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ABSTRACT

Compressed Sensing (CS) revolutionizes data acquisition by promising substantial

reductions in acquisition time while preseruing signal fidelity, particularly in Magnetic

Resonance Imaging (MRI), where conventional techniques often encounter prolonged

acquisition times and associated challenges. This thesis addresses these challenges by

efficient CS MRI reconstntction methods, aiming to transform medical imaging

through fasEr, morc cost-effective, and artifact-free scans. We introduce a novel

Kronecker Dela fi,rnction for smooth ls norm approximation, enhancing CS MRI and

one-dimensional sparse signal rccovery. Through a comprehensive comparative

analysis, various Kronecker Delta functions arc evaluated for their efficacy in signal

reconstruction. Additionally, we pKrpose a novel cost function combining ls and t1

norms, significantly improving reconstruction efficiency from limited observations.

Our method introduces a flexible approach for smooth 11 norm approximation and

shrinkage using hyperbolic tangent, facilitating proficient recoyery of sparse signals,

MRI, and Cardiac Cine MRI from undersampled data. Furthermore, a Nature-lnspired

Iterative Reweighted Shrinkage algorithm is proposed for MRI and sparse signal

rccovely, demonstrating substantial improvements over existing techniques.

Leveraging the synergr between CS and deep learning, we propose a computationally

efficient technique for CS MRI recovery, promising significant advancemenb in image

acquisition and reconstruction. This thesis contributes novel, computationally efficient

algorithms for CS recovery of one-dimensional sparse signals and their application in

MRI, while also exploring the poEntial of deep learning in cS MRI rccovery. These

findings have the potential to propel cs MRI rccovery forward, paving the way for

more efficient and accurate imaging techniques in diverse applications, particularly in

medical imaging. Additionally, the development of DISTA-csNet showcases

significant improvement in reducing MRI rccovery time, underscoring the

transformative potential of CS in medical imaging.
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CHAPTER 1

INTRODUCTION

The conventional method of converting analog signals into digial systems involves

sampling them at a frequency twice as high as the highest frequency component found in

the continuous signal. This rate of sampling was established by the Nyquist crireria The

theorem demonstrafed that sampling the continuous signal under the prescribed rate resulb

in aliasing artefacts during the process of converting the sampled data back into an analog

signal. These artefacts cause the loss of information contained in the original signal.

Since then, significant progress has been made to reduce the data volume in the digital

domain by leveraging signal redundancy following daa acquisition. One approach to

achieve compression involves transforming a signal or image into a domain that highlighb

sparse information, where most ofthe signal's contents afie concentrated. Compression can

be accomplished by selectively discarding elements with less significant information while

maintaining efficient signal reconstruction. For instance, commonly employed image

comprcssion sumdards like JPEG and JPEG 2000 use the DCT, and wavelet transforms,

respectively, to use sparsity in images. These hansformations allow for the retention of

coefficienb with the largest amplitudes while smaller coefficients arr discarded.

Remarkably, the image can still be reconstructed with minimal perceptible deviation from

the ground huth image []. This method effectively decrcases the storage requirements for

a digital image. Howeyer, it's crucial to keep in mind that all pixels are collected in

acquisition pr)cess, and disregarding this acquired data adds a processing burden and

results in resoure wastage.

Researchers have introduced a novel sampling theory known as Compressed Sensing

(CS) that relies on signal sparsity instead of is murimum frequency. CS accurately

rcconstructs an image from a reduced set of incohercnt measurcmenE by talcing advantage

of ib sparse nature, exceeding the requirements of the Nyquist sampling theorern. Unlike

taditional approaches, CS achieves compression during the data acquisition stage itself,



instead of as a separate post-acquisition procedure. The samples obtained for a specific

image depend on the amount of information it conains. In many cases, the information rate

within an image is significantly lower than what is presented by ib frequency

content [2-5].

1.1 Motivation for CS MRI

Compressed Sensing (CS) finds its application in various domains such as data

compression [6], noise rcmoval [7], channel coding [t], radar array signal processing [9],

data acquisition [0], and solving inverse problems I l]. Since the inception of CS theory,

MRI has been recognized as a potential application. Two significant characteristics of MRI

that make it well-suited for CS. Firstly, the data acquisition Echnique in MRI involves

sampling in k-space rather than acquiring pixels individually. Secondly, MRIs naturally

exhibit sparsity when represented in a suitable domain, i.e., the Wavelet domain.

MRI is a vital diagnostic technique in contemporary medical care, relying on the

nuclear magnetic resonanoe phenomenon to provide high-quality soft tissue contrast in a

non-invasive manner without ionizing radiation like X-rays and CT scans. MRI is

particularly valuable for monitoring changes in oxygen saturation levels in the human

brain, assessing blood flow velocity, and measuring body temperatue.

Over the years, there have been significant improvements in the quality and speed of

MRL Research efforts have primarily focused on enhancing speed through hardware

mechanisms. Faster data acquisition techniques and improved pulse sequences have

contributed to increased imaging speed. Additionally, parallel imaging utilizing multiple

coils has substantially reduced scanning times. Techniques such as leaving k-space

encoding lines, although resulting in a reduced field of view (FOU and decrcased SN&

can speed up the scanning prrcess. Another approach involves exploiting the conjugate

symmetry in k-space through partial Fourier imaging. However, certain methods, such as

employlng high gradient amplitude with faster switching may lead to undesirable nerve

stimulation. However, due to physical limiations, hardware improvements have reached a

point where further reduction of MRI scan time is challenging. Since the sampling rate

during the data collection prccess directly relates to the amount of time an MRI scanner

rcquires, CS can be a key factor in speeding up scans. Less samples weIE collected in k-



space, CS, in combination with non-linear rcconstruction techniques, enabling high-quality

MRI recovery while decreasing the overall scan time ll2-281.

In recent times, there has been a surge of interest in employing deep learning

methodologies to enhance the reconstruction of Compressively Sampled Magnetic

Resonance lmaging (CS MRI) images from undersampled data. Convolutional Neural

Networks (CNNs), as a form ofdeep learning models, exhibit promise in capturing intricate

pattems and structurps within images. This inherent capability proves beneficial for the

reconstnrction of high-quality MR images. Researchers have dedicated efforts to tailor

deep leaming architectures specifically for CS MRI reconstruction. These architectures

undergo taining to comprehend the mapping between undersampled k-space data and fully

sampled MRI data. Through the utilization of extensive dataseb comprising matched,

undersampled, and fully-sampled data, these models strive to assimilate underlying image

structures and enhance reconstruction accumcy 129'311.

Deep learning methodologies in CS MRI recovery commonly embrace an end-to-end

learning framework. This implies that the network talces undersampled data as input and

directly produces a fully sampled image as output, bypassing inbrmediate steps like

iterative reconstruction. The adoption of an end-to-end learning approach not only

enhances efficiency but also tpduces computational complexity [32]. Researchers have

delved into diverse data augmentation techniques to artificially enlarge the haining dataset,

addressing the challenge posed by limited training data. These techniques encompass

random transformations, patch extraction, and simularcd undelsampling patterns.

Moreover, regularization techniques, including the integration of sparsity or total variation

constrainb, have been implemented to refine the generalization and reconstruction quality

of deep tearning models [33, 34]. Transfer learning, an approach involving the fine-tuning

of models pre-trained on extensive image datasets for CS MRI reconstruction, has been

explored to counteract the limited availability of annotated taining data. Pretraining CNN

models on vast datasets of natural images, such as ImageNe! enables the capture of general

image features that prove advantageous in CS MRI reconstruction tasks [35-37].

The advantages of deep learning for compressively sampled image recovery heralds a

transformative approach, primarily through significantly improved reconstruction

accuracy. These deep learning models excel in learning intricate patterns and features from

the data, enabling a faithful rccovery of compressed images. A notable advantage lies in



the reduction of sampling requirements; these models enable reliable reconstruction from

substantially fewer measur€ments, potentially expediting the image acquisition process.

The adaptability and generalization capabilities of these models across diverse imaging

scenarios further solidifr their advantages, ensuring robustness and high performance in

various conditions. Furthermore, their abillty to handle non-linear mappins between

compressed meaturements and the original image seb them apart from faditional methods,

paving the way for more accurate and effrcient image recovery without relying on

handcrafted feature extraction.

However, the implementation of deep learning for compressively sampled image

rccovery isn't without challenges. One significant drawback pertains to the substantial

computational complexity demanded during training, particularly when dealing with large

datasets and complex network architectures. Moreoyer, the heavy reliance on large and

diverse dataseb for effective training could result in poor generalization if the daa is

insufficient or biased. Additionally, the lack of explanation in deep learning models poses

a hurdle, as their operation often remains opaque, making it chdlenging to interpret the

decision-making process during image rEcovery. Addressing issues such as overfitting and

the sensitivity to hyperparameters is crucial to ftlly harness the potential of deep learning

in compressively sampled image rccovery applications.

1.2 Problem Statement

In contemporary clinical disease diagnosis, Biomedical Imaging plays a pivotal role, with

MRI and CT scans being increasingly relied upon by physicians. Despite their effectiveness

in detecting conditions such as tumours, heart weaknesses, and bone fractures, these

imaging techniques come with drawbacks. CT scans expose patients to potentially harmful

electromagnetic radiation, while Dynamic MRls necessitate lengthy image acquisition

times, inducing patient anxiety and claustrophobia To ensurc clear final MR images and

minimize artefacts caused by breathing and respiratory motion, patients often must remain

motionless and hold their breath during scans, necessitating sedation for children and

uncooperative patients. Compressed Sensing (CS) has emerged as a promising solution for

expediting image acquisition, generating high-quality images with fewer measurtments,

thus reducing patient exposure to radiation and scan duration. Howeyer, the computational

complexity of recovering images from fewer measurements presents challenges,



particularly in the nonlinear optimization involved in CS-based biomedical imaging

reconstruction. Conventional CS-based reconstruction algorithms are not optimized for

large datasets, exacerbating computational intensity and time consumption. This research

aims to enhance the efficiency of CS-based biomedical imaging reconstruction by

leveraging data parallelism and exploiting prcoessor hardware architecture. Efficient

utilization of computational resources, including parallel processing and optimization

Echniques, is essential to address these challenges and effectively recoyer compressively

sampled MRI using deep neural networks.

1.3 Research Objectives

The following arc the objectives of the research work:

o Develop novel complessed sensing recovery algorithms that enhance the efficiency

of recovering compt€ssively sampled biomedical images such as MRI and lD
sparse signals.

e Investigate the performance of combining the ls and 11 norm with regularized

smooth approximations to accelerate the recovery prccess compared to existing

cost functions of algorithms used in compressed sensing rccovery.

o Explore improved smooth approximations of the ls and 11 norm to enable the

application of gradient-based algorithms for finding optimal sparse solutions in the

compressed sensing recovery framework.

r Investigate the heuristic algorithms combined with a smooth approximation of 11

norm for the reconstruction of cs MRI and undersampled I D sparse signal.

o Invesfigrte and develop the nature-inspired algorithms in combination with

Iterative Shrinkage Algorithms for recovery of CS MRI and limited observations

of ID sparse signal.

o Modi& Iterative Shrinkage Algorithms (lSA) to optimise their suiability for

graphical processing units (GPUs) by utilizing parallel processing techniques that

can be applied in Deep Neural Networks cs MRJ recovery context.

o Explorc and develop deep neural network architectures specifically tailored for

compressive sensing rccovery, aiming to enhance the efliciency and accuracy of
image reconstruction from compressed measurcments.



1.4 Main Contributions

The motivation behind this work is to infoduce efficient reconstuction methods for

compressively sampled biomedical images, i.e., MRI, and to be able to use these algorithms

in the context of Machine Leaming based CS MRI reconsfuction. The proposed recovery

algorithms rety on iterative shrinkage methods based on smooth approximations of

sparsity-promoting norms such as ls and 11 roilrl which are particularly suitable for high

dimensional signals.

The following are the key contributions to our research work:

o This dissertation proposed a novel Kronecker Delta function for smooth

approximation of ls norm that efficiently recovers the undersampled lD signal

sparsesignalandCs.MRlcomparedtoprevioustechniques.

o In depth, performance analysis of different Kronecker Dela functions to

approximate sparsity promoting ts nonn for recovery of CS MRI and undersampled

lD sParse signal.

. The introduced novel cost function that combines smooth approximations of ls and

!1 nonn for recovery of undersampled lD sparse signal and MRI from fewer

observations in K-sPace.

r A novel method that approximates t1 nonn with smooth hyperbolic tangent

function. The smooth approximation in loss function allows us to apply gradient

descent-based optimisation techniques to find near-optimal solution ofthe inverse

problem posed by CS MRI recovery efficiently'

. The nature-inspired algorithm i.e., PSO has been combined with Iterative

Reweighted Least square (IRLS) method to recoYer cs MRI from undersampled

lc-space data and lD sparse signal from fewer observations. The proposed method

was evaluated with comprehensive experiments to tpcover lD sparse signal and

MRI accurately from undersampled data as compared to existing techniques'

o The heuristic smooth approximation of !1 norm is proposed to r€cover CS MRI

from undersampled k-space data and I D sparse signal. The proposed method was

assessed with extensive experimentation to recover lD sparse signal and MRJ

accurately from undersampled data compared to existing techniques.
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. The major contribution of this thesis is developing a novel deep neural network

dubbed as DISTA-CSNet that efficiently trains the model to efficiently rEcover

MRI from undersampled lc-space daE in significantly reduced time compared to

state-of-the-art methods in literature. The dropouts introduced in the proposed

DNN as a regularization method made the trained model more robust to different

datasets while testing it to three different datasets. The DISTA-CSNeI not only

recovered MR images more efficiently in the testing phase, but also improved the

aocuracy of the recovered CS MRI.

1.5 Thesis Organization

The rest of the thesis is orgranized as foflows:

In Chqter 2 introduce compressed sensing and their sparsifiing domains, with a

specific emphasis on their application in biomedical imaging, such as MRI. This chaprter

presenb an overview ofexisting deep-learning methods for recovering CS MRJ from fewer

samples k-space. Furthermore, a concise overview of the relevant literature is presented,

followed by an explanation of the quantitative measurEs employed in the recovery

algorithms for compressed sensing.

Chapter 3 reviews the existing Kronecker Delta smooth approximations of ls norm

and proposes a novel smooth approximation of Is norm. Since solving the 16 nonn

minimisation is a challenging combinatorial problem, researchers have proposed non-

linear recovery methods that employ smoothed approximations ofthe t6 rorr, which offers

computational efficiency. This chapter conducts an in-depth comparative analysis of five

versions of smoothed Is-norm firnctions. The existing smoothed ls-norm-based recovery

algorithm is modified and applied to r€construct CS MRI using these approximation

functions. The performance of each smoothed 16 norm approximation is extensively

evaluated for reconstructing compressively sampled I D sparse signals and 2D MRI (Brain)

data across various sampling rates.

Clapter 4 aims to ovelcome the non-differentiable nature of the 11 norm and the

inapplicability of gradient-based minimization algorithms, therc arises a necessity to

approximate the 11 norm using a smooth approximation. IST algorithms offer a proficient

approach to minimise 11 regularized LS optimizationproblems while inducing sparsity in

the solutions that is rcquired in compressive sensing (CS) recovery. This chapter presents



a novel recovery method that utilizes the tanhto reconstruct undersampled signalVimages

within the CS framework. The proposed approximates the 11 norm and soft thresholding

using hyperbolic tangent functions. We atso evaluate bounds for the error of the proposed

11 norm smooth approximation. To assess the efficiency of the proposed method, the

dataseS used consists of l-D sPase signals, CS MRJ, and Cardiac Cine MRI'

Clwpter J proposes a non-linear reconstruction technique based on smoothed

approximations of ls and 11 norms, which have been demonstrated to be computationally

effrcient. This technique is proposed for recovering spa$e signals by combining the ls and

11 noflns, enabling accurate reconstnrction of CS sparse signals. Empirical results indicate

that the proposed method outperforms traditional smooth approximations of the Is and 11

norms in terms of efficiencY.

Chapter 6 proposed a novel method for recovery of CS MRI and lD sparse signal

using nature-inspired iterative reweighted least square' This method combines the PSO

with the IRLS method. Through extensive experimentation, the performance of proposed

algorithm was evaluated, demonstating its ability to accurately l€cover both lD sparse

signals and MRI from undersampled data. The evatuation results rcvealed superior

performance compared to existing techniques for CS recovery'

ln chapter 7 we have proposed the novel heuristic smooth approximation of the 11

norm is introduced in this study for the recovery of cs MRI from undersampled k-space

data and lD sparse signals. The proposed method was thoroughly evaluated through

extensive experimentation to accurately rccover both lD sparse signals and MRI from

undersampled data. The assessment demonstrated the advantage of the above'mentioned

technique over existing methods in terms of achieving aocurate recovery in the context of

cs.

lnClwpter& a novel deep neural network called DISTA-CSNet is introduced, which

is specifically designed to efficiently train the model for the r€covery of MRI from

undersampled k-space data in a considerably reduced time relevant to existing state-of-the-

art algorithms. DISTA-CSNet demonstrates improved efficiency in the testing phase by

efficiently recovering MR images and enhancing the accuracy of the recovercd CS MRI'

The thesis concludes in Clapter 9, summarizing the key findings and contributions in

cs MRI rccovery. Potential future directions for further exploration and advancement in

this field are discussed. This includes identifying alpas for improvement, potential



extensions of existing techniques, and emerging rcsearch trends that could shape the firture

of CS MRJ recovery. By highlighting these firture directions, the thesis aims to inspire and

guide future research endeavours in advancing the field of CS MRI recovery and its

applications in medical imaging



CHAPTER 2

COMPRESSED SENSING IN MRI

Recently, significant advancement in sampling rates of modern analogue-to-digial

converterc. This has led to the realization that the data obtained fiom sampling natural

analogue signals is superfluous and can be compressed without a noticeable loss of quality.

Researchers have exploited this redundancy and developed various effective data

compression techniques, enabling efficient storage capacity and bandwidth utilization.

Many compression methods, such as JPEG and JPEG 2000, leverage signal and image

sparsity in specific domains. More recently, the emergence of CS theory suggests that the

data sampling prooess can achieve compression itself, rather than relying solely on post-

acquisition compression. CS finds application in scenarios where each measurement is

costly, sensor limi6tions exist, measurements take a long time (e.g., in MRI), and power

constraints are crucial, particularly in battery-powered devices. DNN has also shown

promise in the recovery of compressively sampled MRI from fewer samples in lc-space.

These networks can effectively reconstruct superior MRI from sparse measurements by

leveraging their powerful learning capabilities. This approach offers potential

advancements in efficient and accurate MRI recovery, leading to improved diagnostic

capabilities and reduced scanning time. This chapter provides a detailed description of CS

MRI theory, and its applicability in the DNN framework.

2.1 Intrcduction

Compressed sensing revolutionizes traditional signal processing by introducing a novel

approach to signal acquisition. It explois the well-known fact that many signals possess

sparsity in a suitable domain, allowing for effective comPrEssion during the data

acquisition prcoess. The conventional sampling method follows the Nyquist criteria [3t],

which needs a sampling frequency exceeding two times the maximum firquency

component present in the signal. However, to lower the sample rate without compromising

the accuracy ofthe restored data, researchers have looked for solutions. In a breakthrough

paper in 1967 1397, it was proposed that signals exhibiting sparsity after Fourier

l0



hansformation can be accurately sampled at a significantly lower rate using arbitrary

sampling schemes, deviating from the uniform sampling suggested by Nyquist.

hactical applications in fields such as image processing geophysics, and seismic wave

detection often involve signals that exhibit sparsity in specific bases. For instance, modern

cameras capture millions of pixels in digital ar,quisition, which can be efficiently

transformed into the wavelet domain. A few significant coefficients can accurately

reconstruct the image without noticeable quality loss in this domain. This example

highlighB that the required information to portray an image is much lower than its apparent

bandwidth suggests.

Compressed sensing brings about a paradigm shift in signal acquisition by linking the

required number of measurcments to the information rate instead of is bandwidth alone.

This innovative approach involves non-adaptive measurEment acquisition, wherc

correlations are established between the signal and random vectors 1ike Fourier or Gaussian

distriburcd matrices. When a signal exhibits sparsity in a known fansform and the under-

sampling process introduces noise-like aliasing artefacts, it becomes possible to recover

the signal using a reduced number of measurements faithfully. Nonlinear rccovery

techniques encourage sparsity and ensurp coherpnce with the acquired data, thereby

enhancing the efficiency and effectiveness of compressed sensing methods.

By leveraging the integral sparsity or comprcssion of signals, CS techniques have

revolutionized signal acquisition and recovery, making them more efficient and resource-

friendly. CS eliminaEs the need for excessive measurcments, rcducing acquisition time

and lowering data storage rcquirements. This makes CS particularly valuable in situations

where fiaditional Nyquist-based sampling approaches ane impractical or rcsource-

intensive.

The CS techniques are applied in various fields, including in the context ofcompressed

sensing MRI (CS MRI), which has opened new possibilities in various domains. cS MRJ

allows for efficient and accurate recovery of MRI from fewer measurements, reducing scan

times and improving overall efficiency. Machine learning techniques have been integrated

with CS MRJ to enhance performance. By incorporating machine learning algorithms, CS

MRI can effectively learn the underlying structures and patterns in the acquired samples,

resulting in improved reconstnrction quality and faster processing.

ll



The integration of CS MRI with machine learning holds great promise in advancing

medical imaging, wireless communications, and serunr networks' By combining the

benefits of compressed sensing with the capabilities of machine learning, we can achieve

morc accurate and efficient signal rccovety, leading to improved diagnoses, faster wireless

data nansmission, and enhanced performance of sensor networks in various applications'

The utilization of machine learning in CS MRI paves the way for further advancements

and breakthroughs in these fields [4, 15, l9]'

2.2 Comprcssed SamPling

We are interested in determining a solution x of length n for the generic system of linear

equations denoted by Eq. (2.1) given system coeffrcient matrix O and measurpments vector

y of length m.

rDx=V (2.1)

In CS, the term x is described as the signal of interest to be retrieved, given that we have a

set of measurcments y and the sensing matrix rD. As expressed in Eq' Q'2), each

measurEment in vector y is produced by signal x and the vectols in the sensing matrix o'

where y| is each entry of vector y and a; are the columns in the sensing marix o'

!t= (-,,'o,1) Q,)

For a matrix o to qualifi as an orthogonal matrin, it must fulfil the condition specified in

the given Eq. (2.3).

or = o-1 Q.3)

when the matrix o meets the condition stated in Eq. (2.3) and vectors are normalized as

unit vectors, it is referred to as an ortho-normal matrix' Furthermorc' the orthonormd

matrix satisfies Eq. (2.4).

orO-1 = I
(2.4)

When the matrix O is square, indicating that measurements ale equal to tfue length of the

signal, the vector x can be retrieved straightfonuardly using Eq. (2.5).

x=oTy
(2.5)

t2
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Figure 2-l: Demonstrates the sparsity of signals when transformed on a suitable basis [5]

wherr, m is the number of measurements that surpasses the length of the signal (n), i.e.,

m ) n,an exact solution may not exist. Howeyer, the signal can still be estimated using

the least squarcs method, as defined in Eq. (2.6).

n = (oro)-lory (2.6)

Compressed sensing (CS) operates under the assumption that measurcments (m) are

significantly less as compared to signal length (tt), denoted as m (( n. Eq. (2.1) represents

an under-determined linear equation system in CS. For a full-rank matrix O, there can be

infinite possible solutions. To obtain the optimal solution, additional constainb are

necessary, typically in the form of sparsity constaints. CS proposes that if the signal r has

only a few non-zero elements relative to is length and the sensing matrix O satisfies certain

conditions, it is possible to accurately retrieve the signal r from limited observations.

A straightforward approach to consider the feasibility of rcconstructing a signal r from

limited observations is to assume knowledge of the signal support. If there are only s non-

zero elements in a signal of length n, we only need to identifr and recover those s elements

instead of the entire signal. Consequently, with s elements in the signal x, only s

measurernenb are required, as defined by Eq. (2.7). This approach highlighb the potential

for accurate signal rccovery using fewer measurcments, leveraging the sparsity of the

signal.

l3



! = Qcts (2.7)

Indeed, in practical scenarios, the support of the original signal is typically unknown.

Therefore, relying solely on s measurcments is insuffrcient. Instead, we require m

measurcments, where s < m ( n. The objective is to recover the actual signal by finding

the sparsest possible estimate. By leveraging additional measurcments beyond the number

of non-zero elements (s), we aim to captur€ enough information to accurately recover the

actual signal, even without prior knowledge of its support. The rccovery prooess involves

finding a solution that minimizes the sparsity while satisffing the measunement constraints,

enabling the retrieval of the actual signal. Figure 2-l depicts the illustration of talcing

measurements as a sparse representation of signal r.

2.3 Sparsity

Compressed sensing operates effectively with a special class of sparse signals. These

signals possess most of their elements with closer-to-zero amplitudes, while few elemenb

have non-zero values. The sparsity of a signal allows for the possibility of discarding or

ignoring the coefficients with negligibte amplitudes without perceptual loss in signal

quality.

However, signals with less sparsity can still have sparsifring representations in other

domains. The information in a signal is often concentrated in just a limited number of

coefficients, while the remaining coefficients can be discarded. The choice of the sparsity

domain depends on the signal characteristics. For example, piecewise constant signals can

be sparsified using the FDT, while some images can be sparsified using DCT, a widely

used technique in image compression. Another popular approach is wavelet transform, as

employed in JPEG-2000, which enables sparsification and compression of images by a

factor of up to l0 times their original size. Hence, no single transforms applies to all signals,

and the suitable spa$e transformation is subject to the signal's characteristics and the

specific application.

The tansformation of a signal that facilitates sparsity is refened to as the sparsifring

transform Y. Eq. (2.E) represents the signal transformation x into its sparse rcpresentation

z.

z=Yr

l4
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Compressed sensing focuses on three distinct signal domains, as depicted in

Figure 2'2.The sparsity domain, denoted as z, represents the signal with fewer non-zcn)

componenb. The signal domain, represented by r, is where the signat is observed and

analyzed. It is the primary domain of interest for understanding the signal's characteristics.

Lastly, the sampling domain is where measurcments of the signal are obtained. This

domain captures the specific locations and values of the acquired measurements.

