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Preface

In recent decades, the ice-cover in the polar region has attracted more and more attention in
the field of ocean engineering and polar engineering in view of their practical importance
and theoretical investigations. One of the most important problems in this field would
appear to be the accurate measurement of the characteristics of nomlinear hydreelastic
waves traveling beneath a floating ice sheet. And such waves may have been generated in
the ice cover itself by the wind, or may have originated by a moving load on the ice sheets.
The nonlinear hydroelastic waves propagating bencath floating ice sheet on an inviscid fluid
of finite depth were first investigated analytically by A.G. Greenhill[1]

The equation that governs the motion of nenlinear hydroelastic waves in incompressible
fluid under an elastic sheet is nonlinear hydroelastic wave equation. The propagation of
waves of finite amplitude on the surface of an ocean under ice, regarding the ice sheet as an
elastic shell. And when we studied it is assumed throughout that there are no frictional
forces between the sheet and the fluid beneath. Hydroelastic waves are the waves
propagating on sheets of fluid of finite depth that are bounded by elastic plates. The fluid
motion is assumed to be both inviscid and irrotational. Two clastic plates sandwich a layer
of moving fluid and deform according to the dynamic pressure exerted by the fluid. A
comprehensive summary on mathematical method and modeling for the problem can be
found in some review articles such as Squire et al [2]. Motivated by the above facts the aim
of the present dissertation is to find the series solution of nonlinear hydroelastic waves
equation in a fluid of finite depth. The dissertation is structured as follows:

Chapters 1 is introductory and provide reader the basic terminology and equations of fluid
flow. The results of Ping Wang [3,4] are reproduced with full mathematical details in
chapter 2 and Chapter 3. In these chapters we investigate the motion of nonlinear
hydroelastic waves under an ice sheet lying over an incompressible inviscid fluid of finite
uniform depth by the regular perturbation and Homotopy amalysis method (HAM).
Graphical results are presented in order to see the that how Young's modulus of the plate
increases, the wave elevation becomes lower, and the increasing thickness of the plate
flattens the crest and sharpens the trough of the wave profile.The results obtained here
demonstrate that Young's medulus and the thickness of the sheet have important effects on
the energy and the profile of nonlinear hydroelastic waves under an ice sheet floating on a
fluid of finite depth,
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Chapter 1

Preliminaries

This chapter includes some basic definitions and governing equations relevent to the material
presented in the subsequent chapters and idea of Homotopy analysis method is presented for
the better understanding of readers,

1.1 Fluid

Fluid is & substance or material that deforms or flows continously when shear stress applied to
it, no matter how smaell the stress may be, fluids include liquids and gases. For example water,
milk and blood.

1.2 Fluid mechanics

Fluid mechanics is a well known branch of continuum mechanics. It is usually deals with the
behavior of fluids.in the states of rest and motion and its sffects on boundaries is known as fluid
mechanics. Fluid mechanics has mainly three types.

Fluid statics: It is the study of fluids at rest.

Fluid kinematics: The study of fluids which are in motion.

Fluid dynamics: The study of the effect of forces on the fluid motion. which deals with the
properties of stationary and moving fluids.




'

1.3 Fluid dynamics

Fluid dynamics is a sub discipline of fluid mechanics that deals with fluid flow, the natural
science of fluids (liquids and gases ) in motion. Tt has several sub disciplines itself those are
Aerodynamics: (the study of air and other gases in motion)
Hydrodynamics: (the study of liquids in motion).

1.3.1 Hydrodynamics

It is the study of liquids in motion. Specifically, it looks at the ways different forces affect the
movement of liquids. A series of equations explain how the conservation laws of mass, energy,

and momentum apply to liquids, particularly those that are not compressed.

1.3.2 Nonlinear hydroelastic waves

One of the most important problems in this field would appear to be the accurate measurement
of the characteristics of nonlinesr hydroelstic waves traveling beneath a floating ice sheet. And
such waves may have been generated in the ice cover itself by the wind, or may have originated
by a moving load on the ice sheets. The nonlinear hydroelastic waves propagating beneath
floating ice sheet on an inviscid fluid of finite depth were first investigated analytically by A.G.
Greenhill [1].

1.3.3 Nonlinear hydroelastic waves equation

The equation thet govern the motion of nonlinear hydroelastic waves in incompressible fluid
under an elastic sheet is called nonlinear hydroelastic wave equation.

1.4 Characteristics of fluid

1.4.1 Pressure

The amouni; of force per unit area is known as pressure, If P is the pressure then mathematicaly
it can be written as

P=— (1.1)

iy
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1.4.2 Density
The mans per unit volume of the fluid is known as density of that fluid. It is denoted by p and
mathematicaly we can express it as

. dm
p= Jim —, (1.2)

1.4.3 Viscosity

Visooaity is defined as the messure of resistance of a fluid to being deformned by external streases
or either by shear stresses It is usually taken as “thickness or resistance to fow”. It is denated
by p and defioad s

- ahogr stress (L3)
B rate of shear strein’

where 4 has the dimension [M/LT).

1.44 Kinemstic viscosity
Hnmaﬁcviouﬂtyhnﬂeduthamﬁoufdﬁutewytodmﬁymdhﬁmu

v="=, (1.4)

© %

The wmits of kinematic viscosity iz % /s or Stoles (St) and the dimension of kinematic
viscouity is {I371).

1.4.8 Dymw

Abaclute viscosity or dynamie viscosity is & zseasure of the internal resistance, Dyoamic (ab-
M}Mtyhthhmmﬂdbrmp&mﬂmmuﬁodwmmhoﬁmmﬂpjm
wiih reipect to the other at unit velocity when maintained a unit distance apart by the fuid

Mathemistically, it can be written ss
N T

The dynamic visooslty units in ST systemn are Ns/m? or kp/ms, i.e.,

1Pas = 1Nsfm? = Lig/ma.




In CGS aystem it can be descirbed as g/came, dyne s/em® or Poise(p), i.e.,
1Poise = dynes/cm?® = gfeme = 1/10Ps = 1/10Ns/m?>.

1.4.8 Shear stress

A shear oiress is defined as the component of stress coplanar with a material cross section.

1.5 Types of fluids

Fluide are jexit in six main types which can be expreasad as following

1.5.1 Ideal fuid

The fluid with swo viscosity (4 = 0), is geserally comsidered as an ideal fluid and the motion
of it is called & ideal or inviscid. In an ideal flow, there is no existenoce of shear force beacause

of vanishing viscouity, i.e.
1.5.2 Real fluids

Those fivids which posssess some viscosity (s # 0), in known as real Suids. Since by newton,s
Iaw of viscosity, we have
o= w7

where 7, is the shear stress on 2 finid surface in the x direction at a distance y from the
origin, 4 is the viscosity of thiid and % is the rate of deformation.
1.5.3 Newtonlan fluid

Newtonian Suid fs the fluid which have linmar relation between shear siress and rate of strain.
It can aleo be defined as *Fluid which holds Newton,s law of viscosity® in called Newtonian
fluid. Mathematically it can be described as

du
Toy = >y (1.8)

7



-l

where 73y is the shear stress, y is the viscosity of the fluid, z is the direction of the flow and
v is perpendicular to the low. Water, gasoline, air and glecrine exhibits Newtonian behavior.

