledge’ map loaded ih'Wérehbuéé

 Figure 7.7;

Node Tvoe: Description

Node Tvpe: Descrintion

. Node Tvoe: Description

Decision Function: Return details of
Philosophy of physics

Decision Function: Retum details of
Philosophy of space and time

Dmmmmmo: Function: Retumn mmﬁ,_m o:u:ua_nu

w.,_ Decision Function: Return details of
Philosophy of Chemistry

CHAPTER 8

82

8.1 Introduction

Scripts are used for representing procedural knowledge. It represents knowledge as a
sequence of events. They were developed by Roger C. Schank and Robert P.
Abelson.[18] schank started working on it in 1968 during a study for Artificial
intelligence applications. Scripts are playing a vital role in natural language
processing. Schank and Abelson used it for a very difficult problem in artificial

intelligence which is story understanding [18].

Winston defined a script in 1992 as follows “a script is a remembered precedent,
consisting of tightly coupled, expectation-suggesting primitive action and state change
frames”. In 1998 Luger and Stubblefield defined a script as “a script is a structured

representation describing a stereotyped sequence of events in a particular context”

8.2 Literature Review

Schank Theory

To automate the language understanding, schank came up with the idea that all
conceptualizations can be represented in terms of small number of primitive acts that
are performed by actors or objects. For example the concept “john read a book” can
be represented as “john MTRANS (information) to LTM from book”. Here MTRANS

is a primitive act used for mental transfer.

Principles of Schank Theory

The basic principles of schank theory of scripts are as follows

1. Conceptualization is defined as an act or doing something to an object in a
direction

2. All conceptualizations can be analyzed in terms of a small number of primitive
acts

3. All memory is episodic and organized in terms of scripts

4. Scripts allow individuals to make inferences and hence understand
verbal\written discourse.

5. High level expectations are created by goals and plans

83

Fundamental properties of scripts

To represent natural language stories in form of a script, the script generated must

have the following fundamental properties to describe the meanings completely.

e There must be a lexical part for representation’s vocabulary. It will determine
which symbols are being used.

e There must be some constraints on how to arrange these symbols to represent
a sentence. This is called the structural part.

e A procedural part that specifies access procedures that enable you to create
descriptions, modify them, and to answer questions using them.

* A semantic part that establishes a way to associate meaning with the

description.

Properties of a good representation

Following are some basic properties of a good representation of a natural language

script.

e You must be able to see what is going on in the script at a glance. The
important objects and relations are made explicit.

e They show the natural constraints between objects. You can clearly express
how one object or relation is influencing the other

e They bring objects and relations together. Complete sentence is represented
together and you can see it in one glance.

e Irrelevant details are suppressed. Rarely used details are kept aside but are
retrievable when required.

e Transparency. You can understand what is being said

e Completeness. You can say all that needs to be said

e Concise. You can say efficiently all you need to say

e Fast. Information can be stored and retrieved rapidly

e Computable. They can be created with an existing procedure

84

Parts of a Script

A script consists of an entry condition, popes, roles, tracks and scenes. Entry
condition must be satisfied before invoking the script. Props are the objects used in
script. Roles are the people involved in a script. Results are the situations occurring
after the completion of script. Tracks are the variations that might occur in a script

and scenes describe the actual sequence of events in a script [1].

A set of primitive actions has been devised to represent actions in the form of a script.

These actions are discussed in the section below.

Primitivé actions in a Script

schank developed a concept a primitive actions to describe the natural languages. He
used these primitive actions as a building blocks out of which the meanings of
different language elements are constructed. He formalized a set of 12 primitive

actions and described a sentence in an actor-action-object framework.

A brief description of these primitive actions as described by Schank in [17] is given

as under

ATRANS : This action is used to transfer an abstract relationship such as possession,
ownership or control. For example “give” is an ATRAN from an actor to a recipient

and “take” is an ATRAN from someone to the actor.

PTRANS: This action describes the transfer of a physical location. It requires an
actor, object and a direction for example the word “Go™ is a PTRAN of an actor by an

actor to a location

PROPEL: Describes the application of a physical force to an object. For example
“Push” can be described as PROPEL of an object in a direction by an actor

MTRANS: Is used to describe actions like see, tell, read, forget etc. it describes the

transfer of information inside an actor, inside the memory.

85

MBUILD: Describes the construction of new information from old information inside

an actor. It is used to describe words like describe, imagine, answer, consider etc.