Sparsity Signal Sampllng
domain domaln domaln

Figure 2'2:The three domains that atfiact interest in the field of Compressed Sensing

2.4 Incoherence

In compressed sensing, incoherence is a crucial frctor that must be considered. It refers to
the desired low coherence between the sparsity basis and the measurement basis. When

considering a sparsifring mahix Y and a sensing matrix O with orthonormal bases in Rn,

the coherence can be defined as the highest inner product of two vectors from the matrices

defined by Eq. (2.9). Ensuring a low coherence value is important for the success of
compressed sensing techniques.

t(o,Y) =fr rgj;^l<s*,{i>l e.s)

The value ofp represents a correlation of ttre bases of the two matrices. Each vector is

normalized to a magnitude of one, and the normalization factor fi ensures that p falls

within the range of I to fi. tn compressed sensing, a low coherence between the nuo

domains is desirable. lncoherence guarantees that the signal is dense in the sampling

domain, allowing for flexibility in selecting any set of samptes during under-sampling [a0].
compressed sensing techniques often employ random mahices, i.e., random Gaussian

and Bernoulli measurement matrices. This is because these matrices have less coherence

to sparse basis Y. However, the application of the above-mentioned matices has certain
drawbacks' These matrices can have high computational costs and may not be suitable for
handling large dataseb, such as high-resolution images. In such cases, alternative options
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like the Fourier and Wavelet bases prove to be advantageous. These bases exhibit high

incoherence wittr the canonical basis [41], making them viable alternatives in scenarios

where random matrices are less feasible.

2.5 Sperce Signal Recovery Constraints

To faithfully reconstruct a sparse signal, two conditions must be satisfied' Firstly, the

measurement matrix must adhere to the RIP, ensuring accurate recovery of a signal'

Secondly, the minimum sampling rate required for precise rccovery must be determined'

These conditions will be elaborated upon in the following discussion'

2.5.1 Rcstricted Isometric Propefi (RIP)

The faithful recovery of sparse signals relies on the adherence of the sampling matrix to

the RIP. In the case, whert signals represented in an orthogonal basis are spa$e' the

rccovery of its sparse representation (z) is like the recovery of the actual signal (r)' This

can be achieved by employing the matrix A = oYT' where o-"t and Y"'tn are

orthonormal matrices that map the sparse coefftcients to a set of observations' The concept

of RIP was initially introduced by Candes and Tao lfiZl,to assess the effectiveness of the

sampling maffix. The RIP constant, denoted as d$ is the smallest quantity specified in Eq'

(2.10).

(1- 6")llzll| 
=ll^r.llz< 

(1+ d,)llzllS (2'10)

The sparse signal z, d" is prefened to be closer to zerc with a well-performing matrix

A, a smaller d" indicates a rcduced likelihood of z falling within the null space of A'

Additionally, when matrix A satisfies the RlP, the enerry of signal (z) is preserved

following the transformation Az. Moreover, the RIP guarantees that any subset of the

matrix A maintains an orthonormal property'

2.5.2 Minimum SemPling FrcquencY

cs provides the capability to tEcover a sPanrc signal x from a significantly reduced number

of measurements (m) compared to what is raditionally suggested by the Nyquist sampling

theorem. However, a cruciat question rcmains: How far can we push the limits of under-

sampling while still achieving ascurate signal recovery? The minimum number of samples
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required is defined by Theorem 2.1, which establishes the tower bound for reliable signal

reconstruction.

Theorcm 2.1: Let's consider a signal r c IR'r that is s sparce in Y basis and select m

measurements at random in O domain. If
m> c.1t27o, y).s. log (nlk) Q.fi)

for constant c ) 0, the vector x, therc is a high chance of ib recovery, ensuring exact

reconstruction.

The significance ofcoherence in determining the required number of samples is evident

from Eq. (2.1l). Greater incohercnce within systems allows for accurate recovery even

with a smaller number of samples. By acquifing m measurements, which can be

significantly fewerthan the signal length (n), no information is lost in the signal. If the

coherence P(O,ID closer to one, the required observations can be reduced to

s.log (nlk) instead of the haditionally used n measurements t4].

Practically, numenous researtherc adhere to a commonly followed guideline known as

the "4 to l" rule. According to this rute, it is rccommended to have four incoherent

measur€ments for every unit of unknown nonzerc element in the sparsifiing domain[a3].

2.6 Intrcductiotr to MRI

MRJ has emerged as a prominent domain for implementing compressed sensing (CS)

techniques. In the early stages ofCS theory, the research community recognized MRI as a

promisingapplication forCS. The firndamental principles of MRI and how MR images can

exhibit sparsity through various sparsiSing transforms. Furthermore, the chapter delves

into the potential of cs in reducing the scan time required for MRI procedurcs.

2.6.1 Nuclear Megnetic Resonence (NMR)

The phenomenon of NMR finds its most accurate description in the rcalm of quantum

mechanics' However, at the microscopic level, classical physics can also provide an

accurate representation [16, u,4sr. rn the context of MR imaging, the signars originate
from the protons found within water molecules present in the body. These protons become

polarized by a strong magnetic fietd, Bs, resulting in a magnetic moment aligned with the
static field' The NMR signals ar€ generated by this magnetic moment The longitudinal
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direction refers to the orientation of the field, while the transveEe plane rcpresenE the

vertical plane to the direction of the field.

Bloch Eq. (2.12) establishes the connection between magnetic field B and the

magnetic proPertY M.

#=M+v8.,ry.ry
In this equation, Mly represents the transverse magnetization, Ms represents the

equilibrium magnetization, and M, represents the longitudinal magnetization' The

constants Tr,Tz,and 7 depend on the specific characrcristics of the tissues and materials

involved.

When a Radio Frequency (RF) is applied to the 81 fietd, the net magnetic field becomes

distributed, resutting in the generation of the magnetization component Mu'Theequation

describes the characteristic frequency produced by this magnetization prooess'

(2.r3)

(2.12)

- fBo
j 

--to - zrt

The equation introduces the procession frequency, denoted as /s, which relates to the static

field Bs, with the constant fi. rt a typical 1.5T MR scanner' the fiequency is

approximately 64 MHz The coil that receives tlre signal generated by the Eansverse

magnetization compone nt, Mxy.By capturing the spatial spreading of this magnetization'

the MR image is obtained.

The relaxation of magnetization in the transverse plane occuls over some time period

t. The longitudinal component experiences an exponential recovery described by:

,o(, _r+)+Mz(t),wherc T1 repr€sents the time constant. lnstead, the transverse

component declines exponential ly as M,rv(t* r) = Mry(t)e-tlr"' wffi T2 as the time

constant. These relaxation time constanB, T1 and T2, tfiE crucial for capturing image

contras! and different tissues within the body may exhibit varying relaxation

parameters[44,457.

Figure 2-3 depicts the magnetic fields employed in magnetic resonance imaging (MRI)'

The primary static field, denoted 6 Bo, establishes ttre net magnetization within the

imagrng subject. It creates a stable magnetic field aligning the nuclear spins in atoms of the

tissue.
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To initiate the imaging pnocess, a transverce RF field, known 6 Br, is applied. This RF

field acts as an excitation sourre, perturbing the equilibrium of the nuclear spins and

causing them to process around the Bs field. By manipulating the parameters of the 81

field, such as its frequency and duration, specific regions of the subject can be selectively

excited for imaging.

In addition to the primary static and RF fields, gradient fields arc employed to facilitarc

spatial encoding. One of these gradient fields, represented 6 Gr, is responsible for

generating spatial variations in the magnetic field. By changing the G, gradient field,

different regions of the subject experience varying B strengths. This spatial encoding

enables capturing the spatial distribution ofmagnetization, which is essential for producing

detailed and localized images.

Overall, the combination of the primary static field (Bs), the transverse RF field (81),

and the gradient field (Gr), allows for the precise manipulation and capturing of the

magnetization within the subject, forming the foundation of magnetic resonance imaging.

Magnetic fields used in MRI are shown in Figurc 2-3. The net magnetization is

generated by the main static field, Bs. The gradient field, Gr, generates spatial encoding

while the transvetse RF field, 81, generates magnetization, allowing for the spatial

distribution ofmagnetization to be recorded [16].

Figure 2-3: The magnetic and gradient fields utilized in MRI [16]

2.6.2 Gradient Encoding end Signel Rmeption

The use ofRF enerry to stimulate magnetization results in a change in magnetic flux, which

alrcrs the voltage at the receiving coil. Voltage r€presents the sum ofthe observations from

all stimulated sounees and serves as the signal for MR imaging. The signal that was received

is inhicate and appears as a harmonic frequency.
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To capture spatial k-space data, three-dimensional fields are employed. The coils Gr

G, and G, detect changes in the B concerning spatial location. For instance, when 6, is

used, the B variation relative to the position is represented as B(r) = lBol I G*x' T\e

change in RF magnetization is proportional to the applied gradient field, establishing the

basis for spatial distribution characterization [44, 45]'

2.6.3 K-Spece end Image Domain

To depict the received magnetic resonance signal and the magnetization distribution have

a Fourier association, and the magnetization distribution goes through spectral

decomposition. The induced gfadient produces a variation in precession frequency' leading

to a phase shift. The frequency contribution induced by the gradient is as follows:

. tG(t).r
i--
to- 2fi

Q.t4)

Here, the amplitude of the gradient is denoted by G(t). The phases of magnetization are

defined by the integration of flequency'

Q@,t) ='" f *6(s)'r d's = Zr''r'k(t)

where tc(t) can be defined bY

Ic(t) = fi['c<r't 
a,

The signal produced by the received coil can be defined by Eq' (2'17)

I
s(t) = J 

m@)e'i2ttk(t)t 4'

(2.15)

(2.r6)

(2.17)

The signal in MRI is defined by Eq. (2.17),where the signal at a given time t is obtained

as the F, of the magnetization distribution, m(r), which is acquired in the spatial

representation of the Fourier domain represented bV tt(t)' It is important to note that MR

imaging techniques differ from pixet-by-pixel optical imaging modalities.

The gradient waveform, G(t), is used in the MR system to acquire the MR image' The tru:

pulses and gfadient waveforms are combined to generate magnetization, rcferrcd to as the

pulsesequence.Thetrqiectory,,((t),inspatialfrequencyspace(alsoknownas

k-space), is determined by integrating the 6(t) waveforms. The MR image can be

visualized W IFFfto the acquired lt-space samples, as depicted in Figure 2-4144'451'
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Figure 2-4: Recovery of an image by IFFT from it Fourier data [45]

2.6.4 Resolution vs FOV

The conventional approach to k-space sampling follows the Nyquist criterig which

considers both the FOV and ib resolution. The resolution is determined by the extent of
the data acquisition area in ft-space, with a larger sampling region corresponding to higher

resolutions. The FOV can be established by the density of sampling within tlrat areg with

bigger objects requiring a higher density of sampling to adequarcly capture the details.

Ol. Jr

x.j9a:e rma!€ soa:e

Figure 2-5: The relationship between the field of view and resolution [45]
When departing from the Nyquist sampling raE, artefacts can arise in the image, and

the specific characteristics of these artefacts can vary depending on the chosen sampling

patterns [a5]. The relationship betrueen k-space sampling and Fov is defined by Eq. (2.1E),

and tlre connection between resolution and k-space is illustrated in Figure Z-Sll6t.
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(2.1t)

2.6.5 K-Spece SamPling Prtterns

The popular k-space sampling technique for MRI is Cartesian sampling, which adhercs to

the Nyquist sampling criterion. With Cartesian sampling, the image may be

straightforwardly reconstructed using an IFFT. This method is perfect against system

shortcomings. However, a downside to cartesian sampling is that it requires many samples

to satisff the Nyquist limit, which is time-consuming given the inherently slow data

acquisition speed in MRI. This motivates the exploration of alternative non-Cartesian

sampling methods that can accelerate image acquisition'

In addition to the above, non-Cartesian sampling in k-space has also acquired

popularity, especially for accelerated undersampled MRI acquisition' Radial sampling'

where k-space is sampled along radiat spokes, is a common non-Cartesian technique [46]'

Radial sampling patterns have the benefrt of over-sampling to the centne of k'space'

providing robustness against the motion and flow artefrcts [47]' Spiral sampling is another

popular approach, with possible variations [4t]. The Propeller technique combines aspec6

of radial and Cartesian sampling for motion conection [49]' Random or stochastic

trajectories ale also utilized, with compact data acquisition closer to the cente of the k-

space and sparse sampling farther out. Stochastic sampling is advantageous for compressed

sensing as it introduces noise-like artefacts [14, 15, 50]. Other non-cartesian patterns like

rosette [51] and Lissajou [52] sampling have also been explored' The best-suited sampling

method is subject to the application and types of artefacts needing correction [53]' FigUre

2-6 illustrates several k-space sampling trqiectories'

2,6.6 MRI SPane RePrcsentetions

In applying compressed sensing (CS) to MRI, the first step entails undersampling the k-

space using different sampling patterns, as explained in the preceding section' Achieving

an accurate rccovery of the original MR image from the under-sampled lc-space data is

1
Fova4
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Figure 2-6: patterns of sampling in the k-space domain

contingent upon the MRI signal demonstrating sparsiry, either in the image domain directly

or after undergoing a well-defined hansformation. Forhrnately, numerous MRIs has

inherent sparsity in a specific domain, such as MR angiogram images, enabling direct

application of CS without requiring additional sparsifiing transforms. However, with most

MR images, achieving sparsity necessitates employing a specific sparsifiing transform,

such as the finite difference and Wavelet transforms.

lm{a slartQ rer.ts+1.Jt}3.1 Unc, 3o+ftEra,rtl

iv,i+fls

Figure 2'7: Applying sparsity-inducing transforms to various images [16]

lrrl: Drltrtrxcr
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Figure 2-t: Effect of undersampling in lc-sparse [24]

The finite difference transform offers an exceptionally sParse r€prcsentation for images

exhibiting piece-wise constsncy. Moreover, different wavelet transforms arr beneficial for

some sets of MR images. Figure 2-7 visually illustrates the sparsity of a shepp-Logan

phantomimageusingtheFDTandanMRlusingtheWT.Figure2.Tshowsthat

approximately ten-fold compression in sampting can be reduced in wT without loss of

information [54].

Figure 2-8 shows the effect of taking samples from the centrc of the lc-space and away

from the centre. The central part of k-space got the dehils of a smooth region while outside

the central region edge information is stored. so, to get a complete picture we need some

samples from both the central part and away from the central part' In some cases' the

sparslty of an image can be influenced by the presence of noise' Through sparse

approximation, where coefficienb with very small amplitudes are set to zero' the image

can undergo denoising. This denoising effect is established in the accompanying Figure

2-e116l.
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Figure 2-9:Effectof sparse approximation on denoising [16]

2.6.7 Rapid MRI

Recently, progress in improving the quality with speed of MRI. The research focuses

primarily on accelerating the speed of MRI through hardware advancements. Faster data

acquisition techniques have been crucial in achieving improved acquisition speed. The

scanning duration to acquire an MRI rplies on the repetition duration (Tp) multiplied by the

amount of RF excitations. One phase in the encoding line is typically obtained fiom one

RF excitement. To estimate the total scanning duration for acquiring a 3D MR image, Eq.

(2.19) can be used.

Tacqutsitlon = N, N rN rTx

Here, /V, represents the phases-encoding lines in the y direction, /ll, indicates the total

phases-encoding lines inthe z direction, and, /V, corresponds to the number of averages.

Improving the speed of MR scanning attained by reducing the Tp according to the

equation. The duration of Tp rclies on the applied gradients, and to maintain a constant

FoV and resolution, higher gradient amplitudes are necessary for shorter Tp. However, this

approach can lead to unwanted nerve stimulation, making it an undesirable method [55].
Another straEry to increase scanning speed involves employing alternative acquisition

methods, such as acquiring multiple sampling lines for one RF excitement. For example,

Echo Planar Imaging (EPI), when wery piece of data is gathered at once [56]. Furthermope,

developing improved putse sequences and utilizing paratlel imaging techniques with

(2.te)
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multiple coils have also contributed to significant reductions in scanning times [57].

Skipping encoding lines in k-space is another approach to expedite the scanning process,

although it produces less FOV and reduces the SNR. Undersampling in k-space can exploit

the symmetry in lc-space to addless this challenge [5t]'

The progress in MRI hardware has reached a stage where physical limitations restrict

the potential for reducing scan time. As the scan time of MRI is related to the sampling rate

during scanning, compressed sensing (cs) has emerged as a valuable approach for

reducing this scan time. CS allows for the scanning of a rcduced number of samples in the

k-space domain while still enabling high-quality MRI rccovery through non-linear

reconsffuction techniques. By leveraging the inherent sparsity or complEssibility of MRI

signals, CS enables effrcient data acquisition and rcconstruction, resulting in significant

time savings without compromising image quality U2'28}

2.7 CS MRI RecoverY

Various r€covery methods are developed for MRI from undersampled k-space data' These

reconstruction techniques can differ in terms of the computational approach talcen to

recoyer the image and the k-space sampling methods used during accelerated acquisition'

2.7.1 Linear RecoverY Methods

The most straightforward method for recovering a signal or image is the inverse fast

Fouriertransform (IFFT). However, applying IFFT to undersampled signals can introduce

aliasing artefacts that distort the image. To mitigate these artefacts' two techniques are

commonly emPloYed:

2.7.1.1 Zerc Filling (ZF)

ZF is a,simple approach for reconstructing magnetic resonanse (MR) images' In ZF' any

sampting psttern could be employed for undersampling in k-space' ZF fills the un-sampled

k-space data with zenos, essentially extending the acquired data to a fully sampled k-space'

while ZF alone does not exploit the compressibility or sparsity of MR images, it serves as

a useful initialization step for morc advanced compressed sensing (CS) MRI recovery

techniques. By starting with ZF reconstruction, CS MRI algorithms can build upon this

initial estimate and rcfine it further to achieve high-quality image rcconstntctions'
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Thereforc, ZF is a valuable starting point for CS MRI rccovery, setting the stage for

subsequent iterative algorithms to enhance tlre final image reconstruction quality [15].

2.7.1.2 Low Recolution

Another linear reconstruction method using undersampled data and a distinctive sampling

pattern is called Low Resolution (LR). The image is reconstructed using IFFT afterjust the

ft-space data is entirely sampled from the k-space's centre. This method is quite effective

at recovering smooth regions in images, but it cannot restore sharp edges [15]. Figure 2-10

depicts the sampling pattern for the LR recovery technique.

Figure 2-10: Depicts the sampling pattern of the LR mask

2.7.2 Prcjection onto Convex Set Method

The Projection Onto Convex Seb (PoCS) algorithm is an iterative reconstuction approach

for undersampled MRI that casts the image recovery problem as finding the intersection of
a priori- constraint defined convex sets t591. In POCS, the known constraints on the desired

MR image, such as spatial smoothness, sparsity, and data consistency with the acquired k-
space samples' ane each reprasented as a convex set in Hilbert space containing all images

satisfring that constraint. The algorithm finds the image at the intersection of these sets

through sequential projections. While simple to implement, POCS provides an effective

frarnework for minimizing the mixed h - lzconvex optimization objective function in Eq.

(2.20) for constrained MR rcconstnrction.

? = arg-minlltPrft subject to llFux - yll| < e

In Eq' (2.20), Y represents a sparsifring representation such as a WT or FDT applied to

the target image r to be rccovered. F, denotes the FFT retating the image to undersampled

&-space measurcments y. ltrprlh =Lilofiil is the llnorm which promotes sparsity in

(2.20)
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the reconstructed image. A modified Pocs algorithm for undersampled MRI

reconstruction is proposed in [13] that incorporates sparsity-promoting regularization into

the iterative projection framework. This allows improved image rccovery from limited lc'

space data by leveraging transform-domain sparsity constrainb The enhanced POCS

technique employs full-rcsolution phase estimations, alternating between acquired k-space

halves in time series or multi-echo acquisitions. This process allows the calculation of firll-

resolution phase estimations for each volume/echo, subsequently integrated into the POCS

framework [60]. Lately modified Pocs has been applied for cs MRI recovery in [61,62]'

The Pocs method for compressively sampled MRI recovery offers computational

effrciency and simplicity through iterative projection onto sets enforcing data fidelity and

prior knowledge, enabling easy integfation of constraints. However, it can stnrggle with

complex image structures and noise, pogntially limiting its ability to capture fine details

accurately. The method's performance hinges on the chosen sets and their interaction'

impacting convergence and final image qualrty, posing challenges when these sets don't

fully encapsulate the image struchtlE'

Algorithm 2.1: Steps involved in the POCS algorithm'

ises the obiective functionz

2 = arglninlltl'rlh subjectto llFrr -yll? < e

I,f;putsl

Y = FuX (llnd,ersampledk - spoce data)

1. = Thresholding Porameter

Y = SqarsifYing t:tansform

Output:

1 = recouered, hnnge

POCS Algotithm=

Intttollzatlon: Xs = 0,/o = Y,i = |

Iterotiottsi

1. X1= fr-l1Yr); lfff
2. Y,1=q,-l{sr(lPx D\ Shri*oge (S|in sporsifying domoin
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2.7.3 lteretive Reweighted Least Squarc (IRLS)

IRLS explores using an overcomplete complex wavelet transform to obain sparse

rcpresentations of natural images for efficient compression [23]. Conventional image

coders use an orthogonal D\MT that cannot well model the hearry-tailed non-Gaussian

marginal distributions of wavetet coefficients. The authors propose modelling tle
coefficienb with a complex generalized Gaussian distibution with shape parameter p < 2
this non-Gaussian behaviour accurately. They estimate the distribution parameters from

training data" An overcomplete complex wavelet provides more flexibility to adapt to

image characteristics than an orthonormal D[VT. For a given level of sparsity, tle
overcomplete rcpresentation has lower modelling eror resulting in lower reconstruction

distortion. The authors also present an efficient way to implement the overcomplete

tansform using a tree-shuctured filter bank, requiring only l4Yomor€ computations than

an orthogonal DWT. The overrcomplete complex wavelet repre,sentation concentrates more

signal eners/ in fewer large coefficients. Encoding these coefficienb shows improved rate-

distortion performance compared to baseline DtilT-based image coders.

Modified IRLS was also presented in [2], wherc it is applied to efficiently recover

compressively sampled MR images. Recently, enhanced versions of IRLS algorithms are

used in many applications related to MRI rccovery from compressively sampled lc-space

data [63-65].

The IRLS method excels in recovering spa$e signals, particularly in MRI applicafions,

by iteratively updating estimates through weighted least squares solutions, promoting

accurate image reconstruction. However, its reliance on prior information about signal

sparsity and limitations in handling highly dynamic or non-spame signals might affect its
accuracy, making its success heavily reliant on the appropriateness of assumed sparsity
levels and potentially limiting its adaptability to diverse MRI scenarios.
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2.7.4 Seperable Sunngete Functionals

The separable surrogate Functionals (ssF) algorithm proposed by Daubechies et al' [66]'

is an iterative shrinkage-based approach for solving inverse problems with objectives

containing smooth and non-smooth convex terms. It constnrcts an ssF that upper bounds

the objective using quadratic surrcgates for the smooth terms and linear sunogates for the

non-smooth tenns. Minimizing this separable surrogaE reduces the actual objective' This

leads to an iterative algorithm with parallelable shrinkage-like updates applied to the non-

smooth terms, providing an effrcient solver that leverages problem stnrctur€ and is

guaranteed to converge. SSF has been used successfutly to inverse problems like CS MRI

reconstruction. Its modified version for effrcient rccovery of cS MRI has also been

developed recently [25]. Recently, SSF is used forrecovery offree undersampled breathing

Cardiac Cine MRI [67]. The SSF offers quick computation and the abiliU to incorporate

constraints effectively, enhancing reconsfuction quatity. Yet, ib reliance on precise

modelling and parameter selection presents challenges, as inac'curacies in the sunogate

functional might tead to subopimal results. The method's performance heavily relies on

the choice of the surrogate functional, impacting its sbility to accuraEly captur€ image

features and potentially limiting iS effectiveness in specific imaging scenarios'

2.7.5 Perellel Cooldinete Deccent (PCD)

ThePCDalgorithmbyMichaelEladin200Tisaniterativethresholdingapproachfor

recovering spafse signals from incomplete information [68]' It decomposes the full

problem into smaller dimensional subproblems, each involving a single component or

block of components, that can be solved in parallel. Each subproblem applies a soft-

thresholding operator to the residual from the plevious ircration to identify the support set'

The PCD algorithm leverages block sparsity and parallelization to achieve fast

convergence for large-scale sparse coding problems like compressed sensing and cs MRJ

recovery. A parallel variant ofcoordinate descent, and provides rigorous theoretical bounds

on achievable parallelism. These bounds assist in optimizing the level of parallelism to

achieve effrcient and effective parallel optimization [69]' Recently' PCD algorithm is

modified to be utilized for various applications of biomedical imaging 170'7ll' The PcD

offers faster convergence and efficient computation through parallelization' allowing

efflective integration of constraints. However, its performance hinges on convergence rates
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and chosen parameterc, potentially affecting the quality of reconstruction. In situations with

correlated features, PCD might encounter slower convergence, limiting ib ability to

capture fine image details, which could pose challenges in certain MRI reconstnrction

hsks.

2.7.6 Fest Iteretive shrinkage Thrcsholding Algorithm (FISTA)

The ISTA is an iterative optimization algorithm used for solving sparse signal rpcovery

and compressed sensing problems by Daubechies et al. [20]. ISTA targets to reconstruct a

sparse signal using an under-determined system of linear equations or observations. It
works by iteratively updating the signal estimate using a soft threshotding operator. At each

iteration, ISTA performs a gradient descent step followed by soft thrcsholding, where

coefficients less than the threshold are zeroed. This thresholding operation promotes

sparsity in the signal estimate. The algorithm iterates until convergence, and the finat

estimate provides a sparse apprcximation of the original signal.

FISTA is an accelerated version of ISTA introduced by Beck and Teboulle [22]. FISTA
improves the convergence speed of ISTA by incorporating Nesterov,s acceleration

Echnique. It achieves this acceleration by introducing an additional momentum term in the

gradient descent step. This momentum term helps in making larger steps towards the

optimum solution. FISTA retains the same thresholding step as ISTA, but is convergence

rate is significantly improved. By exploiting the momentum term, FISTA achieves faster

convergence compaled to ISTA, making it more efficient for large-scale sparse signal
rccovety problems. While FISTA often converges faster compared to other algorithms, it
may face challenges in handling certain image structurcs or texturcs due to ib reliance on

sparsity constaints. Additionally, FISTA's performance can be sensitive to parameter

tuning, where improper choices might lead to suboptimal reconstructions. Furthermorc, in
scenarios with high noise levels or incomplete sampling, FISTA might stnrggle to achieve

accurate reconstuctions, impacting is effectiveness in those specific conditions. Recently,

efficient varianb of FISTA are employed for recovery of Compressively Sampled MRI
rscovery in173-761.

