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ABSTRACT

Compressed Sensing (CS) revolutionizes data acquisition by promising substantial
reductions in acquisition time while preserving signal fidelity, particularly in Magnetic
Resonance Imaging (MRI), where conventional techniques often encounter prolonged
acquisition times and associated challenges. This thesis addresses these challenges by
efficient CS MRI reconstruction methods, aiming to transform medical imaging
through faster, more cost-effective, and artifact-free scans. We introduce a novel
Kronecker Delta function for smooth l; norm approximation, enhancing CS MRI and
one-dimensional sparse signal recovery. Through a comprehensive comparative
analysis, various Kronecker Delta functions are evaluated for their efficacy in signal
reconstruction. Additionally, we propose a novel cost function combining I, and I,
norms, significantly improving reconstruction efficiency from limited observations.
Our method introduces a flexible approach for smooth I; norm approximation and
shrinkage using hyperbolic tangent, facilitating proficient recovery of sparse signals,
MR, and Cardiac Cine MRI from undersampled data. Furthermore, a Nature-Inspired
Iterative Reweighted Shrinkage algorithm is proposed for MRI and sparse signal
recovery, demonstrating substantial improvements over existing techniques.
Leveraging the synergy between CS and deep learning, we propose a computationally
efficient technique for CS MRI recovery, promising significant advancements in image
acquisition and reconstruction. This thesis contributes novel, computationally efficient
algorithms for CS recovery of one-dimensional sparse signals and their application in
MR, while also exploring the potential of deep learning in CS MRI recovery. These
findings have the potential to propel CS MRI recovery forward, paving the way for
more efficient and accurate imaging techniques in diverse applications, particularly in
medical imaging. Additionally, the development of DISTA-CSNet showcases
significant improvement in reducing MRI recovery time, underscoring the

transformative potential of CS in medical imaging.
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CHAPTER 1

INTRODUCTION

The conventional method of converting analog signals into digital systems involves
sampling them at a frequency twice as high as the highest frequency component found in
the continuous signal. This rate of sampling was established by the Nyquist criteria. The
theorem demonstrated that sampling the continuous signal under the prescribed rate results
in aliasing artefacts during the process of converting the sampled data back into an analog
signal. These artefacts cause the loss of information contained in the original signal.

Since then, significant progress has been made to reduce the data volume in the digital
domain by leveraging signal redundancy following data acquisition. One approach to
achieve compression involves transforming a signal or image into a domain that highlights
sparse information, where most of the signal’s contents are concentrated. Compression can
be accomplished by selectively discarding elements with less significant information while
maintaining efficient signal reconstruction. For instance, commonly employed image
compression standards like JPEG and JPEG 2000 use the DCT, and wavelet transforms,
respectively, to use sparsity in images. These transformations allow for the retention of
coefficients with the largest amplitudes while smaller coefficients are discarded.
Remarkably, the image can still be reconstructed with minimal perceptible deviation from
the ground truth image [1]. This method effectively decreases the storage requirements for
a digital image. However, it’s crucial to keep in mind that all pixels are collected in
acquisition process, and disregarding this acquired data adds a processing burden and
results in resource wastage.

Researchers have introduced a novel sampling theory known as Compressed Sensing
(CS) that relies on signal sparsity instead of its maximum frequency. CS accurately
reconstructs an image from a reduced set of incoherent measurements by taking advantage
of its sparse nature, exceeding the requirements of the Nyquist sampling theorem. Unlike

traditional approaches, CS achieves compression during the data acquisition stage itself,



instead of as a separate post-acquisition procedure. The samples obtained for a specific
image depend on the amount of information it contains. In many cases, the information rate
within an image is significantly lower than what is presented by its frequency

content [2-5].
1.1 Motivation for CS MRI

Compressed Sensing (CS) finds its application in various domains such as data
compression [6], noise removal [7], channel coding [8], radar array signal processing [9],
data acquisition [10], and solving inverse problems [11]. Since the inception of CS theory,
MRI has been recognized as a potential application. Two significant characteristics of MRI
that make it well-suited for CS. Firstly, the data acquisition technique in MRI involves
sampling in k-space rather than acquiring pixels individually. Secondly, MRIs naturally
exhibit sparsity when represented in a suitable domain, i.e., the Wavelet domain.

MRI is a vital diagnostic technique in contemporary medical care, relying on the
nuclear magnetic resonance phenomenon to provide high-quality soft tissue contrast in a
non-invasive manner without ionizing radiation like X-rays and CT scans. MRI is
particularly valuable for monitoring changes in oxygen saturation levels in the human
brain, assessing blood flow velocity, and measuring body temperature.

Over the years, there have been significant improvements in the quality and speed of
MRI. Research efforts have primarily focused on enhancing speed through hardware
mechanisms. Faster data acquisition techniques and improved pulse sequences have
contributed to increased imaging speed. Additionally, parallel imaging utilizing multiple
coils has substantially reduced scanning times. Techniques such as leaving k-space
encoding lines, although resulting in a reduced field of view (FOV) and decreased SNR,
can speed up the scanning process. Another approach involves exploiting the conjugate
symmetry in k-space through partial Fourier imaging. However, certain methods, such as
employing high gradient amplitude with faster switching, may lead to undesirable nerve
stimulation. However, due to physical limitations, hardware improvements have reached a
point where further reduction of MRI scan time is challenging. Since the sampling rate
during the data collection process directly relates to the amount of time an MRI scanner

requires, CS can be a key factor in speeding up scans. Less samples were collected in k-



space, CS, in combination with non-linear reconstruction techniques, enabling high-quality
MRI recovery while decreasing the overall scan time [12-28].

In recent times, there has been a surge of interest in employing deep learning
methodologies to enhance the reconstruction of Compressively Sampled Magnetic
Resonance Imaging (CS MRI) images from undersampled data. Convolutional Neural
Networks (CNNss), as a form of deep learning models, exhibit promise in capturing intricate
patterns and structures within images. This inherent capability proves beneficial for the
reconstruction of high-quality MR images. Researchers have dedicated efforts to tailor
deep learning architectures specifically for CS MRI reconstruction. These architectures
undergo training to comprehend the mapping between undersampled k-space data and fully
sampled MRI data. Through the utilization of extensive datasets comprising matched,
undersampled, and fully-sampled data, these models strive to assimilate underlying image
structures and enhance reconstruction accuracy {29-31].

Deep learning methodologies in CS MRI recovery commonly embrace an end-to-end
learning framework. This implies that the network takes undersampled data as input and
directly produces a fully sampled image as output, bypassing intermediate steps like
iterative reconstruction. The adoption of an end-to-end learning approach not only
enhances efficiency but also reduces computational complexity [32]. Researchers have
delved into diverse data augmentation techniques to artificially enlarge the training dataset,
addressing the challenge posed by limited training data. These techniques encompass
random transformations, patch extraction, and simulated undersampling patterns.
Moreover, regularization techniques, including the integration of sparsity or total variation
constraints, have been implemented to refine the generalization and reconstruction quality
of deep learning models [33, 34]. Transfer learning, an approach involving the fine-tuning
of models pre-trained on extensive image datasets for CS MRI reconstruction, has been
explored to counteract the limited availability of annotated training data. Pretraining CNN
models on vast datasets of natural images, such as ImageNet, enables the capture of general
image features that prove advantageous in CS MRI reconstruction tasks [35-37].

The advantages of deep learning for compressively sampled image recovery heralds a
transformative approach, primarily through significantly improved reconstruction
accuracy. These deep learning models excel in learning intricate patterns and features from

the data, enabling a faithful recovery of compressed images. A notable advantage lies in



the reduction of sampling requirements; these models enable reliable reconstruction from
substantially fewer measurements, potentially expediting the image acquisition process.
The adaptability and generalization capabilities of these models across diverse imaging
scenarios further solidify their advantages, ensuring robustness and high performance in
various conditions. Furthermore, their ability to handle non-linear mappings between
compressed measurements and the original image sets them apart from traditional methods,
paving the way for more accurate and efficient image recovery without relying on
handcrafted feature extraction.

However, the implementation of deep learning for compressively sampled image
recovery isn't without challenges. One significant drawback pertains to the substantial
computational complexity demanded during training, particularly when dealing with large
datasets and complex network architectures. Moreover, the heavy reliance on large and
diverse datasets for effective training could result in poor generalization if the data is
insufficient or biased. Additionally, the lack of explanation in deep learning models poses
a hurdle, as their operation often remains opaque, making it challenging to interpret the
decision-making process during image recovery. Addressing issues such as overfitting and
the sensitivity to hyperparameters is crucial to fully harness the potential of deep learning

in compressively sampled image recovery applications.
1.2 Problem Statement

In contemporary clinical disease diagnosis, Biomedical Imaging plays a pivotal role, with
MRI and CT scans being increasingly relied upon by physicians. Despite their effectiveness
in detecting conditions such as tumours, heart weaknesses, and bone fractures, these
imaging techniques come with drawbacks. CT scans expose patients to potentially harmful
electromagnetic radiation, while Dynamic MRIs necessitate lengthy image acquisition
times, inducing patient anxiety and claustrophobia. To ensure clear final MR images and
minimize artefacts caused by breathing and respiratory motion, patients often must remain
motionless and hold their breath during scans, necessitating sedation for children and
uncooperative patients. Compressed Sensing (CS) has emerged as a promising solution for
expediting image acquisition, generating high-quality images with fewer measurements,
thus reducing patient exposure to radiation and scan duration. However, the computational

complexity of recovering images from fewer measurements presents challenges,



particularly in the nonlinear optimization involved in CS-based biomedical imaging

reconstruction. Conventional CS-based reconstruction algorithms are not optimized for

large datasets, exacerbating computational intensity and time consumption. This research

aims to enhance the efficiency of CS-based biomedical imaging reconstruction by

leveraging data parallelism and exploiting processor hardware architecture. Efficient

utilization of computational resources, including parallel processing and optimization

techniques, is essential to address these challenges and effectively recover compressively

sampled MRI using deep neural networks.

1.3 Research Objectives

The following are the objectives of the research work:

Develop novel compressed sensing recovery algorithms that enhance the efficiency
of recovering compressively sampled biomedical images such as MRI and 1D
sparse signals.

Investigate the performance of combining the I, and I; norm with regularized
smooth approximations to accelerate the recovery process compared to existing
cost functions of algorithms used in compressed sensing recovery.

Explore improved smooth approximations of the I, and I, norm to enable the
application of gradient-based algorithms for finding optimal sparse solutions in the
compressed sensing recovery framework.

Investigate the heuristic algorithms combined with a smooth approximation of [,
norm for the reconstruction of CS MRI and undersampled 1D sparse signal.
Investigate and develop the nature-inspired algorithms in combination with
Iterative Shrinkage Algorithms for recovery of CS MRI and limited observations
of 1D sparse signal.

Modify Iterative Shrinkage Algorithms (ISA) to optimise their suitability for
graphical processing units (GPUs) by utilizing parallel processing techniques that
can be applied in Deep Neural Networks CS MRI recovery context.

Explore and develop deep neural network architectures specifically tailored for
compressive sensing recovery, aiming to enhance the efficiency and accuracy of

image reconstruction from compressed measurements.



1.4 Main Contributions

The motivation behind this work is to introduce efficient reconstruction methods for

compressively sampled biomedical images, i.e., MRI, and to be able to use these algorithms

in the context of Machine Learning based CS MRI reconstruction. The proposed recovery

algorithms rely on iterative shrinkage methods based on smooth approximations of

sparsity-promoting norms such as [, and {; norm, which are particularly suitable for high

dimensional signals.

The following are the key contributions to our research work:

This dissertation proposed a novel Kronecker Delta function for smooth
approximation of l; norm that efficiently recovers the undersampled 1D signal
sparse signal and CS-MRI compared to previous techniques.

In depth, performance analysis of different Kronecker Delta functions to
approximate sparsity promoting o norm for recovery of CS MRI and undersampled
1D sparse signal.

The introduced novel cost function that combines smooth approximations of I, and
1, norm for recovery of undersampled 1D sparse signal and MRI from fewer
observations in K-space.

A novel method that approximates l; norm with smooth hyperbolic tangent
function. The smooth approximation in loss function allows us to apply gradient
descent-based optimisation techniques to find near-optimal solution of the inverse
problem posed by CS MRI recovery efficiently.

The nature-inspired algorithm ie., PSO has been combined with Iterative
Reweighted Least Square (IRLS) method to recover CS MRI from undersampled
k-space data and 1D sparse signal from fewer observations. The proposed method
was evaluated with comprehensive experiments to recover 1D sparse signal and
MRI accurately from undersampled data as compared to existing techniques.

The heuristic smooth approximation of l; norm is proposed to recover CS MRI
from undersampled k-space data and 1D sparse signal. The proposed method was
assessed with extensive experimentation to recover 1D sparse signal and MRI

accurately from undersampled data compared to existing techniques.



o The major contribution of this thesis is developing a novel deep neural network
dubbed as DISTA-CSNet that efficiently trains the model to efficiently recover
MRI from undersampled k-space date in significantly reduced time compared to
state-of-the-art methods in literature. The dropouts introduced in the proposed
DNN as a regularization method made the trained model more robust to different
datasets while testing it to three different datasets. The DISTA-CSNet not only
recovered MR images more efficiently in the testing phase, but also improved the

accuracy of the recovered CS MRI.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, introduce compressed sensing and their sparsifying domains, with a
specific emphasis on their application in biomedical imaging, such as MRI. This chapter
presents an overview of existing deep-learning methods for recovering CS MRI from fewer
samples k-space. Furthermore, a concise overview of the relevant literature is presented,
followed by an explanation of the quantitative measures employed in the recovery
algorithms for compressed sensing.

Chapter 3 reviews the existing Kronecker Delta smooth approximations of [, norm
and proposes a novel smooth approximation of I, norm. Since solving the I, norm
minimisation is a challenging combinatorial problem, researchers have proposed non-
linear recovery methods that employ smoothed approximations of the lp norm, which offers
computational efficiency. This chapter conducts an in-depth comparative analysis of five
versions of smoothed l;-norm functions. The existing smoothed lo-norm-based recovery
algorithm is modified and applied to reconstruct CS MRI using these approximation
functions. The performance of each smoothed lo norm approximation is extensively
evaluated for reconstructing compressively sampled 1D sparse signals and 2D MRI (Brain)
data across various sampling rates.

Chapter 4 aims to overcome the non-differentiable nature of the l; norm and the
inapplicability of gradient-based minimization algorithms, there arises a necessity to
approximate the l; norm using a smooth approximation. IST algorithms offer a proficient
approach to minimise l; regularized LS optimization problems while inducing sparsity in

the solutions that is required in compressive sensing (CS) recovery. This chapter presents



a novel recovery method that utilizes the tanh to reconstruct undersampled signals/images
within the CS framework. The proposed approximates the ; norm and soft thresholding
using hyperbolic tangent functions. We also evaluate bounds for the error of the proposed
l; norm smooth approximation. To assess the efficiency of the proposed method, the
datasets used consists of 1-D sparse signals, CS MRI, and Cardiac Cine MRL

Chapter 5 proposes a non-linear reconstruction technique based on smoothed
approximations of I and ; norms, which have been demonstrated to be computationally
efficient. This technique is proposed for recovering sparse signals by combining the /y and
L, norms, enabling accurate reconstruction of CS sparse signals. Empirical results indicate
that the proposed method outperforms traditional smooth approximations of the ly and /5
norms in terms of efficiency.

Chapter 6 proposed a novel method for recovery of CS MRI and 1D sparse signal
using nature-inspired iterative reweighted least square. This method combines the PSO
with the IRLS method. Through extensive experimentation, the performance of proposed
algorithm was evaluated, demonstrating its ability to accurately recover both 1D sparse
signals and MRI from undersampled data. The evaluation results revealed superior
performance compared to existing techniques for CS recovery.

In Chapter 7 we have proposed the novel heuristic smooth approximation of the I3
norm is introduced in this study for the recovery of CS MRI from undersampled k-space
data and 1D sparse signals. The proposed method was thoroughly evaluated through
extensive experimentation to accurately recover both 1D sparse signals and MRI from
undersampled data. The assessment demonstrated the advantage of the above-mentioned
technique over existing methods in terms of achieving accurate recovery in the context of
CS.

In Chapter 8, a novel deep neural network called DISTA-CSNet is introduced, which
is specifically designed to efficiently train the model for the recovery of MRI from
undersampled k-space data in a considerably reduced time relevant to existing state-of-the-
art algorithms. DISTA-CSNet demonstrates improved efficiency in the testing phase by
efficiently recovering MR images and enhancing the accuracy of the recovered CS MRI.

The thesis concludes in Chapter 9, summarizing the key findings and contributions in
CS MRI recovery. Potential future directions for further exploration and advancement in

this field are discussed. This includes identifying areas for improvement, potential



extensions of existing techniques, and emerging research trends that could shape the future
of CS MRI recovery. By highlighting these future directions, the thesis aims to inspire and
guide future research endeavours in advancing the field of CS MRI recovery and its

applications in medical imaging.



CHAPTER 2

COMPRESSED SENSING IN MRI

Recently, significant advancement in sampling rates of modern analogue-to-digital
converters. This has led to the realization that the data obtained from sampling natural
analogue signals is superfluous and can be compressed without a noticeable loss of quality.
Researchers have exploited this redundancy and developed various effective data
compression techniques, enabling efficient storage capacity and bandwidth utilization.
Many compression methods, such as JPEG and JPEG 2000, leverage signal and image
sparsity in specific domains. More recently, the emergence of CS theory suggests that the
data sampling process can achieve compression itself, rather than relying solely on post-
acquisition compression. CS finds application in scenarios where each measurement is
costly, sensor limitations exist, measurements take a long time (e.g., in MRI), and power
constraints are crucial, particularly in battery-powered devices. DNN has also shown
promise in the recovery of compressively sampled MRI from fewer samples in k-space.
These networks can effectively reconstruct superior MRI from sparse measurements by
leveraging their powerful learning capabilities. This approach offers potential
advancements in efficient and accurate MRI recovery, leading to improved diagnostic
capabilities and reduced scanning time. This chapter provides a detailed description of CS

MRI theory, and its applicability in the DNN framework.
2.1 Introduction

Compressed sensing revolutionizes traditional signal processing by introducing a novel
approach to signal acquisition. It exploits the well-known fact that many signals possess
sparsity in a suitable domain, allowing for effective compression during the data
acquisition process. The conventional sampling method follows the Nyquist criteria (38},
which needs a sampling frequency exceeding two times the maximum frequency
component present in the signal. However, to lower the sample rate without compromising
the accuracy of the restored data, researchers have looked for solutions. In a breakthrough

paper in 1967 [39], it was proposed that signals exhibiting sparsity after Fourier
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transformation can be accurately sampled at a significantly lower rate using arbitrary
sampling schemes, deviating from the uniform sampling suggested by Nyquist.

Practical applications in fields such as image processing, geophysics, and seismic wave
detection often involve signals that exhibit sparsity in specific bases. For instance, modern
cameras capture millions of pixels in digital acquisition, which can be efficiently
transformed into the wavelet domain. A few significant coefficients can accurately
reconstruct the image without noticeable quality loss in this domain. This example
highlights that the required information to portray an image is much lower than its apparent
bandwidth suggests.

Compressed sensing brings about a paradigm shift in signal acquisition by linking the
required number of measurements to the information rate instead of its bandwidth alone,
This innovative approach involves non-adaptive measurement acquisition, where
correlations are established between the signal and random vectors like Fourier or Gaussian
distributed matrices. When a signal exhibits sparsity in a known transform and the under-
sampling process introduces noise-like aliasing artefacts, it becomes possible to recover
the signal using a reduced number of measurements faithfully. Nonlinear recovery
techniques encourage sparsity and ensure coherence with the acquired data, thereby
enhancing the efficiency and effectiveness of compressed sensing methods.

By leveraging the integral sparsity or compression of signals, CS techniques have
revolutionized signal acquisition and recovery, making them more efficient and resource-
friendly. CS eliminates the need for excessive measurements, reducing acquisition time
and lowering data storage requirements. This makes CS particularly valuable in situations
where traditional Nyquist-based sampling approaches are impractical or resource-
intensive.

The CS techniques are applied in various fields, including in the context of compressed
sensing MRI (CS MRI), which has opened new possibilities in various domains. CS MRI
allows for efficient and accurate recovery of MRI from fewer measurements, reducing scan
times and improving overall efficiency. Machine learning techniques have been integrated
with CS MRI to enhance performance. By incorporating machine learning algorithms, CS
MRI can effectively learn the underlying structures and patterns in the acquired samples,

resulting in improved reconstruction quality and faster processing.
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The integration of CS MRI with machine learning holds great promise in advancing
medical imaging, wireless communications, and sensor networks. By combining the
benefits of compressed sensing with the capabilities of machine learning, we can achieve
more accurate and efficient signal recovery, leading to improved diagnoses, faster wireless
data transmission, and enhanced performance of sensor networks in various applications.
The utilization of machine learning in CS MRI paves the way for further advancements
and breakthroughs in these fields [4, 15, 19].

2.2 Compressed Sampling

We are interested in determining a solution X of length n for the generic system of linear
equations denoted by Eq. (2.1) given system coefficient matrix & and measurements vector
y of length m.

Px=y (¢R)
In CS, the term x is described as the signal of interest to be retrieved, given that we have a
set of measurements y and the sensing matrix ®. As expressed in Eq. (2.2), each
measurement in vector y is produced by signal x and the vectors in the sensing matrix ®,
where y; is each entry of vector y and a; are the columns in the sensing matrix ®.

yi=<xa> 2.2)
For a matrix @ to qualify as an orthogonal matrix, it must fulfil the condition specified in
the given Eq. (2.3).

&7 =1 23)
When the matrix @ meets the condition stated in Eq. (2.3) and vectors are normalized as
unit vectors, it is referred to as an ortho-normal matrix. Furthermore, the orthonormal
matrix satisfies Eq. (2.4).

T 1=1 24)
When the matrix @ is square, indicating that measurements are equal to the length of the
signal, the vector x can be retrieved straightforwardly using Eq. (2.5).

x =Ty (2.5)
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synthesis or modeling from sparse transform

Figure 2-1: Demonstrates the sparsity of signals when transformed on a suitable basis [5]

where, m is the number of measurements that surpasses the length of the signal (n), i.e.,
m > n, an exact solution may not exist. However, the signal can still be estimated using
the least squares method, as defined in Eq. (2.6).

L= (0T) loTy (2.6)

Compressed sensing (CS) operates under the assumption that measurements (m) are
significantly less as compared to signal length (n), denoted as m « n. Eq. (2.1) represents
an under-determined linear equation system in CS. For a full-rank matrix @, there can be
infinite possible solutions. To obtain the optimal solution, additional constraints are
necessary, typically in the form of sparsity constraints. CS proposes that if the signal x has
only a few non-zero elements relative to its length and the sensing matrix ® satisfies certain
conditions, it is possible to accurately retrieve the signal x from limited observations.

A straightforward approach to consider the feasibility of reconstructing a signal x from
limited observations is to assume knowledge of the signal support. If there are only s non-
zero elements in a signal of length n, we only need to identify and recover those s elements
instead of the entire signal. Consequently, with s elements in the signal X, only s
measurements are required, as defined by Eq. (2.7). This approach highlights the potential

for accurate signal recovery using fewer measurements, leveraging the sparsity of the

signal.
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Indeed, in practical scenarios, the support of the original signal is typically unknown.
Therefore, relying solely on s measurements is insufficient. Instead, we require m
measurements, where s < m < n. The objective is to recover the actual signal by finding
the sparsest possible estimate. By leveraging additional measurements beyond the number
of non-zero elements (s), we aim to capture enough information to accurately recover the
actual signal, even without prior knowledge of its support. The recovery process involves
finding a solution that minimizes the sparsity while satisfying the measurement constraints,
enabling the retrieval of the actual signal. Figure 2-1 depicts the illustration of taking

measurements as a sparse representation of signal x.
2.3 Sparsity

Compressed sensing operates effectively with a special class of sparse signals. These
signals possess most of their elements with closer-to-zero amplitudes, while few elements
have non-zero values. The sparsity of a signal allows for the possibility of discarding or
ignoring the coefficients with negligible amplitudes without perceptual loss in signal
quality.

However, signals with less sparsity can still have sparsifying representations in other
domains. The information in a signal is often concentrated in just a limited number of
coefficients, while the remaining coefficients can be discarded. The choice of the sparsity
domain depends on the signal characteristics. For example, piecewise constant signals can
be sparsified using the FDT, while some images can be sparsified using DCT, a widely
used technique in image compression. Another popular approach is wavelet transform, as
employed in JPEG-2000, which enables sparsification and compression of images by a
factor of up to 10 times their original size. Hence, no single transforms applies to all signals,
and the suitable sparse transformation is subject to the signal’s characteristics and the
specific application.

The transformation of a signal that facilitates sparsity is referred to as the sparsifying
transform V. Eq. (2.8) represents the signal transformation x into its sparse representation
z,

z=Vx (2.8)
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Compressed sensing focuses on three distinct signal domains, as depicted in
Figure 2-2. The sparsity domain, denoted as z, represents the signal with fewer non-zero
components. The signal domain, represented by x, is where the signal is observed and
analyzed. It is the primary domain of interest for understanding the signal's characteristics.
Lastly, the sampling domain is where measurements of the signal are obtained. This

domain captures the specific locations and values of the acquired measurements.

¥ ¢

Sparsity Signal Sampling
domain domain domaln

Figure 2-2: The three domains that attract interest in the field of Compressed Sensing
2.4 Incoherence

In compressed sensing, incoherence is a crucial factor that must be considered. It refers to
the desired low coherence between the sparsity basis and the measurement basis. When
considering a sparsifying matrix ¥ and a sensing matrix ® with orthonormal bases in R™,
the coherence can be defined as the highest inner product of two vectors from the matrices
defined by Eq. (2.9). Ensuring a low coherence value is important for the success of
compressed sensing techniques.
w(®.%) =vn max | < @wp;>| (29)
The value of u represents a correlation of the bases of the two matrices. Each vector is
normalized to a magnitude of one, and the normalization factor Vn ensures that u falls
within the range of 1 to vn. In compressed sensing, a low coherence between the two
domains is desirable. Incoherence guarantees that the signal is dense in the sampling
domain, allowing for flexibility in selecting any set of samples during under-sampling [40].
Compressed sensing techniques often employ random matrices, i.e., random Gaussian
and Bernoulli measurement matrices. This is because these matrices have less coherence
to sparse basis W. However, the application of the above-mentioned matrices has certain

drawbacks. These matrices can have high computational costs and may not be suitable for

handling large datasets, such as high-resolution images. In such cases, alternative options
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like the Fourier and Wavelet bases prove to be advantageous. These bases exhibit high
incoherence with the canonical basis [41], making them viable alternatives in scenarios

where random matrices are less feasible.
2.5 Sparse Signal Recovery Constraints

To faithfully reconstruct a sparse signal, two conditions must be satisfied. Firstly, the
measurement matrix must adhere to the RIP, ensuring accurate recovery of a signal.
Secondly, the minimum sampling rate required for precise recovery must be determined.

These conditions will be elaborated upon in the following discussion.
2.5.1 Restricted Isometric Property (RIP)

The faithful recovery of sparse signals relies on the adherence of the sampling matrix to
the RIP. In the case, where signals represented in an orthogonal basis are sparse, the
recovery of its sparse representation (2) is like the recovery of the actual signal (x). This
can be achieved by employing the matrix A = ®WT, where ®pxn and Ppxn are
orthonormal matrices that map the sparse coefficients to a set of observations. The concept
of RIP was initially introduced by Candes and Tao [42], to assess the effectiveness of the
sampling matrix. The RIP constant, denoted as &, is the smallest quantity specified in Eq.
(2.10).
(1 - 8)lizlZ < lIAzll < (1+ 8:)lizliZ (2.10)
The sparse signal z, J; is preferred to be closer to zero with a well-performing matrix
A, a smaller 8 indicates a reduced likelihood of z falling within the null space of A.
Additionally, when matrix A satisfies the RIP, the energy of signal (2) is preserved
following the transformation Az. Moreover, the RIP guarantees that any subset of the

matrix A maintains an orthonormal property.
2.52 Minimum Sampling Frequency

CS provides the capability to recover a sparse signal x from a significantly reduced number
of measurements (m) compared to what is traditionally suggested by the Nyquist sampling
theorem. However, a crucial question remains: How far can we push the limits of under-

sampling while still achieving accurate signal recovery? The minimum number of samples
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required is defined by Theorem 2.1, which establishes the lower bound for reliable signal
reconstruction.
Theorem 2.1: Let’s consider a signal x € R™ that is s sparse in W basis and select m
measurements at random in & domain. If

m 2 c.u*(®, P).s.log (n/k) (2.11)
for constant ¢ > 0, the vector x, there is a high chance of its recovery, ensuring exact
reconstruction.

The significance of coherence in determining the required number of samples is evident
from Eq. (2.11). Greater incoherence within systems allows for accurate recovery even
with a smaller number of samples. By acquiring m measurements, which can be
significantly fewer than the signal length (n), no information is lost in the signal. If the
coherence u(®,¥) closer to one, the required observations can be reduced to
s.log (n/k) instead of the traditionally used n measurements [4].

Practically, numerous researchers adhere to a commonly followed guideline known as
the “4 to 1” rule. According to this rule, it is recommended to have four incoherent

measurements for every unit of unknown nonzero element in the sparsifying domain[43].
2.6 Introduction to MRI

MRI has emerged as a prominent domain for implementing compressed sensing (CS)
techniques. In the early stages of CS theory, the research community recognized MRI as a
promising application for CS. The fundamental principles of MRI and how MR images can
exhibit sparsity through various sparsifying transforms. Furthermore, the chapter delves
into the potential of CS in reducing the scan time required for MRI procedures.

2.6.1 Nuclear Magnetic Resonance (NMR)

The phenomenon of NMR finds its most accurate description in the realm of quantum
mechanics. However, at the microscopic level, classical physics can also provide an
accurate representation [16, 44, 45]. In the context of MR imaging, the signals originate
from the protons found within water molecules present in the body. These protons become
polarized by a strong magnetic field, By, resulting in a magnetic moment aligned with the

static field. The NMR signals are generated by this magnetic moment. The longitudinal

17



direction refers to the orientation of the field, while the transverse plane represents the
vertical plane to the direction of the field.

Bloch Eq. (2.12) establishes the connection between magnetic field B and the

magnetic property M.
dM Mg—M; M,
i M+yB+ T + T, (2.12)

In this equation, M,, represents the transverse magnetization, M, represents the
equilibrium magnetization, and M, represents the longitudinal magnetization. The
constants Ty, T, and y depend on the specific characteristics of the tissues and materials
involved.

When a Radio Frequency (RF) is applied to the B, field, the net magnetic field becomes
distributed, resulting in the generation of the magnetization component My, The equation

describes the characteristic frequency produced by this magnetization process.

B
£ = %;o (2.13)

The equation introduces the procession frequency, denoted as f;, which relates to the static
field By, with the constant z—yn- For a typical 1.5T MR scanner, the frequency is
approximately 64 MHz. The coil that receives the signal generated by the transverse
magnetization component, My,. By capturing the spatial spreading of this magnetization,
the MR image is obtained.

The relaxation of magnetization in the transverse plane occurs over some time period

1. The longitudinal component experiences an exponential recovery described by:
T
M, (1 - e_ﬁ) + M,(t), where T; represents the time constant. Instead, the transverse

component declines exponentially as My(t+1) = M,y(t)e"”z, with T, as the time
constant. These relaxation time constants, Ty and T, are crucial for capturing image
contrast, and different tissues within the body may exhibit varying relaxation
parameters[44, 45].

Figure 2-3 depicts the magnetic fields employed in magnetic resonance imaging (MRI).
The primary static field, denoted as By, establishes the net magnetization within the
imaging subject. It creates a stable magnetic field aligning the nuclear spins in atoms of the

tissue.
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To initiate the imaging process, a transverse RF field, known as B,, is applied. This RF
field acts as an excitation source, perturbing the equilibrium of the nuclear spins and
causing them to process around the B, field. By manipulating the parameters of the B,
field, such as its frequency and duration, specific regions of the subject can be selectively
excited for imaging.

