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Preface

In recent decades, the ice-cover in the polar region has atfracted more and more atte,ntion in

the field of ocean engineering and polar engineering in view of their practical imFortance

and theoretical investigations. One of the most imFortant problems in this field would

appear to be the accurate measurement of the characteristics of nonlinear hydroelastic

waves haveling beneath a floating ice sheet. And such waves may have been generated in

the ice cover itself by the wind, or may have originated by a moving load on the ice sheets.

The nonlinear hy&oelastic waves propagating beneath floating ice sheet on an inviscid fluid

of finite depth were first investigated analytically by A.G. Greenhill[]

The equation that governs the motion of nonlinear hydroelastic waves in incompressible

fluid under an elastic sheet is nonlinear hydroelastic wave equation. The propagation of

waves of finite amplitude on the surface of an ocean under ice, regarding the ice sheet as an

elastic shell. And when we studied it is assumed tbroughout that there are no frictional

forces between the sheet and the fluid beneath. Hydroelastic waves are the waves

propagating on sheets of fluid of finite depth that are bounded by elastic plates. The fluid

motion is assumed to be both inviscid and inotational. Two elastic plates sandwich a layer

of moving fluid and deform according to the dpamic pressure exerted by the fluid. A

comprehensive summary on mathematical method and modeling for the problem can be

found in some review articles such as Squire et al [2]. Motivated by the above facts the aim

of the present dissertation is to find the series solution of nonlinear hydroelastic waves

equation in a fluid of finite depth. The dissertation is stnrctured as follows:

Chapters I is intoductory and provide reader the basic terminology and equations of fluid

flow. The results of Ping Wang [3,4] are reproduced with full mathematical details in

chapter 2 and Chapter 3. tn these chapters we investigate the motion of nonlinear

hydroelastic waves under an ice sheet lying over an incompressible inviscid fluid of finite

uniform depth by the regular perturbation and Homotopy analysis method (HAM).

Graphical results are presented in order to see the that how Young's modulus of the plate

increases, the wave elevation becomes lower, and the increasing thiclness of the plate

flattens the crest and sharpens the trough of the wave profile.The results obtained here

demonstate that Young's modulus and the thickness of the sheet have important effects on

the energy and the profile of nonlinear hydroelastic waves under an ice sheet floating on a

fluid of finite depth.
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Chapter 1

Preliminaries

This chapter include some basic definitions and governing equations relevant to the material

presented in the zubsequent .hapters and idea of Homotopy analysis method is presented for

the better understanding of readers.

1.1 Fluid

Fluid is a substance or material that deforms or flows continously when shear stress applied to

it, no matter how small the stress may be, fluids include liquids and gases. For exa,mple water,

milk and blood.

1..2 Fluid mechanics

Fluid mechanics is a well known branch of continuum mechanics. It is usually deals with the

behavior of fluids.in the states of rest and motion and its sfiects on bound.aries is }aonrn as fluid

mechanics. Fluid mechanics has mainly three types.

Fluid statics: It is the study of fluids at rest.

Fluid kinematics: The study of fluids which are in motion.

Fluid dytramics: The study of the efiect of force on the fluid motion. which deals with the

properbies of stationary and moving fluids.



L.3 Fluid d5marnics

Fluid dyna,rnics is a sub discipline of fluid medanics that deals with fluid flow, the natural

science of fluids (liquids and gases ) in motion. It has several sub disciplines itself those are

Aerodynamics: (the study of air and other gase in motion)

Hydrodynamics: (the study of liquids in motion).

1.3.1 Hydrodynarnics

It is the study of liquids in motion. Specifically, it looks at the ways difierent forces a,fiect the

monement of liquids. A series of equations explein hovr the conservation laws of mass, energy,

and momentum apply to liquids, particularly those that are not compressed..

L.3.2 Nonlinear hydroelastic wave

One of the most important problems in this field would appear to be the accurate measurement

of the cha.racteristics of nonlinear hydroelstic waves traveling beneath a floating ice sheet. And

such waves may have been gene.rated in the ice cover itself by the wind, or may have originated

by a moving load on the ice sheets. The nonlinear hydroelastic waves propagating beneath

floating ice sheet on an inviscid fluid of ffnite depth were first investigated analytically by A.G.

Greenhill [1].

1.3.3 Nonlinear hydroelastic yraves equation

The equation that govera the motion of nonlinear hydroelastic waves in incompressible fluid

under an ela^qtic sheet is called nonlinear hydroelastic wave equation-

1.4 Characteristics of fluid

1.4.1 Prssure

The a,mount of force per rrnit area is loown as pressure. If P is the pressure then mathematicaly

it can be written as

,_F': a' (1'1)

a1

sf



1,4.2 I}€udty

Itc nrn pc 'rrrlt rotrnm d ttG fuid b ftrila r deoeity d thst ftdd" It ir dooted by p aod

rnrtfpmrti+dy t aln cprgls it as

6m
$r

1.4.8 fnr^"r{ty

Virnttyh dGfitradrthe Exuuro dre#eooro{a ffuitto bcitrgdcfurnrd byatern*l Etrge
or dthu by &lrr*!mt It b unrlly th,h ar sthifuffi q ruirtrre to flou/. It iB deooted

by p md &doad re
.ftr rd;rann:W,

whrri p bf th dlrnemirm lMlLT1.

l.*4 ICUmfc drcodty

Ltn me$e vircofif L rt t€d lr thc ratbof $rolute vh6itl, to dodt, and b givm ar

u:;, (1.4)

Thc db of +hremetic vitpmitr b art/r cr Stdo (St) *d tbc diuosion of kiametic
vbcodty h {e?-rl-

1.4[ D:rffir*rco*ty
Abaoluto vhEdty e Qrrrmio rimsity h r qauc o( tho int€sgrl rdateoce. DSraanic (e6'

r*lts) viscaity b th taald.l forcc F rait am rqrfud to norp m bonizontal plene

*nif rf*t to tbo othr * ulit udoct$ rh uaicdd e unit dduoe rport by ths fuid.
MrPtrdrilftlh it c.'. bc rdtto es

(1.5)

Thc dfaroic vhdty untt! in 8I qr;ta s jyc/m, c &g/mr, i.a,

LPoa - lltt/,# :ltfllmt.

P' [n
.d

(1.2)

I

TP=w
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In CGS ry$o it era bG dcdrbGd u glanu, Sw {alr,, m Poire(p), i-c.,

lPo*,c: htrutftm, = glw : Llllpa = ULONly'mz.

l,L$ ghrr *rr
A S.rs stru Ldrfiad g thc srmpoacd dG$G:B oplrnar with a nrtcid crosE Estbn

l.E flrpea of fuldt

nuids a'a icdt iE &r EdD typa nhich cu bc orpud u folloring

1.5.1 ldd G,fi

Tho fuid rit& no rfocdty (f = 0), ir gmsy cooddeced rs ar idd fuH aod tbc Edioo
of it i8 eiilGd d lhd r iuvircid. In aE t t#l !ou, thils b no exietcaa of $rr force beaeeurB

sf nnH$qgri.s$ty, i"e.

(N l3:0,

1.5.2 R&l f,uid.

Ttre ng&rU* pH ED vi!o+ (p # 0), in loo*a as rcd fuidr. tlinoc bv n3rtonp
h dviuiby, r Ls?c

&tru= $6'
wkt ro ir tta Gar *ru on e frrid ffnce in tb c dretim rt I dh,tane 9 frrom the

q$q p is tha yirdty of fud.od t b t&r rrtc of d&rnation

1.6.t Iihrtmhn fluid

Ncrwtqilrl ftdd b the fluid wttoh haw lbrr rdrtim bctsuo ftfrr dilu rnd rrte of Etrain.

It caa dD b. d.8t!d as rf'tull rhich ho&L ltsrterr law of virmdgr ir cell€d Nertoatan

Cuid. ldrthifficrb it crn bc dcribcd r

'=pfr=0, (1.6)

v

(1.7)

dtttl: F6,

7

(1.8)



v

where r* is the shear stress, p is the viscosity of the fluid, c is the direction of the flow and

y is perpendicular to the flow. Water, gasoline, air and glecrine exhibits Neurtonian behavior.