2.7.7 GreedyAlgorithms

The grcedy algorithms employ projections and least squares to compute the inner product

of a signal and the columns of matrix A. These algorithms, including Mp l7ll,oMp [7E],
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stoMP [79], ROMP [t0], and cosalr{P [tu, sRR [82], SPAMP [t3] come in various

variants. The primary objective of greedy algorithms is to iteratively determine the signal

support o. once o is identified, the next step involves estimating the signal amplinrdes by

the LS method. The amplinrdes can be easily calculated by taking the pseudo inverse of

the submafiix As, which comprises only those columns associated with the support O'

along with the measurements vector y in Eq' Q'21)'

i = Aor(Aoant)-ty Q.2r)

Greedy methods like .RoMP [tol and cosalvlP [tl], offer advantages such as

computational simplicity and rapid convergence, malcing them appealing for real-time

applications. These methods efficiently handle sParse signal rEcovery and are relatively

straightforward to implement. However, their performane'e heavily relies on sparsity

assumptions, which might limit their effectiveness in scenarios with less sparse or non-

sparse signals. Additionally, their greedy naturc might struggle to capture complex image

structur€s or textures, potentially leading to suboptimal reconstructions in such cases'

Morcover, in the presence of noise or incomplete measurements, these methods might face

challenges in achieving accurate image recovery'

Recently, various variants of Greedy Atgorithms ar€ pK,posed for the recovery of

biomedical images from their undersampled k-space daa [84-t6]' FPGA based

implementation of oMP for recovery of cS MRI is described in [t7]'

2.E Fusion of CS MRI with Machine Learning

fire deep leaming methods to improve the reconstruction of compressively sampled

MRI (CS MRI) images from undersampled data have gained significant attention in recent

years. cNN is a deep learning method, that has shown is potential in capturing intricate

image patterns and stnrctures, thercby aiding in the rccovery of near-perfect MRI'

Specifically, tailored deep learning architecturcs have been developed exclusively for CS

MRI reconstruction. These architectures are trained to map undersampled input data to a

fully-sampled MRI. By leveraging large datasets containing paired undersampled and fully

sampled MR images, these models strive to acquire knowledge aboutthe underlying image

structur€s and enhance r€constnrction accumcy [29-31]'

Deep learning methods applied to cs MRI rEcovery frequently embrace an end-to-end

learning paradigm. In this paradigm, the network accepts the undersampled data as input
:
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and directly generates the fully sampled image as output, bypassing the need for

intermediate steps like iterative reconstruction. Adopting of an end-to-end learning

frarnework offers improved efficiency and reduced computationalcomplexity l31l.
Researchers have investigated diverse approaches for augmenting the available dataset

artificially to tackle insufficient haining data" Various data augmentation techniques have

been explored, such as employing random transformations, extacting patches, and

simulating undersampling patterns. Additionally, regularization techniques, including the

integration of sparsity or total variation constraints, have been employed to enhance the

generalization capability and rcconstuction quality of deep learning models [33, 34].

Researchers have investigated tansfer learning as a strategy for compressively sampled

MRI (CS MRI) reconstruction to overcome the scarcity of labelled training data. In this

approach, models that have been pre-tained on extensive image datasets are fine-tuned

specifically for CS MRI reconstruction tasks. By initially training convolutional neurat

network (CNN) models on vast natural image datasets like ImageNet, valuable general

image features ate leamed, which can be leveraged to enhance CS MRI reconstruction [35-
37,761.

Leveraging deep learning for compressively sampled image recovery brings substantial

advancements, notably in vastly improved reconstruction accuracy and reduced sampling

requircments, expediting image acquisition. The modets'adaptability and capacity for non-

linear mappings across varied imaging scenarios enhance robustness. However, challenges

arise fi'om the substantial computational complexity in training, reliance on large and

diverse datasets, and the models' lack of explanation, potentially impacting generalization,

and interpretability in image recovery. overcoming issues like overfitting and

hyperparameter sensitivity is crucial to firlly utilize deep learning,s potential in this field.

2.9 Metrics for Performance Assessment

An objective analysis of algorithm performance is done using various image comparison

metrics. The performance ofdifferent algorithms can be objectively assessed by comparing

the original image X with the rccovered image fl using the following performance

parameters:
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2.9.1 Stnrctural Similerity Inder (SSIM)

The SSIM, proposed by Zhou Wang et al. [56], addresses the limitation of MSE by

considering the quality differences between images with the same MSE' The SSIM index

exhibiS a morc comprehensive indication of image similarity' A higher SSIM index value

indicates a closer match between the two images, while a lower ssIM index value indicates

a poorcr match for the recovered image. w. Q.22) depicts the mathematical equation of

SSIM.

Q.22)
(z

@,
SSIM = +

++

Calculating Qt?randq?il is the mean, variance (d!,anddfi,)' anO covariance (d"'a)

between actual and rccovercd images'

2.9.2 Artifect Power

Artifact Power (AP) provides a mathematical measurement of the accuracy of a recovered

image. lt is calculated using the equation for square difference erIor, shown in Eq' Q'23)'

l,owerAPvaluesindicatetherecoveredimageisofhigherquality.

Q.23)

2.g.3 Imprcved Signal-to-Noise Rrtio (ISltR)

The ISNR serYes as an additional mefic for judging the worth of a reconstructed image

[88]. The ISNR is determined using Eq. Q.z4),where higher ISNR values indicate superior

image recovery. This metric quantifies the improvement in the sNR achieved by the

reconstruction Prccess. The ISNR is calculated as:

rs/vR = 1o.log1sffi ,t Q.24)

2.g.4 Peek Signel-to-Noise Rrtio (PSNR)

psNR is a popular metric to measurc image fidelity and quality t89l' It is calculated as the

ratio of the maximum value of a pixel in the image and the mean squat€d error power

attained by the rcconsffucted image, as shown inEq.(2.25). Higher PSNR values indicate

E,lx(i) - ?(i)l'

Eilx(,)12
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better recovery of the original image, with a higher PSNR corresponding to a higher-quality

rcconstructed image.

psrvR = z0.tog1s{Max(x)} - 10 . tosro 

[,,{} \U<i,i>- X1,,r))r] e.zs)

2.9.5 Fitness

Fitness provides another mehic to assess the quality of a rccovercd image. At each

iteration, fitness can be calculared using either llF,,xr - ylllor llxl - x*_ilItr.A bwer

fitness value a higher efficiency of the recovered image. This is because fitness represenb

the deviation between the recovercd image and the original image - so minimized fitness

cofiesponds to an image that more closely matches the originat.

2.9.6 Conrcletion

Conelation provides a statistical measurcment of the relationship between the actual and

rcconstructed images. It is calculaEd using equation (2.24), where p is the conelation,

cov(x,?) is the covariance between the original image X and recovered image l, and

oa and' 62 are the standard deviations of x and 3 respectivery.

cov(X,7)Pxt=d e.26)

Correlation ranges from -1to 1. Here, I shows a perfectly positive corelation, meaning

the original and recovered images match exactly. A correlation approaching I indicates the

two images are very similar. Values near 0 denote little relationship, while -l is a perfect

negative corelation, meaning the images are inverses of each other. Thus, a conelation

value closer to I signifies that tlre reconstructed image accurately reflecb the actual image.

2.9.7 Mean Squarc Error (MSE)

The MSE is a widely used to quantify the difference between an original image f and a

rccovercd image g. As shown inEq. Q.27), MSE is the calculated average of the squared

differences in pixel values between the two images. Lower MSE values indicate less

deviation between X and f. en MSE approaching zero signifies that tlre recovered image

fl is close to a perfect reconstruction of the original image X. Thus, MSE provides a simple

way to measurc how well X matches f; with smaller vatues denoting better recovery quality.
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Q.27)

2.9.t Signel-to-Noise Retio (SNR)

SNR is a widety used performance metric in various signal processing applications'

including spaEe signal rccovery. SNR measures the quality of a signal by quantirying the

ratio of signal power to noise power prcsent in the signal' It provides a quantiAtive

assessment of how well the signal of interest can be distinguished from the background

noise.

In sparse signal r€covery, sNR is commonly used to evaluate the accuracy and fidelity

of the reconstructed signal. A higher sNR indicates a higher level of signal power relative

to the noise power, suggesting a better-quality reconstruction' Conversely' a lower SNR

indicates a greater influence of noise and potentiat distortion in the reconstnrcted signal' It

is measured in decibets (dB) for easier interpretation' A higher SNR value indicates a

strcnger, clearer signal with less noise interfelEnce, while a lower SNR value indicates a

weaker, noisier signal.

When comparing different algorithms or techniques for sparse signal recovery' the one

that yields a higher SNR is considered to provide a betrcr reconstruction' SNR is a useful

metric for the performance evaluation of sparse signal r€covery algorithms and comparing

their effectiyeness in handling noise and reconstructing the original signal accurately'

s/vR = 1o.rog1s[*,,*--J ,r, Q.28)
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CIIAPTER 3

SPARSE MRI RECOVERY BY SMOOTH

APPROXIMATIONS Or, lo NORM

This chapter discusses the primary approach for reconstucting sparse signals, which

involves minimizing the 16 -norm, aiming to find a suitable solution with the minimum

non-zero elements. However, due to the combinatorial nature of the problem, finding the

exact solution to ls-nonn minimization is computationally chaltenging. To address this, the

literature prcposes non-linear reconstruction techniques that utilise smoothed ts-norm

approximations. These approaches have been proven to be computationally efficient,

offering practical solutions for sparse signal reconstruction. A novel smooth approximation

of Is-norm is proposed and an analysis of five different versions of smoothed ls-norm

frrnctions is also presented. The existing smoothed Is norm-based recovery algorithm is

then modified and applied to rcconstruct compressively sampled magnetic rcsonance

images using five different approximation functions. To justifi a comparison, the widths

of the approximation functions werc cross-matched, keeping other adjustable parameters

of the algorithm identical. The performance of each smoothed ls-norm approximation

reconstructing oompressively sampled lD sparse signal and 2D MRI (Brain) against

different sampling rates have also been surveyed.

3.1 Introduction to Noms

The objective of sparse signal recovery algorithms (decoder) is to reconstruct a signal

'r c IRz or its conesponding s-sparse coefficienb of vector z froma few numbers of m
incoherent random samples. These samples are obtained using a known sparse basis y and

sensing matrix O. The task at hand involves solving the following under-determined

system of linear Eq. (3.1).

l=Az
Here A C Ru xu, y C Ro is the s-sparse coresponding vector and m (( z.

(3.1)
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The objective of sparse signal reconstruction is to estimate of a signal, denoted as z,

that possesses sparsity properties. This estimation is derived from measurements y and a

rectangular matrix A. since matrix A contains fewer equations than unknowns, Eq. (3.1)

has infinitely many solutions. To address this, the problem can be approached as a

constraint optimization problem that promotes sparsity in the solution while satisfring the

constainb defined by Eq.(3.1). In general, this optimization is defined below:

(P) 2 = argmin llzllp, subiect to lly - Mllz = 0 Q.2)

where llzll, defines the ptn norm of z and it may be calculated as

ttztrp = (I,,,r,,)"'
(3.3)

when the t, norm ball is expanded to intersect with the feasible solution set, certain

characteristics emerge. Figure 3-l depicts the l, norm ball for different values of p' For

p = 0.7 and p = 1, the intersection points occur at the corners of the ball along the axes'

causing two out of three coordinate values to become rero' This leads to a sparse solution;

fewer coordinates have non-zero values. conversely, for p = 1.5 and P = 2, the point of

intersection results in non-zero values for all three coordinates, yielding a non-spa$e

solution. The choice of p determines the sparsity level of the solution, with smaller p values

promoting sparsity and larger p values favouring non-sparse solutions [21]'

Figure 3-l: Intersection of t, ball and the set Ax = I solved with various values of p l2ll
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3.1.1 l2-tronn Besed Recovely

Eq. (3.2) can be solved linearly by minimising the 12 norm. This approach, commonly

refened to as 12 norm minimisation leads to the solution dubbed as the LS solution that

minimises eror energy. The approximated solution can be easily obtained by applying

Eq.(3.3).

(P) 2 = 6r144r;-t,
Q.4)

The utilization of the least square approach offers the advantage of yielding a unique

solution. However, the 12 norm minimised solution disperses its energy acrcss many

elements, resulting in a dense solution. Consequentty, this approach is not suitable for
obtaining an s-sparse solution, where only a few elements should have non-zero values.

Figure 3-2 depicts the solution by .o' ofa spame signal indicated by .*,. The resulting least

squarc estimated solution failed to achieve the sparsity level in the desired signal.

'ffiru, "rJfl*'.d.lr.oo
Figure 3-2: 12 norm-based signal recovery failure to achieve desired sparse solution

3.1.2 ts-norm Besed Recovery

T\e 12 nonn measures the energy or magnitude of error in a signal recovery, measuring the
signals' overall strength. on the other hand, the !6 norm is utilised to quantiry the sparsity
of a signal' The Is norm, as defined by Eq. (3.5), counts the number of non-zero entries in
a vector, denoted as z. If the vector z is s-sparse, meaning it has only s non-zero enfies,
then its 16 norm will be equal to s.

The ls norm is a usefrrl toot for assessing the sparsity level of a signal by counting t1e
number of non-zero elemenB. It indicates of how concentrated or spread out the signals,
non-zeK) entries are. If the signal has a small ls nonn, it suggests a high sparsity level,
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indicating that onty a few elements significantly contribute to the signal' Conversely, a

large ls norm indicates a less sParse signal, with a greater number of non-zero elements

contributing to its overall stntcture.

llzllo = }4[kile 
(3'5)

The ts norm minimum solution can be formulated as P6'

(Po) 2= argninllzllo, subiecttolly-Azllr=g (3'6)

The ls norm can exhibit significant changes in the presence of noise, affecting its reliability

as a measurc of sparsity. To address this issue, the equality constraint can be relar<ed'

consequently, the original problem defined as the Ps problem can be reformulated as the

Ps,, problem, where r rcpresents a small threshold or tolerance level' This relaxation allows

for a more robust and stable estimation of sparsity, accommodating the effecE of noise in

the signal as defined bY Eq.(3'7)'

(P.,r) 2 = argminll zlls , stlbiect to lly - Azllz < E

To obtain the near-perfect solution for the constraint optimisation problem in Eq' (3'7)'

it is necessary to explore the best s vectors in matrix A, which defines the observations

vector y. This implies that the optimal solution needs searching through () possible basis

can occur, potentially resulting in a unique solution. However, this search is an NP.hard

problem (l), it is not possible practically o find a solution through the combinatorial

problem. Furthermore, the formulation presented in Eq. (3.7) is not convex, which poses

challenges for optimisation methods that involve catculating derivatives' Due to the non-

convex nature of the problem, gradient-based methods may struggle to find a globally

optimal solution, making the optimisation process diffrcult and potentially leading to

suboptimal resutts. Alternative approaches, such as greedy algorithms' heuristics' or

rclaxations, are often employed to tackle the complexlty and intractability of the problem'

offering more practicat and efficient solutions'

An alternative approximation to the Is norm involves rcplacing it with a smoothed

function [90]. smoothed ls functions, such as the zero mean Gauss imexp(fi,)' provide

a means for gradient-based methods to be applied while offering immunity to noise by

adjusting the o2 parameter of the Gaussian function. This smoothing approach allows for

(3.7)
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more tractable optimisation using gradient-based techniques and provides flexibility to

control the hade-offof sparsity and noise resilience by adjusting the smoothing parameter

02.

3.1.3 lr-norm Bered Recovery

Practical implementations ofvarianb forthe 16 norm exist, with one notable example being

Focuss [9U. In Focuss, the l, norm rcpraces the ls norm, typically selecting a value

ofp between 0 and I t241. FOCUSS builds upon the concept of lterative Reweighted Least

squares 0RLs) [23], which utilises the lr-norm as a weighting mechanism. By

incorporating the I, norm in Focuss, the algorithm aims to promote sparsity and achieve

accurate signal reconstruction computationally efficiently.

3.1.4 l1-nonn Besed Recovery

The 16 norm is defined by Eq. (3.6) and Eq.(3.7) in problems p6 and p6,. can be relaxed

by minimising the 11 nonn used in Basis pursuitlg2l.

(Pr) 2 = argminllzl[, subject to lly - Mllz = 0

(Pr,r) 2= argminltzlll, subjecttolly-luillz< €

(3.r)

(3.e)

Eq' (3'8) and Eq. (3.9) reformulaE the problems presented in Eq. (3.6) and (3.7) as convex
opimisation problems, which are solved using linear programming and 2nd-order cone
programming, respectively [93]. Minimising the 11 norm is often effective in finding the
sparsest solution, especially when the measurement matrix r has a small RIp constant and

the target signal is sparse l4ll lg4l. The optimisation based on the 11 norm provides

robustness against noise and ensurcs stability. However, the high computational cost of 11

norm minimisation, it is not efficient for large-scale applications such as medicat imaging.

3.2 Smooth ls-trorm Literature Review

The 16 norm has an appealing mathematical property in sparse signal rccoyery, as it counts
the non-zero elements in a signal. However, optimising this norm is non-convex and

computationally challenging due to its combinatorial nature. To overcome these
limitations, the smoothed ls norm approximation algorithm was proposed t90]. This paper
modifies [90] and proposes weighted methods [95] and [96] replaces the steepest Descent

)
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method with the Quasi-Newton method. SLo was firrther extended to handle complex

valued sparse signals [97]. This algorithm has significantly reduced the computational cost,

leading to widespread adoption in various sparse signal rccovery applications'

The SLg algorit6m has been successfully applied in image smoothing [9t] [30], image

denoising [99], dictionary learning [100], estimatingthe direction of anival in radar [l0U'

compressed image rccovery [95], sparse channel estimation [102], hyperspectral image un-

mixing [103], and various image-restoration techniques such as

de.mosaicking, super.resolution, and in.painting [104]. Moreover, SLo has demonshated

its effectiveness in the recovery of compressed speech signals [lO5], and compressively

sampled functional MRJ (FMRI) data [106]. Overall, sLo has emerged as a powerful tool

in sparse signal rccovety, enabling efficient and accurate recovery of signals from

compressed or under-sampled measurements'

3.3 Sparse Signal Recovery by Smooth ls norm

Finding the sparsest solution of a signal by minimising the ls nonn is a computationally

challenging NP-hard problem because of discontinuity in the norm' To address this' a

smoothed ts nonn approximation was proposed in [90], where the original discontinuous

function is replaced with a continuous and smooth function' The ofiimal solution is then

obtained by finding the sparsest solution of this approximated function' which can be

interpreted as approximating the t&onecker delta function defined by Eq' (3'10)' This

smoothing technique enables a molE tractable optimisation problem while still aiming to

achieve sparslty in the solution'

otal = [f, '{i':,=i i = L'2' ""n

Correspondingly ts norm can be defined by Eq'(3'l l)'

llzllo=Irt-d(zJ)
i=1

The 16 norm is estimated by Delta Approximating (DA) smooth function' i'e' Fo(z) =

E!=rfo@t).This smooth approximation function must hold the characteristics defined by

Eq. (3.12).

(3.10)

(3.1 l)

!\ f,(r,) =l!,, '{r7,=*oo
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From Eq. (3.1l) and Eq. (3.12),the approximation of the 16 nonn can be defined by Eq.
(3.r3)

ft

llztlo = IsI(t - f,(zt)) = n- Fo(z) (3.r3)
i=1

The value of o plays a significant role in sparse signal r€covery. It represents the hadeoff
between the smoothness and accuracy of the estimated solution. The smaller o results in a

more accurate but non-smooth approximate solution whereas the larger value of o teads to

a smoother but less accurate solution. The width of tlre DA function is controlled by
varying o' The larger o results in a wider DA function that gives a smoother but poor

estimation of the Kronecker Delta. The smaller o results in a smailer width ttrat yields an

accurate Kronecker Delta but a less smooth approximation. This phenomenon is further
illushated 

in
Figure 3-3

Figure 3-3: Effect of o on derta approximation function width

Algorithm 3.1. lD Sparse Signal Recovery by Smoothed t6 Norm

.l42r
I

a=t

- -r.05-'- rr0l
r 00t

lnitialise=

I . Initialise zs hy 12 norm solution of zs = Or (OOr)-r y
2. Set o as deoeasing sequetue for o = fo1,o2, -., 6nl

for i = 1,2,.,.,p:

t. Seto=oi
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te eP e st os c ent al g or ithm'

a. Initialisezz=Z;.r

b. Fori-1,2,"',Q

i. Set az = l4for(xr), -.,rnfor(*n)l'

ii. Set zez-1tAz

iii. Proiect z back os z e z - or(o4y')'' (o'- y)

3. Setxr= a

Firulsolution:u=xP

d solution' where the

-ro1z7 
can be assumed as the measurE o

larger value of Fo(z)means a sparser solution and smaller values of Fo(z) will result in a

denser solution. In terms of the optimisation problem defined by Eq' (3'7)' the maxima of

Fo(z) yields the sparsest and optimal solution'

For smaller values of o, Fo(z) will have lots of local maxima' thetefole' an initially large value

of o is used to avoid local maxima, and then iteratively o is decreased to find the optimal solution

[90].Steepe.stasoentorQuasi-NewtonmehodscanbeusedtofindthemartimaofFo(z)foreadr

value of o. The smoothed ts norm algorithm for rccovery of the sparse lD signal is presented as:

Algorithm 3.1.

!.4 Delta Apprcximations Functions for Smooth ts

The efficiency of five proposed state-of-the-art DA functions is compared for smoothed 16

norm. All the functions are symmetric functions that are f (r) = f (-x)' here vector

x = xiV i = L,2,3,...,zr. The delta approximation functions are defined below:

The Gaussian Function (GF) defined by (l l) [90]:

fo",)=exp(#)

The Reciprocal square Function (RsF) defined by (12) [107]

fr(xi)=#
Composite Trigonometric Function (CTF) defined by (13) in [96]

fo'.)= rin(r..u"(4r)

The Laplacian Kemel Function (LKF) is defined by (la) and the Laplacian

approximationbyHyperbolicCosineFunction(HcF)isdefinedbv(15)[106]

(3.14)

(3.15)

(3.16)

kernel
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fo@t)=e'p(-+])

fo"(x) = cosh (Fs)-tl(Foc>

(3.17)

(3.rr)

3.5 sparse signal Recovery Empirical Resuth and Discussion

The performance of all the delta approximation functions defined in Section 3.4 is

compared for their effrciency in recovering a random lD sparse signal. To justis fair

comparison for all the proposed DA functions, the variance (width) of frrnctions is matched

against each value of o. Figure 3-4 shows the width matching results with different values

ofa forall the firnctions defined by Eq.(3.14) to Eq. (3.1t). The values ofo are empirically

fixed for all the smoothed Is norm approximations. The resultant values of o from this

experiment are presented in Table 3-t. This will justifi the fair comparison for all

approximation fu nctions.

Figure 3.4: Dela Approximation Functions Width Matching
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Table 3-l: Value of o for matching of width for DA Functions

Functionr Valucs of o

GF I 0.5 0.2 0.1 0.05 0.02 0.01

RSF 0.45 1.2 5 7 20 30 50

CTF 1.2 0.7 0.25 0.t2 0.07 0.03 0.02

LKF 0.t 0.3 0.1 0.06 0.02s 0.01 0.008

HCF I 0.3 0.1 0.05 0.025 0.01 0.008
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To test the performance of each delta approximation function, we generated a random lD

sparse signal that has a length of n = 256, total measurements taken during the process of

cs are m = 100. The step size for the steepest-descent algorithm (sDA) is set as F = 2

and the total number of internal iterations for the SDA is Q = 3' The external iterations

were set to P = 7 with different values of o, as shown in Table 3-l'

In Figure 3-5, the performance of each DA function in terms of MSE is calculated for

all values of o in Table 3-l'

. It can be concluded that GF has achieved the least MSE therefore' it has the best recovety

of a sparse signal. The RSF has achieved poor recovety with the highest MSE' The MSE

performance of each DA function can be seen in Figure 3-5. similarly, the sNR of each

smoothed !s approximation is evaluated in Figure 3-6' Based on the sNR of the recovered

sparse signal it is visible that GF has shown the best performancr with the highest sNR

and the RsF has the lowest SNR, resulting in a poor rocovery. The rest of the function's

performance can be viewed from Figure 3-6'

Theimportantparameterfortherecoveringaspantesignalisitscomputational

efficiency. The recovery time depends on the lengttr of the signal to be recovercd' The

effrciency of each smoothed ls approximation function has been measured by varying the

lengthofasparsesignalinFigure3.T.Thelengthofasignalisvariedfroml2Sto450

elements and the number of measurtments m is taken as half of the length of the signal n

andthecorrespondingsparsitylevelkissettohalfofthemeasulEments.The

computationaltimewascalculatedbyMATLABtic/toccommandsusingMATLAB

R20l4aonaCorci5,2.4GHzProcessorwith6GBRAM.ThecomputationaltimeHCF

takes is the highest and thus it is computationally ineffrcient' The RSF is found to be a

computationallyeffrcientfunction,whiletherestofthefunction'scomputationaltimeis

very close to each other'

The performance of the algorithm for recovering sparse signals can be evaluated based on

its capability to recover a sparse signal at varying spaslty levels' The sparser signal will

require a lesser number of measurements to successfully tEcover it' FigUre 3-8 shows the

MSEintherecoveryofasparsesignalwithfixedlengthn=2S6elementsandafixed

number of measurements m = 100. The sparsity k of a signal is varied from t to 35' The

Gaussian approximation function is found the most efficient with the least MSE and the
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CTF performed very close to each other. The DA functions RSF and LKF have shown

comparatively poor resulb, while CTF performance lies in the middle. Figure 3-9 shows

the SNR achieved by each smoothed 16 norm function. The GF performed the best in terms

of SNR of the recovercd signal with the highest SNR and CTF performed the second best

RSF and CTF have shown comparatively poor results.

Figure 3-10 depicts the normalized successful recovery achieved by each delta

function, with the success threshold set at 10-3. Each algorithm runs for 30 iterations and

successes are counted at each sparstty level and then divided by the number of iterations.

In this context, successful l€covery refers to the accurate reconstruction or approximation

of the original signal using the respective delta frrnction. The figure showcases the

eftctiveness of the different delta frrnctions in achieving successfirl signal rpcovery,

demonstrating their ability to accurately rcpresent and capture the essential characteristics

of the signal.