In addition to the primary static and RF fields, gradient fields are employed to facilitate
spatial encoding. One of these gradient fields, represented as G,, is responsible for
generating spatial variations in the magnetic field. By changing the G, gradient field,
different regions of the subject experience varying B strengths. This spatial encoding
enables capturing the spatial distribution of magnetization, which is essential for producing
detailed and localized images.

Overall, the combination of the primary static field (B,), the transverse RF field (B4),
and the gradient field (G,), allows for the precise manipulation and capturing of the
magnetization within the subject, forming the foundation of magnetic resonance imaging.

Magnetic fields used in MRI are shown in Figure 2-3. The net magnetization is
generated by the main static field, By. The gradient field, Gy, generates spatial encoding
while the transverse RF field, B;, generates magnetization, allowing for the spatial

distribution of magnetization to be recorded [16].

Figure 2-3: The magnetic and gradient fields utilized in MRI [16]
2.6.2 Gradient Encoding and Signal Reception
The use of RF energy to stimulate magnetization results in a change in magnetic flux, which
alters the voltage at the receiving coil. Voltage represents the sum of the observations from

all stimulated sources and serves as the signal for MR imaging. The signal that was received

is intricate and appears as a harmonic frequency.
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To capture spatial k-space data, three-dimensional fields are employed. The coils Gy,
Gy, and G; detect changes in the B concerning spatial location. For instance, when G, is
used, the B variation relative to the position is represented as B(x) = |Bg| + Gxx. The
change in RF magnetization is proportional to the applied gradient field, establishing the

basis for spatial distribution characterization [44, 45].
2.6.3 K-Space and Image Domain

To depict the received magnetic resonance signal and the magnetization distribution have
a Fourier association, and the magnetization distribution goes through spectral
decomposition. The induced gradient produces a variation in precession frequency, leading

to a phase shift. The frequency contribution induced by the gradient is as follows:

fo = yG(t).r @.14)

2

Here, the amplitude of the gradient is denoted by G(t). The phases of magnetization are

defined by the integration of frequency.
t

¢(r,t) = ZnL {;G(s).r ds = 2m.r.k(t) (2.15)
where k(t) can be defined by
v [
k() = -Z;L G(s) ds (2.16)

The signal produced by the received coil can be defined by Eq. (2.17)

s(t) = f m(r)e~ kO dy .17

The signal in MRI is defined by Eq. (2.17), where the signal at a given time t is obtained
as the F, of the magnetization distribution, m(r), which is acquired in the spatial
representation of the Fourier domain represented by k(t). It is important to note that MR
imaging techniques differ from pixel-by-pixel optical imaging modalities.

The gradient waveform, G(t), is used in the MR system to acquire the MR image. The RF
pulses and gradient waveforms are combined to generate magnetization, referred to as the
pulse sequence. The trajectory, k(t), in spatial frequency space (also known as
k-space), is determined by integrating the G(t) waveforms. The MR image can be
visualized by IFFT to the acquired k-space samples, as depicted in Figure 2-4 [44, 45].
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K-Space Image Doman
Figure 2-4: Recovery of an image by IFFT from it Fourier data [45]
2.6.4 Resolution vs FOV

The conventional approach to k-space sampling follows the Nyquist criteria, which
considers both the FOV and its resolution. The resolution is determined by the extent of
the data acquisition area in k-space, with a larger sampling region corresponding to higher
resolutions. The FOV can be established by the density of sampling within that area, with

bigger objects requiring a higher density of sampling to adequately capture the details.

ak, A 1]
PQ' ea

K-space Image spa:e
Figure 2-5: The relationship between the field of view and resolution [45]
When departing from the Nyquist sampling rate, artefacts can arise in the image, and
the specific characteristics of these artefacts can vary depending on the chosen sampling
patterns [45]. The relationship between k-space sampling and FOV s defined by Eq. (2.18),

and the connection between resolution and k-space is illustrated in Figure 2-5[16].
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2.6.5 K-Space Sampling Patterns

The popular k-space sampling technique for MRI is Cartesian sampling, which adheres to
the Nyquist sampling criterion. With Cartesian sampling, the image may be
straightforwardly reconstructed using an IFFT. This method is perfect against system
shortcomings. However, a downside to Cartesian sampling is that it requires many samples
to satisfy the Nyquist limit, which is time-consuming given the inherently slow data
acquisition speed in MRIL This motivates the exploration of alternative non-Cartesian
sampling methods that can accelerate image acquisition.

In addition to the above, non-Cartesian sampling in k-space has also acquired
popularity, especially for accelerated undersampled MRI acquisition. Radial sampling,
where k-space is sampled along radial spokes, is a common non-Cartesian technique [46].
Radial sampling patterns have the benefit of over-sampling to the centre of k-space,
providing robustness against the motion and flow artefacts [47]. Spiral sampling is another
popular approach, with possible variations [48]. The Propeller technique combines aspects
of radial and Cartesian sampling for motion correction [49]. Random or stochastic
trajectories are also utilized, with compact data acquisition closer to the centre of the k-
space and sparse sampling farther out. Stochastic sampling is advantageous for compressed
sensing as it introduces noise-like artefacts [14, 15, 50]. Other non-Cartesian patterns like
rosette [51] and Lissajou [52] sampling have also been explored. The best-suited sampling
method is subject to the application and types of artefacts needing correction [53]. Figure

2-6 illustrates several k-space sampling trajectories.
2.6.6 MRI Sparse Representations

In applying compressed sensing (CS) to MRI, the first step entails undersampling the k-
space using different sampling patterns, as explained in the preceding section. Achieving

an accurate recovery of the original MR image from the under-sampled k-space data is
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Radial Mask Cartesman Mask Random Mask

Figure 2-6: Patterns of sampling in the k-space domain

contingent upon the MRI signal demonstrating sparsity, either in the image domain directly
or after undergoing a well-defined transformation. Fortunately, numerous MRIs has
inherent sparsity in a specific domain, such as MR angiogram images, enabling direct
application of CS without requiring additional sparsifying transforms. However, with most
MR images, achieving sparsity necessitates employing a specific sparsifying transform,
such as the finite difference and Wavelet transforms.

SpaTse recresentaticn Scnted coefficients

ey

Figure 2-7: Applying sparsity-inducing transforms to various images [16]

23



Sumpies frorn conter of Bspace Recvnsticted MRI

Recomtructed MR

Samples viliet han center ot d-pae

Figure 2-8: Effect of undersampling in k-sparse [24]

The finite difference transform offers an exceptionally sparse representation for images
exhibiting piece-wise constancy. Moreover, different wavelet transforms are beneficial for
some sets of MR images. Figure 2-7 visually illustrates the sparsity of a Shepp-Logan
phantom image using the FDT and an MRI using the WT. Figure 2-7 shows that
approximately ten-fold compression in sampling can be reduced in WT without loss of
information [54].

Figure 2-8 shows the effect of taking samples from the centre of the k-space and away
from the centre. The central part of k-space got the details of a smooth region while outside
the central region edge information is stored. So, to get a complete picture we need some
samples from both the central part and away from the central part. In some cases, the
sparsity of an image can be influenced by the presence of noise. Through sparse
approximation, where coefficients with very small amplitudes are set to zero, the image
can undergo denoising. This denoising effect is established in the accompanying Figure
2-9 [16].

24



Figure 2-9: Effect of sparse approximation on denoising [16]

2.6.7 Rapid MRI

Recently, progress in improving the quality with speed of MRI. The research focuses
primarily on accelerating the speed of MRI through hardware advancements. Faster data
acquisition techniques have been crucial in achieving improved acquisition speed. The
scanning duration to acquire an MRI relies on the repetition duration (T) multiplied by the
amount of RF excitations. One phase in the encoding line is typically obtained from one
RF excitement. To estimate the total scanning duration for acquiring a 3D MR image, Eq.
(2.19) can be used.
Tacquisition = NyNzN, Ty (2.19)
Here, N,, represents the phases-encoding lines in the ¥ direction, N, indicates the total
phases-encoding lines in the z direction, and, N, corresponds to the number of averages.
Improving the speed of MR scanning attained by reducing the T according to the
equation. The duration of Ty relies on the applied gradients, and to maintain a constant
FOV and resolution, higher gradient amplitudes are necessary for shorter T;. However, this
approach can lead to unwanted nerve stimulation, making it an undesirable method [55].
Another strategy to increase scanning speed involves employing alternative acquisition
methods, such as acquiring multiple sampling lines for one RF excitement. For example,
Echo Planar Imaging (EPI), when every piece of data is gathered at once [56]. Furthermore,

developing improved pulse sequences and utilizing parallel imaging techniques with
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multiple coils have also contributed to significant reductions in scanning times [57].
Skipping encoding lines in k-space is another approach to expedite the scanning process,
although it produces less FOV and reduces the SNR. Undersampling in k-space can exploit
the symmetry in k-space to address this challenge [58].

The progress in MRI hardware has reached a stage where physical limitations restrict
the potential for reducing scan time. As the scan time of MR is related to the sampling rate
during scanning, compressed sensing (CS) has emerged as a valuable approach for
reducing this scan time. CS allows for the scanning of a reduced number of samples in the
k-space domain while still enabling high-quality MRI recovery through non-linear
reconstruction techniques. By leveraging the inherent sparsity or compressibility of MRI
signals, CS enables efficient data acquisition and reconstruction, resulting in significant

time savings without compromising image quality [12-28].
2.7 CS MRI Recovery

Various recovery methods are developed for MRI from undersampled k-space data. These
reconstruction techniques can differ in terms of the computational approach taken to

recover the image and the k-space sampling methods used during accelerated acquisition.
2.7.1 Linear Recovery Methods

The most straightforward method for recovering a signal or image is the inverse fast
Fourier transform (IFFT). However, applying IFFT to undersampled signals can introduce
aliasing artefacts that distort the image. To mitigate these artefacts, two techniques are

commonly employed:
2.7.1.1 Zero Filling (ZF)

ZF is a simple approach for reconstructing magnetic resonance (MR) images. In ZF, any
sampling pattern could be employed for undersampling in k-space. ZF fills the un-sampled
k-space data with zeros, essentially extending the acquired data to a fully sampled k-space.
While ZF alone does not exploit the compressibility or sparsity of MR images, it serves as
a useful initialization step for more advanced compressed sensing (CS) MRI recovery
techniques. By starting with ZF reconstruction, CS MRI algorithms can build upon this

initial estimate and refine it further to achieve high-quality image reconstructions.
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Therefore, ZF is a valuable starting point for CS MRI recovery, setting the stage for

subsequent iterative algorithms to enhance the final image reconstruction quality [15].
2.7.1.2 Low Resolution

Another linear reconstruction method using undersampled data and a distinctive sampling
pattern is called Low Resolution (LR). The image is reconstructed using IFFT after just the
k-space data is entirely sampled from the k-space’s centre. This method is quite effective
at recovering smooth regions in images, but it cannot restore sharp edges [15]. Figure 2-10

depicts the sampling pattern for the LR recovery technique.

Figure 2-10: Depicts the sampling pattern of the LR mask

2,72 Projection onto Convex Set Method

The Projection Onto Convex Sets (POCS) algorithm is an iterative reconstruction approach
for undersampled MRI that casts the image recovery problem as finding the intersection of
a priori- constraint defined convex sets [59]. In POCS, the known constraints on the desired
MR image, such as spatial smoothness, sparsity, and data consistency with the acquired k-
space samples, are each represented as a convex set in Hilbert space containing all images
satisfying that constraint. The algorithm finds the image at the intersection of these sets
through sequential projections. While simple to implement, POCS provides an effective
framework for minimizing the mixed l; — 1 convex optimization objective function in Eq.
(2.20) for constrained MR reconstruction.

= arg:ninll‘l'xlll subject to ||[F,x~ y||2 < ¢ (2.20)

In Eq. (2.20), ¥ represents a sparsifying representation such as a WT or FDT applied to
the target image x to be recovered. F, denotes the FFT relating the image to undersampled

k-space measurements y. ||Wx||, = X || is the I;norm which promotes sparsity in
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the reconstructed image. A modified POCS algorithm for undersampled MRI
reconstruction is proposed in [13] that incorporates sparsity-promoting regularization into
the iterative projection framework. This allows improved image recovery from limited k-
space data by leveraging transform-domain sparsity constraints The enhanced POCS
technique employs full-resolution phase estimations, alternating between acquired k-space
halves in time series or multi-echo acquisitions. This process allows the calculation of full-
resolution phase estimations for each volume/echo, subsequently integrated into the POCS
framework [60]. Lately modified POCS has been applied for CS MRl recovery in [61, 62].

The POCS method for Compressively Sampled MRI recovery offers computational
efficiency and simplicity through iterative projection onto sets enforcing data fidelity and
prior knowledge, enabling easy integration of constraints. However, it can struggle with
complex image structures and noise, potentially limiting its ability to capture fine details
accurately. The method's performance hinges on the chosen sets and their interaction,
impacting convergence and final image quality, posing challenges when these sets don't
fully encapsulate the image structure.

Algorithm 2.1: Steps involved in the POCS algorithm.

Task: Find the value of x that minimises the objective function:

% = argmin||Pxl|, subject to ||F.x— yld<e
X

Inputs:
Y = F, X (Undersampled k — space data)
A = Thresholding parameter
P = Sparsifying transform
Output:
X = recovered image
POCS Algorithm:
Initialization: Xg =0,y =y,i=1
Iterations:
1. X; = F, () IFFT
2. X; = ¥~1{5;(¥X,)}; Shrinkage (Sp)in sparsifying domain
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3. Data Consistency Constraint
3a. Yi[j] = Fy(X))

2l ifylil=o0
3b. Yi[j] = {yl[i] otherwise

4. Increment i by 1 & repeat 1 — 3 until stopping criteria are met

Output:® = F,"1(y,)

2.7.3 Iterative Reweighted Least Square (IRLS)

IRLS explores using an overcomplete complex wavelet transform to obtain sparse
representations of natural images for efficient compression [23]. Conventional image
coders use an orthogonal DWT that cannot well model the heavy-tailed non-Gaussian
marginal distributions of wavelet coefficients. The authors propose modelling the
coefficients with a complex generalized Gaussian distribution with shape parameter p < 2
this non-Gaussian behaviour accurately. They estimate the distribution parameters from
training data. An overcomplete complex wavelet provides more flexibility to adapt to
image characteristics than an orthonormal DWT. For a given level of sparsity, the
overcomplete representation has lower modelling error resulting in lower reconstruction
distortion. The authors also present an efficient way to implement the overcomplete
transform using a tree-structured filter bank, requiring only 14% more computations than
an orthogonal DWT. The overcomplete complex wavelet representation concentrates more
signal energy in fewer large coefficients. Encoding these coefficients shows improved rate-
distortion performance compared to baseline DWT-based image coders.

Modified IRLS was also presented in [12], where it is applied to efficiently recover
compressively sampled MR images. Recently, enhanced versions of IRLS algorithms are
used in many applications related to MRI recovery from compressively sampled k-space
data [63-65].

The IRLS method excels in recovering sparse signals, particularly in MRI applications,
by iteratively updating estimates through weighted least squares solutions, promoting
accurate image reconstruction. However, its reliance on prior information about signal
sparsity and limitations in handling highly dynamic or non-sparse signals might affect its
accuracy, making its success heavily reliant on the appropriateness of assumed sparsity

levels and potentially limiting its adaptability to diverse MRI scenarios.
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2.7.4 Separable Surrogate Functionals

The Separable Surrogate Functionals (SSF) algorithm proposed by Daubechies et al. [66].
is an iterative shrinkage-based approach for solving inverse problems with objectives
containing smooth and non-smooth convex terms. It constructs an SSF that upper bounds
the objective using quadratic surrogates for the smooth terms and linear surrogates for the
non-smooth terms. Minimizing this separable surrogate reduces the actual objective. This
leads to an iterative algorithm with parallelable shrinkage-like updates applied to the non-
smooth terms, providing an efficient solver that leverages problem structure and is
guaranteed to converge. SSF has been used successfully to inverse problems like CS MRI
reconstruction. Its modified version for efficient recovery of CS MRI has also been
developed recently [25]. Recently, SSF is used for recovery of free undersampled breathing
Cardiac Cine MRI [67]. The SSF offers quick computation and the ability to incorporate
constraints effectively, enhancing reconstruction quality. Yet, its reliance on precise
modelling and parameter selection presents challenges, as inaccuracies in the surrogate
functional might lead to suboptimal results. The method's performance heavily relies on
the choice of the surrogate functional, impacting its ability to accurately capture image

features and potentially limiting its effectiveness in specific imaging scenarios.
2.7.5 Parallel Coordinate Descent (PCD)

The PCD algorithm by Michael Elad in 2007 is an iterative thresholding approach for
recovering sparse signals from incomplete information [68]. It decomposes the full
problem into smaller dimensional subproblems, each involving a single component or
block of components, that can be solved in parallel. Each subproblem applies a soft-
thresholding operator to the residual from the previous iteration to identify the support set.
The PCD algoritim leverages block sparsity and parallelization to achieve fast
convergence for large-scale sparse coding problems like compressed sensing and CS MRI
recovery. A parallel variant of coordinate descent, and provides rigorous theoretical bounds
on achievable parallelism. These bounds assist in optimizing the level of parallelism to
achieve efficient and effective parallel optimization [69]. Recently, PCD algorithm is
modified to be utilized for various applications of biomedical imaging [70, 71]. The PCD
offers faster convergence and efficient computation through parallelization, allowing

effective integration of constraints. However, its performance hinges on convergence rates
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and chosen parameters, potentially affecting the quality of reconstruction. In situations with
correlated features, PCD might encounter slower convergence, limiting its ability to
capture fine image details, which could pose challenges in certain MRI reconstruction
tasks.

2.7.6 Fast Iterative Shrinkage Thresholding Algorithm (FISTA)

The ISTA is an iterative optimization algorithm used for solving sparse signal recovery
and compressed sensing problems by Daubechies et al. [20]. ISTA targets to reconstruct a
sparse signal using an under-determined system of linear equations or observations. It
works by iteratively updating the signal estimate using a soft thresholding operator. At each
iteration, ISTA performs a gradient descent step followed by soft thresholding, where
coefficients less than the threshold are zeroed. This thresholding operation promotes
sparsity in the signal estimate. The algorithm iterates until convergence, and the final
estimate provides a sparse approximation of the original signal.

FISTA is an accelerated version of ISTA introduced by Beck and Teboulle [72]. FISTA
improves the convergence speed of ISTA by incorporating Nesterov’s acceleration
technique. It achieves this acceleration by introducing an additional momentum term in the
gradient descent step. This momentum term helps in making larger steps towards the
optimum solution. FISTA retains the same thresholding step as ISTA, but its convergence
rate is significantly improved. By exploiting the momentum term, FISTA achieves faster
convergence compared to ISTA, making it more efficient for large-scale sparse signal
recovery problems. While FISTA often converges faster compared to other algorithms, it
may face challenges in handling certain image structures or textures due to its reliance on
sparsity constraints. Additionally, FISTA's performance can be sensitive to parameter
tuning, where improper choices might lead to suboptimal reconstructions. Furthermore, in
scenarios with high noise levels or incomplete sampling, FISTA might struggle to achieve
accurate reconstructions, impacting its effectiveness in those specific conditions. Recently,
efficient variants of FISTA are employed for recovery of Compressively Sampled MRI
recovery in [73-76].

2.7.7 Greedy Algorithms

The greedy algorithms employ projections and least squares to compute the inner product

of a signal and the columns of matrix A. These algorithms, including MP [77], OMP [78],
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stOMP [79], ROMP [80], and CoSaMP [81], SRR [82], SPAMP [83] come in various
variants. The primary objective of greedy algorithms is to iteratively determine the signal
support £. Once Q is identified, the next step involves estimating the signal amplitudes by
the LS method. The amplitudes can be easily calculated by taking the pseudo inverse of
the submatrix Ag, which comprises only those columns associated with the support Q,
along with the measurements vector y in Eq. (2.21).

2= AaT(AaAQ") Y @21)
Greedy methods like .ROMP [80] and CoSaMP [81], offer advantages such as
computational simplicity and rapid convergence, making them appealing for real-time
applications. These methods efficiently handle sparse signal recovery and are relatively
straightforward to implement. However, their performance heavily relies on sparsity
assumptions, which might limit their effectiveness in scenarios with less sparse or non-
sparse signals. Additionally, their greedy nature might struggle to capture complex image
structures or textures, potentially leading to suboptimal reconstructions in such cases.
Moreover, in the presence of noise or incomplete measurements, these methods might face
challenges in achieving accurate image recovery.
Recently, various variants of Greedy Algorithms are proposed for the recovery of
biomedical images from their undersampled k-space data [84-86]. FPGA based
implementation of OMP for recovery of CS MRI is described in [87].

2.8 Fusion of CS MRI with Machine Learning

The deep leaming methods to improve the reconstruction of compressively sampled
MRI (CS MRI) images from undersampled data have gained significant attention in recent
years. CNN is a deep learning method, that has shown its potential in capturing intricate
image patterns and structures, thereby aiding in the recovery of near-perfect MRI.
Specifically, tailored deep learning architectures have been developed exclusively for CS
MRI reconstruction. These architectures are trained to map undersampled input data to a
fully-sampled MRI. By leveraging large datasets containing paired undersampled and fully
sampled MR images, these models strive to acquire knowledge about the underlying image
structures and enhance reconstruction accuracy [29-31].

Deep learning methods applied to CS MRI recovery frequently embrace an end-to-end
learning paradigm. In this paradigm, the network accepts the undersampled data as input
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and directly generates the fully sampled image as output, bypassing the need for
intermediate steps like iterative reconstruction. Adopting of an end-to-end learning
framework offers improved efficiency and reduced computational complexity [32].
Researchers have investigated diverse approaches for augmenting the available dataset
artificially to tackle insufficient training data. Various data augmentation techniques have
been explored, such as employing random transformations, extracting patches, and
simulating undersampling patterns. Additionally, regularization techniques, including the
integration of sparsity or total variation constraints, have been employed to enhance the
generalization capability and reconstruction quality of deep learning models [33, 34].
Researchers have investigated transfer learning as a strategy for compressively sampled
MRI (CS MRI) reconstruction to overcome the scarcity of labelled training data. In this
approach, models that have been pre-trained on extensive image datasets are fine-tuned
specifically for CS MRI reconstruction tasks. By initially training convolutional neural
network (CNN) models on vast natural image datasets like ImageNet, valuable general
image features are learned, which can be leveraged to enhance CS MRI reconstruction [35-
37, 76].
Leveraging deep learning for compressively sampled image recovery brings substantial
advancements, notably in vastly improved reconstruction accuracy and reduced sampling
requirements, expediting image acquisition. The models' adaptability and capacity for non-
linear mappings across varied imaging scenarios enhance robustness. However, challenges
arise from the substantial computational complexity in training, reliance on large and
diverse datasets, and the models’ lack of explanation, potentially impacting generalization,
and interpretability in image recovery. Overcoming issues like overfitting and

hyperparameter sensitivity is crucial to fully utilize deep learning's potential in this field.
2.9 Metrics for Performance Assessment

An objective analysis of algorithm performance is done using various image comparison
metrics. The performance of different algorithms can be objectively assessed by comparing
the original image X with the recovered image X using the following performance

parameters:

33



29.1 Structural Similarity Index (SSIM)

The SSIM, proposed by Zhou Wang et al. [56], addresses the limitation of MSE by
considering the quality differences between images with the same MSE. The SSIM index
exhibits a more comprehensive indication of image similarity. A higher SSIM index value
indicates a closer match between the two images, while a lower SSIM index value indicates
a poorer match for the recovered image. Eq. (2.22) depicts the mathematical equation of
SSIM.

(205, + €1) (2808, + C2)

SSIM =
(u2, + 3, + ) (82, + 63 + C)

(2.22)

Calculating (42, and u3,) is the mean, variance (6%,and 63), and covariance (85,4,

between actual and recovered images.
2.9.2 Artifact Power

Artifact Power (AP) provides a mathematical measurement of the accuracy of a recovered

image. It is calculated using the equation for square difference error, shown in Eq. (2.23).

Lower AP values indicate the recovered image is of higher quality.

p= Zi|X(i) - x(l)|z (2_23)
X1

2.9.3 Improved Signal-to-Noise Ratio (ISNR)

The ISNR serves as an additional metric for judging the worth of a reconstructed image
[88]. The ISNR is determined using Eq. (2.24), where higher ISNR values indicate superior
image recovery. This metric quantifies the improvement in the SNR achieved by the

reconstruction process. The ISNR is calculated as:

_ 2
ISNR = 10 - logyo {u_x_ulx_lﬂz} [dB] (2.24)
1% - x[l;

2.9.4 Peak Signal-to-Noise Ratio (PSNR)

PSNR is a popular metric to measure image fidelity and quality [89]. It is calculated as the
ratio of the maximum value of a pixel in the image and the mean squared error power

attained by the reconstructed image, as shown in Eq. (2.25). Higher PSNR values indicate
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better recovery of the original image, with a higher PSNR corresponding to a higher-quality

reconstructed image.

PSNR =20 - log;o{Max(X)} — 10 - logy %Z Z(X(i, ) = R@.j))> 2.25)
ey

2.9.5 Fitness

Fitness provides another metric to assess the quality of a recovered image. At each
iteration, fitness can be calculated using either [|F, X, — Y3 or 11Xy — X4 112. A lower
fitness value a higher efficiency of the recovered image. This is because fitness represents
the deviation between the recovered image and the original image - so minimized fitness

corresponds to an image that more closely matches the original.

2.9.6 Correlation

Correlation provides a statistical measurement of the relationship between the actual and
reconstructed images. It is calculated using equation (2.24), where p is the correlation,
cov(X, X) is the covariance between the original image X and recovered image X, and
ox and agy are the standard deviations of X and X respectively.

X,
cov(X,X) 2.26)
Ox0y%
Correlation ranges from —1 to 1. Here, 1 shows a perfectly positive correlation, meaning

Pxx =

the original and recovered images match exactly. A correlation approaching 1 indicates the
two images are very similar. Values near 0 denote little relationship, while -1 is a perfect
negative correlation, meaning the images are inverses of each other. Thus, a correlation

value closer to 1 signifies that the reconstructed image accurately reflects the actual image.
2.9.7 Mean Square Error (MSE)

The MSE is a widely used to quantify the difference between an original image f and a
recovered image g. As shown in Eq. (2.27), MSE is the calculated average of the squared
differences in pixel values between the two images. Lower MSE values indicate less
deviation between X and X. An MSE approaching zero signifies that the recovered image
Xisclosetoa perfect reconstruction of the original image X. Thus, MSE provides a simple

way to measure how well X matches X with smaller values denoting better recovery quality.
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2.9.8 Signal-to-Noise Ratio (SNR)

(2.27)

SNR is a widely used performance metric in various signal processing applications,
including sparse signal recovery. SNR measures the quality of a signal by quantifying the
ratio of signal power to noise power present in the signal. It provides a quantitative
assessment of how well the signal of interest can be distinguished from the background
noise.

In sparse signal recovery, SNR is commonly used to evaluate the accuracy and fidelity
of the reconstructed signal. A higher SNR indicates a higher level of signal power relative
to the noise power, suggesting a better-quality reconstruction. Conversely, a lower SNR
indicates a greater influence of noise and potential distortion in the reconstructed signal. It
is measured in decibels (dB) for easier interpretation. A higher SNR value indicates a
stronger, clearer signal with less noise interference, while a lower SNR value indicates a
weaker, noisier signal.

When comparing different algorithms or techniques for sparse signal recovery, the one
that yields a higher SNR is considered to provide a better reconstruction. SNR is a useful
metric for the performance evaluation of sparse signal recovery algorithms and comparing

their effectiveness in handling noise and reconstructing the original signal accurately.

IXoll3

SNR =10 'logm T
IR - Xoll;

[dB] (2.28)
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CHAPTER 3
SPARSE MRI RECOVERY BY SMOOTH

APPROXIMATIONS OF [, NORM

This chapter discusses the primary approach for reconstructing sparse signals, which
involves minimizing the l, -norm, aiming to find a suitable solution with the minimum
non-zero elements. However, due to the combinatorial nature of the problem, finding the
exact solution to ly-norm minimization is computationally challenging. To address this, the
literature proposes non-linear reconstruction techniques that utilise smoothed !;-norm
approximations. These approaches have been proven to be computationally efficient,
offering practical solutions for sparse signal reconstruction. A novel smooth approximation
of lo-norm is proposed and an analysis of five different versions of smoothed ly-norm
functions is also presented. The existing smoothed ly norm-based recovery algorithm is
then modified and applied to reconstruct compressively sampled magnetic resonance
images using five different approximation functions. To justify a comparison, the widths
of the approximation functions were cross-matched, keeping other adjustable parameters
of the algorithm identical. The performance of each smoothed lo-norm approximation
reconstructing compressively sampled 1D sparse signal and 2D MRI (Brain) against

different sampling rates have also been surveyed.
3.1 Introduction to Norms

The objective of sparse signal recovery algorithms (decoder) is to reconstruct a signal
x €R" or its corresponding s-sparse coefficients of vector z from a few numbers of m
incoherent random samples. These samples are obtained using a known sparse basis ¥ and
sensing matrix ®. The task at hand involves solving the following under-determined
system of linear Eq. (3.1).

y=Az @3.1)

Here A € R™™, y € R" is the s-sparse corresponding vector and m « n.
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The objective of sparse signal reconstruction is to estimate of a signal, denoted as z,
that possesses sparsity properties. This estimation is derived from measurements y and a
rectangular matrix A. Since matrix A contains fewer equations than unknowns, Eq. (3.1)
has infinitely many solutions. To address this, the problem can be approached as a
constraint optimization problem that promotes sparsity in the solution while satisfying the
constraints defined by Eq. (3.1). In general, this optimization is defined below:

) 2= argr'nin i1zll,, subject to |ly — Az|l; =0 (3.2)

where ||z|l,, defines the pt* norm of z and it may be calculated as

1/p
lzll, = (le[mv) G3)

When the !, norm ball is expanded to intersect with the feasible solution set, certain
characteristics emerge. Figure 3-1 depicts the [, norm ball for different values of p. For
p=07andp=1,the intersection points occur at the comers of the ball along the axes,
causing two out of three coordinate values to become zero. This leads to a sparse solution;
fewer coordinates have non-zero values. Conversely, for p = 1.5 and p = 2, the point of
intersection results in non-zero values for all three coordinates, yielding a non-sparse
solution. The choice of p determines the sparsity level of the solution, with smaller p values

promoting sparsity and larger p values favouring non-sparse solutions [21].

Figure 3-1: Intersection of [, ball and the set Ax = y solved with various values of p [21]
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3.1.1 [;-norm Based Recovery

Eq. (3.2) can be solved linearly by minimising the I, norm. This approach, commonly
referred to as /, norm minimisation leads to the solution dubbed as the LS solution that
minimises error energy. The approximated solution can be easily obtained by applying
Eq.(3.3).
(P) 2= AT(AAT)ly (3.4)
The utilization of the least square approach offers the advantage of yielding a unique
solution. However, the [, norm minimised solution disperses its energy across many
elements, resulting in a dense solution. Consequently, this approach is not suitable for
obtaining an s-sparse solution, where only a few elements should have non-zero values.
Figure 3-2 depicts the solution by ‘o’ of a sparse signal indicated by **’. The resulting least

square estimated solution failed to achieve the sparsity level in the desired signal.