1.5.4 Non-Newtonian fluid

Non-uewtonian fluids are thos fluids in which shear stress is directly but non linearly propor-

tional to the rate of deformation. It can also be stated as ttFluid which obey power law modelr.

Mathematically it can be represented as

ttU , n*l (1.e)

/ d.u\r,s:T\A), (1.10)

where , : (#)"-' i, ,h" viscosity which is the function of deformation. Exa.rnples of Non-

Neurtonian fluids.are toothpaste, blood, ketchup, paint, dritlirg muds and biological fluids.

1.5.5 Compressible fluids

Compressible fluids are those in which fluid density changes with the change in pressure or

temperature. In general, all gasses are treated as compressibre fluids.

1.5.6 Incompressible fluids

Incompressible fluids are those in which fluid density lsmoins iadependent of the presrirue or
temperature.

L.6 Qlpes of flow

1.6.1 Steady flow

Steady flow is defined as the type of flow in which fluid characteristics like velocity, pres-

sure,density etc at a point do not change with respect to time.

(r#)"

11



L.6.2 Unsteady flow

If at any point in the fluid, the conditions change with respect to time, the flow is knonrn as

rrnsteady.

1.6.3 Uniform flow

Uniform flow c'n be defined as if the rrelocity of the fluid has the sane magnitude and direction

at every point in the fluid.

1.6.4 Non-uniform flow

If the velocity of the fluid does not have the same magnitude and direction at every point in

the fluid is called as non-uniform flour.

L.6.5 Lnrninar.flow or Strearn flow

Lnminar floc/ is defircd as when fluid flows in parallel layers such that there is no disruption.

In laminar flow, the velocity of the fluid at each point does not change in magnitude as well as

in direction. Examples include flow of air over an aircra.ft wing.

1.6.6 T\rrbulent flow

It is a flow in which fluid undergoes irregular fluctuations as compared to la.minar flow. In
turbulent flow, the velocity of fluid at each point contimrously changes both in magnitude and

direction. Exa,mples are floqr over a golf batl and smoke rising from cigeratte.

1.6.7 Compresible flow

Qempressible flow is that flow in which the deasity of the fluid changes during the flow and

viscosity of the fluid increases with temperature. All gases axe compressible fluids.

1.6.8 Incompressible flow

The flow in which the density of the fluid does not chAnge during the flow and viscosity of fluid

decreases with temperature is knourn as incompressible flonr. All liquids are iacompressible



luidl.

1.6.0 Rot*t*rrrl flm

Fbr d e ffuid-h *hhh t}rc erul of the Euld *lbcity h aot zero, ao thrt eeeh mlnuto Frrticb
of fuid rot*tc rbq$ itr ora r*iB. AJso Iw[ ar rotetinnrl motion Mr&arnatically it can be

fuibed es

V xY #0, (l.ll)

1.0.10 lrrt*rClmd 0m

Flow sf r ffid fu ubich thc crrl of ths 0ilid ydocity fu so h loola r irrdatiml fuw of the

f,uid

Itld.l:Erticdty it cao bc dribed r

VxI/=0, (1.1s)

1.0.1r \bdioilty

In dEPlo umrde, vortictry b tb" mtrtin d th6 fuid" Thc ratc of rotrtio of fuid carr b€

srpsui ac*nu rn1a.

u*mfo
u=9 xV, (1.13)

1.7 BEtc es€rning €qucth
It thil fftbn thc !a6d fua dcquatiu lsrrroiry thc flor of a 0uH lle peated h usnel

lotrfro, TbEe imhde

f .7.1 ftr fmcgl proUlcm of rrvl rnotion

The probltul rHtL re hrve to rehe, io dt ffidir of sur m irroteffimrl rnd incomprccibb
ffAr, rtthEr ttafiB of pmpr;lsng rrrar r rtrodiag f,iu c g,*raring alpscts of pop.
tGd&' afungoo, tEflEti@ c n&rsrlfrm L to solc t dloe ory.tfuo" Ttso tbe gorffiblng

lt,



cqustioos for a udoc*y pdcotid g{t,z,tl eru be writtcu ae

vt = #.* =q (-,r < z ( ((c, r)),

whar (r,t) h vrue ffihoe cbrntim.

(1.14)

(1.15)

(1.16)

1,7.2 Tha omfin$ty €$Etlon:

Codfudty cqtrrfm h tbe urtbrmrticd fos h d mmnttoo of mess aod math-

emrticr,lly it irdrrlbed ar

ff **4r.D : q

rrtGte lr i tb rGlaity fidd If dEdW ? rurilol @EttcEt with rryd to tire and cpoe
th fu immpe*Ulc f,m, r hare

divV - 0. (1.16)

I.t AuCtry Cmdttons

1.E.1 Kh*n$h hodffiy corffibn

If t ftE$;qrsdo b rdimt to r boundry thar 1s uurt iap* r fir.,$tion yhirb liob th
tslocfty of qt togrry to the* of thc DrSe on t[e uo ]oova rErfrEG 7 : ((x,t\. This b
tusim u th ffi*c bouadgy conffiion *ilch io

a( . at€( 0J
-4-i:-;--:-i)_e' tutu At-' (1.17)

l.e2 Ptrnrmie Umn*uy condtshn

Itc d!l[3dc bffidrry condtixr rt thG i.rufir L tbrt thc gt oqu& thB octuis
rttnoryta* FiillrnB: p - fi{elnr0}. c z - ((a,t}, ro thr dyrric UunAary ffidili6
bffi

ff * fe+ *3 *e(:0.Y
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1-.9 Homotopy

A homotopy between two continuous firnctions .f and g from a topological space X to a tope

logicalspaceYisdefinedtobeacontinuousfirnctionHzXx[0,1] --+yfromtheproduct

of the space x with the unit intenral [0, l] to Y zuch that, if r e x then rr(c,O) : /(c) and

H(t,l): s(n).

L.9.1 Homotopy anal5rsis method (HAM)

It is a general anatytical approach for obtaining appro<imate series solutions to nonlinear

dieerential Equation. Based on the homotopy analysis method (HAM) which has been suc-

cessfirlly applied to solve many types of problems The homotopy analysis method (HAM) was

first described by Liao [5] in his PhD dissertation in 1.992. For a given nonlinear difierential

equation.

N[z(c)] :0,oeg. (1.1e)

where iV is a nonlinear operator and z(c) is a unknourn function, Liao [7] constructed a one-

paremeter family of equations iu the embedding para,meter q € [0,1], called the zeroth-order

deformation equation

(1 - q)L[(a;d - u"(n)l+ civ[(o; s)] : 0, c € O, q € [0, l]. (1.20)

where .L is an auxiliary linear operator and uo(s) is an initial guess.In theory, the homotopy

provides us much larger freedom to choose both of the auxiliary linear operator .L and the

intial guess At g - 0 andq: l, we have(o;0) : u6(c) and (c; l): u(x), respectively.So, as

the embedrling para,meterg c [0,l]increases from0 to 1, the solution (o;q) of the zeroth-order

deformation equations varies (or deforms) from the idtial guess q(c) to the exact solution

u(n) of. the original nonlinear differential equationrV[z(r)] : O.

Since (c;q) is also dependent upon the embedding para,meter c € [0, U, we can e:rpand it
into the Maclaurin series with respect to

$@;il: uo(c) *luo(t)q*.

L2

(1,.21)



\R"

called the homotopy-Maclaurin series. Note that we have ortremely large freedom to choose

the auxiliary linear operator .L and the initial guess z0(o). Ass,ming that, the auxiliary lin-

ear operator .L and the initial guess ug(o) are so properly chosen that the above homotopy-

Maclaurin series converges at q:1, we have the socalled homotopy-series solution

u(o) : us(o) +D""@,

which satisfies the original equation N[z(c)] : 0, as prorred by Liao

Herc,*(x) is governed by the so.called high-order deformation equation

L[t -(o) - Xnun-r(a)] : -6"-r(c).

where Xp equals to I when & > 2 but zero otherwise, e.nd

(1.22)

[19,20] in general

(1.23)

(1.24)

The high-order deformation equation (1.10) is always linear with the knovrn term on the
right-hand side, therefore is ea,sy to solve, as long as we choose the auxiliary linear operator .t
properly.