INGEST: Is used for taking an abject by an animal inside himself for example
smoking, breathing, eating etc.

GRASP: This is used to grasp an object

ATTEsz It is used to focﬁs a sense organ on an object
SPEAK: To make a noise

MOVE: To move a body part

EXPEL: To push something out the body

PLAN: To decide on a step by step course of action

A script by Schank and Abelson given in 1977 to represent the procedural knowledge

of a restaurant is given as under

86

W ptransW 1o §

(go back to *) or

C mirans Yoo F"' o W
W mirans *“no F' t0 §

(go to Scens 4 x vo pay

Props: Tables Roles: § ~Customer | Preconditions: Sis hungry | Results: S has less money
Menu W - Whaiter $ has money O has more money
F - Food € ~Cook $ is not hungry
Check M - Cashier S is pleased (optional)
money Q - Qwner
Scene 1: enteang Scene % oRkering
S perans S 10 inside restaurant { | (mena on table) (Wbmgsmu) (S asks for menu)
S antend eyes to tables S ptrans mean o S S mtrans signal 10 W
S mbuild where to 3it W prans W 1o table
S ptrans S 10 table S merans “‘need menu'* 1o W
S move § to sitting position W ptrans W to menu
W ptrans W so table
W atrans meny to §
S mutrans food list to CP(S)
/—) * S mbuild choice of F
S murans signal 10 W
W pirans W 1o table

S mirans “L want F”> o W

W ptrans W 10 C
W mirans (airans F) to C

\

C do (prepare F script)
fo scene 3

.

Scene 3: eating
CarransF o W
WamransFio S
S ingest B
(optionally return w0
Scene 2 to order more;
otherwise 10 10 Scene 4)

A

S st ‘f‘T"
Scene 4: efi

3

{no pay path): S prrans S (o outside restaurant

S mirans “W atrans check 10 S** 1o W

W move {write check)
W prans W io S

W atrans check t0 §
Satrans tip o W
SpransS1o M

$ atrans money 1o M

Figure 1 Rmnumtscﬂpthom.%mk&Abdmn (1917

 Figure 8.1: Restaurant script from schank & Abelson (1977) [15]

87

8.3 Proposed Algorithm for knowledge ETL operations
from Scripts

Next Node:

Create a root node for pre-conditions and write the code to test

preconditions

As its negative child node, create a fail state to abort from the system

Start at entry point of scene 1

Create a child node

Write code to perform the actions described in the script. If the action is
performed by System then write the code to perform that action and if
the action is perform by the some actor write code to take input from he
actor or else as suitable according to the script and knowledge

warehouse purpose.

If any conditions are encountered, write the code to evaluate these

conditions and create child notes accordingly

Go to “Next Node” if one of the following conditions is true

1. there is an outgoing arrow

2. role changes from system to external actor or from external actor to
system

3. scene changes

4. there is a label with the statement

5. there is a condition

If last scene ends and there is no arrow out then create a node to perform

actions in the results and set decision variables accordingly

88

8.4 Case Study for proposed knowledge ETL algorithm

for Scripts

This section will consider the script in figure 9.1 as a case study for the algorithm.

graphical representation of the output of the algorithm which is in the form

proposed knowledge warehouse storage structure is given in the figure below

Node Tvne: Decision

A
of

Decision Function: Check that Customer)
Node Tvne: Failed State

is hungry and customer has money

Decision Function: Report

~ Affirmative Child Error to the user with

Negative Child

Node Node . .
specific reason
Y N ti Affi ti
. egative irmative
Node Tvne: Action Child: NuiL | Child: NULL

Decision Function: write code to take the
customer inside the restaurant, look for an
empty table and analyze where to sit and

after that sit on the chair

Node Tvne: Failed State

v

Node Tvne: Decision

Decision Function: Report
Error to the user with
specific reason

Decision Function: Check menu location

P and set decision variable accordingly Negative Affirmative
Affirmative Child Negative Child » Child:NuLL | Child: NuLL
Node Node
v

:

Node Tvne: Action

Decision Function:
if menu was on the
table, customer
picks the menu

®

A

A

Node Tvne: Action

Node Tvne: Action

Decision Function:
if waiter was menu
then waiter comes
to table and gives
mann tn ructnmer

Decision Function:
if customer asks for
menu then
customer singles
waiter, waiter
comes to table,
customer asks for
menu and waiter
gives menu to

marbAamanr

[Z

89

ONO

Noade Tvne: Action Node Tvne: Action

Decision Function: Decision Function:

customer thinks waiter moves to
over the food list in the table and gives
menu menu to customer
\ N
Node Tvne: Action
Node Tvne: Decision Node Tvne: Action

Decision Function:

Decision Function: Cook has Decision Function: Customer chosea | 2

the Food demanded by the waiter goes to the [food, signal the
Customer? cook and tells'him waiter, waiter comes

Affirmative Negative the food choices to the table.