Values of recoverd signal through Least Square Approximation

0.5¢ Py T ¥ —r

signal ampliude

0 100 200 . 300 . 400 500 600
Indices of nonzero entries

Figure 3-2: I, norm-based signal recovery failure to achieve desired sparse solution

3.1.2  ly-norm Based Recovery

The I, norm measures the energy or magnitude of error in a signal recovery, measuring the
signals’ overall strength. On the other hand, the /y norm is utilised to quantify the sparsity
of a signal. The I, norm, as defined by Eq. (3.5), counts the number of non-zero entries in
a vector, denoted as z. If the vector z is s-sparse, meaning it has only s non-zero entries,
then its [y norm will be equal to s.

The [y norm is a useful tool for assessing the sparsity level of a signal by counting the
number of non-zero elements. It indicates of how concentrated or spread out the signals’

non-zero entries are. If the signal has a small lo norm, it suggests a high sparsity level,
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indicating that only a few elements significantly contribute to the signal. Conversely, a
large [, norm indicates a less sparse signal, with a greater number of non-zero elements

contributing to its overall structure.
= li P
lizllo ;l_rgZh.l (3.5)
i
The I, norm minimum solution can be formulated as Py.
(P,) 2= argmin|lzlly, subjectto|ly—Azll;=0 (3.6)
z

The Iy norm can exhibit significant changes in the presence of noise, affecting its reliability
as a measure of sparsity. To address this issue, the equality constraint can be relaxed.
Consequently, the original problem defined as the P, problem can be reformulated as the
Py, problem, where € represents a small threshold or tolerance level. This relaxation allows
for a more robust and stable estimation of sparsity, accommodating the effects of noise in
the signal as defined by Eq. (3.7).

(P.) 2= argminlizllo, subject to |ly — Azll; < € G

To obtain the near-perfect solution for the constraint optimisation problem in Eq. 3.7),
it is necessary to explore the best s vectors in matrix A, which defines the observations
vector y. This implies that the optimal solution needs searching through (’s‘) possible basis
can occur, potentially resulting in a unique solution. However, this search is an NP-hard
problem (:), it is not possible practically to find a solution through the combinatorial
problem. Furthermore, the formulation presented in Eq. (3.7) is not convex, which poses
challenges for optimisation methods that involve calculating derivatives. Due to the non-
convex nature of the problem, gradient-based methods may struggle to find a globally
optimal solution, making the optimisation process difficult and potentially leading to
suboptimal results. Alternative approaches, such as greedy algorithms, heuristics, or
relaxations, are often employed to tackle the complexity and intractability of the problem,
offering more practical and efficient solutions.

An alternative approximation to the Iy norm involves replacing it with a smoothed

function [90]. Smoothed I, functions, such as the zero mean Gaussian exp(— :TT, ), provide

a means for gradient-based methods to be applied while offering immunity to noise by

adjusting the g? parameter of the Gaussian function. This smoothing approach allows for
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more tractable optimisation using gradient-based techniques and provides flexibility to
control the trade-off of sparsity and noise resilience by adjusting the smoothing parameter

a2,

3.1.3 l,-norm Based Recovery

Practical implementations of variants for the I, norm exist, with one notable example being
FOCUSS [91]. In FOCUSS, the lp norm replaces the I, norm, typically selecting a value
of p between 0 and 1 [24]. FOCUSS builds upon the concept of Iterative Reweighted Least
Squares (IRLS) [23], which utilises the l;-norm as a weighting mechanism. By
incorporating the [, norm in FOCUSS, the algorithm aims to promote sparsity and achieve

accurate signal reconstruction computationally efficiently.
3.1.4 ly-norm Based Recovery

The ly norm is defined by Eq. (3.6) and Eq. (3.7) in problems P, and Py ¢ can be relaxed
by minimising the I, norm used in Basis Pursuit [92].

(P\) 2= argminllz]|,, subject to |ly — Az|l, = 0 (3.8)
z

(P.c) 2= argminllzll,, subject to |ly - Azll, < « (3.9
z

Eq. (3.8) and Eq. (3.9) reformulate the problems presented in Eq. (3.6) and (3.7) as convex
optimisation problems, which are solved using linear programming and 2™-order cone
programming, respectively [93). Minimising the /; norm is often effective in finding the
sparsest solution, especially when the measurement matrix A has a small RIP constant and
the target signal is sparse [41] [94]. The optimisation based on the l; norm provides
robustness against noise and ensures stability. However, the high computational cost of [,

norm minimisation, it is not efficient for large-scale applications such as medical imaging.
3.2 Smooth ly-norm Literature Review

The Iy norm has an appealing mathematical property in sparse signal recovery, as it counts
the non-zero elements in a signal. However, optimising this norm is non-convex and
computationally challenging due to its combinatorial nature. To overcome these
limitations, the smoothed I, norm approximation algorithm was proposed [90]. This paper

modifies [90] and proposes weighted methods [95] and [96] replaces the Steepest Descent
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method with the Quasi-Newton method. SLO was further extended to handle complex
valued sparse signals [97]. This algorithm has significantly reduced the computational cost,
leading to widespread adoption in various sparse signal recovery applications.

The SLO algorithm has been successfully applied in image smoothing [98] [30], image
denoising [99], dictionary learning [100], estimating the direction of arrival in radar [1 01],
compressed image recovery [95], sparse channel estimation [102], hyperspectral image un-
mixing  [103], and various  image-restoration  techniques such as
de-mosaicking, super-resolution, and in-painting [104]. Moreover, SLO has demonstrated
its effectiveness in the recovery of compressed speech signals [105], and compressively
sampled functional MRI (FMRI) data [106]. Overall, SLO has emerged as a powerful tool
in sparse signal recovery, enabling efficient and accurate recovery of signals from

compressed or under-sampled measurements.
3.3 Sparse Signal Recovery by Smooth [, norm

Finding the sparsest solution of a signal by minimising the lo norm is a computationally
challenging NP-hard problem because of discontinuity in the norm. To address this, a
smoothed [, norm approximation was proposed in [90], where the original discontinuous
function is replaced with a continuous and smooth function. The optimal solution is then
obtained by finding the sparsest solution of this approximated function, which can be
interpreted as approximating the Kronecker delta function defined by Eq. (3.10). This
smoothing technique enables a more tractable optimisation problem while still aiming to
achieve sparsity in the solution.

1, ifz;=0
8(z) = {o, i)): z; #0

Correspondingly [, norm can be defined by Eq. (3.11).
lzllo = {1 - 8(z) @1

i=1

i=12,..,n (3.10)

The l norm is estimated by Delta Approximating (DA) smooth function, i.e., F;(2) =
Y™, f5(z;). This smooth approximation function must hold the characteristics defined by
Eq. 3.12).

. _ 1, if z; = 0
tm GO =ly iz %0 (3.12)
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From Eq. (3.11) and Eq. (3.12), the approximation of the lo norm can be defined by Eq.
(3.13)

lzllo = lim »"(1- f,(2)) = n - F, (2) (.13)
i=1

The value of o plays a significant role in sparse signal recovery. It represents the trade-off
between the smoothness and accuracy of the estimated solution. The smaller o results in a
more accurate but non-smooth approximate solution whereas the larger value of o leads to
a smoother but less accurate solution. The width of the DA function is controlled by
varying g. The larger o results in a wider DA function that gives a smoother but poor
estimation of the Kronecker Delta. The smaller o results in a smaller width that yields an

accurate Kronecker Delta but a less smooth approximation. This phenomenon is further

illustrated in
Figure 3-3
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Figure 3-3: Effect of o on delta approximation function width

Algorithm 3.1. 1D Sparse Signal Recovery by Smoothed I, Norm

Initialise:

L. Initialise zq by I, norm solution of Z,= ¢’(¢¢7)_1 y
2.  Set o asdecreasing sequence for o = [a,,0;,...,0y]
fori=12,..,pP:

1. Seta=og;
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2. Find Maxima for F,(x)in m iterations ofthe steepest ascent algorithm.
a. Initialise:z=2z;_,
b. Forj=12,..,Q
. T
i. SetAz= [xlf,l(xl). ...,x,lfcl(x,,)]
il. Set zez—pulAz
iii. Projectzbackasz«z— ¢T(¢¢7)_1(¢z -y
3. Setx, =X
Final solution: x = Xp

F,(Z) can be assumed as the measure of sparsity in an estimated solution, where the
larger value of F5(z) means a sparser solution and smaller values of F;(z) will resultina
denser solution. In terms of the optimisation problem defined by Eq. (3.7), the maxima of
F,(2) yields the sparsest and optimal solution.

For smaller values of g, Fy () will have lots of local maxima, therefore, an initially large value
of o is used to avoid local maxima, and then iteratively o is decreased to find the optimal solution
[90]. Steepest ascent or Quasi-Newton methods can be used to find the maxima of F5(z) for each
value of ¢. The smoothed l; norm algorithm for recovery of the sparse 1D signal is presented as:
Algorithm 3.1.

3.4 Delta Approximations Functions for Smooth [

The efficiency of five proposed state-of-the-art DA functions is compared for smoothed [y
norm. All the functions are symmetric functions that are f(x) = f(—x), here vector
x=xVi=123..,n The delta approximation functions are defined below:

The Gaussian Function (GF) defined by (11) [90]:

X;

2
]
fo(x;) = exp (— 'zﬁ) (3.14)
The Reciprocal Square Function (RSF) defined by (12) [107]
(3.15)

(x;) = _L_
) = T3 G2
Composite Trigonometric Function (CTF) defined by (13) in [96]

2
f>(x;) = sin (arctan (%—)) (3.16)

The Laplacian Kemel Function (LKF) is defined by (14) and the Laplacian kernel
approximation by Hyperbolic Cosine Function (HCF) is defined by (15) [106]
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x|

folx) = exp (_ T)
foc(x;) = cosh (Bs)~1/(Boc)

3.5 Sparse Signal Recovery Empirical Results and Discussion

(3.17)

(3.18)

The performance of all the delta approximation functions defined in Section 3.4 is

compared for their efficiency in recovering a random 1D sparse signal. To justify fair

comparison for all the proposed DA functions, the variance (width) of functions is matched

against each value of . Figure 3-4 shows the width matching results with different values
of g for all the functions defined by Eq. (3.14) to Eq. (3.18). The values of o are empirically

fixed for all the smoothed I, norm approximations. The resultant values of ¢ from this

experiment are presented in Table 3-1. This will justify the fair comparison for all

approximation functions.
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Figure 3-4: Delta Approximation Functions Width Matching
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Table 3-1: Value of o for matching of width for DA Functions

Functions Values of o

GF 1 05 |02 |01 0.05 |0.02 |0.01
RSF 045712 |5 7 20 30 50
CTF 12 (07 [025 [o0.12 [0.07 [0.03 |0.02
LKF 08 |03 (0.1 0.06 |0.025 |0.01 | 0.008
HCF 1 03 {0.1 0.06 |0.025 |0.01 |0.008
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To test the performance of each delta approximation function, we generated a random 1D
sparse signal that has a length of n = 256, total measurements taken during the process of
CS are m = 100. The step size for the steepest-descent algorithm (SDA) is set as p = 2
and the total number of internal iterations for the SDA is Q = 3. The external iterations
were set to P = 7 with different values of g, as shown in Table 3-1.

In Figure 3-5, the performance of each DA function in terms of MSE is calculated for
all values of o in Table 3-1.
1t can be concluded that GF has achieved the least MSE therefore, it has the best recovery
of a sparse signal. The RSF has achieved poor recovery with the highest MSE. The MSE
performance of each DA function can be seen in Figure 3-5. Similarly, the SNR of each
smoothed !, approximation is evaluated in Figure 3-6. Based on the SNR of the recovered
sparse signal it is visible that GF has shown the best performance with the highest SNR
and the RSF has the lowest SNR, resulting in a poor recovery. The rest of the function’s
performance can be viewed from Figure 3-6.

The important parameter for the recovering a sparse signal is its computational
efficiency. The recovery time depends on the length of the signal to be recovered. The
efficiency of each smoothed l, approximation function has been measured by varying the
length of a sparse signal in Figure 3-7. The length of a signal is varied from 128 to 450
elements and the number of measurements m is taken as half of the length of the signal n
and the corresponding sparsity level k is set to half of the measurements. The
computational time was calculated by MATLAB tic/toc commands using MATLAB
R2014a on a Core i5, 2.4 GHz Processor with 6GB RAM. The computational time HCF
takes is the highest and thus it is computationally inefficient. The RSF is found to be a
computationally efficient function, while the rest of the function’s computational time is
very close to each other.

The performance of the algorithm for recovering sparse signals can be evaluated based on
its capability to recover a sparse signal at varying sparsity levels. The sparser signal will
require a lesser number of measurements to successfully recover it. Figure 3-8 shows the
MSE in the recovery of a sparse signal with fixed length n = 256 elements and a fixed
number of measurements m = 100. The sparsity k of a signal is varied from 1 to 35. The

Gaussian approximation function is found the most efficient with the least MSE and the
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CTF performed very close to each other. The DA functions RSF and LKF have shown
comparatively poor results, while CTF performance lies in the middle. F igure 3-9 shows
the SNR achieved by each smoothed [, norm function. The GF performed the best in terms
of SNR of the recovered signal with the highest SNR and CTF performed the second best.
RSF and CTF have shown comparatively poor results.

Figure 3-10 depicts the normalized successful recovery achieved by each delta
function, with the success threshold set at 10~3. Each algorithm runs for 30 iterations and
successes are counted at each sparsity level and then divided by the number of iterations.
In this context, successful recovery refers to the accurate reconstruction or approximation
of the original signal using the respective delta function. The figure showcases the
effectiveness of the different delta functions in achieving successful signal recovery,
demonstrating their ability to accurately represent and capture the essential characteristics

of the signal.
3.6 CS MRI Recovery by Smooth I, norm

The smoothed I, norm (SLO) algorithm has been modified to achieve computationally
efficient recovery of Compressively Sampled MRI. The fully sampled human brain MR
image X is compressed by the non-uniform random undersampling mask (M) in the Fourier
domain represented by F,, the resultant undersampled image is a non-sparse image with a
noise-like artefacts. To sparsify the image, it is transformed in the Wavelet domain. Data
consistency is maintained in the Fourier domain (Fy) for faster convergence to the optimal
solution. The proposed modified smoothed Iy norm algorithm is described in Algorithm

3.2. Figure 2 shows the graphical representation of Algorithm 3.2.
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Algorithm 3.2. Modified SLO for recovery of CS MRI

Initialise:

1. Initialise Xo = F31(Y), where Y is undersampled k-space data
2. Set o as decreasing sequence for ¢ = [063,02, ..., ol
fori=12,..,P:

3. Seto=g0,
4.  Find the Maxima for F,(x) in m iterations of SDA.
a. Initialise: X = X;_1
b. Forj=12,..0Q
i. xsparse = (X)
ii. Set Axsparse = xzparse * fa’,(xsparse)
iii. Set Xsparse = Xsparse — K AX gparse, Where is a step size
iv. X="1Xsparse)
v. Data consistency: X e Fz'(Fu(X)=(1-— M)+Y),
where M represents the undersampling mask.
5. SetX =X
Final solution: X = Xp.

3.7 CS MRI Recovery Experimental Results and Discussion

The MR image is a fully sampled k-space, as shown in Figure 3-12 (a). The fully sampled
MR image was undersampled by acquiring a compression ratio of 25% in k-space using a
non-uniform random sampling mask, as shown in Figure 3-12 (b). The random
undersampled image has noise-like artefacts that are depicted in Figure 3-12 (). As the
scanned MR image is not sparse in the spatial domain, we have transformed it to its sparse
representation in the Wavelet domain shown in Figure 3-12 (d).

The MR image was recovered by all the smoothed [, norm approximation functions
defined in Eq. (3.14) to Eq. (3.18). All DA functions successfully recovered the MR image
as shown in Figure 3-13. However, LKF was found to be the most accurate among all the
functions whereas, RSF showed relatively poor MR image recovery from compressively

sampled MRIL.
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The performance metrics used to authenticate the results are SNR, ISNR, PSNR [89], and
SSIM [56].

The LKF achieves the best ISNR, while RSF showed the least efficiency with the minimum
ISNR. GF and CTF also improved ISNR as shown in Figure 3-14. In terms of SNR
performance metrics, LKF and CTF achieved the best SNR as shown in Figure 3-13. LKF
accomplished the best PSNR, whereas GF also performed well in terms of PSNR. The
PSNR achieved by each DA function is shown in Figure 3-16. The SSIM is another
important parameter for the accuracy of the recovered images. LKF achieved the best SSIM
index. The GF also attained better SSIM compared to the rest of the DA functions as shown
in Figure 3-17.

The performance of each smoothed [, approximation function was evaluated by varying
the sparsity level of MRI from 5% samples to 90% samples, as shown in Table 3-2. The
performance measures such as PSNR, ISNR, SSIM, SNR, and MSE are evaluated against
different sampling ratios. The Laplacian kernel delta approximation function has

performed the best among all the functions under varying sampling rates.

(a)Original Image (b)Sampling Mask

(c)Undersampled Image (d)Wavelet Domain

Figure 3-12: Image under-sampling mask and its domains
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(a)Original Image (b)GF Recovered Image (c)RSF Recovered Image

(d)CTF Recovered Image (e)LKF Recovered Image (HCF Recovered Image

Figure 3-13: Reconstructed Images from different DA functions.

o vs ISNR
28 T T T L] L] L L] T

—&—GF

--&— RSF

~—%—CTF

LKF

—+— HCF

0 1 2 3 4 5 6 7 8 9 10
herations

Figure 3-14: ISNR variation with different values of o
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Figure 3-16: PSNR verses &

56



ovs SSIM

lterations

Figure 3-17: Structural Similarity Index improvement with o
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Table 3-2: Effects of MRI recovery on varying sampling ratio

Sampling % | 5% 10% |20% [30% |40% |50% |60% |70% |30% 90%
GF 13 67 1608 | 2000 | 2684 |3213 |49.18 |43.02 | 4714 5130 | 5714
RSF | 11.96 1246 | 1682 | 2303 | 2650 |38.04 | 3286 | 3638 40.18 | 4560
SNR | CTF | 14.18 1705 | 2099 | 2749 | 3268 |48.87 | 4289 | 4682 5092 | 5608
LKF | 13.81 1635 | 2076 |27.51 | 3282 | 4914 | 43.16 47.09 | 5127 | 5724
HCF | 13.27 1555 | 1861 |25.06 | 2573 | 4115 | 3543 3930 | 4355 | 49.74
GF | 7435 7703 | 8017 | 8605 |9040 | 1052 | 9971 | 103 4 | 1069 | 1118
RSF | 71.54 711 | 7569 | 8265 | 86.14 | 9649 | 9182 9493 | 9844 | 1035
PSNR | CTF | 7301 7637 | 7991 | 86.04 | 9055 | 1034 | 9883 101.9 | 105.0 | 1095
LKF | 7459 7737 | 8081 | 8675 | 9115 | 1051 | 99.94 103.3 | 1068 | 1116
HCF | 7353 7569 | 7758 | 8360 | 8633 | 9679 | 9248 9536 | 98.54 | 103.2
GF 1641 1938 | 2277 | 2884 | 3333 | 4853 | 4285 | 4665 5041 | 5552
RSF | 14.10 1460 | 1882 | 2588 | 2926 |40.11 | 3522 3848 | 42.16 | 47.55
ISNR | CTF | 15.62 1919 | 2286 |2902 | 3356 |47.18 | 4219 4548 | 48.86 | 53.59
LKF | 1665 1972 | 2341 2948 |3402 | 4842 | 4304 4658 | 5026 | 5543
HCF | 1571 1826 |20.59 |2671 |29.65 | 4036 | 35.79 3884 | 4221 | 4723
GF | 2093 | 109e-3 | 503e4 | 121e4 | 044c4 131e-6 | 491e-6 | 203e-6 | 852e-7 | 260e-7
RSF | 149¢3 | 65c4 | 2394 | 1194 |6%5 |3 696 | 144e-5 | 586 | 205e-6 | 390e-7
MSE | CTF | 2283 | 112e-3 | 512e4 | 126e-4 | 4 3e.5 | 1796 | 57e6 | 265e-6 | 121e-6 | 406e-7
LKF | 170e-3 | 848e4 | 333c4 | 817e-5 | 264e-5 | 698e-7 2796 | 1.13¢-6 | 411e-7 | 8998
HCF | 181e3 | 952e4 | 409¢-4 | 1.19¢4 | 5.70e5 | 3 66e-6 133e-5 | 572e-6 | 213e-6 | 430e-7
GF | 06652 {08074 | 0.8858 | 0.9670 | 0.9853 09991 | 09973 | 0.9986 | 0.9994 | 09998
RSF | 05396 | 05099 | 07459 | 09400 | 09694 0.9954 | 0.9889 | 0.9938 | 09968 | 0.9989
SSIM | CTF | 05261 | 07203 | 0.8236 | 09509 09806 | 0.9987 | 0.9966 | 0.9982 | 0.9991 | 0.9997
LKF | 06823 | 08246 | 09019 | 0.9722 | 0.9876 09990 | 09974 | 09986 | 0.9994 | 0.9998
HCF | 0.5916 | 07215 | 0.7921 | 09513 | 0.9699 09955 | 0.9901 | 09942 | 09968 | 0.9988
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3.8 Proposed Smooth l; norm approximation

A novel smoothed approx. of the Iy norm, known for its discrete and discontinuous nature.
The proposed approximation provides a smooth and differentiable alternative to the
original function defined by Eq. (3.10). Building upon this approximation, a
comprehensive algorithm is developed for sparse signal recovery. By replacing the
discontinuous function with the smooth and differentiable approximation, the algorithm

enables more efficient and effective gradient-based recovery of sparse signals.

9y(z) = (3.19)

1
7 2
1+ (ynz)
The parameter y in the proposed function is important in controlling the width of the
function. In the extreme case, the function defined in Eq. (3.19)can be utilised as an inverse
of the indicator function, offering a useful mathematical tool for handling sparse signal

recovery.

1 z=0
lim ,(5) = {; 220 (3.20)

y-se0
To use g,,(z,-) approx. lo-norm, we consider two properties:
Property-I:

lim gy(z) = 1~ q(z) 3.21)
Where g(x;) is given by (3).
Property-II: Define G, (2) as:

6@ =) 9,(z) 6.22)
=
Then,
Iim G, (z) = ) (1-q(z))
v Y ; g (3.23)
= n—|zllo
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Proposed Function behaviour with Gamma
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Figure 3-18: G, (2) Behavior for different values of ¥

Thus, ]|z|lo can be approximated as:

lzlly = n.— lim G, (2) (3.24)
Eq. (3.24) introduces the parameter Y, which serves as a balance between the
smoothness and accuracy of the estimated solution. By adjusting the value of y, one can
control the compromise between the two factors. Larger values of y lead to a more accurate
approximation, capturing finer details of the solution. Conversely, smaller values of y
result in a smoother approximation, sacrificing some precision but providing a more
generalized representation of the problem defined in Eq. (3.7). Therefore, the choice of ¥

depends on certain requirements and priorities of the problem at hand.
The minimisation problem based on the l, norm in Eq. (3.7) can be reformulated as
a maximization problem of the function G, particularly for larger values of y. However,
when v is large, G, may exhibit non-smooth characteristics, leading to multiple local

maxima. In contrast, for smaller values of y, G, becomes smoother, minimising the
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likelihood of becoming trapped in the local maxima. Thus, the main idea is to initiate the
optimisation process with a small y value to side-step local maxima to increase y gradually
to achieve an optimal sparse solution problem in Eq. (3.7). This approach enables a balance
between accuracy and sparsity while mitigating the risk of getting stuck in suboptimal
solutions.

Figure 3-18 illustrates the function G, (.) behaviour across different values of y.Asy
increases, the function progressively approaches a better approximation of the ly norm.
Particularly for smaller y, the behaviour of the G,(.) appears to be smooth, indicating a
smoother approximation. The G, (.) can be interpreted as a measure of the level of sparsity
in the solution, especially for larger values of y. Maximizing Gy (.) yields the sparsest
solution, providing a valuable metric for evaluating the sparsity of the solution.

The development of the sparse signal recovery algorithm depends on the estimate
provided by G,(.), the steepest ascent algorithm is employed to maximize the function
Gy (.). In the iteration of the SDA, the solution is updated using the gradient, which enables
the algorithm to move towards the maximum of the function. This iterative process allows
for the refinement of the solution, iteratively improving its sparsity based on the
maximization of G, (.).

By utilising the steepest ascent algorithm and the gradient-based updates, the proposed
sparse signal reconstruction algorithm effectively explores the solution space to achieve
higher levels of sparsity. The algorithm capitalizes on the insights provided by the
behaviour of the function Gy (x) and leverages the gradient information to guide the
iterative optimisation process, enabling the recovery of sparse signals from limited and
noisy observations.

Zpy1 < Zi + 1, VG, (2;) (3.25)
The proposed sparse signal reconstruction algorithm incorporates gradient descent
optimisation with an adaptive step size u,, which decreases with each iteration to ensure
stability and convergence. For larger values of y, a small step size is suggested to
accommodate the fluctuating nature of the function Gy and maintain stability. The approx.
solution is further improved using back-projection, enhancing the accuracy of the

reconstructed signal. Algorithm 3.3 is described below, illustrating the iterative process
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that combines gradient descent, step size adaptation, and back projection to achieve
accurate and sparse signal recovery from limited and noisy measurements.

Algorithm 3.2: Proposed Smoothed [, Norm Approximation

Initialisation:
1. [Initialise z by l, approximate solution of ®z = y.

2. Set sequence of increasing ¥, [V1. Y2 - ,Ya]

fork=12,..,N:
1. Sety =7V

2. Maximise G, using M iterations of th steepest ascent algorithm.
a. Initialise:z = Q-4
b. Fori=12,...M

i. SetAz= [zwn(zl), ....z,,gh(z,)]r
ii. Set zez—pulz
iii. Project x back as z = z — ®T(®®7) (P2 —Y)
3. Setqpy=x
Final solution: z = qy.

3.9 Proposed Algorithms Experimental Results on k-Sparse Signal

The efficiency of the proposed method is empirically validated through MATLAB. In
the experiments, a 1-D sparse signal is sampled using a random Gaussian matrixX ®pmxn,
where m = 400 are observations and n = 1000 is a k-sparse signal length that needs to
be recovered. To ensure consistency, every column of the matrix @ is normalized to unity.
The measurements are taken based on a noisy model y = Ax + w, here w denotes white
Gaussian noise (WGN).

The proposed algorithm incorporates an inner loop using gradient descent, which is
executed three times (N = 3) for each value of y. This iterative process allows for fine-
tuning and refinement of the reconstructed signal by iteratively updating the solution. The
algorithm's robustness and effectiveness are evaluated under different conditions and
scenarios by systematically varying y and conducting multiple iterations

The experimental validation using MATLAB simulations provides quantitative
insights into the algorithm's performance and demonstrates its ability to recover sparse

signals from noisy observations accurately. The choice of specific parameters ensures a
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comprehensive evaluation of the algorithm's performance and robustness. The proficiency
of the proposed method is examined by MSE and SNR, where the proposed algorithm
recovers the sparse signal more accurately than the base SL0 algorithm defined by [90].

Table 3-3: Values of MSE and SNR at Different Iterations

Iteration Proposed Algorithm SLO Algorithms
' 4 MSE SNR MSE SNR
1 0.45 2.75e—-2 | 6.70 3.75e - 2 2.88
2 0.90 1.26e—2 | 10.10 2.19e - 2 5.21
3 1.80 5.50e—3 | 13.70 4.28e -3 12.29
4 3.60 144e—-3 | 19.53 1.67e -3 16.37
5 7.20 343e—4 | 25.74 6.18e — 4 20.71
6 144 7.66e —5 | 32.26 191e -4 25.80
7 28.8 1.87e—5 | 38.38 1.87e - 4 25.89
8 57.6 478 —5 | 43.38 1.72e - 4 26.15
9 115.2 148e—6 | 48.61 1.53e -4 27.97
10 2304 842e-7 | 5152 1.59e - 4 28.80
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Figure 3-19: Ground Truth “*" and Reconstructed Signal “o0”
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Figure 3-20: SNR versus iterations

The proposed algorithm is compared with the baseline SLO algorithm, as presented in
shown in experimental results. The results in Table-1 highlight that the novel function
proposed in this section outperforms the SLO algorithm by achieving significantly
improved SNR values. The proposed method achieves SNR values of up to 51.52 dB, while
the SLO algorithm achieves only 28.80 dB. Moreover, the MSE of the estimated signal by
the proposed method lies in the vicinity of zero, indicating a highly accurate reconstruction.
Figure 3-19 visually demonstrates the reconstructed signal alongside the actual signal.
The non-zero elements of the actual sparse signal are marked with ‘*’, while the non-zero
values of the estimated signal are marked with ‘o’. The perfect alignment of these markers
indicates the nearly perfect reconstruction achieved by the proposed algorithm, as the non-
zero values of the recovered signal perfectly overlap with those of the original signal.
Furthermore, Figure 3-20 illustrates the enhancement in SNR by proposed algorithms.
This comparison allows for a visual assessment of the performance improvement over the
iterations. The figure shows the clear advantage of the proposed algorithm, which
consistently exhibits superior SNR improvement compared to the conventional SLO

algorithm.



Collectively, the experimental results provide strong evidence of the superior performance
of the proposed method by reconstruction accuracy and consistency throughout the
iterations. The proposed algorithm offers significant advancements in sparse signal
recovery, achieving high-quality reconstructions with improved fidelity compared to

existing approaches.
3.10 Empirical Results for CS MRI Recovery

The proposed smooth approximation of the I norm (PSLO0) technique is applied to recover
of MRI from its undersampled k-space data. Drawing a comparison between CS encoding
and noisy images, compressed sensing recovery fundamentally transforms into an image-
denoising task. Estimating the noise, done using the maximum a posteriori (MAP)
estimator, is the first step in recovering the original image. A 2-D compressively sampled
genuine human brain MR picture with dimensions of 256 x 256 is recovered using the
suggested approach. The original human brain MR image was obtained utilising a 1.5 Tesla
GE-HDxt-MRI scanner using Gradient Echo (GE) sequence and 8-channel head coils. This
scan was fully sampled. At St. Mary’s Hospital in London, England. The MR image is
compressively extracted in this instance by acquiring only 25% of the samples using a
random mask.

Figure 3-21 presents the recovery of CS MRI data under-sampled using a variable
density random sampling scheme. In Figure 3-21 (a), the recovery results of the MRI using
different algorithms, namely ZF, LR, SSF, IRLS, POCS, MIRLS, and the proposed method
(PSLOL), are displayed. Subjectively, the image recovered by the proposed method exhibits
better visual quality compared to the other recovered images, indicating the effectiveness
of the proposed algorithm.

Figure 3-21 (b) illustrates the sampling pattern utilised by each algorithm. It visually
represents how the different algorithms capture the under-sampled data. The sampling
pattern reflects the spatial distribution of acquired measurements, which is crucial for
accurate recovery.

Furthermore, Figure 3-21 (c) focuses on the magnified difference between the original
and recovered images. The Zero Filling approach performs poorly, as the difference
between the original and recovered images is more pronounced. On the other hand, the SSF
and IRLS algorithms exhibit higher error levels than the PSLO. The error in the proposed
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method is considerably lower than that of the other methods, indicating its superiority in
terms of achieving more accurate and faithful image recovery.

Figure 3-22 provides a quantitative comparison of the proposed algorithm PSLO
performance with PSO, POCS, and MIRLS algorithms when applied to under-sampled MR
data. The under-sampling process is conducted using a variable-density random sampling
pattern.

Figure 3-22 (a) depicts the improvement in ISNR achieved by the proposed algorithm
is depicted. It showcases the superiority of the proposed algorithm in terms of achieving
higher ISNR values compared to other methods. The higher SNR values indicate better
quality and fidelity in the recovered MRL

Figure 3-22 (b) illustrates the reduction in SSIM achieved by the PSLO. A higher SSIM
value indicates a closer match between the recovered MRI and the actual image. The
significant improvement in SSIM achieved by the PSLO indicates its ability to achieve
more accurate and reliable results compared to the other algorithms.