1.9.2 Homotopy perturbation method (HpM)

Consider the following nonlinear differential equation

L(u(r))+ iv(u(r)) : 0 r € O. (1.25)

with the boundary condition

d6(z): **.xP.

, (,,#,...) :0, r € r.

i

(1.26)

where 'L is a linea,r operator, N is a nonlinear operator, f is the boundary of domain O, B is a
boundary operator, *d # denotes difierential along the normal drawn outwards from O.

By meq"s of IrPM, a homotopy for equatiou (1.12) is constructed as folows:

13



T:!,eiFw+.ffi re'-F

We omrtruct. rrr tmotryy hr equrtho (1.12) r h[ows

H(o,pj = &(u) - e(o) + r(r(tr) + Eo(r, Co)r(n))

3 (1.32)

(1.$3)

rt€GE &(r,G) frr d = 0,1,...is m urxiErry functho, aod q b r rrcctor of tmloocm

oorstlfi. BVrtr#qf the cocfirids of th rc pomn of p in cry$iou (f.20), urc ob,tain

d'r(q)-f,(tt)=0. (1.e4)

y' 
' 
f,(tr) + e(rt) +,no(r, Cb) rv(tt) : 0. (1.36)

f , I4orl+ Kr(r, Alfff* ,r :0.

mdrc An Thc fucfimo KorKr,...are nd uQre eod cra bc chm r thc rrrne form 6f

m tln r6rcfkr lr. Tha mtt# G thrt ryDur in tbc frnstim Kilr,Ci\ can be optirrtty

dctuoined !f $*6ffiU tbc fuEoinS reirtnl hcticd

I = f (r(rrr) + IY(ur))rdr. (1.37)

IA.EG c rnd D go tra vrhE armOing o tb SivGo Frobl@,, rod nlyy is ths Mth.order

g|lUM.eion, rti.h e be mitta r

u = o(o) * ogsg *... + u(rr). (1-38)

Onee tbc p.8d6 dd L fDG/a" tbc rclutha of mlire difirentirl qnilSm in equrtim

(LIA dJ** h tb, Uosaery ecdtb lftto b qutln (l.lg) .*. bt tracdi*ety det€r-

Elnil

(1.s8)

rV(u) = Iv(u) [.+ +qXP b"o r+.... )
= rv(r). (ryf) tpa p+.... t
: /V(so) + ry[, q p+.... J

+p (rr(r, cr)#1: nur) + ... = o.
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1.9.4 Optimal homotopy as5rmptotic method (OIIAM)

We apply OHAM to the following differential equation

A(u(a))+g(a):0, ceW.

where D is real mrmber and the conesponding bouadary conditions are:

a(ua" \
\ 'a'' "' ) 

:o'

where .A is a general difierential operator, g(c) is a Loowa analytical

urknon'n function. equation (1.26) can therefore be written as follows:

L(u(r)) + s@) + N(u(c)) :0.

Construct a homotopy u: $(t,p): S x [0, 1] -+ ft which satisfies

(1.3e)

(1.40)

firnction, z(c) is an

(1.41)

(1.42)

(1.43)

H(d@,p),p): (1- p)IL(d@,p)) +e(z)l + H (p)

lA(0@,p)+g(c))l :0, p€ [0,1].

a(o{,,n),W):0.

='

II (p) i" a nonzero auxiliary function for p 10, fl(O) : 0, 6(s,p) is an un}oourn function

and p varies from 0 to 1. The solution 0@,p) varies from /(c,0) : tO(a) to the solution

6@,1) : u(s) equation (1.29) is called optimal homotopy eguation. Clearly, we have

p : 0 + H(6@,0),0) : L(d(o,0)) + g(c) : O. (t.M)

P : t + H($(r,l), 1) : U(t)lA@(o, 1)) + s(o)l : 0.

We choose aruciliary function H@) b the form

(1.45)

H(p):pDr*pDz*.... (1.46)

16



rhcuDr,.&,...utffi!t atr*Hchcrobcdrrcminedhtt6. nrpaudn8d(r,p,Dt)itrThybrb

Hi.r rtont p, *r obteiu
v

Q{c,p,Dr) - so (r) + i* tr, Dt + h+ ...Dr)1.
l=1

No*' mbc$Arthg:aquatbu (1.s{) lnte €rtfuDs. (1.20) & (1.9r) rd then equating the

oordsriffi of Ub nffis of A * obtainad tb rfuho. of rcsdh ord.r, &* q&r aud ecmd

*fu pelmr. h hrr ba obuvud thrt th. ffirrcrtoc of reric (1J{) dte€Gds upoo thc

arffi$y ffiitrffi h,Dt,..., lns cbtrin tlc jortning cqr$ioa of rc(a), g.au by oqrutbu

(1.29), .dd tbc gmabg €queffoo of rr1(r) L G,

.t (ur (c)) : DrrYo {t (r}), (1.18)

(1.47)

, (o,,#) = n

f, (nr (c) - t+-r (s)) : DrJVe (uo (z))

.E" 
[r*_, 

(z) + ry1_1 ( _ _,].1,,1__,,,, )]
Oorreapmding Uoudry cmdtiol rre

, (o, #,..) : o, & - t,8,... (1.50)

rv{d{*.lrPt)) : lvo(so{"ll * inr((uo,nr,...,u-))p-, i = 1,2,... (1.51)

nr2l

she IY-(q(r),ur(o),...,t-(s)) ir o&rH ty ryndas iV({c,l,Di)) in reric with

rql.c*to th.r,nsdeg prnaatrp rnd t(+pDr) tr gtEo il equrfu (1.8U. It thoutd he

*Hf-t*r* * lil'* > 0 rrl prncd tr tb lhrr aqu*imr (1.il9), (trJA* & (13{} ritL
Af fffl"*srfrry Goldti{ru t&rt comr fu orfiInrl poblo, uhid ro ba ndy toil,ld.

fU m6u 6f the illtr h oqurahi (t.!1) &pcndr upon tDr rdiiry oonriaotr

Du4r.... If fr L oonrefnt at p: l, w g3t

IT
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\=

u(t,Di): uo (c) *jur(r,D;).
ft>1

The solution of equation (1.26) can be determined approximately in the form

u(*) (n,Di) : uo@) +D"o@,D;), i:1,2,.-.,tu-
k=l

Substituting equation (1.38) into equation (1.26), yields the following residual

OJ AJ OJ

M: oD2: "':6il:*

R(n,D;) : t (ut"t @,Do\) + s@)+iv (u{-l @,Dn)), i : 1,2,...,ffi. (1.84)

lf. R(a,Di:0 then u@)(o,2r) happens to be the oract solution. Generally such case will

not arise for nonlinear problems, but we gsa minimize the functional

J (D): 
I,u 

*'(r,Di)d,x. (1.55)

The unknown eonstants Da (i: L,2,...m) can be optimally identified from the folowing

conditions

(1.52)

(1.53)

(1.56)

I

With these constants loown, the approximate solution (of order rn) in equation (1.38)

is well-determined. The constants D6 can be determined in another forms, for example, if

le6 e (a,b),i: L,2,... rn and substituting h into equation (1.39), we obtain the equation

R(h, D;) : R(k2, D;): ... : R&*, D;) : 0, i : 1,2, ...,m. (1.57)

1.L0 Genetic algorithm and Nelder mead method(GA & NM).