3.6 CS MRI Recovery by Smooth ts norm

The smoothed ls norm (sLO) algorithm has been modified to achieve computationally

efficient recovely of Compressively Sampled MRI. The firlly sampled human brain MR
image X is compressed by the non-uniform random undersampling mask (M) in the Fourier

domain represented W Fu,tre resultant undersampled image is a non-sparse image with a
noise-like artefacB. To sparsifi the image, it is hansformed in the wavelet domain. Data

consistency is maintained in ttre Fourier domain (Fr) for faster convergence to the optimal

solution' The proposed modified smoothed ls norm algorithm is described in Algorithm
3.2. Figure 2 shows the graphicar representation of Argorithm 3.2.
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Algorithm 3.2. Modified SLO for r€covery of CS MRJ

Initialise:

l. Initialise Xo = Fil(Y), whelrc Y is undersampled t-space daa

2. Setoasdecreasingsequence foro = lo1'o2""'o,rl

for i = 1,2,,,.,P=

3. Seto = dr

4. Find tlre Maxima for Fo(r) in m ircrations of SDA'

a. Initialise:X=Xt-r

b' Fori = L'2'-"Q

i. X.p"o" = O(X)

ii. Set M5pcrsa = {rporr" * fnr(X'Po"")

iii. Set Xspat'se = Xrp"o" - p Al5aarsc' where p is a step size

iv. x = O-l(Xsporsr)

v. Data consistency: x e Fir(Ft(x) * (1 - M) +Y)'

where M repr€sents the undersampling mask'

5. SetX, =;
Final solution'X = Xp.

!.TcsMRlRecoveryExperimentalResultsandDiscussion

The MR image is a fully sampled lc-space, as shown in Figure 3-12 (a)' The fully sampled

MRimagewasundercampledbyacquiringacompressionratioofZlVoint.spaceusinga

non-uniform random sarnpling mask, as shown in Figure 3'12 O)' The random

undersampled image has noise-like artefac6 that arc depicted in Figure 3-12 (c)' As the

scanned MR image is not sparse in the spatial domain, we have transformed it to iE sparse

representation in the Wavela domain shown in Figure 3-12 (d)'

The MR image was rccovered by all the smoothed ls norm approximation functions

defined in Eq. (3.14) to Eq. (3.1E). All DA functions successfully rpcovered the MR image

as shown in Figure 3-13. However, LKF was found to be the most accurate among all the

functions whercas, RSF showed relatively poor MR image recovery from compressively

sampled MRI.
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Figure 3-l l: Graphical Repre,sentation of SLO Algorithm

53



The performance metrics used to authenticate the results are SNR, tSN& PSNR [t9]' and

ssrM [s5].

The LKF achieves the best ISNR, while RSF showed the least efriciency with the minimum

ISNR. GF and cTF also improved ISNR as shown in FigUre 3-14' In terms of sNR

performance meEics, LKF and CTF achieved the best SNR as shown in Figure 3-15' LKF

accomplished the best PSNR, whereas GF also performed well in terms of PSNR' The

psNR achieved by each DA function is shown in Figure 3-16' The ssIM is another

important parameter for the accuracy ofthe recovered images' LKF achieved the best ssIM

index. The GF also attained better SSIM compared to the rest of the DA functions as shown

in Figure 3-17.

The performance of each smoothed ts approximation function was evaluated by varying

the sparsity level of MRI from 5% samples to 90o/o samples, as shown in Table 3'2' The

performance measulEs such as PsN& ISNR, ssIM, SNR, and MSE are evaluated against

different sampling ratios. The Laplacian kernel delta approximation function has

performed the best among all the functions under varying sampling rates'

Figure 3-12:lmageunder-sampling mask and its domains

(alOdginal lmage (blSampling Mask

(clUndersamPled lmage (d)Warelet Domain
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Figure 3-13: Reconstructed Images from different DA functions.
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Table 3-2: Effects of MRI recovery on varying sampling ratio

Srmpling 16 s% lOU. 20Y. 30U. a0% il9/. 60Y. 70% t0% gOYt

SNR

GF t3 67 16 0t 20 09 26.U 72.13 49. tt 43.02 47 14 5t 30 57 14

RSF r t.96 1246 16.t2 2303 26 50 3t.04 32.t6 36.38 40.1t 45 60

CTF 14. lt t7 05 20.99 27.49 t2.6t 48.t7 42t9 46.t2 50.y2 56 0t

LKF t3.$ 16.35 20.76 27.51 32.t2 49 t4 43.16 47.0 51.27 57.U

HCF t3.27 t5 55 It 6l 25.06 25.7t 4l 15 35.43 39.30 43 55 49.74

PSNR

GF 7435 77 0l t0 17 t6.0s 90 40 r05.2 9B7t r03 4 106.9 ill.t

RlIF 7t.54 7l 7l 75.69 t2.65 t6. 14 96.49 9t t2 94.93 9t.4 103 5

CTF 73 0l 76.37 79.91 t6.04 90.55 103.4 9t 13 10t.9 105.0 l0!r.5

LKF 74 59 77 t7 t0U t6.75 9r 15 t05 I 99j4 t03.3 t06.t lll.6

HCF 73 53 75 69 77 st t3 60 t6 33 96.79 q24t 95.36 98.54 103.2

ISNR

GF 16 4l r9 38 2277 2tu 33.33 4t.53 42.t5 46 65 50 4l 55 52

RSF t4.10 14 60 rt t2 25.tt 29.26 40.1 1 35./2 3t 4t 12.t6 47.55

CTF t5.a 19 t9 2286 2902 33.56 47.1t 42 t9 45 48 48.86 53.59

LKF t6 65 1972 23.41 294t t4t2 41.42 43 04 46.5t 50.26 55 43

IICF t5 7l 18.26 20.59 2671 29.65 40.36 35.n 3t.t4 42.21 47.23

MSE

GF 2()9c3 I 09t-l 5 03e4 2te-4 044c4 I 3lc{ 4 9lc6 203,e6 t52e7 2tu7

RSF I 49o,l 65e4 23,9e4 l9e-4 6 9c.5 3 6Ec6 t4/F5 5&5 205c{ ,W7

CTF 22tc3 I l2e3 512il t?6E'1 43€.5 I 79e5 57e.6 2 65c{ t2tfi 406p7

LKF I nb3 t4t -{ Stt3-4 t l7e5 264,e-5 6 98e7 279e{ l.l3e{ 4 llc-? t99ct

HCF I tlc-3 9s2o4, 4()!lc4 l. l9e-{ 5.nh-5 3 66e5 I 33c5 572fi 213e6 4 3(b7

SSIM

GF 066,52 0 t074 0.tt5t 0.9670 0.9ts3 0999t 0 9973 0.9986 0.994 0 9998

RSF 0 s396 0 5099 0 7459 0%00 0%94 0.954 0.9tt9 0.993t 0 995t 0.9t9

CTF 0 5261 07203 0.t236 0 9509 0 9806 0.99t7 0.9966 0.9982 0.9991 0.99D7

LKF 0 6tzl 0t246 0 9019 0.9'n2 0.9t76 0 9990 09p74 0 99t6 o.9x 0.9998

HCF 0.5916 07215 o.7y2l 0 9513 0.9699 0.D55 0.901 o9942 0 996t 0.99tt
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3.8 Prcposed Smooth ts nonn approximation

A novel smoothed approx. ofthe I0 norm, known for its discrete and discontinuous nature.

The proposed approximation provides a smooth and differentiable alternative to the

original function defined by F.q. (3.10). Building upon this approximation, a

comprehensive algorithm is developed for sparse signal rocovery. By replacing the

discontinuous function with the smooth and differentiable approximation, the algorithm

enables more efficient and effective gradient-based recovery of sparse signals.

(3. r e)

The parameter 7 in the proposed function is important in controlling the width of the

function. In the extreme case, the function defined in Eq. (3.19)can be utilised as an inverse

of the indicator function, offering a usefirl mathematical tool for handling spa$e signal

r€covery.

;se,(,,) = [l 7,=i
To use glr) approx. fs-norm, we consider two properties:

Property-l:

ltggrfu)=t-q(z)
Where q(r/) is given by (3).

Property-Il: Define Gr(z) as:

n

c,t(z) =Znre,)
i=l

Then,

ft

]1*er(rdl= )rr -q@))' Fi (3.23)

= n _ llzllo

(3.20)

(3.21)

(3.22)
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Figure l-lt: Gr(z) Behavior for different values of 1

Thus, llzllo can be aPProximated as:

llzllo = 
n- ]t1yct.z) Q'24)

Eq.Q.2a)introducestheparameterT,whichserYesasabalancebetweenthe

smoothness and accuracy of the estimated solution' By adjusting the value of 7' one can

control the compromise between the truo factors' Larger values of 7 lead to a more accurate

approximation, capturing finer details of the solution. Conversely, smaller values of 7

result in a smoother approximation, sacrificing some precision but providing a more

generalized representation of the problem defined in Eq. (3'7)' Therefore, the choice of 1

depends on certain requirements and priorities of the problem at hand.

The minimisation problem based on the t6 norm in Eq. (3.7) can be reformulated as

a maximization probtem of the function G7, particularly for larger values of 7' However'

when 7 is large, G, may exhibit non-smooth characteristics, leading to multiple local

ma:rima. ln contrast, for smaller values of y, G, becomes smoother, minimising the
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likelihood of becoming trapped in the local maxima. Thus, the main idea is to initiate the

optimisation prcoess with a small T value to side-step locat maxima to increase 7 gradually

to achieve an optimal sparse solution problem in Eq. (3.7). This approach enables a balance

between accuracy and sparsity while mitigating the risk of getting stuck in suboptimal

solutions.

Figure 3-lt illustrates the function Gy(.) behaviour across different values of 7. As y

incrcases, the function progressively approaches a better approximation of the Is norm.

Particularly for smaller I, the behaviour of the 6r(.) aRRears to be smooth, indicating a

smoother approximation .The G, (.) can be interpreted as a measure ofthe level of sparsity

in the solution, especially for larger values of 7. Maximizing Gy (.) yields the sparsest

solution, providing a valuable metric for evaluating the sparsity of the solution.

The development of the sparse signal recovery algorithm depends on the estimate

provided by 67(.), the steepest ascent algorithm is employed to maximize the function

Gr(.)- In the iteration ofthe SDA, the solution is updated using the gradient, which enables

the algorithm to move towards the maximum ofthe function. This iterative prccess allows

for the refinement of the solution, iteratively improving its sparsity based on the

maximization of G7(.).

By utilising the steepest ascent algorithm and the gradient-based updates, the proposed

sparse signal reconstruction algorithm effectively explorcs the solution spaoe to achieve

higher levels of sparsity. The atgorithm capializes on the insighs provided by the

behaviour of the firnction h @) and leverages the gradient information to guide the

iterative optimisation pn)cess, enabling the recovery of sparse signals from limited and

noisy observations.

zk+r ezk+ttkvcy(zk) (3.2s)

The proposed sparse signal reconstruction algorithm incorporates gradient descent

optimisation with an adaptive step size pp, which decreases with each iteration to ensurc

stability and convergence. For larger values of 7, a small step size is suggested to

accommodate the fluctuating nature ofthe function G, and maintain stability. The approx.

solution is further improved using back-projection, enhancing the accuracy of the

rcconstructed signal. Algorithm 3.3 is described betow, illustrating the iterative prccess
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that combines gradient descent, step size adaptation, and back projection to achieve

accurate and sparse signal rccoyery from limited and noisy measurements'

Algorithm 3.2: Proposed Smoothed ls Norm Approximation

L tnitiatise 6bl lzapprorhnate solutioaof Oz = y'

2. Set sequence of inoeasing LYtlz, -',hj

fm k = 1,2,...,N:

l. SetY =Yp.

2.MoimiseGrusingMiteratiotaofthsteqestoscentalgorithm'

a. lnitialisetz = 4*-r

b. Fmi= L,2,...,M

i. ser Ar = pfl ,r(zt),.-,r,*rrk)l'

ii. Set rez-pM
iii. Proiect x bock os 2 =' - qt 1q'qt)-'(Oz - y)

3. SetQy= x

Finnl solution=z = qN.

3.9 Pruposed Atgorithms Experimental Results on k-sparse signal

The efficiency of the proposed method is empirically validated through MATLAB' In

the experiments, a l-D sparse signal is sampled using a random Gaussian matrix Q^'n'

where m = 4OO are observations and z = 1000 is a lc-sparse signal length that needs to

be recovered. To ensure consistency, every column of the matrix rD is normalized to unity'

The measurcments are taken based on a noisy model ! = Ax * w, here w denotes white

Gaussian noise (WGN).

The proposed algorithm incorporates an inner loop using gradient descent, which is

executed three times (Iv = 3) for each value of 7. This iterative prccess allows for fine-

tuning and refinement of the rcconstructed signal by iteratively updating the solution' The

algorithm's robustness and effectiveness arc evaluated under different conditions and

scenarios by systematically varying 7 and conducting multiple iterations

The experimental validation using MATLAB simulations provides quantihtive

insights into the algorithm's performance and demonstrates its ability to tEcover sparse

signals from noisy observations accurately. The choice of specific parameters ensur€s a
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comPr€hensive evaluation ofthe algorithm's performance and robustness. The proficiency

of the proposed method is examined by MSE and SNR, where the proposed algorithm

recoveN the sparse signal morc accurately than the base SLO algorithm defined by t90].

Table 3-3: Values of MSE and SNR at Different Iterations

Iterttion Proposed. Algorithm SLO Algorithms

f MSE SrVR TfiSE s/vR

I 0.45 2.75e - 2 6.70 3.75e -2 2.88

2 0.90 L.26e -2 10.10 2.19e - 2 5.21

3 1.80 5.50e - 3 13.70 4.28e - 3 12.29

4 3.50 1.44e - 3 19.53 1.67e -3 16.37

5 7.20 3.43e - 4 25.74 6.LBe - 4 20.71

6 14.4 7.66e - 5 32.26 l.9le - 4 25.80

7 28.8 1.87e - 5 38.38 L.87e - 4 25.89

8 57.6 4.78e - 5 43.38 1.72e - 4 26.15

9 Lts,.2 L.48e - 6 48.61 1.53e - 4 27.97

10 230.4 8.42e - 7 51.52 1.59e - 4 28.80
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The proposed algorithm is compared with the baseline SLO algorithm, as presented in

shown in experimental results. The results in Table-l highlight that the novel function

proposed in this section outperforms the SLO algorithm by achieving significantly

improved sNRvalues. The proposed method achieves sNRvalues of upto 5l'52 dB' while

the SLO algorithm achieves only 2t.t0 dB. Moreover, the MSE of the estimated signal by

the proposed method lies in the vicinity of zero, indicating a highly accurate reconstruction'

Figure 3-19 visually demonstrates the reconstructed signal alongside the actual signal'

The non-zero elements of the actual sparse signal are marked with '*" while the non-zeK)

values of the estimated signal are marked with 'o" The perfect alignment of these markers

indicates the nearly perfect reconstruction achieved by the proposed algorithm' as the non-

zero values of the recovered signal perfectly overlap with those of the original signal'

Furthermore, Figure 3-20 illustrates the enhancement in sNR by proposed algorithms'

This comparison allows for a visual assessment of the performance improvement over the

iterations. The figure shows the clear advantage of the proposed algorithm' which

consistently exhibits superior sNR improvement compared to the conventional slo

algorithm.

4557
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Collectively, the experimental resulb provide strong evidence ofthe superior performance

of the proposed method by reconstruction accuracy and consistency throughout the

iterations. The proposed algorithm offers significant advancements in sparse signat

necovely, achieving high-quality reconstnrctions with improved fidelity compared to

existing approaches.

3.10 Empirical Results for CS MRI Recovely

The proposed smooth approximation ofthe ls norm (PSL0) technique is applied to recover

of MRI from is undersampled k-space data. Drawing a comparison between CS encoding

and noisy images, compressed sensing recovery fundamentally transforms into an image-

denoising task. Estimating the noise, done using the maximum a posteriori (MAp)

estimator, is the first step in recovering the original image. A2-D compressively sampled

genuine human brain MR picture with dimensions of 256 x 256 is recovered using the

suggested approach. The original human brain MR image was obtained utilising a 1.5 Tesla

GE-HIIXt-MRI scanner using Gradient Echo (GE) sequence and E-channel head coils. This

scan was fully sampled. At St. Mary's Hospital in London, England. The MR image is

compressively extracted in dris instance by acquiring only 25Yo of the samples using a

random mask.

Figure 3-21 presents the recovery of CS MRI datr under-sampled using a variable

density random sampling scheme. In Figure 3-21 (a),the recovery rcsults ofthe MRI using

differentalgorithms, namely zF, LR, ssF, IRLS, pocs, MIRLS, and the proposed method

(PSL0I), are displayed. Subjectively, the image recovered by the proposed method exhibib

better visual quality compared to the other recovered images, indicating the effectiveness

of the proposed algorithm.

Figurc 3-21 (b) illustrates the sampling pattern utilised by each algorittrm. It visually

repr€sents how the different algorithms capture the under-sampled data. The sampling

pattern reflects the spatial distribution of acquired measurcments, which is crucial for

accurate r€covery.

Furthermore, Figure 3-21 (c) focuses on the magnified difference betrveen the original

and recovered images. The Zero Filling approach performs poorly, as the difference

between the original and recovercd images is more pronounced. On the other hand, the SSF

and IRLS algorithms exhibit higher error levets than the PSL0. The error in the proposed
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method is considerably lower than that of the other methods, indicating is superiority in

terms of achieving more accurate and faithful image recovery.

Figure 3-22 provides a quantitative comparison of the proposed algorithm PSLO

performance with PSO, POCS, and MIRLS algorithms when applied to under-sampled MR

data. The under-sampling process is conducted using a variable-density random sampling

pattern.

Figure 3-22 (a)depicts the improvement in ISNR achieved by the proposed algorithm

is depicted. It showcases the superiority of the proposed algorithm in terms of achieving

higher ISNR values compared to other methods. The higher sNR values indicate better

quality and fidelity in the recovered MRI'

Figure 3-22 (b)itlustrates the reduction in ssIM achieved by the PsLo. A higher ssIM

value indicates a closer match between the recovercd MRI and the actual image' The

significant improvement in ssIM achieved by the PSLo indicates its ability to achieve

morc accurate and reliable results compared to the other algorithms.

Overall, these comparisons highlight the quantitative advantages of the proposed

algorithm PSLQ over other methods, as evidenced by the imprcvement in SSIM and ISNR'

These results further validate the effectiveness of the proposed algorithm for recovering

under-samPled MR data.
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3.11 Conclusions

In conclusion, the precise rcconstruction of sparse signals from limited observations poses

significant computational challenges. This chapter has presented a novel technique to

address this issue and reconstruct a sparse signal by the reduced number of observations.

The proposed algorithm has been compared to the conventional SLO algorithm in terms of

MSE and SNR. The empirical findings have demonstrated that the proposed technique

surpasses existing smooth apprrx. methods of tlre 16 norm in terms of accuracy and

performance. This signifies the effrcacy of the proposed algorithm in rccovering sparse

signals from limited measurements.

This chapter has also presented a comprehensive analysis of various smoothed ls norm

approximation functions found in the literaturc, ensuring fair comparison by matching the

width of each function. The performance of these firnctions was evaluated for lD sPatle

signal rccovery, considering metrics, such as SNR and MSE' Among the tested functions'

the Gaussian Function (GF) demonstrated the best effrciency in terms of signal recovery

accuracy, while the Reciprocal Smoothed Function (RSF) exhibited the least

computational cost.

Furthermore, the smoothed ls norm approximations were applied to the reconsfiuction

of compressively sampled MRI images. Performance measures including sNR" Improved

ISN& psNR, and sslM werc utilised to evaluate the efficiency of the reconstructed

images. The empirical results revealed that the Laplacian kernel function yielded the most

accurate reconstruction of CS 2D MRl. The accuracy of each smoothed ls lrorm

approximation was assessed across varying levels of MRI comprcssion, and it was

concluded that the Laplacian function is the most effrcient choice for the recovery of CS

MRI.

These findings highlight the significance of selecting appropriate smoothed ls norm

approximation frrnctions for different signal rccovery scenarios. The Gaussian Function

proved to be highly effective in lD sparse signal recovery, while the Laplacian kernel

function demonstrated superior performance in compressively sampled MRI

reconstruction. The outcomes of this study contribute to ttre advancement of sparse signal

rccovery techniques, providing valuable insights into the selection and application of

smoothed Is norm approximation functions in practical signal processing applications'

68



CHAPTER 4

SPARSE RECOVERY USING HYPERBOLIC TANGENT

BASED SMOOTH Ll NORM AND SHRINI(AGE

In this chapter, a novel reeonstnrction algorithm utilizing the hyperbolic tangent function

(tanh) to reconstruct signals and images within the Compressed Sensing (CS) fiarnework.

The proposed approach involves approximating the 11 nonn and soft thresholding using ttre

tanh. This chapEr also presented criteria for optimising tuning parameters to achieve near-

perfect results. The proposed 11 norm approx. error bounds have been examined. To assess

the ploficiency ofthe proposed technique, we have used dahsets consisting of l-D lc-sparse

signals, CS MRI, and cardiac cine MRI (CC-MRI), which is crucial for evaluating cardiac

vascular function. CC-MRI prcvides valuable information, such as ejection fraction and

cardiac output, but its slow acquisition process hinders is efficiency. Therefore, there is a

need to expedite the scanning methods to exploit the advantages of CC-MRI frrlly.

Empirical findings using efficiency evaluation measures i.e., including SSIM, PSNR, and

RMSE demonstrate that the suggested CS recovery method based on the tanhoutperforms

traditional IST recovery methods, providing significantly improved performance in

reconstructing undersampled signals and images.

4.1 Intrcduction

In the CS framework, the under-determined system of linear equations may have infinitely

many solutions. However, the objective is to find the sparsest possible solution, which

involves minimising the ls norm. Unfortunately, finding an Is norm solution is a non-

convex and NP-hard optimisation problem, given the infinitely many possible solutions.

To address this, the 11 norm has been established as a suitable approximation for the Is

norm, transforming the non-cnnvex problem into a convex one[94]. However, the non-

differentiability of the 11 norm and the inability to apply gndient-based minimisation

algorithms necessitate smooth approximations for the 11 norm. Iterative shrinkage

algorithms have proven to be efficient in numerically minimising the l1-regularised least
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squar€s optimisation problem [23], but they require inducing sparsity in the solutions to

fulfil the requirements of CS r€construction. CS is a sampling technique, that enables the

retrieval of a signal using only limited observations, provided that the signal exhibis

sparsity in a specific domain and the observations are incoherent with that domain.

However, many existing r€construction mettrods for CS signals have high computational

cosb and rcly on non-linear Echniques. These limihtions have motivated the need for more

effrcient and computationally feasibte approaches to signal reconstruction in CS [2, 5,40].

A novel rccovery method is introduced that employsthetanhto rEconstruct undersampled

signals and images within the CS framework.

CC-MRJ is a valuable tool for assessing cardiac-vascular disease by providing detailed

information about cardiac wall thickness, motion, and functional parameters like ejection

fraction and cardiac output [Ot-l I l]. However, the traditional scanning methods of CC-

MRI are time-consuming and require patients to hold their breath multiple times during the

scan, leading to patient discomfort and limited scan effrciency'

Researchers are exploring techniques to reduce scanning time in CC-MRJ to address

these challenges. One approach is to use fast pulse sequences that allow for quicker image

acquisition. Anotfter approach is to reduce the sampling frequency during data acquisition,

which can be achieved through CS techniques. CS benefits from the inherent sparsity of

cardiac cine MRI data in the temporal dimension. By exploiting the fact that only a few

significant changes occur between consecutive frames of a cardiac cycle, CS enables

accurate reconstruction of the entirc sequence from a smaller number of acquired samples

[14, I l2]. This reduction in the number of samples leads to shorGr acquisition times and

increased patient comfort. Researchers in medical imaging, particularly in the field of MRI,

are actively working on improving the speed and efficiency of CS-based reconsfruction

methods. These methods involve non-linear reconstntction algorithms that can effectively

exploit the sparsity of the cardiac cine MRI data. Additionally, incoherent undersampling

techniques, such as random sampling, produce noise-like aliasing artefacts during the

reconstruction p1)cess, further enhancing the efficiency of CS in cardiac cine MRI [l13,

I l4]. Continual advancements in CS techniques hold great promise for improving the

speed, efficiency, and diagnostic capabilities of cardiac cine MRI. By leveraging the

principles of sparsity, non-linear reconstruction, and incoherent undersampling,
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rcsearchers aim to develop more efficient CS algorithms to accelerate image acquisition,

reduce patient burden, and improve the overall quality of cardiac cine MRI examinations.

In MRI, spa$lty can be achieved by finding a suitable sparsif,ing hansform for its

spa$e representation, while incoherent sampling is fulfilled by using various

undersampling patterns such as radial lines or variable density sampling [14]. Non-linear

r€covery methods based on l1-norm regularisation have commonly solved the problern by

finding the sparse estimated solutions to the LS. While the l2-norm employs a simple

solution, it dispenses the error enerry acrcss all sotutions, resulting in non-sparse solutions

that do not fit well within the CS framework. On the other hand, lr-norm regularisation

with I < p < o tends to penalise only the largest parameters, leading to less sparce sotutions.

Thus, l1-norm regularisation is pefened as it promotes sparsity, making it suitable for the

CS framework [2, 5,40].

However, the 11 norm penalty is non-differentiable, making it chaltenging to apply

efficient optimisation methods that rely on derivatives. To address this, different methods

have been suggested to solve the 11 norm penalty problem. The IST algorithm has been

successfirlly used for efficient image reconstruction from under-sampled data in the CS

framework [15, I l5]. Another approach is the iterative hard thresholding-based recovery

method, although under-performed as compared to soft thresholding-based methods.

Several algorithms, such as random filrcrs for CS [16], Brcgman algorithms for [l l7],

and weighted 11 norm reconstruction method I l8], have been suggested to address the CS

reconstruction problem.

Recently, a smooth l1-norm regularisation CS recovery method using a tanh has

emerged. This technique has shown promise in reconstnrcting under-sampled MR images

from ftwer samples, enabling fast scanning with no compromise on spatial resolution. It

has been demonstrated that the tanh performs better in signal reconstruction compared to

(soft and hard) thresholding and Garrote ttrresholding methods [l19, 120]. Researchers

have also explored the implementation of wavelet thresholding using tanh,whichhas been

found to provide more precise rccovery results than IST techniques Uzl-lz3l.
These developmenB in approximating the l1-norm using the tanh have opened new

possibilities for improved signal recovery in under-sampled MR imaging. Experimental

evidence supports the effectiveness of this approach in achieving better reconstruction
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compar€d to traditional thresholding methods. By leveraging the advanages of the tazh'

rcseapherc are advancing the field of CS image restoration for MR imaging'

This chapter explores the application of CS to reduce MRt data acquisition time by

leveraging the sparsity in MRI signals in lc-space. A novel cs reconstruction method is

suggested that employ s tanth,which prcvides a more effrcient approximation of the 11-

norm and enables accurate recovery of comprcssively sampled sparse signals, MR images,

and cardiac cine MRI. The proposed algorithm utilises the steepest descent algorithm for

objective function minimisation and incorporates the ISl'technique based on the tanh,

inspired by the MAP noise predictor. The efficient criteria for tuning the parameters are

also suggested. Empirical resuls are evaluated through simulations involving the recovery

of random l-D sparse signal,2-D MRI, and clinical CC-MRI' Quantitative performance

measures, including MsE, RMSE, SN& PSNR,ISN& conelation, sslM and, fitness was

employed to demonstrate the superiority of our suggested algorithm over existing

reconstruction methods.