Overall, these comparisons highlight the quantitative advantages of the proposed
algorithm PSLO over other methods, as evidenced by the improvement in SSIM and ISNR.
These results further validate the effectiveness of the proposed algorithm for recovering

under-sampled MR data.
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Figure 3-21: MRI Recovery with PSLO and Other Algorithms
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3.11 Conclusions

In conclusion, the precise reconstruction of sparse signals from limited observations poses
significant computational challenges. This chapter has presented a novel technique to
address this issue and reconstruct a sparse signal by the reduced number of observations.
The proposed algorithm has been compared to the conventional SLO algorithm in terms of
MSE and SNR. The empirical findings have demonstrated that the proposed technique
surpasses existing smooth approx. methods of the lo norm in terms of accuracy and
performance. This signifies the efficacy of the proposed algorithm in recovering sparse
signals from limited measurements.

This chapter has also presented a comprehensive analysis of various smoothed [, norm
approximation functions found in the literature, ensuring fair comparison by matching the
width of each function. The performance of these functions was evaluated for 1D sparse
signal recovery, considering metrics, such as SNR and MSE. Among the tested functions,
the Gaussian Function (GF) demonstrated the best efficiency in terms of signal recovery
accuracy, while the Reciprocal Smoothed Function (RSF) exhibited the least
computational cost.

Furthermore, the smoothed ; norm approximations were applied to the reconstruction
of compressively sampled MRI images. Performance measures including SNR, Improved
ISNR, PSNR, and SSIM were utilised to evaluate the efficiency of the reconstructed
images. The empirical results revealed that the Laplacian kernel function yielded the most
accurate reconstruction of CS 2D MRIL The accuracy of each smoothed [, norm
approximation was assessed across varying levels of MRI compression, and it was
concluded that the Laplacian function is the most efficient choice for the recovery of CS
MRL
These findings highlight the significance of selecting appropriate smoothed [, norm
approximation functions for different signal recovery scenarios. The Gaussian Function
proved to be highly effective in 1D sparse signal recovery, while the Laplacian kernel
function demonstrated superior performance in compressively sampled MRI
reconstruction. The outcomes of this study contribute to the advancement of sparse signal
recovery techniques, providing valuable insights into the selection and application of

smoothed I, norm approximation functions in practical signal processing applications.
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CHAPTER 4
SPARSE RECOVERY USING HYPERBOLIC TANGENT

BASED SMOOTH L1 NORM AND SHRINKAGE

In this chapter, a novel reconstruction algorithm utilizing the hyperbolic tangent function
(tanh) to reconstruct signals and images within the Compressed Sensing (CS) framework.
The proposed approach involves approximating the /; norm and soft thresholding using the
tanh. This chapter also presented criteria for optimising tuning parameters to achieve near-
perfect results. The proposed [, norm approx. error bounds have been examined. To assess
the proficiency of the proposed technique, we have used datasets consisting of 1-D k-sparse
signals, CS MR, and cardiac cine MRI (CC-MRI), which is crucial for evaluating cardiac
vascular function. CC-MRI provides valuable information, such as ejection fraction and
cardiac output, but its slow acquisition process hinders its efficiency. Therefore, there is a
need to expedite the scanning methods to exploit the advantages of CC-MRI fully.
Empirical findings using efficiency evaluation measures i.e., including SSIM, PSNR, and
RMSE demonstrate that the suégested CS recovery method based on the tanh outperforms
traditional IST recovery methods, providing significantly improved performance in

reconstructing undersampled signals and images.
4.1 Introduction

In the CS framework, the under-determined system of linear equations may have infinitely
many solutions. However, the objective is to find the sparsest possible solution, which
involves minimising the [, norm. Unfortunately, finding an I, norm solution is a non-
convex and NP-hard optimisation problem, given the infinitely many possible solutions.
To address this, the I; norm has been established as a suitable approximation for the I,
norm, transforming the non-convex problem into a convex one[94]. However, the non-
differentiability of the /; norm and the inability to apply gradient-based minimisation
algorithms necessitate smooth approximations for the [; norm. Iterative shrinkage

algorithms have proven to be efficient in numerically minimising the I,-regularised least
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squares optimisation problem [23], but they require inducing sparsity in the solutions to
fulfil the requirements of CS reconstruction. CS is a sampling technique, that enables the
retrieval of a signal using only limited observations, provided that the signal exhibits
sparsity in a specific domain and the observations are incoherent with that domain.
However, many existing reconstruction methods for CS signals have high computational
costs and rely on non-linear techniques. These limitations have motivated the need for more
efficient and computationally feasible approaches to signal reconstruction in CS [2, 5, 40].
A novel recovery method is introduced that employs the tanh to reconstruct undersampled
signals and images within the CS framework.

CC-MRI is a valuable tool for assessing cardiac-vascular disease by providing detailed
information about cardiac wall thickness, motion, and functional parameters like ejection
fraction and cardiac output [108-111]. However, the traditional scanning methods of CC-
MRI are time-consuming and require patients to hold their breath multiple times during the
scan, leading to patient discomfort and limited scan efficiency.

Researchers are exploring techniques to reduce scanning time in CC-MRI to address
these challenges. One approach is to use fast pulse sequences that allow for quicker image
acquisition. Another approach is to reduce the sampling frequency during data acquisition,
which can be achieved through CS techniques. CS benefits from the inherent sparsity of
cardiac cine MRI data in the temporal dimension. By exploiting the fact that only a few
significant changes occur between consecutive frames of a cardiac cycle, CS enables
accurate reconstruction of the entire sequence from a smaller number of acquired samples
[14, 112]. This reduction in the number of samples leads to shorter acquisition times and
increased patient comfort. Researchers in medical imaging, particularly in the field of MRI,
are actively working on improving the speed and efficiency of CS-based reconstruction
methods. These methods involve non-linear reconstruction algorithms that can effectively
exploit the sparsity of the cardiac cine MRI data. Additionally, incoherent undersampling
techniques, such as random sampling, produce noise-like aliasing artefacts during the
reconstruction process, further enhancing the efficiency of CS in cardiac cine MRI [113,
114]. Continual advancements in CS techniques hold great promise for improving the
speed, efficiency, and diagnostic capabilities of cardiac cine MRI. By leveraging the

principles of sparsity, non-linear reconstruction, and incoherent undersampling,
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researchers aim to develop more efficient CS algorithms to accelerate image acquisition,
reduce patient burden, and improve the overall quality of cardiac cine MRI examinations.

In MRI, sparsity can be achieved by finding a suitable sparsifying transform for its
sparse representation, while incoherent sampling is fulfilled by using various
undersampling patterns such as radial lines or variable density sampling [14]. Non-linear
recovery methods based on I;-norm regularisation have commonly solved the problem by
finding the sparse estimated solutions to the LS. While the [;-norm employs a simple
solution, it dispenses the error energy across all solutions, resulting in non-sparse solutions
that do not fit well within the CS framework. On the other hand, l;-norm regularisation
with 1 < p <o tends to penalise only the largest parameters, leading to less sparse solutions.
Thus, /;-norm regularisation is preferred as it promotes sparsity, making it suitable for the
CS framework [2, 5, 40].

However, the ; norm penalty is non-differentiable, making it challenging to apply
efficient optimisation methods that rely on derivatives. To address this, different methods
have been suggested to solve the [; norm penalty problem. The IST algorithm has been
successfully used for efficient image reconstruction from under-sampled data in the CS
framework [15, 115). Another approach is the iterative hard thresholding-based recovery
method, although under-performed as compared to soft thresholding-based methods.
Several algorithms, such as random filters for CS [116], Bregman algorithms for [117],
and weighted [, norm reconstruction method [I 18], have been suggested to address the CS
reconstruction problem.

Recently, a smooth ;-norm regularisation CS recovery method using a tanh has
emerged. This technique has shown promise in reconstructing under-sampled MR images
from fewer samples, enabling fast scanning with no compromise on spatial resolution. It
has been demonstrated that the tanh performs better in signal reconstruction compared to
(soft and hard) thresholding and Garrote thresholding methods [119, 120]. Researchers
have also explored the implementation of wavelet thresholding using tanh, which has been
found to provide more precise recovery results than IST techniques [121-123].

These developments in approximating the {;-norm using the tanh have opened new
possibilities for improved signal recovery in under-sampled MR imaging. Experimental

evidence supports the effectiveness of this approach in achieving better reconstruction
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compared to traditional thresholding methods. By leveraging the advantages of the tanh,
researchers are advancing the field of CS image restoration for MR imaging.

This chapter explores the application of CS to reduce MRI data acquisition time by
leveraging the sparsity in MRI signals in k-space. A novel CS reconstruction method is
suggested that employs tanh, which provides a more efficient approximation of the ;-
norm and enables accurate recovery of compressively sampled sparse signals, MR images,
and cardiac cine MRI. The proposed algorithm utilises the steepest descent algorithm for
objective function minimisation and incorporates the IST technique based on the tanh,
inspired by the MAP noise predictor. The efficient criteria for tuning the parameters are
also suggested. Empirical results are evaluated through simulations involving the recovery
of random 1-D sparse signal, 2-D MRI, and clinical CC-MRI. Quantitative performance
measures, including MSE, RMSE, SNR, PSNR, ISNR, correlation, SSIM and, fitness was
employed to demonstrate the superiority of our suggested algorithm over existing

reconstruction methods.
4.2 Proposed Smooth l;-norm approximation by Hyperbolic Tangent

Reconstructing an undersampled signal using CS is an optimisation problem that
minimises the [, norm in the solution. This penalty is sparsity-promoting mechanism in the
solution, so only a few elements of the solution are nonzero. This is useful for
reconstructing naturally sparse signals, such as MRI images on an appropriate basis.
Consider a signal represented as a vector x € R™. Let y € C™ limited observations of

the signal. The CS reconstruction can be expressed as follows:
1
fx)=5 lly — @¥Hx||Z + Allxlly @“4.1)

Here, ¢ defines the sampling matrix for signal x, while ¥ is the sparsifying domain. The
parameter A in Eq. (4.1) crucial for the trade-off between fidelity and sparsity. The
effectiveness of our algorithm depends on choosing the right threshold level. Depending
on the signal size and its noise variance, we used the fixed value expression. [115].

A= a2 (n) 42)
The noise standard variance is denoted by ,,, and sparse signal length is denoted by n. The
tanh has several properties, including non-convex, odd function, differentiable, bounded

function, and monotonically increasing. You can also adjust the curve of the function at its
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point of origin to any desired value [123]. This is why we propose to use the tanh as an

approximation for the [;-norm in Eq. (4.1). The approximation is defined as follows:

lizll; = Z zjtanh(yz;) 4.3)

i=1

As the tanh serves as a differentiable function to approx. l-norm, we select a relatively
high value for the parameter y to bring it closer to the l1-norm, as depicted in Figure 4-1.
In Figure 4-1 I, norm approximation using the tanh with varying values of y =
(1,4,6,and 10). As y increases, the approximation becomes closer to the true l; norm
but also becomes less smooth. The proposed technique offers a trade-off between
smoothness and accuracy, allowing flexibility in choosing the desired level of
approximation.

This choice allows us to leverage the advantages of smoothness and differentiability.

Consequently, Eq. (4.1) can be expressed as follows:

f@) =3lly-o¥si3 +15" ztanhiyz @)
2 i=1

To accommodate the steepest descent algorithm, vector differentiation is not applicable.
Therefore, it becomes necessary to rewrite it in element form, as shown in Eq. (4.4),
compute the partial derivatives. By introducing the notation, A = ®¥H, we can express

the element-wise equation as follows:
1
f(2)= EZ(‘" —¥)i(Az — y); + Azjtanh(yz;) (4.5)
i

By introducing the notation A = WX, we can formulate the gradient of Eq. (4.4) in the
form of the element as follows. This formulation allows us to calculate the derivatives

regarding each element individually:

a
g :) = ) AyjAyz— Z Yy +1 (tanh(yz,) + Z,y(l - tanhz(yz,))) 4.6)

ij

So, the proposed steepest descent algorithm scheme can be defined as for its It* update is:

af(2)
aZl

The SDA is employed to find a solution using Eq. (4.7). This equation provides a

(4z), = -n 4.7

framework for iteratively updating the solution by taking steps toward the steepest descent.
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The algorithm aims to minimise the loss function by adjusting the solution according to the

gradient information provided by Eq. 4.7).
4.3 Smooth [, norm Error Bounds

In this section, bounds for error are examined for smooth [, norm, as described by
Eq. (4.2) [124]. The I, norm is approximated using two fundamental rules, which serve as
the foundation for its effectiveness are defined below:

1. |z| = (2); + (—2)4, where (), = max [z, 0] is the plus function.
2. The above-mentioned plus function is redefined by the smooth approximation as:

1
@+ =p@y) =3lz+z tanh(yz)] (4.8)
1 - 19 19 . 19 1Y 13 19 19 19 K
08 ™. — Ly Nom £
" ----- ,Y=1 .
.\ L4 -l
0.8 : A Y= r'. )
Y 1‘ ---------- = '1 ’
o 0 7 -\\ . Y - " .
c \ v Y=1° ]
.% \ 4 vj /
\ J
E 08 \ "‘v 4 I"
3 AN " ._l’ /
a 05 \ ) 4 / 7
a \ ? o7 ¢
L] \ ] o /
\ o, Fd s
g 04} \ % o /! il
N R\ P 4
€ N P 57 J
- 03} R LN £ K §
| A" _-'.’ ’
N \ e g
0.2f RY il f y
N £ 'I'
\‘ ; 'l
0.1 N Py .
4 - [ d [ d [ d

0 I d L
4 08 08 04 02 0 02 04 06 08 1

Figure 4-1: l; norm approximation using the tanh with varying values of y =
(1,4, 6,and 10).

From Eq. (4.8), we can write a smooth approximation of lynorm:

lzll, =@+ (24 =pzy)+p(-27) 4.9)
= ;[1 + tanh(yz)] — ; [1 + tanh(—yz]]
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= ;tanh(yz) + ;tanh(yz)

= z tanh(yz)
= |lzll,

In contrast to the /; norm, the proposed approximation allows for applying unconstrained
optimisation techniques, as it is twice differentiable. The first-order gradient of the
proposed I; norm can be calculated using Eq. (10), while the second-order gradient can be
obtained using Eq. (11). This differentiability property enables the use of gradient-base
optimisation algorithms to efficiently solve the optimisation problem associated with the
proposed approximation.

V(llzll) = tanh(yz) — yz (tanh(yz)? — 1) (4.10)

P2(llzll) = 2y(yz tanh(yz) — 1)(tanh(yz)? — 1) 4.11)
The value of y approaches infinity and the difference between llzll, and [Iz]}, becomes
negligible. In this study, we introduce a straightforward lemma to establish error
boundaries for ||z||, and ||z[l, . This lemma provides a useful framework for understanding
the relationship between the two norms and quantifying the approximation error as y
increases.
Lemma 1: The smooth function proposed for the I; norm, f(z) = z tanh(yz), satisfies
both the necessary and sufficient convexity condition within the interval z € [-1,1]. This
can be observed through its monotonically non-decreasing derivative, f'(2), as defined by
Eq. (4.10), and its nonnegative second derivative, f(z), as defined by Eq. (4.11), for
0 <y < 1. These properties ensure that the proposed function is convex and suitable for
approximating the [; norm.

Lemma 2: 1,-norm based approx. error is bound for any z € R™ and y>0
1
[zll; - lizlt, | < > (4.12)

Proof:

Let’s consider two cases, the first case for z > 0,
z
p(z,y) - (2), = 5(1 + tanh(yz)) - z (4.13)

z z
=3 tanh(yz) — 2
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=3 (tanh(yz) — 1)

To determine the upper bound for Eq. (13), we can find the highest value of tanh(yz). It

is well-known that the highest tanh(yz) value is 1. Therefore, this is expressed as follows:
er* —e™"*

ma:iima tanh (yz) = m =1 (4.14)

By Eq. (4.14), The relationship between y and z can be readily derived as follows:

. 4.1
zZ= —27 ( .15)
By inserting the value of z from Eq. (4.15) in Eq. (4.14)
1
p(zy)— (@), = yo (4.16)
Forz <0,
0 <p(z,v)— (2 =p(z,v) <p(0,7) 4.17)
= ; (tanh(yz)—-1) < 0
1
"%

Here p is the monotonically increasing. So, from Eq. (4.17) and Eq. (18), p(z,v) will

dominate (2),., so

1
Ip(z,v) — (@)l < yo (4.18)
From Eq. (4.12), we can insert Izll = @)+ + (—2)+
[zll, = lzlly| = lpCz¥) +p(=27) - (@ + (=2l (4.19)
< Ip(z,y) — @4l + Ip(=2,¥) — (—2).|
1,11
'y Ty

Let’s define |[2]| 1) as a smooth estimate of [;norm function ||2||; for a vector z € R" as

n
el = . ladly

n
lIzlley) — H2lls| < 2n— il (4.20)

Hence, we can conclude that:
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Umlizll 1.y = lzll; vz € R" (4.21)
Let L: R™ - R by any continuous loss function that is defined as f(z) = L(z) + llzll; and
1(2) = L(2) + lIzll1,y). If we define, Z = araminf(z) and z, = ergpunf (z). By definition
of f and f, and from Eq. (20), it can be concluded that.
lim f,(2) = f(z) vz € R" (4.22)
Using the fact f(2) < f(2)Vz. In particular f(2) < f(Z,), then:
f@sflz) =Lz)+|zl (4.23)
= L(z) + 5, + 1z, ,, - 171,
= (L(z-v) + "z_v"(l_,,)) + ("2_7"1 - "z_v"(w))

= &)+ (I, - I12,.,,)
This implies that £(2) — £,(Z,) = — 5 from Eq. (21), similarly (2) - £,(Z,) < 75 » hence
proved that ,ggrg K@) = f(@).
This can be elaborated further:
IF@&)-f@|  =1f(5)-F@-5(5) + £ ()l (429)
s If(z_r) - fr(z_r)l + Iﬂr(z_r) - f(f)l

Hence it proved that #112’ f(2y) = f(2). Furthermore, the L is strictly convex, it’s proved

that: lim z, =2Z.

Yoo

Figure 4-2 Illustration of the error bounds of the I, norm approximation for z > 0. The
green line represents the mathematically proven upper boundary as defined in Eq. (4.16),
while the dotted red line represents the real error between tanh and the discontinuous
I, norm. The error is highest near zero and diminishes as Y approaches infinity.

In Figure 4-3, the I; norm estimated bounds for error while z < 0 the green line depicts
the higher boundary as shown in Eq. (4.24), while, the dotted red line illustrates the original
difference between the suggested I; norm approx. and actual I, norm. The error is highest

near zero and diminishes as y — oo,
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Figure 4-2: Illustration of the bound for the error of the [, norm approx. for z > 0.
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Figure 4-3: l; norm estimation bounds for the error whilez < 0.
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4.4 The MAP Estimation for Proposed Thresholding Mechanism

The traditional approach of minimising the I;-norm incorporates intrinsic soft thresholding
[115]. However, the I;-norm estimate using the tanh, thresholding process is not
performed intrinsically. In [125], an alternative hard thresholding operator is introduced,

which can be defined as follows:

_ [z lz| > B
Sp(2) = {O otherwise (4.25)

In our approach, a novel thresholding function is employed that utilises the tanh.
Consequently, the parameter P is important in managing the Gaussian distribution of the
under-sampling noise [123]. The determination of the optimal value for B relies on the
characteristics of the undersampling noise. Hence, we utilise the data-driven thresholding
parameter B, as indicated by references [115, 126].

o2
B = 0_: (4.26)

Assuming o, represents the standard deviation of the sparse signal and o, represents
the standard deviation of the random noise due to undersampling.

To improve efficiency in various situations, various thresholding operators are
presented by researchers [127-129]. The fundamental concept behind these operators is to
map values near the origin to zero, while values farther apart from the origin are gradually
reduced to zero.,

The primary objective of the denoising technique is to obtain an estimation of the actual
image based on a set of perturbed measurements, as illustrated in Eq. (4.27).

y=z+v 4.27)
Here, y € R" represents the image with noise, z € R is the actual signal and v is zero
mean Gaussian noise with pdf described below:

_ 1 ll6l13
py(0) = > exp( 203) (4.28)

no2

By taking the Wavelet transform of Eq. (4.27), we get:
g=s+v (4.29)
Here, we have q = Wy representing the sparsity-promoting transform for the noisy image,

and s = Wz representing the sparsifying domain for the actual image. Since the WT fulfils
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the linearity property, the zero-mean Gaussian noise v, in WT, will remain unchanged. The

MAP predictor of the random signal s is given by the following equation:

§ = maxp(slq) (4.30)
Applying Bayes' rule allows us to disregard p(q) since it is independent of s. Therefore,
the MAP predictor can be expressed as follows:

§ = max p(qls)ps(s) 431)
The problem in Eq. (4.31) can be simplified further by taking p(qls) = p,(q — 5):

8 = mgx[p,,(q — 8)1ps(s) (4.32)

= max[inp,(q - s) + Inpy(s)]
[ 1 llg - sn%)} ]
=max|in exp| ————|t + Inps(s)
s | {,/ 2no? g ( 203 Ps
1 _llg—shi

= max Lln {( m)" exp( —20’2—)} +In p,(s)]

- mx |12 1)

Where f(s) = Inps(s). By differentiating the argument of Eq. (4.32) regarding s and
setting the obtained value as 0, the MAP predictor can be estimated for the Wavelet
contents for the noise-free signal by:

(LG‘TS_) +f(E)=0, 1<i<n 33)

The PDF of biomedical images exhibits a higher concentration of values around the centre
compared to a Gaussian distribution. As a result, the Laplacian distribution is more

effective in estimating the distribution of Wavelet domain coefficients.

1 V2
ps(s) = V2o, exp (a—v Isll) 4.34)
gives f'(8;) = —gsig (8). Solving Eq. (4.34) results in
qi = & + V2 sig(§) (4.35)
Let # = V202 and solve Eq. (4.35) for 8; by formulating the nonlinear shrinkage:
§; = Sg(q) = max{lql - B.0} .sig(q) (4.36)

Eq. (4.36) can be further explained as:
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~ [sgn(q)(lql - B) Iql > B
Sp(a) = {0 otherwise (4.37)

This chapter presents a thresholding approach that is estimated by tanh. The tanh
offers the advantage of the adjustable slope near the origin and is a function that is bounded,
making it a preferable choice as an estimation for soft thresholding (ST). Consequently,

the mathematical description of tanh-based ST is represented as:

otherwise
The equation above includes a thresholding parameter, B, and a parameter a that controls

the shape of the tanh. When a is closer to zero, Eq. (4.38) approximates the behaviour of
a soft thresholding function. As a approaches infinity, Eq. (4.38) transforms into a hard
thresholding (HT) function, as depicted in Figure 4-4. The proposed algorithm initially
employs an ST function that gradually transitions to an HT at higher iterations. This
approach yields improved recovery in compared to traditional ST techniques [123]. In
Figure 4-4 tanh-based thresholding, different values of a, specifically @ = (2,4, 8,16)
are chosen. The choice of @ controls the trajectory of the ST curves. The suggested

technique allows flexibility to change the slope as per the need of the certain application.
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Figure 4-4: Different curves for various values of @
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4.5 Proposed Algorithms

The proposed algorithm is described as Algorithm 4.1.
Algorithm 4.1: Recovery of k-sparse signal by proposed algorithm

Input:
Sensing matrix F,, measurement vector yeC™, parameters'y, Aand B
Initialise: A k — sparse vector & € R™ as x,
fori=1.2,..,P:

Step No 1 (Sparse Transformation): z; = ¥x,;
Step No 2 (Gradient Computation): Evaluate Vf(z,) by Eq.(4.6)
Step No 3 (Solution Update): Calculate the update using Eq.(4.7).
Step No 4 (Shrinkage): Shrink by Eq.(4.38) i.e., 2,1 = Sg(Zi41)
Step No 5 (Repeat): If the stopping criterion is met (stop), else go to step 1

Final solution: & = ¥H2,.

4.6 Experimental Results and Discussions

To assess the effectiveness of our suggested method, experiments on three different types
of data: 1-D k-sparse signals, CS MRI, and CC-MRI. In evaluating the algorithm's
performance in the field of CC-MRI, we utilised the MRXCAT simulator. Quantitative and
qualitative assessments were carried out to gauge the performance of our technique.

For quantitative evaluation, we employed several performance measures in this
research article. First, we visually depicted the under-sampling artefacts to observe the
improvement achieved by our algorithm. Additionally, we utilised the SSIM index to
measure the similarity between the recovered images and the ground truth. The PSNR and
RMSE were also calculated to provide further quantitative insights into the quality of the
recovered images. By employing this comprehensive set of performance measures, we
could thoroughly evaluate and demonstrate the efficacy of our proposed technique in

various scenarios.
4.6.1 1-D Sparse Signal Recovery

The suggested method is employed to recovers a 1-D k-sparse signal (z). In this
experiment, a random k-sparse signal of lengthn = 512 is generated in MATLAB, where

non-zero elements are randomly generated with K = 85. To compressively sample the z,
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a random measurement matrix A € R?56*512 js ysed, resulting in only m = 256
measurements.

Figure 4-5 illustrates the achieved fitness of IST techniques and the suggested method.
The proposed method demonstrates a fast decrease in loss function in comparison with
IST.

Figure 4-6 showcases the impact of sparsity on reconstruction success by both the IST
method and the suggested method. Remarkably, the suggested method outperforms the soft
thresholding technique even at higher sparsity levels.

In Figure 4-7, the effectiveness of the proposed method in accurately recovering the
sparse signal is evident, while the soft thresholding technique struggles to achieve the same
level of accuracy.

To further evaluate the accuracy, metrics like SNR, MSE, and correlation were used,
as presented in Table 4-1. The suggested method performs more in all these measures than
the IST method. In terms of computation time, the proposed algorithm takes 1.57 seconds,
slightly longer than the conventional IST method, which takes 1.34 seconds.

40 T - T T ' T T n.

------- Tanh
35 —— SotThresh |
k

40 45 50

Figure 4-5: Fitness comparison of proposed and soft thresholding technique.
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Figure 4-6: The effects of the sparsity of the proposed and soft thresholding technique.

Table 4-1: Accuracy of recovery of 1-D sparse signal by the proposed method is evident

Performance Metrics | Soft Thresholding Proposed Algorithm
MSE 1.00x10 -2 1.61x10—4
Fitness 0.8664 0.0224
SNR 12.6712 30.6259
Correlation 0.9787 0.9995
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Figure 4-7: The sparse signal recovered using the proposed algorithm and the soft
thresholding method.

4.6.2 2-D CS MRI Recovery

Random undersampling during CS MRI results in noise-like artefacts in the sparsifying
domain. When dealing with k-space encoded biomedical imaging, such as MRI, the linear
methods i.e., ZF or LR produces artefacts like Gaussian noise. The noise generated by sub-
sampling depends on the under-sampling masks [99].

To reconstruct an image, CS MRI reconstruction transforms into an image noise
removal problem, drawing a comparison between CS and noisy images. Initially,
recovering the actual image involves estimating the noise, accomplished through the MAP
estimation. The suggested method is reconstructing a 2-D CS real human brain MRI with
dimensions 256 x 256. The original MRI was acquired through fully sampled k-space
data. 1.5 Tesla GE — HDxt — MRI scanner at St. Mary’s Hospital, London, England. The
MRI is undersampled by retaining only 25% of the k-space data.

85



1 L] T
0.9 B f"' T -
l‘, - - - -
‘f , -
s} & 7
gl Qs
s N
E .y
201} it .
g |
[ N
@ ggf:) .
.”
i
0.5f .
------- Proposed
— - — Soft Thresholding
0_4 1 I
0 5 10 15

lterations

Figure 4-8: The SSIM between the soft-thresholding and proposed algorithm.

Figure 4-8 depicts the proficiency of the suggested algorithm in terms of SSIM. The
suggested technique exhibits significantly better SSIM in comparison to the IST technique.

Figure 4-9 displays the achieved PSNR by the suggested technique. The proposed
method outperforms the soft thresholding method in terms of PSNR.

Figure 4-10 depicts the subjective analysis of MRI: (a) the original 2D MRI of the
human brain, (b) the recovered 2D MRI using conventional IST, (c) the 2D Brain MRI
reconstructed from the under-sampled k-space data, (d) the difference between the ground
truth image and the IST recovery, and (¢) the error between the proposed recovery method
image and the actual image. To enhance visibility, the scale of the difference is amplified
by a factor of 1000.

Table 4-2 compares the performance of the conventional IST method and the suggested
technique across various CR, ranging from 5% to 50% sub-sampling of the 2-D MRI. The
results demonstrate that the suggested technique consistently outperforms the conventional

soft thresholding method on performance metrics like SSIM and PSNR at different CR.
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Table 4-3 comprehensively compares the performance between the proposed algorithm and
IST in various performance metrics. After 15 iterations of IST and the suggested technique,
the results demonstrate that the proposed method consistently achieves superior outcomes
compared to IST.

In summary, both the visual representations in Figure 4-8 and Figure 4-9, along with
the quantitative analysis in Table 4-2: The performance of both algorithms against varying
CR., confirms that the proposed method outperforms the soft thresholding technique in

terms of various performance measures.

PSNR
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Figure 4-9: The correlation between the proposed tanh and the soft thresholding
algorithm.
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Table 4-2: The performance of both algorithms against varying CR.

Soft Thresholding | Proposed Algorithm
Compression Ratio
SSIM PSNR SSIM PSNR
5% 0.6843 | 759056 | 0.7048 | 76.1609
10% 0.7786 | 78.9320 | 0.8175 79.6580
20% 0.8994 | 82.0316 | 0.8472 | 83.7628
30% 0.9407 | 87.3535 | 0.9790 | 91.1620
40% 0.9724 |91.2540 | 0.9920 96.1281
50% 0.9884 | 95.4245 | 0.9955 99.5496

(a) Original Image (b) Soft Threshold (¢) Proposed

(a) Difference Soft Threshold (b) Difference Proposed

Figure 4-10: Depicts subjective analysis of MRI of recovered images



Table 4-3: The performance of various sparsity transforms is compared.

Performance Metrics | Soft Thresholding | Proposed Algorithm
MSE 138x10-4 0.73x10 -4
PSNR 86.7195 89.4497
ISNR 28.3832 31.1135
SSIM 0.9346 0.9711
SNR 26.0298 28.7491
Correlation 0.9980 0.9989

4.6.3 CS Cardiac Cine MRI Recovery

The suggested method is used for MRXCAT, which generates undersampled CC-MRI data
acquired during breath-holding. The MRXCAT parameters were set as follows: recovery
image size of 256 x 256 with 24 cardiac phases, and an image resolution of
1 x 1 X 1mm>. The acquisition parameters for MRXCAT include a T, of 3ms and T
of 1.5ms. The proficiency of the suggested technique is evaluated using five different
acceleration rates: R = (2,4,8,12, 20).

For in vivo data, the values for different parameters are recovered matrix with
dimension 256 X 256, 25 cardiac phases, and FOV of 375mm. The TE is set to 1 ms, Ty
is set to 3 ms, and the flip angle is 600. The proposed method is evaluated using the same
five acceleration rates: R = (2,4, 8,12, 20).

The recovered MR images are compared to actual CC-MRI, depicted in Figure 4-11,
here CC-MRIs are presented: (a) Short axis CC-MRI with an original diastolic frame, (b)
The sparse representation CC-MRI diastolic frame using the temporal FFT (¥), (c)
Another sparsifying domain for CC-MR image (diastolic frame) by TV transform (V). All
image reconstructions are performed using the proposed algorithm in MATLAB.
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(a) ®) (e

Figure 4-11: Recovered cardiac cine MRI with different sparsifying transforms

To assess the efficacy of the suggested method, the MRXCAT simulator software is
used. This software is specifically developed for evaluating the performance of recovery
algorithms in CC-MRI. Using MRXCAT, the proficiency of our suggested method is
examined both objectively and subjectively.

This chapter employed various performance measures, including visual depictions of
under-sampling artefacts, SSIM, PSNR, and RMSE.