1.5.4 Non-Newtonian fluid

Non-newtonian fluids are thos fluids in which shear stress is directly but non linearly propor-
tional to the rate of deformation. It ean also be stated as "Fluid which obey power law model”.
Mathematically it can be represented as

Toy = (#:;:)“, n#l (1.9)
or
Toy =17 (%) , (1.10)

-1
where 7 = (‘%‘)n is the viscosity which is the function of deformation, Examples of Non-
Newtonian ftuids.are toothpaste, blood, ketchup, paint, drilling muds and biclogical fluids.
1.5.5 Compressible fluids
Compressible fluids are those in which fluid density changes with the change in pressure or
temperature. In general, all gasses are treated as compressible fluids.
1.5.6 Incompressible fluids

Incompressible fluids are those in which fuid density remains independent of the Ppressure or
temperature.

1.6 Types of flow

1.6.1 Steady flow

Steady flow is defined as the type of flow in which fluid characteristics like velocity, pres-
sure,density ete at a point do not change with respect to time.




1.6.2 Unsteady flow

If at eny point in the fluid, the conditions change with respect to time, the flow is known as
unsteady.

1.6.3 Uniform flow

Uniform flow can be defined as if the velocity of the fluid has the same magnitude and direction
st every point in the fluid.

1.6.4 Non-umiform flow

If the velocity of the fluid does not have the same magnitude and direction at every point in
the fluid is called as non-uniform flow.

1.6.5 Laminar flow or Stream flow

Laminar flow is defined as when fluid flows in parallel layers such that there is no disruption.
In laminer flow, the velocity of the fluid at each point does not change in magnitude as well as
in direction. Fxamples include flow of air over an aireraft wing.

1.6.6 Twrbulent flow

It is a flow in which fluid undergoes irregular fluctuations as compared to laminar flow. In
turbulent flow, the velocity of fluid at each point continuously changes both in magnitude and
direction. Examples are flow over a golf ball and smoke rising from cigeratte.

1.6.7 Compressible flow

Compressible flow is that flow in which the density of the fluid changes during the flow and

viscosity of the fluid increases with temperature. All gases are compressible fluids,

1.6.8 Incompressible flow

The flow in which the density of the fluid does not change during the flow and viscosity of fluid

decreases with temperature is known as incompressible flow. AR liquids are incompressible
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1.6.9 Rotational flow

Fhﬂﬂfu&uid"ﬁlwhichthacmloftheﬂuidvdocityhmtm,sothtewhnﬁmmﬁch
of fluid rotates about its own axis. Also known as rotationsl motion. Mathematically it can be
desribed as

VXV £0, (1.11)

1.6.10 Trrotational flow

Flow of a fiuid in which the cur] of the fluld velocity is vero is known as irrotational flow of the
fhid.

Mathematically it can be dearibed as

VXV =0 (1.12)

1.6.11 Vorticlty
In cimple words, vocticity is the rotation of the fluid. The rate of rotation of fluid can be
expromsod varions ways.
Mathomaticaly
w=VxV (1.13)

1.7 Basic Governing equations

L4 this asction the general form of aquations governing the flow of & fuid are prosented in veual |

notations, These include

1.7.1 Tha general problem of wave motion

The problem which we have to sclve, in all studics of waves on irrotational and incompressible
m,mnﬁudwmammmmmdm}
mmmﬁmwm&wmmm Then the governing

10
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equations for & velocity potential ¢(x, 2,4) can be written as

VTt Bt b <cEn), (114

where ((z,¢) is wave surface elevation.

1.7.2 The contbmity equation:

Continujty aquation is the methematical expression for law of conservation of mass and math-
ematically it is deserfbed as
% +aiv(ev) =0, (1.15)
where 'V is the velocity field. H density “s” remains comstant with zespect to time and space
then for mmcompressible flow, we have
' divV =0. (1.16)

1.8 Boandary Conditions

1.8.1 Kinémutic boundary condition

I & fuld:purtiole Is adjacent o a boundary then we muet impose a condition which links the
velocity of the boundary to that of the particle on the un known warface z = ((g, ). This s
known as the Madmatic boundary condition. which is

o 248 O 1.17)

——--—:0_

ot b B2
182 Dynamic boundary condition

mmmm-;thehm&mimmmmhmm
sthznospheric pressure: p = patm(const). os z = {(2,t), 80 the dynamic boundary condition
bacomes

¢

1 Pe _
E+§V’¢+;—+g(-0. (1.18)

11
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1.9 Homotopy

A homotopy between two continuous functions f and g from a topological space X to a topo-
logical space Y is defined to be a continuous function H : X x [0,1] — Y from the product
of the space X' with the unit interval [0,1] to Y such that, if € X then H(z,0) = f(z) and
H(z,1) = g(z).

1.9.1 Homotopy analysis method (HAM)

It is a general analytical approach for obtaining approximate series solutions to nonlinear
digerential Equation. Based on the homotopy analysis method (HAM) which has been suc-
cessfully applied to solve many types of problems The homotopy analysis method (HAM) was
first described by Liao {5] in his PhD dissertation in 1992. For a given nonlinear differential

equation.

Nlu(z)] =0, zeS2. (1.19)

where ¥ is a nonlinear operator and %(z) is & unknown function, Liao [7] constructed a one-
parameter family of equations in the embedding parameter ¢ € [0,1), called the zeroth-order

deformation equation

(1 = g)L[(z;9) — vo(2)] + gN[(z; ¢)] =0,z € R, 9 € [0,1]. (1.20)

where L is an auxiliary linear operator and ug(z) is an initial guess.In theory, the homotopy
provides us much larger freedom to choase both of the auxiliary linear operator L and the
intial guess At ¢ = 0 andg = 1, we have(z;0) = up(z) and {#;1) = u(x), respectively.So, as
the embedding parameterg € [0, 1}increases from0 to 1, the solution (z;q) of the zeroth-order
deformation equations varies {or deforms) from the initial guess ug(z) to the exact solution
u(«) of the original nonlinear differential equation¥[u(z)] = 0.

Since (z;q) is also dependent upon the embedding parameter ¢ € [0, 1], we can expand it

into the Maclaurin series with respect to

é(zi q) = wo(z) + 2 un(z)e™ (1.21)

12
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called the homotopy-Maclaurin series. Note that we have extremely large freedom to choose
the auxiliary linear operator L and the initial guess up(z). Assuming that, the auxiliary lin-
ear operator L and the initial guess uo(z) are so properly chosen that the above homotopy-

Maclaurin series converges at ¢ = 1, we have the so-called homotopy-series solution

u(z) = ug(z) + Y un(z). (1.22)

which satisfies the original equation N{u(z)] = 0, as proved by Liao [19,20] in general
Here,u,,(z) is governed by the so-called high-order deformation equation

Liun(z} = Xpun-1(2)) = —dn-a(2). (1.23)

where x;. equals to 1 when & > 2 but zero otherwise, and
1 8*Nlp(z; )
6"(3) = E—'—E‘T———
The high-order deformation equation (1.10} is always linear with the known term on the
right-hand side, therefore is easy to solve, as long as we choose the auxiliary linear operator L
properly.