Genetic Algorithm is an optimization tool based on Darwinian evolution which has been devel-

oped in 1976, but its utilization in heat transfer problems is not been tested. In fact Genetic

Algorithm plays an imFortant role when multiple parameters are involved. The main procedure

is inspired by the Darwinian theory of evolution "The survival of the fittest." The Genetic Alge



gr

rithm is a random sea.rch technique. Major advantage of Genetic algorithm is that the demand

about computer memory for nonlinear problems is minimrrm. Genetic Algoritbm will be helpful

for future wen to get minimrrm and ma:<imum solutioDs to satisfy inequality relationships as

well. Ihere are five mein dscffiea points h the procedrue givren belon':

(1) Encoding technique (chromosome structr:re)

(a) Mechanism to encode solution

(2) Evaluation firnction (environmenQ

(a) Fituess firnction

(3) Selection procedure (cretiou)

( ) Generating ehrouosome dirrcrsity (evolution)

(a) Crmsover, mutation

(5) Para,meter settiup (practice and art)

(a) Te,rmination coudition

(b) (Random) initialization of populatiou

There are severral techniques for optimization like analyticaf approaeh, downhill simplor

method, gfadient desced, Nwtou's method and so on- Moreorrerr, the Nelder Mead method is

direct search simplor algorithm published iD 1965 and is one of the most widely used methods

for nonlinear unconstsa,ined optimiz.ation- The Nelder-Mead methofl yninimizs a nonlinear

function of n real variables without takiug any derivativo. The ftrnction is evaluated at each

point of the simplex structrlle formed bv (n+1) poitrts and the ve,rtoc with higbest value is

replaced by a new point with a lower nalue. It contimres until the minimrrrn value of firnction

is achierred. F\rrthermoro, in topological approach the non-zero auriliary para.meter which can

adjust and coutrol the aouvergence of the series solutions.[6,11]. The Genretic Algorithm and

Nelder Mead method is used ia order to find the optimum raluo of co .Also if minimizs ffus

residual square enot d{n.Which shocrs its validity aad great potential to solne the nonlinear

problems in science and cngineering [25]. h the forthcoming section we used this method to

illustrate the signfficance of optimal convergeuce contril para,meter ca ou the velocity potential

and wane deflection-

E'

g
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Chapter 2

Series solution of nonlinear

hydroelastic waves equation in a
thin elastic plate floating on a fluid

2.1. Introduction

The aim of this chapter is to revisit the work of Ping Wrng and LU Dong Qiang [3]. In this

&apter behaviour of the progressirrc waves is discussed with HAM. A convergent homotopy

series solution for the nodineax hydroelastic war/es is catculated with the help of leact squared

residual. AIso the dyna'nic effects of plate zuch as Youqg's modulus, thickness and density are

studied.

2.2 Mathametical formulation

Let us asflrme so infinits plate floating on An infinitely deep unater having thicloess d whie.h

produces nonlinear hydroelastic waves. Cartesian coordinates OXZ ercusually seleeted so that

the plate spread out to the infinity atong z-osi,s ard, z-o,si,s arrd, z :0 shoqrs the uninterrupted

plate water boundary. It is supposed that there is no cavitation betweeu water and plate .And

2 : ((a,t) is the deflection of plate. It is assured fluid is inviscid , incompressible and

inotational.S(a, z,t) is rrclocity poteutial which satisfies the Laplace equation.

=



t6.u
. .i.

C

8*.fft
frfi+#=O(c<((c,r)).

At drryfiffi ttc bomdrry €mditim b

(2.1)

H-o,('- -o)'

Bv thanrpfo*fuothrt rnyffEidpertidcrffi is iD botrr€m elastic phtc md watrarrfam

uiB rtIEIB o it"On tb unhrn plrto ntd iserfrcc 7 - ((t,t) tb Limatic borudary

{noditi@ b
0<.000< w Aa*frE E:n

rad drardc Uoraaary cosditi,ou i8

X.itvct'+f,*er=0.

(2.2)

(2.3)

r

(2.4)

*h!Fc ru(t$)ri rnd g erc phta ratr intcrfre pruule 
"fluid 

ffity aod grrvitationa,l

eoodrrrtion rcEfitisl&.By thc Xirthhofib*n tlmry .Fbr onsteut thiehc d and untfora

mrr dmoity p. d tb plde thG nhtiouhip bctru ph*c ddetioa C@,tl and prxrue p(c, ,)

tn viirr of Ktrchhd (hIGr Bcroonlli) bcrn tbtr, ir

n:D#+wtffi+d. (2.5)

wbse 14 = ft* i D : Ed+ry. Bv rirb*ltudng cqurtim (2.5) itro eqrrattoh (2.4 givos

ths full form of dtrtrc boundrry mditirn ar

#. i rva' +g(. i ['# .* (#f *,)] = o. (2.6)

ry tb mcEpt of tranling rrro mcthod ra hdepmdd rnriablc tranfrrmatioa b iutrG

drrcd s

X = kr -i,gt. (2.7',)

i,tift$ f 5 ftf, dgs.r ud r.r i, Egpla( fto#rcy of hcidcnt rrgraNsr Elocity pot@ti.l

*

t
L- *----__.. -..
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fimction $(a,z,t):${X,z) aad ths hydrrochrtic *ann p,ro6le C@,t): ((X) ue urcd.Fbr eim-

Dffflcttim by pfrttfu; dl oqudimr iato,t+'ry$mler frca folbring dmdonbm quaatitia

aro u*d

s' : kx, zt - hz,t'== {3r})}, t - ld, O' = #.
f = t4, u'=,rt5, ff = #, E : #.
PZ = 3,*i:+.

8+ .8tffi+#:0,(, < ((x)).

#=n1r- -o).

Ir vielr of (2.Q oD, z: C(X), (2.3) aad (AS) ue truffi into

-,#.## -p,:o

*# + ! + c* ["*# ** (.rS + r)] = o.

rrpmtii,Ely whem

,=L[(*)'.(#)J

"r$H *X - *# -,#-r*# - ## :o
gt

(2.8)

In ths E$codng ftumrdm the a*erbb dffihg dhanlmhs qrditi,! wiU be replaced.

Tl*[ tb d[oadmlrr equrtiut hr th€ vdoetty potGdid ale

+

(2.13)

A p.r6d qi*hdirm of eqreHm. (2.1U eud (Zl2) fp*s the Uorudrry oaditiorr m
r = ((X) rrfrtu

(2.11)

ts

(2.t4)



The velocity potential 6(X,z) and the plate deflection ((X) are derived by equations (2.9),

(2.10), (2.L2), and (2.14) in form of Series solutions for g(X,z) and ((X) *ill be derived based

on the HAM in the subsequent section.

2.3 Analytic approadr based on the homotopy analysis method

2.3.L Zeroth-order deformation equations

In view of the homotopy analysis method first of all let us assume a set of base fgnctions

and solution o<pressions as it seems impossible to presume the orpression forms for unloown

potential firnction and plate deflection. By physical background of progressive gravity wave

elevation on free surface, ( (X) can be written as

+@
( (x) : ! fr cos (ix) .

d:0

with a set of base firnctions {cos(iX),i > 0} where di is an nnknowr coefficient. Since it is
supposed that there is uo gap between the bottom surface of thin elastic plete and top surface

of the fluid la1,er. In view of linear wave theory solutions to the Laplace equation (2.g) can be

derived by the separation of nariables method. Therefore the plate deflection ((X) can also be

orpressed in the form as equation (2.15). Since the solution orpressiou of the potential function

is.

(2.15)

(2.16)

*o
0 (X, r) : I o, exp(kz) sin (iX) .

EL

In view of the solution oqtression (2.16) and the boundary condition (2.10) with a set of base

firnctions {eap(kz)sin(iX),i 2 0}, where ai is an unkuourn coefficient.The initial approximation

for potential function is given by.

do (X, z) : o,o:.orp(z) sin (X) .

where co,1 is an unlooryn coefficient. since

(2.17)
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i_ ' !"-'.--'"

a &(X) - o' (2.18)

IB vicr of Fl 6t initid epnsuduatkn fu {(X) to dmplih the nrbraqgcfrt rcluthu proce-

dure. Althorgb tte initn gu (e(X) ir ro. Brrod on tba nmtioolr tousdery oDditirn frr

oqusiiro! (2.12) tcd (t.f4), trlu mEnrr "F.fi*om lYl rod ff2 are ddmd

$It(X,z;c),rt(X;qll : r?dr$,r'd ,--EF-'
-s,rrLSFLEr)Tr-

Ivrt{(x;q},r(x,qr)t : *E#d +F+ ,W-'&hfet!f;ig) + U. (2.20)

F:i[(*)'.(#)'] (2.21)

Hrc ur flDdelry UrBr diffirl oprtr El is chm and g € p, U fo the embcdding

pnffttu iE tlrc EAH. Eere uolimr optrtn JVI boHr r linsar ofc:rior of O(X, ziq) B
giun bGh.