For qualitative evaluation, we experimentally presented the reconstructed diastolic and
systolic images using different (R = 2,4, 8,12, 20). Additionally, the performance of the
suggested technique was quantitatively assessed using PSNR, RMSE, and SSIM. An
assessment was also conducted between the proposed and traditional IST methods.

In Figure 4-11, the performance of various sparsity transforms is compared based on
the MSE in the sparse representation. Specifically, it is observed that the temporal FFT
outperforms other sparsity transforms in the context of cardiac cine MRI.

Figure 4-12 illustrates the efficiency of the suggested method at different R in
comparison to the IST method. The 1% column displays the diastolic images of CC-MRI at
different R, while the second column represents the systolic frames of cine MRI. The upper
row shows the findings of the IST method, whereas the lower row showcases the estimated
images of the proposed method. In Figure 4-12 (a) A comparison between the suggested
technique (lower row) and IST (upper row) at an R of 2. (b) The proficiency of the
suggested technique at an R of 4, with an arrow indicating the presence of artefacts. (c)
Results were obtained from both algorithms at an acceleration rate of 8, where the artefacts
due to sub-sampling are more apparent in the IST results, as highlighted by an arrow. (d)
Results were obtained when the R is set at 12, with both techniques exhibiting artefacts.

However, these artefacts are more prominent in the IST results, as indicated by an arrow.
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(e) A comparison between the degraded image quality of the IST and the proposed method,
particularly highlighting the dominance of sub-sampling artefacts in the traditional IST

results when the acceleration rate R is set to 20.

Table 4-4: Performance analysis of various sparsifying transform

Acceleration Rate| Spatial Domain | Total Variation Temporal FFT
2 0.1096 0.1123 0.0728
4 0.2321 0.1849 0.0848
8 0.2810 0.2438 0.0948
12 0.3533 0.2684 0.1043
20 0.4756 0.2982 0.1150

The performance of various sparsity transforms is compared based on the MSE in the
sparse representation. Specifically, it is observed that the temporal FFT outperforms other
sparsity transforms in the context of cardiac cine MRI. The results show the squared errors
averaged between the recovered and actual elements in sparse representation. The
suggested technique, which utilises the tanh based approx. achieves notable accuracy in
the FFT compared to other sparse representations. Specifically, at higher R, the proposed
technique based on the tangent hyperbolic function demonstrates significantly improved
recovery of compressed sensing (CS) images.

To quantitatively evaluate the recovered images, the Structural Similarity Index
(SSIM) was used to compare the suggested method with the IST algorithm.
Figure 4-13 demonstrates the efficiency of the suggested method using the SSIM index,
showing a gradual degradation in SSIM as the acceleration rate increases compared to the
IST algorithm, while the undersampled images exhibit noticeably poor quality.

At low R, the proficiency of the suggested method, and IST are comparable. However,
as the R increases, it is apparent that IST-based recovery deteriorates more than the
proposed method.

Figure 4-14 shows the iterations required for image recovery in both methods. The
suggested technique achieves the solution in just 6 epochs, whereas, the IST method took
10 epochs to achieve near perfect solution. The findings here demonstrate the proficiency

of the suggested method using data-consistency constraints.
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To quantitatively assess the efficiency of our recovery algorithm, the recovery using
PSNR at different R = (2,4, 8,12, 20) is examined. A comparison is made between our
proposed technique and the traditional IST technique.

Figure 4-15 illustrates the efficiency of our proposed technique at various acceleration
rates compared to the IST algorithm. The red line represents the results obtained from our
method at different acceleration rates and the blue line depicts the PSNR values for the soft
thresholding method and the undersampled data.

Performance analysis of the suggested technique and the IST method is presented in
Figure 4-16 to examine the efficiency of the recovered frames by vivo dataset. The
comparison is demonstrated across five different R = (2,4,8,12,and 20). However, at
higher R, the degrading artefacts in the IST reconstructed frames become further
pronounced relative to the suggested method, as shown by arrows. In part (a) of the figure,
the suggested method in comparison to IST atan R = 2, with the suggested method shown
in the bottom row and IST in the top row. Part (b) displays the efficiency of the proposed
method at an R of 4, with an arrow indicating the artefacts. Part (c) illustrates results at
R = 8, where the artefacts because of sub-sampling gradually become pronounced in the
IST findings, as indicated by an arrow. Part (d) shows the findings at R = 12, showing
artefacts present in both techniques, but more prominent in IST as indicated by an arrow.
Part (¢) demonstrates the considerably low-quality image of IST when compared to the
suggested method, particularly emphasizing the dominance of sub-sampling artefacts in
the conventional IST results when the R = 20.
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Table 4-5: The performance comparison of conventional IST with proposed in terms of
RMSE.

Accelerat | Undersampled | Iterative
Proposed Method
ion Rates | image Soft Thresholding
2 0.081 0.0365 0.0353
4 0.1218 0.0472 0.0372
Simulated
8 0.1498 0.0702 0.0419
Data
12 0.1583 0.0775 0.0485
20 0.1782 0.0941 0.0606
2 0.085 0.0099 0.0056
4 0.106 0.0241 0.0172
In vivo Data 8 0.1170 0.0495 0.0206
12 0.120 0.0567 0.0338
20 0.1398 0.0585 0.0551
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Figure 4-16: In real vivo data simulation results
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4.7 Conclusion

This chapter proposed an innovative CS recovery algorithm for k-sparse signals and MRL
The suggested method has been tested in various scenarios, including 1-D k-sparse signals,
2-D MR, and CC-MRI. The proposed technique introduces a tanh-based smooth estimate
of the non-differentiable l;-norm and the shrinkage method, resulting in improved
performance compared to the conventional IST algorithm. Quantitative analysis based on
several metrics demonstrates the superiority of our method in recovering sparse signals and
MR images. Qualitative observations further highlight significant improvements,
particularly at higher R, in the proposed method for CC-MRL.
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CHAPTER §
CS MRI RECOVERY USING COMBINED SMOOTH [,

AND l; RECOVERY

In this chapter, a novel method is proposed that combines smooth approximations of the [,
norm and [, norm (SLO1). The suggested approach introduces differentiable functions as
smooth approximations, enabling the use of methods to solve lp norm and [, norm
minimisation problems that involve gradient evaluations. To evaluate the proficiency of
the SLOI algorithm, it is tested in recovering a 1-D signal and 2D MR image. The gradient
ascent algorithm is deployed to reconstruct the k-sparse signal using the proposed
algorithm. The performance of the SLO1 is evaluated against smooth approximations of the
lo norm and !; norm (SLO1) in terms of metrics, such as SNR and MSE. The comparisons
reveal that the proposed algorithm outperforms the smooth I, norm approximation (SL0)
and smooth [, norm approximation (SL1) in terms of efficiency and accuracy in recovering
compressively sampled sparse signals. Overall, the research demonstrates that the smooth
approximations of the [, norm and I, norm yields a more efficient and effective method
for recovering compressively sampled sparse signals, as evidenced by the comparative

analysis using SNR and MSE metrics.

5.1 Introduction

The sampling of acquired data in the CS framework is straightforward, but recovering a
signal from CS measurements poses computational challenges due to its ill-posed nature.
There can be infinitely many solutions to choose from. The CS framework has a special
interest in the sparsest possible solution. Various techniques are developed for the
reconstruction of sparse signals from undersampled data. The Basis Pursuit (BP) algorithm
proposed in [92], replaces the non-convex l-norm with its convex approximation, the I,
norm. This substitution results in an analytically solvable convex optimisation problem,
but the {; norm gradient can’t be evaluated origin. Consequently, the solutions that involve

derivatives in loss function are not applicable to minimise l;-norm problems [123].
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Furthermore, BP can be ineffective for large datasets such as biomedical images, because
of computational cost.

The IST methods have emerged as efficient computational techniques for recovering
CS images to address these challenges. These algorithms employ matrix multiplications
and shrinkage operations and minimise mixed l, norms-based minimisation problems,
making them suitable for large signals and images. By leveraging IST algorithms, we can
overcome the limitations associated with the non-differentiability of the l;-norm and the
computational complexity of the BP algorithm, enabling more efficient recovery of sparse
signals in CS applications.

In the decoding process of compressive sensing (CS), the objective is to efficiently
reconstruct a k-sparse signal x from the dictionary matrix @ and observations vector y.
This task of accurately recovering a CS k-sparse signal using limited measurements poses
achallenge in CS decoding due to computational cost [4, 78]. The size of the sensing matrix
® is such that M & N, resulting in an under-determined system. This means that there are
fewer equations than unknowns, leading to infinitely many potential solutions. Solving this
under-determined system of linear equations alone will not yield the desired sparse
solution, which is crucial in k-sparse signal reconstruction.

The optimisation problem defined in Eq. (5.1) must be solved to achieve sparsity in the
estimated recovered signal. This optimisation problem involves finding the sparsest
solution by promoting sparsity through the [;-norm regularisation term. By solving this
optimisation problem, we can obtain a solution that satisfies the under-determined system
of linear equations and exhibits sparsity, thus fulfilling the goal of sparse signal recovery
in CS.

miniznize lizllo subjectto ®Pz=Yy G.1)

In the context of signal sparsity, the [o-norm of a signal z, denoted as ||z||, represents

the count of non-zero components in the signal. Mathematically, it can be defined as the
number of non-zero elements in the vector z = {zj};‘ﬂ. To incorporate this concept of
sparsity into the optimisation problem, we can rewrite the [p-norm in terms of an indicator
function. The indicator function, denoted as r(i), is a mathematical construct that evaluates

whether a certain condition is met. In this case, it determines whether the i®* element of

the signal z is non-zero. By using the indicator function, the ly-norm can be expressed as
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the sum of the indicator function. By summing up the values of the indicator function for
all elements of the signal, we obtain the count of non-zero components, representing the
lo-norm of the signal. This formulation allows us to quantify the sparsity of a signal in
terms of the number of non-zero elements, providing a mathematical representation that

guides the optimisation process towards finding the sparsest solution.

r() = {(1, : : 8 (52)
Nzllo = Z r(z) (5.3)
=

The ly norm, as defined in Eq. (5.3), is a non-differentiable function. This means that it
lacks a defined derivative at certain points, making it challenging to use gradient-based
optimisation techniques.

Moreover, the Iy norm, as defined in Eq. (5.3), violates the homogeneity property of a
norm. The homogeneity property states that scaling a vector by a constant should
proportionally scale its norm. However, the l; norm does not adhere to this property since
total elements that are non-zero are counted, rather than considering their magnitudes.

Due to these properties, finding the solution to the ly-norm optimisation problem
becomes a non-tractable problem, meaning that it is computationally infeasible to solve
directly. This non-tractability poses significant challenges when attempting to recover
sparse signals or solving under-determined systems of equations in compressive sensing
and sparse signal recovery applications.

The optimisation problem defined by equation (2) can be seen as an [,-norm
minimisation problem [2]. In this problem, the goal is to minimise the [,-norm of the signal
subject to the constraint imposed by the sensing matrix ® and measurements vector y.

The l;-norm minimisation problem aims to find the solution that has the smallest
l;-norm among all solutions that satisfy the given constraints. This approach promotes
sparsity in the solution by encouraging a larger number of zero or near-zero components
in the signal. By framing the problem as an l/;-norm minimisation problem, it becomes
tractable and amenable to efficient optimisation techniques. This contrasts with the non-
tractable nature of the l3-norm optimisation problem, which suffers from discontinuity and

lack of differentiability. The l;-norm minimisation approach has been widely adopted in
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compressive sensing and sparse signal recovery due to its computational tractability and
its ability to recover sparse solutions from under-determined systems of equations [4].

mini;nize lizll; subjectto ®z=Yy (5.9
The I,-norm minimisation approach plays a significant role in promoting sparsity within a
solution. By minimising the l;-norm, the optimisation problem encourages a greater
number of zero or near-zero components in the solution, effectively promoting sparsity.
The optimisation problem defined by Eq. (5.4) is a convex problem, which means it
possesses desirable mathematical properties that facilitate efficient solution finding.
Convex problems can be solved using linear programming techniques, making them
computationally tractable.

However, while {;-norm minimisation is convex and can be solved using linear
programming, it exhibits high computational complexity, especially when applied to high-
dimensional datasets such as biomedical images. As the dimensionality of the dataset
increases, the computational burden grows, leading to challenges in terms of time and
resources required for the optimisation process. The high computational complexity of
l;-norm minimisation in high-dimensional datasets has prompted the exploration and
development of alternative algorithms and techniques that can address this challenge and
provide more efficient solutions for sparse signal recovery and compressive sensing
applications [12, 130].

The unconstrained form of Eq. (5.4), incorporating the Lagrangian multiplier 4, can be
expressed as follows:

minimize (lly — @zll3 + 1 lizll,) (5.5)

The mixed SLO1 optimisation problem, as described in Eq. (5.5), is widely recognized as
k-sparse. This approach is commonly known as IST algorithms. By iteratively applying
the shrinkage operation, the IST methods progressively converge towards a solution that
exhibits sparsity in the signal. These algorithms have been widely adopted due to their
computational efficiency and effectiveness in recovering sparse signals, particularly in
high-dimensional scenarios such as compressive sensing and sparse signal recovery
applications.

The regularizing A as a thresholding parameter, acting as the Lagrangian multiplier, is

critical in determining the level of sparsity in the estimated solution of the CS recovery
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problem. By adjusting the value of 1, one can control the trade-off between sparsity and
accuracy in the recovered signal. A higher value of A encourages a sparser solution by
imposing stricter constraints on the magnitudes of the signal coefficients, resulting in more
coefficients being set to zero. Conversely, a lower value of A allows for a less sparse
solution, enabling more non-zero coefficients in the estimated signal. The appropriate
choice of 4 depends on the specific application and desired balance between sparsity and
fidelity in the recovered signal. It is often determined through cross-validation or other
model selection techniques to achieve an optimal level of sparsity while preserving the

essential features of the signal.
5.2 Proposed SL01 Algorithm

This section introduces a new approach that combines SLO and SL1 to enhance the
recovery of sparse signals. The SLO1 algorithm leverages the complementary nature of
both the smooth [, norm and smooth I; norm, which results in faster convergence compared
to using either of them alone. By combining these two norms, the algorithm benefits from
the advantages of the smooth l; norm in promoting sparsity while also harnessing the
advantages of the smooth [; norm in facilitating differentiable optimisation. The hybrid
approach strikes a balance between encouraging sparsity and enabling efficient
optimisation, leading to improved performance in sparse signal recovery tasks. The
proposed algorithm offers a promising solution for effectively addressing the challenges of
recovering sparse signals in various applications. The SLO1 aims to minimisation of the

loss function defined by Eq. (5.7) that combines the Iy and I; norm penalty simultaneously.
1
minimize f (z) = 3 lly — ®¥Hz|I3 + allzll, + Blizll, (5.6)

The non-differentiable [, norm penalty, as defined in Eq. (5.2), can be substituted with
its smooth and differentiable approximation, as defined in Eq. (5.7):

22
9y(z;) = exp (EF) ¢.7)
The proposed function's parameter, which regulates the Gaussian kernel’s width, is shown

here. The function in Eq. (5.7) can be thought of as the indicator function’s inverse, i.e.
1 Z" =0
{ (5.8)

limoy(5)=10 5 =+0

y—0
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The function must fulfil two requirements to justify the g,(z;) for the approximation of
the lp-norm.
Property-I:

’l’i_r.xs gy(z)=1-r(z) (5.9
where (5.2) provides 7(z;).

Property-II: Set up G, (2) as:

6@ =) g(z). (5.10)
=1

Then,

lim G,(®) = ) (1~ q(z) (5.11)

j=1
=n-|lzll,
Thus, [|z]|o can be estimated by:
lizllo = n — limGy (z) (5.12)

The crucial parameter, which determines the width of the Gaussian curve, is part of the
smooth approximation of the /, norm provided by Eq. (5.12). The [, norm is accurately
approximated when the width is less, but the function is less smooth. A smoother but less
accurate approximation results from a wider width.

In Eq. (5.12), increasing G, is equivalent to decreasing the l,-norm. The function G,
with a smaller value is non-differentiable with numerous local maxima. The cost function
grows smoother than increases, preventing local maxima. To attain precision and sparsity
in solving a problem stated in Eq. (5.1), a large value of is used to avoid local maxima and
a gradually decreasing value of is utilised to reduce inaccuracy.

The loss function has been maximised using the Steepest-Ascent-Algorithm (SAA).
The next action updates the solution for each iteration.

Zyys « Zy + W VGy(21) (5.13)

Where u, stands for the step size, which gets smaller with each iteration. G, varies with
smaller value of y. Therefore, a smaller step size is advised for stability. Back projection

is used to enhance the solution in each repetition further.
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The tangent hyperbola function, which is smooth and monotonically growing, and an
analytically well-bounded function, is used to approximate the I; norm smoothly. The
angle of the curve at its beginning is adjustable [18]. Thus, the definition of our suggested

approximation for the I; norm in Eq. (5.14) is as follows:

n

lzll, = Z 2 tanh(az,) (5.14)

i=1

Whereas:

1 n
f@=3ly=a}+4), ztanh(az); (5.15)

Vector differentiation cannot be used with the steepest descent algorithm. Therefore, we
express (5.14) in element form to determine a partial derivative.

1
f(2)= EZ(W — y)i(®z — y); + Az;tanh(yz;) (5.16)

The element form of the partial derivative of Eq. (5.16) is thus written as:

d
QS) B Z,: P,z — Zi}' Py + 4 (m"h(azl) +za(1 - ta"hz(az'))) (5.17)

The following is the steepest descent algorithm for the I** update:
a
f(2) (5.18)

ax,

(4z); = —

The steepest decent algorithm determines the answer using Eq. (5.17).

Once more, using the tanh as the foundation, A new thresholding strategy is suggested.
The tanh is a suitable surrogate function for soft thresholding since it is bounded and has
a variable slope at the origin. As a result, the mathematical equation for hyperbolic tangent-

based soft thresholding is Eq. (5.19).
Sgz) = {:tanh(a(lzl -B) lz| > B (5.19)

otherwise
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The proposed algorithm is described with detailed steps in Algorithm 5.1.

Algorithm 5.1. Proposed Smoothed LO1 Norm Approximation

Initialisation:
1. Initialise z, by l, approximate solution of ®z = y.

2. Set sequence of increasing v, [y1,¥2, . ¥n]
fork=12,..,N:
4, Sety =Y.
5. Maximise G, using M iterations of the steepest ascent algorithm.
a. Initialise:z = q4
b. Fori=1.2,.. M
i. SetAz = [z,gy,(2), ...,z,,gn(z,,)]r
ii. Set z«z—puAz
iii. Projectzback asz=z—®T(®PT) 1(dz—y)
6. Compute Gradient Vf(z;) using Eq.(5.16)
7. Update the solution using Eq. (5.17) and Eq. (5.18)
4. Apply shrinkage operator using (5.19): £;,1 = Sg(2;41)
8. Setqy=12

Final solution: z = qy.
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The above defined by algorithm 5.1 was further modified to recover CS MRI described
below:
Algorithm 5.2. Modified SLO1 for recovery of CS MRI

Initialise:

1. Initialise Xo = Fg1(Y),whereY is undersampled k — space data
2.  Set g as decreasing sequence for ¢ = [0,,0,, ...,0,]
fori=12,..,P:

3. Seto=g;
4. Find Maxima for F,(x)in m iterations of the steepest ascent algorithm.
¢. Initialise: X = X;_,
d Forj=12,..,0Q
i.  Xsparse = ¥(X)
il. SetAXgpgrse = xz:parse * fa. (Xsparse)
lil. Set Xcparse = Xeparse —
U AX cparse, Where p is a step size
iv. X=%"1(Xoparse)
5.  Data consistency: X « F(Fy(X)»(1-M) +Y),
where M represents the undersampling mask
Compute Gradient Vf(z; ) using Eq.(5.16)
Update the solution using Eq.(5.17) and Eq. (5.18)
Apply shrinkage operator using (5.19): ;41 = Sg(Xi41)
9. SetX; =X
Final solution: X = Xp.

0N

5.3 Experimental Results and Discussion

The proposed algorithm is employed to recover both 1-D sparse signals and 2-D MRI data
that have been undersampled. To evaluate the performance of the algorithm, two
commonly used metrics, SNR and MSE, are utilised. The results of the experiments clearly
demonstrate that the proposed technique surpasses both the ly-norm and /1-norm smooth
approximations applied alone in terms of CS MRI recovery and 1-D sparse signal recovery.
The higher SNR values and lower MSE values obtained indicate that the proposed
algorithm achieves better accuracy and fidelity in reconstructing the original signals
compared to the competing approaches defined in Chapter 3 and Chapter 4. This suggests

that the proposed algorithm is more effective in recovering the underlying information
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from undersampled observations, showcasing its potential for practical applications in

sparse signal recovery and CS MRI reconstruction tasks.
53.1 Sparse Signal Recovery Application

MATLAB simulations are used to analyse the suggested algorithm’s performance. Using
a randomly generated Gaussian matrix with dimensions of m X n, where m is the number
of samples (set to 100) and n is the total length of the sparse signal (set to 256), the
experimental setup entails undersampling a random 1-D sparse signal. To guarantee proper
scaling, the columns are normalised.

The model used to produce the noisy observationsisy = Az + w, where w stands for
white Gaussian noise. This approach considers the existence of noise in the collected data.
Through a gradient ascent loop that iterates three times (N = 3) for each iteration, the
algorithm performance is assessed. A single value is used to execute the loop, enabling a
systematic analysis of the algorithm performance under various parameter configurations.

The algorithm may adjust and improve its performance for various conditions by changing.
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Figure 5-1: Ground Truth ‘o’ and Reconstructed Signal ‘*’
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Both the original signal and the recovered signal are shown in Figure 5-1, which
illustrates the precise recovery attained by the suggested technique for the 1D k-sparse
signal. Figure 5-2 depicts a comparison between the suggested technique’s SNR with the
performance of the SL0 and SL1 algorithms proposed in Chapter 3 and Chapter 4. Notably,
as compared to the other algorithms, the suggested technique achieves much higher SNR
values. The suggested approach outperforms the competition by reaching the lowest MSE
values, as seen in Figure 5-3’s comparison of the algorithms® Mean Squared Error (MSE)

results.
532 CS MRI Reconstruction Using Proposed Method

The SLO1 technique is deployed to reconstruct CS MRI from its undersampled k-space
data. Drawing a comparison between CS encoding and noisy images, compressed sensing
recovery fundamentally transforms into an image-denoising task. Estimating the noise
using the maximum a posteriori (MAP) estimator, is the first step in recovering the original
image. A 2-D CS Brain MRI with dimensions of 256 x 256 is recovered using the suggested
approach. The Brain MRI was scanned as a fully sampled image at St. Mary’s Hospital in
London, England. The MR image is compressively extracted in this instance by acquiring
only 25% of the samples using the random mask.

Figure 5-4 provides a quantitative comparison of the proposed algorithm” combined
Smooth approximation of [y and I; norm (SLO1) performance with that of the Smooth
approximation of [, (SL0) and Smooth approximation of {; norm (SL1) algorithms when
applied to under-sampled MR data. The under-sampling process is conducted using a
variable-density random sampling pattern.

In Figure 5-4(a), the improvement in SNR achieved by the proposed algorithm is
depicted. It showcases the superiority of the proposed algorithm in terms of achieving
higher SNR values compared to SLO and SL1. The higher SNR values indicate better
quality and fidelity in the recovered MRI.

Figure 5-4(b) illustrates the reduction in Mean Squared Error (MSE) achieved by the
proposed algorithm compared to SL0 and SL1. A lower MSE value indicates a closer match
between the recovered MR data and the original data. The significant decrease in MSE
achieved by the proposed algorithm indicates its ability to achieve more accurate and

reliable results than the other algorithms.
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Overall, these comparisons highlight the quantitative advantages of the proposed
algorithm over SLO and SL1, as evidenced by the improvement in SNR and the decrease
in MSE. These results further validate the effectiveness of the proposed algorithm for
recovering under-sampled MR data.

Figure 5-5 presents the recovery of Compressed Sensing (CS) Magnetic Resonance
Imaging (MRI) data that has been under-sampled using a variable density random sampling
scheme. In Figure 5-5(a), the recovery results of the MRI using different algorithms,
namely Zero Filling (ZF), Smooth approximation of /5 (SL0), Smooth approximation of I,
norm (SL1), and the proposed method (SLO1), are displayed. Subjectively, the image
recovered by the proposed method exhibits better visual quality than the other recovered
images, indicating the effectiveness of the proposed algorithm.

Figure 5-5(b) illustrates the sampling pattern utilised by each algorithm. It visually
represents how the different algorithms capture the under-sampled data. The sampling
pattern reflects the spatial distribution of acquired measurements, which is crucial for
accurate recovery.

Furthermore, Figure 5-5(c) focuses on the magnified difference between the original
and recovered images. The zero-filling approach performs poorly, as the difference
between the original and recovered images is more pronounced. On the other hand, the
simple SLO and SL1 algorithms exhibit higher error levels than the proposed method
(SLO1). The error in the proposed method is considerably lower than that of the other
methods, indicating its superiority in achieving more accurate and faithful image recovery.

These findings highlight the advantages of the proposed algorithm (SLO1) in terms of
subjective image quality and reduced error when recovering under-sampled CS MRI

compared to ZF, SLO, and SL1 algorithms.

109



(b) Comparison Based on SNR
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Figure 5-4: MSE and SNR curves for recovery of CS MRI
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(difference error x 1000) between original and recovered MRI.
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5.4 Conclusions

In compressive sensing, recovering compressively sampled sparse signals and MRI data
from under-sampled k-space measurements is a computationally demanding task. In this
chapter, we have addressed this challenge by proposing an efficient algorithm that
leverages the combined power of smoothed l; and smoothed [, norms. These norms play
a crucial role in promoting sparsity in the recovered signals.

To objectively evaluate the performance of the proposed algorithm, we conducted a
comparative analysis with existing methods that utilised the smooth l, norm and smooth
[; norm. We measured the performance using well-established metrics such as MSE and
SNR. The results demonstrate the superiority of the proposed technique, as it consistently
outperforms the other methods in terms of both MSE and SNR. This objective evaluation
provides quantitative evidence of the improved performance achieved by our algorithm.

Furthermore, subjective analysis is conducted to assess the visual quality of the
recovered MRI. The visual inspection revealed that our proposed technique produces
images of higher visual fidelity than the other methods. This subjective evaluation further
supports the effectiveness of our algorithm in accurately recovering compressively
sampled sparse signals and MRI.

Overall, the combination of objective and subjective analyses confirms that the
proposed algorithm offers a considerable improvement in performance compared to
existing methods. The efficient recovery of compressively sampled sparse signals and MRI
data achieved by our algorithm has the potential to benefit various applications in the field

of compressive sensing.
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CHAPTER 6

NATURE-INSPIRED IRLS FOR CS MRI RECOVERY

This chapter introduces innovative approaches for recovering k-sparse signals and MR
images from compressed measurements using nature-inspired evolutionary techniques,
namely Particle Swarm Optimisation (PSO), in combination with a deterministic Iterative
Reweighted Least Squares (IRLS)-based shrinkage algorithm. The proposed hybrid
mechanisms incorporate appropriate regularisation constraints to enhance the convergence
of the evolutionary algorithms and achieve accurate estimation k-sparse signal.
Furthermore, the suggested algorithm is extended to address the specific challenge of
recovering CS MRI from incomplete Fourier data in the context of Fourier-encoded MRI.
This modified algorithm incorporates the combined principles of IRLS and evolutionary
methods, particularly Genetic Algorithms (GA). The integration of these methodologies
allows for efficient and effective recovery of biomedical images, even incomplete and
under-sampled Fourier data. The presented algorithms offer notable advantages in
accelerating convergence, precise estimation of sparse signals, and successful recovery of
biomedical images from compressed measurements. These techniques contribute to the
advancement of signal recovery methods, particularly in compressive sensing and Fourier-

encoded MR imaging.
6.1 Nature-Inspired Algorithms

Deterministic algorithms, known for their mathematical elegance, usually demand a well-
defined initial solution and may not be user-friendly. Conversely, evolutionary algorithms
like Genetic Algorithms (GA) and Particle Swarm Optimisation (PSO) offer simpler
implementations but lack rigorous mathematical foundations [131]. Primarily utilised for
unconstrained search problems, adapting these algorithms to constrained optimisation
poses challenges [132-135]. Nevertheless, nature-inspired algorithms such as GA and PSO
are ideal for tackling computationally complex problems that defy traditional approaches.

These algorithms provide practical solutions, without strict mathematical modelling.
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2 = agrmin (|ly — ®z||3 subject to ||z]|o < k (6.1)
. :

However, a deterministic algorithm is needed to solve the l, norm-based minimisation

problem in Eq. (6.1) to hasten convergence [136].
6.2 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a probabilistic optimisation technique with a simple
structure known as particle-based search optimisation [137-139]. In PSO, each particle’s
velocities are randomly assigned, allowing it to explore the search space. The velocities of
the particles are updated iteratively based on their prior velocities and the distances
between their local and global best solutions. [140] provides the velocity update equation
for the PSO-based algorithm.

V=W XV + (@ — Xi-1) + Csz(Pg - Zi-1) (6.2)
Where r; and r, are two separate uniformly distributed random values in the range (0,1)
and c;, c, are problem-dependent constants. The scalar w € [0,1] represents Inertial
weight. The particle known as global best, or p,, has the finest fitness across the board. p;
is the local best, which, according to the cost function, reflects the best prior position of
the it* particle. The algorithm's performance can be significantly impacted by changing
the free parameters c;, ¢, and the inertia weight w [141].
The position z; of the it" particle is updated in the conventional PSO by its velocity:

z;=2; .1V 6.3)

The Basic PSO algorithm begins with a random population of 20-50 particles,

depending on the specific challenge. Particles move according to velocity iteratively, which

is updated based on both local and global optimal positions.
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6.3 Iterative Reweighted Least Square (IRLS)

The Iterative Reweighted Least Squares (IRLS) algorithm is effective for various
optimisation problems [23]. Rather than directly minimising the [,-norm, IRLS minimises
a weighted residual at each iteration. IRLS can also find maximum likelihood solutions for
generalized linear models [23]. For MRI reconstruction, IRLS transforms the non-l,-norm
terms in Eq. (2.22) into weighted l;-norms [21]. This allows rewriting the objective

function as:
1
F@=3lly- F,z|l3 + 117 p(¥z) 6.4)

where 1Tp(Wz) is replaced by 0.5%Wz"W~1(Wz)¥Wz, where W(¥z) is the diagonal
matrix, having defined by Eq. (6.6) values in its diagonal of the matrix.

_ 0.5%z[k]?
W[k, k] = 2(Pz[k]) (6.5)
The loss function is given by:
F@ =5 lly - Fysl + 5 %2™W-1(92) 0 (©6)

The following quadratic function is minimised to update the existing solution, xo while
assuming that W is fixed.

Vf(2) = —F, (y - F,z) + \ P2 W1 (¥z)¥z = 0 6.7
The next step for updating x is to take the inverse of the matrix F,TF, + AW~1. Then we
update W based on the updated solution z.