(1.24)

1.9.2 Homotopy perturbation method (HPM)

Consider the following nonlinear differential equation

L) + Nv(r)) =0re Q. {1.25)
with the boundary condition
B (v, %, ) =0, rel. (1.26)

where L is a linear operator, V is a nonlinear operator, I is the boundary of domain €2, B is a
boundary operator, and £ denotes differential along the normal drawn outwards from Q.
By means of HPM, a homotopy for equation (1.12) is constructed as follows:

13




N(8) = N(©) [pg + 252 gt P+ ...
= Nw) + (528 o p+ - - (132)
= N(wo) + T n p+ ...
We construct a new homotopy for equation (1.12) as follows:

H(v,p) = L(v} — L(w) + p(L(vo)} + Ko(r, Co)N(t})
ﬂ‘(Kn(f, Cl)y;?llmv;) +eu =0,
where K;(r,Ci} for i = 0,1,... is an auxillary function, and C; is & vector of unknown
constaats, By squating the coefcients of the same powers of p in equation (1.20), we obtain

(1.33)

7 : L{w) ~ L{o) = 0. (L.34)
2 L{v) + L{vg) + Ko{r, Co) Niso) = 0. (1.35)
P2 L) + Kalt, G2l 01 = 0. (1.38)

and 20 o8, The functions Kp, Ky, ...ar¢ not upique and can be chosen as the same form of
moalinear eperaiae N, The constant C; that sppesrs in the function K;(r, C;} can be optimally
determined by minkutaing the following residual functionsl

I= f' (L{var) + N(va))* . (1.37)

whare o and b are two values depending on the given problem, and wy) is the Mth-order
sypwosiinate solution, which can be written as

v = ¥(g) + (g + .- + VYne)- (1.38)

Once the paramwter C; is known, the solution of nonlinesr differential eguation in equation
(1.12) subject to the boundary condition given in equation (1.13) can be immediately deter-
minad,

18




1.9.4 Optimal homotopy asymptotic method (OHAM)

We apply OHAM to the following differential equation

Alu(z))+g{z) =0, ze R (1.39)

where R is real number and the corresponding boundary conditions are:

B( Bu )=o. (1.40)

U 5o
where A is a general differential operator, g(z) is & known analytical function, u{z} is an
unknown function. equation (1.26) can therefore be written as follows:

L(u(z))+9(@)+N(u(®) =0, (1.42)

Construct a homotopy 6 = ¢(z,p) : R x [0, 1] — R which satisfies

H(g(z,p),p) = (1 - p)IL($(x,P)) + 9(=)] + H (p)

(1.42)
[A{é(z,p) + 9(=))] = 0, p€ 0,1}
B (¢(£1 p)) 'a;g(a'%’;)) =0 (1.43)

H {p) is a nonzero auxiliary function for p # 0, H(0) = 0, ¢(z,») is an unknown function
and p varies from 0 to 1. The solution ¢(z,p) varies from ¢(z,0)} = ug(z) to the solution
#(z,1) = u(z) equation (1.29) is called optimal homotopy equation. Clearly, we have

p=0= H(4(2,0),0) = L(#(z,0)) + (z} = 0. (1.44)

p=1= H(#(z,1),1) = H() [A($(=, 1)) + g(z)] = 0. (1.45)

We choose auxiliary function H(p) in the form

H(p) = pDr + pDa + .... (1.46)

16




where D, Dy, ...are constants which can be determined latter. Expanding ¢(z, p, D;) in Thylor'’s
series aboat p, we obtain

#(3,p. D)) = wo (2) + 3w (2, Dy + Do + .. Dy)#". (1.47)
=1

Now substituting equation {1.34) into eguations. (1.29) & (1.30} and then equaiing the
cosfiicient of like powers of p, we obtained the solutions of seroth order, first order and second
order problems. It has been obeerved that the convergence of series (1.34) depends upon the
awxilinry constanis Dy, Da, ..., we obtain the governing equation of ue(z), given by equation
(1.29), and the govaraing equation of us(s) i. e,

L (=) = Do mo (), B {3, 52) =0 (148

L (uy (2) — w1 (x)) = DaNe (w0 (z))

! - w(z), (1.49)
+ 3 D; | Lug- Ni. .
L CCIES S|
Corresponding boundary conditions are
B (u.,, %. ) =0, k=23,.. (1.50)

N (#(:9, D1)) = No (o (=)).+ i:!&n((ﬂo. YLy )} P 8= 1,2, (1.51)

m2l
where No,(ug(2), u1(2), .. ., bm(7)) is chtained by expanding N(#(z,p, D;)) in series with
m-hihﬁb%gm-pmdﬂs,p,ﬂi)kﬁminequﬂhﬂ(lﬁl). It should ba
© wnphinibaedk thiwt we for & > 0 are governed by the lineas equations (1.29), (1.32) & (1.34) with
The convergenss of the seriss in equation (1.31) depands upon the suiliary constauts
Dy, Dg,.... H 1t 18 comvargent at =1, we get
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u(z, Di) = w(z) + im (z, D). (1.52)
k21

The solution of equation (1.26) can be determined approximately in the form

m
u{m} (3:1 Dt) = g (ﬁ'.') + E Bg (.1:, -Di) y 1=1, 23 ey T (1°53)
k=1

Substituting equation (1.38) into equation (1.26), yields the following residual

R(z,D;) =L (u["" (z, D.r)) +9(2) + N (u™ (s, Dg}) L i=1,2,.,m (158

I R(z,D;) = 0 then u(™ (z, D;) happens to be the exact solution. Generally such case will
not arise for nonlinear problems, but we can minimize the functional

b
J(D) = ja R?(z, Dy)dz. (1.55)

The unknown constants D; (i = 1,2,...m) can be optimally identified from the following

conditions

aJ aJ ar
9D, ~ oD, =" = oD, =" (1.56)

With these constants known, the approximate solution (of order m) in equation (1.38)
is well-determined. The constants D); can be determined in another forms, for example, if

k; € {a,b),i =1,2,...m and substituting %; into equation (1.39}, we obtain the equation
R(kh Dl) = R(k2} Dt) =..=R (kwnDl) =0, i=12,.,m. (]"57)

1.10 Genetic algorithm and Nelder mead method{GA & NM).

Genetic Algorithm is an optimization tool based on Darwinian evolution which has been devel-
oped in 1976, but its utilization in heat transfer problems is not been tested. In fact Genetic
Algorithm plays an important role when multiple parameters are imvolved. The main procedure
is inspired by the Darwinian theory of evolution “The survival of the fittest.” The Genetic Algo-
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rithm is a random search technique. Major advantage of Genetic algorithm is that the demand
about computer memory for nonlinear problems is minimum. Genetic Algorithm will be helpful
for future even to get minimum and maximum solutions to satisfy inequality relationships as
well. There are five main decision points in the procedure given below:

(1) Encoding technique (chromosome structure)

{s) Mechanism to encode solution

(2) Evaluation function (environment)

(=) Fitness function

(3) Selection procedure (creation)

(4) Generating chromosome diversity (evolution)

{a) Crossover, mutation

(6) Parameter settings (practice and art)