4.2 Prcposed smooth t1-norm approximation by Hyperbolic Tangent

Reconstructing an undersampled signal using CS is an optimisation problem that

minimises the 11 norm in the solution. Ttis penalty is sparsity-promoting mechanism in the

solution, so only a few elements of the solution ane nonzefl'' This is useful for

reconstructing naturally spaFe signals, such as MRI images on an appropriate basis'

Consider a signal reprcsented as a Yector, G IRz' Lety e Gn limited observations of

the signal. The cs reconstruction can be expressed as follows:

f(r) =|W -ovHrllZ + illrll, (4.1)

Here, Q defines the sampling matrix for signal r, while Y is the sparsiffing domain' The

parameter t in Eq. (4.1) crucial for the trade-off between fidelity and sparsity' The

effectiveness of our algorithm depends on choosing the right threshold level' Depending

on the signal size and its noise variance, we used the fixed value expression' [l l5]'

1=ouJM (4.2)

The noise standard variance is denoted by oo,and sparse signal lengttr is denoted by n' The

tanhhasseveral properties, including non-convex, odd function, differentiable' bounded

function, and monotonically increasing. You can also adjust the curve of the function at iS
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point of origin to any desired value [23]. This is why we propose to use the tazh as an

approximation for the l1-norm in Eq. (a.l). The approximation is defined as follows:

llztlr = lzitanh(yz)
I=1

As the tazh serves as a differentiable frrnction to approx. l1-roffi, we select a relatively

high value for the parameter 7 to bring it closer to the l1-norm, as depicted in Figure rt-I.

In Figure 4-l h nonn apprcximation using the tanh with varying values of y -
(1,4,6,ad L0). As 7 increases, the approximation becomes closer to the true 11 norm

but also becomes less smooth. The proposed technique offers a trade-off between

smoothness and accuracy, allowing flexibility in choosing the desired level of
approximation.

This choice allows ts to leverage the advantages of smoothness and differentiability.

Consequently, Eq.(4.1) can be expressed as foflows:

f (z) =lr, - ayLzlll* 
^2",=rrrtanh(yz1)

(4.4)

To accommodate the steepest descent algorithm, vector differentiation is not applicable.

Therefore, it becomes necessary to rcwrite it in element form, as shown in Eq. (4.4),

compute the partial derivatives. By introducing the notation, A = evH, we can expr€ss

the element-wise equation as follows:

f (z) =!rZU, - y){Az - t)t + tzfianh(yz)
I

By introducing the notation A = $vn, we can formulate the gradient of Eq. (4.4) in the

form of the element as follows. This formulation allows us to calculate the derivatives

regarding each element individually:

W =Znun,rri -ZtiAu t t(ranh(yz1) + zly(t - tanh2(yz))) 
@.6).ii

So, the proposed steepest descent algorithm scheme can be defined as for is Ittr update is:

(Az)r=-W

(4.3)

(4.s)

(4.7)

The sDA is employed to find a solution using Eq. (4.7). This equation provides a

framework for iEratively updating the solution by taking steps toward the steepest descent.
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The algorithm aims to minimise the loss function by adjusting the solution according to the

gradient information provided by Eq' (a'f'

4.t Smooth t1 norm Errur Bounds

In this section, bounds for error are examined for smooth 11 rotrl, as described by

F-q.(4.2)Uz4l.The I, norm is approximated using two fundamental rules, which serve as

the foundation for its effectiveness alE defined below:

l.lzl=(z)*t(-z)+,where(z)+=maxlz,Olistheplusfunction'
2. The above-mentioned plus function is redefined by the smooth appoximation as:

1
(z) + o p(z,y) = ilz 

+ z. tanh(Yz)l

,.lr ' '
"-r {.8 {.6

o07c
o

E 0'6

E- 
0.5

CL
6

E 0.4
oc
J- n?

(4.r)

of Y =

{.4 42 0

z

Figure 4-L; h norm apprcximation using the tanh with varying values

(L,4,6,and10).

From Eq. (4.E), we can write a smooth approximation of tlnorm:

llzl[ = (z)* + (-z)+ o p(z,y) *p(-z'y)

='rtt t tanh(Yz)l -itt + tanh(-Yzll

L, Nom

----- r/=1

" f=4
"'7=B
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=|tanh(yz) +|nnh(yz)

= ztanh(lz)

= llzllt

In conhast to the 11 nonn, the proposed approximation altows for applying unconsfained

optimisation techniques, as it is twice differentiable. The first-order gradient of the

proposed 11 norm can be calculated using Eq. (10), while the second-order gradient can be

obtained using Eq. (ll). This differentiability property enables the use of gradient-base

optimisation algorithms to effrciently solve the optimisation probtem associated with the

proposed approximation.

v(llzlD o tanh(yz) -yz (tanh(yz)2 - r)

V2 (llzlD * Zy (rz tanh(rz) - L)(tanh(yz)2 - r)

(4.r2)

(4.t3)

(4.10)

(4.1l)

The value of y approaches infinity and the difference between [zl[ and llz[, becomes

negligible. In this study, we introduce a straightforward lemma to estabtish enor

boundaries for llzlll and llzllr. This lemma provides a useful framework for understanding

the relationship between the two norms and quantifiing the approximation error as y

increases.

Lcmnu r.' The smooth function proposed for the 11 nonn, f (z) - z tanh(yz), satisfies

both the necessary and sufficient convexity condition within the interval z e I-1,1]. This

can be observed through its monotonically non-decreasing derivative, f'(z),as defined by

Eq. (4.10), and is nonnegative second derivative, f"(z), as defined by Eq. (4.1 1), for

0 < y < 1. These properties ensurc that the proposed function is convex and suitable for

approximating the 11 norm.

Lennu 2.. l1-norm based approx. eror is bound for any z e lR,r and 7 > 0

f [zll, - il"llrl. 
L

Pmol:

Let's consider two cases, the first case for z ) O,

p(z,y) - (z)* =|O t tunh(yz)) - z

=zTtann?d -|
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=|@"no4 - r)

To determine the upper bound for Eq. (13), we can find ttre highest value of tanh(fz)' It

is weil-known that the highest tanh(yz) value is l. Therefore, this is expressed as follows:

motimatanh(yz) ='ffi-- ' 
(4'14)

By Eq. (4.14), The relationship between 7 and z can be readily derived as follows:

1
, = fr 

(4.15)

By inserting the value of z from Eq. (4'15) in Eq' (a'l )

p(z,y) - (d. =fi 
(4'16)

Forz S 0,

0 3P(z,Y) - (z)* = P(z,Y) SP(O,Y) (41n

='l Ganh(yz) - 1) s 0

1

=4

Here pis the monotonically increasing' So' from Eq' (4'17) and F4'(lt)' p(z'7)will

dominaE (z)*, so

tp@,y) - @)r =+ 
(4'rt)

From Eq. (4.12),we can insert llzll = (z)+ + (-z)+

lllrll, - llrilrl = lp(z,y) * p(-z,y) - ((z)* + (-z)*)l (4'1e)

=lp@,Y) 
- (z)*l +lP('-z,Y) - (-z)*l

.1* L 
=:- 4t' 41 2Y

Let's define llzllfr,tl as a smooth estimate of llnorm function llzlh for a vector z E IRn as:

llzllrr,rl = )."llr,ll,Lti

.1n
lllzllrr,rl - llzllrl sznfi= lL Q'20)

Hence, we can conclude that:
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jtgllzll (r,r) = llzll, vz eRn (4.2t)

(4.22)

Let L: lRa -r IR by any continuous loss function that is defined as f (z) = L(z) + llzlh and

fi(z) = L(z) + llzll1,yt.Ifwe define, Z = *ryt"f(z) and Zt = ",T,ft@).By definition

ofl and fi md from Eq. (20), it can be concluded that.

lim fr(z) = f (z) Vz c IRn
f)6'

Using the fact f (z) S f(z)vz.In particular f (i) 
= 

f(zr),then:

f (z) 
= 
r(z) = L(q) + llrrll, (4.23)

= L(zr) + ll+ll,+ llzrllr,,rr- llzrllr,r,

= (r(+)+ ll,rll,,,r,)+ (ll,ril, - ll,,ll,,,r,)

= r,(4)+ (ll,;ll, - 11,,11,,,,,)

rhis implies that f (z) - fr(+) a - *from 
Eq. (2 1 ), simitar tv @) - t (zr) < f , hence

prcved Mt 
ltgfi(A = f @).

This can be elaborated further:

V@)-f(z)l =lr(+)-fia-fr(zr)+fi(z)l G.24)

= V@) - fi(z)l + V,@,) - r (z)l

Hence it proved tnat jygf (zt) = f (4. Furthermore, the L is shictly converq it's proved

that: lim zv = Z.
l)@'

Figure 4-2 lllustration of the enor bounds ofthe 11 norm approximation for z ) 0. The

green line represents ttre mathematically prcven upper boundary as defined in Eq.(4.16),

while the dotted red line represenb the real enor between tanh and the discontinuous

11 norm. The error is highest near zer) and diminishes as y approaches infinity.

In Figure 4-3, the 11 norm estimated bounds for error while z ( 0 the green line depicts

the higher boundary as shown inEq. @2q, while, the dotted red line illustrates the original

difference between the suggested 11 norm approx. and actual t1 norm. The egor is highest

near zero and diminishes as y + o.
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4.4 The II{AP Estimation for Proposed rhreshording Mechanism

The traditional approach of minimising the l1-norm incorporates intrinsic soft thresholding

[ll5]. However, the l1-norm estimate using the tanh, thrcsholding process is not

performed intrinsically. In [25], an alternative hard thresholding operator is introduced,

which can be defined as follows:

sok>={lo **fi (4.2s)

In our approach, a novel thresholding function is employed that utilises the tanh.

Consequently, the parameter p is important in managing the Gaussian distribution of the

under-sampling noise tl23l. The determination of the optimal value for p relies on the

characEristics of the undersampling noise. Hence, we utilise the data-driven thresholding

parameter p, as indicated by references [l 15, 126].

B=i'oz (4.26)

Assuming oz rcpr€sents the standard deviation of the sparse signal and oo represents

the standard deviation of the random noise due to undersampling.

To improve efficiency in various situations, various thresholding operatorc are

presented by researchers1127-1291. The fundamental concept behind these operators is to

map values near the origin to zoro,while values farther apart from the origin are gradually

reduced to zaro.

The primary objective of tlre denoising technique is to obtain an estimation of the actual

image based on a set of perturbed measurements, as illustrated inFa. @.27).

Y=z+v (4.27)

Here, y c IRU represents the image with noise, z e Ra is the actual signal and v is zero

mean Gaussian noise with pdfdescribed below:

(4.2t)

By tahing the Wavelet transform of Eq. (4.27),we get:

q=s+u 
9.29)

Here, we have g - Yy representing the sparsity-promoting transform for the noisy image,

and s = Yz representing the sparsif,ing domain for the actual image. Since the WT fulfils

P,a,)=h"*(ry;
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the linearity prcpery, the zero-mean Gaussian noise u, in WT, will rcmain unchanged' The

MAP predictor of the random signat s is given by the following equation:

3 = 4ft#p(slq) (4.30)

Applying Bayes' rule allows us to disregard p(q) since it is independent of s' Therefore'

the MAP predictor can be expressed as follows:

3 = mgp(qls)p"(s) (4.31)
scli'

The problem in Eq. (a3l) can be simplified turther by taking p(qls) - pu(q - s)t

! = maxlpu(q - s)lp"(s) (4.32)
t

= mat?n?v(q - s) + ln P"(s)l
s

=m,,l^t+r*,*(ry))*'r"r"r]

= m,t' 
t er-r)", * (-W9) *'," u, 

1

=muVW+f(s)l
wheref(s) = lnp"(s). By differentiating the argument of Eq. (4.32) regarding s and

setting the obtained value as 0, the MAP predictor can be estimated for the Wavelet

contenb for the noise-free signal by:

(gi-s,). ,#*f,(S1) = Q, lsiSn
oi

The pDF of biomedical images exhibis a higher concentration of values around the cente

compared to a Gaussian distribution. As a result, the Laplacian distribution is more

effective in estimating the distribution of Wavelet domain coefftcients'

p"(sD =h"*(f,-') (4.34)

gives f'(3) = -{4srg(31)' Solving Eq' (a3a) results in

{i = 3i + JZsis(S) (4'35)

Let p = {Zol anasolve Eq. (4.35) for 3i by formulating the nonlinear shrinkage:

Si = sp(g) =mar/(lQl- P,o}'stg(q) (4'36)

Eq. (4.36) can be further explained as:

(4.33)
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sp(d= fsan1rl1tqt- 
il *lli,!" (4.37)

This chapter presenb a thresholding approach that is estimated by tanh. The tanh

offers the advantage ofthe adjustable slope nearthe origin and is a function that is bounded,

making it a preferable choice as an estimation for soft thresholding (ST). Consequently,

the mathematical description of tanh-based ST is represented as:

sore) 
=fcz(tann("Qql 

- D) 
*l!,,i,! (4.38)

The equation above includes a thresholding parameter, p, and a parameter c that controls

the shape of the tanh. When a is closer to zaro, Eq. (4.3t) approximates the behaviour of

a soft thresholding function. As a approaches infinity, Eq. (4.3t) transforms into a hard

thresholding (HT) function, as depicted in Figure 4-4. The proposed algorithm initially

employs an ST function that gradually transitions to an HT at higher iterations. This

approach yields improved recovery in compared to faditional ST techniques [23]. In

Figure 4-4 tanh-based thresholding different values of o, specifically a = (2,4,8,L6)

are chosen. The choice of c controls the tajectory of the ST curves. The suggested

technique allows flexibility to change the slope as per the need of the certain application.
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4.5 Prtposed Algorithms

The proposed algorithm is described as Algorithm 4.1.

Algorithm 4.1: Recovery of lc-sparse signal by proposed algorithm

Inpu:

Setuing matrix fu,meufl7nement vector ye0m ,parameters y, I' and P

Initialise: A k - sparse vector * C Ril as rs

for i = 1,2,...,P:

Step N o L (Spuse Ttons f otmallatr): z 1 = t1t a,

Step No 2 (Grodtent Cotlnpzrtaittoll'): Eaalutte V f (z) by Eq.G-6)

S tep N o 3 (S olution ttpdote)z C alanlate the update using E q. (4.7).

Step N o 4 (Slvit*age)z Shrink by Eq. $.38) i. e. ,2r+1 = Sp (zr+r)

Step No 5 (Repeot): I f the sropping oiterion is met (stop),else go to step I

Final soluion:9, = YH2r.

4.6 Experimental Results and Discussions

To assess the effectiveness of our suggested method, experiments on three different types

of data: l-D ft-sparse signals, CS MRI, and CC-MRI. ln evaluating the algorithm's

performance in the field of CC-MRJ, we utilised the MRXCAT simulator. Quantiative and

qualitative assessments were carried out to gauge the performance of our technique.

For quantitative evaluation, we employed several performance measunes in this

research article. First, we visually depicted the under-sampling artefacts to observe the

improvement achieved by our algorithm. Additionally, we utilised the SSIM index to

measurc the similarity between the rccovered images and the ground truth. The PSNR and

RMSE werc also calculated to provide firrther quantitative insights into the quality of the

rccovercd images. By employing this comprehensive set of performance measures, we

could thoroughly evaluate and demonstrate the efficacy of our proposed technique in

various scenarios.

4.6.1 l-D Sperse Signel Recovery

The suggested method is employed to rccovers a l-D k-sparse signal (z). In this

experiment, a random lc-sparse signal of length n = 5L2 is generated in MATLAB, whete

non-zero elements are randomly genermed with K = 85. To compressively sample the z,
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a random measurement mafix I E p2s6xs12 1. used, resulting in only m = zs6

measuremenB.

Figure 4-5 illustrates the achieved fitness of IST techniques and the suggested method.

The proposed method demonstrates a fast decrease in loss function in comparison with

IST.

Figure 4-6 showcases the impact of sparsity on rcconstruction success by both the IST

method and the suggested method. Remarkably, the suggested method outperforms the soft

thresholding technique even at higher sparsity levels.

In Figure 4'7,the effectiveness of the proposed method in accuratety recovering the

sparse signal is evident, while the soft thrcshotding technique struggles to achieve the same

level ofaccuracy.

To furtherevaluate the accuracy, metics like SN& MSE, and cogelation werp used,

as presented in Table 4-1. The suggested method performs more in atl these measures than

the IST method. In terms of computation time, the proposed algorithm takes I.5Z seconds,

slightly longer than the conventional IST method, which takes 1.34 seconds.

E
llrrilons

Figure 4-5: Fitress comparison of proposed and soft thresholding technique.
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Table 4-l: Accuracy of recovery of l-D spanrc signal by the proposed method is evident

1.51x 10 - 41.00 x l0 -2

t4



100

0 r00 m0 300 400 500 600
(b,

Figure 4'7:The sparse signal recovered using the proposed algorithm and the soft
thresholding method.

4.6.2 2-D CS MRI Recovery

Random undercampling during CS MRI resulb in noise-like artefacts in the sparsifiing

domain. When dealing with k-space encoded biomedical imaging, such as MRI, the linear

methods i.e.,ZF or LR produces artefacs like Gaussian noise. The noise generated by sub-

sampling depends on the under-sampling masks [99].

To reconstruct an image, CS MRI reconstruction transforms into an image noise

removal problem, drawing a comparison between CS and noisy images. Initially,

recovering the actual image involves estimating the noise, accomplished through the MAp

estimation. The suggested method is reconstructing a 2-D CS reat human brain MRI with

dimensions 256r 256. The original MRI was acquired through firlly sampled k-space

data. 1.5 Tesla GE - HDxt - MRI scanner at st. Mary's Hospital, London, England. The

MRI is undersampled by retaining only 25% of the lc-space data.
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Figure 4-t: The sSIM between the soft-thresholding and proposed algorithm'

Figure 4-t depicts the proficiency of the suggested algorithm in terms of SSIM' The

suggested @hnique exhibits significantly better ssIM in comparison to the IST technique'

Figure 4-9 displays the achieved PsNR by the suggested technique' The proposed

method outperforms the soft thresholding method in terms of PSNR

Figure 4-10 depicts the subjective analysis of MRI: (a) the original 2D MRI of the

human brain, (b) the recovered 2D MRI using conventional tST, (c) the 2D Brain MRI

rcconstructd from the under-sampled lc-space dat1, (d) the difference between the ground

fiuth image and the tST recovery, and (e) the enor between the proposed recovery method

image and the actual image. To enhance visibility, the scale of the difference is amplified

by a factor of 1000.

Table4-2compares the performance ofthe conventional IST method and the suggested

technique acKrss various cR, ranging from 5% to S}o/osub-sampling of the 2-D MRJ' The

results demonstrate that the suggested technique consistently outperforms the conventional

soft thresholding method on performance metrics like SSIM and PSNR at different CR'

10
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Table 4-3 comprehensively compares the performance between the proposed algorithm and

IST in various performance metrics. After l5 iErations of IST and the suggested technique,

the results demonstrate that the proposed method consistently achieves superior outcomes

compared to IST.

In summary, both the visual representations in Figure 4-E and Figure 4-9, along with

the quantitative analysis in Table 4-2:Theperformance of both algorithms against varying

CR., confirms that the proposed method outperforms the soft thresholding technique in

terms of various performance measurcs.
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Sof, Thresholding

herations

Figure 4-9: The conelation between the proposed tanhandthe soft thresholding
algorithm.
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Table 4-2: The performance of both algorithms against varying cR.

Gompression Ratio
Soft Thresholding Proposed Algorithm

SSIM PSNR SSIM PSNR

5Vo 0.6843 75.9056 0.7048 76.1609

10% 0.7786 78.9320 0.8175 79.6580

20o/o 0.8994 82.03L6 0.8472 83.7628

30% 0.9407 87.3535 0.9790 9L.1620

40% 0.9724 9L.2540 0.9920 96.L281

50% 0.9884 95.4245 0.99s5 99.5496

(a) Original Image (b) Soft Threshold (c) Proposed

(a) Difference sofi Tlueshold (b) Difference Proposed

Figure 4-10: Depicts subjective analysis of MRI of recovered images
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Table 4-3: The performance of various sparsity transforms is compared.

Performance Metrics Soft Thresholding Proposed Algorithm

MSE 1.38x10-4 0.73x10-4

PSNR 86.7t95 89.4497

ISNR 28.3832 31.1135

SSIM 0.9346 0.97Lt

SNR 26.0298 28.7491

Correlation 0.9980 0.9989

4.6.3 CS Cardiac Cine MRI Recovery

The suggested method is used for MRXCAT, which generates undersampled CC-MRI data

acquired during breath-holding. The MU(CAT parameters werc set as follows: rpcovery

image size of 256 x 256 with 24 cardiacphases, and an image resolution of
1 x 1 x Lmm3. The acquisition parameters for Mru(CAT include a T, of 3ms andTs

of 1.5ms. The proficiency of the suggested technique is evaluated using five different

acceleration rates: R = (Z,4,B,LZ,ZO).

For in vivo dah, the values for different parameters arc rccovercd matrix with

dimension 256 x 256,25 cardiac phases, and Fov of37lmm.The TE is setto lnu,Tp
is set to 3 ms, and the flip angle is 600. The proposed method is evaluated using the same

five acceleration rates: fi = (Z,4,B,L2,ZO).

The recovered MR images are compared b actual CC-MRI, depicted in Figure 4-l l,
here CC-MRIs are presented: (a) Short axis CC-MRI with an original diastolic frame, (D)

The sparse representation CC-MRI diastolic frame using the temporal FFT (v), (c)

Another sparsifring domain for CC-MR image (diastolic frame) by TV hansform (y). All

image reconstructions ar€ performed using the proposed algorithm in MATLAB.
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(c)

Figure 4-l l: Recovered cardiac cine MRI with different sparsifring transforms

To assess the effrcacy of the suggesEd method, the MRXCAT simulator softnare is

used. This softrvare is specifically developed for evaluating the performance of reoovery

algorithms in cc-MRI. Using MRXCAT, the proficiency of our suggested method is

examined both objectively and subjectively'

This chapter employed various performance measurEs, including visual depictions of

under-sampling artefacB, SSIM, PSNR, and RMSE'

For quatiAtive evaluation, we experimentally presented the reconstructed diastolic and

systolic images using different (R = 2,4,8,12,20).Additionally, the performance ofthe

suggested technique was quantitatively assessed using PSNR" RMSE, and SSIM' An

assessment was also conducted betryeen the proposed and traditional IST methods'

In Figure 4-l l, the performance of various sparslty transforms is comparcd based on

the MSE in the sparse rcpresentation. specifically, it is observed that the temporal FFT

outperforms other sparsity tansforms in the context of cardiac cine MRI'

Figure 4-12 iltustrates the efficiency of the suggested method at different R in

comparison to the IST method. The ls column displays the diastolic images of CC-MRI at

different R, while the second column represenB the systolic frames ofcine MRI. The upper

row shows the findings of the IST method, whereas the lower row showcases the estimated

images of the proposed method. In Figure a'2 @) A comparison between the suggested

technique (lower row) and IST (upper row) at an R of 2. (b) The proficiency of the

suggested technique at an R of 4, with an arKrw indicating the presence of artefacts' (c)

Results were obtained from both algorithms at 8n acceleration rate of 8, wherc the artefacs

due to sub-sampling af€ more apparent in the IST results, as highlighted by an arrow' (d)

Results were obtained when the R is set at 12, with both techniques extribiting artefacts.

However, these artefacts ale morc prominent in the tST rcsults, as indicated by an arrow'
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(e) A comparison between the degraded image quality ofthe ISTand the proposed method,

particularly highlighting the dominance of subsampling artefrcts in the traditional IST

results when the acceleration rate R is set to 20.

Table 4-4: Performance analysis of various sparsi$ing transform

Acceleratlon Rate Spatial Domain Total Varlation Temporal FFT

2 0.1095 o.tt23 0.0728

+ 0.2327 0.1849 0.0848

8 0.2810 0.2438 0.0948

t2 0.3533 0.26IJ4 0.1043

20 0.4756 o.2982 0.1150

The performance of various sparsity hansforms is compared based on the MSE in the

sparse representation. Specifically, it is observed that the temporal FFT outperforms other

sparsity transforms in the context of cardiac cine MRI. The rcsults show the squared errors

averaged between the recovered and actual elements in sparse representation. The

suggested technique, which utilises the tanh based approx. achieves notable accuracy in

the FFT compared to other sparse representations. Specificalty, at higher R, the proposed

technique based on the tangent hyperbolic function demonstrates significantly improved

r€covery of compressed sensing (CS) images.

To quantitatively evaluaE the recovered images, the Structural Similarity Index

(SSIM) was used to compare the suggested method with the IST algorithm.

Figure 4-13 demonstrates the efficiency of the suggested method using the SSIM index,

showing a gradual degradation in SSIM as the acceleration rate increases compaled to the

IST algorithm, while the undersampled images exhibit noticeably poor quality.

At low R, the proficiency of the suggesEd method, and IST are comparable. However,

as the R increases, it is apparent ttrat lST-based recovery deteriorates more than the

proposed metlrod.

Figurc 4-14 shows the iterations required for image recoyery in both methods. The

suggested technique achieves the solution in just 6 epochs, whereas, the IST method took

l0 epochs to achieve near perfect solution. The findings here demonstrate the proficiency

of the suggested method using data-consistency constraints.
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To quantitatively assess the efficiency of our recovery algorithm, the recovery using

PSNR at different R = (2,4,8,12,20) is examined' A comparison is made between our

proposed technique and the traditional IST technique'

Figure 4-15 illustrates the effrciency of our proposed technique at various acceleration

rates compared to the IST algorithm. The red line represenB the rcsuls obtained from our

method at differcnt acceleration rates and the blue line depicts the PSNR values for the soft

thresholding method and the undersampled data'

Performance analysis of the suggested technique and the IST method is presented in

Figure 4-16 to examine the efficiency of the recovered frames by vivo dataset' The

comparison is demonstrated across five different R = (2,4,8,L2,and.20)' However, at

higher R, the degrading artefacts in the IST reconsfiucted frames become further

pronounced relative to the suggested metfiod, as shown by arrows' In part (a) ofthe figure'

the suggested method in comparison to IST at an R = Z,with the suggested method shown

in the bottom row and IST in the top row. Part (b) displays the efficiency of the proposed

method at an R of 4, with an arrow indicating the artefacts. Part (c) illustrates results at

R = 8, where the artefacts because of sub-sampling gradually become pronounced in the

IST findings, as indicated by an arow. Part (d) shows the findings at R = 12, showing

artefacts present in both techniques, but morc prcminent in IST as indicated by an arrow'

Part (e) demonstrates the considerably low-quality image of IST when compared to the

suggested method, particutarly emphasizing the dominance of sub'sampling artefacts in

the conventional IST results when the R = 20'
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Accelerat

ion Rates

Undersampled

image

Iterative

Sotl Thresholding
Proposed Methd

Simulated

Data

2 0.081 0.0365 0.0353

4 0.1218 0.0472 0.0372

I 0.1498 0.0702 0.0419

t2 0.1583 0.0775 0.0485

20 0.L782 0.0941 0.0605

In vivo Data

2 0.085 0.0099 0.0056

4 0.105 0.0241 0.0772

8 0.t170 0.0495 0.0206

12 0.120 0.0567 0.0338

20 0.1398 0.0585 0.0551

Itl_t +St The performanoe comparison of conventional IST with proposed in terms of
RMSE.