Standard IRLS performs poorly for high-dimensional signal recovery problems. To
address this limitation, Adeyemi and Davies [23] modified the IRLS approach by adding
and subtracting the term c. z in Eq. (2.24). This results in an iterative shrinkage algorithm
where ¢ is a relaxation constant chosen between 0 and Agq.(F, F,)/2 to ensure
convergence. Here 4,4, is the maximum eigenvalue of the matrix. The iterative update

equation can then be written as:
— n T, 1 .7
2y = (zw (Wz,) + 1) (;F., y—=(RF, - cl)zk) 6.8)

=5.(CFT(v - Ruzy) +¥2,)

where diagonal matrix can be defined as:
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-1 -

S= (% W-1(%z,) + 1) = (%1 + W(‘sz)) ' W(Pz) (6.9)

The above equation performs a shrinkage operation on the vector %F“T(y— A¥z,) +
P2z, Each entry in a vector is multiplied by the following scalar value.
0.5%z, [i]*/p(¥z[i]) _ Wz, [i]?
2 1 0swnliP/p(¥nd) Zo(wadi) + ¥zl
The shrinkage factor in the modified IRLS algorithm approaches one when the weighted

6.10)

norm Wz, [i] is large and shrinks towards zero for smaller weighted norms. This provides
the desired shrinkage effect. Initializing the IRLS solution to zero should be avoided since
zeros will persist - causing the algorithm to get stuck in poor local minima. Instead, the
initial guess should have nonzero values. Algorithm 6.1 outlines the iterative steps of the
modified IRLS algorithm to recover an MR image from the undersampled partial Fourier

k-space data while applying shrinkage to improve convergence.
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Algorithm 6.1: Recovery of the image using IRLS algorithm

Task: Find the value of image X that minimises the objective function:
F(X) = argmin(|lY - FX|1Z + 4 fix]l,)

Input: Dictionary matrix F, € R™",
Measurement matrix Y € R™,
IRLS thresholding parameter A.
Output: A K — sparse solution vector X € R™™
1) Initialisation: Initialise IRLS iteration number k = 0
Initial solution: X = [x;, %5, ... .. ... Xnxml,where each entry x, + 0
Initial residual: Ry = Y — X,
2) IRLS Main Iteration: Increment k by 1,and apply the following steps

a) BackProjection: Compute E = F,'X,_,
X1

b) Shrink Update: Compute the diagonal matrix S by S[i, ] = e
2 X1+ X

¢) Shrinkage: Compute E, = § (Xk_1 + s)

d) Solution Update: Compute X, = X,_, + (E, - Xp-1)

€) Residual Update: Compute R, = y — F, X,

f) Stopping Rule: Go to step (2) until, either ||X, ~ X112 < threshold value or

maximum number of iterations criteria is met.

3) Output: The final value of x,

6.4 Nature Inspired Iterative Reweighted Least Square (NI-IRLS)

The proposed NI-IRLS algorithm introduces a combination of two different algorithms,
namely PSO and Modified IRLS [12] that is inspired by POCS[59], to address the problem
of recovering a k-sparse 1-D signal and performing CS MRI. The aim is to solve the
constrained optimisation problem defined by Eq. (6.1).

To ensure the sparsity in the solution, all particles of the population are initialised and
the technique applies soft thresholding based on the IRLS algorithm. Though, the particles
after velocity update can lose sparsity. Therefore, after each position update, another round
of soft thresholding based on IRLS is performed to maintain the sparsity constraint
throughout the recovery process.

In situations where the fitness of the global best particle remains unchanged for a

specified number of iterations, the modified IRLS algorithm is employed. This algorithm
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updates the position of the second-best particle in the population using a specific strategy
elaborated in Algorithm 1. This helps to improve the convergence and accuracy of the
algorithm in finding the optimal solution. Overall, the proposed technique combined the
strengths of PSO and modified IRLS to address the k-sparse 1-D signal and CS MRI

recovery problem by ensuring sparsity and enhancing the optimisation process.

Z; =Sc'p(‘l’(2,,_1 +§)) (6.11)

Here S g defines the shrinkage operation having a threshold defined by 8. Where c is the
random number, ¥ is a sparsifying domain, W is defined by Eq. (6.5) and E is the
backpropagation error defined by Eq. (6.12)

E =F,T(y - ®¥z,) + Pz, (6.12)
In the proposed algorithm, the parameter y is introduced to address varying
compression ratios (CR) of the undersampled k-sparse signal. This adjustability empowers
the algorithm to dynamically adapt to different degrees of data compression. By modifying
y based on the specific CR, the algorithm can effectively tailor its reconstruction approach,
accommodating different levels of sparsity in the signal. The experimentation section
provides evidence that the algorithm's flexibility yields promising results, showcasing its
ability to handle varying CRs and consistently produce accurate reconstructions, making it
a versatile and reliable solution for sparse signal recovery tasks across diverse data
compression scenarios as shown in Figure 6-18 and Figure 6-19.
¥ = 100 — compression ratio. (6.13)
The data consistency constraint in the frequency domain is a fundamental principle in
Compressed Sensing Magnetic Resonance Imaging (CS MRI) recovery. It ensures that the
actual samples acquired in the k-space domain remain constant throughout the recovery
process. In other words, the measured data points in the frequency domain, which
correspond to the acquired MRI measurements, are preserved, and not altered during the
iterations of the recovery algorithm. The data consistency constraint is crucial because it
guarantees that the recovered image remains consistent with the acquired data. It prevents
the algorithm from introducing spurious information or modifying the original
measurements, which could lead to erroneous results. By preserving the actual samples
from the k-space domain, the algorithm ensures that the recovered image accurately

represents the underlying structure of the imaged object, even with limited or under-
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sampled data. The data consistency constraint in the frequency domain is a vital aspect of
CS MRI recovery, as it maintains the integrity of the acquired data and helps achieve
reliable and accurate image reconstruction.

Yilj] = Fu(X;) (FFT of Estimated Image)

o (il ifylil=0 (6.14)
Yl = { }"[i] otherwie

Xy X2

NI-IRLS

2

Recovery technique of proposed algonthm

Figure 6-2: Two Initial Inputs for NI-IRLS from ZF and LR and generated output from
the proposed algorithm
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a)Spatial Domain Image b)Sampling Domain(Frequency)

c)Undersampled Image d) Sparsifying Domain (Wavelet)

Figure 6-3: Different domains used in the proposed algorithm.

Figure 6-2 illustrates the two initializations used for the proposed algorithm, namely
Low Resolution (LR) and Zero Filling (ZF), which are crucial for fitness comparison
during optimisation. The LR initialization involves reconstructing the initial image from
low-resolution measurements, providing a coarse estimation with limited details. On the
other hand, the ZF initialization fills the missing k-space data with zeros, creating an initial
image with potential artefacts. Both initializations are then evaluated based on fitness
measures to determine which one better approximates the original image. The initialization
with superior fitness serves as the global best solution, becoming the starting point for
subsequent optimisation steps, enhancing the likelihood of achieving a high-quality
reconstructed image through the algorithms’ optimisation process.

In Figure 6-3, the proposed technique for image reconstruction is illustrated,
showcasing different domains involved in the process (a) shows the original Image, this
domain represents the original image, which serves as the reference for the entire
reconstruction process. It contains the complete information about the image without any
loss or compression. (b) depict the k-Space Sampling Domain, in this domain, the k-space

data is generated by applying masks to the original image. The masks are applied for
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undersampling the k-space data, meaning that only a subset of the k-space samples is
acquired, reducing data acquisition time. (c) elaborates the effects of undersampling in the
Spatial Domain, after undersampling in the k-space domain, the effects of this
undersampling are depicted in the spatial domain. The spatial domain is the familiar
domain where we perceive images with their pixel values. Due to undersampling, the
reconstructed image in this domain will exhibit artefacts and degradation compared to the
original image. (d) In the Sparsifying Domain i.e., Wavelet in our proposed method, the
undersampled k-space data is processed through a sparsifying process that involves
“shrinkage.” Sparsifying transforms the k-space data into a sparse representation, where
most coefficients are set to zero or close to zero, highlighting the sparsity of the data.
Shrinkage, in this context, refers to reducing the magnitudes of non-zero coefficients,
further enhancing the sparsity. This proposed technique aims to reconstruct the original
image from undersampled k-space data using sparsity-promoting methods.
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Algorithm 6. 2: Algorithm for recovery of k -sparse 1D signal

Task: Recovery of k — sparse signal z € R" that minimises the objective function:
f () = argmin(lly — FxllZ + 2 lizll.)
Input: Dictionary ®e R™", Sparsity level k, Population size N, PSO parameters c,,c; and w
Compressed Measurement y € R™, IRLS thresholding parameter A, constant u.
Output: A Recovered k — sparse signal z € R"
1) Initialisation: Initialise IRLS iteration number k =0
Initial solution: 2y = [24,22, ... <. .t z,],where eachentryz; + 0
Initial residual: Ty = y — ®2,,V = 0, velocity matrix
Generate N particles randomly with desired sparsity
Z=[24,23 .00 me z,],wherez, E R and ||z;llo <k Vi<1<SN
2) Fitness Evaluation and Sorting:
[z =fitness(zy,23, ... 2y) = (A far i ]
Where f; = (®z, — )" (®z, - )
[f .5 index] = sort(f,, descend)
fis = v fez woifon]Withfu € f2 € S fon
3) Initial local and global best
P = zg(index) = [p,, p2, ... bn] where p;has fitness fy;
Pg = P1 is the initial global best
4) NI-IRLS Main Iteration: Increment k by 1,and apply the following steps
a) Velocity and Position update: Velocity and position update of each particle defined
by Eg. (6.2) and Eq. (6.3) respectively:
V = velocity(V, P, 2, p,, €1, €2, W)
= [v4, V2, e, UN]
Z = position(Z,V)
= [124) s 122)is e o 1Zu)ic] where 2, = 2, +
b) BackProjection: Compute e = ®'r_,
¢) Shrink Update: Compute the diagonal matrix S by S[i.i] = ;;—"'mz——
Epelilly+2el1)?
d) Shrinkage: Computee, = S.g (z,,_l + -:-)
Where c is a random number.
z;=rand x (e;—z,)+ 2,
where z,is a randomly selected from the population and CR is the compression ratio
e) Update local and global best based on fitness:
ez = fitness(Z)
[f.zs index] = sort(f,,, descend)
fezs = Uza1: frzzs oos fean] With f21 € fez € o < fran
Z; = Z(index)
= [Z21, 223, ..., Zzy] where Zy; has a fitness fo;
if fe21 < far, then p, = 2z1and fry = fr2q, (new global best)
else if fo < fu,then py = Zyand fr; = fi21, Vi € 1 < N (local best)
f) Solution Update: Compute z, = p, + u(e; — p1)
g Residual Update: Compute r, =y — @z,
h) Stopping Rule: Go to step (4) until, either ||z, — Zx 1|3 < threshold value or
the maximum number of iterations criteria is met.

5) Output: The final estimated solution is z,

122



Algorithm 6.3: Proposed Algorithm for CS MR Image Recovery

Task: Find the value of image X that minimises the objective function:
f(X) = argmin(|IY - F,X|IZ + 2 |IXlly)
Input: Sampling Matrix F, e R™*", Sparsifying Transform W, constant u,
Measurement matrix (Undersampled)Y € R™, IRLS thresholding parameter A.
Output: A Recovered Image X € R™™
6) Initialisation: Initialise IRLS iteration number k = 0
Inltial solution: Xy = [x,, X3, ... ... .. Xpxm], Where eachentry x; + 0
Inltial residual: Rg =Y — X,
7) Fitness Evaluation and Sorting:
[X1.X3 f1f2] = fitness(Xy, X2, Y)
Where f; = (F.Xy - ¥)" (Fuxy-¥).) =1,2

. _[Xun Iff1<f2
With X, = X2, otherwise

8) IRLS Main Iteration: Increment i by 1, and apply the following steps
a) BackProjection: Compute E = F, ' (y,_; ~ F. X))

2
b) Shrink Update: Compute the diagonal matrix S by S[i, i] = x,;.[:]x.[ql
r 1

c) Shrinkage in Sparsifying domain: Compute E, = ¥~1 (s,, (lv (Xes + f)))

Where c is a random number.
Xn =y % (E,—X,) + X,
where X,.is a randomly selected from either X, or X,,
and,y = 100 — compression ratio
d) Data Consistency in Fourier Domain
Yilil = F,(X))
=0 ol
e) Reassignment as per fitness
X, =F(X,).f = (Fu X, — y)"(puxt -Y)
iffi <fi.Xy=Xp;; X3 = Xq;
elseif [, < f,,X, = X;;
f) Solution Update: Compute X, = X;_; + n(E; — X;—1)
g) Residual Update: Compute R, =Y — F X,
h) Stopping Rule: Go to step (2) untll, either ||X; — X;_ |3 < threshold value or
the maximum number of iterations criteria is met.
9) Output: The final value of X,
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6.5 Experimental Results for Recovery of 1-D Signal

The one-dimensional sparse signal is recovered using the proposed technique. In this
experiment, MATLAB is used to generate a random sparse signal of lengthn = 512, with
K = 85 non-zero elements serving as the sparse signal’s support. With just m = 256
measurements produced, a random measurement matrix ® € R?36*312 is employed to
compressively sample the random sparse signal.

In this chapter, various recovery algorithms were utilised to recover a sparse signal,
including Least Square (LS), IRLS, PSO, PCD, SSF, and the novel Nature Inspired
Iterative Reweighted Least Square (NI-IRLS),. Performance comparison was achieved
through MSE, SNR, and Cost Function (CF) minimisation. The algorithms were evaluated
based on their ability to reconstruct the original sparse signal, with MSE quantifying the
mean squared difference, SNR, and, CF measuring the cost function’s minimisation. These
results offer valuable insights into the efficacy of the proposed NI-IRLS algorithm for
sparse signal recovery.

In Figure 6-4, the recovered k-sparse 1D signal using the linear recovery method Least
Square (LS) based on l,-norm is depicted. However, the results reveal that LS fails to
promote sparsity in the estimated solution, leading to inaccuracies in reconstructing sparse
signals. This highlights the methods’ limitations in effectively identifying and
reconstructing sparse components, emphasizing the need for alternative approaches to

handle sparsity in signal recovery.
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Figure 6-4: k-Sparse Signal Recovered through LS
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Figure 6-5: k-Sparse Signal Recovered through SSF
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Figure 6-6: k-Sparse Signal Recovered through PCD
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Figure 6-7: k-Sparse Signal Recovered through PSO
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Figure 6-8: k-Sparse Signal Recovered through IRLS
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Figure 6-9: Recovered k-Sparse 1D Signal through Proposed Nature Inspired IRLS
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Figure 6-10: Cost Function minimisation by NI-IRLS vs other methods
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Figure 6-11: MSE minimised by proposed NI-IRLS vs other techniques
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Figure 6-5 depicts the recovery of k-sparse 1D signal by SSF, which promotes sparsity
but got stuck in local minima and failed to reach an optimal solution. Figure 6-6 shows the
recovery by PCD as discussed in Chapter 2, which recovers the sparse signal with some
accuracy, but fails to reach the desired accuracy. Figure 6-7 shows the recovered 1D sparse
signal by PSO but could not achieve the desired recovery. Figure 6-8 shows the recovered
signal from IRLS k-sparse signal from a limited set of observations.

Figure 6-9 depicts the recovered k-sparse signal from its undersampled data. The
proposed Nature Inspired Iterative Reweighted Least Square (NI-IRLS) method achieves
the best reconstruction. The figure demonstrates the effectiveness of the NI-IRLS
algorithm in accurately estimating the sparsity level of the original signal and precisely
recovering the amplitudes of the non-zero elements.

Figure 6-10 demonstrates the cost function minimisation process using the proposed
Nature Inspired Iterative Reweighted Least Square (NI-IRLS) Method, revealing its
advantages over other algorithms trapped in local minima. While traditional algorithms
struggle to minimise the cost function and might become stuck in suboptimal solutions, the
NI-IRLS method inherent randomness allows it to explore a broader solution space,
effectively recovering from local minima and eventually reaching a near-optimal solution.
This ability to escape local minima and explore diverse solutions enhances the algorithms’
performance, making it more reliable and efficient in achieving better cost function
minimisation during sparse signal recovery.

In Figure 6-11, the performance of different techniques is evaluated and compared to
the NI-IRLS method in terms of MSE. The results indicate that the proposed NI-IRLS
method outperforms the other techniques, achieving the minimum MSE. The lower MSE
values obtained with NI-IRLS demonstrate its superior accuracy in reconstructing the
sparse signal compared to the alternative methods. These findings validate the
effectiveness of the NI-IRLS approach as a powerful and reliable technique for sparse
signal recovery, making it a promising choice for applications requiring precise and
efficient reconstruction of sparse signals.

In Figure 6-12, the performance of different methods is assessed and compared to the
Nature Inspired Iterative Reweighted Least Square (NI-IRLS) algorithm in terms of SNR.
The results reveal that the proposed NI-IRLS algorithm achieves the highest SNR among
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all the methods under evaluation. The superior SNR NI-IRLS method achieves highlights
its effectiveness and reliability in sparse signal recovery in a noisy environment.

Figure 6-13 shows the normalized successful recovery attained by each method while
keeping by varying the percentage of sparsity levels in the test signal with a success
criterion of MSE value at 10~3. Each method runs through 30 iterations, with the number
of successes divided by the total number of iterations at each level of sparsity. The correct
reconstruction of the original k-sparse signal using different recovery techniques is referred
to in this context as successful recovery. The graphic illustration shows the efficiency of
the proposed NI-IRLS method in successfully recovering the sparse signal, even in the
presence of 20% non-zero elements only showcasing its efficacy to recover the
compressively sampled 1D k-sparse signal.

The recovery process involves taking the undersampled data and applying the NI-IRLS
method, which combines nature-inspired optimisation techniques and IRLS methods.
Through this approach, the algorithm can intelligently adapt to the sparsity level of the
signal, efficiently identifying the locations of the non-zero elements, and accurately
reconstructing their amplitudes.

The successful recovery of the k-sparse signal shown above highlights the robustness
and accuracy of the NI-IRLS method. It demonstrates that the proposed algorithm can
handle sparse signals and effectively recover their essential components even from limited
and undersampled data. The results emphasise the potential of the NI-IRLS technique for
applications involving sparse signal recoveries, such as in medical imaging, signal

processing, and data compression, where precise and efficient reconstruction is crucial.
6.6 Experimental Results and Discussion for CS MRI Recovery

Random sampling during CS image collection produces incoherent and noise-like effects
in the sparsifying domain. The analytical recovery method, where un-sampled k-space data
are substituted with zero and the resulting image is recovered using [FFT, causes artefacts
that resemble additive Gaussian noise when applied to Fourier domain encoded biomedical
imaging, such as MR imaging. The undersampling patterns determine what kind of noise
is produced by sub-sampling [99].

Drawing a comparison between CS encoding and noisy images, compressed sensing

recovery transforms into an image-denoising task. A real human brain MR image with
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dimensions of 256 x 256 and a 2-D compressively sampled phantom MRI are recovered
using the suggested approach. The St. Mary’s Hospital in London provided both MRI data.
The results from the phantom MRI are presented first. The phantom MRI is
compressively sampled by retaining only 25% of the samples using a random
undersampling mask in k-space. The methods used for qualitative comparison of the
proposed NI-IRLS algorithm are ZF, LR, SSF, POCS, IRLS, Modified IRLS, and PSO.
The proposed algorithm has outperformed all the methods, as evident from Figure 6-14.
In Figure 6-14 (a), the recovered images along with the zoomed-in portion for further
clarity by the proposed NI-IRLS method and other methods alongside the original image
are shown. Evidently that the recovered image from NI-IRLS closely matches the original
image. Figure 6-14 (b) shows the masks used for undersampling the original image. The
original image is fully sampled, and LR uses the specific centric circle of the k-space. All
other methods used the same random mask with only 25% values set as 1, while the
remaining values are set to 0. In Figure 6-14 (c), the amplified difference between the
original and recovered images by the factor of 1000 is depicted. Here it is visible that the
proposed NI-IRLS method’ recovered image is closer to the original image, and very few
differences could be found. The LR method fails to recover the edges as only centric k-
space data is acquired. The ZF method has introduced Gaussian noise-like artefacts in the
recovered image. Other methods use the recovered image by ZF as the initial estimate of

the image.
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Figure 6-14: Illustrates (a) Zoomed-in recovered phantom MRI, (b) Masks for
Undersampling, (c) Magnified Difference of Original and Recovered Phantom MRI.
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Figure 6-15: ISNR, PSNR, SSIM and Fitness achieved by NI-IRLS vs. other Methods for
recovery of Phantom MRI.
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Figure 6-16: Illustrates (a) Zoomed-in recovered Brain MRI, (b) Masks for Undersampling,
(c) Magnified Difference of Original and recovered Brain MRI Images.
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Figure 6-17: Comparison of ISNR, PSNR, SSIM and Fitness for recovery of CS Brain

MRI at each iteration.
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Compression Ratio vs SSIM
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Figure 6-18: The SSIM achieved by varying compression ratio using NI-IRLS vs. other
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Figure 6-19: The PSNR achieved by varying compression ratio using NI-IRLS vs. other
comparison methods.
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Figure 6-15 quantitatively assesses the proposed NI-IRLS method’s efficiency when
applied to phantom MRI, comparing it with other techniques like POCS, Modified IRLS,
and PSO. The evaluation is based on various metrics: ISNR, PSNR, SSIM, and Fitness. In
Figure 6-15 (a), the ISNR comparison between POCS and the proposed NI-IRLS algorithm
indicates that the proposed method improves ISNR. Similarly, Figure 6-15 (b) illustrates
the improvement in PSNR achieved by using the proposed method. Furthermore,
Figure 6-15(c) shows an increase in SSIM, denoting a better similarity between the
recovered and original images when the proposed algorithm is applied. Lastly, Figure 6-15
(d) portrays a decrease in fitness, indicating that the proposed NI-IRLS algorithm
outperforms other methods in terms of fitness during the signal CS MRI recovery process.
These results collectively demonstrate the effectiveness and superiority of the proposed
NI-IRLS method for enhancing the quality and accuracy of the reconstructed phantom MRI
from undersampled k-space data.

The experimental results from Real Human Brain MRI are presented, where the MRI
data is compressively sampled, retaining only 25% of the samples using a Cartesian
undersampling mask in k-space. The proposed NI-IRLS algorithm is qualitatively
compared with ZF, LR, SSF, POCS, IRLS, Modified IRLS, and PSO methods. Figure 6-16
shows that the proposed algorithm outperforms all other methods. In Figure 6-16 (a), the
recovered images are shown alongside a zoomed-in portion for better clarity, illustrating
the performance of NI-IRLS and other methods compared to the original image. The
recovered image from NI-IRLS closely matches the original image. Figure 6-16 (b) depicts
the masks used for undersampling the original image, with LR using specific centric
ordered data of the k-space while all other methods use the same Cartesian mask with only
25% values set as 1, while the rest of the values are set as 0. Cartesian mask undersampling
results in an aliasing artefact in recovered images. Figure 6-16 (c) amplifies the difference
between the original image and the recovered image by a factor of 1000, clearly showing
that NI-IRLS produces a recovered image closer to the original with minimal differences.
The aliasing effect is clearly visible in the amplified error. The LR fails to recover edges
due to limited data acquisition, and ZF introduces aliasing artefacts in the recovered image.
Notably, the ZF-recovered image is used as the initial estimate for other methods. The

results demonstrate the superiority of the proposed NI-IRLS algorithm in accurately
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reconstructing real human brain MRI images even with significant undersampling,
showcasing its potential for practical applications in medical imaging.

Figure 6-18 illustrates the Structural Similarity Index (SSIM) achieved in the
reconstruction of Compressed Sensing (CS) Brain MRI for the proposed method and other
techniques, with varying compression ratios ranging from 5% to 90%. The compression
ratio represents the percentage of samples retained during k-space data acquisition, wherein
higher percentages indicate more data is acquired, resulting in better recovery but longer
MRI scanning time. The proposed NI-IRLS method consistently achieves the highest SSIM
across different compression ratios. This demonstrates the algorithm’s superior
performance in accurately reconstructing CS Brain MRI images, even under various levels
of data compression, making it an efficient and effective solution for achieving high-quality
MRI reconstructions with reduced scanning time.

Figure 6-19 presents the PSNR achieved in the reconstruction of CS Brain MRI using
the proposed method and other techniques. The compression ratios vary from 5% to 90%,
representing the percentage of samples retained during k-space data acquisition, with
higher ratios indicating more data is acquired, leading to better recovery at the cost of
longer MRI scanning time. importantly, the proposed NI-IRLS method consistently attains
the highest PSNR across different compression ratios. This consistently high PSNR
demonstrates the algorithm’s exceptional performance in accurately reconstructing CS
Brain MRI images, even under various levels of data compression. As a result, the NI-
IRLS method proves to be an efficient and effective solution for achieving high-quality
MRI reconstructions while reducing scanning time, making it a valuable approach for

practical medical imaging applications.
6.7 Conclusions

The proposed NI-IRLS method introduces an innovative approach to address the non-linear
recovery challenges posed by Compressed Sensing (CS) through a fusion of deterministic
and evolutionary techniques. The method underwent rigorous evaluation of 1D k-sparse
signals, 2D phantom MRI, and real human brain MRI to validate its effectiveness. The
subjective analysis of experimental results demonstrated the notable proficiency of the
proposed method in accurately reconstructing 1D sparse signals and 2D MRI from their

compressively sampled data, preserving critical image details. Moreover, the objective
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analysis based on fitness, SNR, and MSE revealed the superiority of the NI-IRLS method
over alternative recovery techniques when dealing with 1D signals, displaying its
adaptability in handling varying sparsity levels. Quantitative assessments based on ISNR,
PSNR, SSIM, and fitness for CS MRI reconstruction, both for phantom and real human
brain MRI, clearly established the NI-IRLS method’s superiority over other methods,
indicating its capability to achieve high-quality and reliable MRI reconstructions. The
Cartesian undersampling produces aliasing artefacts, while random undersampling
introduces Gaussian noise-like artefacts. The proposed method could mitigate the effects
of both these types of noises in the reconstructed image, showing the robustness of the
proposed method under any type of noise. Even in scenarios with varying compression
ratios, the NI-IRLS method consistently showcased excellent performance, solidifying its
efficiency and reliability, making it a highly effective approach for practical medical
imaging applications. The promising results of the proposed method open new possibilities

for enhanced medical imaging technology and advanced diagnostic applications.
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CHAPTER 7
CS MRI RECOVERY USING HEURISTIC

APPROXIMATION OF l; NORM

In this chapter, novel approaches are introduced for recovering k-sparse signals and MR
images from compressed measurements, employing a combination of heuristic techniques
such as Particle Swarm Optimisation (PSO) and deterministic smooth approximations of
l,-norm-based IST methods. The proposed framework, integrates suitable penalty to
enhance the minimisation of the heuristic algorithm’s loss function and accurately
estimates the actual k-sparse signal. Additionally, the algorithm is extended to address the
specific challenge of recovering CS MRI from incomplete k-space data in the context of
Fourier-encoded MR images. This modified algorithm incorporates the principles of
smooth I; norm approximation by hyperbolic tangent and evolutionary computing
techniques, specifically Genetic Algorithms. By integrating these methodologies, the
proposed techniques facilitate efficient and effective recovery of biomedical images, using
incomplete and under-sampled Fourier data. The presented algorithms offer distinct
advantages in accelerating convergence, precise estimation of sparse signals, and
successful recovery of biomedical images from compressed measurements. These
advancements contribute significantly to signal recovery, particularly in the context of

compressive sensing and Fourier-encoded MR imaging.
7.1 Heuristic Algorithms

Deterministic algorithms, renowned for their mathematical elegance, often require well-
defined initial solutions, making them less user-friendly for various applications. On the
other hand, evolutionary algorithms like PSO offer simpler implementations but may lack
rigorous mathematical foundations [131]. While these algorithms are typically used for
unconstrained search problems, applying them to constrained optimisation can be
challenging [132-135]. However, heuristic algorithms like GA and PSO are well-suited for

handling computationally complex problems that are not amenable to traditional
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approaches. Despite the absence of strict mathematical modelling, these heuristic
algorithms offer practical and efficient solutions.

2 = agrmin (|ly — ®z||% subject to [|z]lo < k (7.1)
z

However, a deterministic algorithm is needed to solve the l; norm-based minimisation

problem in Eq. (7.1) to hasten convergence [136].
7.2 l;-norm Approximation by Hyperbolic Tangent

Compressed sensing (CS) aims to reconstruct undersampled signals by minimising the
[;-norm of the solution, promoting sparsity where only a few elements are nonzero. This
is particularly advantageous for naturally sparse signals, like MRI images on the
appropriate basis, as it facilitates accurate and efficient reconstruction from limited data.
Consider a signal represented as a vector z € R™. Let y € C™ be the undersampled

measurements of the signal. The CS recovery function is written as follows:
1
fG) =5 ly - ¥Hzl + 2zl (7.2)

Here, ¢ defines the sampling matrix for signal x, while ¥ is a sparsifying domain. The
parameter 4 in Eq. (7.2) is crucial parameter for the trade-off between fidelity and sparsity.
The effectiveness of our algorithm depends on choosing the right threshold level.
Depending on the signal size and its noise variance, we used the fixed value expression
[115].

A =0,\/2In () (7.3)
The noise standard variance is denoted by a;,, and the length of the sparse signal is denoted
by n. The tanh has many properties ie., nonconvex, odd, analytical, smooth,
monotonically increasing, bounded, and its curves at its origin are tuneable [123]. This is
why we propose to use the tanh as an approximation for the [;-norm in

Eq. (7.2). The approximation is defined as follows:

n

lzll = ) ztanh(yz) 4

i=1
By selecting a relatively high value for the parameter y to align with the tanh, the [;-norm

is smoothly approximated that is differentiable, resulting in the expression of Eq. (7.2):
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1 n
f@ =5ly - @¥HzlE +1) zntanh(yz) .5)

To enable the application of the steepest descent algorithm, it is essential to rewrite the
expression in element form, as depicted in Eq. (7.5), to facilitate the computation of partial
derivatives. By introducing the notation, A = ®WPH we can express the element-wise

equation as follows:
1
fiz)= EZ(‘" —¥)i(Az — y), + Azjtanh(yz;) (7.6)
i

By introducing the notation A = ¢pP#, we can formulate the partial derivative of Eq. (7.5)
in element form as follows. This formulation allows us to calculate the derivatives

regarding each element individually:

af (z)
az! = Z Aiinl Zl - z y,Au +A (tanh(yz,) + ZIY(l - tanhz (YZ[))) (77)
i i
So, the proposed steepest descent algorithm scheme can be defined as for its [tk update is:
___0f(@
(4z), = -1 3z, (7.8)

The steepest descent algorithm is employed to find a solution using Eq. (7.8). The iterative
update process towards the steepest descent, allows the algorithm to minimise the objective
function by iteratively adjusting the solution based on gradient information.

The tanh offers the advantage of the adjustable slope near the origin and is a function
that is bounded, making it a preferable choice as an estimation for soft thresholding (ST).

Consequently, the mathematical description of tanh-based ST is represented as:

Sap(@) = {cg(tanh(a(lql -®))  lal>B a9

otherwise
Eq. (4.38) encompasses a thresholding parameter, B, and a parameter a, which governs the
behaviour of the tanh. As a tends to zero, the equation resembles a soft thresholding
function, while approaching infinity transforms it into a hard thresholding function. Our
proposed algorithm adopts an ST function initially, transitioning to a hard thresholding
function in later iterations, leading to enhanced reconstruction compared to conventional

soft thresholding methods [123].
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7.3 Particle Swarm Optimisation (PSO)

PSO is a probabilistic optimisation technique with a simple structure known as particle-
based search optimisation [137-139]. In PSO, each particle’s velocities are randomly
assigned, allowing it to traverse the search space. The velocity of the particles is updated
at each iteration using their prior velocity. The gap between their local and global best
solutions. [140] provides the velocity update equation for the PSO-based algorithm.
Vi =WXVg+on(m —x-4)+ Cz"z(Pg - Zi—1) (7.10)
Where r; and 7, are two separately uniformly distributed random values in the range (0,1)
and ¢, ¢, are problem-dependent constants. Inertial weight is represented by the scalar
w € [0,1]. The particle known as the global best, or Pg, has the finest fitness across the
board. p; is the local best, which, according to the cost function, reflects the best prior
position of the i** particle. The algorithm’s performance can be significantly impacted by
changing the free parameters c;, c,, and the inertia weight w [141].
The position z; of the i** particle is updated in the conventional PSO by its velocity:
z;=2z,+vy (7.11)
The Basic PSO algorithm begins with a random population of 20-50 particles,
depending on the specific challenge. During each iteration, particles move according to

their velocity, updated based on local and global optimal positions.
7.4 Heuristic Smooth Approximation of I;-norm (H-SL1)

The proposed H-SL1 algorithm introduces a combination of two different algorithms,
namely PSO and smooth approximation of l;-norm [12, 22] to address the problem of
recovering a k-sparse 1-D signal and performing CS MRI. The aim is to solve the
constrained optimisation problem defined by Eq. (7.2).