Child Node Child Node Customer gives

choices of food to

Al

Node Tvne: Action

Nade Tvne: Decision
Decision Function: Cook tells the T -
waiter that the required food is »| Pecision Function: Customer
not available. Waiter goes to the wants to change his choice?
customer and informs him.
v Negative Affirmative
Node Tvne: Action Child Node Child Node
Decision Function: Cook \

L g

prepares the food

Node Tvne: Action

Decision Function: cook gives
food to waiter, waiter takes food
y to customer and customer eats
Node Tvne: Decision the food

Decision Function: Customer -
wants to order more food? Node Tvne: Action

Decision Function: customer asks
for check, waiter makes the
check, comes to customer.

Customer gives tip to waiter.
Customer goes to cashier and

~titmm mmmmars b maalkias

Affirmative Negative
Child Node Child Node

A 4

A

y

Node Tvne: Action

Decision Function: customer
goes out of the restaurant

Figure 8.2: Graphical representation of Restaurant script after import in Knowledge
warehouse

90

CHAPTER9

91

9.1 Introduction to the Outcome of the Thesis

The main focus of research was to take work of nemati and dymond one step further
in the field on ETL operations for a knowledge warehouse. the conceptual level
framework of a knowledge warehouse and basics of how a knowledge warehouse will

function were provided in these research articles.

The work done by nemati and dymond was only a conceptual level work and needs to
be refined in focusing on specific areas. This research took the area of ETL operation
for a knowledge warehouse and explored it deeper in light of some other research

works done on ETL operations for a data warehouse.

The outcome of this research is an ETL framework for knowledge warehouse. it is a
comprehensive design focusing on most of the areas of a knowledge warehouse ETL

operations.

Structure of a typical node fof a knowledge warehouse is also proposed. The basic
idea of using a decision tree for knowledge warehouse is proposed by dymond in [2]
in a brief way. The node structure was for a knowledge warehouse tree is proposed in

this research

Furthermore this research explores the ETL operation of a knowledge warehouse even
deeper by proposing knowledge ETL algorithms for 5 types of knowledge documents

i.e. decision trees, decision tables, use cases, knowledge maps and scripts.

In brief, this research has explored the area the knowledge ETL in great detail starting
from the most abstract in the form of framework and going to the very root level by

proposing algorithm for specific knowledge documents.

9.2 Achievements

This research has achieved a lot in its specific area of knowledge ETL from

knowledge documents. the achievements of this research are summarized below

92

1. Knowledge ETL framework:

Although the idea of knowledge warehouse and its advantages were discussed by
many authors but the area of ETL operations for a knowledge warehouse was
available for a deep research. This research work has proposed a framework for
knowledge warehouse ETL operations which can serve a guideline for next researches
to come in this specific area. The framework proposed in quite comprehensive as it

caters most of the basic needs of ETL operations. Furthermore it is simple.

Knowledge ETL algorithms from specific knowledge sources was also a requirement
for this research. This fact required a much deep knowledge of the ETL operation
very close to the implementation level. The subject extra research identified many

issues that were helpful to improve the framework design.

2. Node Structure for knowledge warehouse decision tree

Almost all the researchers working on knowledge warehouse agreed that the structure
of a knowledge warehouse needs to be object oriented. While designing algorithms
for this research it was revealed that there is a need to propose a node structure for a
knowledge warehouse as this area is yet to be touched in the research. It was also a
basic requirement for designing algorithms. Hence a node structure for a knowledge
warchouse decision tree is also proposed in this research. This structure is very
comprehensive and touches all the traversal, storage and execution requirements of

the decision making at node level.

3. Knowledge ETL algorithms from decision trees, decision tables, use cases,
knowledge maps and scripts

This research has gone to the root level of knowledge ETL operations for a
knowledge warehouse by proposing 5 algorithms from five different types of

knowledge documents.