(a) Termination condition

(b) (Random) initialization of population

There are several techniques for optimization like analytical approach, downhill simplex
method, gradient descent, Newton's method and so on. Moreover, the Nelder Mead method is
direct search simplex algorithm published in 1965 and is one of the most widely used methods
for nonlinear unconstrained optimization The Nelder-Mead method minimizes a nonlinear
function of n real variables without taking any derivative. The function is evaluated af each
point of the simplex structure formed by (n+1) points and the vertex with highest value is
replaced by a new point with a lower value, It continues until the minimum value of function
is achieved. Furthermore, in topological approach the non-zero auxiliary parameter which can
adjust and control the convergence of the series solutions.[6,11]. The Genetic Algorithm and
Nelder Mead method is used in order to find the optimum value of ¢y .Also it minimize the
residual square exvor €}, .Which shows its validity and great potential to solve the nonlinear
problems in science and engineering [25). In the forthcoming section we used this method to
iustrate the significance of optimnl.mnvergence contril paremeter ¢y on the velocity potential
and wave deflection.
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Chapter 2

Series solution of nonlinear
hydroelastic waves equation in a

thin elastic plate floating on a fluid

2.1 Introduction

The aim of this chapter is to revisit the work of Ping Wang and LU Dong Qiang [3}. In this
chapter behaviour of the progressive waves is discussed with HAM. A convergent homotopy
series solution for the nonlinear hydroelastic waves is calculeted with the help of least squared
residusl. Also the dynamic effects of plate such as Young’s modulus, thickness and density are
gtudied.

2.2 Mathametical formulation

Let us assume an infinite plate floating on an infinitely deep water having thickness d which
produces nonlinear hydroelastic waves. Cartesien coordinates OX Z are usually selected so that
the plate spread out to the infinity along 2—azis and z2—a2%s and z = () shows the uninterrupted
plate water boundary. It is supposed that: there is no cavitation between water and plate .And
z = {(x,t) is the deflection of plate. It is assumed fluid is inviscid , incompressible and
irrotational.¢(z, 7, t) is velocity potential which satisfies the Laplace equation.
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24+ Beni<cmn. @
At deop water the boundary condition Is
% =0, (2 = ~00). @2)

By the supposition that any finid particle which is in between elastic plate and water surface
will remain on it.On the unknown plate water interface z = ((z,t) the kinematic boundary
-sondition is

& % 8¢ _
E+——-8__0' (2.3)
and dynanvic boundary condition is
8¢ 1 P _
Iy +§ Ve + -; +g{ =0 (24)

wivere p.(2,3),p and g are plate water interface preasure fluid demsity and gravitational
aoceleration respectively.By tha Kirchhoff beasn theory .For constant thidkness d and uniform
mass density p, of the plate the relationship between plate daflection {(z, ¢) and pressure p.(z,¢)
in view of Kirchhoff (Buler Bernoulli) beat theory is

P D-g + m.(% +9). (25)

where m, = pd ; D = ppff . By substituting equation (2.5) into equation (2.4) gives
the full form of dymsmtic boundary condition as

1 1 ¢
%:;+§IV¢!’+QC+; [Bg+m(5;+y)] =0. (2.6)
By the oconcopt of &raveling wave method an independent variable transformation is intro-
duoed as
X = kz — ut. 27

" whitté K is Wive tisaber and w e angular frequency of incident wave.Now velocity potential

2

—_——— e — ]



function ¢(z, z,t) = ¢(X, z) and the hydrostmstic wave profile ((z,t) = ((X) are used.For sim-
plifieatiorn by putting all equations into dirnessicmless form following dimensionless quantiting
are ussd

2 = kz, 2 =kz,t" = t{gh)}, & = kd, ¢'=%.

- o @ D o kB
D " (@n¥ U= ¥ = oy
s _ Pu e Fme
P ~ pi'“q Py ' (2-8)

In the succeeding formulse the asteriaks denoting dimensionless quantities will be replaced.
Than the dimensionless equations for the velocity potential are

&+ B0 <cnn. (29)

gg =0,(z = —o0). (2.10)

In view of (2.7) a0 z = ¢(X), (2.3) snd (2.6) ae transformed into

L K _X_, @11)

—w%-t; f+(+'[Dk‘%%-+m(u’$+l)] =0 (2.12)
respectively where
1 “ 2 N 2
A partisl combination of equations. (2.11) and (2.12) gives the boxndary conditions on
#=¢(X) o foliows
& 8 & d*
W’E%+-g%——wa-f-upﬁct-u’mﬁc, -—%?‘}:0. (2.14)




o

The velocity potential #(X, z) and the plate deflection ({X) are derived by equations (2.9),
(2.10), (2.12), and (2.14) in form of Series solutions for ¢(X, z) and {(X) will be derived based
on the HAM in the subsequent section.

2.3 Analytic approach based on the homotopy analysis method

2.3.1 Zeroth-order deformation equations

In view of the homotopy emalysis method first of all let ws assume a set of base functions
and solution expressions as it seems impossible to presume the expression forms for unknown
potential function and plate deflection. By physical background of progressive gravity wave
elevation on free surface, { (X) can be written as

o0
¢(X) = B;c0s(iX). (2.15)
=0

with e set of base functions {cos(:X),i > 0} where §i is an unknown coefficient. Since it is
supposed that there is no gap between the bottom surface of thin elastic plate and top surface
of the fluid layer. In view of linear wave theory solutions to the Laplace equation (2.9) can be
derived by the separation of variables method. Therefore the plate deflection ¢(X) can elso be
expressed in the form as equation (2.15). Since the solution expression of the potential function
18,

+-00
$(X,2) = a;exp(kz)sin (iX). (2.16)

=1
In view of the solution expression (2.16) and the boundary condition (2.10) with a set of base
functions {ezp(kz)sin(iX),i > 0}, where ai is an unknown coefficient. The initial approximation
for potential function is given by.

¢ {X, z) = ag, exp(z)sin (X}, (2.17)

where ag ) is an unknown coefficient. since
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Co(X) =0. (2.18)

In view of [§] the initial approximation for ({X) to simplify the subsequent solution proce-
dure. Although the initial guses (4(X) is serc. Based on the nonlinesr boundary condition for
equations (2.12) sad (2.14}, two nonlinear aperatars N; and N; are defined

MEE g ae) = sE2En0 g 08,0

~n Tag) A 59 (Xi0) @19)

Ml (X0, (K, ng) = 250 py pTIKD (2P Ly o)
where
p_l]roe\  romy? @.21)
=3 (ﬁ) +('é-£ . .

" Hore an aunxiliary kinear differential operatar £, is chosen and g € [0, 1] is the embedding
paragister in the HAM. Here nonlinear operstor N holds s linear operator of (X, 2 ¢) a8
given below.