To ensure the sparsity in the solution, all particles of the population are initialised, and
the technique applies soft thresholding based on the IRLS algorithm. Though, the particles
after velocity update can lose sparsity. Therefore, after each position update, another round
of soft thresholding defined by Eq. (7.9) is performed to maintain the sparsity constraint
throughout the recovery process.

In situations where the fitness of the global best particle remains unchanged for a

specified number of iterations, the SL1 is employed. This algorithm updates the position
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of the second-best particle in the population, using a specific strategy elaborated in
Algorithm 1 and Algorithm 2. This helps to improve the convergence and accuracy of the
algorithm in finding the optimal solution. Overall, the proposed technique combines the
strengths of PSO and smooth approximation of [;-norm to address the k-sparse 1-D signal
and CS MRI recovery problem by ensuring sparsity and enhancing the optimisation
process.

The backpropagation error E is defined as Eq. (7.12).

E=F,"(y - ®¥z,) + ¥z (7.12)

The y parameter is used to tackle the varying compression ratio of the MRI to be
estimated defined by Eq.

y = 100 — compression ratio. (7.13)

The parameter y is introduced to address varying compression ratios (CR) of the
undersampled k-sparse signal. This adjustability empowers the algorithm to dynamically
adapt to different degrees of data compression. By modifying y based on the specific CR,
the algorithm can effectively tailor its reconstruction approach, accommodating different
levels of sparsity in the signal. The experimentation section provides evidence that the
algorithm's flexibility yields promising results, showcasing its ability to handle varying
CRs and consistently produce accurate reconstructions, making it a versatile and reliable
solution for sparse signal recovery tasks across diverse data compression scenarios as
shown in Figure 7-17 and Figure 7-18.

The data consistency constraint in the frequency domain is a fundamental principle in
CS MRI reconstruction defined by Eq. (7.14). It ensures that the actual samples acquired
in the k-space domain remain constant throughout the recovery process. The measured data
points in the frequency domain, which correspond to the acquired MRI measurements, are
preserved, and not altered during the iterations of the recovery algorithm. The data
consistency constraint is crucial because it guarantees that the recovered image remains
consistent with the acquired data. It prevents the algorithm from introducing spurious
information or modifying the original measurements, which could lead to erroneous results.
By preserving the actual samples from the k-space domain, the algorithm ensures that the
recovered image accurately represents the underlying structure of the imaged object, even

with limited or under-sampled data. The data consistency constraint in the frequency
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domain is a vital aspect of CS MRI recovery, as it maintains the integrity of the acquired
data and helps achieve reliable and accurate image reconstruction.
Yil/1 = Fu(X;) (FFT of Estimated Image)
v = =0 7.149)
yljl otherwise

X

X »

NI-IRLS

2
Recovery techmaque of proposed algorithm

Figure 7-1: Two Initial Inputs for H-SL1 from ZF and LR and generated output from the
proposed algorithm

a)Spatial Domain Image b)Sampiing Domain{Frequency)

c)Undersampled image d) Sparsifying Domain (Wavelet)

Figure 7-2: Different domains used in the proposed algorithm.
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Figure 7-1 illustrates the two initializations used for the proposed algorithm Low
Resolution (LR) and Zero Filling (ZF), which are crucial for fitness comparison during
optimisation. The LR initialization involves reconstructing the initial image from low-
resolution measurements, providing a coarse estimation with limited details. On the other
hand, the ZF initialization fills the missing k-space data with zeros, creating an initial image
with potential artefacts. Both initializations are then evaluated based on fitness measures
to determine which better approximates the original image. The initialization with superior
fitness is the global best solution, becoming the starting point for subsequent optimisation
steps, enhancing the likelihood of achieving a high-quality reconstructed image through
the algorithm’s optimisation process.

In Figure 7-2, the proposed technique for image reconstruction is illustrated,
showecasing different domains involved in the process (a) shows the original Image, this
domain represents the original image, which serves as the reference for the entire
reconstruction process. It contains complete information about the image without any loss
or compression. (b) depict the k-space sampling domain, in this domain, the k-space data
is generated by applying masks to the original image. The masks are applied for
undersampling the k-space data, meaning that only a subset of the k-space samples is
acquired, reducing data acquisition time. (c) elaborates the effects of undersampling in the
Spatial Domain, after undersampling in the k-space domain, the effects of this
undersampling are depicted in the spatial domain. The spatial domain is the familiar
domain where we perceive images with their pixel values. Due to undersampling, the
reconstructed image in this domain will exhibit artefacts and degradation compared to the
original image. (d) In our proposed method, the Sparsifying Domain i.c., Wavelet, the
undersampled k-space data is processed through a sparsifying process that involving
shrinkage. Sparsifying transforms the k-space data into a sparse representation, where most
coefficients are set to zero or close to zero, highlighting the sparsity of the data. Shrinkage,
in this context, refers to reducing the magnitudes of non-zero coefficients, further

enhancing the sparsity.
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Algorithm 7.1: Algorithm for recovery of k -sparse 1D signal

Task: Recovery of k — sparse signal z € R™ that minimises the objective function:
1 n
f(@) = argm.in(illy ~ dYHg|2 4 AZ‘ z;tanh(yz,)
=1

Input: Dictionary ®e R™ ", Sparsity level k, Population size N, PSO parameters c¢,,c, and w
Compressed Measurement y € R™, thresholding parameters: a, #, constant u.
Output: A Recovered k — sparse signal z € R
1) Initialisation: Initialise H — SL1 iteration number k = 0
Initial solution: zy = [2,,1,, ... .....2,],a = 1.
Initial residual:ry = y — ®z,,V = 0, velocity matrix
Generate N particles randomly with desired sparsity
Z=|z,,2,,...... z,),wherez, € R®and ||z)llo Sk Vi< 1< N
2) Fitness Evaluation and Sorting:
[z = fitness(zy,3,, ..., zy) = [f1, foy . fiv]
Where f; = (®z, — y)T(®z, — y)
[fss index] = sort(f,, descend)
fs = [fu-fzz- - fen] with mS fas .< fen
3) Initial local and global best
P = zo(index) = [p,, p,, ..., py] where p;has fitness f,
Pg = P, initial global best
4) H-SL1 Main Iteration: Increment k by 1,and apply the following steps
a) Velocity and Position update: Update Velocity and position defined by Eq. (7.10) and
Eq. (7.11) respectively: ¥ = velocity(V, P, 2y, py, c1, c3, W) = [vy, 05, ..., Dy]
Z = position(Z,V) = [|2, ] |2,]x, ... |Zy]x]. where z, = z,_, + 1))
b) Back Projection: Compute e = ®'r,_,
c¢) Compute Gradient: Compute gradient by Eq.(7.7)
d) Steepest Descent Algorithm: Apply steepest descent algorithm using Eq. (7.8)
&) Shrinkage: Compute e, = 5, 5(e) = {;z(tanh(a(lel -B))  lel>B

otherwise
Where c is a random number.
Update a,,, = a; * 1.5 at each iteration (from soft to hard thresholding)
=rand x(e,-z,) + 2,
where z,is a randomly selected from the population and CR is the compression ratio
f) Update local and global best based on fitness:
[z2 = fitness(Z)
[fr2s index] = sort(f,,, descend)
frzs = [faa1: frazs wos fan) With fray € fr22 S . S fraw
Z, = Z(index)
= [221, 233, ..., 23] where 2, has a fitness f,,,
if fra1 S f1 then py = 2y,and fyy = fiy,, (new global best)
else if fiz; < fui thenp, = zyand fy, = fr51, Vi <1 < N (local best)
g) Solution Update: Update z; = p, + u(e, — p,)
h) Residual Update: Computer, = y — &z,
I) Stopping Rule: Go to step (4) unti, either ||z, — z,_, |3 < threshold value or the
maximum number of iterations criteria is met.
5) Output: The final estimated solution is z,
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Algorithm 7.2: Proposed Algorithm for CS MR Image Recovery

Task: Find the value of image X that minimises the objective function:
n
£ = argmin(ly ~ FXIE+2) . xtenh(rx))
x 1=1

Input: Sampling Matrix Fy € R™*n | Sparsifying Transform ¥, constant ut,
Measurement matrix (Undersampled)Y € R™, thresholding parameters:a, B, constant p.
Output: A Recovered Image X € R™™
1) [Initialisation: Initialise IRLS iteration number k=0
Initial solution: Xg = [x1,X2, 0o v0n Xpxm]
Initial residual: Ry =Y — Xp
2) Fitness Evaluation and Sorting:
[X1 X3, f1f2] = fitness(X13, X2, Y)

Where f; = (FuXy—¥)" (Fuxy = ¥).J = 1.2

wenx, = (5 0L

3) H-SL1Main Iteration: Increment by 1,and apply the following steps
a) Back Projection: Compute E = (e — 1)
b) Compute Gradient: Compute gradient by Eq. X))
¢) Steepest Descent Algorithm: Apply steepest descent algorithm using Eq. (7.8)
d) Shrinkage: Compute e, = Sg z(€) = cx(tanh(a(le] - B )) lel > B
) P s = Sas() 0 otherwise
Where c is a random number.

Update ay,; = @i * 1.5 at each iteration (from soft to hard thresholding)
Where ¢ is a random number.

Xp =7 X (Es— X;) +X;
where X, is a randomly selected from either X, or X2,
and,y = 100 — compression ratio
¢) Data Consistency in Fourier Domain
Yi[j1 = Fu(X))

_ll irylil=0
Yl = ;[I'] otherwise

f) Reassignment as per fitness
X, = F(X), fe = (FuXe =) (F. X, — Y)
if fe < hX1=XeiX2 =Xy
elseif f; < . X, = Xy:
g) Solution Update: Compute X; = Xi-1 + R(E; — Xi-1)
h) Residual Update: Compute R; = Y — FuX;
f) StoppingRule: Go to stp (2) until, either || X, - X,_1l12 < threshold value or
the maximum number of iterations criteria is met.
4) Output: The final value of X,
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7.5 Experimental Results for Recovery of 1-D Signal

The one-dimensional sparse signal is recovered using the proposed technique. In this
experiment, MATLAB is used to generate a random k-sparse signal of length n = 512,
with K = 85 non-zero elements serving as the k-sparse signal’s support. With just
m = 256 measurements taken, a random measurement matrix ® € R256%512 ;g
employed to compressively sample the random sparse signal.

In this chapter, various recovery algorithms, including Least Square (LS), IRLS, PSO,
PCD, SSF, and the novel Heuristic Smooth Approximation of /;-norm (H-SL1), were
utilised to recover a sparse signal. Performance comparison was achieved through MSE,
SNR, and Cost Function (CF) minimisation. The algorithms were evaluated based on their
potential to recover the 1D original k-sparse signal, with MSE quantifying the mean
squared difference, SNR, and CF measuring the cost function's minimisation. These results
offer valuable insights into the efficacy of the proposed H-SL1 algorithm for sparse signal
recovery.

In Figure 7-3, the recovered k-sparse 1D signal using the linear recovery method Least
Square (LS) based on l,-norm is depicted. However, the results reveal that LS fails to
promote sparsity in the estimated solution, leading to inaccuracies in reconstructing sparse
signals. This highlights the methods’ limitations in effectively identifying and
reconstructing sparse components, emphasizing the need for alternative approaches to

handle sparsity in signal recovery.

Recoverd Signal through Least Square Method
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Figure 7-3: Recovered 1D k-sparse signal using LS
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Figure 7-4: Recovered 1D k-sparse signal using SSF
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Figure 7-5: Recovered 1D k-sparse signal using PCD
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Figure 7-6: Recovered 1D k-sparse signal using PSO
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Figure 7-7: Recovered 1D k-sparse signal using IRLS
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Figure 7-8: Recovered 1D k-sparse signal by Heuristic SL1
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Cost Function vs lterations
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Figure 7-9: Cost Function minimised by H-SL1 vs. other methods
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Figure 7-10: SNR achieved by H-SL1 vs. other methods
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Mean Square Error vs lterations
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Figure 7-11: MSE minimised by proposed H-SL1 vs. other methods
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Figure 7-12: Normalized Success Rate by varying sparsity level
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Figure 7-4 depicts the recovery of k-sparse 1D signal by SSF, which promotes sparsity but
got stuck in local minima and failed to reach an optimal solution. Figure 7-5 shows the
recovery by PCD, as discussed in Chapter 2, recovers the sparse signal with some accuracy,
however, it fails to reach the desired accuracy. Figure 7-6 shows the recovered 1D sparse
signal by PSO but the desired accuracy could not be achieved. Figure 7-7 shows the
recovered signal from IRLS k-sparse signal from a limited set of observations.

In Figure 7-8, the recovered k-sparse signal from its undersampled data is depicted.
The reconstruction is achieved using the proposed Heuristic Smooth approximation of
l,- norm (H-SL1) method. The figure demonstrates the effectiveness of the H-SL1
algorithm in accurately estimating the sparsity level of the original signal and precisely
recovering the amplitudes of the non-zero elements.

Figure 7-9 demonstrates the cost function minimisation process using the proposed H-
SL1 method, revealing its advantage over other algorithms that get trapped in local minima.
While traditional algorithms struggle to minimise the cost function and might become stuck
in suboptimal solutions, the H-SL1 method’s inherent randomness allows it to explore a
broader solution space, effectively recovering from local minima and eventually reaching
a near-optimal solution. This ability to escape local minima and explore diverse solutions
enhances the algorithm’s performance, making it more reliable and efficient in improving
cost function minimisation during sparse signal recovery.

In Figure 7-10, the performance of different methods is assessed and compared to the
Proposed H-SL1 algorithm in terms of SNR. The results reveal that the proposed H-SL1
algorithm achieves the highest SNR among all the methods under evaluation. The superior
SNR achieved by the proposed H-SL1 method highlights its effectiveness and reliability
in sparse signal recovery in a noisy environment.

In Figure 7-11, the performance of different techniques is evaluated and compared to
the H-SL1 method in terms of MSE. The results indicate that the proposed H-SL1 method
outperforms the other techniques, achieving the minimum MSE. The lower MSE values
obtained with H-SL1 demonstrate its superior accuracy in reconstructing the sparse signal
compared to the alternative methods. These findings validate the effectiveness of the
H-SL1 approach is a powerful and reliable technique for sparse signal recovery, making it
a promising choice for applications requiring precise and efficient reconstruction of sparse

signals.
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Figure 7-12 shows the normalized successful recovery attained by each method while
varying the percentage of sparsity levels in the test signal with a success criterion of MSE
value at 103, Each method runs through 30 iterations, with the number of successes
divided by the total number of iterations at each sparsity level. The correct reconstruction
of the original k-sparse signal using different recovery techniques is referred to in this
context as successful recovery. The graphic illustration shows the efficiency of the
proposed H-SL1 method in successfully recovering the sparse signal, even in the presence
of 20% non-zero elements showcasing its efficacy in faithfully recovering the
compressively sampled 1D k-sparse signal.

The recovery process involves taking the undersampled data and applying the H-SL1
method, which combines heuristic optimisation techniques and smooth /; norm methods.
Through this approach, the algorithm can intelligently adapt to the sparsity level of the
signal, efficiently identifying the locations of the non-zero elements and accurately
reconstructing their amplitudes.

The successful recovery of the k-sparse signal shown above highlights the robustness
and accuracy of the proposed H-SL1 method. It demonstrates that the proposed algorithm
can handle sparse signals and recover their essential components even from limited and
undersampled data. The results emphasize the potential of the H-SL1 technique for
applications involving sparse signal recovery, such as in medical imaging, signal

processing, and data compression, where precise and efficient reconstruction is crucial.
7.6 Experimental Results and Discussion for CS MRI Recovery

Random sampling during CS image collection produces incoherent and noise-like effects
in the sparsifying domain. The analytical recovery method, where missing k-space data is
substituted with zero and the resulting recovered MRI is calculated using IFFT, causes
artefacts that resemble additive Gaussian noise when applied to k-space encoded MRI. The
undersampling patterns determine what kind of noise is produced by sub-sampling. [99].
Drawing a comparison between CS encoding and noisy images, compressed sensing
reconstruction transforms into an image-denoising task. A Brain MRI with dimensions of
256 x 256 and a 2-D compressively sampled phantom MRI are recovered using the
suggested approach. The St. Mary’s Hospital in London provided both the MRIs data.
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The results from the phantom MRI are presented first. The phantom MRI is
compressively sampled by retaining only 25% of the samples using a random
undersampling mask in k-space. The methods used to qualitatively compare the proposed
H-SL1 algorithm are ZF, LR, SSF, POCS, IRLS, Modified IRLS, and PSO.

The proposed algorithm has outperformed all the methods, as evident from Figure 7-13
for recovery of phantom CS MRI. In Figure 7-13 (a), the recovered images along with the
zoomed-in portion for further clarity by the proposed H-SL1 method and other methods
alongside the original image are shown. It is evident that the recovered image from H-SL1
closely matches the original image. Figure 7-13 (b) shows the masks the undersampled the
original image. The original image is fully sampled, and LR uses the specific centric circle
of the k-space. All other methods used the same random mask with only 25% values set
as 1, while the remaining values are set to 0. In Figure 7-13 (c), the amplified difference
between the original and recovered images by the factor of 1000 is depicted. Here it is
visible that the proposed H-SL1 method recovered image is closer to the original image,
and very few differences could be found. The LR method fails to recover the edges as only
centric k-space data is acquired. The ZF method has introduced Gaussian noise-like
artefacts in the recovered image. Other methods use the recovered image by ZF as the
initial estimate of the image.

Figure 7-14 quantitatively assesses the proposed H-SL1 method efficiency when
applied to phantom MRI, comparing it with other techniques like POCS, Modified IRLS,
and PSO. The evaluation is based on various metrics, namely ISNR, PSNR, SSIM, and
Fitness. In Figure 7-14 (a), the ISNR comparison between POCS and the proposed H-SL1
algorithm indicates that the proposed method improves ISNR. Similarly, Figure 7-14 (b)
illustrates the improvement in PSNR achieved by using the proposed method. Furthermore,
Figure 7-14 (c) shows an increase in SSIM, denoting a better similarity between the
recovered and original images when the proposed algorithm is applied. Lastly, Figure 7-14
(d) portrays a decrease in fitness, indicating that the proposed H-SLI algorithm
outperforms other methods in terms of fitness during the signal CS MRI recovery process.
These results collectively demonstrate the effectiveness and superiority of the proposed H-
SL1 method for enhancing the quality of the reconstructed phantom MRI from

undersampled k-space data.
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Figure 7-13: Illustrates (a) Zoomed-in recovered phantom MRI, (b) Masks for
Undersampling, (c) Magnified Difference of Original and Recovered Phantom MRI.
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Figure 7-14: ISNR, PSNR, SSIM and Fitness achieved by H-SL1 vs. other Methods for
recovery of Phantom MRI.
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Figure 7-15: lllustrates (a) Zoomed-in recovered Brain MR1, (b) Masks for Undersampling,
(c) Magnified Difference of Original and recovered Brain MRI Images.
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Figure 7-16: Comparison of ISNR, PSNR, SSIM and Fitness for recovery of CS Brain
MRI at each iteration.
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Figure 7-17: The SSIM achieved by varying compression ratio using H-SL1 vs. other
comparison methods.
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Figure 7-18: The PSNR achieved by varying compression ratio using H-SL1 vs. other
comparison methods.
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The experimental results from Real Human Brain MRI are presented, where the MRI
data is compressively sampled, retaining only 25% of the samples using radial lines
undersampling mask in k-space. The proposed H-SL1 algorithm is qualitatively compared
with ZF, LR, SSF, POCS, IRLS, Modified IRLS, and PSO methods. Figure 7-16 shows
that the proposed algorithm outperforms all other methods. In Figure 7-16 (a), the
recovered images are shown alongside a zoomed-in portion for better clarity, illustrating
the performance of H-SL1 and other methods compared to the original image. The
recovered image from H-SL1 closely matches the original image. Figure 7-16 (b) depicts
the masks used for undersampling the original image, with LR using specific centric
ordered data of the k-space while all other methods use the same radial line mask with only
25% values set as 1, while the rest of the values are set as 0. Radial mask undersampling
results in a Gaussian-like noise effect in recovered images. Figure 7-16 (c) amplifies the
difference between the original image and the recovered image by a factor of 1000, clearly
showing that H-SL1 produces a recovered image closer to the original with minimal
differences. The LR fails to recover edges due to limited data acquisition, and ZF
introduces Gaussian noise-like artefacts in the recovered image. Notably, the ZF-recovered
image is used as the initial estimate for other methods. The results demonstrate the
superiority of the proposed H-SL1 algorithm in accurately reconstructing real human brain
MRI images even with significant undersampling, showcasing its potential for practical
applications in medical imaging.

Figure 7-17 illustrates the Structural Similarity Index (SSIM) achieved in the
reconstruction of Compressed Sensing (CS) Brain MRI for the proposed method and other
techniques, with varying compression ratios ranging from 5% to 90%. The compression
ratio represents the percentage of samples retained during k-space data acquisition, wherein
higher percentages indicate more data is acquired, resulting in better recovery but longer
MRI scanning time. The proposed H-SL1 method consistently achieves the highest SSIM
across different compression ratios. This demonstrates the algorithm’s superior
performance in accurately reconstructing CS Brain MRI images, even under various levels
of data compression, making it an efficient and effective solution for achieving high-quality
MRI reconstructions with reduced scanning time.

Figure 7-18 presents the PSNR achieved in the reconstruction of CS Brain MRI using

the proposed method and other techniques. The compression ratios vary from 5% to 90%,
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CHAPTER 8
DISTA-CSNet: DEEP LEARNING-BASED CS MRI

RECOVERY

In this chapter, a novel deep learning model is introduced called “Deep Iterative Shrinkage
Thresholding Algorithm Compressed Sensing Network” (DISTA-CSNet) designed for
efficient recovery of CS MRI. Our model can be easily trained on various datasets and
achieves impressive results with just 20 epochs. By incorporating dropouts into the model,
we ensure its robustness across diverse datasets, as verified during testing. The trained
DISTA-CSNet performs remarkably in recovering CS MRI from different datasets by
using dropouts. In comparison to several advanced deep learning techniques used for CS
MRI recovery with changing compression ratios, our proposed model consistently
outperforms them. We observed significant improvements in both PSNR and SSIM

metrics, reaffirming the efficacy of our approach.
8.1 Introduction

Recently, there has been a growing interest in utilizing deep learning (DL) methods to
enhance the reconstruction of CS MRI images from sparsely sampled data. Among these
techniques, CNN has the potential to capture intricate patterns and structures in images,
making them well-suited for producing high-quality MR images. Researchers have devised
deep learning architectures to cater specifically to CS MRI reconstruction. These networks
are trained to map undersampled input data and fully sampled MRI. Leveraging extensive
datasets containing paired undersampled and fully sampled MR images, these models aim
to grasp the underlying image structures and thus enhance the accuracy of reconstructions
[29-31].

A prevalent approach in CS MRI recovery with deep learning is to adopt an end-to-end
learning framework. This entails the network taking undersampled data as input and

directly generating the fully sampled image as output, eliminating the need for intermediate
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representing the percentage of samples retained during k-space data acquisition, with
higher ratios indicating more data is acquired, leading to better recovery at the cost of
longer MRI scanning time. Importantly, the proposed H-SL1 method consistently attains
the highest PSNR across different compression ratios. This consistently high PSNR
demonstrates the algorithm’s exceptional performance in accurately reconstructing CS
Brain MRI images, even under various levels of data compression. As a result, the H-SL1
method is an efficient and effective solution for achieving high-quality MRI
reconstructions while reducing scanning time, making it a valuable approach for practical

medical imaging applications.
7.7 Conclusions

The proposed H-SL1 method introduces an innovative approach to address the non-linear
recovery challenges posed by Compressed Sensing (CS) through a fusion of deterministic
and evolutionary techniques. The method underwent rigorous evaluation on 1D k-sparse
signals, 2D phantom MRI, and real human brain MRI to validate its effectiveness. The
subjective analysis of experimental results demonstrated the notable proficiency of the
proposed method in accurately reconstructing 1D sparse signal and 2D MRIs from their
compressively sampled data, preserving critical image details. Moreover, the objective
analysis based on fitness, SNR, and MSE revealed the superiority of the H-SL1 method
over alternative recovery techniques when dealing with 1D signals, displaying its
adaptability in handling varying sparsity levels. Quantitative assessments based on ISNR,
PSNR, SSIM, and fitness for CS MRI reconstruction, both for phantom and real human
brain MRI, clearly established the H-SL1 method’s superiority over other methods,
indicating its capability to achieve high-quality and reliable MRI reconstructions. Even in
scenarios with varying compression ratios, the H-SL1 method consistently showcased
excellent performance, solidifying its efficiency and reliability, making it an invaluable
and highly effective approach for practical medical imaging applications. The promising
results obtained by the proposed method open new possibilities for enhanced medical
imaging technology and advanced diagnostic applications.
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8.2 Iterative Shrinkage Methods and Deep Learning

The iterative sparse coding algorithm idea was first put forth in [152], and it serves as the
foundation for the discriminative learning techniques explored here. These techniques
incorporate concepts from trained models to DL methodologies. One iteration in these
methods is comparable to a conventional CNN-based training approach. In contrast to
conventional CNNs, these frameworks can learn the necessary mapping during the training
phase by increasing the number of iterations without introducing additional parameters. As
a result, network depth can be expanded without suffering the parameter costs associated
with conventional CNNs. Adler and Ktem [153] developed a primal-dual learning
technique where proximal operators were replaced with a CNN, drawing inspiration from
primal-dual hybrid gradient approaches.

To achieve convergence under specific circumstances, Gupta et al. [154] introduced a
relaxed version of projected gradient descent that enforced measurement consistency
between the reconstructed pictures and their related measurements. Our method produced
better results for the reconstruction of sparse-view computed tomography (CT).
Hammernik et al. unrolled gradient descent method for reconstructing knee MR images
with a 4 undersampling factor included a variational model [155]. With the use of a single
graphics card, this work showed increased computational performance for undersampled
reconstruction. A deep CNN was used to replace the denoising operator in each iteration
of the learned-AMP method created by Metzler et al. [156] and is known as the unrolled
approximate message passing (D-AMP) algorithm [157].

Building on their earlier work in [158] and [29], they suggested a CS reconstruction
approach for MR and natural image recovery using an unrolled alternate direction method
of multipliers (ADMM) algorithm [158]. This model’s discriminatively learned CS
recovery and ADMM parameters produce good results on real-valued natural pictures and
complex-valued MR images.

An IST approach for CS recovery of natural and MR images was proposed in [30] and
is based on an unfolded neural architecture. They recovered real images from
undersampled observations using an iterative thresholding technique (ISTA) [30]. These
proposed ISTA-Nets utilise the advantages of both optimisation-based and network-based

computer science methods, and they are designed with a well-structured topology for
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steps like iterative reconstruction. As a result, the end-to-end approach improves efficiency
and reduces computational complexity [32].

However, a common challenge arises from the limited training data available.
Researchers have explored various data augmentation techniques to artificially expand the
training dataset to tackle this issue. These techniques include applying random
transformations, patch extraction, and simulated undersampling patterns. Additionally,
regularisation techniques, like incorporating sparsity or total variation constraints, have
enhanced the generalisation and reconstruction quality of deep learning models [33, 34].

In recent years, deep learning techniques successfully addressed the inverse image
processing challenges [142], [143]. For instance, the ImageNet dataset was used in [144]
to rebuild natural images. A CNN framework for recovering CS videos was presented in
[145] [6]. Some of these methods, meanwhile, have limitations due to fixed measurement
matrices and image sizes.

K.H. Jin et al. suggested a CNN-based technique to overcome these limitations[143].
This algorithm learned mappings from CS reconstructions to highly efficient
reconstructions. GANs have been developed more recently for CS-MRI reconstruction to
attain higher quality CS reconstruction [35, 37]. These CNNs use MSE as their cost
function. To enhance the calibre of MR image reconstructions, A DL framework with the
Bayesian method was proposed in [146] by leveraging the probability of priors as a training
loss.

Other researchers have also been investigated Novel frameworks. To more accurately
predict CT images, J.M. Wolterink et al. presented a CNN-based framework in addition to
adversarial CNN [147]. To maintain texture and edges in the reconstructed CS image, the
DAGAN method combined was proposed [148]. To obtain improved performance and a
quick reconstruction time, a GAN-based framework with dictionary learning frameworks
combining pixel-wise mapping was proposed in [149].

The DL method using patch-based CS jointly improved the dictionary and non-linear
recovery operator, leading to enhanced proficiency compared to cutting-edge approaches
[150]. A self-supervised training approach for MRI recovery with undersampled data in

cases where fully sampled datasets are not readily available [151].
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improved CS image reconstruction. A key aspect of ISTA-Nets is their interpretable nature,
enabling a clear understanding of their operations. Unlike traditional methods, all
parameters in ISTA-Nets are end-to-end discriminatively learned, ensuring efficient
utilisation of the network’s potential for image reconstruction. By combining the strengths
of optimisation-based and network-based approaches and incorporating interpretability,
ISTA-Nets represent a promising advancement in CS image recovery.

The ML-CSC system for CS-MRI restoration [31], employing iterative thresholding
techniques to extract nonlinear mapping parameters from CS MRI k-space data. MRI-CS
framework effectively learns the appropriate mapping from CS measurements for knee and
brain MRI. The CS reconstruction results showed improvement with a relatively small

increase in the number of learnable parameters in the deep neural network.

8.3 DISTA-CSNet Model

Deep learning architectures are frequently trained using heuristic methods, which call for
theoretical analysis to improve feature learning and provide precise answers to inverse
problems, particularly in biological images. For doctors to diagnose patients correctly,
biomedical imaging reconstruction quality cannot be compromised. These frameworks
must first undergo substantial training on unique datasets before being used in real-world
situations. There is a need for a universal framework that is robust to varied datasets to
encourage the incorporation of machine learning technologies in MRI scanning. The
test/restore methodology must also be easily used in clinical situations once the model
parameters have been learned to ensure wider applicability.

The effectiveness of the iterative shrinkage-based methods is applied to the inverse
problem of CS-MRI, demonstrating its suitability in deep learning. Recently, this theory
has been used to explain the theoretical basis of deep learning, showcasing its efficiency in
addressing CS-MRI reconstruction challenges. The DISTA-CSNet approach leverages
CNN unfolding, allowing for increased network depth without adding parameters or
computational complexity, distinguishing it from the conventional DL approach based on
CNNs. As a result, the reconstruction performance is significantly enhanced, as confirmed
by experiments conducted on diverse datasets, validating its ability to produce high-quality

reconstructions.
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Three benchmark datasets are utilised to train a generalised framework, and images are
restored using this adaptable approach. To demonstrate its versatility and practicality, the
framework is thoroughly tested on both GPU and CPU computers, demonstrating
respectable restoration times and yielding high PSNR/SSIM metrics for MR image
reconstruction. This comprehensive evaluation affirms the framework’s potential for real-
world application in medical imaging scenarios, showcasing its ability to reconstruct MR
images with high fidelity and accuracy efficiently.

The proposed CS-MRI restoration paradigm in the study incorporates new findings
from theoretical deep-learning research [159]. This approach, which combines an ISTA-
based global iterative process with a multi-layered convolutional neural network, aims to
effectively train to quickly map fully sampled MR images and matching CS MRI k-space.
The primary benefit of DISTA-CSNet is its ability to train quickly (i.e., 20 epochs) and
global pursuit, which enables the framework to learn the mapping more effectively.