A F(x, ziq)l :rt%d * ofr 
(Lz;ql 

. e.n)

h vitil of [6,fl tht ro6uhs ftceuGocf b*d o tho lhcar rarrc t]my ir opprffirtaly
oldfoona i.e

alnrl (2.23)

Bf th {tmfft.tioo of cqpeth (2.n), ft6lrriligy lhaer opaata. t.Lsr tbc form as

Oil(X.zzal &f'

--*fr-*
81(X,ziql&r(X;e)

tq(x;el- ,aFr

k

B-

v



(2.u)

N* tb lirrr errrtc fc tbc srvu ftrar*lt g(X; g) h thr rcaliuroperator JV2, aoothsr

iodlrry th.ar opantcla s ftilhrr shm dr[0] : O

Elli* (x, z;qlt : &siP * 0* (Lz;q) 
.

4rta (x;e)t : {!#Fd . W + q(x;q).

*m
t (X, a;s) : 6 (X, r) + E C- (I,r)f.

t=l

*o
a (X; s) = (o (X) + f, (- (X, a) g-.

o-tr

(r.%)

r&ilt &[0] = O

Now for the ilmtL order d6rnation cqten the equetims (2.9), (2.10), (3.12),and (2.14),

*B the fea ar

(2.26)

@xl

(r - s)f,r [e{,t,as) - Cn (X,z)l : eelt [C(X,a;q),'r(X;s)I,(a : q(X;s)). (2.2E)

(l -q)&h{X;s)-(o(x}l =ssihh(x;s),o(X,r;s)], (z :q(Xidl. (8-I0}

By thc help of Tlytr rric for t{X,4g) ud +(X;l) at {:0, th. mt reluthnr ilX,zl
i|| (Jf) ftm initid ryptUnrtto fr(X,z) d (0(X) rod fr@ qurt&rur (2.2E) rud (ZB)

€EtGhhd.

(2.30)

(2.31)



(2.32)

Assurning that cs is right chosen in the series of equations (2.30) and (2.31) converges at

e : l, since by formal homotopy series solutions

{O*(x, z) ,e*(x)} : *#{o (x, zit) ,r V;d} at s : Q

+@
A (X; z) : O (X; z,!) : 6o(X,z) + D d*(X, r).

m:l

*o
( (x) : q (x;L): co (x) + D c* (x) .

m=l

And for the nth order approximation

4n
d(x, z) : do(x, z) + D d*(x, r) .

ttl:l

*o
((x):(o(x)+De,6).

r*l

(2.33)

(2.34)

(2.35)

(2.36)

iE 2.3.2 Deformation equations of high order

Here PDEs for the unknown firactions O*(X,z) and e*6) are calculated from the zeroth

order deformation equations. Substituting (2.30) and (2.31) into (2.26) and (2.27), and then

equating likepowers of the enbedding para,meter g.

(2.37)

oQ^(I,r) :0,(z_ _m).
0x

where m) I
By putting the suitable series into boundary conditions (2.2g) and

are as follows on. z :0

(2.38)

(2.29), two linear BCs

lh(6*)1"=o: co(f*-r* x,nS*-r -t.
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Ez(c,):cou9**r***(#.%+e--,) . e.4o)

where

srn-r : HrW t'Y,n-r-i,i)

s*:Trr%*'t*-r,;)

Al-r : -,@fa, .LH:*W *env*_v) *c*_t* rffi; **.,rfu;
and

A!*-t:,'fu +v*-,_f*rktW*r^%rl-,ofu -,r*.#-h**"
for

**: {9'* s::fl,->t 
Q'41')

we introduce an additional equation for the wave height If

i(*) - i(*o): H :2a. (2.42)

Here m and n a,re even and odd integers respectively and a is the <limensionless ernFlitude

of the plate deflection ((X). A" it is clea.r that equations (2.28) and (2.2g) hold on the unknown

bonndary firnction z : q(X;g) while equations (2.8g) and (2.40) hold or z :O.Hence the

equations (2.37) to (2.42) can be solved.
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2.3.3 Approximation and iteration of solutions

By applying the inverse linear operator !2 onequation (2.40) <r(X) can be calculated as follou,s:

(r(x) :f,Qao^ * coal,r) - ucoao,tcos(x). (2.43)

Here os,1 is stiU unlcnown which can be determined by equation (2.42) Now by the inverse

linear operatot .e1in equation (2.99), Lr(x,r) can easily be derived. since

-o,C10.1 : 
-.

'uq

h (X, z) : o,r:,exp(z) sin(X).

(2.M)

(2.45)

As 41,1 is still unloown which can be calculated with the help of @.AQ by eliminating the
secular tetm si'n(X). Now with the aid of first order approximations equations (2.8g) and (2. 0)

takes the form as

ez(X) : *(o* aco*Daco-doprr"o-ucoar,r)cos(X)

_ au(D - dprr2)
*lrl----_- u--l

6z(x, r) : *P exp(22)sin(2x) * az,te:a(z) sin(x).

Now for higher order unlnown functions 6*(x,z) and (,*(x) by follou,ing this approach
inffnifs order solutions can be obtained .It is also valuable to point out that these solutions will
keep the conviergence control para,meter c6.

2.3.4 Optimal convergence control parameter

Here two residual square errors of BCs (2.28) and (2.29) are defined, accorrring to Liao [7]
because optimal value of parameter 6 is required.

(2.46)
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v ,k: #*,* [d".,,),((x)] at x:ra,x.1z.

.,.*: h*,'' ldo.,z),((x)l at x:a'xf '
For X : #, M is the number of the discrete points.

Since total residual square error will be.

(2.47)

(2.48)

(2.4e),T: tk+ rL.

r
d

"rl\g
I

-L
[-.-

V-

For generali[ #: 0 the optimal convergenoe control parnrneter ca by the minimum of
the squared residual efl is oUtainea.

2.4 Results and analysis

In figures I and 2 the effects of Yo'ng's modulus .E of the plate on the wave elevation ((X)
under a floating elastic plate are studied.which shows the change in C(X) for difierent values of
E : 72822.7, L2822.8,and t2g2L.g.

As it is clear from figures I and 2 that the nonlinear hydroelastic resporurc of the wavies

becomss flatter at the crest and steeper at the trough due to the larger value of young,s

modulus E.
And in figures 3 and 4 the efiects of plate thickness d on the serreral d.isplacements ((X)

under a floating elastic plate are studied.which shovvs the change in C(X) for d.ifierent values

of d"It is obserraed that by increasi.g d from 0.005 to 0.02 the nonlinear hydroelastic response

of the wavies becomes flatter at the crest and steeper at the trough due to increase in plate
thickness d.

These figures indicates that the results are very similar to the theory of nonlinear hydroelas-

tic waves beneath a floating ice sheet.Which further shows the validity of resllts.
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Figure 2.1 Change of the plate deflection ((X) near the crest ags.inst X for difierent values

of Young's modulus of the plate E. Solid line, no plate condition, dashed line, E : LZ9127,

dashdotted line, E :12822.8, dashdot dotted line, .E :12g22.9.

Figure 2.2 C:hange of the plate deflection ((X) near the fleugh ageinst X young,s modulus

of the plate .8. Solid line, no plate condition, dashed line, .E : 12822.2, dash dotted line,

E :12822.8, dashdot-dotted line, E : tZBZ2.g.

g-2 3.0 4.0
x
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Figure 2'3 Change of the plate deflection ((X) near the cr€st ageinst X for difierent plate

thicloesses d. Solid line, no plate condition, dashed line, d:0.005, dash dotted line, d:0.01,
dashdot-dotted line, d, : 0.02.
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-o08

-oE
r,J\

{110

J).11 \.t'* ./\. '/
\.f

-\ -J',-{t12

Figure 2.4 Chaage of the plate deflection ((X) near the trough against X for difierent plate

thidmesses d. Solid line, no plate couditiou, da.shed line, d: 0.005, dashdotted line, d:0.01,
dashdot-dotted liae, d, : 0.02.