Figure 4-16: In real vivo data simulation results
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4.1 Conclusion

This chapter proposed an innovative cs recovery algorithm for lc-sparse signals and MRI'

The suggested method has been tested in various scenarios, including t-D lc-sparse signals,

2-D MRI, and CC-MRI. The proposed technique introduces a tanh-based smooth estimate

of the non-differentiable t1-norm and the shrinkage method, resulting in improved

performance compared to the conventional IST algorithm. Quantiative analysis based on

several metrics demonstrates the superiority of our method in recovering sparse signals and

MR images. Qualiative observations further highlight significant improvemenB'

particularly at higher R, in the prcposed method for CC-MRJ'
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CIHPTER 5

cs MRr RECOVERY USING COMBTNED SMOOTH to

AND 11 RECOVERY

ln this chaper, a novel method is proposed that combines smooth approximations of the to

norm and 11 norm (SL0l). The suggested approach introduces differentiable functions as

smooth approximations, enabling the use of methods to solve ls norm and 11 norm

minimisation problems that involve gradient evaluations. To evaluate the prcficiency of
the SL0l algorithm, it is tested in recovering a l -D signal and2D MR image. The gradient

ascent algorithm is deployed to reconstruct the k-spalse signal using the proposed

algorithm. The performance ofthe SL0l is evaluated against smooth approximations ofthe

Is nonn and 11 norm (SL0t) in terms of metrics, such as SNR and MSE. The comparisons

reveal that the proposed algorithm outperforms the smooth ls norm approximation (SL0)

and smooth l, norm approximation (SLl) in terms ofefficiency and accuracy in recovering

compressively sampled sparse signals. Overall, the rcsearch demonstrates that the smooth

approximations of the ls norm and 11 norm yields a morc efficient and effective method

for recovering compressively sampled sparse signals, as evidenced by the comparative

analysis using SNR and MSE metrics.

5.1 Introduction

The sampling of acquired data in the CS framework is straightforward, but rccovering a

signal from CS measulpments poses computational challenges due to ib ill-posed naturc.

There can be infinircly many solutions to choose from. The CS framework has a special

interest in the sparsest possible solution. Various techniques are developed for the

reconstuction of sparse signals from undersampled data. The Basis pursuit (Bp) algorithm

proposed in [92], replaces the non-convex ,o-norm with its convex approximation, the 11

norm. This substitution results in an analytically solvable convex optimisation problem,

but the 11 norm gradient can't be evaluated origin. Consequently, the solutions that involve

derivatives in loss function are not applicable to minimise l1-norm problems ll23l.
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Furthermore, BP can be inefftctive for large datasets such as biomedical images' because

of computational cost.

The IST methods have emerged as effrcient computational techniques for rccovering

cs images to address these challenges. These algorithms employ matrix multiplications

and shrinkage operations and minimise mixed 11 12 norms-based minimisation problems'

making them suiAble for large signals and images. By leveraging IST algorithms, we san

overcome the limitations associated with the non-differentiability of the l1-roril and the

computationat complexity ofthe BP algorithm, enabling more effrcient recovery of sparse

signals in CS aPPlications.

In the decoding process of cnmpressive sensing (cs), the objective is to efficiently

r€construct a lc-sparse signal r from the dictionary matrix O and observations vector y'

This task of accurately recovering a CS lt-sparse signal using limited measurements poses

a challenge in cs decoding due to computational cost [4, 7E]. The size ofthe sensing matrix

O is such that M (( I\1, resulting in an under-determined system. This means that there are

fewer equations than unknowns, leading to infinitely many Potential solutions. Solving this

under-determined system of linear equations alone will not yield the desired spa$e

solution, which is crucial in lc-sparse signal reconstruction.

The optimisation problem defined in Eq. (5.1) must be solved to achieve sparsity in the

estimated recovered signal. This optimisation problem involves finding the sparsest

solution by promoting sparsity through the l1-norm regularisation term' By solving this

optimisation problem, we can obtain a sotution that satisfies the under-determined system

of linear equations and exhibiS sparsity, thus fulfilling the goal of sparse signal recovery

in CS.

minimizellzlls subiectto tDz = I (s.1)

,
In the context of signal sparsity, the ts-norm of a signal a denoted as llzllo, IEpresents

the count of non-zero components in the signal. Mathematically, it can be defined as the

number of non-zero elements in the vectot z=tzil"i=r. To incorporate this concept of

sparsity into the optimisation problem, we can rewrite the ls-norm in terms of an indicator

function. The indicator function, denoted as r(i), is a mathematical construct that evaluates

whether a certain condition is met. tn this case, it determines whether the itn element of

the signal z is non-zero. By using the indicator function, the ls-norm can be expressed as
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the sum of the indicator function. By summing up the values of the indicator function for

all elemenb of the signal, we obtain the count of non-zero components, representing the

ls-nonn of the signal. This formulation allows us to quantifi the sparsity of a signal in

terms of the number of non-zero elements, providing a mathematical representation that

guides the optimisation process towards finding the sparsest solution.

r(4=[1 ;=3
tt

ilzflo = Zrk,)j=l

(5.2)

(s.3)

The 16 norm, as defined in Eq. (5.3), is a non-differentiable function. This means that it

lacks a defined derivative at certain poinB, malcing it challenging to use gradient-based

optimisation techniques.

Morcover, the ls norm, as defined in Eq. (5.3), violates the homogeneity property of a

norm. The homogeneity property states that scaling a vector by a constant should

proportionally scale its norm. However, the Is nonn does not adhere to this property since

total elements that ar€ non-zero are counted, rather than considering their magnitudes.

Due to these properties, finding the solution to the ls-norm optimisation problem

becomes a non-tactable problem, meaning that it is computationally infeasible to solve

directly. This non-tractability poses significant challenges when attempting to recover

sparse signals or solving under-determined systems of equations in compressive sensing

and sparse signal r€covery applications.

The optimisation problem defined by equation (2) can be seen ali an l1-norm

minimisation problem [2]. In this problem, the goal is to minimise the l1-norm ofthe signal

subject to the constraint imposed by the sensing matrix O and measurements vector y.

The l1-norm minimisation problem aims to find the solution that has the smallest

l1-nonn among all solutions that satisfr the given constraints. This approach promotes

sparsity in the solution by encouraging a larger number of zero or near-zen) components

in the signal. By franring the problem as an l1-norm minimisation problem, it becomes

tractable and amenable to efficient optimisation techniques. This contrass with the non-

tractable nature ofthe l6-norm optimisation problem, which suffers from discontinuity and

lack of differentiability. The l1-norm minimisation approach has been widely adopted in
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compressive sensing and sparse signal recovery due to its computational factability and

its ability to tpcover sparse solutions from under-determined systems of equations [4].

minimizellzlllsubiectto Oz = I
x

The t1-norm minimisation approach plays a significant role in promoting sparsity within a

solution. By minimising the t1-hotffi, the opimisation problem encourages a gr€ater

number of zero or near-zero components in the solution, effectively promoting sparsity.

The optimisation problem defined by Eq. (5.4) is a eonvex problem, which means it

possesses desirable mathematical properties that facilitate efficient solution finding.

Convex problems can be solved using linear programming techniques, making them

computational ly tractable.

Howeyer, while t1-norm minimisation is convex and can be solved using linear

programming, it exhibits high computational complexity, especially when applied to high-

dimensional datasets such as biomedical images. As the dimensionality of the dataset

incrcases, the computational burden g(rws, leading to challenges in terms of time and

tEsources required for the optimisation prcoess. The high computational complexity of

l1-norm minimisation in high-dimensional datasets has prompted the exploration and

development of alternative algorithms and techniques that can address this challenge and

provide more efficient solutions for sparse signal rccovery and compessive sansing

applications U2, 130].

The unconstrained form of Eq. (5.4), incorporating the Lagrangian multiplier l, can be

expressed as follows:

minimize (llv- azllT+f flzilr)

The mixed SLQI optimisation problem, as described in Eq. (5.5), is widely recognized as

k-sparse. This approach is commonly known as IST algorithms. By iteratively applying

the shrinkage operation, the IST methods prcgressively converge towards a solution that

exhibis sparslty in the signal. These algorithms have been widely adoped due to their

computational efficiency and effectiveness in recovering sparse signals, particularly in

high-dimensional scenarios such as comprEssive sensing and sparse signal rccovery

applications.

The regularizingl, as a thresholding parameter, acting as the Lagrangian multiplier, is

critical in determining the level of sparslty in the estimated solution of the CS recovery

(5.4)

(s.5)
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problem. By adjusting the value of i,, one can conhol the hade-off between sparsity and

aocuracy in the recovered signal. A higher value of I encourages a sparser solution by

imposing stricter constraints on the magnitudes of the signal coefficients, resulting in more

coefficienb being set to zoto. Conversely, a lower value of L allows for a less sparse

solution, enabling moIE non-zero coefficienb in the estimated signal. The appropriate

choice of i depends on the specific application and desired balance between sparsity and

fidelity in the recovered signal. It is often determined through cross-validation or other

model selection techniques to achieve an optimal level of sparsity while preserving the

essential features of the signal.

5.2 Prcposed SL01 Algorithm

This section introduces a new approach that combines SLO and SLI to enhance the

recovery of sparse signals. The SLOI algorithm leverages the complementary nature of

boththe smooth 16 nonn and smooth 11 rofln, which results in fasterconvergence comparcd

to using either of them alone. By combining these two norms, the algorithm benefits from

the advantages of the smooth Is norm in promoting sparsity while also hamessing the

advantages of the smooth 11 norm in facilitating differentiable optimisation. The hybrid

approach strikes a balance between encouraging sparsity and enabling efficient

optimisation, leading to improved performance in sparse signal rccovery tasks. The

proposed algorithm offers a promising solution for effectively addressing the challenges of

recovering sparse signals in various applications. The SL0l aims to minimisation of the

loss function defined by Eq. (5.7)ttrat combinesthe Is and 11 nonn penalty simultaneously.

minimize f (z) =|W - oYHzllT + ullzlh + Fllzllo (s.6)

The non-differentiable ls nonn penalty, as defined in Eq. (5.2), can be substituted with

its smooth and differentiable approximation, as defined in Eq. (5.7):

(5.7)

The proposed function's parameter, which regulates the Gaussian kernel's width, is shown

here. The function in Eq. (5.7) can be thought of as the indicator function's invelse, i.e.

s{,i)=exp(#)

tl zj=O

)'gar(ri) = to z1* o
(s.8)
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The function must fulfil two requirements to justis *rc gr(z) for the apprcximation of

the ls-norm.

Property-I:

ty;orQ) = L-r(zD (s.e)

where (5.2) provides r (z).

Property-Il: Set up Gr(z) asz

n

Gf(z) =ler?),
l=l

Then, 
n

lirycr(z)= ltr - q@))
l'@ j=l

= n _ llzllo

Thus, llzl!6 can be estimated by:

llzllo = 
n- tfiGy(z)

The crucial paraflieter, which determines the width ofthe Gaussian curve, is part of the

smooth approximation of the 16 norm provided by Eq.(5.12). The Is norm is accurately

approximated when the width is less, but the function is less smooth. A smoother but less

accurate approximation results from a wider width.

In Eq. (5.12), increasing 6, is equivalent to decreasing the l6-norm. The function G,

with a smaller value is non-differentiable with numerrus local maxima The cost function

grrws smoother than increases, preventing local maxima. To attain precision and sparsity

in solving a problem stated in Eq. (5. I ), a large value of is used to avoid local maxima and

a gradually decreasing value of is utilised to reduce inaccuracy.

The loss function has been maximised using the Steepest-Ascent-Algorithm (SAA).

The next action updates the solution for each iteration.

zk+r e z*+ 14rVGr(z*) (5. r 3)

Where p1 stands for the step size, which gets smaller with each iteration. 6, varies with

smaller value of 7. Therefore, a smaller step size is advised for stability. Back projection

is used to enhance the solution in each repetition further.

(s.r0)

(5.r l)

(s.12)
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The tangent hyperbola fiinction, which is smooth and monotonically growing, and an

analytically well-bounded function, is used to approximatp the 11 norm smoothly. The

angle ofthe curve at is beginning is adjustable [8]. Thus, the definition of our suggested

approximation for the 11 norm in Eq. (5.1a) is as follows:

tlztlr = lzfianh(azt)
i=1

Whereas:

(s.14)

(5.1e)

(s.18)

The steepest decent algorithm determines the answer using Eq. (5.17).

Once mole, using the tanh asthe foundation, A new thresholding stratery is suggested.

The tanh is a suitable surogate function for soft thresholding since it is bounded and has

a variable slope at the origin. As a rcsult, the mathematical equation for hyperbolic tangent-

(5.15)

Vector differentiation cannot be used with the steepest descent algorithm. Therefore, we

express (5.14) in element form to determine a partial derivative.

f (z) -lU, - zll,,+ 
^2",=r^rrnh(az1)1

f (z) =lZr*, - y){az - y)1* Vzfianh(yz)
i

(Az1r---W

based soft thresholding is Eq. (5.19).

sob) ={ztanh(a(lzl- 
il) lzl> I

"' ' $ otherwise

(5.16)

The element form of the putial derivafive of Eq. (5.16) is thus written as:

W= T 
.,rt, , r, -ltro11 + t(tanh(az1) + z1a(t - tanh2 (az1))) 

ts. , ,l

The following is the steepest descent algoritlrm for the Ittr uSate:
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The proposed algorithm is described with detailed steps in Algorithm 5.1.

Algorithm 5.1. Proposed Smoothed LOl Norm Approximation

Initialisation=

1. Initialise zo by 12 opproximate solutionof tDz = !.
2. Set sequence of increasing l,lyr,yz,..-,ftl

fork=L,2,...,N2
4. Sety - y1r.

5. llatimise Grusing M iteratiota of thc steepest ascent algorithm.

a. lnitiolise: z -- Q*-r

b. Fori=L,2,...,M

i. Set Az = lzlgr*(zt), ...,zngy*(zn)lr

ii. Set zez-pAz
iii. Project z back (E; z = z - Or (OOtyr(Oz - t)

6. Contpute Gradient Vf (zt)using Eq.(s.L6)

7. Update the solutionusing Eq.1s.tt1and Eq.(s.ta)

4. Apply shrinkage operator using (5.19): 2,+t = Sp(zi+r)

8. Set q* -- 2

Final solution=z = en.

104



The above defined by algorithm 5.1 was further modified to rccover CS MRI described

below:

Algorithm 5.2. Modified SLOI for r€covery of CS MRI

Initialise:

1. lnitiolise Xo = Fir(Y),whereY isundersompledk - space dnta
2. Set o os deoeasing seqrctue f or o = fo1,o2,...,ool

for i - 1,2,...,P:

3. Seto = oi

4. Find Maxima for Fn(x)tnmltqations of tlu steepest ascent algoritlvn.

c. lnitialise:X=Xr_t
d. Fori=1,2,...,Q

i. Xsparsc = Y(n
ii. Set AXsporse = I{porr" * for(X"vorr")

iii. Set Xsparse = Xsparsa -
y AXspa62,where p is a step size

iv. X =tP-t(Xsaarcc)

5. Dota consistency: X .- F;t(Fu(,D * (1 - tl) + y ),
wlure Nl rqreseats the wtdersanpling nask

6. Comptne Gradient Vf (zi)using Eq.(5.16)

7. Update the solutionusing Eq.(5.17) ond Eq.(5.18)

8. AWly shrinkoge operator using (5.19)r.P,*, = Sp(Xr+r)

9. SetXi -X
Firul solution'X = Xp.

5.3 Experimental Results and Discussion

The proposed algorithm is employed to recover both l -D sparse signals and 2-D MRI data

that have been undersampled. To evaluate the performance of the algorithm, two

commonly used mefiics, SNRand MSE, are utilised. The resulB ofthe experiments clearly

demonstate that the proposed technique surpasses both the Is-norm and ll-norm smooth

approximations applied alone in terms ofCS MRI recovery and l-D sparse signal recovery.

The higher SNR values and lower MSE values obtained indicate that the proposed

algorithm achieves better accuracy and fidelity in reconstructing the original signals

compared to the competing approaches defined in Chapter 3 and Chapter 4. This suggests

that the proposed algorithm is more effective in recovering the underlying information
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from undersampled observations, showcasing its potential for practical applications in

sparse signal recovely and CS MRI reconstruction tasks'

53.f Sperse Signel RecovcIl Applicetion

MATLAB simulations are used to analyse the suggested algorithm's performance. Using

a randomly generated Gaussian matrix with dimensions of m X n, wherc m is the number

of samples (set to 100) and n is the total length of the sparse signal (set to 256), the

experimental sehrp entails undersampling a random l-D sparse signal' To guarantee proper

scaling, the columns are normalised.

The model used to produce the noisy observations is y = Az + w, whele w stands for

white Gaussian noise. This approach considers the existence of noise in the collected data.

Through a gradient ascent loop that iterates three times (IV = 3) for each iteration, the

algorithm performance is assessed. A single value is used to execute the loop, enabling a

systematic analysis of the algorithm performance under various pararneter configurations.

The algorithm may adjust and improve its performance for various conditions by changing.

Figure 5-l: Ground Truth 'o' and Reconstructed Signal 't'

o TnrSqrC
+ REorated Sigml SL0i
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Both the original signal and the recovered signal are shown in Figure 5-1, which

illustrates the precise rccovery attained by the suggested technique for the lD k-sparse

signal. Figure 5-2 depicts a comparison between the suggested technique's SNR with the

performance of the SLg and SLI algorithms proposed in Chapter 3 and Chapter 4. Notably'

as compared to the other algorithms, the suggested technique achieves much higher sNR

values. The suggested approach outperforms the competition by reaching the lowest MSE

values, as seen in Figure 5-3's comparison of the algorithms' Mean Squarcd Error (MSE)

results.

53.2 CS MRI Reconstruction Using Propmed Method

The SLOI technique is deployed to rcconstruct CS MRI from iS undersampled lc-space

data. Drawing a comparison between CS encoding and noisy images, comprcssed sensing

rEcovery fundamentally transforms into an image-denoising task. Estimating the noise

using the maximum a posteriori (MAP) estimator, is the first step in recovering the original

image. A 2-D CS Brain MRI with dimensions of 256 x 256 is recoveled using the suggested

approach. The Brain MRI was scanned as a fully sampled image at St. Maly's Hospihl in

London, England. The MR image is compressively extlacted in this instance by acquiring

only 25o/oof the samples using the random mask.

Figure 5-4 provides a quantitative comparison of the proposed algorithm" combined

Smooth approximation of Is and 11 norm (SL0l) performance with that of the Smooth

approximation of ts (SLo) and Smooth approximation of 11 norm (SLl) algorithms when

applied to under-sampled MR data. The under-sampling prcoess is conducted using a

variable-density random sampling pattern.

In Figure 5-4(a), the improvement in SNR achieved by the proposed algorithm is

depicted. It showcases the superiority of the proposed algorithm in terms of achieving

higher SNR values compared to SLO and SLl. The higher SNR values indicate better

quality and fidelity in the recovercd MRI.

Figure 5-4(b) illustrates the reduction in Mean Squared Error (MSE) achieved by the

proposed algorithm compaled b SLO and SLI . A lower MSE value indicates a closer match

between the recovercd MR data and the original data. The significant decrcase in MSE

achieved by the proposed algorithm indicates its ability to achieve morE accurate and

reliable results than the other algorithms.
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Overall, these comparisons highlight 0re quantiative advantages of the proposed

algorithm over SLO and SLl, as evidenced by the improvement in SNR and the decrcase

in MSE. These resulE further validate the effectiveness of the proposed algorithm for

recovering under-sampled MR data.

Figure 5-5 presenE the recovery of Compressed Sensing (CS) Magnetic Resonance

Imaging (MRI) data that has been under-sampled using a variable density random sampling

scheme. In Figure 5-5(a), the recovery results of the MRI using different algorithms,

namely Zrro Filling (ZF), Smooth approximation of ls (SLO), Smooth approximation of 11

norm (SLl), and the proposed method (SL0l), are displayed. Subjectively, the image

rccovercd by the proposed method exhibits better visual quality than the other recovered

images, indicating the effectiveness of the proposed algorithm.

Figure 5-5(b) illustrates the sampling pattern utilised by each algorithm. It visually

represents how the differcnt algorithms capture the under-sampled data. The sampling

pattern reflecE the spatial distribution of acquired measurcments, which is crucial for

accurate rccovery.

Furthermore, Figure 5-5(c) focuses on the magnified difference between the original

and recovered images. The zero-filling approach performs poorly, as the difference

betrveen the original and recovered images is more pronounced. On the other hand, the

simple SLO and SLI algorithms exhibit higher error levels than the proposed method

(SL0l). The error in the proposed method is considerably lower than that of the other

methods, indicating is superiority in achievingmorc accumte and faithftl image recovery.

These findings highlight the advantages of the proposed algorithm (SL0l) in terms of

subjective image quality and reduced eror when recovering under-sampled CS MRI

compared toZF, SL0, and SLI algorithms.
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5.4 Conclusions

In compressive sensing, recovering compressively sampled sparse signals and MRI data

from under-sampled k-space measuremenb is a computationally demanding task. In this

chapter, we have addressed this challenge by proposing an efficient algorithm that

leverages the combined power of smoothed lo and smoothed 11 norms. These norms play

a crucial role in promoting sparslty in the recovered signals.

To objectively evaluate the performance of the proposed algorithm, we conducted a

comparative analysis with existing methods that utilised the smooth 16 nonn and smooth

11 nonn. We measured the performance using well-established metrics such as MSE and

SNR. The resulb demonstrate the superiority of the proposed technique, as it consistently

outperforms the other methods in terms of both MSE and SNR. This objective evaluation

provides quantitative evidence ofthe improved performance achieved by our algorithm.

Furthermore, subjective analysis is conducted to assess the visual quality of the

recovered MRI. The visual inspection revealed that our proposed technique produces

images of higher visual fidelity than the other methods. This subjective evaluation further

supports the effectiveness of our algorithm in accurately recovering compressively

sampled spanre signals and MRI.

Overall, the combination of objective and subjective analyses confirms that the

proposed algorithm offers a considerable improvement in performance compared to

existing methods. The efficient rccovery ofcompressively sampled sparse signals and MRI

data achieved by our algorithm has the potential to benefrt various applications in the field

of compressive sensing.
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CIIAPTER 6

NATURE-INSPIRED IRLS F'OR CS MRI RECOVERY

This chapter introduces innovative approaches for recovering k-sparse signals and MR

images from compressed measurements using nature-inspired evolutionary techniques,

namely Particle Swarm Optimisation (PSO), in combination with a deterministic Iterative

Reweighted Least Squares (IRLS)-based shrinkage algorithm. The proposed hybrid

mechanisms incorporate appropriate regularisation constraints to enhance the convergence

of the evolutionary algorithms and achieve accurate estimation k-sparse signl.

Furthermore, the suggested algorithm is extended to address the specific challenge of

recovering CS MRI from incomplete Fourier data in the context of Fourier-encoded MRI.

This modified algorithm incorporates the combined principles of IRLS and evolutionary

methods, particularly Genetic Algorithms (GA). The integration of these methodologies

allows for efficient and effective recovery of biomedical images, even incomplete and

under-sampled Fourier data. The presented algorithms offer notable advantages in

accelerating convergence, precise estimation of sparse signals, and successful recovery of

biomedical images from compressed measurcments. These techniques contribute to the

advancement of signal recovery methods, particularly in compressive sensing and Fourier-

encoded MR imaging.

6.1 Nature-Inspired Algorithms

Deterministic algorithms, known for their mathematical elegance, usually demand a well-

defined initial solution and may not be user-friendly. Conversely, evolutionary algorithms

like Genetic Algorithms (GA) and Particle Swarm Optimisation (PSO) offer simpler

implementations but lack rigorous mathematical foundations [31]. Primarily utilised for

unconstrained search problems, adapting these algorithms to constrained optimisation

poses challenges [132-135]. Nevertheless, nature-inspired algorithms such as GA and PSO

are ideal for tackling computationally complex problems that defr traditional approaches.

These algorithms provide practical solutions, without strict mathematical modelling.
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2 = agrmin (lly - ozlllsubiect to llzlls < t
,

However, a deterministic algorithm is needed to solve the 16 norm-based minimisation

problem in Eq. (6.1) to hasten oonvergence [36].

6.2 Particle Swarm Optimisation

Particle Swarm Opimisation (PSO) is a probabilistic optimisation technique with a simple

structurc known as particle-based search optimisation [37-139]. In PSO, each particle's

velocities are randomly assigned, allowing it to explore the search space. The velocities of

the particles are updated iteratively based on their prior velocities and the distances

betrveen their local and global best solutions. [40] provides the velocity update equation

for the PSO-based algorithm.

ur= w xur-t* cl1Qri- x.,t) * czrz(Ps - zi-t) $.2)

Where 1'1 and t2 tatwo separate uniformly distributed random values in the range (0,1)

and c1, c2 ta problem-dependent constants. The scalar w e [0,1] represents Inertial

weight. The particle known as global best, or ps, has the frnest fitness acnoss the board. pi

is the local best, which, according to the cost function, reflects the best prior position of

the ittr particle. The algorithm's performance can be significantly impacted by changing

tlre free pararneters cl,cz,and the inertia weight w [lal].

The position zi of the ith particle is updated in the conventional PSO by its velocity:

21 = Zi-1 *A1 (6.3)

The Basic PSO algorithm begins with a random population of 20-50 particles,

depending on the specific challenge. Particles move according to velocity iteratively, which

is updated based on both local and global optimal positions.

(6.1)
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Figure 6-l: Basic PSO Flow Chart
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6.3 Iterative Reweighted Least Square (IRIS)

The lterative Reweighred Least Squares (IRLS) algorithm is effective for various

optimisation problems [23]. Rather than directly minimising the l1-norm, IRLS minimises

a weighted residual at each iteration. IRLS can also find maximum likelihood solutions for

generalized linear models [23]. For MRI reconstruction, IRLS transforms the non-!2-norm

terms in F4. Q.22) into weighted l2-norms [21]. This allows rewriting the objective

function as:

where lrp(Yz) is replaced WO.SIP{W-1(Vz)Vz, where W(Vz) is the diagonal

matrix, having defined by Eq. (6.6) values in ib diagonal of the mafiix.

f(z) =|n, - FuzllZ+ ttr p(Yz)

Wlk,kl=ffi
The loss function is given by:

f(z) -Irr, - Fuzll1+)v*w-1(Yz)Yz

(6.4)

(6.s)

(6.6)

The following quadratic function is minimised to update the existing solution, rs while

assuming that W is fxed.

vf (z) = -Fur(y - Fuz) +^Y{W-t(Yz)Yz = O (6.7)

The next step for updating r is to tahe the inverse of the matrix FutFo + lW-l. Then we

update W based on the updated solution z.