Zie(x, 59 = 2200 | B Kirg) 2)

In view of [6,7] the angulsr frequency bessd on the lnear wave theory is approximately
el 30 ope. ie

wesl (2.23)

ﬁhﬁMdmuﬁm(ﬁ.ﬁ).hnﬁﬁmMM“th




L g = 220 BKng) (224

Now the linear operator for the wave functian 5{X; ¢) in the nonlinear operator N3, another
imxiliary linear operator is as follows whese ;{0 =0

Glnxg) = Z2530 . PUKD g, 22
where £5i0] == 0.
Now for the seroth order deformation equaiton the aquations (2.9), (2.10), (2.12),and (2.14),
tikws the form as
Fok sy , PEELED _g (< n(xia). (226)
i-";(%‘i-fi!lﬂ,(u —00). (2.27)
¥
‘ (1 - ) L1 [8(X,2,0) — by (X, 5)] = qcoMN1 [#(X, :0) 0 (X;0)], (2 =n(X;9).  (2.28)
(1 - ) LainlX;9) — o (X)) = goMu [0 {X; 0}, ¥ (X, 59)) . (= =9(X;q)). (3-)
By the help of Tuylor sesies for #(X, 2:¢) and 9(X; ) at g =0, the exact sclutions #(X, z)
. - agil ¢(X) from initial approximation dy(X, 2) and (o(X) and from equations (2.28) and (2.29)
e i,
+o0
& (X, 259) = dp (X, 2) + 3 I (X, 2)¢™ (2.30)
me=]
3 +oo
| n(X;2) = (o (X + 3 L (X, 5) ™ (2.81)
mz=zl




i
- B (X2, (XN = 5

Assuming that cp is right chosen in the series of equations (2.30) and (2.31) converges at

¢ = 1, since by formal homotopy series solutions

{2(X,%49},7(X;q)} at g=0 (2.32)

+oo
P(X;2)=2(X;5 1) =do(X,2)+ ) _ dm (X, 2). (2.33)
m=1
oo
((X)=0(X;1) = (X) + D {mlX). (2.34)
m=1l

And for the nth order approximation

+n
(X, 2)= o (X,2) + ) b (X,2). (2.35)
m=]
+00
CX)=CX)+ D tm(X). (2.36)
m=1
- 2.3.2 Deformation equations of high order

Here PDEs for the unknown functions ¢,,(X, #} and ¢,,(X) are calculated from the zeroth
order deformation equations. Substituting (2.30) and (2.31) into (2.26) and (2.27), and then
equating likepowers of the embedding parameter q.

32¢g, g 3, 6%3 gf 2 _0,(2<0). (2.37)
wmagf, 2 _ g,(z = —c0). (2.38)

where m > 1
By putting the suitable series into boundery conditions (2.28) and (2.29), two linear BCs

are as follows on z = 0

il -

Icl (¢m)’z=ﬂ = !-’DA&_I + XmSm—1— -ﬂ (2.39)
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Lﬂ@m):cﬂﬂfn—l"'x’n( ax4 + dX2 +{m1

where

2 g
Sy = z( wm—l—s,t

+ anwm—-l-—n) + (m—l + D—

+ Tm—l—t.l)

db‘cﬂ'a--l

(2.40)

@,
e

daCm_ f‘j L -

3 9P U _n
axs W X T 24 X dx

g L
and
T N G b S LA
for
Om<1
xm:{Lm)l

we introduce an additional equation for the wave height H

1 (mar) — ¢y (ma) = H =

2a.

(2.41)

(2.42)

Here m and n are even and odd integers respectively and @ is the dimensionless amplitude
of the plate deflection {(X). As it is clear that equations (2.28) and (2.29) hold on the unknown
boundary function z = 7(X;q) while equations (2.39) and (2.40) hold on z = 0.Hence the

equations (2.37) to (2.42) can be solved.
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2.3.3 Approximation and iteration of solutions

By applying the inverse linear operator £ on equation (2.40) ¢, (X) can be caleulated as follows:

(%) = 5 2dpen + wofy) — wenans os(X). (243)

Here oy, is still unknown which can be determined by equation (2.42) Now by the inverse
linear operator £ in equation (2.39), ¢,{X, 2} can easily be derived. Since

ay,1 = H (2.44)
61 (X, 2) = a1,y exp(z) sin(X). (2.45)

As ay,) is still unknown which can be calculated with the help of (2.46) by eliminating the
secular term sin(X). Now with the aid of first order approximations equations (2.39) and (2.40)

takes the form as

? + oco + 2dow?c + 2doued — 2awepar
2uwtey

$2(X)

aw{D — dpw?)
wi-1
a®— doawa; 4

ga(X.2) = o ®P(22)sin(2X) + ay,) exp(z) sin{X).

¢y =

Now for higher order unknown functions $m{X, 2) and (,,(X) by following this approach
infinite order solutions can be cbtained .It is also valuable to point out that these solutions will
keep the convergence control parameter cy.

2.3.4 Optimal convergence control parameter

Here two residual square errors of BCs (2.28) and (2.29) are defined, according to Liao [7)
because optimal value of parameter ¢ is required.
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M
e = I:Mg(m [6(X,2),6(X)] st X = iAX)®. (2.47)
(=L 3 Na[o(X X)) 8t X =iAX)* (2.48)
Em—-mg( 2 [#(X,2),{(X)] st X =4 . 3

For X = 7, M is the number of the discrete points.
Since total residual square error will be,

el =eb + &b, (2.49)

For generality % = 0 the optimal convergence control parameter ¢y by the minimum of
the squared residual €7, is obtained.

2.4 Results and analysis

In figures 1 and 2 the effects of Young’s modulus E of the plate on the wave elevation ¢(X)
under a floating elastic plate are studied.which shows the change in (X} for different values of
E = 12822.7,12822.8,and 12822.9.

As it is clear from figures 1 and 2 that the nonlinear hydroelastic response of the waves
becomes flatter at the crest and steeper at the trough due to the larger value of Young’s
medulus £ .

And in figures 3 and 4 the effects of plate thickness d on the soveral displacements {{X)
under a floating elastic plate are studied.which shows the change in {(X) for different values
of d.It is observed that by increasing d from 0.005 to 0.02 the nonlinear hydroelastic response
of the waves becomes flatter at the crest and steeper at the trough due to increase in plate
thickness d .

These figures indicates that the results are very similar to the theory of nonlinear hydroelas-
tic waves beneath a floating ice sheet. Which further shows the validity of results.




&

Figure 2.1 Change of the plate deflection {(X) near the crest against X for different values
of Young’s modulus of the plate E. Solid line, no plate condition, dashed line, £ = 12822.7,
dashdotted line, E = 12822.8, dashdot dotted Line, B = 12822.9,
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Figure 2.2 Change of the plate deflection (X) near the trough against X Young’s modulus
of the plate E. Solid line, no plate condition, deshed line, E = 12822.7, dash dotted line,
E = 12822.8, dashdot-dotted line, E = 12822.9.
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Figure 2.3 Change of the plate deflection ((X) near the crest against X for different plate
thicknesses d. Solid line, no plate condition, dashed line, d = 0.005, dash dotted line, d = 0.01,
dashdot-dotted line, d = 0.02.
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Figure 2.4 Change of the plate deflection (X} near the trough against X for different plate
thicknesses d. Solid line, no plate condition, dashed line, & = 0.005, dashdotted line, d = 0.01,
dashdot-dotted line, d = 0.02.
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2.5 Conclusions