',r.
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2.5 Conclusions

In this chapter nonlinear hydroelastic wavies traveling ia 6 fhin elastic plate floating on a fluid

of finite depth is investigated analytically by the HAM. Mathematically. Both equations (2.1g)

and (2.20) there are linear operators for ((X) and d(X,r) As HAM gives us with great option

for the auxiliary linear operators. So the auxiliary linear operators .f1 and Jz are chosen

containing the derivatives of d(X, z) and ((X) respectirrely.By these auxiliary linear operators

calculation of nonlinear hydroelastic wa,ve propagation can be solved easily. AIso infuences of
trfus fsrrng's modulus .E and plate thidoess d on the plate deflection ((X) are investigated .The
plate deflections become lower as the Young's modulus .E of the plate increases.The hydroelastic

response of the plate is greatly affected by large plate thicloess d. The results obtained here

demonstrate that the thidrness d of the plate and Young's modulus E of the incident wave have

major efiects on the hydroelastic response of an ice sheet.
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Chapter 3

Series solution of nonlinear

hydroela,stic waves equation in a
fluid of finite depth

3.1 Introduction

The purpose of this chapter is to revisit the work of Ping Wang and Ztrnshui Cheng [4]. Io
this chapter the motion of nonlinear hydroelastic waves under an ice sheet lying over an in-
compressible inviscid fluid of finite depth is discussed by regular perturbation and Homotopy
analysis method.The nonlinear partial difierential equations (3.1) to (3.8) are composed of the
Laplace equation taken as the mein equation. The convergent homotopy series solutions for the
velocity potential and the wave surface elevation are formally derived by means of HAM lnder
the consideration of minimizillg the squared residual.The efiects of the water depth and two
important physical para.meters including Young's modllus and the thickness of the ice sheet on
the wave energr and its elevation are shown graphically. Discussion and conclusions are made
in Sections 3.4 and 3.b respectively.
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3.2 Mathametical formulation

Let us assume nonlineax hydroelastic waves traveling in sn inffnife elastic plate of thiclsaess d

floating on a fluid of ffnite depth h and. A rectangular coordinate OX Z isused, as the z - o,sis

points vertically upward, while z :0 denotes the undisturbed surface. By following Greenhill

model [l] It is assumed that the fluid is inviscid , incompressible and irrotational. Q(r, z,t) is

velocity potential whie.h satisfies the Laplace equation.

= 0, (-h I z 1e@,il). (3.1)

The boundary condition is

a20 . *6
-+-
02a ' 022

ff : o'(z: -h)'

By the supposition that any fluid particle which is in between elastic plate and water surface

will remain on it.On the unknown plate water interface z : C(t,t) the kinematic boundary
condition is

ae .00ac ad
d+do, E:u'

and dyna,mic boundary condition is

ff *f,o'a*T *ec: o' (3.4)

where p.(x,t)rp and g are plate water interface pressure,fluid density and gravitational
acceleration respectively.By the Kirc,hhoff bea,m theory .Fior constant thielrness d and uniform
me"s density p.of the plate the relationship beturcen plate deflection ((c, t) and pressure p,(2, t)
in view of Kirchhoff (Euler Bernoulli) bea,m theory is

(3.2)

(3.3)

(3.5)p": D#**"(# *d.

where rfle: Ped , D : ffi. By substituting equation (3.8) into equation (3.4) gives

the full form of dyna,mic boundary condition as
d

X . ;Fdp + sc + ! lr# * *" (#. r)]
u

-0. (3.6)



i\r'

By the concept of traveling wave method an independent variable transformation is intre
duced as

X:ka-wt.

(3.e)

(3.10)

(3.11)

(3.12)

(3.7)

where k is wave number and a,l is angula,r frequency of incident wane.Now velocity potential

firnction 6(t,z,t): d(x,z) and the hvdroelastic wave profire e@,0: c(x) are used.Then

the governing equation and the bottom boundary condition for the velocity potential a,re trans.
formed by

k'#.#:o,(-hSzs((x)).

#:''(': -n) '

In view of (3.7) o.n z: C(X), (g.g) and (3.6) are transformed into

-"#*r,##-ff:0.

-,# + t + sc + ! P*# * *. (,, ffi* r)] : o

respectively, where

f :;b'(#)'.w)1
A partial combination of equations. (3.10) and (3.11) gives the bor:ndary conditions on

z : e(X) as follows

,,# * n# - "# -7 Q*# * *.,,#) - *r#ffi :0. (s 18)

The velocity potential 0(X,z) and the wave surface elevation ((x) are derived by equations
(3'8), (3'9)' (3.11), and (3.l3) in form of Series solutions for g(X,z) and ((X) u,i1 be derived
in the subsequent section based by homotopy analysis method.

(3.8)

\.

d
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3.8 Analytic approadr based on the homotopy analysis method

8.3.1 Solutiou erqrression ard initial approximntiorL

First d all in homotolry anatyds method, set of base fiuctions and solution enrpremior ale

amumed-Sthic'h am used for rmlaowo solutions of the nonlinear hydroelastic waves probleu.

As it iB very difficult to deals with the orpression forus for rntrnowr potentiol fuactioa and
plate deflec,tion Since in view of pbrsical bac,kgrouadof the prue water wBves, the progressive

warrc elevation ((X) can be unitten as

+@

C(x) = Dp,*r ("x).
a:=O

(3.14)

es,

By a set of base frructions {im(ru.f,)ra >= 0}, whse fl, ue rrnkqrrqm coefficierte In the

case of plate cosered surfaco, dnco it is assuned thet there ie no space bertween bottom surface

of plate and top surface of fluid lapr-The upright disptacemmt of plate is periodic in the

X dircction Therefore, it is eJear thot C(X) can be enpressed in the above form (3.f4).Irx viss,
of liaear weve theory the sdutioDs of the Laplare equetion (3.8) by the separatiou of va,ria,bleo

Eethod can bs formd-Eere kinematic, dyaamic aod bormdary condition iu finito rrater depth

are usqd to obtain theee sdntions. $irce 6(X,z) becomsg

(3.16)

Now consid$ a set of base fuactiors {cnqhhzk(z + h)}/ 
"+qh(ra&Iz) sin(zff), a } 0}, wbere on are

urhoqrs coe'trciots. Eere potmtial fiuctim Q(X,z) ddued by (3,15) automatically eatisfieg

the gorcrniag eqtration (3.8) and the bottom boundary ondition (3.g). The equatious (8.14)

and (3.15) are the solution expressions of d(X,a) and ((X) respectively.Whie is impo*ant in
anolyde metfrod. Ia viem' of equations (3.9) and (S.f5), the initial appro:dmation for

potential filnsti@ is gtwu by

6o(x,r):or,rffisin(x). (s.16)

+o
6,(X,r) = Eo"

tel ffi:tu(,,x).

d'
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where og,1is nn unlmown coefficient, since

(o(x) :0. (3.17)

In view of [8,9] the initial appro:rimation for ((X) is zero. Accorrling to the equations (3.11)

and (3.13), two nonlinear operators llr and lV2 are defined in the subsequent section for analytic

series solution.

3.3.2 Continuous rrariation

The HAM depends orl An initial approcimation to the exact solution. Siuce based on the

nonlinear boundary conditions (3.11) and (3.13), two nonlinear operators lVr and /V2 are defined

as

V,'

Arr [o (x, ztq) ,tt(x;q)l : ureo:I,;4il * nY - "#
-z (o x^ 

tr'taff 
; 

q)- 
+,, *.ffi)

_lrznoaT:qilW (s.18)

Nzlq (X;q),a (X, z;q)) : -ru' Yi"d +.F + gtt (X;q)

.tlor^e\fid **"(",ffi.r)] (8.1e)

where

F:t[-,(#)'.(#)J
Here g e [0, t] is the embedrling para,meter of the homotopy analysis method. As orplained

by Liao, Qfigrrng and Tao et al [9, 10], iD homotopy analysis method the auriliary Iiaear operator
and the initial guess cA.n be chosen by errtremely large freedom. It is noted that both linear
terms of Q(X,z;q) and linear terms of n(X,il are all contalned in (8.18).Now based on the

(3.20)
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homotopy analysis method, by neglecting the linear terms in equation (3.13) and auxiliary

linear operator of Q(X,z;g) is so properly chosen,by means of the solution expression (3.15),

which is obtained as given below.

(3.21)

If angular frequency ar is given so an approximation can be chosen based on the linear wave

theory to simplify the subsequent reolution of the nonlinear pDEs as follows:

\frr@. (3.22)

Er Io (x, zi q)l : rzo2a !{rz; 
q\ 

* nEP

u:

v

Since the auxiliary linear operator in (8.21) can be simplified as

fi la (x, zi s)l : sk ra*h (kh) W * nWL. (3.23)

Here J1(0) : Q.