Standad IRLS performs poorly for high-dimensional signal recovery problems. To

address this limitation, Adeyemi and Davies [23] modified the IRLS approach by adding

and subtracting the term c.z in Eq. Q.24). This results in an iterative shrinkage algorithm

where c is a relaxation constant chosen between 0 and ,-ur(FurFu)12 to ensurE

convergenoe. Here 1-"* is the maximum eigenvalue of the maEix. The iterative update

equation can then be written as:

Zk+L=(wnwz*)+r)-'(}*"'r-|{r,"..-cI)zp) (6.t)

= s.(1P""(v - Fuzr) + rtzx)

where diagonal matix can be defined as:
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(6.e)

The above equation performs a shrinkage operation on the vector lr"t(r-AYz*) *

Yzp. Each entry in a vector is multiplied by the following scalar value.

0.5YztlilzIp$lzklil) Yzplilz
=-2i r.r\ . rrr r !a,

(6.10)

f, 
+ o.sv r*lil2 | p(v z1,lil)'f, o(v zxlil) + Y zplilz1

The shrinkags factor in the modified IRLS algorithm approaches one when the weighted

norm Yzp[i] is large and shrinks towards zero for smaller weighted norms. This provides

the desired shrinkage effect. Initializing the IRLS solution to zero should be avoided since

zeros will persist - causing the algorithm to get stuck in poor local minima. Instead, the

initial guess should have nonzero values. Algoritln 6./ outlines the iterative steps of the

modified IRLS algorithm to recover an MR image from the undersampled partid Fourier

k-space data while applying shrinloge to improve convergence.

s = (w-,(Yz*) * r) ' = (,+ w(vzp))-' *nr*,
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Algorithm 6.1: Recovery ofthe image using IRLS algorithm

T.sh Find, the vahu of image X that min tnises thc obiective futution:

f (X) = argm,tn(llf - F"Xlli + f flxilr)

luiptE Dlctionan'y nnftix Fre Rm,n ,

M eastement mfllTit, Y e Rn,

IRI,"S ttvesholding parurcter L

OutpuE A R - sparse solutionvector X e RM
1) lnlthltsetlow lnitiolise IRLS iterationnttmbq k = 0

Initial solution: Xs = fx1,*2,.........xn 
^l,where 

each entry \ + O

lnitial residual: Ro = Y - Xo

2) IRI.S M.h lcmdon: lnnement k by L,md. qply tlu following steps

e) BackPrulccdonz Compute E = Frt Xx_r

b) Shrlnlupibr= Compute the diagonal matrix S by Sli,il xilrlz
- 

Hx[r-x,,t,]"

c) Shrlnlrgs: Cmrpute r, = S(X1-, + )
d) Solutlon Updruz, Compute X2 = X*_t + (8, - Xr_i

c) RcrldulUpdeE2Com4te Rt= ! - FrX*

0 Sopplry Rulot Go to stq (2) untit, eitherllX2 - X,-ilT < threshold vahrc or

maxlmum n umber of ihntions cn'En:a is met

3) Ouprft The finalualtn of 11

6.4 Nature Inspired Iterative Reweighted Least square (M-IRLS)

The proposed NI-IRLS algorithm introduces a combination of two different algorithms,

namely PSO and Modified IRLS [2] that is inspired by FOCS[59], to address the problem

of recovering a k-sparse l-D signal and performing CS MRI. The aim is to solve the

consfained optimisation problem defined by Eq. (6.1).

To ensurc the sparsity in the solution, all particles of the population are initialised and

the technique applies soft thresholding based on the IRLS algorithm. Though, the particles

after velocity update can lose sparsity. Therefore, after each position update, another round

of soft thresholding based on IRLS is performed to maintain the sparsity constraint

throughout the recovery prosess.

In situations where the fitness of the global best particle remains unchanged for a

specified number of iterations, the modified IRLS algorithm is employed. This algorithm
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updates the position of the second-best particle in the population using a specific statery

elaborated in Algorithm /. This helps to improve the convergence and aocuracy of the

algorithm in finding the optimal solution. Overall, the proposed technique combined the

strengths of PSO and modified IRLS to address the k-sparse l-D signal and CS MRI

recovery problem by ensuring sPsrslty and enhancing the optimisation prooess'

(6.1l)

Here Srp defines the shrinkage operation having a threshold defined by p' Where c is the

random number, Y is a sparsifiing domain, w is defined by Eq. (6.5) and E is the

backpropagation errcr defined by F4. 6.12)

E = Fur(y - oYzp) lYzp (6.r2)

In the proposed algorithm, the parameter 7 is introduced to address varying

compression ratios (cR) of the undersampled k-sparse signal. This adjustability empowers

the algorithm to dynamically adapt to different degrees of data compression. By modifring

y based on the specific CR, the algorithm can effectively tailor its reconstruction approach,

accommodating different levels of sparsity in the signal. The experimentation section

provides evidence that the algorithm's flexibility yields prcmising rcsults, showcasing its

ability to handle varying CRs and consistently produce accurate reconstructions, mahing it

a versatile and reliable solution for sparse signal rccovery tasks acrcss diverse data

compression scenarios as shown in Figure Glt and Figure 6-19.

y = 100 - compressionratio' (6.r3)

The data consistency constraint in the frequency domain is a fundamental principle in

Compressed Sensing Magnetic Resonance Imaging (CS MRJ) recovery' It ensures that the

actual samples acquired in the k-space domain remain constant throughout the recovery

prccess. tn other words, the measured data points in the frequency domain, which

correspond to the acquired MRI measurcments, are PrcserYed, and not altered during the

iterations of the recovery algorithm. The data consistency consfiaint is crucial because it

guarantees that the recovered image remains consistent with the acquired data' It prevents

the algorithm from introducing spurious information or modi$ing the original

measurcments, which could lead to erroneous results. By preserving the actual samples

from the k-space domain, the algorithm ensures that the recovercd image accurately

r€prcsents the underlying structure of the imaged object, even with limited or under-

zt=s"n(v?*--e)
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samplcd data. The data consistency constraint in the frequency domain is a vital aspect of

CS MRI recovery, as it maintains the integrity of the acquired data and helps achieve

reliable and accurate image reconstruction.

YrU] = Fr(xr) (FFT of Estimated Image)

Yrur = (;i], '{ilI;o
(6.14)

Figure G2:Two Initial Inputs forNI-IRLS from ZF and LR and generated output from

the proposed algorithm
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Figure 6-3: Different domains used in the proposed algorithm.

Figure 6-2 illustrates the two initializations used for the proposed algorithm, namely

Low Resolution (LR) and Zero Filling (ZF), which are crucial for fitness comparison

during optimisation. The LR initialization involves reconstructing the initial image from

low-resolution measurements, providing a coame estimation with limited details. On the

other hand, theZF initialization fills the missing lc-space daa with zenos, creating an initial

image with potential artefacts. Both initializations arc then evaluated based on fimess

measutEs to determine which one better apprcximates the original image. The initialization

with superior fitness serves as the global best solution, becoming the starting point for

subsequent optimisation steps, enhancing the likelihood of achieving a high-quality

reconstnrcted image through the algorithms' optimisation process.

In Figure 6-3, the proposed technique for image reconstruction is illustrated,

showcasing different domains involved in the process (a) shows the original Image, this

domain rcpresents the original image, which serves as the reference for the entire

reconstruction prccess. lt conains the complete information about the image without any

loss or compression. (b) depict the lc-Space Sampling Domain, in this domain, the k-space

data is generated by applying masks to the original image. The masks are applied for
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undersampling the k-space dat4 meaning that only a subset of the k-space samples is

acquired, reducing data acquisition time. (c) elaborates the effects of undersampling in the

spatial Domain, after undersampling in the k-space domain, the effects of this

undersampling are depicted in the spatial domain. The spatial domain is the familiar

domain where we perceive images with their pixel values. Due to undersampling, the

reconsfructed image in this domain will exhibit artefacts and degradation compared to the

original image. (d) In the Sparsi$ing Domain i.e., Wavelet in our proposed method, the

undersampled k-space data is processed through a sparsifring prccess that involves

"shrinkage." Sparsi$ing transforms the k-space data into a sparse representation, wherE

most coefficients arE set b zotct or close to zaro, highlighting the sparsity of the data.

Shrinkage, in this context, refers to reducing the magnitudes of non-zero coefficients,

further enhancing the sparsity. This proposed technique aims to reconstruct the original

image from undersampled k-space data rsing sparsity-promoting methods.
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Algorithm 5.2: Algorithm for rccovery of lc -sparse lD signal

tl,rrt minimises tlv obi e ctive f unctiont

f (z) = argm-ln(llv - F"xlli + r lzilr)
u

lapnE Diction ary (De Rmrn , sparsity leael k,Population size N,PSO pfronetfrs h,cz and w

Compressed, Meastnencnty e Rm, IRIS threslwldirtg puanuter l,cottstoyitt lt'

OutpnE ,{ Recovered. k - spmse signal z e Ra

1) Inlrfrltsedon tnit artise IRIS itetaaronnttmbcr k = O

tnitiol soltttion Zs = lz1tz2, ... ... ...zrl,whetc erch eln'z,y 
', 

+ O

lnitial tesidual: to = ! - 0z6, V = O,velocity ml,trit

Generate N particles randomly with desircd spasity

Z = lz1, 22,... ... ...2"1, wheFe zt € N and llrlllo S ft vi s 1 s lv

Z) FlbE t Ernhrdonendsordry:

l, = f taaress(zy Zz,-., tr) = V1 f2,..., Itl
Wherefl = (Oz1 -Y)r(Ol-Y)
lJ n indexl = sort6, descend)

fn=lJ21,fzz,...,Irtlwithfr1 3 f.z3 -'3 frn

3) InlU.llocrlandglobelbcst
P = zo(index) = lpr,pz,...,p11] where pfias f itness fri
pt= pr is the iniHal global best

{) NI-IruS U.ltr lendon: Inctement k by l,and. qply tltc followlag steps

e) Vgtodty eud Podtton updeE: Velocity and position update of each particle defined

by Eq. (6.2) and Eq. (6.3) respectively:

V = velocity(V, P, zs,pg cr, c2,w)

= lv1,v2, -.,unl
Z = position(Z,D

= [[zrl1, [z2lp, ... , [zxl1], whetg zi = Zy1 * t1

b) B.Ethorecton: Cotnpute e = tDtr,6-t

c) Shrlnl Updrc 
= 

ComptJe thc dtogottrrltrutrtx S byS[i, i] : ttl42

fFrltllh+:rlrlz

d) ShrldaSE t Cornpute?, = S.,! G*-r + i)
Where c is a random number.

zz=rlantd, x (tr- zr)+21
where zrisa randomly selected from the population and CR is the compression ratio

e) UpdrE locrl rndglobal bettb$ed on fibcss:

1., = yitncss(Z)

lf4, inderl - sort Uzr. de scend)

f.zt = V.zr, fzzz, -., fzztlwith fra 3 frzz 3 -. 3 fzzt

Zz=Z(index)

= 1221,222, -.,zztlwhcre z21lrr.s a fitncss fr21

if frzr 3 f.r,thenpl = z21and f2, = fr2r,(zrew global best)

else if fs 3 frl,tlunpl = z2lontd fri = fzzt,vi < 1 < lV (local best)

D Solutloa UpdrE= CompuJe z1 = Pt I Y(e, - pi
g) RcddudUpdeEzConqute t1 = y - tDzl

h) Sopptng Rulc: Go ao step ({) un[L etther llzr - z;-1|ltr < tbesholdoalue ot

the ma*imumantmbet of itoatiou critetia is nvt-
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Algorithm 6.3: Proposed Algorithm for CS MR Image Recovery

Tetk Find tlu valtu of image X that minimises tlu objecttve fututionz

I(x) = argm,in(llY - F"xll; +r ilxh)

Inprn Sarnpling Matrb Fre Rmxn , Sparsifytng Traruformy,constant p,

Meantremeat nntrk (Undersampled)Y e Rm, IRI,S thresholding parameter L

Ouput / Recovered, Image X € R,nt t

6) Intddlsadou. Illtialise IRIS iterotionnumber k = O

lnltlal solutloa= Xs = lx1,r2, ... ... ...xr ,l,wlure each entry \ * O

lnlJlol restdul: Rs = Y - Xo

7) Fltlccs Br/.lu.douendlbrting:

lXt ,Xz,tttzl = fitness(Xn,Xa,Y)

Where [ = (F,Xu - v)t (r,x, - y),1 = 1,2

witrr xr = ff,1,','!r{;i{rZ
8) IRI.S Mdr lErdon: Innement I by l,tnd opply the followlng steps

e) Bark@ecrion: Compute E =Fr-r(y^ - F"rr-r)

b) Shdrlupd.EzContplute ttr dtagonrtlnlurtrtr SDyS[i,il = r. 
xtl42 

-' flx11+x1t12

c) strlnlagslnspaEl&lngdon.tr: cozlpute E,= *- (t, (*(r"-, .)))

Wherc c is a random number.

Xa=7-x(Br-Xr)+X2

wlrcre Xris a randomly selected fiom either X1 or X2,

md,l = 100 - com,,.essio,n ratio

d) DeteGouslsEnqylnForuterDomeln

YrLl = F,(Xr)

e) nersdsnDcfraspcrfluesr

x2= F(xr),fi = (Frxc-Y)H(FuXr-Y)

if fi3 fr,Xr = XsiX2= Xfi

else if f2 I f2,X2 = Xr;

D Solutlon Updeo= Compute \ = X,-r + F(8, - Xr,]

g) RsddrdUpdeE: Compute Rt = Y - F,Xt

h) Sopplng RuIe: Go to sccp @) uill, ctthcr ll}1. - X1-allzz 1 tlveshold value ot

the mailmwnnunher of iteratiota riteria is met.

9) OUFUE The flnaloolue of X1
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6.5 Experimental Results for Recovery of l-D Signal

The one-dimensional sparse signal is recovered using the proposed technique. In this

experiment, MATLAB is used to generat€ a random sParse signal of length n = 512, with

K = 85 non-zero elements serving as the sparse signal's support. With just m = 256

measurcments produced, a random measupment matrix q E X,2s6xs12 is employed to

compressively sample the random sparse signal.

In this chapter, various r€covery algorithms were utilised to recover a sPanrc signal,

including Least Square (LS), IRLS, PSO, PCD, SSF, and the novel Nature Inspired

Iterative Reweighted Least Square (NI-IRLS),. Performance comparison was achieved

through MSE, SNR, and Cost Function (CF) minimisation. The algorithms werc evaluated

based on their ability to reconstruct the original sparse signal, with MSE quantifring the

mean squared difference, SN& and, CF measuring the cost function's minimisation. These

resulb offer valuabte insighs into the efficacy of the proposed NI-IRLS algorithm for

sparse signal recovery.

In Figure 6-4, the recovercd k-sparse lD signal using the linear recovery method kast

Square (LS) based on l2-norm is depicted. However, the results reveal that LS fails to

promote sparsity in the estimated solution, leading to inaccuracies in reconstntcting sparse

signals. This highlights the methods' limitations in effectively identifring and

reconstructing sparse components, emphasizing the need for alternative approaches to

handle sparsity in signal rccovety.
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Figure 6-4: ft-Sparse Signal Recovered through LS
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CHAPTER 8

DISTA-CSNet: DEEP LEARIUNG-BASED CS MRI

RECOVERY

In this chapter, a novel deep learning model is introduced called "Deep lterative Shrinkage

Thresholding Algorithm Compressed Sensing Network" (DISTA-CSNet) designed for

efficient rccovery of CS MRI. Our model can be easily trained on various datases and

achieves impressive results with just 20 epochs. By incorporating dropouts into the model,

we ensur€ its robustness acr)ss diverse datasets, as verified during testing. The frained

DISTA-CSNeI performs remarkably in recovering CS MRJ from different datasets by

using dropouts. In comparison to several advanced deep learning techniques used for CS

MRI rccovery with changing compression ratios, our proposed model consistently

outperforms them. We observed significant improvements in both PSNR and SSIM

metrics, reaffirming the efficacy of our approach.

8.1 Intnoduction

Recently, there has been a growing interest in utilizing deep learning (DL) methods to

enhance the reconstruction of CS MRJ images from sparsely sampled data. Among these

techniques, CNN has the poturtial to capture infiicate patterns and sfiuctures in images,

making them well-suited for producing high-quality MR images. Researcherc have devised

deep learning architectures to cater specifically to CS MRI reconstruction. These networks

are trained to map undersampled input data and fully sampled MRI. Leveraging extensive

datasets containing paired undersampled and fully sampled MR images, these models aim

to grasp the underlying image structrues and thus enhance the accuracy of reconstructions

l2e-311.

A prevalent approach in CS MRI recovery with deep learning is to adopt an end-to-end

learning framework. This entails the network tahing undersampled data as input and

directly generating the fully sampled image as output, eliminating the need for intermediaG
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r€presenting the percentage of samples retained during k-space data acquisition, wit6

higher ratios indicating morc data is acquired, leading to better rocovery at the cost of
longer MRI scanning time. Importantly, the proposed H-SLI method consistently attains

the highest PSNR across different compression ratios. This consistently high pSNR

demonstates the algorithm's exceptional performance in accurately reconstructing CS

Brain MRI images, even under various levels of data compression. As a result, the H-SLI

method is an efficient and effective solution for achieving high-quality MRI

reconstructions while reducing scanning time, malcing it a valuable approach for practical

medical imaging applications.

7.7 Conclusions

The proposed H-SLI method introduces an innovative approach to address the non-linear

r€covery challenges posed by Compressed Sensing (CS) through a frrsion of deterministic

and evolutionary techniques. The method underwent rigorous evaluation on lD k-sparse

signals, 2D phantom MRI, and real human brain MRI to validate its effectiveness. The

subjective analysis of experimental results demonstrated the notable proficiency of the

proposed method in accurately reconstructing lD sparse signal and 2D MRIs from tlreir

compressively sampled data, pr€serying critical image details. Morcover, the objective

analysis based on fitness, SNR, and MSE rcvealed the superiority of the H-SLI method

over alternative recovery techniques when dealing with I D signals, displaying its

adaptability in handling varying sparsity levels. Quantitative assessments based on ISN&

PSNR, SSIM, and fttness for CS MRI reconstruction, both for phantom and real human

brain MRI, clearly established the H-SLI method's superiority over other methods,

indicating is capability to achieve high-quality and reliable MRI reconstructions. Even in

scenarios with varying compression ratios, the H-SLI method consistently showcased

excellent performance, solidifring is efficiency and reliability, mahing it an invaluable

and highly effective approach for practical medical imaging applications. The promising

resulb obtained by the proposed method open new possibilities for enhanced medical

imaging technolory and advanced diagnostic applications.
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8.2 Iterative Shrinkage Methods and Deep Learning

The iterative sparse coding algorithm idea was first put forttr in llszl,and it serves as the

foundation for the discriminative learning techniques explored herc. These techniques

incorporate concepts firom trained models to DL methodologies' One iteration in these

methods is comparable to a conventional CNN-based training approach' In contrast to

conventional CNNs, these frameworks can learn the necessaty mapping during the faining

phase by incrcasing the number of iterations without introducing additional parameters. As

a result, network depth can be expanded without suffering the parameter cosb associated

with conventional CNNs. Adler and Ktem [ 53] developed a primal-dual learning

technique where proximal operators were replaced with a CNN, drawing inspiration from

primal-dual hybrid gradient approaches.

To achieve convergence under specific cfucumstances, Gupta et al. U 54] introduced a

rplaxed version of projected gradient descent that enforced measurement consistency

befiyeen the reconstructed pictures and their related measurcmenb. Our method produced

better results for the rcconstruction of sparse'view computed tomography (CT).

Hammernik et al. unrolled gradient descent method for reconstructing knee MR images

with a 4 undersampling factor included a variational model [155]. With the use of a single

graphics card, this work showed increased computational performance for undersampled

reconstruction. A deep CNN was used to replace the denoising operator in each iteration

of the tearned-AMP method created by Metzler et al. [55] and is known as the unrolled

approximate message passing (D-AMP) algorithm [157].

Building on their earlier work in [5S] and [29], they suggested a CS reconstruction

approach for MR and natural image recovery using an unrolled alternate direction method

of multipliers (ADMM) algorithm [5t]. This model's discriminatively learned CS

rccovery and ADMM parameters produce good results on rcal-valued natural pictures and

enmplex-valued MR images.

An IST approach for CS recovery of natural and MR images was prcposed in [30] and

is based on an unfolded neural architecture. They recovered real images from

undersampled observations using an iterative thresholding technique (ISTA) [30]. These

proposed ISTA-Nets utilise the advantages of both optimisation-based and network-based

computer science methods, and they are designed with a well-structured topolory for
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steps like iterative reconstuction. As a resulg the end-to-end approach improves efficiency
and reduces computational complexity [32].

However, a Gommon challenge arises from the limited training data available.

Researchers have explored various data augmentation techniques to artificially expand the

training dataset to trckle this issue. These techniques include applying random

tansformations, patch extraction, and simulated undersampling patterns. Additionally,

regularisation techniques, like incorporating sparsrty or total variation constraints, have

enhanced the generalisation and reconstruction quality of deep learning models 133,341.

In recent years, deep learning techniques successfully addressed the inverse image

processing challenges U421, [43]. For instance, the ImageNet dataset was used in [la4]
to rebuild natural images. A CNN framework for recovering CS videos was presented in

U45] [6]. Some of these methods, meanwhile, have limitations due to fixed measurernent

matrices and image sizes.

K.H. Jin et al. suggested a CNN-based technique to overcome these limitations[143].

This algorithm learned mappings from CS reconstructions to highly efficient

reconstructions. GANs have been developed more rccently for CS-MRI reconstruction to

attain higher quality CS reconstnrction [35, 37]. These CNNs use MSE as their cost

function. To enhance the calibre of MR image reconstructions, A DL framework with the

Bayesian method was proposed in [a6] by leveraging the probability of priors as atraining

loss.

Other researchers have also been investigated Novel frameworks. To more accurately

predict CT images, J.M. Wolterink et al. presented a CNN-based framework in addition to

adversarial CNN U47]. To maintain texture and edges in the reconstructed CS image, the

DACAN method combined was proposed [48]. To obain improved performance and a

quick reconstruction time, a GAN-based framework with dictionary learning frameworks

combining pixel-wise mapping was proposed in [la9].

The DL method using patch-based CS jointly improved the dictionary and non-linear

recovery operator, leading to enhanced proficiency compared to cutting-edge approaches

[50]. A self-supervised training approach for MRI remvery with undersampled data in

cases wherp fully sampled datasets are not readily available [l5l].
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improved CS image reconstruction. A key aspect ofISTA-Nets is their interpretable nature,

enabling a clear understanding of their operations. unlike traditionat methods, all
pafiameterc in ISTA-Neb are end-to-end discriminativety learned, ensuring efficient
utilisation ofthe network's potential for image rcconstruction. By combining the stengths
of optimisation-based and network-based approaches and incorporating interpretability,
IsrA-Nets rep.sent a promising advancement in cs image rccovery.

The ML-GSC system for CS-MRI restoration [31], employing iterative thresholding
techniques to extract nonlinear mapping parameErs from cs MRI ft-space data MRI-cs
framework effectively leams the appropriate mapping frrom cs measurcmenb for knee and
brain MRI' The cs reconstnrction resulb showed improvement with a relatively small
increase in the number of rearnabre parameters in the deep neurar network.

E.3 DISTA-CSNeI Modet

Deep learning architecturcs are frequently hained using heuristic methods, which calt for
theoretical analysis to improve feature learning and provide precise answers to inverse
prcblems, particularly in biological images. For doctors to diagnose patients correctly,
biomedical imaging reconstruction quality cannot be compromised. These frameworks
must first undergo substantial training on unique datases before being used in real-world
situations' There is a need for a universal franrework that is robust to varied dataseB to
encourage the incorporation of machine learning technologies in MRr scanning. The
test/restore metlrodology must also be easily used in clinical situations once the model
parameters have been leamed to ensurc wider appticability.

The effectiveness of the iterative shrinkage-based methods is applied to the inverce
problem of cs-MRI, demonstrating its suitability in deep learning. Recently, this theory
has been used to explain the theoretical basis of deep learning, showcasing its efficiency in
addressing cs-MRI reconstruction challenges. The DISTA-csNet approach leverages
cNN unfolding, allowing for increased network depth without adding parameters or
computational complexity, distinguishing it from the conventional DL approach based on
cNNs' As a result, the reconstruction performance is significantly enhanced, as confirmed
by experiments conducbd on diverse datasets, validating its ability to produce high-quality
reconstructions.
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Three benchmark datasets are utilised to train a generalised frameworh and images are

restored using this adaptable approach. To demonstrate its versatility and practicality' the

franrework is thoroughly tested on both GPU and cPU computers' demonstrating

respectablerestorationtimesandyieldinghighPSNUsSIMmetricsforMRimage

t€construction. This comprehensive evaluation affrrms the framework's potential for real-

world application in medical imaging scenarios, showcasing its ability to lpconstruct MR

images with high fidelity and accuracy efficiently'

The proposed cs-MRI restoration paradigm in the study incorporates new findings

from theoretical deep-learning research [159]. This approach, which combines an ISTA-

based global iterative Process with a multi-layered convolutional neural network' aims to

effectively train to quickly map fully sampled MR images and matching cs MRI lc-space'

The primary benefit of Dls'lA-csNet is its ability to train quickly (i.e., 20 epochs) and

globalpursuit,whichenablestheframeworkolearnthemappingmoreeffectively.

The DIsTA-csNet model was trained using a GPU processor during the training phase,

allowing us to achieve rapid training times and effectively learn the model parameters'

Once the model has been learned, it may be used to restorc CS-MR images using avariety

of cS ratios and random masks. The approach demonstates flexibility and sturdiness by

generatingaccuratereconstructionsforvariousundersamplingconditions.

ThecapacityofoursuggestedframeworkoperformtestsetreconstructionsonaCPU

without relying on GPUs is a noteworthy advantage' This method permits suitable

restoration times, illuminating the effectiveness of the trained parameters' As a result' the

framework is useful for practical applications in clinical settings where GPUs might not

always be available, offering a successful method for cs-MRJ restoration with significant

timesaving caPabil ities'

In general, the iterative shrinkage thresholding-based algorithms in the context of cs

MRI recovery aim to minimise the cost function defrned by the following equation'

f (x) ="rs.in|llv - aYHr1l! + r[rlh (E'l)

The layered iterative shrinkage mettrods proposed by t30l and [160] attempt to unfold

neural networks by simultaneously minimising the above-cost function by iterative

thresholding methods. This approach is aimed at achieving a global multilayer sparse
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model, where it is not attainable. Instead, the focus is on obtaining representation estimates

that describe the local layer defined by Eq. (S.2).