Some algorithms are very specific that even touch the storage of individual elements
in the proposed node structure while some algorithms are proposed at abstract level

due to diversity in standards of that specific knowledge document.

93

9.3 Improvements/ Enhancements

A basic structure of a decision tree for a knowledge warehouse is proposed in article
of Dymond referenced at [2]. Dymond has proposed a simple structure for a node of a
decision tree with a decision variable and a decision function. This node structure is

improved\enhanced in this research and a more detailed node structure is proposed.

9.4 Future Work and Recommendations

For this research the recommendations of Nemati and Dymond were followed which
suggest that a binary decision tree may be used for storage structure of a knowledge
warehouse. During the research it was revealed that a directed graph can be a better

option for knowledge warehouse structure.

It was revealed that there is a need to merge knowledge extracted from different
sources even from same types of knowledge document for the same purpose. For
example there may be 2 different decision trees from different authors for making the
same decision. We need to merge all such documents into one structure. Sometimes
the rigid structure of a binary decision tree causes difficulties to manage such

merging.

In future it is recommended that a directed graph may be used instead of a binary tree.
Structure of a directed graph is much more flexible and can be helpful in the tedious
and complex task of knowledge ETL.

It is proposed that we can make a “FAILED” and “ACCEPT” states in the graph and

all the decisions will end in one of these states.
Furthermore it is proposed that a lookup table can be used as an index for any

decision making. Each entry in this table will point to the starting node of the directed
graph for that specific decision.

94

The final structure of a knowledge warehouse will look like the figure below.

Decision Starting Nodes for
this decision

Decision 1 Pointers to starting
nodes

Decision 2 Pointers to starting
nodes

Decision 3 Pointers to starting
nodes

(Table to point to the starting
nodes in the directed graph for
the specific decision)

(Directed graph
containing all the
decision nodes)

Figure 9.1: knowledge warehouse storage structure in the form of directed graph

Each of the modules in the proposed knowledge ETL framework is a separate topic

for future researches.

9.5 Summary of the thesis

The work done in this research is a humble contribution in the field of knowledge
ETL for a knowledge warehouse. This work is a mixture of abstract level work and
specific in depth work as it touches different areas of the Knowledge ETL process. It
proposes frameworks at the abstract level and gets very specific when proposing node
structure for a knowledge warehouse and deriving algorithms for knowledge

documents.

The research focuses on the area of Knowledge extraction, transformation and loading
for a knowledge warehouse. It proposes a comprehensive framework for the
knowledge ETL process which has the ability to handle all type knowledge sources

and perform the transformations to import them in the knowledge warehouse.

95

The thesis also encompasses the area of physical storage of a knowledge warehouse
by proposing a storage structure and a tree node structure for the knowledge

warehouse.

The thesis further goes in detail to the level of proposing algorithms for five
knowledge documents and discusses case studies for each algorithm to show how the
algorithms will load the knowledge extracted from these knowledge documents and
transform them into the proposed knowledge storage structure. The five knowledge
documents for this thesis are Decision Trees, Decision Tables, Use Cases, Knowledge

Maps and scripts.

On the whole this research has contributed to the domain and also opens new avenues

for research.

96

References

[1] Efraim Turban, Jay E. Aronson, “Decision Support Systems and intelligent
systems”, 6™ edition, Prentice Hall of India, 2004

[2] Anthony Dymond, “The Knowledge warehouse: The next step beyond the data
warehouse” Proceedings of the 27th annual SAS Users Group International
Conference (SUGI 27), Orlando, Florida, 14-17 April 2002.

[3] Stephen Golrlay, “Tacit knowledge, tacit knowing or behaving” Kingston business
school, Kingston upon thames, United Kingdom, 2002.

[4] J'er"ome Darmont, Omar Boussa id, Jean-Christian Ralaivao and Kamel Aouiche,
“An Architecture Framework For Complex Data Warehouses”,
arXiv:0707.1534v1, France, 2007

[5]: Hamid R. Nemati, David M. Steiger, Lakshmi S. Iyer , Richard T. Herschel,
“Knowledge warehouse: an architectural integration of knowledge management,

decision support, artificial intelligence and data warehousing” , Decision Support
Systems 33(2002)143-161

[6] www.wikipedia.org Accessed on 10-Feb-09

[7] Alex Spokoiny and Yuval Shahar, “4 Knowledge-Based Time-Oriented Active
Database Approach for Intelligent Abstraction, Querying and Continuous
Monitoring of Clinical Data“, Proceedings of the 11th World Congress on
Medical Informatics MEDINFO 2004, M. Fieschi et al. (Eds), Amsterdam: ,2004.