Since due to the weakly uoulinear effects there is a difierence between the actual frequency

r.; and linea.r dispersiou relation ws : \@@ upto some extent.Results are compared

with those obtained by the perturbation method. In view of Iinear operator of the wave profile

function q(X;q) and the nonlinear operator lVz, onother au:rilirary linea.r operator may be chosen

as

Ezh(x;oll:ffi.W+q(x;il. (3.24)

Here .f,2(0) : Q.

Now let c6 be a nonzero convergenoe control para,meter. It is noted that both c0 and g in the

HAM are arr:<iliary param.eters. Tnstead of the nonlinear PDEs (3.8), (3.9), (3.11), and (3.13)

the zeroth order deformation equations are constructed as

W.ry:,,((-h 1z.rt'n;dD.

ryW:0,(z--h).

(3.25)

(3.26)
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(t -q) filA(X,z;q) - do(X,z)l : qcsNl [o(X, zie),4(X;q)],(, : rt (X;q)) . (J.27)

(t - q) Lzh(X,z;q) -(o(X, z)l : qcsN2[O(X, z;q),q(X;q)|,(z : rt (X;s)). (A.28)

It is clear that two mapping functions @(X,z;q) and 4(X; q) of the original problem yary from

initial approximation do(X,z) and (o(X) to the oract solutions 6(X, z) and ((X). Since in view

of equations (3.27) and (3.28) the Taylor series of fr:nctions e(x, z;q) and q(x; q) at g -- 0 are

as follows

e (x, z;g) : oo (x, z) +i r*(x, z) q^.
m:l

rt(x;z): (o (x) + f C- (x,z)q*.
ttt:l

{O^(x, z) ,C*(x)} : *#{o (x, zie) ,Tt 6;d} at q : s.

As it is assumed that cs is chosen so properly that the series in (3.29) and (3.80) converges

at q:l,since homotopy series solutions will be as

Y

+m
Q(X;z) : tD (X;z,t) : do(X,z) + DO^(X,z).

tn=l
*o

C (x) : rt6;\: (o (X) + t C_ (x).
m:l

since at the nth order approximations

+tu

d(x,z) : do(x,r) + D d*(x,z).
tr7.__l

*o((x) : (o(x)+E(--(r.).
ttt:l

(3.2e)

(3.30)

(3.31)

(3.32)

(3.33)



As shown later in the following section, the unknown terms Q^(x, z) and (rr(x) are gov-

erued by the linear PDEs (3.34) to (g.g6).

3.3.3 Deformation equations of high order

Bv putting the homotopy Maclaurin series (3.29) and (3.30) into equations (8.28) and (3.26) the
deformation equations of high order for the rrnknown fiructions O*(X,z) and <*(X)are derived

directly from the deformation equatious of zeroth ord.er,and, then equating the like pourcrs of
sa[ed.ling para,meter g it follows that

where rn ) l.Note that, (D(X, z;q) at the,nknown surface z: q(X;q) may be orpressed

iu terms of the Taylor expansion at z:0 instead of z: q(X;q) since two linear boundary
conditions o:n z:0 are as follows

rzo2d*Jf,z) .t!# : o,(_h c z S o).

A# : o,(z:_h).

h (d^) at z : 0 : coAH; * X*S^_r -t.

Lz (e,*) : qAf,,-r. * (# . #+ C*_,) .

(3.34)

(3.35)

(3.36)

where

ErryW*^t*-r-t,t)

g^:\'1Uo* . *.,t*-i,i)

Al-r : -,oofl' .i$r*% *pne^-r-n) *(--r . +%-.ry%
and

Srn-l :

tr
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A?--t :,2 fu + ov ^* hrk fu *r,%, -7, r^k
for

,,?"%_nrn
p dxl

TN

E
d

dPndCrn-n

dx dx

(3.37)

It should be noted that (3.27) and (3.28) holds on the unknown boundary,z : rt(X;g) wbile
(3.35) and (3.36) hold ort z:0. F\rrthermore, the original uonlinear pDEs (8.1) to (B.b) are

transferred into an inffnifs uumber of linear decoupled high s1d61 deformation equations (8.84)

to (3'36). Namely, sven d*-r, C^-t, d* and (- can be obtaiued easily by mea.ns of the inverse

operators of the right hand sides of (3.35) and (3.36), respectively.The resulting expressions for

6* nd ern te presented to the second order ia the subsequent subsection.

3.3.4 First order and second order approximations.

(r (x) : 
llnon^ * corr|,r * kzqaf;,1tanh2 (he)l - uqao,rcos (x)

+$[nczl,, - k2roo|,rtarh2 (rae)] cos (2x). (3.38)

But now the coefficient as,1 in (3.16) is still unknown. So an additional equation to relate
the solutions with the wave height is introduced.

er(*o) - i(mn\: H. (3.3e)

Here rn and n a,re evetr and odd iutegers respectively and If is the warre height to the first
order based on the HAM.The solution of as,1 can be determined by the relation (3.3g) for the
wave height and its vertical displacement. Now by usins the inverse linear operator .f, in (B.gE),

(0.m < 1x*: lt',rn> 7.
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it is easy to get the solution of. Q1(X,z).

Hoo,1 : -M.
a

dr(x,z) : or,r*#sin(x) +

.ffiffiusin(2x)'
-H2 + H2k2t".'t2 thk)

t6skwcs [2tanh(hk) - tanh (2hk)l

\r

1:3

(3.40)

Now the solution of. ${Xrz) has oue unknown coefficient c1,1, which can be determined by

avoiding the secular term' sin(X) n 6z(X,z). It is uoted that all subsequent firnctions occur

recursinely. Since in view of the linear equations (3.35) and (3.36) to continue with the first
order appronimations

CzV) : Az,o * lzlcos(X) + gz,z.or(zx) + 92,scos(3x) + F2,4cos(4x) .

6z(X,z):o,,,q#sin(x)*o,,,Wsin(2x)*o,,,ry,,,k#!)lsin(3x)
*o',0%1f,# sin (ax) * *r,uffi sin (Ex) . (3.41)

where ai;istheithunknou,ucoefficient of Q;(X,z)and g;"iistheithunknowncoefficientof

(r(X).h order to obtain higher order fiructioas g*(X,z) and C*(X),f[s inffnifg order solutions

for physical model can be acquired by continuing this approach.

3.3.5 Optimal convergence control parameter.

As all model parameters in appro<imate series solutions are fixed, since there is still an ualoowu
convergence mntrol parnmeter cg which is used to guarantee the convergence of approximation

solutions. dgcol'ling to Liao Fl, it is the conrrergence control para,meter cs that essentially

difiers the homotopy analysis method from all other enabrtic methods. And the optimal value

of cs is determined by the minimrrm of the total squared residual efl of our nonlinear problem,

defined a.s

eT: e9,,+ e*. (3.42)
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where

v 1Mef : T;frE,* ly(x,z),((x)l at x:iax)z.
1Mel : T;.E,* [Q(x,r),((x)] at x:ilx)2. (3.43)

Herc M is the number of the discrete points atd X : fr.

v

For generalif #: 0 the optimal convergence control para,meter cs by the minimrrm ef
the squa.red residual efi is oUtainea.

3.4 Solutions by Genetic algorithm and Nelder mead method.

As in Homotopy Analysis Method we need. optimal convergence control parameter to select the

values and confirm the convergence of the problem.Figures 3.1 to 3.4 shows the effects of plate

deflection ((X) at difierent number of terms used in series solution.For range of M the total
squared residual efi is fo,nd by using equation (g.42) nview of (g.48).

Where i is the number of terms or iteratiors of the obtained solution.The total squared

residual el andoptimal convergeuce control parsmeter cs iB indicated in table 3.l.The aaalytical
solutions given in equations (3.35) and (3.36) are obtained by using Homotopy Analysis Method
and the embedrling para.meter is found using Genetic Algorithm and Nelder Mead method as

shown in Table 3.1.

Following are the para,meters used for Genetic Algorithm.

Population: Population type: Double vector

Creation fuuction: Uniform

Initial population: 100

Initial Range [0; 1]

gsaling firnction: Rank

Selection function: Stoetrastic uniform.

Reproduction: Elite Count: 10

Crossover fraction: 0.8
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Mutation firnction: Uniform

Rate: 0.01

Crossover firnction: Arithmetic.