(8.2)

Where x1 r€prcsonB the current layer of the model.

8.4 DISTA-CSNeI Training Modet

The suggested approach Processes images in k-space with related CS measurements using

multi-layer ISTA. The proposed DISTA-CSNeI aims to effectively tain to quickly map

fully sampled MR images and matching CS MRI lc-space and store these mappings as

model parameters. The model fains with only 20 epochs while achieving beter pSNR and

SSM than other state-of-the-art algorithms, as evident from experimental results. The

testing module then reconstrucb test images using the tained ML-ISTA leaming

pararneters and computes the rccovered images'PSNR and SSIM. For all layels, it uses

Xavier initialisation to initialise the dictionaries.

Algorithm-8./ presents the multi-layered basis pursuit algorithm, which uses the

iterative thresholding prccess. To tain the model parameters, the framework collects

ground firth images, lc-space d*a, and masks for under-sampling. Without additional

pararnetem, the learning process, Algoritlm4..l, uses MLISTA unfolding to deepen the

learning framework. The model was tained separately on the Brain MR image and Knee

MR image. Both models werc tested for CS MRI recovery based on PSNR and SSIM.

f(xt) =a"c-inlllyr - ovH xrill|* tllxpll,
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Figure E-t: DISTA-CSNet Training Model

&4.f Treining /Testing Detascts

The first dataset comes from earlier work [30], and it comprises E50 brain MRIs that were

captured in the sagittal and axial planes as a pair of (CS MRI, Label (Ground Truth Image)

(Dataset l).621Knee MRIs from patienb comprise the second dataset used to frain the

CS-MRI frarnework. These Knee MRIs arc fully sampled ofthe coronal view with PD fat

saturation and werc taken using a l.5T imaging device (Siemens MAGNETOM

Symphony) at the Hospial Kuala Lumpur (HKL) (Dataset 2). A certified radiologist

classified the MRIs into three categories: full tear, partial tear, and normal knee. The

images werc collected to diagnose anterior cruciate ligament (ACL) damage. The

performance was evaluated using a test set of 50 and?l MRJs randomly from both datasets,

respectively. The third dataset comprises 123 slices thick, 256 x 256 sircMRIs of ageing-

normal brains in the coronal plane [6ll (Dataset 3), this dataset was used for Esting
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purposes only. It was tested by using the model trained on the first dataset. The Harvard

Medical School's AANLIB database makes this dataset accessible to the public.

Ngorithm &1. Training of DISTA-CSNeI

T'!lk Training of DTSTA- CS NetwithCS MRt dat

f (z) = argm,ln 1 | [y - Fu yHr 
ll | + tl",=rx rtann(t r,)
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t.4.2 Mote Cerlo Dnopouts

The introduction of Monte Carlo (MC) Dropout has certainly made the proposed model

more robust as evidenced by performance on varying datasets by avoiding over-fitting.

Dropout, originally proposed by Yarin * d. 1162l, is a practical and computationally

efficient method to estimate model uncertainty in deep neural networks. It involves

applying drcpout during both raining and inference, allowing for the computation of
prediction uncertainty, and addressing overconfidence in deep learning models. MC

Dropout introduces variability in predictions by performing dropout multiple times during

inference, leading to improved reliability and performance of deep neural networks.
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MC Dropout is a technique used during training in a deep neural network, where

dropout is applied to certain neuK)ns with probability p, resulting in a set of predictions

(!r,y2,...,!n)obtainedbysamplingtheouputmultipletimeswithdifferentdropout

masks. The final prediction for an input data point x is calculated as the average of these

sampled predictions, allowing for prediction uncertainty estimation and improved model

performance.

!1inat= fi)- :O,l fromi = Lton

MC Dropout is a technique that utilises dropout during both training and inference to

enhance model performance, estimate prediction uncertainty effectively, and improve the

robustness and accuracy of deep neural network architectures in various tasks by estimating

prediction uncertainty from the variance of the sampled predictions.

t.4.3 Soft Thrtsholding

using a new thresholding method based on the tanh was used for training. The tanh offers

the advantage of an adjustable slope near the origin and is a bounded function, making it a

preferable choice as an estimation for soft thresholding (ST). Consequently, the

mathematical descriptionof tanh-based sT is rcprcsented as:

soft/p@) =f 
tann(p1lxl- t1) 

'"!rirl*o" 
(8.4)

The equation above includes a thresholding pararlleter, l, and a parameter P th*controls

the shape of the tazh. When p is close to 7qro,Eq. (E.4) approximates the behaviour of a

soft thresholding function. As p approaches infinity, Eq. (s.a) transforms into a hard

thresholding function. Both i and p are learnable Parameters.

t.4.4 Deta ConsistencyConstrrints

The data consistency constraint (Dcc) is introduced in the training model which

significantly improves the learning rate of the training model' DCC in the frequency

domain is a fundamental principte in CS MR recovery. It ensures that the samples acquired

in the k-space domain remain constant throughout the recovery process' In other words'

the measurcd data points in the frequency domain, which conespond to the acquired MRI

measurements, are pteserved, and not altered during the iterations of the recovery

algorithm. The data consistency constraint is crucial because it guarantees that the

(8.3)
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rccovercd MRI stay consistent with sampled data. It prevents the algorithm from

introducing spurious information or modifiing the originat measurpments, which could

lead to enoneous results. By preserving the actuat samples from the k-space domain, the

algorithm ensulEs that the recovered image accurately represents the underlying structure

of the imaged object, even with timited or under-sampled data. The data consistency

conshaint in the frequency domain is a viat aspect of CS MRI recovery, as it maintains

the integrity of the acquired data and helps achieve reliable and accurate image

reconstruction.

XU] = Fr(Xr) (FFT of Estimated Image)

xoc r,r = (;!,1,:rin-,,:

t.4.5 Convolution

In deep neural networks, convolutions ar€ a fundamental operation used in convolutional

layers to process and extract features from input data. A filter or kernel is slid across the

input data during the convolutional procedurc, and element-wise muttiplication is done

between the filter and kernel and the conesponding locat input region. The result is then

summed to produce a single value in the output feature map. Mathematically, ttre 2D

convolution operation for a single channel (grey scale) input image can be represented as

follows:

M-t N-l

Y(i,j)= I Ira, tm,j *n).H(m,n)
tn=O a=O

Here:

' Y(i'i) represents the value at position (d,i) in the output feature map.

- x(i * m,j * z) represents the value at position (i + m,j * n) in the input image.

' H(m,n) rePrcsents the value at position (m,n) in the filter/kemel white M and N

are the dimensions of the filter.

Convolutional layers employ several filrcrs to extract distinct features from the input data,

producing several feature maps that capture the different patterns and haits of the input.

For tasks like image identification, object detection, and natural language processing, the

use of convolutions in deep neural networks is essential because it enables the network to

learn hierarchical representations from the input data effectively.

(r.s)

(8.6)
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t.4.6 Convolution TrensPosc

Convotution transpose, also known as deconvolution or up-sampling, is an operation used

in deep neural networks for tasks like image segmentation and image generation' It is the

opposite of standard convolution and is used to incrcase the spatial dimensions of the

feature maps. Mathematicatly, the 2D convolution transpose operation for a single channel

(grey scale) input feature map can be represented as follows:

M-LN-L

Y(i,i)= I f xti -m,i -n).H(m,n)
m=0 tt=0

Where:

. Y(i,D is the output lEplEsenting the value at position (i,j) in the output ftature

map.

- X(i - m,i- n) rcpresents the value at position (i - m'i - n) in the input feature

map.

- H(m,n) r€presents the value at position (m,n) in the filter/kemel while M and lv

are the dimensions of the filter.

Convolution transpose is commonly used in upsampling layers of neural networks to

rccover spatiat resolution lost during down-sampling, allowing the network to generate

high-resolution images or perform tasks requiring detailed spatial information'

E.4.7 Rectified Lineer Unit (ReLU)

ReLU is an activation function commonty used in deep neural networks to intoduc,e non-

linearity. It returns the input if it is positive and zero otherwise. Mathematically, the ReLU

activation function can be represented as follows:

ReLII(x) = max (0,r) (8.8)

Where:

- r is the input to the ReLU function.

- ReLU(x) is the output of the ReLU function, which is equal to r if r is positive and zero

if r is negative or zero.

(E.7)
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t.4.t Xavierlnitieliration

Xavier or Glorot Initialisation, is a weight initialisation technique used in deep neural

networks. It seb the initial weights of the neurons to random values drawn from a specific

distribution, designed to help with better training conyergence.

Xavier lnitialisation was first proposed by Glorot et al. [63]. The technique is widely

used to initialise weights in neural network layers, especially in networks using the ReLU

activation function, as it helps in maintaining signal variance and promoting stable and

efficient taining.

t.4.9 Adem optimizen

The optimisation approach used in training the DISTA model is Adam (Adaptive Moment

Estimation) which is frequently used in deep leaming to update the weights of a neural

network while it is being hained. To adapt the learning rate for each parameter based on

their historical gradients and second moments, it utilises the advantages of both the

RMSprop and momentum methods. Adam dynamically adjusts the learning rate, which

makes it ideal for training complicated, high-dimensional neural networks and promotes

fasEr convergence and improved performance across a range ofdeep leaming applications.

t.4.10 Cost Function

In optimisation in deep learning, the cost or objective function plays a crucial role in

guiding the training Process of a neural network. The objective function represents the

measurc of how well the model performs on a given task, and the optimisation process

aims to minimise this cost function to improve model performance. The cost or objective

function comprises two components: the discrepancy loss and the constraint loss. These

two componenb are combined to form the total loss that the optimisation algorithm aims

to minimise during training.

The discrepancy loss measurcs the differcnce between the predicted outputs of tlre

neural network and the true target values. It quantifies how well the model's predictions

match the ground huth for the given task. Common discrepancy loss functions include

mean squared eror (MSE) for regression tasks and crcss-entropy loss for classification

tasks.
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The constraint loss incorporates additional constraints or regularization terms to guide

the model's behaviour during taining. In the training model, ttre 11 or 12 nonn

regularization terms can be added to the consffaint loss to encourage sparsity in the model's

weights, promoting a simpler and more interpretable model'

By combining the discrepancy loss and constraint loss, the total loss function represents

a trade-off between fitting the training data well (minimising discrepancy loss) and

satisfying additional constaints or regularization requirements (minimising constraint

loss). During optimisation, the neural network parameters are adjusted to minimise this

total loss, resulting in a modet that performs well on the task while adhering to specific

constraints or regularization preferences.

Lr = La*YL"

,,=#I_ll,l, -,,!,1:

,, = #Z; X:, I 
cr(at(xrr) - 

" 
ll]

Where LT,Laand L, are a total loss, discrepancy loss and constraint loss, respectively'

AI, N4, IV, and f are the size of each block 11, total training blocks, total phases, and

regularisation constraint r€spectively. All these three losses during the training process by

our model are depicted in Figurc t-2 and Figure E-3. Figure t-2 shows the convergence of

all the losses with respect to Epochs when the compression ratio (CR) is set to only 20o/o'

whereas Figure E-3 shows the convergence ofthe above-mentioned losses when 2-fold cR

is applied.

During the training process of our model, three losses are considercd: the discrepancy

loss, the constraint loss, and the total loss. These losses are illustrated in Figure t-2 and

Figure t-3. In Figure 8-2, we observe the convergence of alt losses concerning the number

of training epochs when the compression ratio (CR) is set to 2OY|. An the other hand'

Figure 8-3 depicts the convergence of the mentioned losses when a 2-fold compression

ratio is applied. These figures show how the losses change over the training epochs'

providing valuable insighs into the model performance and convergence behaviour for

different comPression ratios.

(8.e)

(E.10)

(8.1 l)
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E.5 DISTA-CSNet Testing Model

After training two separate DIsTA-csNet models for Comprcssed Sensing MRI

reconstruction of Brain and Knee MRIs. The testing phase evaluated the models'accuracy

by reconstructing MRIs from three test datasets: Brain MRI (50 slices), Knee MRJ (21

images), and an additional Brain MRI dataset (123 slices). The hained models performed

with great accuracy regarding PSNR and SSIM, demonstrating their ability to produce

high-quality MRI estimates from compressed measurcments. Overall, the DISTA-CSNeI

models proved effective in accurately reconstructing MRIs, showcasing their potential for
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practical medical imaging applications. The process of testing the model is illustrated in

Figure 8-4. Algorithn 8.2 describes the testing process'

Model Testing

Figure t-4: DISTA-CSNeI Testing Model

Algorithm t.2: Testing DISTA-CSNeI Proc,ess
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8.6 DISTA-CSNet Model Testing Results and Discussion

In the evaluation phase, the DISTA-CSNet Model was subjected to testing using three

distinct datasets: the first dataset consisted of Brain MRts with 50 slices [30], the second

dataset included 2l Knee MR images, and the third dataset contained 123 Brain MRI slices

u6l]. To assess the performance ofthe proposed algorithm, the reconstructed images wele
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comparcd to their respective ground truth images using two key metrics: pSNR and SSIM.

By measuring the PSNR and SSIM values, the experiments aimed to quantitatively

evaluate how accurately the DISTA-CSNet Model reconstructed the MRIs compared to ttre

original ground truth images, providing insights into the atgorithm's efficacy and potential

for medical imaging applications.

The faining and testing of the proposed model were performed on the Lambda (1")

Quad AI Worksation with a single Nvidia GeForce RTX 3090 GpU using JupyterLab

platform. The batch size was set to 4 for training for Brain and Knee MRI haining datasets.

Figure 8-5 presents a selection of randomly recovered images, which werc obtained

during the testing phase using three distinct datasets. These dataseb were subjected to a 5-

fold compression in the sampting prccess, resulting in a significant S-time rcduction in

scanning time compaled to conventional methods. The PSNR / SSIM of the rccovered

images are also shown. The visual evidence from the rccovered images indicates that they

meet the required standards for clinical treatment. The reconstructed images demonstrate

high quality and accuracy, making them suitable for practical medical applications with

confidence.

Table 8-l presenh the effectiveness of the proposed DISTA-CSNeI model that was

tained on t00 Brain MR images, showcasing ib superior performance in terms of pSNR

and SSIM across various compression ratios. Even at a S-fold compression, the model

achieves an impressive average SSIM value of 0.9634, indicating ib proficiency in
producing high-quality reconstructions. During testing the computational efficiency ofthe
model demonstrated significant improvemenb when executed on a GpU, with computation

times in the subsecond range. However, eyen on a CPU, the computationaltime has been

reduced, making it feasible to test the model without relying on a GpU. Moreover, the

faining time for the DISTA-CSNeI model was substantially reduced when trained on

Dataset l, requiring only 20 epochs and approximately l6 minutes to reach a near-optimal

performance level. This observation highlights the fast-learning capability ofthe proposed

method compared to other state-of-the-art approaches, further solidifiing its potential for
practical and time-efficient applications in medical image rcconstuction.

Table t-2 illustates the effectiveness ofthe proposed DISTA-CSNeI modet, which was

fained on a dataset containing 600 Brain MR images, showcasing its superior performance

in terms of PSNR and SSIM acrcss various compression ratios. Remarkably, eyen at a 5-
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fold compression, the model achieves an impressive average SSIM value of 0'9395,

demonstrating is proficiency in generating higlr-quality reconstnrctions. The model's

computational effrciency during testing was notably improved when utilizing a GPU'

rcsulting in computation times within the sub-second range' Nevertheless, the

computational time on a CPU has also been significantly rcduced, making it viable to test

the model without relying on a GPU. Additionally, the training time for the DISTA-CSNet

model on Dataset 2 showed substantial rcductions, requiring only 20 epochs and

approximately 12 minutes to achieve near-optimal performance. The reduced training time

compared Brain MRJ faining time was mainly due to fewer MR images being available

for training i.e., 600 instead of t00 MRJs. This observation emphasizes the proposed

method,s fast-learning capability compared to other state-of-the-art approaches, further

validating its potential for practical and time-efficient medical image reconstruction

applications at clinical standards.

Table t-3 demonstrates the effectiveness ofthe proposed DISTA-CSNet model, which was

tested using Dataset 3 on the same model that was trained on a dataset comprising 800

Brain MR images, showcasing its exceptional performance concerning PSNR and SSIM

across different compression ratios and robustness against varying test data' Even at a 5-

fold compression, the model achieves remarkable average SSIM and PSNR scones'

underscoring is ability to generate high-quality reconstructions. Notably, during testing

the model exhibited significant improvements in computational effrciency when employed

on a GPU, achieving computation times in the sub-second range' However, the

computational time on a cPU has also been reduced, making it feasible to test the model

without relying solely on a GPU. These finding highlights the proposed method's

adapability and robustness mainly by introducing dropouts, compared to other state-of-

the-art approaches, further reinforcing iS potential for practical and time-efficient

applications in medical image rcconstruction'

In Figure E-6, the performance ofthe trained DTSTA-CSNet model is depicted when it

was tested on Dataset l, which consisted of 50 slices of Brain MRI used for testing' The

graph shows the PSNR and ssIM values achieved by the model at different compression

ratios. Notably, the red dotted line highlights the average PSNR and SSIM attained by the
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proposed model when the compression ratio was set at only 20%. This emphasises the

efficacy ofthe proposed model in recovering Compressed Sensing (CS) MRI data. Even at

a relatively low compression ratio of 20o/o, the model achieves high PSNR and SSIM

values, indicating ib ability to produce accurate and high-quality MRJ reconstructions.

This result demonsfates the robustrress and effectiveness of the DISTA-CSNet model in

handling CS MRJ racoyery tasls, making it a promising solution for medical imaging

applications that involve compressed data.

Figure t-7 illusrates the performance of the trained DISTA-CSNet model during

Esting on Dataset 2, comprising 2l MRJs of Knee MRI used for evaluation. The graph

showcases the PSNR and SSIM values achieved by the model at various compression

ratios. The red dotted line highlights the average PSNR and SSIM obained by the proposed

model when the comprcssion ratio was set to just 20%. This emphasizes the model's

effectiveness in recovering Compressed Sensing (CS) MRI data. Even at a relatively 5-fold

compression, the model can produce accurde and high-quality MRI reconstnrctions with

better PSNR and SSIM. These results underscorc the robustness and efficacy of the

DISTA-CSNet model in handling CS MRI recovery tasks, rendering it a promising solution

for medical imaging applications that deal with compressed data.

Figure t-8 presents the performance of the trained DISTA-CSNet model during testing

on Dataset 3, which consists of 123 slices of Brain MRIs used for evaluation. The gnph

showcases the PSNR and SSIM values achieved by the model at different compression

ratios. Of particular significance is the red dotted line, indicating the average PSNR and

SSIM obtained by the proposed model at a comprcssion ratio of 20c*6. This highlighb the

model's effectiveness in recovering Comprtssed Sensing (CS) MRI data. Even at a

relatively high S-fold compression, the model can produce accurate and high-quality MRI

reconstructions, with improved PSNR and SSIM values. These results underscore the

robustness and efficacy of the DISTA-CSNet model in handling CS MRI rccovety tasks,

mahing it a promising solution for medical imaging applications that involve compressed

lc-space data.
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Algorlthnr

Conpnrrhn Rrlio GPUrcPU

TcrthgTimc

(Scc)

Tnining

Tinc
EpochrM

PSNn,tXIIM

.wh

PISNR/SSXM

fiY.

?SNR'STIIM

*U.

PSNn/SS!M

ADMM.

Nct

37.171

0.937+

3e.a+l

o.9526

+t.s6l

0.96il

+3.OOl

o.9731

u95J5s

15.2s

03:31:23 200

IIITA.NGI+
3e7Ol

0.944+

40.971

0.9539

+2.651

o.9729

#.121

0.9792

0.1437s

ftes
02:38: 15 200

MI.{SC
39,251

0.9551

11..s01

0.9589

+3.661

0.977+

+5.961

0.9855

0.0688s

12.8s
OlzO9t22 50

DISTA-

CSNci

+0.361

o.953{

+2.671

0.97SS

45. 2+l

o.9839

17.Stl

0.9899

O.Oll,lt

lt.36t
00:16'18 20

178



Table t-2: Knee MRI Dataset Testing Results with 2l MR lmages
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t.7 Conclusions

The proposed DISTA-CSNeI model has introduced data consistency constraints and a

flexible tazh-based shrinkage technique, leading to remarkable advancemenb in terms of
reduced training time, requiring only 20 epochs to adapt to different datasets for specific

applications efficiently. Despite the reduced training time, the model's testing performance

significantly improves in bottr SSIM and PSNR vatues. Morcover, incorporating dropouts

in the proposed model has demonstrated ib robustness when confronted with varying

datasets. This resilience is evident from the testing results on Brain MRI with 123 slices,

where the proposed model outperforms other state-of-the-art methods in recovering

Compressed Sensing MRJ data. These findings highlight the effectiveness and versatility

of the DISTA-CSNet model, matcing it a promising and competitive solution for medical

image reconstruction tasks.
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CHAPTER 9

CONCLUSIONS

9.1 SummarY of Thesis

Compressed sensing is a cutting-edge acquisition procedur€ created to function at low

sample rates. lt has the benefit of shortening acquisition times in biomedical applications

including computed tomography (cT), microwave imagins (MwI), ild magnetic

rcsonance imaging (MRI). This is especially useful when conventional acquisition

techniques take a long time or subject patienb to harmful radiation for an extended length

oftime. Compressed sensing in biomedical imaging has considerably decreased the amount

of raw data needed and slashed acquisition times. The lengthened processing time during

image r€covery is a downside, though. The nonlinear CS recovery problem was solved

using convex optimisation-based techniques in early CS attempts' HoweYer, these generic

reconstruction algorithms frequently proved slow and ineffective for high-dimensional

biomedicat images, necessitating lengthy computations'

This dissertation,s main objective is to provide a new set of algorithms that may

effectively rcconstruct Fourier-encoded biological images from sub-sampled observations

to address this issue. To increase ttre overall efficacy and efficiency of CS MRI recovery'

these suggested algorithms estimate the missing Fourier samples by using datr consistency

in the Fourier domain and shrinkage in the sparsity domain' The efficacy of different

sparsity-promoting nonns, such as ls-norm and t1'norm was evaluated and novel

approaches to estimate sparsising transforms were evaluated.

Table 9.1 summarises the compressively sampled MRI recovery througlt various

proposed methods in terms of SSIM. The SSIM attained by the proposed methods

highlighS their effectiveness in recovering the MR images even with only 25o/o and2$o/o

of the sampled, accelerating the MRJ scanning Prccess by 4 to 5 times r€sPectively' The

DISTA-CSNeI has a clear advantage over other methods as it achieved similar accuracy

with s-fold comprcssion and was tested on 50 different Brain MRls, while other cs MRJ
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Table 9-1: summary of sslM attained proposed methods to r@over cs MRI.

Pruposed Methods Structurel Similarity Index CR

Smooth Is norm 0.966s 25o/o

Smooth 11 norm 0.9567 25o/o

Hybrid Smooth ls and 11 norm 0.9696 2s%

Nature Inspired IRLS 0.966/. 25o/o

Heuristic Smooth l1-norm 0.964t 25%

DISTA-CSNet Model 0.9634 2@/o

rccovery algorithms were applied on a single Brain MRI, and still achieving competitive

results.

The main conclusions from the thesis are covered as follows:

o The dissertation proposed a novel Kronecker Delta function for smooth

approximation of ls norm that efficiently recovered the undersampled t D signal

sparse signal and cs MRI, as compared to previous techniques.

r In-depth performance analysis of different Kronecker Dela functions to

approximate sparsity promoting Is norm for recovery ofCS MRI and undersampled

lD sparse signal was prcsented, highlighting the better-suited approximations

based on their application.

r This thesis introduced a novel cost function that combines smooth approximations

of Is and 11 norm for recovery of undersampled lD sparse signal and MRI from

ftwerobservations in k-space. The proposed method achieved high accuracy in CS

MRJ recovery.

o A novel method that approximates !1norm and shrinkage with tanh.The proposed

smooth approximation in loss function allowed us to apply gradient descent-based

optimisation techniques to find the near-optimal solutions to the inverse problems

posed by CS MRJ rccovcry efficiently.

o The nature-inspired algorithm i.e., particle swarm optimisation (pso) was

combined with lterative Reweighted Least Square (IRLS) method to recover CS

MRI from undersampled t-space data and the lD lt-sparse signal from fewer

obselvations. The proposed method was evaluated with a comprehensive
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experiment to recover the lD sparse signal and MRJ accurately from undersampled

data as compared to existing techniques.

The heuristic smooth approximation of the t1 nonn wall proposed to recover CS

MRI from undersampled lc-space data and the lD sparse signal. The proposed

method was assessed with extensive experimentation to recover lD spa$e signal

and MRI accurately from undersampled data as compared to existing techniques.

The main contribution of this thesis was developing a novel deep neural network

dubbed DISTA-CSNeI that trains the model to efficiently recover MRI from

undersampled ft-space data in significantly reduced time as compared to state-of-

the-art methods that exist in literature. The data consistency constraint and tanh-

based shrinkage significantly improved the leaming rate while training in only 20

Epochs. The dropouts introduced in tfte proposed DNN as a regularisation method

made the trained model more robust to different datasets while testing it to three

different datasets. The DISTA-CSNet not only recovered MR images more

computationally effrciently in the testing phase but also improved the accuracy of

the recovered CS MRI.

9.2 F'uture Directions

There can be several ways and enhancements for future research work that can take the

lead from the ideas presented in this thesis'

o The focus of this work can be broadened to incorporate dynamic MR imaging,

which entails quick data collection to track swift changes in signal strength'

o The proposed algorithms are apprcPriate for usage in conjunction with parallel

imaging methods due to their computational simplicity'

o This thesis utilised analytical sparsiSing transforms (dictionary), but it is suggesEd

that incorporating an adaptive dictionary learning mechanism could enhance

rccovery results.

o The suggested CS reconstruction methods are promising for rccovering video fr'om

compressed datr, but an intelligent sensing mechanism might be rcquired to fully

take advantage of the strong conelation in a video sequence.
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' The ptoposed CS recovery can be expanded to patch-based CS reconstruction in

place of recovering the complete biological image in one go. It is envisaged that

the reconstruction quality will increase as globalmodelling gives way to local and

adaptive modelling.

r In a deep learning contexl the transfer learning in this thesis can be expanded to

create more universal CS recovery-based models that can adapt to other dataseb

without requiring initial training.

o The proposed DISTA-CSNet model can be implemented using multiple GpUs to

enhance its training efficacy.

o The proposed DISTA-CSNet model can be modified to classiS biomedical images

under the CS franrework.
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