In this chapter nonlinear hydroelastic waves traveling in & thin elastic plate floating on a fluid
of finite depth is investigated analytically by the HAM. Mathematically. Both equations (2.19)
and (2.20) there are linear operators for {(X) and #(X, z) As HAM gives us with great option
for the auxiliary linear operators. So the auxiliary linear operators £, and £3 are chosen
containing the derivatives of ¢(X], 2) and (X} respectively.By these auxiliary linear operators
celculation of nonlinear hydroelastic wave propagation can be solved easily. Also influences of
the Young's modulus E and plate thickness d on the plate deflection ¢(X) are investigated .The
plate deflections become lower as the Young’s modulus £ of the plate increases. The hydroelastic
response of the plate is greatly affected by large plate thickness d. The resulis obtained here
demonstrate that the thickness 4 of the plate and Young's modulus E of the incident wave have
major effects on the hydroelastic response of an ice sheet.
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Chapter 3

Series solution of nonlinear
hydroelastic waves equation in a

fluid of finite depth

3.1 Introduction

The purpose of this chapter is to revisit the work of Ping Wang and Zunshui Cheng [4]. In
this chapter the motion of nonlinear hydroelastic waves under an ice sheet lying over an in-
compressible inviscid fluid of finite depth is discussed by regular perturbation and Homotopy
analysis method. The nonlinear partial differential equations (3.1) to (3.5) are composed of the
Laplace equation taken as the main equation. The convergent homotopy series solutions for the
velocity potential and the wave surface elevation are formally derived by means of HAM under
the consideration of minimizing the squared residual. The effects of the water depth and two
important, physical parameters including Young’s modulus and the thickness of the ice sheet on
the wave energy and its elevation are shown graphically. Discussion and conclusions are made
in Sections 3.4 and 3.5 respectively.
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3.2 Mathametical formulation

Let us assume nonlinear hydroelastic waves traveling in an infinite elastic plate of thickmess d
floating on a fluid of finite depth A and. A Tectangular coordinate OX Z is used, as the z —azis
points vertically upward, while » = 0 denotes the undisturbed surface. By following Greenhill
model [1] It is assumed that the fluid is inviscid , incompressible and irrotational ¢(z, z, ) is
velocity potential which satisfies the Laplace equation.

8¢ ¢
322 + =5 522 =0,(-h <z <{(x,1)). (3.1)
The boundary condition is
% =0,(z=—h). (3.2)

By the supposition that any fluid particle which is in between elastic plate and water surface
will remain on it.On the unknown plate water interface z = ¢(z, t) the kinematic boundary

condition is
o 3¢ o 8¢
2t oz Br 9z =0. (33)
and dynamic boundary condition is
d¢ l 2 Pe _
5 5V ¢+-p-+g§—0. (3.4)

where pe(z,t), p and g are plate water interface pressure ,fluid density and gravitational
acceleration respectively.By the Kirchhoff heam theory .For constant thickness ¢ and uniform
mass density p, of the plate the relationship between plate deflection ¢ (z, t) and pressure pe(z,t)
in view of Kirchhoff (Euler Bernoulli) beamn theory is

&
pe= D% 1 miZl 1) 55)

where m, = p.d, D = m‘{_—z,n. By substituting equation (3.5) into equation {3.4) gives
the full form of dynamic boundary condition as

6¢

IVl + c+ ?j+m(‘;§ +g)] 0. (3.6)

H




By the concept of traveling wave method an independent variable transformation is intro-

- duced as
= X =kz —ut. (3.7)
where k is wave number and w is angular frequency of incident wave.Now velocity potential
function ¢(z,z,t) = @(X, z} and the hydroelastic wave profile ¢(x,t) = {{X) are used.Then
the governing equation and the bottom boundary condition for the velocity potential are trans-
formed by
& 8%
'-’8X2+82._0( h<z< (X)), (3.8}
o _
i 0,(z=—k). (3.9)
In view of (3.7) on z = {(X), (3.3) and (3.6) are transformed into
Sk 206 & 8
+k20x¢x 3, =0 (3.10)
.
—ua— +f+gl+= [Dk‘:;i +me (w :;é +g)] 0. @.1)
respectively, where
2 {69 o¢ 2
f= [k (BX +13:) | (3.12)
A partial combinetion of equations. (3.10) and (3.11) gives the boundary conditions on
z = ((X) as follows
L oL d’¢ d% B¢ df
w? _v 4 2 2
“ox3i 95, "“ax (D ¥ axs T mew dX") “9axax =° (813)
The velocity potential ¢(X, z) and the wave surface elevation ¢(X) are derived by equations
(3.8), (3.9), (3.11), and (3.13) in form of Series solutions for (X, z) and {(X) will be derived
- in the subsequent section based by homotopy analysis method.
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3.3 Analytic approach based on the homotopy analysis method

3.3.1 Solution expression and initial approximation.

First of all in homotopy analysis method, set of base functions and solution expression are
mmed.wmehmmedformhmwluﬁomdthemﬂimuhydmehsﬁcmmpmbhm.
Asithvmydiﬂictﬂtmdedswiththeexpmhnfmformknmpomﬁﬂﬁmcﬁonmd
plate deflection. Sinoeinviawod‘physimlhn:kgmunﬂofthepumwnterwm,thnpmgremiw
wave elevation ¢ (X)) can be written as

e
{(X) =) Bncon(nX). (3.14)
n=={

By a set of base functions {cos(nX),n >= 0}, where 4, are unknown cosflicients. In the
medphwm'mm&hmmedthatthmhmspmwmboﬁmm
of plate and top surface of finid layer.The upright displacement of plate is periodic. in the
X direction. Therefore, itmclearthat((.’t’)mbemcp:emedintheabmform{3l4)lnnew
of linear wave theory, thsmluﬁmdthehphmeqnahm(aa)bythempmmofvmablm
mthodmbeﬁomd.ﬂerehnemahc,_dynamicmdbmmdmymdiummﬁnm“mdepth
ave used to obtain these solutions. Since ¢ (X, z) becomes

+00
$0t)= Y e b ). 6w

Now consider & set of base functions {cosh[rk(z + k)}/ cosh(nkh)sin(rnX),n > 0}, where a, are
unknown caefficients. Here potential function ¢(X, z) defined by (3.15) automatically satisfies
the governing equation (3.8) and the bottom boundary condition (3.9). Theequauons (3.14)
and (3.15) are the solution expressians of ¢(X, £) and ¢(X) respectively. Which is important in
homotopy anelysis method. In view of equations {3.9) and (3.15), the initial approximation for
potential function is given by

0%, ) = 20, AN o ), (3.6
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where apis an unknown coefficient, since
$o(X)=0. (3.17)

In view of (8, 9] the initial approximation for {(X) is zero. According to the equations (3.11)
and (3.13), two nonlinear operators Ny and Nj are defined in the subsequent section for analytic

series solution.

3.3.2 Continuous variation

The HAM depends on an initial approximation to the exact solution. Since based on the
nonlinear boundary conditions (3.11) and (3.13), two nonlinear operators N; and N, are defined

as
; 0% (X, z;
M([®(X, 59),7(X;9) = ”ﬁyq’éi,zz’g}’fg (;f: Q)"wg;
¥ (a2 Xid) asn(X;q))
; (Dk —axs Fw mg—-éﬁ——
X, z; ;
N2[n(X;9), 2 (X,2q) = —w@%ﬂ+l"+gﬂ(}f;q)
1[40 (X;9) #7(X;9) ]
+2 [Dk _W_*”“(“Z‘W' -I-g) . (3.19)
where \ ;
_1i.2(02 o8
F=3 ["‘ (ax) * (az) J (3.20)

Here g € [0,1] is the embedding parameter of the homotopy analysis method. As explained
by Liao, Cheung and Tao et al [9, 10), in homotopy analysis method the awdliary linear operator
and the initial guess can be chosen by extremely large freedom. It is noted that both linear
terms of (X, z;q) and linear terms of 5(X, g) are all contained in (3.18).Now based on the
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homotopy analysis method, by neglecting the linear terms in equation (3.13) and suxiliary
linear operator of (X, z;g) is so properly chosen,by means of the solution expression (3.18),
which is obtained as given below.