Migration: Direction: Both

Fhaction 0.2

IntervaL 20

Hybrid function: None.

Stopping Critenia: Generation: 100

Time limit: inf

Fitneos limit: -inf

Tolerance: 10-6.

Tbble 8.1 Comparison of homotopic series solution and optimal series solution using Genetic

Algorithm and Nelder Mead method.

Table B.l Signify that by usiag the proposed hybrid scheme the time and obtained total

squared residual * "* be considerably reduced. We can irtroduce further 
"mlsdding 

paxa-

meters in these solutions to gain more efficient results.

\r'

Sertes sotuUon Homotopy analysls method Opdmal serles solutlon using Genedc

aleorithm and Nelder nread method

d E Iteraton Time Range/value Residua!

Error

Itention Time Range/value Residual

Error

0.(x)s 12822.7 5 1.263 -0.8 to -1.1 2.lxl0-t 2 0.Gr3 {.8 to -1.1 5.2x10-3

0.01 1282L8 10 95.t[43 -0.7 to -1.2 4.lxl0-3 5 t.263 -0.7 to -1.2 3.0x10{

0.02 t2822.9 16 296.182 -1.3 to -0.5 7.9x10-5 7 5.362 -1.3 to -0.5 t.9xl0{
0.001 1d 5 1.123 {1.8 to -1.1 2.5x10-r 2 0.11 {.8 to -1.1 l.19xl0-3

0.q)5 ld 10 109543 -0.7 to -1.2 7.1x10-3 5 L.123 -0.7 to -1.2 l.5xl0{
0.01 ld0 16 3@.426 -1.3 to {.5 l.6xlfr5 7 s.469 -1.3 to{.5 l.2xl0{

M



\-

u

3.5 Results and analysis

In figures 1 and 2 the effects of Young's modulus E of on the wave elevation ((X) under a floating

elastic plate are studied.which shows trfig rhange in C(X) for different values of. E :10E, l0e,and

1010.

As it is clear from figures L and 2 that the nonlinear hydroelastic resporse of the waves

becomes flatter at the crest and steeper at the trough due to the larger value of Young's

modulus E .It is clear that larger E reduces the plate deflection ((X).

And in figures 3 and 4 the efiects of plate thickness d on the several displacements C(X)

under a floating elastic plate are studied.which shows the change in C(X) for difierent values

of d.It is observed that by increasing d from 0.001 to 0.01. the nonlinear hydroelastic resporure

of the waves becomes flatter at the crest and steeper at the trough due to increase in plate

thidrness d .Particularly when the plate thidsness is nearly equal to zero, the wave becomes

pure gravity wave as observed in [9].

Let P.E. be the mean potential density per uuit length in the X-ards. In terms of the wave

surface elevation function, the energy density can be written as

P.E: h l'" ,, (x)dx. (3.44)

These figures indicates that the results are very sirnilar to the theory ofnonlinear hydroelas-

tic waves beneath a floating ice sheet. Also bD, Genetic algorithm and Nelder mead method

results are compaxed as shou'n in Table 3.1.

Which firther shows the ralidity of results.

r!?
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Figure 3.1 Change of the plate deflection ((X) near the crest against X for difierent Young's

moduhrs of the plate .8. Solid line E : 108 dashed line E : 10e dashdot-dotted line .E : 1010.

x

Figure 3.2 Change of the plate deflection ((X) near the trough egninst X for different

Young's modulus of the plate E. Solid line .E : 108 dashed line E : LOe dashdot-dotted line

E: 1010.

Qf

..'+-:---7"
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Figure 3.3 Change of the plate deflection ((X) uear the crest against X for difierent plate

thidrnesses d .Solid line d:0.001, dashed line d:0.005, dashdot-dotted line d:0.01.

x

Figure 3.4 Change of the plate deflectiotr ((X) near the trough against X for different plate

thiclnesses d .Solid line d:0.001, dashed line, d:0.005, dashdot-dotted line d:0.01.

\G'
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3.6 Conclusions

In this chapter the nonlinear hydroelastic waves propagating beneath a two dimensional infinite

elastic plate floating on a fluid of ffnite depth are investigated analytically by the IIAM.

Elom kiaematic and d5memig boundary conditions at a constant velocity in a fluid of finite

depth the PDE's in (3.20), (3.21) and (3.22) arc obtained by simple elimination of the time

dependent terms.

Here for a general case it should be noted that ,when traveling wave method is directly ap
plied to transfer the temporal difierentiation into the spatial one in a fixed Cartesian coordinate

OXZ PDE's are constructed. F\rrthermore, the convergent homotopy series solutions for the

PDE'8 are derived by the HAM with the optimal convergence control parn.meter.

Also influences of the Young's modulus .E and thicloess d of the plate on the plate deflection

((X) are investigated. The plate deflections become lower by the increase in Young's modglus

E of the plate.The plate thickness d greatly efiects the hydroelasticity of the plate. The results

obtained here o<press that the hydroelasticity of ice sheet effected by the thickness d of the

plate and ys rng's modulus E of the iocident wave.Which is proved in the theory of nonlinea.r

hydroelastic waves beneath a floating ice sheet in a fluid of ffnite depth [10].

rt'

48



!r

=

Bibliography

[1] A. C. Greenhill, Wave motion in hydrodyna,mics, The American Jourual of Mathematicg,

vol. 9, no.l, pp. 62 - 96(1886).

[2] v. A. squire, J. P. Duga.n, P. wadha,rns, p. J. Rottis and A. k" Liu, of ocean wanes and

sea ice, Annual Re,iew of Fluid Mechanics, voL zT, pp.ll5 - 168(1995).

[3] P. WroS and L. D Qiang, Analytic approrimatiou to nonlinear hydroelastic waves trarrcling

fu a, fhin elastic plete floating on a fluid, Phf'sics mechanics and astronomy, vol. 86, no.

lt, pp.2L70 - 2L77(2018).

[a] P. WrnS eadZ. Cteng, Nonliner hydroelastic waves beneth e floating ice sheet in a fluid

offfnite depth, Eindawi publications, vol. 13, no. 10, pp llb5 - 1169(2018).

[5] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear prob
lems, [Ph. D. Dissertatiel{ ghenghai Jiao Tong University (1gg2).

[6] S.J. Liao, Belond Perturbation: Introduction to the Eomotopy Analysis Method, Modern

Mechanics and Mathematics chapman and Hall cBC press 1st editiou (2003).

[4 S. J. Liao, Honotopy Aaalysis Method in Nonlinear Differential Equatious, Spriuger &
Eigher Education Press Eeidelberg C€rmany (2008).

[8] S. J. Uao, On the bomotopy multiple variahle method and its applications in the inter-
actions of nonlinear savity warr€s, Commtrnications iu Nonlinear Science and Numerical

Simulation rd. 16, uo 3, pp. LZIA- 1g09(2011).

[9] S. J. Liao and K. F. Gheung, Eomotopy analysis of nonlinear progressive waves in deep

water, Journal of Engineeriry Mathematics vol 48, no. 2, pp. 108 - 116(2008).



[21] J. M. Vanden Broeck and E. I. Parau, Twodime,nsional generalized solitary waves and

periodic waves under an ice sheet, Philosophical Tlansactions of the Royal Society A, vol.

369, no. 1947, pp. 2957 -2972(2071).

1221 J. H. He, An approrimate solutiou technique depending upon an artificial parameter,

Commuu. Nonlinear Sci. Numer. Simulat, vol3, no 2, pp.92 - 97.(1998).

[23] J. H. He, Newton like iteration method for solving algebraic equations, Commun nonlinear

sci numer simulat, vol 3, no 2, pp. 106 - 109(1998).

l24l V. Marinca and N. Herisanu, Application of Optimal homotopy asymptotic method for

solving nonlinear equations arising in heat transfer, Iuternational Communications in lleat

and Mass tansfer, vol 35, pp. 710 - 715(2008).

[25] N. E. Mastorakis, Numerical solution of Nonlinear ordinary difierential equations via collo-

cation method (Finite Elements) and Genetic algorithms, Proceedings of the 6th WSEAS

Int. Confer. on Evolu.Comput. Lisbon, Portugal pp. 36 - 42 (2005).

51