[8] Panos Vassiliadis Alkis Simitsis Spiros Skiadopoulos, “Conceptual Modeling for
ETL Processes”, ACM, 1-58113-590-4/02/0011, Virginia, USA., 2002

[9] Jinxin Lin, “Integration of weighted knowledge bases ”, Toronto, Ont., Canada
MSS 1A4, Artificial Intelligence 83 (1996) 363-378, 1996

97

[10] Michael Yacci, “The Knowledge Warehouse: Reusing Knowledge
Components“,14623(716) 475-5416.

[11] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, Manolis Terrovitis, “A

Framework for the Design of ETL Scenarios”, Grece
[12] Panos Vassiliadis, Alkis Simitsis, Panos Georgantas, Manolis Terovitis, Spiros

Skiadopoulos, “4 Generaic and Customizable Framework For the Design of

ETL Scenarios

[13] Opim Salim Sitompul and Shahrul Azman Noah, “4 Transformation-oriented
Methodology to Knowledge-based Conceptual Data Warehouse Design” Journal
of Computer Science 2 (5): 460-465, 2006, ISSN 1549-36360©, 2006

[14] Thomas Meyer and Kevin Lee, “Knowledge Integration for Description Logics”

[15] Roger C. Schank, “Script Theory”. http://tip.psychology.org/schank. html

[16] Roger C. Schank, “Inside Computer Understanding”

[17] Roger C. Schank, “The primitive ACTs of conceptual dependency”

[18] www.wikipedia .com accessed in June 2009

[19] G. Ganapathy and V. Rajaraman, “Information theory applied to the conversion
of decision table to computer program”, ACM Volume 16, September 1973

[20] Debasish Kundu, Debasis Samanta, “An Approach for Assessment of Reliability

of the System Using UseCase Model” 10th international conference on
information technology, 0-7695-3068-0/07, IEEE, 2007

98

[21] Aziz Salah, “A use case driven synthesis of state diagram” Eighth Maghrebian

conference on software engineering and artificial intelligence.

[22] Roger S. Pressman, “Sofiware Engineering, A practitioner’s Approach”, 4th
edition, ISBN 0—7-114603-2, Mc Graw-Hill international edition

[23] www.wikipedia.org accessed on 24th march 2009

[24] Chaim Zins, “Knowledge Map of Information Science” Journal of the American
society of information science and technology, 58(4):526-535, 2007

[25] Mhein An Le Khac, Lamine M. Aouad and M-Tahar Kechadi, “districuted
knowledge map for mining data on grid plateforms”, IJJCSNS international
journal of computer science and network security, Vol 7. No. 10, October 2007

[26] J. Havlicek, 1. Ticha, “matrices in knowledge maps™, scientia agriculture
bohemica, 39, special issue, 111-116, 2008

[27] Nhein-An Le-Khac, Lamine Aouad, M-Tahar Kechadi, “knowledge map: toward
a new approach supporting the knowledge management in distributed data

mining”, Ireland.

[28] thian-Huat ong, hsinchun chen, wai-ki sung, bin zhu. “newsmap: a knowledge

map for online news”, decision support systems 39(2005) 538-597, Elsevier.

[29] Reza saheban, “knowledge map: Do organizations take advantage of knowledge
map?” , Jonkoping 03 2006.

[30] Milan houska, martina berankova, “specific type of knowledge map:
mathematical model”, kamycka 129, 16521, Prague 6.

99

[31] lei hong-zhen, zhao peng, zhang me-ling, “study on the model of knowledge map
based on concept clustering”, china-USA business review, ISSN1537-
1514,USA, volume 7, No. 2, Serial no 56, Feb 2008

[32] LK. Sethi and B. Chatterjee, “Conversion of decision tables to efficient
sequential testing procedures”, ACM volume 23, May 1980

[33] Jeffrey A. Hoffer, Joey F. George, Joseph S. Valacich, “Modern System and
Designs”, 4™ edition, Prentice Hall, 2005

[34] Steve Adolph, Paul Bramble, Alistair Cockburn, Andy Pols, “Patterns for
effective Usecases, the agile software development series”, ISBN : 0201721848,
9780201721843, Addison-Wesley, 2002

[35] Chaim Zins, success.co.il/knowledge/index.html , accessed on 28" Aug, 2009.