20%® (X, 2;9) 402 Xoza)

B%2 Ba (3.21)

L1[@ (X, 2)) =w

If angular frequency w is given 6o an approximation can be chosen based on the linear wave
theory to simplify the subsequent resolution of the nonlinear PDEs as follows:

w = +/gk tan (kh). (3.22)
Since the auxiliary linear operator in (3.21) can be simplified as

£1[2 (X, 2 )] = gk tanh (k)

%@ (X, 2 8d (X, z;
(X.5iq) | 00(X,5i0) 5.2

9z
Here £4(0) = 0.
Since due to the weakly nonlinear effects there is a difference between the actual frequency
w and linear dispersion relation wy = Jmﬁ upto some extent.Results are compared
with those obtained by the perturbation method. In view of linear operator of the wave profile
function #(X; g) and the nonlinesr operator Na, another auxiliary linear operator may be chosen
as

Lol (Xig) = ZEED L TG0 i) (3.24)

Here £,(0) = 0.

Now let ¢y be a nonzero convergence control parameter. It is noted that both cg and g in the
HAM are auxiliary parameters. Instead of the nonlinear PDEs (3.8), (3.9), (3.11), and (3.13)
the zeroth order deformation equations are constructed as

28 (X, z: (X, z; .
Kizg) | T2K59) o, (b <2< uXi). @.25)
0(X,5q) _ . _
a8 = 0,(z=—h). {3.26)
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s (1 - QL1 [2(X,29) - 9 (X, 2)] = g1 [B(X, 21 ¢) .0 (X;9), (e =71 (X;9)).  (3.27)

(1-a) L2{n (X, z9) — Co (X, 2)} = geo Nz (@ (X, 2;9) , 9 (X3 9)], (= (X3q)).  (3.28)

It is clear that two mapping functions &(X, z;g) and n(X’; ¢) of the original problem vary from
initial approximation $y(X, z) and {4(X) to the exact sclutions (X, z) and {(X). Since in view
of equations (3.27) and (3.28) the Taylor series of functions $(X, z;¢) and 5(X;¢) at ¢ = 0 are

as follows +o0
2 (X,2:0) = 0 (X,2) + ) d (X, 2) g™ (3.29)
m=]
400
1(X;2) = G (X)+ 3 Cm (X, 2)g™ (3.30)
m=]1
= (9 (5,5), G (0} = 52 (0 (K, 510), 7 (X)) at g =0, (3.31)
As it i8 assumed that ¢p is chosen so properly that the series in (3.29) and {3.30) converges
at g = 1,since homotopy series solutions will be as
480
2(X;2) = UL =g (X,2)+ Y (X, 2).
m=]
+00
(X)) = 2(XiD) =G+ Y ¢ (X). (3.32)
m=1
since at the nth order approximations
+n
¢(X,2) = (X, )+ Y ¢m(X,2).
m=1
-

+o00
C(X) = G(X)+ ) ¢u(X). (3.33)
m=]
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As shown later in the following section, the unknown terms ¢,,(X, z) and ¢, (X) are gov-
erned by the linear PDEs (3.34) to (3.36).

3.3.3 Deformation equations of high order

By putting the homotopy Maclaurin series (3.29) and (3.30) into equations (3.25) and (3.26) the
deformetion equations of high order for the unknown functions Pm(X, 7} and {,,{X) are derived
directly from the deformation equations of zeroth order,and then equating the like powers of
embedding parameter ¢ it follows that
3¢, (X, z) 63¢m (X,2)
k:’——n——wf2 —a2 = 0,(-h<z<0).

m (X, 2)

£ e = 0,{z=-h). (3.34)

where m > 1.Note that, $(X, z;¢) at the unknown surface z = n(X; q) may be expressed
in terms of the Taylor expansion at z = 0 instead of z — 7{X;q) since two linear boundary

conditions on z = 0 are as follows

L1($m) at 2=0=cAT_| + XSm-1~ 5. (3.35)
£2(Cm) = oAy + X ( d;‘:;';l + dzd'f;;;‘ +¢ _1) : (3.36)

where

Sm-1= Eu( k2 S “+"¥m—1—i,i)

d 1m} 44 2 P2
¢ _ Pm1 dp,, dpp - DR &y | mew® B¢,y
am—:l = ) ——— dxX E ( 2 ::X == +¢n‘l"m-—1-n)+c'm—l + P d;r: + p dX?

and




d? _ » do o, BB W ad, WPmediC, = dg, A, p_n
Aﬁ;-1=w2'—d;??+wm—w2(—d,}' X7 Yo% n)'EDkidxs‘ p  dX3 kg L ax dx
for
Xm={dmsl (3.37)
™ LLm>1

It should be noted that (3.27) and (3.28) kolds on the unknown boundary,z = 7(X; q) while
(3.35) and (3.36) hold on z = 0. Furthermore, the original nonlinear PDEs (3.1) to (3.5) are
transferred into an infinite number of linear decoupled high order deformation equations {3.34)
to (3.36). Namely, given ¢,,,_;,(,n—1, $y, and {m can be obtained easily by means of the inverse
operators of the right hand sides of (3.35) and (3.36), respectively. The resulting expressions for

$m and (, are presented to the second order in the subsequent subsection.

3.3.4 First order and second order approximations.

1
G{X) = 1 [4dgco + coad s + kPcpad; tanh? (AK)] — wagag,; cos (X)

+g5 [evad; — k2cpal, taah? (hk)] cos (2X). (3.38)

But now the coefficient ag,1 in (3.16) is still unknown. So an additional equation to relate
the solutions with the wave height is introduced.

¢y (mm) — ¢y (mr) = H. (8.39)

Here m and  are even and odd integers respectively and H is the wave height to the first
order based on the HAM.The solution of ag,3 can be determined by the relation (3.39) for the
wave height and its vertical displacement. Now by using the inverse linear operator £ in (3.35),
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it is easy to get the solution of ¢, (X, 2).

H
ap1 = -'Zw—cu.
cosh[k(z+h)] . ~H? + H%? tanh?® (hk)
W(Xiz) = e () S0 &) + e [2 tanh (%) — tanh (2hk)]
NI Ch ) Py (3.40)

cos {2kh)

Now the solution of ¢(X, z) has one unknown coefficient @1, which can be determined by
avoiding the secular term sin(X) in $,(X, z). It is noted that all subsequent functions occur
recursively. Since in view of the linear equations (3.35) and (3.36) to continue with the first

order approximations

C2(X) = Baop+ 821 005(X) + By3008(2X) + Py 3 c08{3X) + fg 4 c0s (4X) .