The DISTA-CSNet model was trained using a GPU processor during the training phase,
allowing us to achieve rapid training times and effectively learn the model parameters.
Once the model has been learned, it may be used to restore CS-MR images using a variety
of CS ratios and random masks. The approach demonstrates flexibility and sturdiness by
generating accurate reconstructions for various undersampling conditions.

The capacity of our suggested framework to perform test set reconstructions on a CPU
without relying on GPUs is a noteworthy advantage. This method permits suitable
restoration times, illuminating the effectiveness of the trained parameters. As a result, the
framework is useful for practical applications in clinical settings where GPUs might not
always be available, offering a successful method for CS-MRI restoration with significant
timesaving capabilities.

In general, the iterative shrinkage thresholding-based algorithms in the context of CS

MRI recovery aim to minimise the cost function defined by the following equation.
1
f(x) = argmin lly — o¥HxllZ + Allxlly (8.1)

The layered iterative shrinkage methods proposed by [30] and [160] attempt to unfold
neural networks by simultaneously minimising the above-cost function by iterative

thresholding methods. This approach is aimed at achieving a global multilayer sparse
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model, where it is not attainable. Instead, the focus is on obtaining representation estimates
that describe the local layer defined by Eq. (8.2).

1
flx) = argmin > ly: — @Y ;13 + Al 8.2)
x
Where x; represents the current layer of the model.
8.4 DISTA-CSNet Training Model

The suggested approach processes images in k-space with related CS measurements using
multi-layer ISTA. The proposed DISTA-CSNet aims to effectively train to quickly map
fully sampled MR images and matching CS MRI k-space and store these mappings as
model parameters. The model trains with only 20 epochs while achieving better PSNR and
SSIM than other state-of-the-art algorithms, as evident from experimental results. The
testing module then reconstructs test images using the trained ML-ISTA learning
parameters and computes the recovered images' PSNR and SSIM. For all layers, it uses
Xavier initialisation to initialise the dictionaries.

Algorithm-8.1 presents the multi-layered basis pursuit algorithm, which uses the
iterative thresholding process. To train the model parameters, the framework collects
ground truth images, k-space data, and masks for under-sampling. Without additional
parameters, the learning process, Algorithm-8.1, uses ML-ISTA unfolding to deepen the
learning framework. The model was trained separately on the Brain MR image and Knee

MR image. Both models were tested for CS MRI recovery based on PSNR and SSIM.
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Figure 8-1: DISTA-CSNet Training Model

84.1 Training /Testing Datasets

The first dataset comes from earlier work [30], and it comprises 850 brain MRIs that were
captured in the sagittal and axial planes as a pair of (CS MRI, Label (Ground Truth Image)
(Dataset 1). 621 Knee MRIs from patients comprise the second dataset used to train the
CS-MRI framework. These Knee MRIs are fully sampled of the coronal view with PD fat
saturation and were taken using a 1.5T imaging device (Siemens MAGNETOM
Symphony) at the Hospital Kuala Lumpur (HKL) (Dataset 2). A certified radiologist
classified the MRIs into three categories: full tear, partial tear, and normal knee. The
images were collected to diagnose anterior cruciate ligament (ACL) damage. The
performance was evaluated using a test set of 50 and 21 MRIs randomly from both datasets,
respectively. The third dataset comprises 123 slices thick, 256 X 256 size MRIs of ageing-
normal brains in the coronal plane [161] (Dataset 3), this dataset was used for testing
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purposes only. It was tested by using the model trained on the first dataset. The Harvard
Medical School’s AANLIB database makes this dataset accessible to the public.
Algorithm 8.1. Training of DISTA-CSNet

Task: Training of DISTA — CS Net with CS MRI data along with its fully sampled labels

() = argmin(ly F¥*al + 2 xtanhys)

Input:
Training Data (CS MRI along with labels), Dictionary ®e R™™, Masks for Undersampling
,Thresholding parameter 2, B. Adams Optimizer learning rate p, undersampled data y,
Output: Trained DISTA — CSNet Model for CS — MRI Recovery
1) Initialisation: Initialise Wieghts and Conv filters using Xavier Initialisation
Set thresholding A and B to a learnable parameter.
Initial residual: Ty = xo — aF,(y, - F,x,)

2) DISTA CS-Net Main Iteration: Increment i by 1, and apply the following steps
a) Residual: Compute r, = F,~(y,-; — Fux,—y)

b) Data Consistency in Fourier Domain

X[ = Fa (X))
o (xll ifxpl=0
Xocli] = [.t‘[]] otherwise

€) Convolutions: Perform convolutions as shown in Figure 8-1

d) Dropouts: Perform Dropouts as shown in Figure 8-1

€) Convolution Transpose: Apply convolution Transpose as shown in Figure B-1
D) ReLU: Apply Relu as shown in Figure 8-1

g) Shrinkage: Compute x; = S, 5(x) = ;,(tanh(l(lx. 1-/)) othzlu;s f

b) Use Adam Optimisation: Compute updated x; using learning rate u

) Residual Update: Compute r\,; =y — F x,

) Stopping Rule: Go to step (2) until the maximum number of epochs criteria is met.
3) Output: Trained DISTA — CSNet Model

8.4.2 Mote Carlo Dropouts

.The introduction of Monte Carlo (MC) Dropout has certainly made the proposed model
more robust as evidenced by performance on varying datasets by avoiding over-fitting.
Dropout, originally proposed by Yarin et al. [162], is a practical and computationally
efficient method to estimate model uncertainty in deep neural networks. It involves
applying dropout during both training and inference, allowing for the computation of
prediction uncertainty, and addressing overconfidence in deep learning models. MC
Dropout introduces variability in predictions by performing dropout multiple times during

inference, leading to improved reliability and performance of deep neural networks.

167



MC Dropout is a technique used during training in a deep neural network, where
dropout is applied to certain neurons with probability p, resulting in a set of predictions
(Y1, Y2,---»¥a) Obtained by sampling the output multiple times with different dropout
masks. The final prediction for an input data point x is calculated as the average of these
sampled predictions, allowing for prediction uncertainty estimation and improved model

performance.

1

Yfinal = (-T-l) * 2(y)fromi=1ton (8.3)

MC Dropout is a technique that utilises dropout during both training and inference to
enhance model performance, estimate prediction uncertainty effectively, and improve the
robustness and accuracy of deep neural network architectures in various tasks by estimating

prediction uncertainty from the variance of the sampled predictions.
8.4.3 Soft Thresholding

Using a new thresholding method based on the tanh was used for training. The tanh offers
the advantage of an adjustable slope near the origin and is a bounded function, making it a
preferable choice as an estimation for soft thresholding (ST). Consequently, the

mathematical description of tanh-based ST is represented as:

~ [ tanh(B(x|-2)) x| > A
Softrp(x) = [ 0 otherwise @4

The equation above includes a thresholding parameter, A, and a parameter B that controls
the shape of the tanh. When B is close to zero, Eq. (8.4) approximates the behaviour of a
soft thresholding function. As B approaches infinity, Eq. (8.4) transforms into a hard

thresholding function. Both 4 and f are learnable parameters.
8.4.4 Data Consistency Constraints

The data consistency constraint (DCC) is introduced in the training model which
significantly improves the learning rate of the training model. DCC in the frequency
domain is a fundamental principle in CS MR recovery. It ensures that the samples acquired
in the k-space domain remain constant throughout the recovery process. In other words,
the measured data points in the frequency domain, which correspond to the acquired MRI
measurements, are preserved, and not altered during the iterations of the recovery

algorithm. The data consistency constraint is crucial because it guarantees that the
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recovered MRI stay consistent with sampled data. It prevents the algorithm from
introducing spurious information or modifying the original measurements, which could
lead to erroneous results. By preserving the actual samples from the k-space domain, the
algorithm ensures that the recovered image accurately represents the underlying structure
of the imaged object, even with limited or under-sampled data. The data consistency
constraint in the frequency domain is a vital aspect of CS MRI recovery, as it maintains
the integrity of the acquired data and helps achieve reliable and accurate image
reconstruction.

X[j]1 = Fy(X,) (FFT of Estimated Image)

Xocl = {51 X1 =0 (85

X[j1 otherwise

8.4.5 Convolution

In deep neural networks, convolutions are a fundamental operation used in convolutional
layers to process and extract features from input data. A filter or kernel is slid across the
input data during the convolutional procedure, and element-wise multiplication is done
between the filter and kernel and the corresponding local input region. The result is then
summed to produce a single value in the output feature map. Mathematically, the 2D

convolution operation for a single channel (grey scale) input image can be represented as

follows:
M-1N-1
Y(i,j))= X(@i+m,j+n).H(m, n) (8.6)
Here:

- Y(i,)) represents the value at position (i, j) in the output feature map.
- X(i+m,j + n) represents the value at position (i + m, J + n) in the input image.
- H(m,n) represents the value at position (m, n) in the filter/kernel while M and N

are the dimensions of the filter.

Convolutional layers employ several filters to extract distinct features from the input data,
producing several feature maps that capture the different patterns and traits of the input.
For tasks like image identification, object detection, and natural language processing, the
use of convolutions in deep neural networks is essential because it enables the network to

learn hierarchical representations from the input data effectively.
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8.4.6 Convolution Transpose

Convolution transpose, also known as deconvolution or up-sampling, is an operation used
in deep neural networks for tasks like image segmentation and image generation. It is the
opposite of standard convolution and is used to increase the spatial dimensions of the
feature maps. Mathematically, the 2D convolution transpose operation for a single channel

(grey scale) input feature map can be represented as follows:

M-1N-1
YG.J) = Z Z X(@i —m,j —n). H(m,n) @.7)
m=0 n=0
Where:
- Y(i,j) is the output representing the value at position (i,j) in the output feature
map.

- X(i —m,j — n) represents the value at position ({ —m,j — n) in the input feature
map.
- H(m,n) represents the value at position (m,n) in the filter/kernel while M and N

are the dimensions of the filter.

Convolution transpose is commonly used in up-sampling layers of neural networks to
recover spatial resolution lost during down-sampling, allowing the network to generate

high-resolution images or perform tasks requiring detailed spatial information.
8.4.7 Rectified Linear Unit (ReLU)

ReLU is an activation function commonly used in deep neural networks to introduce non-
linearity. It returns the input if it is positive and zero otherwise. Mathematically, the ReLU
activation function can be represented as follows:

ReLU(x) = max (0,x) (8.8)
Where:
- x is the input to the ReLU function.
- ReLU(x) is the output of the ReLU function, which is equal to x if x is positive and zero

if x is negative or zero.
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8.4.8 Xavier Initialisation

Xavier or Glorot Initialisation, is a weight initialisation technique used in deep neural
networks. It sets the initial weights of the neurons to random values drawn from a specific
distribution, designed to help with better training convergence.

Xavier Initialisation was first proposed by Glorot et al. [163]. The technique is widely
used to initialise weights in neural network layers, especially in networks using the ReL.U
activation function, as it helps in maintaining signal variance and promoting stable and

efficient training.
8.4.9 Adam optimizers

The optimisation approach used in training the DISTA model is Adam (Adaptive Moment
Estimation) which is frequently used in deep learning to update the weights of a neural
network while it is being trained. To adapt the learning rate for each parameter based on
their historical gradients and second moments, it utilises the advantages of both the
RMSprop and momentum methods. Adam dynamically adjusts the learning rate, which
makes it ideal for training complicated, high-dimensional neural networks and promotes

faster convergence and improved performance across a range of deep learning applications.
8.4.10 Cost Function

In optimisation in deep learning, the cost or objective function plays a crucial role in
guiding the training process of a neural network. The objective function represents the
measure of how well the model performs on a given task, and the optimisation process
aims to minimise this cost function to improve model performance. The cost or objective
function comprises two components: the discrepancy loss and the constraint loss. These
two components are combined to form the total loss that the optimisation algorithm aims
to minimise during training.

The discrepancy loss measures the difference between the predicted outputs of the
neural network and the true target values. It quantifies how well the model’s predictions
match the ground truth for the given task. Common discrepancy loss functions include
mean squared error (MSE) for regression tasks and cross-entropy loss for classification
tasks.
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The constraint loss incorporates additional constraints or regularization terms to guide
the model’s behaviour during training. In the training model, the l, or I norm
regularization terms can be added to the constraint loss to encourage sparsity in the model’s
weights, promoting a simpler and more interpretable model.

By combining the discrepancy loss and constraint loss, the total loss function represents
a trade-off between fitting the training data well (minimising discrepancy loss) and
satisfying additional constraints or regularization requirements (minimising constraint
loss). During optimisation, the neural network parameters are adjusted to minimise this
total loss, resulting in a model that performs well on the task while adhering to specific

constraints or regularization preferences.

Ly = Lg +vL, 8.9)
Ly= TVT:W "_d = - :q||2 (8.10)
Lc = NdN Z |c.'" H"(xl)) —x,[" (8.11)

Where Ly, Ly and L, are a total loss, discrepancy loss and constraint loss, respectively.
N,Ny, N, and y are the size of each block x;, total training blocks, total phases, and
regularisation constraint respectively. All these three losses during the training process by
our model are depicted in Figure 8-2 and Figure 8-3. Figure 8-2 shows the convergence of
all the losses with respect to Epochs when the compression ratio (CR) is set to only 20%.
Whereas Figure 8-3 shows the convergence of the above-mentioned losses when 2-fold CR
is applied.

During the training process of our model, three losses are considered: the discrepancy
loss, the constraint loss, and the total loss. These losses are illustrated in Figure 8-2 and
Figure 8-3. In Figure 8-2, we observe the convergence of all losses concerning the number
of training epochs when the compression ratio (CR) is set to 20%. On the other hand,
Figure 8-3 depicts the convergence of the mentioned losses when a 2-fold compression
ratio is applied. These figures show how the losses change over the training epochs,
providing valuable insights into the model performance and convergence behaviour for

different compression ratios.
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Figure 8-2: Loss functions vs Epochs for 5-fold compression of Brain and Knee MRIs
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Figure 8-3: Loss functions vs Epochs for 2-fold compression of Brain and Knee MRIs
8.5 DISTA-CSNet Testing Model

After training two separate DISTA-CSNet models for Compressed Sensing MRI
reconstruction of Brain and Knee MRIs. The testing phase evaluated the models' accuracy
by reconstructing MRIs from three test datasets: Brain MRI (50 slices), Knee MRI (21
images), and an additional Brain MRI dataset (123 slices). The trained models performed
with great accuracy regarding PSNR and SSIM, demonstrating their ability to produce
high-quality MRI estimates from compressed measurements. Overall, the DISTA-CSNet

models proved effective in accurately reconstructing MRIs, showcasing their potential for
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practical medical imaging applications. The process of testing the model is illustrated in

Figure 8-4. Algorithm 8.2 describes the testing process.
Model Testing
Input Output

Trained
> DISTA- CSNet
Model

Figure 8-4: DISTA-CSNet Testing Model
Algorithm 8.2: Testing DISTA-CSNet Process

Task: Test the Trained DISTA — CS Net for CS MRI Reconstruction

Input: Trained Model,
Test MR images,
Undersampling Mask
Output: Reconstructed MRI from CS — MRI
PSNR of the reconstructed image
SSIM of the reconstructed image
Recovery time by GPU/ CPU
1) Initalisation: [nitialize Wieghts and Conv filters using Xavier Initialisation
Set thresholding A and B to a learnable parameter.
Initial residual: To = Xo — aF, " (y,_, — FuXi_1)
2) Loading Model: Load pre — trained DISTA — CSNet

3) DISTA CS-Net Main Iteration: For every CS MRI in the test dataset
a) Loading Model: Load pre — trained learnt dictlonary
b) Masking: Apply masking to input MRI at appropriate CR in k — space
€) Reconstruction: Apply a pre — trained model for MRI reconstruction
d) Calculate Performance Measures: Calculate PSNR and SSIM of the recovered image
e) Stopping Rule: If all images are tested in dataset go to Step 4 otherwise go to Step 3a.

4) Output: Reconstructed Image, Recovery tume, PSNR and SSIM in
comparison to Ground Truth

8.6 DISTA-CSNet Model Testing Results and Discussion

In the evaluation phase, the DISTA-CSNet Model was subjected to testing using three
distinct datasets: the first dataset consisted of Brain MRIs with 50 slices [30], the second
dataset included 21 Knee MR images, and the third dataset contained 123 Brain MRI slices

[161]. To assess the performance of the proposed algorithm, the reconstructed images were
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compared to their respective ground truth images using two key metrics: PSNR and SSIM.
By measuring the PSNR and SSIM values, the experiments aimed to quantitatively
evaluate how accurately the DISTA-CSNet Model reconstructed the MRIs compared to the
original ground truth images, providing insights into the algorithm's efficacy and potential
for medical imaging applications.

The training and testing of the proposed model were performed on the Lambda ())
Quad AI Workstation with a single Nvidia GeForce RTX 3090 GPU using JupyterLab
platform. The batch size was set to 4 for training for Brain and Knee MRI training datasets.

Figure 8-5 presents a selection of randomly recovered images, which were obtained
during the testing phase using three distinct datasets. These datasets were subjected to a 5-
fold compression in the sampling process, resulting in a significant 5-time reduction in
scanning time compared to conventional methods. The PSNR / SSIM of the recovered
images are also shown. The visual evidence from the recovered images indicates that they
meet the required standards for clinical treatment. The reconstructed images demonstrate
high quality and accuracy, making them suitable for practical medical applications with
confidence.

Table 8-1 presents the effectiveness of the proposed DISTA-CSNet model that was
trained on 800 Brain MR images, showcasing its superior performance in terms of PSNR
and SSIM across various compression ratios. Even at a 5-fold compression, the model
achieves an impressive average SSIM value of 0.9634, indicating its proficiency in
producing high-quality reconstructions. During testing, the computational efficiency of the
model demonstrated significant improvements when executed on a GPU, with computation
times in the sub-second range. However, even on a CPU, the computational time has been
reduced, making it feasible to test the model without relying on a GPU. Moreover, the
training time for the DISTA-CSNet model was substantially reduced when trained on
Dataset 1, requiring only 20 epochs and approximately 16 minutes to reach a near-optimal
performance level. This observation highlights the fast-learning capability of the proposed
method compared to other state-of-the-art approaches, further solidifying its potential for
practical and time-efficient applications in medical image reconstruction.

Table 8-2 illustrates the effectiveness of the proposed DISTA-CSNet model, which was
trained on a dataset containing 600 Brain MR images, showcasing its superior performance

in terms of PSNR and SSIM across various compression ratios. Remarkably, even at a 5-
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fold compression, the model achieves an impressive average SSIM value of 0.9395,
demonstrating its proficiency in generating high-quality reconstructions. The model’s
computational efficiency during testing was notably improved when utilizing a GPU,
resulting in computation times within the sub-second range. Nevertheless, the
computational time on a CPU has also been significantly reduced, making it viable to test
the model without relying on a GPU. Additionally, the training time for the DISTA-CSNet
model on Dataset 2 showed substantial reductions, requiring only 20 epochs and
approximately 12 minutes to achieve near-optimal performance. The reduced training time
compared Brain MRI training time was mainly due to fewer MR images being available
for training i.e., 600 instead of 800 MRIs. This observation emphasizes the proposed
method’s fast-learning capability compared to other state-of-the-art approaches, further
validating its potential for practical and time-efficient medical image reconstruction

applications at clinical standards.

Table 8-3 demonstrates the effectiveness of the proposed DISTA-CSNet model, which was
tested using Dataset 3 on the same model that was trained on a dataset comprising 800
Brain MR images, showcasing its exceptional performance concerning PSNR and SSIM
across different compression ratios and robustness against varying test data. Even at a 5-
fold compression, the model achieves remarkable average SSIM and PSNR scores,
underscoring its ability to generate high-quality reconstructions. Notably, during testing,
the model exhibited significant improvements in computational efficiency when employed
on a GPU, achieving computation times in the sub-second range. However, the
computational time on a CPU has also been reduced, making it feasible to test the model
without relying solely on a GPU. These finding highlights the proposed method’s
adaptability and robustness mainly by introducing dropouts, compared to other state-of-
the-art approaches, further reinforcing its potential for practical and time-efficient
applications in medical image reconstruction.

In Figure 8-6, the performance of the trained DISTA-CSNet model is depicted when it
was tested on Dataset 1, which consisted of 50 slices of Brain MRI used for testing. The
graph shows the PSNR and SSIM values achieved by the model at different compression
ratios. Notably, the red dotted line highlights the average PSNR and SSIM attained by the
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proposed model when the compression ratio was set at only 20%. This emphasises the
efficacy of the proposed model in recovering Compressed Sensing (CS) MRI data. Even at
a relatively low compression ratio of 20%, the model achieves high PSNR and SSIM
values, indicating its ability to produce accurate and high-quality MRI reconstructions.
This result demonstrates the robustness and effectiveness of the DISTA-CSNet model in
handling CS MRI recovery tasks, making it a promising solution for medical imaging
applications that involve compressed data.

Figure 8-7 illustrates the performance of the trained DISTA-CSNet model during
testing on Dataset 2, comprising 21 MRIs of Knee MRI used for evaluation. The graph
showcases the PSNR and SSIM values achieved by the model at various compression
ratios. The red dotted line highlights the average PSNR and SSIM obtained by the proposed
model when the compression ratio was set to just 20%. This emphasizes the model’s
effectiveness in recovering Compressed Sensing (CS) MRI data. Even at a relatively 5-fold
compression, the model can produce accurate and high-quality MRI reconstructions with
better PSNR and SSIM. These results underscore the robustness and efficacy of the
DISTA-CSNet model in handling CS MRI recovery tasks, rendering it a promising solution
for medical imaging applications that deal with compressed data.

Figure 8-8 presents the performance of the trained DISTA-CSNet model during testing
on Dataset 3, which consists of 123 slices of Brain MRIs used for evaluation. The graph
showcases the PSNR and SSIM values achieved by the model at different compression
ratios. Of particular significance is the red dotted line, indicating the average PSNR and
SSIM obtained by the proposed model at a compression ratio of 20%. This highlights the
model’s effectiveness in recovering Compressed Sensing (CS) MRI data. Even at a
relatively high 5-fold compression, the model can produce accurate and high-quality MRI
reconstructions, with improved PSNR and SSIM values. These results underscore the
robustness and efficacy of the DISTA-CSNet model in handling CS MRI recovery tasks,
making it a promising solution for medical imaging applications that involve compressed

k-space data.
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Brain 50 Slices (CR: 20%) Knee MRI (CR: 20%) Brain 123 Slices (CR: 20%)
]

PSNR / SSIM PSNR / SSIM PSNR / SSIM
34.96/0.9347 39.18/0.9467 33.98/0.9120
Figure 8-5: Sample Recovered Images from Testing with Different Datasets

Table 8-1: Brain MRI with 50 Slices Testing Results

Compression Ratio GPU/CPU Traini
raini
Algorithms 0% 0% 0% S0% | Testing Time 'r'l " | Epochs
me
PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | PSNR/ssIM | (Sec)
ADMM- 37.17/ 3984/ 4156/ 43.00/ 095355
03:31:23 | 200
Net 09374 09526 0.9664 0.9734 /5.2
38.70/ 2097, 4265/ 412/ 0.1437s
ISTA-Net+ 02:38:15 | 200
0.9484 0.9639 09729 09792 /48s
39.25] 4150/ 43.66 4596/ 0.0688s
ML-CSC 01:09:22 | 50
0.9551 0.9689 09774 0.9855 /285
DISTA- 40.36/ 42.67/ 45.24] 47.51/ 0.0114s
00:16-18 | 20
CSNet 0.9634 0.9755 0.9839 0.9899 /1.365
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Table 8-2: Knee MRI Dataset Testing Results with 21 MR Images

Compression Ratio GPU/CPU
. Training
Algorithms 20% 30% 40% 50% Testing - Epochs
im
PSNR/SSIM PSNR/SSIM | PSNR/SSIM | PSNR/SSIM | Time (Sec) ¢
ADMM- 34.30/ 36.29/ 40.78/ 4133/ 0.8935s
02:38.27 | 200
Net 0.8987 0.9385 0.9665 09775 /232s
3351 36.23 3942 41.86 0.1261
ISTA-Net+ / / / / 12615 1 o1:se:07 | 200
0.8533 0.9089 0.9502 09723 /2.05s
3693/ 39.68/ 42.04/ 4344/ 0.0538s
ML-CSC 00:49:35 | 50
0.9262 0.9569 0.9738 0.9824 /218s
DISTA- 38.06 / 41.04/ 43.42 46.21/ 0.01125
00:12:15 | 20
CSNet 0.9395 0.9661 0.9799 0.9898 /1.34s
Table 8-3: Testing results of Brain MR images with 123 slices
Compression Ratio
GPU/CPU
Algorithms 20% 30% 40% 50% .
Testing Time
PSNR/SSIM PSNR/SSIM PSNR/SSIM | PSNR/SSIM
29/ 33.00/ 36.02/ 38.95/
ADMM-Net 2929 09730s /5.4s
0.84386 0.89599 0.92406 094158
30.50/ 33.94/ 36.96/ 39 96/
ISTA-Net+ 0.1528s /4 94s
0.8786 0.9214 09483 0.9661
3168/ 3521/ 38 35/ 41.60/
ML-CSC 0.0732s/3 79s
L 0.8782 0.9234 09554 09724
319/ 41.37/ 44.50/
DIST-CSNet 3332/ 0.04294/1.40s
0.8975 0.9522 0.9749 0.9863
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Figure 8-6: PSNR and SSIM for Brain MRI of 50 slices at a compression ratio of 20 %

PSNR for Knee MR images at CR: 20% 100 SSIM for Knee MR images at CR: 20%
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Figure 8-7: PSNR and SSIM for Knee MR Images at 5-fold compression
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Figure 8-8: PSNR and SSIM for Brain MRI with 123 slices with 5-fold compression

8.7 Conclusions

The proposed DISTA-CSNet model has introduced data consistency constraints and a
flexible tanh-based shrinkage technique, leading to remarkable advancements in terms of
reduced training time, requiring only 20 epochs to adapt to different datasets for specific
applications efficiently. Despite the reduced training time, the model’s testing performance
significantly improves in both SSIM and PSNR values. Moreover, incorporating dropouts
in the proposed model has demonstrated its robustness when confronted with varying
datasets. This resilience is evident from the testing results on Brain MRI with 123 slices,
where the proposed model outperforms other state-of-the-art methods in recovering
Compressed Sensing MRI data. These findings highlight the effectiveness and versatility
of the DISTA-CSNet model, making it a promising and competitive solution for medical

image reconstruction tasks.
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CHAPTER 9

CONCLUSIONS

9.1 Summary of Thesis

Compressed sensing is a cutting-edge acquisition procedure created to function at low
sample rates. It has the benefit of shortening acquisition times in biomedical applications
including computed tomography (CT), microwave imaging (MWI), and magnetic
resonance imaging (MRI). This is especially useful when conventional acquisition
techniques take a long time or subject patients to harmful radiation for an extended length
of time. Compressed sensing in biomedical imaging has considerably decreased the amount
of raw data needed and slashed acquisition times. The lengthened processing time during
image recovery is a downside, though. The nonlinear CS recovery problem was solved
using convex optimisation-based techniques in early CS attempts. However, these generic
reconstruction algorithms frequently proved slow and ineffective for high-dimensional
biomedical images, necessitating lengthy computations.

This dissertation’s main objective is to provide a new set of algorithms that may
effectively reconstruct Fourier-encoded biological images from sub-sampled observations
to address this issue. To increase the overall efficacy and efficiency of CS MRI recovery,
these suggested algorithms estimate the missing Fourier samples by using data consistency
in the Fourier domain and shrinkage in the sparsity domain. The efficacy of different
sparsity-promoting norms, such as ly-norm and l;-norm was evaluated and novel
approaches to estimate sparsifying transforms were evaluated.

Table 9.1 summarises the compressively sampled MRI recovery through various
proposed methods in terms of SSIM. The SSIM attained by the proposed methods
highlights their effectiveness in recovering the MR images even with only 25% and 20%
of the sampled, accelerating the MRI scanning process by 4 to 5 times respectively. The
DISTA-CSNet has a clear advantage over other methods as it achieved similar accuracy

with 5-fold compression and was tested on 50 different Brain MRls, while other CS MRI
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recovery algorithms were applied on a single Brain MRI, and still achieving competitive
results.
Table 9-1: Summary of SSIM attained proposed methods to recover CS MRI.

Proposed Methods Structural Similarity Index CR
Smooth l; norm 0.9665 25%
Smooth I, norm 0.9567 25%
Hybrid Smooth l; and [, norm 0.9696 25%
Nature Inspired IRLS 0.9664 25%
Heuristic Smooth l;-norm 0.9641 25%
DISTA-CSNet Model 0.9634 20%

The main conclusions from the thesis are covered as follows:

* The dissertation proposed a novel Kronecker Delta function for smooth
approximation of [, norm that efficiently recovered the undersampled 1D signal
sparse signal and CS MR, as compared to previous techniques.

* In-depth performance analysis of different Kronecker Delta functions to
approximate sparsity promoting [y norm for recovery of CS MRI and undersampled
1D sparse signal was presented, highlighting the better-suited approximations
based on their application.

e This thesis introduced a novel cost function that combines smooth approximations
of l and I; norm for recovery of undersampled 1D sparse signal and MRI from
fewer observations in k-space. The proposed method achieved high accuracy in CS
MRI recovery.

* A novel method that approximates I, norm and shrinkage with tanh. The proposed
smooth approximation in loss function allowed us to apply gradient descent-based
optimisation techniques to find the near-optimal solutions to the inverse problems
posed by CS MRI recovery efficiently.

® The nature-inspired algorithm i.e., Particle Swarm Optimisation (PSO) was
combined with Iterative Reweighted Least Square (IRLS) method to recover CS
MRI from undersampled k-space data and the 1D k-sparse signal from fewer

observations. The proposed method was evaluated with a comprehensive
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experiment to recover the 1D sparse signal and MRI accurately from undersampled
data as compared to existing techniques.

e The heuristic smooth approximation of the [; norm was proposed to recover CS
MRI from undersampled k-space data and the 1D sparse signal. The proposed
method was assessed with extensive experimentation to recover 1D sparse signal
and MRI accurately from undersampled data as compared to existing techniques.

e The main contribution of this thesis was developing a novel deep neural network
dubbed DISTA-CSNet that trains the model to efficiently recover MRI from
undersampled k-space data in significantly reduced time as compared to state-of-
the-art methods that exist in literature. The data consistency constraint and tanh-
based shrinkage significantly improved the learning rate while training in only 20
Epochs. The dropouts intreduced in the proposed DNN as a regularisation method
made the trained model more robust to different datasets while testing it to three
different datasets. The DISTA-CSNet not only recovered MR images more
computationally efficiently in the testing phase but also improved the accuracy of

the recovered CS MRI.

9.2 Future Directions

There can be several ways and enhancements for future research work that can take the
lead from the ideas presented in this thesis.

e The focus of this work can be broadened to incorporate dynamic MR imaging,
which entails quick data collection to track swift changes in signal strength.

o The proposed algorithms are appropriate for usage in conjunction with parallel
imaging methods due to their computational simplicity.

e This thesis utilised analytical sparsifying transforms (dictionary), but it is suggested
that incorporating an adaptive dictionary learning mechanism could enhance
recovery results.

o The suggested CS reconstruction methods are promising for recovering video from
compressed data, but an intelligent sensing mechanism might be required to fully

take advantage of the strong correlation in a video sequence.
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The proposed CS recovery can be expanded to patch-based CS reconstruction in
place of recovering the complete biological image in one go. It is envisaged that
the reconstruction quality will increase as global modelling gives way to local and
adaptive modelling.

In a deep learning context, the transfer learning in this thesis can be expanded to
create more universal CS recovery-based models that can adapt to other datasets
without requiring initial training.

The proposed DISTA-CSNet model can be implemented using multiple GPUs to
enhance its training efficacy.

The proposed DISTA-CSNet model can be modified to classify biomedical images
under the CS framework.
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