[36] Bernard M. E. Moret, “Decision Trees and Diagrams®, ACM 0010-
4892/82/1200-0593, Computing Surveys, Vol. 14, No. 4, December 1982

[37] Juhana Salim, Yarina Yahya, Mohd Shahizan Othman, Nurul Rafidza Mohd
Rashid, “The Use of Holistic Approach to Knowledge Management Initiative in
Managing Information in Higher Learning Institution: A Perspective” 6th
WSEAS International Conference on E-ACTIVITIES, Tenerife, Spain,
December 14-16, 2007.

[38] Ala’a H. AL-Hamami, Soukaena Hssan Hashem “An Approach for Facilating
Knowledge Data Warehouse”, International Journal of Soft Computing
Applications, ISSN 1453-2277 Issue 4 (2009), pp.35-40

[39] Ching-Long Yeh and Jia-Yang Chen “Building Knowledge Warehouse for

Managing the Metadata Layer of the Semantic Web”, Department of Computer

Science and Engineering, Tatung University, Taipei, Taiwan

100

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Azra Shamim, Hameed Hussain, Maqbool Uddin Shaikh, “4 Framework for
Generation of Rules from Decision Tree and Decision Table”, International
Conference on Information and Emerging Technologies (ICIET) 2010, 6th-9th
June 2010, Foundation for Advancement of Science and Technology (FAST),
Karachi.

Galhardas H, (2009) “ETL (Extract-Transform-Load)",

https://dspace.ist.utl.pt/bitstream/2295/294968/1/licao 6.pdf accessed on 20-05-
2010

Omer Akgobek , Yavuz Selim Aydin , Ercan ztemel , Mehmet Sabih Aksoy.
"’A new algorithm for automatic knowledge acquisition in inductive learning’’,
Knowledge-Based System , 19 :388-395(2006)

Tasleem uddin, “Knowledge Warehouse Framework: A new direction towards
decision support system for executive management’® Thesis Report,
International Islamic University Islamabad,
http://misqe.org/ojs2/index.php/misqe/author/index/completed (2008)

Xixu Fu, Hui Wei, ¢° Cognition Inspired Object Oriented Knowledge
Warehouse Architecture’’, Journal Of Sofiware, Vol 5, No 9 (2010)

Marcos Zuniga, Francois Bremond, Monique Thonnat, *’Incremental Video
Event Learning’’, Springer-Verlag Berlin Heidelberg 2009 , ICVS2009, LNCS
5815, pp 403-414, 2009

Mohammad Rifaie, Erwin J. Blas, Abdel Rahman M. Muhsen, Terrance T. H.
Mdk, Keivan Kianmehr, Reda Alhajj, Mick J. Ridley, “Data warehouse
Architecture for GIS Applications”, In Proceedings of the 10th International ~
Conference on Information Integration and Web-based Applications & Services
(11WAS '08) , November 2008, Linz, Austria

101

[47]

[48]

[49]

[50]

[51]

Riiwana Irfan ,Dr.Maqbool uddin Shaikh, ‘'Enhance Knowledge Management
Process for Group Decision Making’’, International Conference on Computer
Engineering and Applications (ICCEA) 2010, Bali Island, Indonesia, 19-21
March, 2010, pp 66 — 70

Debasish Kundu, Debasis Samanta, ‘’An Approach for Assessment of
Reliability of the System Using UseCase Model’’, 1 0" International
Conference on Information Technology, IEEE,7695-3068, 2007

Saremi A., Esmaeili M., Habibi J., Ghaffari A., “O2DSS: A Framework for
Oﬁtology-Based Decision Support Systems in Pervasive Computing
Environment”, Second Asia International Conference on Modeling &

Simulation, pp 41- 45, 13-15 May 2008

Dmitry Davidov, Ari Rappoport, >’ Extraction and approximation of Numerical
attributes from the web’’, Proceedings of the 38th Annual Meeting of the
association for computational linguistics, pp1308-1317, Sweden, 2010

Sajidullah, Prof. Dr. Magbool uddin shaikh, “Transformation of semantic
networks into frames”, accepted for international conference on information
and multimedia technology. ICIMT 2010 , to be held on 28-30 December,
2010,. Hongkong , china, sponsored by international association of computer

science and information technology (IACSIT) and co-sponsor by IEEE