) (X, 2) = (12,1_——'——'—(:08]:‘:[: ((:’:)- h)] sin (X) + az,gmsl;ii"(,z(:’:)- h)] sin(2X) + azla—-—mml;g:?é:};; h)]
+02,4@%'([:’g:—-5)-—@l5m (4X) + 02.59%!:—’;5(%@ gin (5.X}.

where av;; is the jth unknown coefficient of ¢;(X, z) and B ; i8 the jih unknown coefficient of
¢(X).In order to obtain higher order functions ¢,,(X, z) and (,,(X), the infinite order solutions
for physical model can be acquired by continuing this approach.

3.3.5 Optimal convergence control parameter.

As all model parameters in approximate series solutions are fixed, since there is still an unknown
convergence control parameter ¢y which is used to guarantee the convergence of approximation
solutions. According to Liao (7}, it is the convergence control parameter cp that essentially
differs the homotopy analysis method from all other analytic methods. And the optimal value
of ¢ is determined by the minimum of the total squared residual e, of our nonlinear problem,
defined as

el = g8 + b, (3.42)
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M
& = l—jﬁgmwmz),cm} at X = iAX)2.
M
= Trar MO0l X = Ay (343

Here M is the number of the discrete points and X = -
For generality '% = 0 the optimal convergence control parameter ¢y by the minimum of
the squared residual £7, is obtained.

3.4 Solutions by Genetic algorithm and Nelder mead method.

As in Homotopy Analysis Method we need optimat convergence control parameter to select the
values and confirm the convergence of the problem.Figures 3.1 to 3.4 shows the effects of plate
deflection ((X) at different number of terms used in series solution.For range of M the total
squared residual T, is found by using equation (3.42) in view of (3.43).

Where ¢ is the number of terms or iterations of the obtained solution. The total squared
residual e7, and optimal convergence control parameter cp is indicated in table 3.1. The analytical
solutions given in equations (3.35) and (3.36) are obtained by using Homotopy Analysis Method
and the embedding parameter is found using Genetic Algorithm and Nelder Mead method as
shown in Table 3.1.

Following are the parameters used for Genetic Algorithm,

Population: Population type: Double vector

Creation function: Uniform

Initial population: 100

Initial Range: [0; 1]

Scaling function: Rank

Selection function; Stochastic uniform.

Reproduction: Elite Count: 10

Crossover fraction: 0.8

—— — -
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Mutation function: Uniform
Rate: 0.01
Crossover function: Arithmetic.
Migration: Direction: Both
Fraction: 0.2
Interval: 20
Hybrid function: None.

Stopping Criteria: Generation: 100
Time limit: inf

Fitness limit: -inf

Tolarance: 1079,

Table 3.1 Comparison of homotopic series solution and optimal series solution using Genetic
Algorithm and Nelder Mead method.

Serles solution Homotopy analysis mathod Optimal series solution using Genetic
_algorithm and Nelder mead method
d E Iteration | Time Range/value | Residual | Iteration | Time Range/value | Residual
Error Eeror

0.005 | 1282275 1263 |-08to-1.1 | 2)1x107 |2 0093 | -08t0-11 | 52x107
0.01 12822.8 | 10 95443 | -0.7t0-1.2 | 4.1x107 |5 1.263 | -0.7t0-1.2 | 3.0x10™
0.02 128229 | 16 296,182 | -1.31005 | 70%x10°% |7 5362 [-1.3t0-05 | ].9%]0¢
0001 |10t s 1123 |[-08tw-11 | 25x107 |2 0.11 |-08to-11 | j.19x10°
0.005 | 1¢0° 10 109.543 | -0.7to-1.2 | 7.1%107 |5 1.123 [ 0.7to-1.2 | 1.5x10°°
0.01 10% 16 309426 | -1.3t6-05 | 1.6x10°° |7 5.469 | -1.3ta-05 | 1.2x107¢

Table 3.1 Signify that by using the proposed hybrid scheme the time end obtained total
squared residual €7, can be considerably reduced. We can introduce further embedding para-
meters in these solutions to gain more efficient results.




3.5 Results and analysis

In figures 1 and 2 the effects of Young's modulus E of on the wave elevation ¢ (X} under a floating
elastic plate are studied. which shows the change in {(X) for different values of E = 10%, 10° and
104

As it is clear from figures 1 and 2 that the nonlinear hydroelastic response of the waves
becomes flatter at the crest and steeper at the trough due to the larger value of Young's
modulus F .It is clear that larger E reduces the plate deflection ¢(X).

And in figures 3 and 4 the effects of plate thickness d on the several displacements {(X)
under a floating elastic plate are studied.which shows the change in {(X)} for different values
of d.It is observed that by increasing d from 0,001 to 0.01. the nonlinear hydroelastic response
of the waves becomes flatter at the crest and steeper at the trough due to increase in plate
thickness ¢ .Particularly when the plate thickness is nearly equal to zero, the wave becomes
pure gravity wave as observed in [9).

Let P.E. be the mean potential density per unit length in the X-axis. In terms of the wave
surface elevation function, the energy demsity can be written as

2m
PE= I:? fn ¢ (X)dX. (3.44)

These figures indicates that the results are very similar to the theory of nonlinear hydroelas-
tic waves beneath a floating ice sheet. Also by Genetic algorithm and Nelder mead method
results are compared as shown in Table 3.1.

Which further shows the validity of results.
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Figure 3,1 Change of the plate deflection {(X) near the crest against X for different Young's
modulus of the plate E. Solid line E = 10® dashed line E = 10° dashdot-dotted line £ = 10'°,

Figure 3.2 Change of the plate deflection {{X) near the trough against X for different
Young's modulus of the plate E. Solid line E = 10® dashed line E = 10° dashdot-dotted line
E =100,




i

.4‘,

Figure 3.3 Change of the plate deflection {(X) near the crest against X for different plate
thicknesses d .Solid line ¢ = 0.001, dashed line d = 0.005, deshdot-dotted line d = 0.0,

Figure 3.4 Change of the plate deflection {(X) near the trough against X for different plate
thicknesses d .Solid line d = 0.001, dashed line, 4 = 0.005, dashdot-dotted line d = (.01.
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3.6 Conclusions

In this chapter the nonlinear hydroelastic waves propagating beneath a two dimensional infinite
elestic plate floating on & fluid of finite depth are investigated analytically by the HAM.

From kinematic and dynamic boundary conditions at a constant velocity in a fluid of finite
depth the PDE’s in (3.20),(3.21) and (3.22) are obtained by simple elimination of the time
dependent terms.

Here for & general case it should be noted that ,when traveling wave method is directly ap-
plied to transfer the temporal differentiation into the spatial one in a fixed Cartesian coordinate
OXZ PDE’s are constructed. Furthermore, the convergent homotopy series solutions for the
PDE'’s are derived by the HAM with the optimal convergence control parameter.

Also influences of the Young's modulus E and thickness d of the plate on the plate deflection
¢(X) are jnvestigated. The plate deflections become lower by the increase in Young's modulus
E of the plate.The plate thickness d greatly effects the hydroelasticity of the plate. The results
obtained here express that the hydroelasticity of ice sheet effected by the thickness d of the
plate and Young’s modulus E of the incident wave.Which is proved in the theory of nonlinear
hydroelastic waves beneath a floating ice sheet in a fluid of finite depth [10].
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